Science.gov

Sample records for chronic low-dose exposure

  1. Chronic Low Dose Chlorine Exposure Aggravates Allergic Inflammation and Airway Hyperresponsiveness and Activates Inflammasome Pathway

    PubMed Central

    Kim, Sae-Hoon; Park, Da-Eun; Lee, Hyun-Seung; Kang, Hye-Ryun; Cho, Sang-Heon

    2014-01-01

    Background Epidemiologic clinical studies suggested that chronic exposure to chlorine products is associated with development of asthma and aggravation of asthmatic symptoms. However, its underlying mechanism was not clearly understood. Studies were undertaken to define the effects and mechanisms of chronic low-dose chlorine exposure in the pathogenesis of airway inflammation and airway hyperresponsiveness (AHR). Methods Six week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low dose chlorine exposure of naturally vaporized gas of 5% sodium hypochlorite solution. Airway inflammation and AHR were evaluated by bronchoalveolar lavage (BAL) cell recovery and non-invasive phlethysmography, respectively. Real-time qPCR, Western blot assay, and ELISA were used to evaluate the mRNA and protein expressions of cytokines and other inflammatory mediators. Human A549 and murine epithelial (A549 and MLE12) and macrophage (AMJ2-C11) cells were used to define the responses to low dose chlorine exposure in vitro. Results Chronic low dose chlorine exposure significantly augmented airway inflammation and AHR in OVA-sensitized and challenged mice. The expression of Th2 cytokines IL-4 and IL-5 and proinflammatory cytokine IL-1β and IL-33 were significantly increased in OVA/Cl group compared with OVA group. The chlorine exposure also activates the major molecules associated with inflammasome pathway in the macrophages with increased expression of epithelial alarmins IL-33 and TSLP in vitro. Conclusion Chronic low dose exposure of chlorine aggravates allergic Th2 inflammation and AHR potentially through activation of inflammasome danger signaling pathways. PMID:25202911

  2. Chronic exposure of low dose salinomycin inhibits MSC migration capability in vitro

    PubMed Central

    SCHERZAD, AGMAL; HACKENBERG, STEPHAN; FROELICH, KATRIN; RAK, KRISTEN; HAGEN, RUDOLF; TAEGER, JOHANNES; BREGENZER, MAXIMILLIAN; KLEINSASSER, NORBERT

    2016-01-01

    Salinomycin is a polyether antiprotozoal antibiotic that is used as a food additive, particularly in poultry farming. By consuming animal products, there may be a chronic human exposure to salinomycin. Salinomycin inhibits the differentiation of preadipocytes into adipocytes. As human mesenchymal stem cells (MSC) may differentiate into different mesenchymal cells, it thus appeared worthwhile to investigate whether chronic salinomycin exposure impairs the functional properties of MSC and induces genotoxic effects. Bone marrow MSC were treated with low-dose salinomycin (100 nM) (MSC-Sal) for 4 weeks, while the medium containing salinomycin was changed every other day. Functional changes were evaluated and compared to MSC without salinomycin treatment (MSC-control). MSC-Sal and MSC-control were positive for cluster of differentiation 90 (CD90), CD73 and CD44, and negative for CD34. There were no differences observed in cell morphology or cytoskeletal structures following salinomycin exposure. The differentiation into adipocytes and osteocytes was not counteracted by salinomycin, and proliferation capability was not inhibited following salinomycin exposure. The migration of MSC-Sal was attenuated significantly as compared to the MSC-control. There were no genotoxic effects after 4 weeks of salinomycin exposure. The present study shows an altered migration capacity as a sign of functional impairment of MSC induced by chronic salinomycin exposure. Further in vitro toxicological investigations, particularly with primary human cells, are required to understand the impact of chronic salinomycin consumption on human cell systems. PMID:26998269

  3. Effects of chronic low-dose cadmium exposure on selected biochemical and antioxidant parameters in rats.

    PubMed

    Lovásová, Eva; Rácz, Oliver; Cimboláková, Iveta; Nováková, Jaroslava; Dombrovský, Peter; Ništiar, František

    2013-01-01

    The effects of long-term (1 yr) exposure to low doses of cadmium (Cd) dissolved in drinking water on selected biochemical and antioxidant parameters were studied in Wistar rats. Rats were divided into four groups: male control group (C-m), female control group (C-f), male Cd-exposed group (Cd-m), and female Cd-exposed group (Cd-f). Cd groups were exposed to Cd dissolved in drinking water (cadmium dichloride 4.8 mg CdCl2/L, i.e., 2.5 mg Cd/L, 500-fold of maximal allowable concentration for potable water). The experiment was terminated on d 370. In all groups, biochemical parameters (total protein [TP], albumin, alanine aminotransferase, aspartate aminotransferase, glucose, cholesterol, triacylglycerols, urea, and creatinine) and antioxidant parameters (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) were measured in the blood. Total protein and albumin concentrations were decreased significantly in the Cd-m group. Other biochemical parameters did not change in Cd groups compared to control groups. Superoxide dismutase fell significantly in both male and female Cd-exposed groups. Activity of glutathione peroxidase was markedly lower in Cd-exposed groups. Total antioxidant capacity increased significantly in Cd-f group. These results suggest that chronic low-dose oral Cd exposure induces oxidative stress. PMID:24168039

  4. Metabolomic analysis of rat plasma following chronic low-dose exposure to dichlorvos.

    PubMed

    Yang, J; Wang, H; Xu, W; Hao, D; Du, L; Zhao, X; Sun, C

    2013-02-01

    This study aims to assess the metabolomic profile and related histopathological outcomes of rat plasma after chronic low-dose exposure to dichlorvos (DDVP). A total of 120 male Wistar rats were treated with 0, 2.4, 7.2, and 21.6 mg/kg of body weight/day DDVP continuously for 24 weeks by drinking water. Rat plasma samples were collected at different time-points to measure the metabolomic profiles by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Liver tissue analysis was performed to correlate histopathological outcome status to plasma metabolomics. Significant changes in some of the metabolites were found in all the treated groups compared with the control group. LysoPC (15:0/0:0), LysoPC (16:0/0:0), LysoPC (17:0/0:0), LysoPC (0:0/18:0), sphingosine, sphinganine, C16 sphinganine, C17 sphinganine, and arachidonic acid were decreased in the treated groups. LysoPE (16:0/0:0) was increased after dosing with DDVP. Histopathological test outcomes coincided with the plasma metabolomic-profile analysis results obtained by UPLC-MS. The livers were damaged following chronic exposure to DDVP. Abnormal changes in some lipids in the plasma, such as LysoPC (0:0/18:0), were closely related to liver dysfunction. Therefore, metabolomic analysis provides the unique advantages of unveiling the mechanisms of DDVP. PMID:23060408

  5. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure

    PubMed Central

    2012-01-01

    Background According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Results Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). Conclusions At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed. PMID:22540409

  6. Dynamics of changes in micronucleus frequencies in subjects post cessation of chronic low-dose radiation exposure.

    PubMed

    Tsai, M H; Hwang, J S; Chen, K C; Lin, Y P; Hsieh, W A; Chang, W P

    2001-05-01

    To assess DNA damage remaining in peripheral lymphocytes, 48 individuals were evaluated twice for lymphocyte micronucleus frequencies by the cytokinesis-blocking cytochalasin B (CBMN) analysis post relocation from radio-contaminated apartments after various periods of time. The frequencies of CBMN at the first evaluation were significantly higher than those at the second examination (Chang et al., 1999c). These individuals were categorized into three groups: those with cumulative exposure of >300 mSv (defined as high exposure, HDose), those with 100-300 mSv (MDose) and those with <100 mSv (LDose). Using the Poisson mixed-effect model (Little et al., 1996), the estimated mean CBMN frequencies ( per thousand) for individuals in HDose, MDose and LDose exposure categories when they had only recently relocated were 21.8, 17.6 and 15.4, respectively. The estimated mean duration post relocation for the CBMN frequencies of these individuals to reduce to 10.2, the second CBMN frequency, on average, was 47.5, 37.2 and 28.3 months in the three exposure groups, respectively. The rates of change in CBMN frequencies were shown to be significantly higher in the HDose group than in the MDose and LDose groups. The results suggested a characteristic dose-dependent decline in the CBMN frequencies in the exposed population post cessation of chronic low-dose ionizing radiation exposure. PMID:11320151

  7. Effects of chronic exposure to low doses of trichloroethylene on steroid hormone and insulin levels in normal men.

    PubMed Central

    Goh, V H; Chia, S E; Ong, C N

    1998-01-01

    The aim of this study was to examine the serum levels of insulin and some adrenal steroid hormones in men chronically exposed to low doses of trichloroethylene (TCE). A total of 85 workers participated in this study. Each worker had urine collected and analyzed for trichloroacetic acids (UTCA) on the same day that a blood sample was taken for analyses of serum testosterone, sex hormone-binding globulin (SHBG), androstenedione, cortisol, aldosterone, and insulin. The mean concentration of environmental TCE was 29.6 ppm and the mean UTCA was 22.4 mg/g creatinine (range 0.8-136.4). TCE exposure did not cause any significant changes to the adrenal steroid hormone productions. The results showed that UTCA was significantly correlated to serum insulin levels. Insulin and SHBG responded in tandem, with the highest levels found in workers exposed to TCE for less than 2 years; levels of both parameters were significantly lowered in those exposed for more than 2 years. A triphasic response in insulin levels to TCE, which depended on the duration of exposure, was noted. Initial exposure caused an acute rise in insulin levels. This was followed by a fall to normal levels in those exposed 2-4 years and then a slight rise in those exposed for more than 6 years. The mechanism for this pattern of response to TCE exposure is yet unknown. PMID:9417767

  8. Neuropsychological effects of chronic low-dose exposure to polychlorinated biphenyls (PCBs): A cross-sectional study

    PubMed Central

    Peper, Martin; Klett, Martin; Morgenstern, Rudolf

    2005-01-01

    Background Exposure to indoor air of private or public buildings contaminated with polychlorinated biphenyls (PCBs) has raised health concerns in long-term users. This exploratory neuropsychological group study investigated the potential adverse effects of chronic low-dose exposure to specific air-borne low chlorinated PCBs on well-being and behavioral measures in adult humans. Methods Thirty employees exposed to indoor air contaminated with PCBs from elastic sealants in a school building were compared to 30 non-exposed controls matched for education and age, controlling for gender (age range 37–61 years). PCB exposure was verified by external exposure data and biological monitoring (PCB 28, 101, 138, 153, 180). Subjective complaints, learning and memory, executive function, and visual-spatial function was assessed by standardized neuropsychological testing. Since exposure status depended on the use of contaminated rooms, an objectively exposed subgroup (N = 16; PCB 28 = 0.20 μg/l; weighted exposure duration 17.9 ± 7 years) was identified and compared with 16 paired controls. Results Blood analyses indicated a moderate exposure effect size (d) relative to expected background exposure for total PCB (4.45 ± 2.44 μg/l; d = 0.4). A significant exposure effect was found for the low chlorinated PCBs 28 (0.28 ± 0.25 μg/l; d = 1.5) and 101 (0.07 ± 0.09 μg/l; d = 0.7). Although no neuropsychological effects exceeded the adjusted significance level, estimation statistics showed elevated effect sizes for several variables. The objectively exposed subgroup showed a trend towards increased subjective attentional and emotional complaints (tiredness and slowing of practical activities, emotional state) as well as attenuated attentional performance (response shifting and alertness in a cued reaction task). Conclusion Chronic inhalation of low chlorinated PCBs that involved elevated blood levels was associated with a subtle attenuation of emotional well-being and

  9. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases.

    PubMed

    Krestinina, Lyudmila Yurievna; Epifanova, Svetlana; Silkin, Stanislav; Mikryukova, Lyudmila; Degteva, Marina; Shagina, Natalia; Akleyev, Alexander

    2013-03-01

    The aim of the present study was to analyze the mortality from circulatory diseases for about 30,000 members of the Techa River cohort over the period 1950-2003, and to investigate how these rates depend on radiation doses. This population received both external and internal exposures from (90)Sr, (89)Sr, (137)Cs, and other uranium fission products as a result of waterborne releases from the Mayak nuclear facility in the Southern Urals region of the Russian Federation. The analysis included individualized estimates of the total (external plus internal) absorbed dose in muscle calculated based on the Techa River Dosimetry System 2009. The cohort-average dose to muscle tissue was 35 mGy, and the maximum dose was 510 mGy. Between 1950 and 2003, 7,595 deaths from circulatory diseases were registered among cohort members with 901,563 person years at risk. Mortality rates in the cohort were analyzed using a simple parametric excess relative risk (ERR) model. For all circulatory diseases, the estimated excess relative risk per 100 mGy with a 15-year lag period was 3.6 % with a 95 % confidence interval of 0.2-7.5 %, and for ischemic heart disease it was 5.6 % with a 95 % confidence interval of 0.1-11.9 %. A linear ERR model provided the best fit. Analyses with a lag period shorter than 15 years from the beginning of exposure did not reveal any significant risk of mortality from either all circulatory diseases or ischemic heart disease. There was no evidence of an increased mortality risk from cerebrovascular disease (p > 0.5). These results should be regarded as preliminary, since they will be updated after adjustment for smoking and alcohol consumption. PMID:23124827

  10. Morphological and functional deterioration of the rat thyroid following chronic exposure to low-dose PCB118.

    PubMed

    Tang, Jin-Mei; Li, Wen; Xie, Yu-Chun; Guo, Hong-Wei; Cheng, Pei; Chen, Huan-Huan; Zheng, Xu-Qin; Jiang, Lin; Cui, Dai; Liu, Yun; Ding, Guo-Xian; Duan, Yu

    2013-11-01

    Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that can severely disrupt the synthesis and secretion of endocrine hormones. To investigate the effects of 2,3',4,4',5-pentachlorobiphenyl (PCB118) on thyroid structure and function, 40 male Wistar rats were divided into 4 equal treatment groups and administered vehicle or one of three doses of PCB118. The experimental groups received intraperitoneal (i.p.) injection of 10, 100, or 1000μg/kg/day PCB118, 5 days per week for 13 weeks, whereas the control group was injected with corn oil (vehicle). Serum concentrations of free thyroxine (FT4), free triiodothyronine (FT3) and thyroid stimulating hormone (TSH) were measured by radioimmunoassays. Histopathological and ultrastructural changes in the thyroid were observed under light microscopy and transmission electron microscopy (TEM). The mRNA expression levels of the sodium-iodide symporter (NIS) and thyroglobulin (TG) were quantified by real-time PCR. Increasing doses of PCB118 resulted in progressively lower FT3, FT4 and TSH concentrations in serum. Injection of PCB118 at all doses led to histopathological deterioration of the thyroid characterized by follicular hyperplasia and expansion, shedding of epithelial cells and fibrinoid necrosis. Follicle cells exhibited swollen or vacuolated endoplasmic reticula, as revealed by TEM. Exposure to PCB118 also caused significant decreases in NIS and TG mRNA expression levels. Chronic exposure to low-dose PCB118 and other PCB congeners may be a significant risk factor for thyroid diseases. PMID:23557935

  11. Chronic Exposure to Low-Dose Arsenic Modulates Lipogenic Gene Expression in Mice

    PubMed Central

    Adebayo, Adeola O.; Zandbergen, Fokko; Kozul-Horvath, Courtney D.; Gruppuso, Philip A.; Hamilton, Joshua W.

    2016-01-01

    Arsenic, a ubiquitous environmental toxicant, can affect lipid metabolism through mechanisms that are not well understood. We studied the effect of arsenic on serum lipids, lipid-regulating genes, and transcriptional regulator sterol regulatory element binding protein 1c (SREBP-1c). C57BL/6 mice were administered 0 or 100 ppb sodium arsenite in drinking water for 5 weeks. Arsenic exposure was associated with decreased liver weight but no change in body weight. Serum triglycerides level fell in arsenic-exposed animals, but not in fed animals, after short-term fasting. Hepatic expression of SREBP-1c was reduced in arsenic-exposed fed animals, with a 16-fold change in reduction. Similar effects were seen for SREBP-1c in white adipose tissue. However, fasting resulted in dissociation of the expression of SREBP-1c and its targets, and SREBP-1c protein content could not be shown to correlate with its mRNA expression. We conclude that arsenic modulates hepatic expression of genes involved in lipid regulation through mechanisms that are independent of SREBP-1c expression. PMID:25155036

  12. Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice.

    PubMed

    Anthérieu, Sébastien; Le Guillou, Dounia; Coulouarn, Cédric; Begriche, Karima; Trak-Smayra, Viviane; Martinais, Sophie; Porceddu, Mathieu; Robin, Marie-Anne; Fromenty, Bernard

    2014-04-01

    Drinking water can be contaminated with pharmaceuticals. However, it is uncertain whether this contamination can be harmful for the liver, especially during obesity. Hence, the goal of our study was to determine whether chronic exposure to low doses of pharmaceuticals could have deleterious effects on livers of lean and obese mice. To this end, lean and ob/ob male mice were treated for 4 months with a mixture of 11 drugs provided in drinking water at concentrations ranging from 10 to 10⁶ ng/l. At the end of the treatment, some liver and plasma abnormalities were observed in ob/ob mice treated with the cocktail containing 10⁶ ng/l of each drug. For this dosage, a gene expression analysis by microarray showed altered expression of circadian genes (e.g. Bmal1, Dbp, Cry1) in lean and obese mice. RT-qPCR analyses carried out in all groups of animals confirmed that expression of 8 different circadian genes was modified in a dose-dependent manner. For some genes, a significant modification was observed for dosages as low as 10²-10³ ng/l. Drug mixture and obesity presented an additive effect on circadian gene expression. These data were validated in an independent study performed in female mice. Thus, our study showed that chronic exposure to trace pharmaceuticals disturbed hepatic expression of circadian genes, particularly in obese mice. Because some of the 11 drugs can be found in drinking water at such concentrations (e.g. acetaminophen, carbamazepine, ibuprofen) our data could be relevant in environmental toxicology, especially for obese individuals exposed to these contaminants. PMID:24525044

  13. Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice

    SciTech Connect

    Anthérieu, Sébastien; Le Guillou, Dounia; Coulouarn, Cédric; Begriche, Karima; Trak-Smayra, Viviane; Martinais, Sophie; Porceddu, Mathieu; Robin, Marie-Anne; Fromenty, Bernard

    2014-04-01

    Drinking water can be contaminated with pharmaceuticals. However, it is uncertain whether this contamination can be harmful for the liver, especially during obesity. Hence, the goal of our study was to determine whether chronic exposure to low doses of pharmaceuticals could have deleterious effects on livers of lean and obese mice. To this end, lean and ob/ob male mice were treated for 4 months with a mixture of 11 drugs provided in drinking water at concentrations ranging from 10 to 10{sup 6} ng/l. At the end of the treatment, some liver and plasma abnormalities were observed in ob/ob mice treated with the cocktail containing 10{sup 6} ng/l of each drug. For this dosage, a gene expression analysis by microarray showed altered expression of circadian genes (e.g. Bmal1, Dbp, Cry1) in lean and obese mice. RT-qPCR analyses carried out in all groups of animals confirmed that expression of 8 different circadian genes was modified in a dose-dependent manner. For some genes, a significant modification was observed for dosages as low as 10{sup 2}–10{sup 3} ng/l. Drug mixture and obesity presented an additive effect on circadian gene expression. These data were validated in an independent study performed in female mice. Thus, our study showed that chronic exposure to trace pharmaceuticals disturbed hepatic expression of circadian genes, particularly in obese mice. Because some of the 11 drugs can be found in drinking water at such concentrations (e.g. acetaminophen, carbamazepine, ibuprofen) our data could be relevant in environmental toxicology, especially for obese individuals exposed to these contaminants. - Highlights: • The contamination of drinking water with drugs may have harmful effects on health. • Some drugs can be more hepatotoxic in the context of obesity and fatty liver. • Effects of chronic exposure of trace drugs were studied in lean and obese mouse liver. Drugs and obesity present additive effects on circadian gene expression and toxicity. • Trace

  14. Synaptotoxicity of chronic low-dose pre- and post-natal ethanol exposure: A new animal model

    SciTech Connect

    Walewski, J.L.

    1992-01-01

    Chronic Low-dose Pre- and Post-natal Ethanol exposure (CLPPEE) is the most frequent cause of teratogenically induced mental deficiency in the Western world. Although the Fetal Alcohol Syndrome (FAAS) is associated with high levels of alcohol consumption, the relative teratogenic risk of moderate ethanol consumption is not well defined. CLPPEE may affect some processes involved in synapse formation, affecting the proper development and maturation of the nervous system. Ethanol was admixed (3 v/v%) with high-protein liquid diet (Bio-Serve) as the only nutrient source. The controls received an isocaloric sucrose liquid diet mixture. Ethanol treatment began on day 8 of pregnancy. 3 v/v% ethanol did not significantly reduce the body weights or diet consumption of dams, nor the gross growth of ethanol-exposed pups. Standard neuromuscular twitch preparations in vivo, utilizing the sciatic nerve-gastrocnemius muscle, were done on 1, 2, 3 and 7 week old pups. The physiologic functional tests of nursing pups (1-3 weeks), indicated that the ethanol-treated pups had abnormal responses to indirect stimulation. The deficit was determined to be pre-synaptic. The ethanol-exposed at these ages demonstrated abnormal responses to presynaptic challenge. Histochemical staining revealed motor nerve terminal morphology. In 2 and 3 week ethanol-treated pups, the number of nerve terminal branches, and endplate lengths were significantly reduced. Reversibility was examined by allowing the pups to mature while receiving only standard rat chow and water. Tests were repeated at 7 weeks of age. The responses of the ethanol-exposed to pharmacologic challenge, and motor nerve terminal morphology were still significantly different in the young adult animals. CLPPEE, at doses sub-threshold for FAS, affects the normal development of the skeletal neuromuscular system, with long-lasting effects on motor nerve terminal function and morphology.

  15. Measuring DNA Damage and Repair in Mouse Splenocytes After Chronic In Vivo Exposure to Very Low Doses of Beta- and Gamma-Radiation.

    PubMed

    Flegal, Matthew; Blimkie, Melinda S; Wyatt, Heather; Bugden, Michelle; Surette, Joel; Klokov, Dmitry

    2015-01-01

    Low dose radiation exposure may produce a variety of biological effects that are different in quantity and quality from the effects produced by high radiation doses. Addressing questions related to environmental, occupational and public health safety in a proper and scientifically justified manner heavily relies on the ability to accurately measure the biological effects of low dose pollutants, such as ionizing radiation and chemical substances. DNA damage and repair are the most important early indicators of health risks due to their potential long term consequences, such as cancer. Here we describe a protocol to study the effect of chronic in vivo exposure to low doses of γ- and β-radiation on DNA damage and repair in mouse spleen cells. Using a commonly accepted marker of DNA double-strand breaks, phosphorylated histone H2AX called γH2AX, we demonstrate how it can be used to evaluate not only the levels of DNA damage, but also changes in the DNA repair capacity potentially produced by low dose in vivo exposures. Flow cytometry allows fast, accurate and reliable measurement of immunofluorescently labeled γH2AX in a large number of samples. DNA double-strand break repair can be evaluated by exposing extracted splenocytes to a challenging dose of 2 Gy to produce a sufficient number of DNA breaks to trigger repair and by measuring the induced (1 hr post-irradiation) and residual DNA damage (24 hrs post-irradiation). Residual DNA damage would be indicative of incomplete repair and the risk of long-term genomic instability and cancer. Combined with other assays and end-points that can easily be measured in such in vivo studies (e.g., chromosomal aberrations, micronuclei frequencies in bone marrow reticulocytes, gene expression, etc.), this approach allows an accurate and contextual evaluation of the biological effects of low level stressors. PMID:26168333

  16. Chronic Internal Exposure to Low Dose 137Cs Induces Positive Impact on the Stability of Atherosclerotic Plaques by Reducing Inflammation in ApoE-/- Mice

    PubMed Central

    Le Gallic, Clélia; Phalente, Yohann; Manens, Line; Dublineau, Isabelle; Benderitter, Marc; Gueguen, Yann; Lehoux, Stephanie; Ebrahimian, Teni G.

    2015-01-01

    After Chernobyl and Fukushima Daï Chi, two major nuclear accidents, large amounts of radionuclides were released in the environment, mostly caesium 137 (137Cs). Populations living in contaminated territories are chronically exposed to radionuclides by ingestion of contaminated food. However, questions still remain regarding the effects of low dose ionizing radiation exposure on the development and progression of cardiovascular diseases. We therefore investigated the effects of a chronic internal exposure to 137Cs on atherosclerosis in predisposed ApoE-/- mice. Mice were exposed daily to 0, 4, 20 or 100 kBq/l 137Cs in drinking water, corresponding to range of concentrations found in contaminated territories, for 6 or 9 months. We evaluated plaque size and phenotype, inflammatory profile, and oxidative stress status in different experimental groups. Results did not show any differences in atherosclerosis progression between mice exposed to 137Cs and unexposed controls. However, 137Cs exposed mice developed more stable plaques with decreased macrophage content, associated with reduced aortic expression of pro-inflammatory factors (CRP, TNFα, MCP-1, IFNγ) and adhesion molecules (ICAM-1, VCAM-1 and E-selectin). Lesions of mice exposed to 137Cs were also characterized by enhanced collagen and smooth muscle cell content, concurrent with reduced matrix metalloproteinase MMP8 and MMP13 expression. These results suggest that low dose chronic exposure of 137Cs in ApoE-/- mice enhances atherosclerotic lesion stability by inhibiting pro-inflammatory cytokine and MMP production, resulting in collagen-rich plaques with greater smooth muscle cell and less macrophage content. PMID:26046630

  17. Chronic exposure to a low dose of ingested petroleum disrupts corticosterone receptor signalling in a tissue-specific manner in the house sparrow (Passer domesticus)

    PubMed Central

    Lattin, Christine R.; Romero, L. Michael

    2014-01-01

    Stress-induced concentrations of glucocorticoid hormones (including corticosterone, CORT) can be suppressed by chronic exposure to a low dose of ingested petroleum. However, endocrine-disrupting chemicals could interfere with CORT signalling beyond the disruption of hormone titres, including effects on receptors in different target tissues. In this study, we examined the effects of 6 weeks of exposure to a petroleum-laced diet (1% oil weight:food weight) on tissue mass and intracellular CORT receptors in liver, fat, muscle and kidney (metabolic tissues), spleen (an immune tissue) and testes (a reproductive tissue). In the laboratory, male house sparrows were fed either a 1% weathered crude oil (n = 12) or a control diet (n = 12); glucocorticoid receptors and mineralocorticoid receptors were quantified using radioligand binding assays. In oil-exposed birds, glucocorticoid receptors were lower in one metabolic tissue (liver), higher in another metabolic tissue (fat) and unchanged in four other tissues (kidney, muscle, spleen and testes) compared with control birds. We saw no differences in mineralocorticoid receptors between groups. We also saw a trend towards reduced mass of the testes in oil-exposed birds compared with controls, but no differences in fat, kidney, liver, muscle or spleen mass between the two groups. This is the first study to examine the effects of petroleum on CORT receptor density in more than one or two target tissues. Given that a chronic low dose of ingested petroleum can affect stress-induced CORT titres as well as receptor density, this demonstrates that oil can act at multiple levels to disrupt an animal’s response to environmental stressors. This also highlights the potential usefulness of the stress response as a bioindicator of chronic crude oil exposure. PMID:27293679

  18. Fukushima simulation experiment: assessing the effects of chronic low-dose-rate internal 137Cs radiation exposure on litter size, sex ratio, and biokinetics in mice

    PubMed Central

    Nakajima, Hiroo; Yamaguchi, Yoshiaki; Yoshimura, Takashi; Fukumoto, Manabu; Todo, Takeshi

    2015-01-01

    To investigate the transgenerational effects of chronic low-dose-rate internal radiation exposure after the Fukushima Daiichi Nuclear Power Plant accident in Japan, 18 generations of mice were maintained in a radioisotope facility, with free access to drinking water containing 137CsCl (0 and 100 Bq/ml). The 137Cs distribution in the organs of the mice was measured after long-term ad libitum intake of the 137CsCl water. The litter size and the sex ratio of the group ingesting the 137Cs water were compared with those of the control group, for all 18 generations of mice. No significant difference was noted in the litter size or the sex ratio between the mice in the control group and those in the group ingesting the 137Cs water. The fixed internal exposure doses were ∼160 Bq/g and 80 Bq/g in the muscles and other organs, respectively. PMID:26825299

  19. Fukushima simulation experiment: assessing the effects of chronic low-dose-rate internal 137Cs radiation exposure on litter size, sex ratio, and biokinetics in mice.

    PubMed

    Nakajima, Hiroo; Yamaguchi, Yoshiaki; Yoshimura, Takashi; Fukumoto, Manabu; Todo, Takeshi

    2015-12-01

    To investigate the transgenerational effects of chronic low-dose-rate internal radiation exposure after the Fukushima Daiichi Nuclear Power Plant accident in Japan, 18 generations of mice were maintained in a radioisotope facility, with free access to drinking water containing (137)CsCl (0 and 100 Bq/ml). The (137)Cs distribution in the organs of the mice was measured after long-term ad libitum intake of the (137)CsCl water. The litter size and the sex ratio of the group ingesting the (137)Cs water were compared with those of the control group, for all 18 generations of mice. No significant difference was noted in the litter size or the sex ratio between the mice in the control group and those in the group ingesting the (137)Cs water. The fixed internal exposure doses were ∼160 Bq/g and 80 Bq/g in the muscles and other organs, respectively. PMID:26825299

  20. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation.

    PubMed

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Liza S; Osipov, Andrian N; Zhuravleva, Veronika F; Pankratova, Galina V; Porokhovnik, Lev N; Veiko, Natalia N

    2015-09-01

    The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA. PMID:26113293

  1. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation. PMID:22641644

  2. N-Acetyl cysteine does not prevent liver toxicity from chronic low-dose plus subacute high-dose paracetamol exposure in young or old mice.

    PubMed

    Kane, Alice Elizabeth; Huizer-Pajkos, Aniko; Mach, John; McKenzie, Catriona; Mitchell, Sarah Jayne; de Cabo, Rafael; Jones, Brett; Cogger, Victoria; Le Couteur, David G; Hilmer, Sarah Nicole

    2016-06-01

    Paracetamol is an analgesic commonly used by people of all ages, which is well documented to cause severe hepatotoxicity with acute overexposures. The risk of hepatotoxicity from nonacute paracetamol exposures is less extensively studied, and this is the exposure most common in older adults. Evidence on the effectiveness of N-acetyl cysteine (NAC) for nonacute paracetamol exposures, in any age group, is lacking. This study aimed to examine the effect of long-term exposure to therapeutic doses of paracetamol and subacute paracetamol overexposure, in young and old mice, and to investigate whether NAC was effective at preventing paracetamol hepatotoxicity induced by these exposures. Young and old male C57BL/6 mice were fed a paracetamol-containing (1.33 g/kg food) or control diet for 6 weeks. Mice were then dosed orally eight times over 3 days with additional paracetamol (250 mg/kg) or saline, followed by either one or two doses of oral NAC (1200 mg/kg) or saline. Chronic low-dose paracetamol exposure did not cause hepatotoxicity in young or old mice, measured by serum alanine aminotransferase (ALT) elevation, and confirmed by histology and a DNA fragmentation assay. Subacute paracetamol exposure caused significant hepatotoxicity in young and old mice, measured by biochemistry (ALT) and histology. Neither a single nor double dose of NAC protected against this toxicity from subacute paracetamol in young or old mice. This finding has important clinical implications for treating toxicity due to different paracetamol exposure types in patients of all ages, and implies a need to develop new treatments for subacute paracetamol toxicity. PMID:26821200

  3. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on

  4. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates.

    PubMed

    Garnier-Laplace, J; Geras'kin, S; Della-Vedova, C; Beaugelin-Seiller, K; Hinton, T G; Real, A; Oudalova, A

    2013-07-01

    The discrepancy between laboratory or controlled conditions ecotoxicity tests and field data on wildlife chronically exposed to ionising radiation is presented for the first time. We reviewed the available chronic radiotoxicity data acquired in contaminated fields and used a statistical methodology to support the comparison with knowledge on inter-species variation of sensitivity to controlled external γ irradiation. We focus on the Chernobyl Exclusion Zone and effects data on terrestrial wildlife reported in the literature corresponding to chronic dose rate exposure situations (from background ~100 nGy/h up to ~10 mGy/h). When needed, we reconstructed the dose rate to organisms and obtained consistent unbiased data sets necessary to establish the dose rate-effect relationship for a number of different species and endpoints. Then, we compared the range of variation of radiosensitivity of species from the Chernobyl-Exclusion Zone with the statistical distribution established for terrestrial species chronically exposed to purely gamma external irradiation (or chronic Species radioSensitivity Distribution - SSD). We found that the best estimate of the median value (HDR50) of the distribution established for field conditions at Chernobyl (about 100 μGy/h) was eight times lower than the one from controlled experiments (about 850 μGy/h), suggesting that organisms in their natural environmental were more sensitive to radiation. This first comparison highlights the lack of mechanistic understanding and the potential confusion coming from sampling strategies in the field. To confirm the apparent higher sensitive of wildlife in the Chernobyl Exclusion Zone, we call for more a robust strategy in field, with adequate design to deal with confounding factors. PMID:22336569

  5. Chronic exposure to low doses of lipopolysaccharide and high-fat feeding increases body mass without affecting glucose tolerance in female rats

    PubMed Central

    Dudele, Anete; Fischer, Christina W; Elfving, Betina; Wegener, Gregers; Wang, Tobias; Lund, Sten

    2015-01-01

    Obesity-related inflammation may have a causal role in the development of diabetes and insulin resistance, and studies using animal models of chronic experimental endotoxemia have shown the link. However, many studies use only males, and much less is known about the role of obesity-related inflammation in females. Therefore, we addressed how experimentally induced chronic inflammation affects body mass, energy intake, and glucose metabolism in female rats. Adult female Sprague Dawley rats were instrumented with slow release pellets that delivered a constant daily dose of 53 or 207 μg of lipopolysaccharide (LPS) per rat for 60 days. Control rats were instrumented with vehicle pellets. Due to inflammatory nature of high-fat diet (HFD) half of the rats received HFD (60% of calories from lard), while the other half remained on control diet to detect possible interactions between two modes of induced inflammation. Our results showed that chronic LPS administration increased female rat body mass and calorie intake in a dose-dependent manner, and that HFD further exacerbated these effects. Despite these effects, no effects of LPS and HFD were evident on female rat glucose metabolism. Only LPS elevated expression of inflammatory markers in the hypothalamus. To conclude, female rats respond to experimentally induced chronic inflammation by increasing body mass, but do not develop glucose intolerance in the given period of time. PMID:26537342

  6. Radiation Risk from Chronic Low Dose-Rate Radiation Exposures: The Role of Life-Time Animal Studies - Workshop October 2005

    SciTech Connect

    Gayle Woloschak

    2009-12-16

    As a part of Radiation research conference, a workshop was held on life-long exposure studies conducted in the course of irradiation experiements done at Argonne National Laboratory between 1952-1992. A recent review article documents many of the issues discussed at that workshop.

  7. Continuous Exposure to Low-Dose-Rate Gamma Irradiation Reduces Airway Inflammation in Ovalbumin-Induced Asthma.

    PubMed

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Seung Sook; Park, Sun Hoo; Lee, Hae June; Lee, Soong In; Lee, Chang Geun; Kim, Sung Dae; Jo, Wol Soon; Kim, Sung Ho; Shin, In Sik

    2015-01-01

    Although safe doses of radiation have been determined, concerns about the harmful effects of low-dose radiation persist. In particular, to date, few studies have investigated the correlation between low-dose radiation and disease development. Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of low-dose-rate chronic irradiation on allergic asthma in a murine model. Mice were sensitized and airway-challenged with ovalbumin (OVA) and were exposed to continuous low-dose-rate irradiation (0.554 or 1.818 mGy/h) for 24 days after initial sensitization. The effects of chronic radiation on proinflammatory cytokines and the activity of matrix metalloproteinase-9 (MMP-9) were investigated. Exposure to low-dose-rate chronic irradiation significantly decreased the number of inflammatory cells, methylcholine responsiveness (PenH value), and the levels of OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5. Furthermore, airway inflammation and the mucus production in lung tissue were attenuated and elevated MMP-9 expression and activity induced by OVA challenge were significantly suppressed. These results indicate that low-dose-rate chronic irradiation suppresses allergic asthma induced by OVA challenge and does not exert any adverse effects on asthma development. Our findings can potentially provide toxicological guidance for the safe use of radiation and relieve the general anxiety about exposure to low-dose radiation. PMID:26588845

  8. Continuous Exposure to Low-Dose-Rate Gamma Irradiation Reduces Airway Inflammation in Ovalbumin-Induced Asthma

    PubMed Central

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Seung Sook; Park, Sun Hoo; Lee, Hae June; Lee, Soong In; Lee, Chang Geun; Kim, Sung Dae; Jo, Wol Soon; Kim, Sung Ho; Shin, In Sik

    2015-01-01

    Although safe doses of radiation have been determined, concerns about the harmful effects of low-dose radiation persist. In particular, to date, few studies have investigated the correlation between low-dose radiation and disease development. Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of low-dose-rate chronic irradiation on allergic asthma in a murine model. Mice were sensitized and airway-challenged with ovalbumin (OVA) and were exposed to continuous low-dose-rate irradiation (0.554 or 1.818 mGy/h) for 24 days after initial sensitization. The effects of chronic radiation on proinflammatory cytokines and the activity of matrix metalloproteinase-9 (MMP-9) were investigated. Exposure to low-dose-rate chronic irradiation significantly decreased the number of inflammatory cells, methylcholine responsiveness (PenH value), and the levels of OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5. Furthermore, airway inflammation and the mucus production in lung tissue were attenuated and elevated MMP-9 expression and activity induced by OVA challenge were significantly suppressed. These results indicate that low-dose-rate chronic irradiation suppresses allergic asthma induced by OVA challenge and does not exert any adverse effects on asthma development. Our findings can potentially provide toxicological guidance for the safe use of radiation and relieve the general anxiety about exposure to low-dose radiation. PMID:26588845

  9. LINKING MOLECULAR EVENT TO CELLULAR RESPONSES AT LOW DOSE EXPOSURES

    EPA Science Inventory

    Defining low dose radiation cancer risks is limited by our ability to measure and directly correlate relevant cellular and molecular responses occurring at low dose and dose rate with tumor formation. This deficiency has led to conservative risk assessments based on low dose ext...

  10. Analysis of the Mortality Experience amongst U.S. Nuclear Power Industry Workers after Chronic Low-Dose Exposure to Ionizing Radiation

    SciTech Connect

    Howe, Geoffrey R.; Zablotska, Lydia B.; Fix, Jack J.; Egel, John N.; Buchanan, Jeffrey A.

    2004-11-01

    Workers employed in 15 utilities that generate nuclear power in the United States have been followed for up to 18 years between 1979 and 1997. Their cumulative dose from whole-body ionizing radiation has been determined from the dose records maintained by the facilities themselves and the REIRS and REMS systems maintained by the Nuclear Regulatory Commission and the Department of Energy, respectively. Mortality in the cohort from a number of causes has been analyzed with respect to individual radiation doses. The cohort displays a very substantial healthy worker effect, i.e. considerably lower cancer and noncancer mortality than the general population. Based on 26 and 368 deaths, respectively, positive though statistically nonsignificant associations were seen for mortality from leukemia (excluding chronic lymphocytic leukemia) and all solid cancers combined, with excess relative risks per sievert of 5.67 (95% confidence interval (CI) -2.56, 30.4) and 0.596 (95% CI -2.01, 4.64), respectively. These estimates are very similar to those from the atomic bomb survivors study, though the wide confidence intervals are also consistent with lower or higher risk estimates. A strong positive and statistically significant association between radiation dose and deaths from arteriosclerotic heart disease including coronary heart disease was also observed in the cohort, with an ERR of 8.78 (95% CI 2.10, 20.0). While associations with heart disease have been reported in some other occupational studies, the magnitude of the present association is not consistent with them and therefore needs cautious interpretation and merits further attention. At present, the relatively small number of deaths and the young age of the cohort (mean age at end of follow-up is 45 years) limit the power of the study, but further follow-up and the inclusion of the present data in an ongoing IARC combined analysis of nuclear workers from 15 countries will have greater power for testing the main hypotheses

  11. Effects of chronic low dose rotenone treatment on human microglial cells

    PubMed Central

    2009-01-01

    Background Exposure to toxins/chemicals is considered to be a significant risk factor in the pathogenesis of Parkinson's disease (PD); one putative chemical is the naturally occurring herbicide rotenone that is now used widely in establishing PD models. We, and others, have shown that chronic low dose rotenone treatment induces excessive accumulation of Reactive Oxygen Species (ROS), inclusion body formation and apoptosis in dopaminergic neurons of animal and human origin. Some studies have also suggested that microglia enhance the rotenone induced neurotoxicity. While the effects of rotenone on neurons are well established, there is little or no information available on the effect of rotenone on microglial cells, and especially cells of human origin. The aim of the present study was to investigate the effects of chronic low dose rotenone treatment on human microglial CHME-5 cells. Methods We have shown previously that rotenone induced inclusion body formation in human dopaminergic SH-SY5Y cells and therefore used these cells as a control for inclusion body formation in this study. SH-SY5Y and CHME-5 cells were treated with 5 nM rotenone for four weeks. At the end of week 4, both cell types were analysed for the presence of inclusion bodies, superoxide dismutases and cell activation (only in CHME-5 cells) using Haematoxylin and Eosin staining, immunocytochemical and western blotting methods. Levels of active caspases and ROS (both extra and intra cellular) were measured using biochemical methods. Conclusion The results suggest that chronic low dose rotenone treatment activates human microglia (cell line) in a manner similar to microglia of animal origin as shown by others. However human microglia release excessive amounts of ROS extracellularly, do not show excessive amounts of intracellular ROS and active caspases and most importantly do not show any protein aggregation or inclusion body formation. Human microglia appear to be resistant to rotenone (chronic, low

  12. Lyssavirus infection: 'low dose, multiple exposure' in the mouse model.

    PubMed

    Banyard, Ashley C; Healy, Derek M; Brookes, Sharon M; Voller, Katja; Hicks, Daniel J; Núñez, Alejandro; Fooks, Anthony R

    2014-03-01

    The European bat lyssaviruses (EBLV-1 and EBLV-2) are zoonotic pathogens present within bat populations across Europe. The maintenance and transmission of lyssaviruses within bat colonies is poorly understood. Cases of repeated isolation of lyssaviruses from bat roosts have raised questions regarding the maintenance and intraspecies transmissibility of these viruses within colonies. Furthermore, the significance of seropositive bats in colonies remains unclear. Due to the protected nature of European bat species, and hence restrictions to working with the natural host for lyssaviruses, this study analysed the outcome following repeat inoculation of low doses of lyssaviruses in a murine model. A standardized dose of virus, EBLV-1, EBLV-2 or a 'street strain' of rabies (RABV), was administered via a peripheral route to attempt to mimic what is hypothesized as natural infection. Each mouse (n=10/virus/group/dilution) received four inoculations, two doses in each footpad over a period of four months, alternating footpad with each inoculation. Mice were tail bled between inoculations to evaluate antibody responses to infection. Mice succumbed to infection after each inoculation with 26.6% of mice developing clinical disease following the initial exposure across all dilutions (RABV, 32.5% (n=13/40); EBLV-1, 35% (n=13/40); EBLV-2, 12.5% (n=5/40)). Interestingly, the lowest dose caused clinical disease in some mice upon first exposure ((RABV, 20% (n=2/10) after first inoculation; RABV, 12.5% (n=1/8) after second inoculation; EBLV-2, 10% (n=1/10) after primary inoculation). Furthermore, five mice developed clinical disease following the second exposure to live virus (RABV, n=1; EBLV-1, n=1; EBLV-2, n=3) although histopathological examination indicated that the primary inoculation was the most probably cause of death due to levels of inflammation and virus antigen distribution observed. All the remaining mice (RABV, n=26; EBLV-1, n=26; EBLV-2, n=29) survived the tertiary and

  13. [Relationship to Carcinogenesis of Repetitive Low-Dose Radiation Exposure].

    PubMed

    Ootsuyama, Akira

    2016-06-01

    We studied the carcinogenic effects caused by repetitive irradiation at a low dose, which has received attention in recent years, and examined the experimental methods used to evaluate radiation-induced carcinogenesis. For this experiment, we selected a mouse with as few autochthonous cancers as possible. Skin cancer was selected as the target for analysis, because it is a rare cancer in mice. Beta-rays were selected as the radiation source. The advantage of using beta-rays is weaker penetration power into tissues, thus protecting organs, such as the digestive and hematogenous organs. The benefit of our experimental method is that only skin cancer requires monitoring, and it is possible to perform long-term experiments. The back skin of mice was exposed repetitively to beta-rays three times a week until the occurrence of cancer or death, and the dose per exposure ranged from 0.5 to 11.8 Gy. With the high-dose range (2.5-11.8 Gy), the latency period and carcinogenic rate were almost the same in each experimental group. When the dose was reduced to 1-1.5 Gy, the latency period increased, but the carcinogenic rate remained. When the dose was further reduced to 0.5 Gy, skin cancer never happened, even though we continued irradiation until death of the last mouse in this group. The lifespan of 0.5 Gy group mice was the same as that of the controls. We showed that the 0.5 Gy dose did not cause cancer, even in mice exposed repetitively throughout their life span, and thus refer to 0.5 Gy as the threshold-like dose. PMID:27302731

  14. A meta-analysis of leukaemia risk from protracted exposure to low-dose gamma radiation

    PubMed Central

    Schubauer-Berigan, M K

    2010-01-01

    Context More than 400 000 workers annually receive a measurable radiation dose and may be at increased risk of radiation-induced leukaemia. It is unclear whether leukaemia risk is elevated with protracted, low-dose exposure. Objective We conducted a meta-analysis examining the relationship between protracted low-dose ionising radiation exposure and leukaemia. Data sources Reviews by the National Academies and United Nations provided a summary of informative studies published before 2005. PubMed and Embase databases were searched for additional occupational and environmental studies published between 2005 and 2009. Study selection We selected 23 studies that: (1) examined the association between protracted exposures to ionising radiation and leukaemia excluding chronic lymphocytic subtype; (2) were a cohort or nested case–control design without major bias; (3) reported quantitative estimates of exposure; and (4) conducted exposure–response analyses using relative or excess RR per unit exposure. Methods Studies were further screened to reduce information overlap. Random effects models were developed to summarise between-study variance and obtain an aggregate estimate of the excess RR at 100 mGy. Publication bias was assessed by trim and fill and Rosenthal's file drawer methods. Results We found an ERR at 100 mGy of 0.19 (95% CI 0.07 to 0.32) by modelling results from 10 studies and adjusting for publication bias. Between-study variance was not evident (p=0.99). Conclusions Protracted exposure to low-dose gamma radiation is significantly associated with leukaemia. Our estimate agreed well with the leukaemia risk observed among exposed adults in the Life Span Study (LSS) of atomic bomb survivors, providing increased confidence in the current understanding of leukaemia risk from ionising radiation. However, unlike the estimates obtained from the LSS, our model provides a precise, quantitative summary of the direct estimates of excess risk from studies of

  15. The effects of repeated low-dose sarin exposure

    SciTech Connect

    Shih, T.-M. . E-mail: tsungming.a.shih@us.army.mil; Hulet, S.W.; McDonough, J.H.

    2006-09-01

    This project assessed the effects of repeated low-dose exposure of guinea pigs to the organophosphorus nerve agent sarin. Animals were injected once a day, 5 days per week (Monday-Friday), for 2 weeks with fractions (0.3x, 0.4x, 0.5x, or 0.6x) of the established LD{sub 5} dose of sarin (42 {mu}g/kg, s.c.). The animals were assessed for changes in body weight, red blood cell (RBC) acetylcholinesterase (AChE) levels, neurobehavioral reactions to a functional observational battery (FOB), cortical electroencephalographic (EEG) power spectrum, and intrinsic acetylcholine (ACh) neurotransmitter (NT) regulation over the 2 weeks of sarin exposure and for up to 12 days postinjection. No guinea pig receiving 0.3, 0.4 or 0.5 x LD{sub 5} of sarin showed signs of cortical EEG seizures despite decreases in RBC AChE levels to as low as 10% of baseline, while seizures were evident in animals receiving 0.6 x LD{sub 5} of sarin as early as the second day; subsequent injections led to incapacitation and death. Animals receiving 0.5 x LD{sub 5} sarin showed obvious signs of cholinergic toxicity; overall, 2 of 13 animals receiving 0.5 x LD{sub 5} sarin died before all 10 injections were given, and there was a significant increase in the angle of gait in the animals that lived. By the 10th day of injection, the animals receiving saline were significantly easier to remove from their cages and handle and significantly less responsive to an approaching pencil and touch on the rump in comparison with the first day of testing. In contrast, the animals receiving 0.4 x LD{sub 5} sarin failed to show any significant reductions in their responses to an approaching pencil and a touch on the rump as compared with the first day. The 0.5 x LD{sub 5} sarin animals also failed to show any significant changes to the approach and touch responses and did not adjust to handling or removal from the cage from the first day of injections to the last day of handling. Thus, the guinea pigs receiving the 0

  16. Non linear processes modulated by low doses of radiation exposure

    NASA Astrophysics Data System (ADS)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  17. [Cytogenetic indices for somatic mutagenesis in mammals exposed to chronic low-dose irradiation].

    PubMed

    Kostenko, S A; Ermakova, O V; Sushko, S N; Fyedorova, E V; Dzhus, P P; Baschlykova, L A; Kurylenko, Yu F; Raskosha, O V; Savin, A O; Shaforost, A S

    2015-01-01

    We used cytogenetic analysis in the studies of the biological effects of a radiation factor of natural and artificial origin (under conditions ofthe 30-km exclusion zone ofthe Chernobyl experimental landfills in Ukraine, Belarus and Russia). The studies have been performed on various types of mammals: domestic animals--cows, pigs, horses and rodents--root voles, the Af mouse line, and yellow necked field mouse, bank voles. We found significant changes in the level of MN and chromosomal aberrations in the animals that were exposed to the conditions of chronic low-dose radiation for a long time (bothin the habitat and upon exposure in the Chernobyl zone) regardless of the type of animal and nature of contamination. PMID:25962274

  18. Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus.

    PubMed Central

    Via, Charles S; Nguyen, Phuong; Niculescu, Florin; Papadimitriou, John; Hoover, Dennis; Silbergeld, Ellen K

    2003-01-01

    Inorganic mercury (iHg) is known to induce autoimmune disease in susceptible rodent strains. Additionally, in inbred strains of mice prone to autoimmune disease, iHg can accelerate and exacerbate disease manifestations. Despite these well-known links between iHg and autoimmunity in animal models, no association between iHg alone and autoimmune disease in humans has been documented. However, it is possible that low-level iHg exposure can interact with disease triggers to enhance disease expression or susceptibility. To address whether exposure to iHg can alter the course of subsequent acquired autoimmune disease, we used a murine model of acquired autoimmunity, lupus-like chronic graft-versus-host disease (GVHD), in which autoimmunity is induced using normal, nonautoimmune prone donor and F1 recipient mice resistant to Hg-induced autoimmunity. Our results indicate that a 2-week exposure to low-dose iHg (20 or 200 micro g/kg every other day) to donor and host mice ending 1 week before GVHD induction can significantly worsen parameters of disease severity, resulting in premature mortality. iHg pretreatment clearly worsened chronic lupus-like disease, rather than GVHD worsening iHg immunotoxicity. These results are consistent with the hypothesis that low-level, nontoxic iHg preexposure may interact with other risk factors, genetic or acquired, to promote subsequent autoimmune disease development. PMID:12896845

  19. Low-Dose Oxygen Enhances Macrophage-Derived Bacterial Clearance following Cigarette Smoke Exposure

    PubMed Central

    Bain, William G.; Tripathi, Ashutosh; Mandke, Pooja; Gans, Jonathan H.; D'Alessio, Franco R.; Sidhaye, Venkataramana K.; Aggarwal, Neil R.

    2016-01-01

    Background. Chronic obstructive pulmonary disease (COPD) is a common, smoking-related lung disease. Patients with COPD frequently suffer disease exacerbations induced by bacterial respiratory infections, suggestive of impaired innate immunity. Low-dose oxygen is a mainstay of therapy during COPD exacerbations; yet we understand little about whether oxygen can modulate the effects of cigarette smoke on lung immunity. Methods. Wild-type mice were exposed to cigarette smoke for 5 weeks, followed by intratracheal instillation of Pseudomonas aeruginosa (PAO1) and 21% or 35–40% oxygen. After two days, lungs were harvested for PAO1 CFUs, and bronchoalveolar fluid was sampled for inflammatory markers. In culture, macrophages were exposed to cigarette smoke and oxygen (40%) for 24 hours and then incubated with PAO1, followed by quantification of bacterial phagocytosis and inflammatory markers. Results. Mice exposed to 35–40% oxygen after cigarette smoke and PAO1 had improved survival and reduced lung CFUs and inflammation. Macrophages from these mice expressed less TNF-α and more scavenger receptors. In culture, macrophages exposed to cigarette smoke and oxygen also demonstrated decreased TNF-α secretion and enhanced phagocytosis of PAO1 bacteria. Conclusions. Our findings demonstrate a novel, protective role for low-dose oxygen following cigarette smoke and bacteria exposure that may be mediated by enhanced macrophage phagocytosis. PMID:27403445

  20. Low-dose cardiac imaging: reducing exposure but not accuracy.

    PubMed

    Small, Gary R; Chow, Benjamin J W; Ruddy, Terrence D

    2012-01-01

    Cardiac imaging techniques that use ionizing radiation have become an integral part of current cardiology practice. However, concern has arisen that ionizing radiation exposure, even at the low levels used for medical imaging, is associated with the risk of cancer. From a single diagnostic cardiac imaging procedure, such risks are low. On a population basis, however, malignancies become more likely on account of stochastic effects being more probable as the number of procedures performed increases. In light of this, and owing to professional and industrial commitment to the as low as reasonably achievable (ALARA) principle, over the last decade major strides have been made to reduce radiation dose in cardiac imaging. Dose-reduction strategies have been most pronounced in cardiac computed tomography. This was important since computed tomography has rapidly become a widely used diagnostic alternative to invasive coronary angiography, and initial protocols were associated with relatively high radiation exposures. Advances have also been made in nuclear cardiology and in invasive coronary angiography, and these reductions in patient exposure have all been achieved with maintenance of image quality and accuracy. Improvements in imaging camera technology, image acquisition protocols and image processing have lead to reductions in patient radiation exposure without compromising imaging diagnostic accuracy. PMID:22149528

  1. Changes in thyroid status of rats after prolonged exposure to low dose dichlorodiphenyltrichloroethane.

    PubMed

    Yaglova, N V; Yaglov, V V

    2014-04-01

    The effect of low dose dichlorodiphenyltrichloroethane (DDT), omnipresent ecotoxicant and endocrine disruptor, on the functioning of the endocrine system is an urgent problem. We studied the effect of low dose DDT on thyroid status in rats. Rats receiving DDT in a dose of 1.890±0.086 μg/kg for 6 weeks showed increased concentrations of thyroid hormones, particularly triiodothyronine, and reduced level of thyrotropin. Longer exposure reduced the production of thyroid hormones. The dynamics of thyroid status parameters during DDT treatment in a low dose was similar to changes observed during the development of hypothyroidism induced by iodine deficiency. PMID:24824690

  2. Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response

    PubMed Central

    Lall, R; Ganapathy, S; Yang, M; Xiao, S; Xu, T; Su, H; Shadfan, M; Asara, J M; Ha, C S; Ben-Sahra, I; Manning, B D; Little, J B; Yuan, Z-M

    2014-01-01

    Because of insufficient understanding of the molecular effects of low levels of radiation exposure, there is a great uncertainty regarding its health risks. We report here that treatment of normal human cells with low-dose radiation induces a metabolic shift from oxidative phosphorylation to aerobic glycolysis resulting in increased radiation resistance. This metabolic change is highlighted by upregulation of genes encoding glucose transporters and enzymes of glycolysis and the oxidative pentose phosphate pathway, concomitant with downregulation of mitochondrial genes, with corresponding changes in metabolic flux through these pathways. Mechanistically, the metabolic reprogramming depends on HIF1α, which is induced specifically by low-dose irradiation linking the metabolic pathway with cellular radiation dose response. Increased glucose flux and radiation resistance from low-dose irradiation are also observed systemically in mice. This highly sensitive metabolic response to low-dose radiation has important implications in understanding and assessing the health risks of radiation exposure. PMID:24583639

  3. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice.

    PubMed

    Martella, G; Madeo, G; Maltese, M; Vanni, V; Puglisi, F; Ferraro, E; Schirinzi, T; Valente, E M; Bonanni, L; Shen, J; Mandolesi, G; Mercuri, N B; Bonsi, P; Pisani, A

    2016-07-01

    Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but

  4. Behavioral sensitization following exposure to low doses of trimethylolpropane phosphate.

    PubMed

    Bekkedal, M Y; Ritchie, G D; Rossi, J

    2001-07-01

    Behavioral sensitization is commonly studied within the context of drugs known to directly increase activity in the brain's dopamine system, particularly drugs of abuse. However, the present research suggests such behavioral changes can also be observed following exposure to other compounds that indirectly affect the dopamine system. One such compound is trimethylolpropane phosphate (TMPP), a bridged organophosphate that can be produced by the partial pyrolysis of certain synthetic lubricants used on military ships and aircraft. Although TMPP is a potent convulsant, it has been demonstrated that treatment with doses below seizure threshold results in long-term behavioral sensitization. The effect has been demonstrated with a number of neurobehavioral endpoints, particularly those assessing appetitive responding. More specifically, sensitization has been observed in acquisition of schedule-induced polydipsia (SIP), appetitive reinforcer approach sensitization (ARAS) and social interaction as measured in neonatal ultrasonic vocalizations, juvenile play and adult conspecific approach. Overall, the rats demonstrated a heightened appetitive response pattern. More specifically, TMPP reliably reduced the number of SIP sessions necessary to induce asymptotic drinking level and increased the time spent investigating (sniffing) a food reinforcer as measured in the ARAS task. Specific effects of TMPP on social interaction were an increase in ultrasonic vocalizations when the neonate was isolated from the dam and littermates and an increase in both measures of juvenile play (pins and dorsal contacts). A complex set of interactions emerged for the measures of adult social investigation where the drug effect was modulated by such factors as sex and neutral vs. stress-inducing experiences coincident with the drug treatment. In contrast to the above results, no behavioral changes were recorded for measures in the elevated plus maze and open field exploration. These results suggest

  5. LINK BETWEEN LOW-DOSE ENVIRONMENTALLY RELEVANT CADMIUM EXPOSURES AND ASTHENOZOOSPERMIA IN A RAT MODEL

    PubMed Central

    Benoff, Susan; Auborn, Karen; Marmar, Joel L.; Hurley, Ian R.

    2008-01-01

    Objective To define the mechanism(s) underlying an association between asthenozoospermia and elevated blood, seminal plasma and testicular cadmium levels in infertile human males using a rat model of environmentally relevant cadmium exposures. Setting University medical center andrology research laboratory. Animals Male Wistar rats (n = 60), documented to be sensitive to the testicular effects of cadmium. Interventions Rats were given ad libitum access to water supplemented with 14% sucrose and 0, 5, 50 or 100 mg/L cadmium for 1, 4 or 8 weeks being at puberty. Main outcome measure(s) Testicular cadmium levels were determined by atomic absorption, cauda epididymal sperm motility by visual inspection, and testicular gene expression by DNA microarray hybridization. Results Chronic, low dose cadmium exposures produced a time- and dose-dependent reduction in sperm motility. Transcription of genes regulated by calcium and expression of L-type voltage-dependent calcium channel mRNA splicing variants were altered by cadmium exposure. Expression of calcium binding proteins involved in modulation of sperm motility was unaffected. Conclusions A causal relationship between elevated testicular cadmium and asthenozoospermia was identified. Aberrrant sperm motility was correlated with altered expression of L-type voltage-dependent calcium channel isoforms found on the sperm tail, which regulate calcium and cadmium influx. PMID:18308070

  6. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses. PMID:27218294

  7. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  8. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    PubMed Central

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation. PMID:26795421

  9. Safety and efficacy of low-dose, subacute exposure of mature ewes to sodium chlorate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to determine the safety and efficacy of low-dose, subacute exposure of mature ewes to NaClO3 in the drinking water. Twenty-five ewes (BW = 62.5 ± 7.3 kg) were placed indoors in individual pens with ad libitum access to water and feed. After 7 d of adaptation, ewes were assigned ran...

  10. Alteration of cytokine profiles in mice exposed to chronic low-dose ionizing radiation

    SciTech Connect

    Shin, Suk Chul; Lee, Kyung-Mi; Kang, Yu Mi; Kim, Kwanghee; Kim, Cha Soon; Yang, Kwang Hee; Jin, Young-Woo; Kim, Chong Soon; Kim, Hee Sun

    2010-07-09

    While a high-dose of ionizing radiation is generally harmful and causes damage to living organisms, a low-dose of radiation has been shown to be beneficial in a variety of animal models. To understand the basis for the effect of low-dose radiation in vivo, we examined the cellular and immunological changes evoked in mice exposed to low-dose radiation at very low (0.7 mGy/h) and low (3.95 mGy/h) dose rate for the total dose of 0.2 and 2 Gy, respectively. Mice exposed to low-dose radiation, either at very low- or low-dose rate, demonstrated normal range of body weight and complete blood counts. Likewise, the number and percentage of peripheral lymphocyte populations, CD4{sup +} T, CD8{sup +} T, B, or NK cells, stayed unchanged following irradiation. Nonetheless, the sera from these mice exhibited elevated levels of IL-3, IL-4, leptin, MCP-1, MCP-5, MIP-1{alpha}, thrombopoietin, and VEGF along with slight reduction of IL-12p70, IL-13, IL-17, and IFN-{gamma}. This pattern of cytokine release suggests the stimulation of innate immunity facilitating myeloid differentiation and activation while suppressing pro-inflammatory responses and promoting differentiation of naive T cells into T-helper 2, not T-helper 1, types. Collectively, our data highlight the subtle changes of cytokine milieu by chronic low-dose {gamma}-radiation, which may be associated with the functional benefits observed in various experimental models.

  11. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials.

    PubMed

    Charlebois, Audrey; Jacques, Mario; Archambault, Marie

    2014-01-01

    Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277). Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin, and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta-1,4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials. PMID:24795711

  12. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials

    PubMed Central

    Charlebois, Audrey; Jacques, Mario; Archambault, Marie

    2014-01-01

    Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277). Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin, and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta-1,4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials. PMID:24795711

  13. Perinatal Exposure to Low-Dose Methoxychlor Impairs Testicular Development in C57BL/6 Mice

    PubMed Central

    Du, Xiaohong; Zhang, Hua; Liu, Yuanwu; Yu, Wanpeng; Huang, Chaobin; Li, Xiangdong

    2014-01-01

    Methoxychlor (MXC), an organochlorine pesticide, has adverse effects on male reproduction at toxicological doses. Humans and wild animals are exposed to MXC mostly through contaminated dietary intake. Higher concentrations of MXC have been found in human milk, raising the demand for the risk assessment of offspring after maternal exposure to low doses of MXC. In this study, pregnant mice (F0) were given intraperitoneal daily evening injections of 1 mg/kg/d MXC during their gestational (embryonic day 0.5, E0.5) and lactational periods (postnatal day 21.5, P21.5), and the F1 males were assessed. F1 testes were collected at P0.5, P21.5 and P45.5. Maternal exposure to MXC disturbed the testicular development. Serum testosterone levels decreased, whereas estradiol levels increased. To understand the molecular mechanisms of exposure to MXC in male reproduction, the F1 testes were examined for changes in the expression of steroidogenesis- and spermatogenesis- related genes. RT-PCR analysis demonstrated that MXC significantly decreased Cyp11a1 and increased Cyp19a1; furthermore, it downregulated certain spermatogenic genes (Dazl, Boll, Rarg, Stra8 and Cyclin-a1). In summary, perinatal exposure to low-dose MXC disturbs the testicular development in mice. This animal study of exposure to low-dose MXC in F1 males suggests similar dysfunctional effects on male reproduction in humans. PMID:25048109

  14. Low Dose Gamma Irradiation Potentiates Secondary Exposure to Gamma Rays or Protons in Thyroid Tissue Analogs

    SciTech Connect

    Green, Lora M

    2006-05-25

    We have utilized our unique bioreactor model to produce three-dimensional thyroid tissue analogs that we believe better represent the effects of radiation in vivo than two-dimensional cultures. Our thyroid model has been characterized at multiple levels, including: cell-cell exchanges (bystander), signal transduction, functional changes and modulation of gene expression. We have significant preliminary data on structural, functional, signal transduction and gene expression responses from acute exposures at high doses (50-1000 rads) of gamma, protons and iron (Green et al., 2001a; 2001b; 2002a; 2002b; 2005). More recently, we used our DOE funding (ending Feb 06) to characterize the pattern of radiation modulated gene expression in rat thyroid tissue analogs using low-dose/low-dose rate radiation, plus/minus acute challenge exposures. Findings from these studies show that the low-dose/low-dose rate “priming” exposures to radiation invoked changes in gene expression profiles that varied with dose and time. The thyrocytes transitioned to a “primed” state, so that when the tissue analogs were challenged with an acute exposure to radiation they had a muted response (or an increased resistance) to cytopathological changes relative to “un-primed” cells. We measured dramatic differences in the primed tissue analogs, showing that our original hypothesis was correct: that low dose gamma irradiation will potentiate the repair/adaptation response to a secondary exposure. Implications from these findings are that risk assessments based on classical in vitro tissue culture assays will overestimate risk, and that low dose rate priming results in a reduced response in gene expression to a secondary challenge exposure, which implies that a priming dose provides enhanced protection to thyroid cells grown as tissue analogs. If we can determine that the effects of radiation on our tissue analogs more closely resemble the effects of radiation in vivo, then we can better

  15. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    SciTech Connect

    Tilton, Susan C.; Matzke, Melissa M.; Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J.; Morgan, William F.; Waters, Katrina M.

    2015-05-15

    , ROS/RNS and DNA repair pathways detected • Low dose exposure alters metabolites involved in nitric oxide biosynthesis and wound healing. • Computationally predicted regulators of primary mechanisms were experimentally validated.

  16. Proteomic Analysis of Low Dose Arsenic and Ionizing Radiation Exposure on Keratinocytes

    PubMed Central

    Berglund, Susanne R.; Santana, Alison R.; Li, Dan; Rice, Robert H.; Rocke, David M.; Goldberg, Zelanna

    2008-01-01

    Human exposure to arsenic and ionizing radiation occur environmentally at low levels. While the human health effects of arsenic and ionizing radiation have been examined separately, there is little information regarding their combined effects at doses approaching environmental levels. Arsenic toxicity may be affected by concurrent ionizing radiation especially given their known individual carcinogenic actions at higher doses. We found that keratinocytes responded to either low dose arsenic and/or low dose ionizing radiation exposure, resulting in differential proteomic expression based on 2DGE, immunoblotting and statistical analysis. Seven proteins were identified that passed a rigorous statistical screen for differential expression in 2DGE and also passed a strict statistical screen for follow-up immunoblotting. These included: α-enolase, epidermal-fatty acid binding protein, heat shock protein 27, histidine triad nucleotide-binding protein 1, lactate dehydrogenase A, protein disulfide isomerase precursor and S100A9. Four proteins had combined effects that were different than would be expected based on the response to either individual toxicant. These data demonstrate a possible reaction to the combined insult that is substantially different from that of either separate treatment. Several proteins had different responses than what has been seen from high dose exposures, adding to the growing literature suggesting that the cellular responses to low dose exposures are distinct. PMID:19294697

  17. Short Communication: Viremic Control Is Independent of Repeated Low-Dose SHIVSF162p3 Exposures

    PubMed Central

    Henning, Tara R.; Hanson, Debra; Vishwanathan, Sundaram A.; Butler, Katherine; Dobard, Charles; Garcia-Lerma, Gerardo; Radzio, Jessica; Smith, James; McNicholl, Janet M.

    2014-01-01

    Abstract The repeat low-dose virus challenge model is commonly used in nonhuman primate studies of HIV transmission and biomedical preventions. For some viruses or challenge routes, it is uncertain whether the repeated exposure design might induce virus-directed innate or adaptive immunity that could affect infection or viremic outcomes. Retrospective cohorts of male Indian rhesus (n=40) and female pigtail (n=46) macaques enrolled in repeat low-dose rectal or vaginal SHIVSF162p3 challenge studies, respectively, were studied to compare the relationship between the number of previous exposures and peak plasma SHIV RNA levels or viral load area under the curve (AUC), surrogate markers of viral control. Repeated mucosal exposures of 10 or 50 TCID50 of virus for rectal and vaginal exposures, respectively, were performed. Virus levels were measured by quantitative reverse-transcriptase real-time PCR. The cumulative number of SHIVSF162p3 exposures did not correlate with observed peak virus levels or with AUC in rectally challenged rhesus macaques [peak: rho (ρ)=0.04, p=0.8; AUC: ρ=0.33, p=0.06] or vaginally challenged pigtail macaques (peak: ρ=−0.09, p=0.7; AUC: ρ=0.11, p=0.6). Infections in these models occur independently of exposure history and provide assurance that neither inoculation route nor number of exposures required for infection correlates with postinfection viremia. These data also indicate that both the vaginal and rectal repeated low-dose virus exposure models using SHIVSF162p3 provide a reliable system for nonhuman primate studies. PMID:25313448

  18. In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice

    PubMed Central

    2013-01-01

    Background Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Methods Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. Results In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Conclusions Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations. PMID:23419080

  19. Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension

    PubMed Central

    Schmeisser, Sebastian; Schmeisser, Kathrin; Weimer, Sandra; Groth, Marco; Priebe, Steffen; Fazius, Eugen; Kuhlow, Doreen; Pick, Denis; Einax, Jürgen W; Guthke, Reinhard; Platzer, Matthias; Zarse, Kim; Ristow, Michael

    2013-01-01

    Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low-dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low-dose arsenite promotes resistance against thermal and chemical stressors and extends lifespan of this metazoan, whereas higher concentrations reduce longevity. While arsenite causes a transient increase in reactive oxygen species (ROS) levels in C. elegans, co-exposure to ROS scavengers prevents the lifespan-extending capabilities of arsenite, indicating that transiently increased ROS levels act as transducers of arsenite effects on lifespan, a process known as mitohormesis. This requires two transcription factors, namely DAF-16 and SKN-1, which employ the metallothionein MTL-2 as well as the mitochondrial transporter TIN-9.1 to extend lifespan. Taken together, low-dose arsenite extends lifespan, providing evidence for nonlinear dose-response characteristics of toxin-mediated stress resistance and longevity in a multicellular organism. PMID:23534459

  20. In silico modeling of spore inhalation reveals fungal persistence following low dose exposure

    PubMed Central

    Tanaka, Reiko J.; Boon, Neville J.; Vrcelj, Katarina; Nguyen, Anita; Vinci, Carmelina; Armstrong-James, Darius; Bignell, Elaine

    2015-01-01

    The human lung is constantly exposed to spores of the environmental mould Aspergillus fumigatus, a major opportunistic pathogen. The spectrum of resultant disease is the outcome of complex host-pathogen interactions, an integrated, quantitative understanding of which lies beyond the ethical and technical reach permitted by animal studies. Here we construct a mathematical model of spore inhalation and clearance by concerted actions of macrophages and neutrophils, and use it to derive a mechanistic understanding of pathogen clearance by the healthy, immunocompetent host. In particular, we investigated the impact of inoculum size upon outcomes of single-dose fungal exposure by simulated titrations of inoculation dose, from 106 to 102 spores. Simulated low-dose (102) spore exposure, an everyday occurrence for humans, revealed a counter-intuitive prediction of fungal persistence (>3 days). The model predictions were reflected in the short-term dynamics of experimental murine exposure to fungal spores, thereby highlighting the potential of mathematical modelling for studying relevant behaviours in experimental models of fungal disease. Our model suggests that infectious outcomes can be highly dependent upon short-term dynamics of fungal exposure, which may govern occurrence of cyclic or persistent subclinical fungal colonisation of the lung following low dose spore inhalation in non-neutropenic hosts. PMID:26364644

  1. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures. PMID:26910032

  2. Specific Metabolic Fingerprint of a Dietary Exposure to a Very Low Dose of Endosulfan

    PubMed Central

    Canlet, Cécile; Tremblay-Franco, Marie; Gautier, Roselyne; Molina, Jérôme; Métais, Benjamin; Blas-Y Estrada, Florence; Gamet-Payrastre, Laurence

    2013-01-01

    Like other persistent organochlorine pesticides, endosulfan residues have been detected in foods including fruit, vegetables, and fish. The aim of our study was to assess the impact of a dietary exposure to low doses of endosulfan from foetal development until adult age on metabolic homeostasis in mice and to identify biomarkers of exposure using an 1H-NMR-based metabonomic approach in various tissues and biofluids. We report in both genders an increase in plasma glucose as well as changes in levels of factors involved in the regulation of liver oxidative stress, confirming the prooxidant activities of this compound. Some metabolic changes were distinct in males and females. For example in plasma, a decrease in lipid LDL and choline content was only observed in female. Lactate levels in males were significantly increased. In conclusion, our results show that metabolic changes in liver could be linked to the onset of pathologies like diabetes and insulin resistance. Moreover from our results it appears that the NMR-based metabonomic approach could be useful for the characterization in plasma of a dietary exposure to low dose of pesticide in human. PMID:23431292

  3. [Radiation situation prognosis for deep space: reactions of water and living systems to chronic low-dose ionizing irradiation].

    PubMed

    Ushakov, I B; Tsetlin, V V; Moisa, S S

    2013-01-01

    The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures. PMID:23700619

  4. Consequences of Low Dose Ionizing Radiation Exposure on the Hippocampal Microenvironment

    PubMed Central

    Acharya, Munjal M.; Patel, Neal H.; Craver, Brianna M.; Tran, Katherine K.; Giedzinski, Erich; Tseng, Bertrand P.; Parihar, Vipan K.; Limoli, Charles L.

    2015-01-01

    The response of the brain to irradiation is complex, involving a multitude of stress inducible pathways that regulate neurotransmission within a dynamic microenvironment. While significant past work has detailed the consequences of CNS radiotherapy following relatively high doses (≥ 45 Gy), few studies have been conducted at much lower doses (≤ 2 Gy), where the response of the CNS (like many other tissues) may differ substantially from that expected from linear extrapolations of high dose data. Low dose exposure could elicit radioadaptive modulation of critical CNS processes such as neurogenesis, that provide cellular input into hippocampal circuits known to impact learning and memory. Here we show that mice deficient for chemokine signaling through genetic disruption of the CCR2 receptor exhibit a neuroprotective phenotype. Compared to wild type (WT) animals, CCR2 deficiency spared reductions in hippocampal neural progenitor cell survival and stabilized neurogenesis following exposure to low dose irradiation. While radiation-induced changes in microglia levels were not found in WT or CCR2 deficient animals, the number of Iba1+ cells did differ between each genotype at the higher dosing paradigms, suggesting that blockade of this signaling axis could moderate the neuroinflammatory response. Interestingly, changes in proinflammatory gene expression were limited in WT animals, while irradiation caused significant elevations in these markers that were attenuated significantly after radioadaptive dosing paradigms in CCR2 deficient mice. These data point to the importance of chemokine signaling under low dose paradigms, findings of potential significance to those exposed to ionizing radiation under a variety of occupational and/or medical scenarios. PMID:26042591

  5. Causes of genome instability: the effect of low dose chemical exposures in modern society

    PubMed Central

    Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  6. Causes of genome instability: the effect of low dose chemical exposures in modern society.

    PubMed

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H; Brown, Dustin G; Brunborg, Gunnar; Charles, Amelia K; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A; Knudsen, Lisbeth E; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth P; Ostrosky-Wegman, Patricia; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R

    2015-06-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  7. Behavioral and neurochemical abnormalities after exposure to low doses of high-energy iron particles.

    PubMed

    Hunt, W A; Joseph, J A; Rabin, B M

    1989-01-01

    Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied. PMID:11537313

  8. Behavioral and neurochemical abnormalities after exposure to low doses of high-energy iron particles

    NASA Astrophysics Data System (ADS)

    Hunt, Walter A.; Joseph, James A.; Rabin, Bernard M.

    Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.

  9. Behavioral and neurochemical abnormalities after exposure to low doses of high-energy iron particles

    SciTech Connect

    Hunt, W.A.; Joseph, J.A.; Rabin, B.M.

    1989-01-01

    Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.

  10. Effects of Low-Dose Diethylstilbestrol Exposure on DNA Methylation in Mouse Spermatocytes

    PubMed Central

    Yin, Li; Zheng, Li-juan; Jiang, Xiao; Liu, Wen-bin; Han, Fei; Cao, Jia; Liu, Jin-yi

    2015-01-01

    Evidence from previous studies suggests that the male reproductive system can be disrupted by fetal or neonatal exposure to diethylstilbestrol (DES). However, the molecular basis for this effect remains unclear. To evaluate the effects of DES on mouse spermatocytes and to explore its potential mechanism of action, the levels of DNA methyltransferases (DNMTs) and DNA methylation induced by DES were detected. The results showed that low doses of DES inhibited cell proliferation and cell cycle progression and induced apoptosis in GC-2 cells, an immortalized mouse pachytene spermatocyte-derived cell line, which reproduces primary cells responses to E2. Furthermore, global DNA methylation levels were increased and the expression levels of DNMTs were altered in DES-treated GC-2 cells. A total of 141 differentially methylated DNA sites were detected by microarray analysis. Rxra, an important component of the retinoic acid signaling pathway, and mybph, a RhoA pathway-related protein, were found to be hypermethylated, and Prkcd, an apoptosis-related protein, was hypomethylated. These results showed that low-dose DES was toxic to spermatocytes and that DNMT expression and DNA methylation were altered in DES-exposed cells. Taken together, these data demonstrate that DNA methylation likely plays an important role in mediating DES-induced spermatocyte toxicity in vitro. PMID:26588706

  11. Pre- and Postnatal Exposure to Low Dose Glufosinate Ammonium Induces Autism-Like Phenotypes in Mice

    PubMed Central

    Laugeray, Anthony; Herzine, Ameziane; Perche, Olivier; Hébert, Betty; Aguillon-Naury, Marine; Richard, Olivier; Menuet, Arnaud; Mazaud-Guittot, Séverine; Lesné, Laurianne; Briault, Sylvain; Jegou, Bernard; Pichon, Jacques; Montécot-Dubourg, Céline; Mortaud, Stéphane

    2014-01-01

    Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here, we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in relative brain weight of the offspring. In addition, reduced expression of Pten and Peg3 – two genes implicated in autism-like deficits – was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between pre- and postnatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods. PMID:25477793

  12. In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep

    PubMed Central

    Fowler, Paul A.; Dorà, Natalie J.; McFerran, Helen; Amezaga, Maria R.; Miller, David W.; Lea, Richard G.; Cash, Phillip; McNeilly, Alan S.; Evans, Neil P.; Cotinot, Corinne; Sharpe, Richard M.; Rhind, Stewart M.

    2008-01-01

    Epidemiological studies of the impact of environmental chemicals on reproductive health demonstrate consequences of exposure but establishing causative links requires animal models using ‘real life’ in utero exposures. We aimed to determine whether prolonged, low-dose, exposure of pregnant sheep to a mixture of environmental chemicals affects fetal ovarian development. Exposure of treated ewes (n = 7) to pollutants was maximized by surface application of processed sewage sludge to pasture. Control ewes (n = 10) were reared on pasture treated with inorganic fertilizer. Ovaries and blood were collected from fetuses (n = 15 control and n = 8 treated) on Day 110 of gestation for investigation of fetal endocrinology, ovarian follicle/oocyte numbers and ovarian proteome. Treated fetuses were 14% lighter than controls but fetal ovary weights were unchanged. Prolactin (48% lower) was the only measured hormone significantly affected by treatment. Treatment reduced numbers of growth differentiation factor (GDF9) and induced myeloid leukaemia cell differentiation protein (MCL1) positive oocytes by 25–26% and increased pro-apoptotic BAX by 65% and 42% of protein spots in the treated ovarian proteome were differently expressed compared with controls. Nineteen spots were identified and included proteins involved in gene expression/transcription, protein synthesis, phosphorylation and receptor activity. Fetal exposure to environmental chemicals, via the mother, significantly perturbs fetal ovarian development. If such effects are replicated in humans, premature menopause could be an outcome. PMID:18436539

  13. Complex mixtures: relevance of combined exposure to substances at low dose levels.

    PubMed

    Leeman, Winfried R; Krul, Lisette; Houben, Geert F

    2013-08-01

    Upon analysis of chemically complex food matrices a forest of peaks is likely to be found. Identification of these peaks and concurrent determination of the toxicological relevance upon exposure is very time consuming, expensive and often requires animal studies. Recently, a safety assessment framework based on the Threshold of Toxicological Concern (TTC) was published to assess the safety of chemically complex matrices more efficiently. In this safety assessment framework, the toxicological relevance of exposure to unidentified substances in chemically complex food matrices can be related to the Cramer class III TTC threshold, currently set at 90 μg/day. However, possible additive or synergistic effects of combined exposure is not covered. The current evaluation describes the relevance of combined low dose exposure to unidentified substances in chemically complex food matrices. It is concluded that to some extent cumulative effects at exposure levels for each substance at or below the Cramer class III TTC threshold, being present in a complex mixture including food, might occur. However the health relevance of possible cumulative effects at this dose level is considered to be that low that a need for a correction factor to cover possible cumulative effects is very low to absent. PMID:23597445

  14. Gene expression profiling in the fetal cardiac tissue after folate and low dose trichloroethylene exposure

    PubMed Central

    Caldwell, Patricia T.; Manziello, Ann; Howard, Jamie; Palbykin, Brittany; Runyan, Raymond B.; Selmin, Ornella

    2014-01-01

    Background Previous studies show gene expression alterations in rat embryo hearts and cell lines that correspond to the cardio-teratogenic effects of trichloroethylene (TCE) in animal models. One potential mechanism of TCE teratogenicity may be through altered regulation of calcium homeostatic genes with a corresponding inhibition of cardiac function. It has been suggested that TCE may interfere with the folic acid/methylation pathway in liver and kidney and alter gene regulation by epigenetic mechanisms. According to this hypothesis, folate supplementation in the maternal diet should counteract TCE effects on gene expression in the embryonic heart. Approach To identify transcriptional targets altered in the embryonic heart after exposure to TCE, and possible protective effects of folate, we used DNA microarray technology to profile gene expression in embryonic mouse hearts with maternal TCE exposure and dietary changes in maternal folate. Results Exposure to low doses of TCE (10ppb) caused extensive alterations in transcripts encoding proteins involved in transport, ion channel, transcription, differentiation, cytoskeleton, cell cycle and apoptosis. Exogenous folate did not offset the effects of TCE exposure on normal gene expression and both high and low levels of folate produced additional significant changes in gene expression. Conclusions A mechanism where TCE induces a folate deficiency does not explain altered gene expression patterns in the embryonic mouse heart. The data further suggest that use of folate supplementation, in the presence of this toxin, may be detrimental and non-protective of the developing embryo. PMID:19813261

  15. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model

    PubMed Central

    Barnewall, Roy E.; Comer, Jason E.; Miller, Brian D.; Gutting, Bradford W.; Wolfe, Daniel N.; Director-Myska, Alison E.; Nichols, Tonya L.; Taft, Sarah C.

    2012-01-01

    Repeated low-level exposures to biological agents could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as B. anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU) of B. anthracis spores) and included a pilot feasibility characterization study, acute exposure study, and a multiple 15 day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses to rabbits. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 × 102, 1 × 103, 1 × 104, and 1 × 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 × 102, 1 × 103, and 1 × 104 CFU. In all studies, targeted inhaled doses remained consistent from rabbit-to-rabbit and day-to-day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and over multiple exposure days. PMID:22919662

  16. Dose exposure in the ITALUNG trial of lung cancer screening with low-dose CT

    PubMed Central

    Mascalchi, M; Mazzoni, L N; Falchini, M; Belli, G; Picozzi, G; Merlini, V; Vella, A; Diciotti, S; Falaschi, F; Lopes Pegna, A; Paci, E

    2012-01-01

    Few data are available on the effective dose received by participants in lung cancer screening programmes with low-dose CT (LDCT). We report the collective effective dose delivered to 1406 current or former smokers enrolled in the ITALUNG trial who completed 4 annual LDCT examinations and related further investigations including follow-up LDCT, 2-[18F]flu-2-deoxy-d-glucose positron emission tomography (FDG-PET) or CT-guided fine needle aspiration biopsy (FNAB). Using the air CT dose index and Monte Carlo simulations on an anthropomorphic phantom, the whole-body effective dose associated with LDCT was determined for the eight CT scanners used in the trial. A value of 7 mSv was assigned to FDG-PET while the measured mean effective dose of CT-guided FNAB was 1.5 mSv. The mean collective effective dose in the 1406 subjects ranged between 8.75 and 9.36 Sv and the mean effective dose to the single subject over 4 years was between 6.2 and 6.8 mSv (range 1.7–21.5 mSv) according to the cranial–caudal length of the LDCT volume. 77.4% of the dose was owing to annual LDCT and 22.6% to further investigations. Considering the nominal risk coefficients for stochastic effects after exposure to low-dose radiation according to the National Radiological Protection Board, International Commission on Radiological Protection (ICRP) 60, ICRP103 and Biological Effects of Ionizing Radiation VII, the mean number of radiation-induced cancers ranged between 0.12 and 0.33 per 1000 subjects. The individual effective dose to participants in a 4-year lung cancer screening programme with annual LDCT is very low and about one-third of the effective dose that is associated with natural background radiation and diagnostic radiology in the same time period. PMID:21976631

  17. Clinical experience with low-dose itraconazole in chronic idiopathic cough

    PubMed Central

    2013-01-01

    Background The presence of basidiomycetous (BM) fungi in induced sputum is an important clinical finding in chronic idiopathic cough (CIC). However, the efficacy of anti-fungal therapy for CIC has not been evaluated. Methods We selected 10 patients with CIC and carried out allergological examinations for Bjerkandera adusta, a BM fungus that has been shown to enhance cough severity. The efficacy of low-dose itraconazole (ITCZ) therapy (50 mg/day) for 14 days as an adjunctive therapy was estimated with use of Cough Visual Analog Scale (Cough VAS) and the Japanese version of the Leicester Cough Questionnaire (J-LCQ). We evaluated whether there was a recognizable clinical or allergological pattern that could predict the efficacy of ITCZ therapy in CIC patients. Results Significant changes in Cough VAS and minimal important difference in domains of the J-LCQ were observed in 3 and 5 CIC patients, respectively. The Δ cough scale was correlated with changes in domains of the J-LCQ (total (r = –0.73, P < 0.05), psychological (r = –0.73, P < 0.05), and social (r = –0.71, P < 0.05), respectively. There were significant differences in the change in total score (P < 0.05) and in the domain of social (P < 0.05) and Δ cough scale (P < 0.05) between positive and negative results of immediate skin test for B. adusta. Positive results for improvement of cough-related laryngeal sensation which was represented as a sensation of mucus in the throat (SMIT) were observed in 6 patients in the BM colonization-positive group (85.7%) and none in the BM colonization-negative group (0%). There was a significant difference in the positive ratio for improvement of SMIT between the two groups. Conclusions At present, it is not possible to conclude whether ITCZ therapy provides sufficient relief in CIC patients. However, this study suggested both the possible applicability of low-dose ITCZ therapy for treatment of CIC patients with regard to BM allergy

  18. Pulmonary Injury after Combined Exposures to Low-Dose Low-LET Radiation and Fungal Spores

    PubMed Central

    Marples, B.; Downing, L.; Sawarynski, K. E.; Finkelstein, J. N.; Williams, J. P.; Martinez, A. A.; Wilson, G. D.; Sims, M. D.

    2013-01-01

    Exposure to infectious microbes is a likely confounder after a nuclear terrorism event. In combination with radiation, morbidity and mortality from an infection may increase significantly. Pulmonary damage after low-dose low-LET irradiation is characterized by an initial diffuse alveolar inflammation. By contrast, inhaled fungal spores produce localized damage around pulmonary bronchioles. In the present study, we assessed lung injury in C57BL/6 mice after combined exposures to whole-body X radiation and inhaled fungal spores. Either animals were exposed to Aspergillus spores and immediately irradiated with 2 Gy, or the inoculation and irradiation were separated by 8 weeks. Pulmonary injury was assessed at 24 and 48 h and 1, 2, 4, 8, and 24 weeks later using standard H&E-stained sections and compared with sham-treated age-matched controls. Immunohistochemistry for invasive inflammatory cells (macrophages, neutrophils and B and T lymphocytes) was performed. A semi-quantitative assessment of pulmonary injury was made using three distinct parameters: local infiltration of inflammatory cells, diffuse inflammation, and thickening and distortion of alveolar architecture. Radiation-induced changes in lung architecture were most evident during the first 2 weeks postexposure. Fungal changes were seen over the first 4 weeks. Simultaneous combined exposures significantly increased the duration of acute pulmonary damage up to 24 weeks (P < 0.01). In contrast, administration of the fungus 8 weeks after irradiation did not produce enhanced levels of acute pulmonary damage. These data imply that the inhalation of fungal spores at the time of a radiation exposure alters the susceptibility of the lungs to radiation-induced injury. PMID:21275606

  19. Assessing pre/post-weaning neurobehavioral development for perinatal exposure to low doses of methylmercury.

    PubMed

    Cheng, Jinping; Fujimura, Masatake; Bo, Dandan

    2015-12-01

    Fetuses and neonates are known to be high-risk groups for Methylmercury (MeHg) exposure. MeHg can be transferred to the fetus through the placenta and to newborn offspring through breast milk. The aim of the present study was to investigate the neurotoxic effects of low doses of MeHg (1 and 5μg/mL in drinking water) administration, from gestational day 1 to postnatal day (PND) 21, on the neurobehavioral development of rats. The results showed that the no-observed-effect level of MeHg is somewhere in the range of 1-4μg/mL. Neurobehavioral development analysis revealed a delayed appearance of cliff drop and negative geotaxis reflexes in the 5μg/mL MeHg exposure group. Developmental exposure to MeHg affected locomotor activity functions for the females, but not for the males, implying that the female pups were more vulnerable than the male pups. All pups exposed to 5μg/mL of MeHg showed a significant deficit in motor coordination in the rotarod test compared with controls, and the highest accumulated concentrations of Hg were found in the cerebellum, followed by the hippocampus and cerebral cortex, indicating that the cerebellum is a possible target for MeHg toxicity. We demonstrated adverse effects of developmental exposure to MeHg associated with tissue concentrations very close to the current human body burden of this persistent and bioaccumulative compound. PMID:26702966

  20. Low doses of glyphosate change the response of soybean to later glyphosate exposures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stimulatory effect of low doses of toxic substances is known as hormesis. Many herbicides that cause severe injury to plants at recommended rates, promote growth or have other stimulatory effects at very low doses. The objective of this study was to evaluate glyphosate-induced hormesis in soyb...

  1. Effect of low doses of lipopolysaccharide prior to ozone exposure on bronchoalveolar lavage

    PubMed Central

    Haque, Rizwanul; Umstead, Todd M.; Ahn, Kwangmi; Phelps, David S.; Floros, Joanna

    2010-01-01

    SUMMARY Background Several aspects of the inflammatory response to a single insult, i.e., exposure to 2 ppm of ozone (O3) for 3 h or 6 h, are less pronounced in surfactant protein A deficient (SP-A −/−) mice (KO) than in wild type mice (WT). It was hypothesized that a mild insult, specifically low doses of lipopolysaccharide (LPS), would adversely affect host defense and differentially potentiate O3-induced injury in WT and KO mice. METHODS WT and KO mice were treated with different doses of LPS or LPS (2 ng) + O3 (2 ppm) or filtered air (FA) for 3 h, then sacrificed 4 h following exposure (O3, FA) or 20 h after LPS treatment alone. Several endpoints of inflammation were measured in bronchoalveolar lavage (BAL). RESULTS 1) At 20 h after LPS treatment alone, both WT and KO mice exhibited signs of inflammation, but with differences in the macrophage inflammatory protein 2 (MIP-2) response pattern, total cells (at 0.5 ng LPS) and basal levels of oxidized protein and phospholipids; 2) After LPS + O3, KO compared to WT showed decrease in polymorphonuclear leukocytes (PMNs) and MIP-2 and increase in phospholipids, and after LPS + FA an increase in total cells; 3) WT after LPS + FA showed an increase in SP-A with no further increase after LPS + O3, and an increase in oxidized SP-A dimer following O3 or LPS + O3. CONCLUSIONS LPS treatment has negative effects on inflammation endpoints in mouse BAL long after exposure and renders KO mice less capable of responding to a second insult. LPS and O3 affect SP-A, quantitatively and qualitatively, respectively. PMID:21278811

  2. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line.

    PubMed

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-08-01

    Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50μM PFOA for 48h and 96h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50-100μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200-400μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure. PMID:27045622

  3. Murine neocortical histogenesis is perturbed by prenatal exposure to low doses of Bisphenol A.

    PubMed

    Nakamura, Keiko; Itoh, Kyoko; Yaoi, Takeshi; Fujiwara, Yasuhiro; Sugimoto, Tohru; Fushiki, Shinji

    2006-11-01

    Bisphenol A (BPA) has been shown to disrupt thyroid hormone function. We therefore studied whether prenatal exposure to low-doses of BPA affects the morphology and the expression of some genes related to brain development in the murine fetal neocortex. Pregnant mice were injected subcutaneously with 20 microg/kg of BPA daily from embryonic day 0 (E0). Control animals received vehicle alone. For evaluating cell proliferation, neuronal differentiation and migration, bromodeoxyuridine (BrdU) was injected intraperitoneally into pregnant mice with various regimens and the brains were processed for immunohistochemistry. The total RNA was extracted from the embryonic telencephalon at various embryonic stages. The BrdU-labeled cells examined 1 hour after BrdU injection showed no differences between the BPA-treated and control groups (n = 10, each), which indicated that the proliferation of precursor cells was not affected. The BrdU-labeled cells, analysed 2 days after BrdU injection, were decreased in the ventricular zone of BPA-treated mice at E14.5 and E16.5, whereas they were increased in the cortical plate at E14.5 as compared with those in control mice (n = 10, each). Furthermore, the expression of Math3, Ngn2, Hes1, LICAM, and THRalpha was significantly upregulated at E14.5 in the BPA-treated group. These results suggested that BPA might disrupt normal neocortical development by accelerating neuronal differentiation/migration. PMID:16902998

  4. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation.

    PubMed

    Kovalchuk, Olga; Burke, Paula; Besplug, Jill; Slovack, Mark; Filkowski, Jody; Pogribny, Igor

    2004-04-14

    The biological and genetic effects of chronic low-dose radiation (LDR) exposure and its relationship to carcinogenesis have received a lot of attention in the recent years. For example, radiation-induced genome instability, which is thought to be a precursor of tumorogenesis, was shown to have a transgenerational nature. This indicates a possible involvement of epigenetic mechanisms in LDR-induced genome instability. Genomic DNA methylation is one of the most important epigenetic mechanisms. Existing data on radiation effects on DNA methylation patterns is limited, and no one has specifically studied the effects of the LDR. We report the first study of the effects of whole-body LDR exposure on global genome methylation in muscle and liver tissues of male and female mice. In parallel, we evaluated changes in promoter methylation and expression of the tumor suppressor gene p16(INKa) and DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT). We observed different patterns of radiation-induced global genome DNA methylation in the liver and muscle of exposed males and females. We also found sex and tissue-specific differences in p16(INKa) promoter methylation upon LDR exposure. In male liver tissue, p16(INKa) promoter methylation was more pronounced than in female tissue. In contrast, no significant radiation-induced changes in p16(INKa) promoter methylation were noted in the muscle tissue of exposed males and females. Radiation also did not significantly affect methylation status of MGMT promoter. We also observed substantial sex differences in acute and chronic radiation-induced expression of p16(INKa) and MGMT genes. Another important outcome of our study was the fact that chronic low-dose radiation exposure proved to be a more potent inducer of epigenetic effects than the acute exposure. This supports previous findings that chronic exposure leads to greater genome destabilization than acute exposure. PMID:15063138

  5. Survey on low-dose medical radiation exposure in occupational workers: the effect on hematological change

    NASA Astrophysics Data System (ADS)

    Ryu, J. K.; Cho, S. M.; Cho, J. H.; Dong, K. R.; Chung, W. K.; Lee, J. W.

    2013-03-01

    This study examined the changes in the hematological index caused by low-dose medical radiation exposure in workers in a medical radiation-exposed environment. The cumulative dose was obtained using thermoluminescent dosimeters over a 9-year period, and the changes in hematological index count (red blood cells (RBCs), hemoglobin, platelets, white blood cells (WBCs), monocytes, lymphocytes, neutrophils, basophils, and eosinophils) were examined in both the occupational workers and controls. In total, 370 occupational workers and 335 controls were compared. The analysis led to the following observations: (1) The average cumulative dose in males and females was 9.65±15.2 and 4.82±5.55 mSv, respectively. (2) In both males and females, there was a very low correlation between the occupation period and the cumulative dose (r<±0.25). (3) When the occupation period was longer, the WBC counts both decreased and increased in the male workers and the RBC counts were lower in the workers than in the control group (p<0.05). In females, the WBC counts both decreased and increased in the workers and the eosinophil counts were lower in the workers than in the control group (p<0.01). (4) When the cumulative dose was large, the lymphocyte counts decreased in male workers and the platelet count was lower in the workers than in the control group (p<0.05). In females, the lymphocyte count and RBC count were lower in the workers than in the control group (p<0.05). Abnormal distributions of some blood indices were observed in the occupational radiation workers compared with the controls. Attempts were made to limit radiation exposure to personnel, but the employees did not always follow the preset rules. Actually, the adverse effects of low-level radiation were attributed to probability. Overall, workers should obey the radiation protection regulations provided by the government and a national system of radiation protection is needed.

  6. Repeated low-dose organophosphate DFP exposure leads to the development of depression and cognitive impairment in a rat model of Gulf War Illness.

    PubMed

    Phillips, Kristin F; Deshpande, Laxmikant S

    2016-01-01

    Approximately 175,000-250,000 of the returning veterans from the 1991 Persian Gulf War exhibit chronic multi-symptom illnesses that includes neurologic co-morbidities such as depression, anxiety and cognitive impairments. Amongst a host of causative factors, exposure to low levels of the nerve agent Sarin has been strongly implicated for expression of Gulf War Illness (GWI). Nerve agents similar to pesticides are organophosphate (OP) compounds. There is evidence from civilian population that exposure to OPs such as in agricultural workers and nerve agents such as the survivors and first-responders of the Tokyo subway Sarin gas attack suffer from chronic neurological problems similar to GWI symptoms. Given this unique chemical profile, OPs are ideal to study the effects of nerve agents and develop models of GWI in civilian laboratories. In this study, we used repeated low-dose exposure to OP agent diisopropyl fluorophosphate (DFP) over a 5-day period to approximate the duration and level of Sarin exposure during the Persian Gulf War. We tested the rats at 3-months post DFP exposure. Using a battery of behavioral assays, we observed the presence of symptoms of chronic depression, anxiety and memory problems as characterized by increased immobility time in the Forced Swim Test, anhedonia in the Sucrose Preference Test, anxiety in the Elevated Plus Maze, and spatial memory impairments in the Object Location Test, respectively. Chronic low dose DFP exposure was also associated with hippocampal neuronal damage as characterized by the presence of Fluoro-Jade staining. Given that OP exposure is considered a leading cause of GWI related morbidities, this animal model will be ideally suited to study underlying molecular mechanisms for the expression of GWI neurological symptoms and identify drugs for the effective treatment of GWIs. PMID:26619911

  7. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior.

    PubMed

    Kim, Cha Soon; Seong, Ki Moon; Lee, Byung Sub; Lee, In Kyung; Yang, Kwang Hee; Kim, Ji-Young; Nam, Seon Young

    2015-05-01

    Although radiation effects have been extensively studied, the biological effects of low-dose radiation (LDR) are controversial. This study investigates LDR-induced alterations in locomotive behavior and gene expression profiles of Drosophila melanogaster. We measured locomotive behavior using larval pupation height and the rapid iterative negative geotaxis (RING) assay after exposure to 0.1 Gy γ-radiation (dose rate of 16.7 mGy/h). We also observed chronic LDR effects on development (pupation and eclosion rates) and longevity (life span). To identify chronic LDR effects on gene expression, we performed whole-genome expression analysis using gene-expression microarrays, and confirmed the results using quantitative real-time PCR. The pupation height of the LDR-treated group at the first larval instar was significantly higher (∼2-fold increase in PHI value, P < 0.05). The locomotive behavior of LDR-treated male flies (∼3 - 5 weeks of age) was significantly increased by 7.7%, 29% and 138%, respectively (P < 0.01), but pupation and eclosion rates and life spans were not significantly altered. Genome-wide expression analysis identified 344 genes that were differentially expressed in irradiated larvae compared with in control larvae. We identified several genes belonging to larval behavior functional groups such as locomotion (1.1%), oxidation reduction (8.0%), and genes involved in conventional functional groups modulated by irradiation such as defense response (4.9%), and sensory and perception (2.5%). Four candidate genes were confirmed as differentially expressed genes in irradiated larvae using qRT-PCR (>2-fold change). These data suggest that LDR stimulates locomotion-related genes, and these genes can be used as potential markers for LDR. PMID:25792464

  8. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior

    PubMed Central

    Kim, Cha Soon; Seong, Ki Moon; Lee, Byung Sub; Lee, In Kyung; Yang, Kwang Hee; Kim, Ji-Young; Nam, Seon Young

    2015-01-01

    Although radiation effects have been extensively studied, the biological effects of low-dose radiation (LDR) are controversial. This study investigates LDR-induced alterations in locomotive behavior and gene expression profiles of Drosophila melanogaster. We measured locomotive behavior using larval pupation height and the rapid iterative negative geotaxis (RING) assay after exposure to 0.1 Gy γ-radiation (dose rate of 16.7 mGy/h). We also observed chronic LDR effects on development (pupation and eclosion rates) and longevity (life span). To identify chronic LDR effects on gene expression, we performed whole-genome expression analysis using gene-expression microarrays, and confirmed the results using quantitative real-time PCR. The pupation height of the LDR-treated group at the first larval instar was significantly higher (∼2-fold increase in PHI value, P < 0.05). The locomotive behavior of LDR-treated male flies (∼3 − 5 weeks of age) was significantly increased by 7.7%, 29% and 138%, respectively (P < 0.01), but pupation and eclosion rates and life spans were not significantly altered. Genome-wide expression analysis identified 344 genes that were differentially expressed in irradiated larvae compared with in control larvae. We identified several genes belonging to larval behavior functional groups such as locomotion (1.1%), oxidation reduction (8.0%), and genes involved in conventional functional groups modulated by irradiation such as defense response (4.9%), and sensory and perception (2.5%). Four candidate genes were confirmed as differentially expressed genes in irradiated larvae using qRT-PCR (>2-fold change). These data suggest that LDR stimulates locomotion-related genes, and these genes can be used as potential markers for LDR. PMID:25792464

  9. Obesity in the United States – Dysbiosis from Exposure to Low-Dose Antibiotics?

    PubMed Central

    Riley, Lee W.; Raphael, Eva; Faerstein, Eduardo

    2013-01-01

    The rapid increase in obesity prevalence in the United States in the last 20 years is unprecedented and not well explained. Here, we explore a hypothesis that the obesity epidemic may be driven by population-wide chronic exposures to low-residue antibiotics that have increasingly entered the American food chain over the same time period. We propose this hypothesis based on two recent bodies of published reports – (1) those that provide evidence for the spread of antibiotics into the American food chain, and (2) those that examine the relationship between the gut microbiota and body physiology. The livestock use of antimicrobial agents has sharply increased in the US over the same 20-year period of the obesity epidemic, especially with the expansion of intensified livestock production, such as the concentrated animal feeding operations. Observational and experimental studies support the idea that changes in the intestinal microbiota exert a profound effect on body physiology. We propose that chronic exposures to low-residue antimicrobial drugs in food could disrupt the equilibrium state of intestinal microbiota and cause dysbiosis that can contribute to changes in body physiology. The obesity epidemic in the United States may be partly driven by the mass exposure of Americans to food containing low-residue antimicrobial agents. While this hypothesis cannot discount the impact of diet and other factors associated with obesity, we believe studies are warranted to consider this possible driver of the epidemic. PMID:24392444

  10. Low dose alpha interferon therapy can be effective in chronic active hepatitis C. Results of a multicentre, randomised trial.

    PubMed Central

    Sánchez-Tapias, J M; Forns, X; Ampurdanés, S; Titó, L; Planas, R; Viver, J M; Acero, D; Torres, M; Mas, P; Morillas, R; Forné, M; Espinós, J; Llovet, J M; Costa, J; Olmedo, E; López-Labrador, F X; Jiménez de Anta, M T; Rodés, J

    1996-01-01

    BACKGROUND--There is some controversy concerning the efficacy of low dose alpha interferon therapy in chronic hepatitis C. AIMS--To evaluate the effectiveness of treatment with low doses of alpha interferon in chronic hepatitis C. PATIENTS--One hundred and forty one patients with anti-HCV positive chronic active hepatitis C from six hospitals were enrolled in the study. METHODS--Patients were randomised to treatment with 5 MU (group A) or 1.5 MU (group B) injections. The dose was reduced in responders from group A or increased in non-responders from group B to maintain treatment with the minimal effective dose. Patients were treated for 48 weeks and followed up for 24 additional weeks with no treatment. Normalisation of alanine aminotransferase (ALT) was used to evaluate response. RESULTS--A sustained response was seen in eight patients from group A (12%) and in 15 (21%) from group B. This difference was not statistically significant. Increasing the dose of interferon led to sustained response in only five of 58 patients (9%) from group B who did not respond to 1.5 MU injections. In contrast, 15 of 21 patients (71%) in whom ALT remained normal with 1.5 MU injections developed a sustained response. By multivariate analysis sustained response seemed associated with young age and was more frequent in patients with genotype 3 HCV infection. Sustained response was preceded by a rapid normalisation of ALT and was inversely related to the amount of alpha interferon necessary to maintain ALT at low values during treatment. CONCLUSIONS--Some patients with chronic hepatitis C are very sensitive to alpha interferon and can be successfully treated with low doses. Treatment with higher doses may be effective in a minority of patients who do not respond to low doses. PMID:8707096

  11. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts after Exposure to Very Low Doses of High LET Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, Francis A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.

  12. Alteration of the immune response to Mycobacterium bovis BCG in mice exposed chronically to low doses of UV radiation.

    PubMed

    Jeevan, A; Kripke, M L

    1990-10-01

    BALB/c mice were exposed on shaved dorsal skin to 1 minimal erythemal dose (MED) of UVB radiation (2.25 kJ/m2) from a bank of six FS-40 sunlamps three times per week. The total number of irradiations ranged from 1 to 27. At regular intervals, groups of mice were injected in the left hind foot pad with 1 x 10(6) live mycobacteria (Mycobacterium bovis BCG) 3 days after the last UVB exposure. The mice were tested 21 and 42 days after infection for a delayed type hypersensitivity (DTH) response to the purified protein derivative (PPD) of tubercle bacilli by injecting PPD into the right hind foot pad and measuring the foot pad swelling 24 hr later. The course of infection was followed by assessing the number of bacterial colony forming units in the lymph node draining the site of BCG infection and the spleen. Mice exposed from 1 to 15 times to 1 MED of UV radiation showed a significant suppression in their DTH response to PPD compared with the unirradiated mice. At the same time, the number of bacterial colony-forming units in the lymph node and spleen of the UV-irradiated mice was greater than in control mice. With continued exposure to UVB, however, the DTH response recovered to a normal level, and there was no longer an increase in the number of viable bacteria in the lymphoid organs. These results indicate that early in the course of chronic UV irradiation, mice were impaired in their ability to mount a DTH response to BCG and to clear these bacteria from their lymphoid organs; later the mice recovered from these effects of UV, with continued treatment. A dose-response study using single doses of UV radiation indicated that a dose of 2.7 kJ/m2 suppressed the DTH response by 50%. Thus, exposure of mice to a single or multiple low doses of UV radiation prior to infection can interfere with systemic immunity to mycobacteria. PMID:2204482

  13. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs.

    PubMed Central

    Brouwer, A; Longnecker, M P; Birnbaum, L S; Cogliano, J; Kostyniak, P; Moore, J; Schantz, S; Winneke, G

    1999-01-01

    This article addresses issues related to the characterization of endocrine-related health effects resulting from low-level exposures to polychlorinated biphenyls (PCBs). It is not intended to be a comprehensive review of the literature but reflects workshop discussions. "The Characterizing the Effects of Endocrine Disruptors on Human Health at Environmental Exposure Levels," workshop provided a forum to discuss the methods and data needed to improve risk assessments of endocrine disruptors. This article contains an overview of endocrine-related (estrogen and thyroid system) interactions and other low-dose effects of PCBs. The data set on endocrine effects includes results obtained from mechanistic methods/ and models (receptor based, metabolism based, and transport protein based), as well as from (italic)in vivo(/italic) models, including studies with experimental animals and wildlife species. Other low-dose effects induced by PCBs, such as neurodevelopmental and reproductive effects and endocrine-sensitive tumors, have been evaluated with respect to a possible causative linkage with PCB-induced alterations in endocrine systems. In addition, studies of low-dose exposure and effects in human populations are presented and critically evaluated. A list of conclusions and recommendations is included. PMID:10421775

  14. Data Integration Reveals Key Homeostatic Mechanisms Following Low Dose Radiation Exposure

    SciTech Connect

    Tilton, Susan C.; Matzke, Melissa M.; Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J.; Morgan, William F.; Waters, Katrina M.

    2015-05-01

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time - with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24 – 72 hr). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress were measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 were experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation.

  15. Seizures associated with low-dose tramadol for chronic pain treatment

    PubMed Central

    Beyaz, Serbülent Gökhan; Sonbahar, Tuğba; Bayar, Fikret; Erdem, Ali Fuat

    2016-01-01

    The management of cancer pain still poses a major challenge for clinicians. Tramadol is a centrally acting synthetic opioid analgesic. Its well-known side effects include nausea, vomiting, and dizziness; seizures are a rare side effect. Some reports have found that tramadol triggers seizure activity at high doses, whereas a few preclinical studies have found that this seizure activity is not dose-related. We herein present a case involving a patient with laryngeal cancer who developed seizures while on low-dose oral tramadol. PMID:27212778

  16. Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure

    PubMed Central

    Sokolov, Mykyta; Neumann, Ronald

    2015-01-01

    Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD) rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR) compared to those observed after a short-term high-dose IR exposure (HDIR). With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes. PMID:26729107

  17. Chronic Low Dosing of Phosphodiesterase Type 5 Inhibitor for Erectile Dysfunction

    PubMed Central

    Sung, Hyun Hwan

    2012-01-01

    Oral phosphodiesterase type 5 (PDE5) inhibitors have provided non-invasive, effective, and well-tolerated treatments for patients with erectile dysfunction (ED). However, many patients with ED are unresponsive to 'on-demand' PDE5 inhibitors. In addition, the lack of spontaneity and naturalness of the on-demand regimen could be a reason for decreased compliance with PDE5 inhibitors. Recently, tadalafil and udenafil were approved for low-dose daily administration for the treatment of ED. Since the introduction of the concept of daily administration of PDE5 inhibitors, several reports have supported the potential benefits of this therapy for disease modification, improvement of the treatment response in difficult-to-treat populations, spontaneity, and safety, although further research is needed to better address these hypotheses. In this article, we reviewed the daily administration of PDE5 inhibitors in terms of pharmacokinetics, safety, efficacy, and distinct features. PMID:22741044

  18. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    PubMed Central

    Goodson, William H.; Lowe, Leroy; Carpenter, David O.; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K.; Collins, Andrew R.; Ward, Andrew; Salzberg, Anna C.; Colacci, Anna Maria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J.; Zhou, Binhua P.; Blanco-Aparicio, Carmen; Baglole, Carolyn J.; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C.; Yedjou, Clement; Curran, Colleen S.; Laird, Dale W.; Koch, Daniel C.; Carlin, Danielle J.; Felsher, Dean W.; Roy, Debasish; Brown, Dustin G.; Ratovitski, Edward; Ryan, Elizabeth P.; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L.; Van Schooten, Frederik J.; Goldberg, Gary S.; Wagemaker, Gerard; Nangami, Gladys N.; Calaf, Gloria M.; Williams, Graeme P.; Wolf, Gregory T.; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H. Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K.; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R.; Scovassi, A.Ivana; Klaunig, James E.; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R.; Woodrick, Jordan; Christopher, Joseph A.; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R.; Narayanan, Kannan Badri; Cohen-Solal, Karine A.; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D’Abronzo, Leandro S.; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J.; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A.; Wade, Mark; Manjili, Masoud H.; Lleonart, Matilde E.; Xia, Menghang; Gonzalez Guzman, Michael J.; Karamouzis, Michalis V.; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B.; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P.K.; Vadgama, Pankaj; Marignani, Paola A.; Ghosh, Paramita M.; Ostrosky-Wegman, Patricia; Thompson, Patricia A.; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Leung, Po Sing; Nangia-Makker, Pratima; Cheng, Qiang (Shawn); Robey, R.Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K.; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C.; Palorini, Roberta; Hamid, Roslida A.; Langie, Sabine A.S.; Eltom, Sakina E.; Brooks, Samira A.; Ryeom, Sandra; Wise, Sandra S.; Bay, Sarah N.; Harris, Shelley A.; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C.; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W.Kimryn; Engström, Wilhelm; Decker, William K.; Bisson, William H.; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-01-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. PMID:26106142

  19. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    PubMed

    Goodson, William H; Lowe, Leroy; Carpenter, David O; Gilbertson, Michael; Manaf Ali, Abdul; Lopez de Cerain Salsamendi, Adela; Lasfar, Ahmed; Carnero, Amancio; Azqueta, Amaya; Amedei, Amedeo; Charles, Amelia K; Collins, Andrew R; Ward, Andrew; Salzberg, Anna C; Colacci, Annamaria; Olsen, Ann-Karin; Berg, Arthur; Barclay, Barry J; Zhou, Binhua P; Blanco-Aparicio, Carmen; Baglole, Carolyn J; Dong, Chenfang; Mondello, Chiara; Hsu, Chia-Wen; Naus, Christian C; Yedjou, Clement; Curran, Colleen S; Laird, Dale W; Koch, Daniel C; Carlin, Danielle J; Felsher, Dean W; Roy, Debasish; Brown, Dustin G; Ratovitski, Edward; Ryan, Elizabeth P; Corsini, Emanuela; Rojas, Emilio; Moon, Eun-Yi; Laconi, Ezio; Marongiu, Fabio; Al-Mulla, Fahd; Chiaradonna, Ferdinando; Darroudi, Firouz; Martin, Francis L; Van Schooten, Frederik J; Goldberg, Gary S; Wagemaker, Gerard; Nangami, Gladys N; Calaf, Gloria M; Williams, Graeme; Wolf, Gregory T; Koppen, Gudrun; Brunborg, Gunnar; Lyerly, H Kim; Krishnan, Harini; Ab Hamid, Hasiah; Yasaei, Hemad; Sone, Hideko; Kondoh, Hiroshi; Salem, Hosni K; Hsu, Hsue-Yin; Park, Hyun Ho; Koturbash, Igor; Miousse, Isabelle R; Scovassi, A Ivana; Klaunig, James E; Vondráček, Jan; Raju, Jayadev; Roman, Jesse; Wise, John Pierce; Whitfield, Jonathan R; Woodrick, Jordan; Christopher, Joseph A; Ochieng, Josiah; Martinez-Leal, Juan Fernando; Weisz, Judith; Kravchenko, Julia; Sun, Jun; Prudhomme, Kalan R; Narayanan, Kannan Badri; Cohen-Solal, Karine A; Moorwood, Kim; Gonzalez, Laetitia; Soucek, Laura; Jian, Le; D'Abronzo, Leandro S; Lin, Liang-Tzung; Li, Lin; Gulliver, Linda; McCawley, Lisa J; Memeo, Lorenzo; Vermeulen, Louis; Leyns, Luc; Zhang, Luoping; Valverde, Mahara; Khatami, Mahin; Romano, Maria Fiammetta; Chapellier, Marion; Williams, Marc A; Wade, Mark; Manjili, Masoud H; Lleonart, Matilde E; Xia, Menghang; Gonzalez, Michael J; Karamouzis, Michalis V; Kirsch-Volders, Micheline; Vaccari, Monica; Kuemmerle, Nancy B; Singh, Neetu; Cruickshanks, Nichola; Kleinstreuer, Nicole; van Larebeke, Nik; Ahmed, Nuzhat; Ogunkua, Olugbemiga; Krishnakumar, P K; Vadgama, Pankaj; Marignani, Paola A; Ghosh, Paramita M; Ostrosky-Wegman, Patricia; Thompson, Patricia A; Dent, Paul; Heneberg, Petr; Darbre, Philippa; Sing Leung, Po; Nangia-Makker, Pratima; Cheng, Qiang Shawn; Robey, R Brooks; Al-Temaimi, Rabeah; Roy, Rabindra; Andrade-Vieira, Rafaela; Sinha, Ranjeet K; Mehta, Rekha; Vento, Renza; Di Fiore, Riccardo; Ponce-Cusi, Richard; Dornetshuber-Fleiss, Rita; Nahta, Rita; Castellino, Robert C; Palorini, Roberta; Abd Hamid, Roslida; Langie, Sabine A S; Eltom, Sakina E; Brooks, Samira A; Ryeom, Sandra; Wise, Sandra S; Bay, Sarah N; Harris, Shelley A; Papagerakis, Silvana; Romano, Simona; Pavanello, Sofia; Eriksson, Staffan; Forte, Stefano; Casey, Stephanie C; Luanpitpong, Sudjit; Lee, Tae-Jin; Otsuki, Takemi; Chen, Tao; Massfelder, Thierry; Sanderson, Thomas; Guarnieri, Tiziana; Hultman, Tove; Dormoy, Valérian; Odero-Marah, Valerie; Sabbisetti, Venkata; Maguer-Satta, Veronique; Rathmell, W Kimryn; Engström, Wilhelm; Decker, William K; Bisson, William H; Rojanasakul, Yon; Luqmani, Yunus; Chen, Zhenbang; Hu, Zhiwei

    2015-06-01

    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology. PMID:26106142

  20. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Dose of High Let Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, K.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (0.01 - 0.20 Gy) of 170 MeV/u Si-28 ions or 600 MeV/u Fe-56 ions, including doses where on average less than one direct ion traversal per cell nucleus occurs. Chromosomes were analyzed using the whole-chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The responses for doses above 0.1 Gy (more than one ion traverses a cell) showed linear dose responses. However, for doses less than 0.1 Gy, both Si-28 ions and Fe-56 ions showed a dose independent response above background chromosome aberrations frequencies. Possible explanations for our results are non-targeted effects due to aberrant cell signaling [1], or delta-ray dose fluctuations [2] where a fraction of cells receive significant delta-ray doses due to the contributions of multiple ion tracks that do not directly traverse cell nuclei where chromosome aberrations are scored.

  1. Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats

    PubMed Central

    Albores-Garcia, Damaris; Hernandez, Alberto J.; Loera, Miriam J.

    2016-01-01

    Few studies have assessed the effects of developmental methylmercury (MeHg) exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1) control (vehicle), (2) 250 μg/kg/day MeHg, (3) 500 μg/kg/day MeHg, and (4) vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p.), an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined. PMID:26885512

  2. Low dose exposure to Bisphenol A alters development of gonadotropin-releasing hormone 3 neurons and larval locomotor behavior in Japanese Medaka.

    PubMed

    Inagaki, T; Smith, N; Lee, E K; Ramakrishnan, S

    2016-01-01

    Accumulating evidence indicates that chronic low dose exposure to Bisphenol A (BPA), an endocrine disruptor, may disrupt normal brain development and behavior mediated by the gonadotropin-releasing hormone (GnRH) pathways. While it is known that GnRH neurons in the hypothalamus regulate reproductive physiology and behavior, functional roles of extra-hypothalamic GnRH neurons remain unclear. Furthermore, little is known whether BPA interacts with extra-hypothalamic GnRH3 neural systems in vulnerable developing brains. Here we examined the impact of low dose BPA exposure on the developing GnRH3 neural system, eye and brain growth, and locomotor activity in transgenic medaka embryos and larvae with GnRH3 neurons tagged with GFP. Fertilized eggs were collected daily and embryos/larvae were chronically exposed to 200ng/ml of BPA, starting at 1 day post fertilization (dpf). BPA significantly increased fluorescence intensity of the GnRH3-GFP neural population in the terminal nerve (TN) of the forebrain at 3dpf, but decreased the intensity at 5dpf, compared with controls. BPA advanced eye pigmentation without affecting eye and brain size development, and accelerated times to hatch. Following chronic BPA exposure, 20dpf larvae showed suppression of locomotion, both in distance covered and speed of movement (47% and 43% reduction, respectively). BPA-induced hypoactivity was accompanied by decreased cell body sizes of individual TN-GnRH3 neurons (14% smaller than those of controls), but not of non-GnRH3 neurons. These novel data demonstrate complex neurobehavioral effects of BPA on the development of extra-hypothalamic GnRH3 neurons in teleost fish. PMID:26687398

  3. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  4. [Chronic irradiation with low doses can be characterized by significant biological efficacy].

    PubMed

    Sorochyns'kyĭ, B V; Kripka, H V; Kuchma, O M

    2004-01-01

    Chromosomal aberrations (ChA) level was analyzed in the onion root meristem after the chronic irradiation with different dose capacities. It was shown that after the chronic irradiation with doses of 0.87 cGy, 2.61 cGy and 4.35 cGy the level of chromosomal aberrations depended on the dose capacity. Its value may also correspond to those which have been induced with accute irradiation. Biological efficacy of chronic irradiation may be from 20 to 1000 time folder in order to compare it with accute irradiation and this value depends on the irradiation regime. PMID:15882027

  5. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain.

    PubMed

    Younger, Jarred; Parkitny, Luke; McLain, David

    2014-04-01

    Low-dose naltrexone (LDN) has been demonstrated to reduce symptom severity in conditions such as fibromyalgia, Crohn's disease, multiple sclerosis, and complex regional pain syndrome. We review the evidence that LDN may operate as a novel anti-inflammatory agent in the central nervous system, via action on microglial cells. These effects may be unique to low dosages of naltrexone and appear to be entirely independent from naltrexone's better-known activity on opioid receptors. As a daily oral therapy, LDN is inexpensive and well-tolerated. Despite initial promise of efficacy, the use of LDN for chronic disorders is still highly experimental. Published trials have low sample sizes, and few replications have been performed. We cover the typical usage of LDN in clinical trials, caveats to using the medication, and recommendations for future research and clinical work. LDN may represent one of the first glial cell modulators to be used for the management of chronic pain disorders. PMID:24526250

  6. [Treatment with low-dose methotrexate in chronic polyarthritis. Review of the literature].

    PubMed

    Rau, R

    1986-01-01

    The therapeutic effect of low-dose MTX-treatment (10-25 mg/week) in active rheumatoid arthritis can be demonstrated by an improvement in clinical and laboratory parameters of disease activity already after 4-6 weeks. The mode of action is not fully understood. Direct anti-inflammatory effects seem to be more important than the weak immunosuppressive properties. Methotrexate treatment is indicated in all very active cases of rheumatoid arthritis, which do not respond to, or do not tolerate, conventional slow-acting antirheumatic drugs. In severe, rapidly progressing diseases MTX can be given without waiting for the effect of other disease modifying drugs. MTX is administered once a week i.v., i.m. or in one oral dose before breakfast. Absorption is reduced by food. The initial weekly dose is 15-25 mg and can be reduced to a minimum of 10 mg (7.5 mg) according to the clinical effect. A combination with antimalarials or gold salts is possible. The prescription of MTX is contraindicated in cases of renal function disturbances, active liver disease, bone marrow disturbances, active infectious diseases, pregnancy and excessive alcohol consumption. The most common side-effects are nausea and vomiting, stomatitis, transient elevations of transaminases. Rare conditions are leucopenia, thrombocytopenia and lung infiltrations. The side-effects are dose-related and disappear with dose reduction. They can be avoided by administering leucovorin 12 hours after giving MTX. Before starting the treatment total blood count with differential count and platelet count, serum creatinine and liver enzymes should be done. These laboratory studies have to be repeated every week for the first month, every two weeks up to the third month and every 1-2 months thereafter. When contraindications are considered and regular controls are made methotrexate is better tolerated than other cytotoxic agents. The rate of withdrawals is lower than with gold-treatment. In low-dose MTX-treatment drug

  7. LOW-DOSE AIRBORNE ENDOTOXIN EXPOSURE ENHANCES BRONCHIAL RESPONSIVENESS TO INHALED ALLERGEN IN ATOPIC ASTHMATICS

    EPA Science Inventory

    Endotoxin exposure has been associated with both protection against development of TH2-immune responses during childhood and exacerbation of asthma in persons who already have allergic airway inflammation.1 Occupational and experimental inhalation exposures to endotoxin have been...

  8. A novel bottom-up approach to bounding low-dose human cancer risks from chemical exposures.

    PubMed

    Starr, Thomas B; Swenberg, James A

    2013-04-01

    We propose a novel bottom-up approach to the bounding of low-dose human cancer risks from chemical exposures that does not rely at all upon high-dose data for human or animal cancers. This approach can thus be used to provide an independent "reality check" on low-dose risk estimates derived with dose-response models that are fit to high-dose cancer data. The approach (1) is consistent with the "additivity to background" concept, (2) yields central and upper-bound risk estimates that are linear at all doses, and (3) requires only information regarding background risk, background (endogenous) exposure, and the additional exogenous exposure of interest in order to be implemented. After describing the details of this bottom-up approach, we illustrate its application using formaldehyde as an example. Results indicate that recent top-down risk extrapolations from occupational cohort mortality data for workers exposed to formaldehyde are overly conservative by substantial margins. PMID:23352840

  9. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    SciTech Connect

    Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio; Câmara, Niels Olsen Saraiva; Tavares-de-Lima, Wothan; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2014-08-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.

  10. Changes in the Metabolome in Response to Low-Dose Exposure to Environmental Chemicals Used in Personal Care Products during Different Windows of Susceptibility.

    PubMed

    Houten, Sander M; Chen, Jia; Belpoggi, Fiorella; Manservisi, Fabiana; Sánchez-Guijo, Alberto; Wudy, Stefan A; Teitelbaum, Susan L

    2016-01-01

    The consequences of ubiquitous exposure to environmental chemicals remain poorly defined. Non-targeted metabolomic profiling is an emerging method to identify biomarkers of the physiological response to such exposures. We investigated the effect of three commonly used ingredients in personal care products, diethyl phthalate (DEP), methylparaben (MPB) and triclosan (TCS), on the blood metabolome of female Sprague-Dawley rats. Animals were treated with low levels of these chemicals comparable to human exposures during prepubertal and pubertal windows as well as chronically from birth to adulthood. Non-targeted metabolomic profiling revealed that most of the variation in the metabolites was associated with developmental stage. The low-dose exposure to DEP, MPB and TCS had a relatively small, but detectable impact on the metabolome. Multiple metabolites that were affected by chemical exposure belonged to the same biochemical pathways including phenol sulfonation and metabolism of pyruvate, lyso-plasmalogens, unsaturated fatty acids and serotonin. Changes in phenol sulfonation and pyruvate metabolism were most pronounced in rats exposed to DEP during the prepubertal period. Our metabolomics analysis demonstrates that human level exposure to personal care product ingredients has detectable effects on the rat metabolome. We highlight specific pathways such as sulfonation that warrant further study. PMID:27467775

  11. Changes in the Metabolome in Response to Low-Dose Exposure to Environmental Chemicals Used in Personal Care Products during Different Windows of Susceptibility

    PubMed Central

    Chen, Jia; Belpoggi, Fiorella; Manservisi, Fabiana; Sánchez-Guijo, Alberto; Wudy, Stefan A.; Teitelbaum, Susan L.

    2016-01-01

    The consequences of ubiquitous exposure to environmental chemicals remain poorly defined. Non-targeted metabolomic profiling is an emerging method to identify biomarkers of the physiological response to such exposures. We investigated the effect of three commonly used ingredients in personal care products, diethyl phthalate (DEP), methylparaben (MPB) and triclosan (TCS), on the blood metabolome of female Sprague-Dawley rats. Animals were treated with low levels of these chemicals comparable to human exposures during prepubertal and pubertal windows as well as chronically from birth to adulthood. Non-targeted metabolomic profiling revealed that most of the variation in the metabolites was associated with developmental stage. The low-dose exposure to DEP, MPB and TCS had a relatively small, but detectable impact on the metabolome. Multiple metabolites that were affected by chemical exposure belonged to the same biochemical pathways including phenol sulfonation and metabolism of pyruvate, lyso-plasmalogens, unsaturated fatty acids and serotonin. Changes in phenol sulfonation and pyruvate metabolism were most pronounced in rats exposed to DEP during the prepubertal period. Our metabolomics analysis demonstrates that human level exposure to personal care product ingredients has detectable effects on the rat metabolome. We highlight specific pathways such as sulfonation that warrant further study. PMID:27467775

  12. Low-Dose, Gestational Exposure to Atrazine Does Not Alter Postnatal Reproductive Development of Male Offspring

    EPA Science Inventory

    There is growing evidence that xenobiotic exposure during the perinatal period may result in a variety of adverse outcomes when the developing organism attains adulthood. Maternal stress and subsequent exposure of the fetus to excess glucocorticoids may underlie these effects. Pr...

  13. Perinatal Exposure to Low-dose Nonylphenol Specifically Improves Spatial Learning and Memory in Male Rat Offspring.

    PubMed

    Kawaguchi, Shinichiro; Kuwahara, Rika; Kohara, Yumi; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-01-01

    4-Nonylphenol (NP) has weak estrogen-like activity, and can therefore act as an endocrine disruptor. This study examined the effects of perinatal exposure to low-dose NP on learning and memory, general activity, and emotionality in male rat offspring. Dams were orally administered 1 or 10 mg/kg/day of NP or vehicle from gestational day 10 to postnatal day 14. The male offspring were evaluated using a battery of behavioral tests, including an appetite-motivated maze test (MAZE test) used to assess spatial learning and memory. In the MAZE test, times to reach goal (food) for both groups treated with NP were significantly shorter than those for the control group. In other behavioral tests (the open-field, elevated plus-maze, and step-through passive avoidance tests), NP did not affect any of each behavioral parameter. Thus, this study indicates perinatal exposure to low-dose NP specifically improves spatial learning and memory in male rat offspring. PMID:26685511

  14. Behavioral effects in mice of postnatal exposure to low-doses of 137-cesium and bisphenol A.

    PubMed

    Heredia, Luis; Bellés, Montserrat; LLovet, Maria Isabel; Domingo, Jose L; Linares, Victoria

    2016-01-18

    Bisphenol A (BPA) is the most important plasticizer used in many household products such as polycarbonate plastics or epoxy resins. Public and scientific concerns exist regarding the possibility that the neonatal exposure to BPA may contribute to neurobehavioral disorders. On the other hand, there is little information on the effects of low doses of ionizing radiation during critical phases of postnatal brain development, as well as the combination of radiation and environmental chemicals. In this study, C57BL/6J mice were exposed to low doses of internal radiation ((137)Cs), and/or BPA on postnatal day 10 (PND10). At the age of two months, animals were submitted to several tests to assess anxiety, activity, learning, and memory. Results showed that exposure to (137)Cs, alone or in combination with BPA, increased the anxiety-like of the animals without changing the activity levels. Animals exposed to (137)Cs showed impaired learning, and spatial memory, an impairment that was not observed in the groups co-exposed to BPA. PMID:26719215

  15. Repeated low-dose exposures to sarin, soman, or VX affect acoustic startle in guinea pigs.

    PubMed

    Smith, C D; Lee, R B; Moran, A V; Sipos, M L

    2016-01-01

    Chemical warfare nerve agents (CWNAs) are known to cause behavioral abnormalities in cases of human exposures and in animal models. The behavioral consequences of single exposures to CWNAs that cause observable toxic signs are particularly well characterized in animals; however, less is known regarding repeated smaller exposures that may or may not cause observable toxic signs. In the current study, guinea pigs were exposed to fractions (0.1, 0.2, or 0.4) of a medial lethal dose (LD50) of sarin, soman, or VX for two weeks. On each exposure day, and for a post-exposure period, acoustic startle response (ASR) was measured in each animal. Although relatively few studies use guinea pigs to measure behavior, this species is ideal for CWNA-related experiments because their levels of carboxylesterases closely mimic those of humans, unlike rats or mice. Results showed that the 0.4 LD50 doses of soman and VX transiently increased peak startle amplitude by the second week of injections, with amplitude returning to baseline by the second week post-exposure. Sarin also increased peak startle amplitude independent of week. Latencies to peak startle and PPI were affected by agent exposure but not consistently among the three agents. Most of the changes in startle responses returned to baseline following the cessation of exposures. These data suggest that doses of CWNAs not known to produce observable toxic signs in guinea pigs can affect behavior in the ASR paradigm. Further, these deficits are transient and usually return to baseline shortly after the end of a two-week exposure period. PMID:26829110

  16. Chronic low-dose melatonin treatment maintains nigrostriatal integrity in an intrastriatal rotenone model of Parkinson's disease.

    PubMed

    Carriere, Candace H; Kang, Na Hyea; Niles, Lennard P

    2016-02-15

    Parkinson's disease is a major neurodegenerative disorder which primarily involves the loss of dopaminergic neurons in the substantia nigra and related projections in the striatum. The pesticide/neurotoxin, rotenone, has been shown to cause systemic inhibition of mitochondrial complex I activity in nigral dopaminergic neurons, with consequent degeneration of the nigrostriatal pathway, as observed in Parkinson's disease. A novel intrastriatal rotenone model of Parkinson's disease was used to examine the neuroprotective effects of chronic low-dose treatment with the antioxidant indoleamine, melatonin, which can upregulate neurotrophic factors and other protective proteins in the brain. Sham or lesioned rats were treated with either vehicle (0.04% ethanol in drinking water) or melatonin at a dose of 4 µg/mL in drinking water. The right striatum was lesioned by stereotactic injection of rotenone at three sites (4 μg/site) along its rostrocaudal axis. Apomorphine administration to lesioned animals resulted in a significant (p<0.001) increase in ipsilateral rotations, which was suppressed by melatonin. Nine weeks post-surgery, animals were sacrificed by transcardial perfusion. Subsequent immunohistochemical examination revealed a decrease in tyrosine hydroxylase immunoreactivity within the striatum and substantia nigra of rotenone-lesioned animals. Melatonin treatment attenuated the decrease in tyrosine hydroxylase in the striatum and abolished it in the substantia nigra. Stereological cell counts indicated a significant (p<0.05) decrease in dopamine neurons in the substantia nigra of rotenone-lesioned animals, which was confirmed by Nissl staining. Importantly, chronic melatonin treatment blocked the loss of dopamine neurons in rotenone-lesioned animals. These findings strongly support the therapeutic potential of long-term and low-dose melatonin treatment in Parkinson's disease. PMID:26740407

  17. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    PubMed

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins. PMID:25552505

  18. Effectiveness of low-dose erythropoietin in predialysis chronic renal failure patients.

    PubMed

    Mitwalli, A; Abuaisha, H; al Wakeel, J; al Mohaya, S; Alam, A A; el Gamal, H; Fayed, H

    1993-01-01

    Recombinant human erythropoietin (rHuEpo) has been shown to be both effective and usually safe in patients with chronic renal failure who have not yet reached the stage requiring dialysis. There are, however, disturbing reports on the possibility of deterioration of the reserve renal function in association with rHuEpo therapy. Most of the published studies have used rHuEpo in doses of 50-150 U/kg three times weekly subcutaneously. An open-label trial of rHuEpo therapy was conducted on 21 patients with chronic renal failure treated sequentially at a referral hospital, rHuEpo was used in doses of 50 U/kg twice weekly for 4 weeks followed by 25 U/kg twice weekly for 8 weeks subcutaneously, a regimen substantially lower than current recommendations. This was associated with a gentle but significant increase in haematocrit (P < 0.05) and haemoglobin (P < 0.05), while the serum creatinine and the reciprocal of the creatinine remained stable, with a tendency to improve rather than worsen (P = 0.06). We conclude that there is no need to aim at a rapid increase in haematocrit and haemoglobin by rHuEpo therapy; rather a gentle increase using modest doses is both effective and safe. PMID:8272220

  19. New challenges in risk assessment of chemicals when simulating real exposure scenarios; simultaneous multi-chemicals' low dose exposure.

    PubMed

    Tsatsakis, Aristidis M; Docea, Anca Oana; Tsitsimpikou, Christina

    2016-10-01

    The general population experiences uncontrolled multi-chemicals exposure from many different sources at doses around or well below regulatory limits. Therefore, traditional chronic toxicity evaluations for a single chemical could possibly miss to identify adequately all the risks. For this an experimental methodology that has the ambition to provide at one strike multi-answers to multi-questions is hereby proposed: a long-term toxicity study of non-commercial chemical mixtures, consisting of common everyday life chemicals (pesticides, food additives, life-style products components) at low and realistic dose levels around the regulatory limits and with the simultaneous investigation of several key endpoints, like genotoxicity, endocrine disruption, target organ toxicity including the heart and systemic mechanistic pathways, like oxidative stress. PMID:27515866

  20. TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?

    SciTech Connect

    Bushberg, J; Boreham, D; Ulsh, B

    2014-06-15

    what dose level are risk vs. benefit discussions with patients appropriate, 3) at what dose level should we tell a pregnant woman that the baby’s health risk from a prenatal radiation exposure is “significant”, 4) is informed consent needed for patients undergoing medical imaging, and 5) at what dose level is evacuation appropriate after a radiological accident. Examples of the tremendous impact that choosing different risks models can have on the answers to these types of questions will be given.A moderated panel discussion will allow audience members to pose questions to the faculty members, each of whom is an established expert in his respective discipline. Learning Objectives: Understand the fundamental principles, strengths and limitations of radiation epidemiology and radiation biology for determining the risk from exposures to low doses of ionizing radiation Become familiar with common models of risk used to describe the dose-response relationship at low dose levels Learn to identify strengths and weaknesses in studies designed to measure the effect of low doses of ionizing radiation Understand the implications of different risk models on public policy and health care decisions.

  1. Hypothalamo-pituitary-adrenal axis dysfunction in chronic fatigue syndrome, and the effects of low-dose hydrocortisone therapy.

    PubMed

    Cleare, A J; Miell, J; Heap, E; Sookdeo, S; Young, L; Malhi, G S; O'Keane, V

    2001-08-01

    These neuroendocrine studies were part of a series of studies testing the hypotheses that 1) there may be reduced activity of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome and 2) low-dose augmentation with hydrocortisone therapy would improve the core symptoms. We measured ACTH and cortisol responses to human CRH, the insulin stress test, and D-fenfluramine in 37 medication-free patients with CDC-defined chronic fatigue syndrome but no comorbid psychiatric disorders and 28 healthy controls. We also measured 24-h urinary free cortisol in both groups. All patients (n = 37) had a pituitary challenge test (human CRH) and a hypothalamic challenge test [either the insulin stress test (n = 16) or D-fenfluramine (n = 21)]. Baseline cortisol concentrations were significantly raised in the chronic fatigue syndrome group for the human CRH test only. Baseline ACTH concentrations did not differ between groups for any test. ACTH responses to human CRH, the insulin stress test, and D- fenfluramine were similar for patient and control groups. Cortisol responses to the insulin stress test did not differ between groups, but there was a trend for cortisol responses both to human CRH and D-fenfluramine to be lower in the chronic fatigue syndrome group. These differences were significant when ACTH responses were controlled. Urinary free cortisol levels were lower in the chronic fatigue syndrome group compared with the healthy group. These results indicate that ACTH responses to pituitary and hypothalamic challenges are intact in chronic fatigue syndrome and do not support previous findings of reduced central responses in hypothalamic-pituitary-adrenal axis function or the hypothesis of abnormal CRH secretion in chronic fatigue syndrome. These data further suggest that the hypocortisolism found in chronic fatigue syndrome may be secondary to reduced adrenal gland output. Thirty-two patients were treated with a low-dose hydrocortisone regime in a double

  2. Effect of chronic low dose of methotrexate on cellular proliferation during spermatogenesis in rats.

    PubMed

    Saxena, A K; Dhungel, S; Bhattacharya, S; Jha, C B; Srivastava, A K

    2004-01-01

    This study was conducted to evaluate cellular proliferation of germinal and non-germinal elements of seminiferous tubules following continuous Day 1 to Day 17 exposure of methotrexate (12.5 microgram) in male rats. There was significant decrease in the diameter of seminiferous tubules (P < 0.10) followed by increase of interstitial space (P < 0.01). The size of various stages of primary, secondary spermatocytes, and spermatids was altered significantly compared to controls. Vacuolization/decondensation of "chromatin-mass" in spermatocytes changed from rounded to oval. The size of the Sertoli and Leydig cells were reduced significantly. Basement membrane at some places seems to be disrupted and thin in experimental testis. Methotrexate induced cytotoxicity on the proliferation of cellular contents of seminiferous tubules elucidating the mechanism of dose-dependent drug induced testicular damage during spermatogenesis. PMID:14660169

  3. Assessment of the Technologies for Molecular Biodosimetry for Human Low-Dose Radiation Exposure Symposium

    SciTech Connect

    Matthew A. Coleman Ph.D.; Narayani Ramakrishnan, Ph.D.; Sally A. Amundson; James D. Tucker, Ph.D.; Stephen D. Dertinger, Ph.D.; Natalia I. Ossetrova, Ph.D.; Tao Chen

    2009-11-16

    Exposure to ionizing radiation produces few immediate outwardly-visible clinical signs, yet, depending on dose, can severely damage vital physiological functions within days to weeks and produce long-lasting health consequences among survivors. In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate the worried but unharmed from those individuals who must receive medical attention. Physical, clinical and biological dosimetry are usually combined for the best dose assessment. However, because of the practical limits of physical and clinical dosimetry, many attempts have been made to develop a dosimetry system based on changes in biological parameters, including techniques for hematology, biochemistry, immunology, cytogenetics, etc. Lymphocyte counts and chromosome aberrations analyses are among the methods that have been routinely used for estimating radiation dose. However, these assays require several days to a week to be completed and therefore cannot be used to obtain a fast estimate of the dose during the first few days after exposure when the information would be most critical for identifying victims of radiation accidents who could benefit the most by medical intervention. The steadily increasing sophistication in our understanding of the early biochemical responses of irradiated cells and tissues provides the opportunity for developing mechanism-based biosignatures of exposure. Compelling breakthroughs have been made in the technologies for genome-scale analysis of cellular transcriptional and proteomic profiles. There have also been major strides in the mechanistic understanding of the early events in DNA damage and radiation damage products, as well as in the cellular pathways that lead to radiation injury. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation protein machines are modified and activated, and large

  4. Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956–2004

    PubMed Central

    Ostroumova, E; Preston, D L; Ron, E; Krestinina, L; Davis, F G; Kossenko, M; Akleyev, A

    2008-01-01

    In the 1950s, the Mayak nuclear weapons facility in Russia discharged liquid radioactive wastes into the Techa River causing exposure of riverside residents to protracted low-to-moderate doses of radiation. Almost 10 000 women received estimated doses to the stomach of up to 0.47 Gray (Gy) (mean dose=0.04 Gy) from external γ-exposure and 137Cs incorporation. We have been following this population for cancer incidence and mortality and as in the general Russian population, we found a significant temporal trend of breast cancer incidence. A significant linear radiation dose–response relationship was observed (P=0.01) with an estimated excess relative risk per Gray (ERR/Gy) of 5.00 (95% confidence interval (CI), 0.80, 12.76). We estimated that approximately 12% of the 109 observed cases could be attributed to radiation. PMID:19002173

  5. Some Behavioral Effects of Exposure to Low Doses of Fe-56 Particles

    NASA Technical Reports Server (NTRS)

    Rabin, Bernard M.; Joseph, James A.; Shukitt-Hale, Barbara

    1999-01-01

    Future missions in space (such as a mission to Mars) will involve long-term travel beyond the magnetic field of the Earth. As a result, astronauts will be exposed to radiation qualities and doses that differ from those experienced in low earth orbit, including exposure to heavy particles, such as Fe-56, which are a component of cosmic rays. Although the hazards of exposure to heavy particles are often minimized, they can affect neural functioning, and as a consequence, behavior. Unless the effects of exposure to cosmic rays can somehow be reduced, their effects on the brain throughout long duration flights could be disastrous. In the extreme case, it is possible that the effects of cosmic rays on space travelers could result in symptomatology resembling that of Alzheimer's or Parkinson's diseases or of advancing age, including significant cognitive and/or motor impairments. Because successful operations in space depend in part on the performance capabilities of astronauts, such impairments could jeopardize their ability to satisfy mission requirements, as well as have long-term consequences on the health of astronauts. As such, understanding the nature and extent of this risk may be vital to the effective performance and possibly the survival of astronauts during future missions in space.

  6. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    SciTech Connect

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  7. [Complex pathogenetic treatment schemes of vascular dyscirculatory disorders in the remote period after exposure to low dose radiation].

    PubMed

    2013-01-01

    Complex studies including modern methods of investigation of structures and functions of nervous system: electroencephalograsphy (EEG), coherent analysis, neuropsychological study and methods of neuroimaging were performed in 517 participants in liquidation of consequences of the accident (LCA) at the Chernobyl NPP in 1986-1987. Dyscirculatory metabolic encephalopathy was revealed to be the main pathology with the etiological mechanism based on dyscirculatorhypoxic and metabolic disorders. Complexity of the revealed symptoms testified to an early organism aging in remote periods after exposure to low dose radiation. Pathogenetic schemes were developed for treatment of dyscirculatory encephalopathy in liquidators, which include drugs improving blood supply, antiaggregants, antioxidants and metabolites of the brains in various combinations. Taking into consideration that early appearance of vascular dyscirculatory disorders observed in liquidators is the sign of early aging of the organism, geroprotectors were added to treatment schemes. PMID:25507773

  8. [Complex pathogenetic treatment schemes of vascular dyscirculatory disorders in the remote period after exposure to low dose radiation].

    PubMed

    Holodova, N B; Zhavoronkova, L A; Ryzhov, B N

    2013-01-01

    Complex studies including modern methods of investigation of structures and functions of nervous system: electroencephalograsphy (EEG), coherent analysis, neuropsychological study and methods of neuroimaging were performed in 517 participants in liquidation of consequences of the accident (LCA) at the Chernobyl NPP in 1986-1987. Dyscirculatory metabolic encephalopathy was revealed to be the main pathology with the etiological mechanism based on dyscirculatorhypoxic and metabolic disorders. Complexity of the revealed symptoms testified to an early organism aging in remote periods after exposure to low dose radiation. Pathogenetic schemes were developed for treatment of dyscirculatory encephalopathy in liquidators, which include drugs improving blood supply, antiaggregants, antioxidants and metabolites of the brains in various combinations. Taking into consideration that early appearance of vascular dyscirculatory disorders observed in liquidators is the sign of early aging of the organism, geroprotectors were added to treatment schemes. PMID:25434175

  9. Gestational Exposure to Low Dose Bisphenol A Alters Social Behavior in Juvenile Mice

    PubMed Central

    Wolstenholme, Jennifer T.; Taylor, Julia A.; Shetty, Savera R. J.; Edwards, Michelle; Connelly, Jessica J.; Rissman, Emilie F.

    2011-01-01

    Bisphenol A (BPA) is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5) because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females. PMID:21980460

  10. Low-dose effect of developmental bisphenol A exposure on sperm count and behaviour in rats.

    PubMed

    Hass, U; Christiansen, S; Boberg, J; Rasmussen, M G; Mandrup, K; Axelstad, M

    2016-07-01

    Bisphenol A is widely used in food contact materials and other products and is detected in human urine and blood. Bisphenol A may affect reproductive and neurological development; however, opinion of the European Food Safety Authority (EFSA) on bisphenol A (EFSA J, 13, 2015 and 3978) concluded that none of the available studies were robust enough to provide a point of departure for setting a tolerable daily intake for bisphenol A. In the present study, pregnant Wistar rats (n = 17-21) were gavaged from gestation day 7 to pup day 22 with bisphenol A doses of 0, 25 μg, 250 μg, 5 mg or 50 mg/kg bw/day. In the offspring, growth, sexual maturation, weights and histopathology of reproductive organs, oestrus cyclicity and sperm counts were assessed. Neurobehavioural development was investigated using a behavioural testing battery including tests for motor activity, sweet preference, anxiety and spatial learning. Decreased sperm count was found at the lowest bisphenol A dose, that is 25 μg/kg/day, but not at the higher doses. Reproductive organ weight and histology were not affected and no behavioural effects were seen in male offspring. In the female offspring, exposure to 25 μg/kg bw/day bisphenol A dose resulted in increased body weight late in life and altered spatial learning in a Morris water maze, indicating masculinization of the brain. Decreased intake of sweetened water was seen in females from the highest bisphenol A dose group, also a possible sign of masculinization. The other investigated endpoints were not significantly affected. In conclusion, the present study using a robust experimental study design, has shown that developmental exposure to 25 μg/kg bw/day bisphenol A can cause adverse effects on fertility (decreased sperm count), neurodevelopment (masculinization of spatial learning in females) and lead to increased female body weight late in life. These results suggest that the new EFSA temporary tolerable daily intake of 4 μg/kg bw

  11. Forebrain damage following prenatal exposure to low-dose X-irradiation

    SciTech Connect

    Norton, S.; Donoso, J.A.

    1985-02-01

    Exposure of fetal rats to X-irradiation on gestational day 15 resulted postnatally in dose-related effects on body weight, growth of forebrain structures, and branching of dendrites of caudate neurons. Rats were followed for 4 months postnatally after 125, 75, 50, or 25 R whole-body irradiation to the dam. Significant decreases in body weight were present at birth after the three high doses and continued as long as 4 months after 125 or 75 R. Decreased thickness of the cerebral cortex and decreased area of the caudate nucleus were also seen. Cortical thickness was reduced by 125 R to half the size of the control cortex and the caudate nucleus to two-thirds of the control. Significant decreases were present to 50 R. Dendritic branching was reduced in caudate neurons by 125 R but not in the basilar dendrites of cortical pyramidal cells. No reduction in number of cortical synapses was seen from electron micrographs of cortical layers 1 or 5. The effect on the cerebral cortex was interpreted as a loss of neurons with retention of branching and synaptogenesis of remaining neurons. In contrast, the caudate nucleus, which develops somewhat before the cerebral cortex, showed effects as a consequence either of direct damage to caudate neurons or of reduced neuropil from reduced afferent input.

  12. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish

    PubMed Central

    Kinch, Cassandra D.; Ibhazehiebo, Kingsley; Jeong, Joo-Hyun; Habibi, Hamid R.; Kurrasch, Deborah M.

    2015-01-01

    Bisphenol A (BPA), a ubiquitous endocrine disruptor that is present in many household products, has been linked to obesity, cancer, and, most relevant here, childhood neurological disorders such as anxiety and hyperactivity. However, how BPA exposure translates into these neurodevelopmental disorders remains poorly understood. Here, we used zebrafish to link BPA mechanistically to disease etiology. Strikingly, treatment of embryonic zebrafish with very low-dose BPA (0.0068 μM, 1,000-fold lower than the accepted human daily exposure) and bisphenol S (BPS), a common analog used in BPA-free products, resulted in 180% and 240% increases, respectively, in neuronal birth (neurogenesis) within the hypothalamus, a highly conserved brain region involved in hyperactivity. Furthermore, restricted BPA/BPS exposure specifically during the neurogenic window caused later hyperactive behaviors in zebrafish larvae. Unexpectedly, we show that BPA-mediated precocious neurogenesis and the concomitant behavioral phenotype were not dependent on predicted estrogen receptors but relied on androgen receptor-mediated up-regulation of aromatase. Although human epidemiological results are still emerging, an association between high maternal urinary BPA during gestation and hyperactivity and other behavioral disturbances in the child has been suggested. Our studies here provide mechanistic support that the neurogenic period indeed may be a window of vulnerability and uncovers previously unexplored avenues of research into how endocrine disruptors might perturb early brain development. Furthermore, our results show that BPA-free products are not necessarily safer and support the removal of all bisphenols from consumer merchandise. PMID:25583509

  13. Subchronic exposure to low-doses of the nerve agent VX: physiological, behavioral, histopathological and neurochemical studies.

    PubMed

    Bloch-Shilderman, Eugenia; Rabinovitz, Ishai; Egoz, Inbal; Raveh, Lily; Allon, Nahum; Grauer, Ettie; Gilat, Eran; Weissman, Ben Avi

    2008-08-15

    The highly toxic organophosphorous compound VX [O-ethyl-S-(isoporopylaminoethyl) methyl phosphonothiolate] undergoes an incomplete decontamination by conventional chemicals and thus evaporates from urban surfaces, e.g., pavement, long after the initial insult. As a consequence to these characteristics of VX, even the expected low levels should be examined for their potential to induce functional impairments including those associated with neuronal changes. In the present study, we developed an animal model for subchronic, low-dose VX exposure and evaluated its effects in rats. Animals were exposed to VX (2.25 microg/kg/day, 0.05 LD(50)) for three months via implanted mini osmotic pumps. The rapidly attained continuous and marked whole-blood cholinesterase inhibition (approximately 60%), fully recovered 96 h post pump removal. Under these conditions, body weight, blood count and chemistry, water maze acquisition task, sensitivity to the muscarinic agonist oxotremorine, peripheral benzodiazepine receptors density and brain morphology as demonstrated by routine histopathology, remained unchanged. However, animals treated with VX showed abnormal initial response in an Open Field test and a reduction (approximately 30%) in the expression of the exocytotic synaptobrevin/vesicle associate membrane protein (VAMP) in hippocampal neurons. These changes could not be detected one month following termination of exposure. Our findings indicate that following a subchronic, low-level exposure to the chemical warfare agent VX some important processes might be considerably impaired. Further research should be addressed towards better understanding of its potential health ramifications and in search of optimal countermeasures. PMID:18485435

  14. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A.

    PubMed

    Yaoi, Takeshi; Itoh, Kyoko; Nakamura, Keiko; Ogi, Hiroshi; Fujiwara, Yasuhiro; Fushiki, Shinji

    2008-11-21

    Bisphenol A (BPA) is one of endocrine disrupting chemicals, being distributed widely in the environment. We have been studying the low dose effects of BPA on murine forebrain development. Here, we have investigated the genome-wide effect of maternal exposure to BPA on the epigenome in mouse forebrain at E12.5 and at E14.5. We scanned CpG methylation status in 2500 NotI loci, representing 48 (de)methylated unique loci. Methylation status in most of them was primarily developmental stage-dependent. Each of almost all cloned NotI loci was located in a CpG island (CGI) adjacent to 5' end of the transcriptional unit. The mRNA expression of two functionally related genes changed with development as well as the exposure to BPA. In both genes, changes at the transcriptional level correlated well with the changes in NotI methylation status. Taken together, epigenetic alterations in promoter-associated CGIs after exposure to BPA may underlie some effects on brain development. PMID:18804091

  15. Effects of low-dose exposure to pesticide mixture on physiological responses of the Pacific oyster, Crassostrea gigas.

    PubMed

    Geret, F; Burgeot, T; Haure, J; Gagnaire, B; Renault, T; Communal, P Y; Samain, J F

    2013-12-01

    This study investigated the effects on the physiology of Pacific oyster, Crassostrea gigas, of a mixture of pesticides containing 0.8 μg L(-1) alachlor, 0.6 μg L(-1) metolachlor, 0.7 μg L(-1) atrazine, 0.6 μg L(-1) terbuthylazine, 0.5 μg L(-1) diuron, 0.6 μg L(-1) fosetyl aluminum, 0.05 μg L(-1) carbaryl, and 0.7 μg L(-1) glyphosate for a total concentration of 4.55 μg L(-1) . The total nominal concentration of pesticides mixture corresponds to the pesticide concentrations in the shellfish culture area of the Marennes-Oleron basin. Two varieties of C. gigas were selected on the foreshore, based on their characteristics in terms of resistance to summer mortality, to assess the effects of the pesticide mixture after 7 days of exposure under controlled conditions. The early effects of the mixture were assessed using enzyme biomarkers of nitrogen metabolism (GS, glutamine synthetase), detoxification metabolism (GST, glutathione S-transferase), and oxidative stress (CAT, catalase). Sublethal effects on hemocyte parameters (phagocytosis and esterase activity) and DNA damages (DNA adducts) were also measured. Changes in metabolic activities were characterized by increases in GS, GST, and CAT levels on the first day of exposure for the "resistant" oysters and after 3-7 days of exposure for the "susceptible" oysters. The formation of DNA adducts was detected after 7 days of exposure. The percentage of hemocyte esterase-positive cells was reduced in the resistant oysters, as was the hemocyte phagocytic capacity in both oyster varieties after 7 days of exposure to the pesticide mixture. This study highlights the need to consider the low doses and the mixture of pesticides to evaluate the effects of these molecules on organisms. PMID:22012874

  16. Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat.

    PubMed Central

    Sokol, Rebecca Z; Wang, Saixi; Wan, Yu-Jui Y; Stanczyk, Frank Z; Gentzschein, Elisabet; Chapin, Robert E

    2002-01-01

    Lead is a male reproductive toxicant. Data suggest that rats dosed with relatively high levels of lead acetate for short periods of time induced changes in the hypothalamic gonadotropin-releasing hormone (GnRH) at the molecular level, but these changes were attenuated with increased concentration of exposure. The current study evaluated whether exposure to low levels of lead acetate over longer periods of time would produce a similar pattern of adaptation to toxicity at the molecular and biologic levels. Adult 100-day-old Sprague-Dawley male rats were dosed with 0, 0.025, 0.05, 0.1, and 0.3% lead acetate in water. Animals were killed after 1, 4, 8, and 16 weeks of treatment. Luteinzing hormone (LH) and GnRH levels were measured in serum, and lead levels were quantified in whole blood. Hypothalamic GnRH mRNA levels were also quantified. We found no significant differences in serum LH and GnRH among the groups of animals treated within each time period. A significant dose-related increase of GnRH mRNA concentrations with lead dosing occurred in animals treated for 1 week. Animals treated for more than 1 week also exhibited a significant increase in GnRH mRNA, but with an attenuation of the increase at the higher concentrations of lead with increased duration of exposure. We conclude that the signals within and between the hypothalamus and pituitary gland appear to be disrupted by long-term, low-dose lead exposure. PMID:12204820

  17. Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage.

    PubMed

    Annangi, Balasubramanyam; Bach, Jordi; Vales, Gerard; Rubio, Laura; Marcos, Ricard; Hernández, Alba

    2015-03-01

    A weak aspect of the in vitro studies devoted to get information on the toxic, genotoxic and carcinogenic properties of nanomaterials is that they are usually conducted under acute-exposure and high-dose conditions. This makes difficult to extrapolate the results to human beings. To overcome this point, we have evaluated the cell transforming ability of cobalt nanoparticles (CoNPs) after long-term exposures (12 weeks) to sub-toxic doses (0.05 and 0.1 µg/mL). To get further information on whether CoNPs-induced oxidative DNA damage is relevant for CoNPs carcinogenesis, the cell lines selected for the study were the wild-type mouse embryonic fibroblast (MEF Ogg1(+/+)) and its isogenic Ogg1 knockout partner (MEF Ogg1(-)(/)(-)), unable to properly eliminate the 8-OH-dG lesions from DNA. Our initial short-term exposure experiments demonstrate that low doses of CoNPs are able to induce reactive oxygen species (ROS) and that MEF Ogg1(-)(/)(-) cells are more sensitive to CoNPs-induced acute toxicity and oxidative DNA damage. On the other hand, long-term exposures of MEF cells to sub-toxic doses of CoNPs were able to induce cell transformation, as indicated by the observed morphological cell changes, significant increases in the secretion of metalloproteinases (MMPs) and anchorage-independent cell growth ability, all cancer-like phenotypic hallmarks. Interestingly, such changes were significantly dependent on the cell line used, the Ogg1(-)(/)(-) cells being particularly sensitive. Altogether, the data presented here confirms the potential carcinogenic risk of CoNPs and points out the relevance of ROS and Ogg1 genetic background on CoNPs-associated effects. PMID:24713074

  18. Maternal low-dose estradiol-17β exposure during pregnancy impairs postnatal progeny weight development and body composition

    SciTech Connect

    Werner Fürst, Rainer; Pistek, Veronika Leopoldine; Kliem, Heike; Skurk, Thomas; Hauner, Hans; Meyer, Heinrich Herman Dietrich; Ulbrich, Susanne Ernestine

    2012-09-15

    Endocrine disrupting chemicals with estrogenic activity play an important role as obesogens. However, studies investigating the most potent natural estrogen, estradiol-17β (E2), at low dose are lacking. We examined endocrine and physiological parameters in gilts receiving distinct concentrations of E2 during pregnancy. We then investigated whether adverse effects prevail in progeny due to a potential endocrine disruption. E2 was orally applied to gilts during the entire period of pregnancy. The concentrations represented a daily consumption at the recommended ADI level (0.05 μg/kg body weight/day), at the NOEL (10 μg/kg body weight/day) and at a high dosage (1000 μg/kg body weight/day). Plasma hormone concentrations were determined using enzyme immuno assays. Offspring body fat was assessed by dual-energy X-ray absorptiometry scanning. In treated gilts receiving 1000 μg E2/kg body weight/day we found significantly elevated plasma E2 levels during pregnancy, paralleled by an increased weight gain. While offspring showed similar weight at birth, piglets exhibited a significant reduction in weight at weaning even though their mothers had only received 0.05 μg E2/kg body weight/day. At 8 weeks of age, specifically males showed a significant increase in overall body fat percentage. In conclusion, prenatal exposure to low doses of E2 affected pig offspring development in terms of body weight and composition. In line with findings from other obesogens, our data suggest a programming effect during pregnancy for E2 causative for the depicted phenotypes. Therefore, E2 exposure may imply a possible contribution to childhood obesity. -- Highlights: ► We investigate the potential role of estradiol-17β (E2) as an obesogen. ► We orally apply E2 at the ADI, NOEL and a high dose to gilts during pregnancy. ► Offspring weight is similar at birth but reduced at weaning even after ADI treatment. ► Male offspring only exhibit an increase in overall body fat percentage

  19. [The effect of long-term exposure to low doses of endocrine disruptor ddt on serum levels of thyroid protein autoantigenes and antithyroid autoantibodies].

    PubMed

    Yaglova, N V; Yaglov, V V

    2016-01-01

    Changes in secretion of thyroid autoantigenes and production of antithyroid autoantibodies after long-term exposure to low doses of DDT were studied. Changes in serum levels of antithyroid peroxidase antibodies and thyroid peroxidase, attributed to disruption of thyroxine production by DDT were found. Long-term exposure of rats to low doses of DDT revealed no specific impact on serum autoantibodies to all thyroid autoantigenes studied. The increase of the ratio of autoantibody/autoantigen for thyroid peroxidase and thyroglobulin was rather small and thus could not be considered as a significant symptom of thyroid autoimmunity. PMID:26973191

  20. Subchronic exposure to low-doses of the nerve agent VX: Physiological, behavioral, histopathological and neurochemical studies

    SciTech Connect

    Bloch-Shilderman, Eugenia Rabinovitz, Ishai; Egoz, Inbal; Raveh, Lily; Allon, Nahum; Grauer, Ettie; Gilat, Eran; Weissman, Ben Avi

    2008-08-15

    The highly toxic organophosphorous compound VX [O-ethyl-S-(isoporopylaminoethyl) methyl phosphonothiolate] undergoes an incomplete decontamination by conventional chemicals and thus evaporates from urban surfaces, e.g., pavement, long after the initial insult. As a consequence to these characteristics of VX, even the expected low levels should be examined for their potential to induce functional impairments including those associated with neuronal changes. In the present study, we developed an animal model for subchronic, low-dose VX exposure and evaluated its effects in rats. Animals were exposed to VX (2.25 {mu}g/kg/day, 0.05 LD{sub 50}) for three months via implanted mini osmotic pumps. The rapidly attained continuous and marked whole-blood cholinesterase inhibition ({approx} 60%), fully recovered 96 h post pump removal. Under these conditions, body weight, blood count and chemistry, water maze acquisition task, sensitivity to the muscarinic agonist oxotremorine, peripheral benzodiazepine receptors density and brain morphology as demonstrated by routine histopathology, remained unchanged. However, animals treated with VX showed abnormal initial response in an Open Field test and a reduction ({approx} 30%) in the expression of the exocytotic synaptobrevin/vesicle associate membrane protein (VAMP) in hippocampal neurons. These changes could not be detected one month following termination of exposure. Our findings indicate that following a subchronic, low-level exposure to the chemical warfare agent VX some important processes might be considerably impaired. Further research should be addressed towards better understanding of its potential health ramifications and in search of optimal countermeasures.

  1. Differential Response and Priming Dose Effect on the Proteome of Human Fibroblast and Stem Cells Induced by Exposure to Low Doses of Ionizing Radiation.

    PubMed

    Hauptmann, Monika; Haghdoost, Siamak; Gomolka, Maria; Sarioglu, Hakan; Ueffing, Marius; Dietz, Anne; Kulka, Ulrike; Unger, Kristian; Babini, Gabriele; Harms-Ringdahl, Mats; Ottolenghi, Andrea; Hornhardt, Sabine

    2016-03-01

    It has been suggested that a mechanistic understanding of the cellular responses to low dose and dose rate may be valuable in reducing some of the uncertainties involved in current risk estimates for cancer- and non-cancer-related radiation effects that are inherited in the linear no-threshold hypothesis. In this study, the effects of low-dose radiation on the proteome in both human fibroblasts and stem cells were investigated. Particular emphasis was placed on examining: 1. the dose-response relationships for the differential expression of proteins in the low-dose range (40-140 mGy) of low-linear energy transfer (LET) radiation; and 2. the effect on differential expression of proteins of a priming dose given prior to a challenge dose (adaptive response effects). These studies were performed on cultured human fibroblasts (VH10) and human adipose-derived stem cells (ADSC). The results from the VH10 cell experiments demonstrated that low-doses of low-LET radiation induced unique patterns of differentially expressed proteins for each dose investigated. In addition, a low priming radiation dose significantly changed the protein expression induced by the subsequent challenge exposure. In the ADSC the number of differentially expressed proteins was markedly less compared to VH10 cells, indicating that ADSC differ in their intrinsic response to low doses of radiation. The proteomic results are further discussed in terms of possible pathways influenced by low-dose irradiation. PMID:26934482

  2. Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease.

    PubMed

    Koreth, John; Kim, Haesook T; Jones, Kyle T; Lange, Paulina B; Reynolds, Carol G; Chammas, Marie J; Dusenbury, Katherine; Whangbo, Jennifer; Nikiforow, Sarah; Alyea, Edwin P; Armand, Philippe; Cutler, Corey S; Ho, Vincent T; Chen, Yi-Bin; Avigan, David; Blazar, Bruce R; Antin, Joseph H; Ritz, Jerome; Soiffer, Robert J

    2016-07-01

    Chronic graft-versus-host disease (cGVHD) is associated with inadequate reconstitution of tolerogenic CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs). Previous phase 1 studies identified a low daily dose of interleukin-2 (IL-2) that was well tolerated, did not exacerbate alloimmunity, augmented Treg in vivo, and was associated with improvement of active cGVHD. In the current phase 2 study, 35 adults with steroid-refractory cGVHD received daily IL-2 (1 × 10(6) IU/m(2)) for 12 weeks. Median time from transplantation and cGVHD onset was 616 days (range, 270-2145 days) and 317 days (range, 28-1880 days), respectively. Two patients withdrew and 5 required IL-2 dose reductions due to side effects. Twenty of 33 evaluable patients (61%) had clinical responses at multiple cGVHD sites (liver, skin, gastrointestinal tract, lung, joint/muscle/fascia). Three patients (9%) had progressive cGVHD. Compared with pretreatment levels, Treg and natural killer cell counts rose >fivefold (P < .001) and >fourfold (P < .001), respectively, without significant change in conventional CD4 T cells (Tcons) or CD8 T cells. The Treg:Tcon ratio rose >fivefold (P < .001). Clinical responders initiated IL-2 earlier (508 vs 917 days after transplantation, P = .005; 249 vs 461 days after cGVHD onset; P = .03). Treg:Tcon ratios ≥0.07 at baseline and ≥0.2 at week 1 also predicted clinical response (P = .003; P = .0003, respectively). After a 4-week treatment hiatus, clinical responders were eligible to continue IL-2 therapy indefinitely. During 2 years of extended IL-2 therapy, clinical and Treg immune responses persisted, while Tcon count and Treg:Tcon ratio gradually normalized. Low-dose IL-2 provides durable clinical improvement in active cGVHD and extended therapy is well-tolerated. PMID:27073224

  3. Hepatic mitochondrial alteration in CD1 mice associated with prenatal exposures to low doses of perfluorooctanoic acid (PFOA)

    PubMed Central

    Quist, Erin M.; Filgo, Adam J.; Cummings, Connie A.; Kissling, Grace E.; Hoenerhoff, Mark J.; Fenton, Suzanne E.

    2014-01-01

    Perfluorooctanoic acid (PFOA) is a perfluoroalkyl acid primarily used as an industrial surfactant. It persists in the environment and has been linked to potentially toxic and/or carcinogenic effects in animals and people. As a known activator of peroxisome proliferator-activated receptors (PPARs), PFOA exposure can induce defects in fatty acid oxidation, lipid transport, and inflammation. Here, pregnant CD-1 mice were orally gavaged with 0, 0.01, 0.1, 0.3 and 1 mg/kg of PFOA from gestation days (GD) 1 through 17. On postnatal day (PND) 21, histopathologic changes in the livers of offspring included hepatocellular hypertrophy and periportal inflammation that increased in severity by PND 91 in an apparent dose-dependent response. Transmission electron microscopy (TEM) of selected liver sections from PND 91 mice revealed PFOA-induced cellular damage and mitochondrial abnormalities with no evidence of peroxisome proliferation. Within hypertrophied hepatocytes, mitochondria were not only increased in number, but also exhibited altered morphologies suggestive of increased and/or uncontrolled fission and fusion reactions. These findings suggest that peroxisome proliferation is not a component of PFOA-induced hepatic toxicity in animals that are prenatally exposed to low doses of PFOA. PMID:25326589

  4. Evidence for Radiation Hormesis After In Vitro Exposure of Human Lymphocytes to Low Doses of Ionizing Radiation§

    PubMed Central

    Rithidech, Kanokporn Noy; Scott, Bobby R.

    2008-01-01

    Previous research has demonstrated that adding a very small gamma-ray dose to a small alpha radiation dose can completely suppress lung cancer induction by alpha radiation (a gamma-ray hormetic effect). Here we investigated the possibility of gamma-ray hormesis during low-dose neutron irradiation, since a small contribution to the total radiation dose from neutrons involves gamma rays. Using binucleated cells with micronuclei (micronucleated cells) among in vitro monoenergetic-neutron-irradiated human lymphocytes as a measure of residual damage, we investigated the influence of the small gamma-ray contribution to the dose on suppressing residual damage. We used residual damage data from previous experiments that involved neutrons with five different energies (0.22-, 0.44-, 1.5-, 5.9-, and 13.7-million electron volts [MeV]). Corresponding gamma-ray contributions to the dose were approximately 1%, 1%, 2%, 6%, and 6%, respectively. Total absorbed radiation doses were 0, 10, 50, and 100 mGy for each neutron source. We demonstrate for the first time a protective effect (reduced residual damage) of the small gamma-ray contribution to the neutron dose. Using similar data for exposure to gamma rays only, we also demonstrate a protective effect of 10 mGy (but not 50 or 100 mGy) related to reducing the frequency of micronucleated cells to below the spontaneous level. PMID:18846261

  5. Redox status in liver of rats following subchronic exposure to the combination of low dose dichlorvos and deltamethrin.

    PubMed

    Xu, Ming-Yuan; Wang, Pan; Sun, Ying-Jian; Wang, Hui-Ping; Liang, Yu-Jie; Zhu, Li; Wu, Yi-Jun

    2015-10-01

    Organophosphates and pyrethroids are widely used pesticides with prominent toxicity to humans. However, their joint toxicity has not been thoroughly investigated. In this study, we investigated the oxidative damages induced by low dose dichlorvos (DDVP) and deltamethrin (DM), the representative organophosphate and pyrethroid, respectively, and their mixtures in the liver of rats for 90 consecutive days. Two oxidative stress markers, malondialdehyde (MDA) and protein carbonyl (PCO) levels, were measured to reflect the extent of lipid peroxidation and protein oxidation, respectively. DDVP, DM, and their mixtures induced levels of MDA and PCO dose-dependently, although no toxic signs and pathological changes of liver were found in the rats following 90-day exposure. DDVP and DM induced greater increase of MDA than PCO, which indicated that lipids were particularly sensitive to the oxidative damage. We found that DDVP, DM and their mixtures could inhibit the activity of two antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). The effects of DM on SOD activity, lipid peroxidation and protein oxidation were greater than those of DDVP. The combined effect of DDVP and DM was lower than the sum of their individual effects. Thus the interaction between dichlorvos and deltamethrin may be antagonistic on the induction of oxidative stress in rat liver. PMID:26453231

  6. Disruption of thyroid hormone functions by low dose exposure of tributyltin: an in vitro and in vivo approach.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2014-09-15

    Triorganotins, such as tributyltin chloride (TBTCl), are environmental contaminants that are commonly found in the antifouling paints used in ships and other vessels. The importance of TBTCl as an endocrine-disrupting chemical (EDC) in different animal models is well known; however, its adverse effects on the thyroid gland are less understood. Hence, in the present study, we aimed to evaluate the thyroid-disrupting effects of this chemical using both in vitro and in vivo approaches. We used HepG2 hepatocarcinoma cells for the in vitro studies, as they are a thyroid hormone receptor (TR)-positive and thyroid responsive cell line. For the in vivo studies, Swiss albino male mice were exposed to three doses of TBTCl (0.5, 5 and 50μg/kg/day) for 45days. TBTCl showed a hypo-thyroidal effect in vivo. Low-dose treatment of TBTCl exposure markedly decreased the serum thyroid hormone levels via the down-regulation of the thyroid peroxidase (TPO) and thyroglobulin (Tg) genes by 40% and 25%, respectively, while augmenting the thyroid stimulating hormone (TSH) levels. Thyroid-stimulating hormone receptor (TSHR) expression was up-regulated in the thyroid glands of treated mice by 6.6-fold relative to vehicle-treated mice (p<0.05). In the transient transactivation assays, TBTCl suppressed T3 mediated transcriptional activity in a dose-dependent manner. In addition, TBTCl was found to decrease the expression of TR. The present study thus indicates that low concentrations of TBTCl suppress TR transcription by disrupting the physiological concentrations of T3/T4, followed by the recruitment of NCoR to TR, providing a novel insight into the thyroid hormone-disrupting effects of this chemical. PMID:25101840

  7. Exposure to low doses (20 cGy) of Hze results in spatial memory impairment in rats.

    NASA Astrophysics Data System (ADS)

    Britten, Richard; Johnson, Angela; Davis, Leslie; Green-Mitchell, Shamina; Chabriol, Olivia; Sanford, Larry; Drake, Richard

    Escape hole over the 5 days of training. There was a suggestion that there may be some recovery in spatial memory performance by 6 months post exposure. Our preliminary data on Hze-induced exposure on sleep, suggests that within 4 weeks of Hze exposure there is a change in sleep latency, raising the possibility that some of the observed decline in neurocognitive performance may arise due to perturbed sleep patterns. We have used MALDI-IMS to determine the Hze-induced changes in the neuroproteome with a high degree of spatial resolution. Using this technique we have found that a peptide with a m/z of 14207 is differentially elevated in the Thalamus of irradiated rats that have good spatial memory. MALDI-MSI thus appears to be a powerful tool that can be used to identify radiation-induced changes in ancillary brain regions that correlate with neurocognitive impairment, and will ultimately be useful for identifying proteins whose expression changes in parallel with Hze-induced neurocognitive deficits. SUMMARY. We have found that mission-relevant Hze doses (20 cGy) lead to significant neu-rocognitive defects. Clearly such low doses of Hze are unlikely to lead to a significant loss of neuronal cells, and have not been reported to lead to gliosis etc. We take this as further evi-dence that neurocognitive impairment is not solely dependent upon radiation-induced changes in neurogenesis and neuronal cell death. FUNDING: The authors gratefully acknowledge grant support from NASA (NNJ06HD89D).

  8. Perinatal exposure to low-dose DE-71 increases serum thyroid hormones and gonadal osteopontin gene expression

    PubMed Central

    Blake, Charles A; McCoy, George L; Hui, Yvonne Y; LaVoie, Holly A

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been widely used in manufacturing. They are major household and environmental contaminants that bioaccumulate. Humans are exposed primarily through dust inhalation and dietary ingestion of animal products. In animal studies, high doses of penta-brominated diphenyl ethers (penta-BDEs) in the mg/kg body weight (BW) range negatively impact brain development, behavior, memory, circulating thyroid hormone concentrations, the reproductive system and bone development. We investigated the effects of ingestion of a relatively low dose of the penta-BDE mixture DE-71 by pregnant and lactating rats on reproductive and thyroid parameters of the F1 offspring. F0 mothers received 60 μg/kg BW of DE-71 or vehicle daily by gavage from Day 1.5 of pregnancy through lactation (except the day of parturition). F1 pups were sacrificed at 21 d of age or outbred at approximately 80 d of age. Bred F1 females were sacrificed at Day 14.5 of pregnancy or at five months of age. Bred F1 males were sacrificed at five months of age. DE-71 treatment of the mothers affected the F1 females as evidenced by lower body weights at 80 d and five months of age, elevated serum T3 and T4 concentrations at Day 14.5 of pregnancy and increased thyroid gland weight and ovarian osteopontin mRNA at five months of age. Perinatal DE-71 exposure also increased testicular osteopontin mRNA in 21-day-old F1 males. Utilizing a granulosa cell in vitro model, we demonstrated that DE-71 activated the rat osteopontin gene promoter. Our results are the first to demonstrate that PBDEs increase rodent circulating T3 and T4 concentrations and gonadal osteopontin mRNA, and activate the osteopontin gene promoter. These changes may have clinical implications as others have shown associations between human exposure to PBDEs and subclinical hyperthyroidism, and overexpression of ovarian osteopontin has been associated with ovarian cancer. PMID:21367881

  9. Non-Target Effect for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Doses of High LET Radiation

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, Kerry A.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (.01 - 0.2 Gy) of 170 MeV/u Si-28-ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The curves for doses above 0.1 Gy were more than one ion traverses a cell showed linear dose responses. However, for doses less than 0.1 Gy, Si-28-ions showed no dose response, suggesting a non-targeted effect when less than one ion traversal occurs. Additional findings for Fe-56 will be discussed.

  10. Elevated mu-opioid receptor expression in the nucleus of the solitary tract accompanies attenuated withdrawal signs after chronic low dose naltrexone in opiate-dependent rats.

    PubMed

    Van Bockstaele, E J; Rudoy, C; Mannelli, P; Oropeza, V; Qian, Y

    2006-02-15

    We previously described a decrease in withdrawal behaviors in opiate-dependent rats that were chronically treated with very low doses of naltrexone in their drinking water. Attenuated expression of withdrawal behaviors correlated with decreased c-Fos expression and intracellular signal transduction elements [protein kinase A regulatory subunit II (PKA) and phosphorylated cAMP response element binding protein (pCREB)] in brainstem noradrenergic nuclei. In this study, to determine whether similar cellular changes occurred in forebrain nuclei associated with drug reward, expressions of PKA and pCREB were analyzed in the ventral tegmental area, frontal cortex, striatum, and amygdala of opiate-treated rats that received low doses of naltrexone in their drinking water. No significant difference in PKA or pCREB was detected in these regions following drug treatment. To examine further the cellular mechanisms in noradrenergic nuclei that could underlie attenuated withdrawal behaviors following low dose naltrexone administration, the nucleus of the solitary tract (NTS) and locus coeruleus (LC) were examined for opioid receptor (OR) protein expression. Results showed a significant increase in muOR expression in the NTS of morphine-dependent rats that received low doses of naltrexone in their drinking water, and increases in muOR expression were also found to be dose dependent. Protein expression of muOR in the LC and deltaOR in either brain region remained unchanged. In conclusion, our previously reported decreases in c-Fos and PKA expression in the NTS following pretreatment with low doses of naltrexone may be partially explained by a greater inhibition of NTS neurons resulting from increased muOR expression in this region. PMID:16385558

  11. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats.

    PubMed

    Samantaray, Supriti; Das, Arabinda; Matzelle, Denise C; Yu, Shan P; Wei, Ling; Varma, Abhay; Ray, Swapan K; Banik, Naren L

    2016-05-01

    Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 μg 17β-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as

  12. A comparison of conventional /sup 60/Co testing and low dose-accumulation-rate exposure of metal-gate CMOS IC'S

    SciTech Connect

    Roeske, S.B.; Edwards, W.H.; Gammill, P.E.; Puariea, J.W.; Zipay, J.W.

    1984-12-01

    Data are presented for the CD4000 family of Hi-Rel, rad-hard, metal-gate CMOS ICs which show a much greater tolerance to low dose-rate ionizing radiation than that observed with ''conventional rate'' (approximately 10/sup 6/ rad(Si)/hr) /sup 60/Co testing. Data obtained using conventional rate /sup 60/Co irradiations followed by either a 24-hour, high-temperature (100/sup 0/C) anneal or a 65-day, room temperature anneal are in good agreement with data obtained by exposing similar parts at a low dose-accumulation rate (daily 17second, 5000 rad(Si) exposures) for 200 consecutive days. Graphs of thresholds, output drive, and propagation delay for both low doseaccumulation rate and conventional rate exposures are included.

  13. Atomic structure from large-area, low-dose exposures of materials: A new route to circumvent radiation damage☆

    PubMed Central

    Meyer, J.C.; Kotakoski, J.; Mangler, C.

    2014-01-01

    Beam-induced structural modifications are a major nuisance in the study of materials by high-resolution electron microscopy. Here, we introduce a new approach to circumvent the radiation damage problem by a statistical treatment of large, noisy, low-dose data sets of non-periodic configurations (e.g. defects) in the material. We distribute the dose over a mixture of different defect structures at random positions and with random orientations, and recover representative model images via a maximum likelihood search. We demonstrate reconstructions from simulated images at such low doses that the location of individual entities is not possible. The approach may open a route to study currently inaccessible beam-sensitive configurations. PMID:24315660

  14. Subcutaneous injections of low doses of humanized anti-CD20 veltuzumab: a phase I study in chronic lymphocytic leukemia.

    PubMed

    Kalaycio, Matt E; George Negrea, O; Allen, Steven L; Rai, Kanti R; Abbasi, Rashid M; Horne, Heather; Wegener, William A; Goldenberg, David M

    2016-01-01

    To evaluate the potential of subcutaneous (SC) injections with anti-CD20 antibody veltuzumab in chronic lymphocytic leukemia (CLL), 21 patients received 80, 160, or 320 mg injections every 2 weeks × 4 doses (n = 11) or 160 or 320 mg twice-weekly × 16 doses (n = 10). Treatment was well tolerated with only occasional, mild-moderate, transient injection reactions. Lymphocytosis decreased in all patients (maximum decrease, 5-91%), with 12 patients obtaining >50% decreases. Of 14 patients with lymphadenopathy on CT imaging, 5 (36%) achieved 14-61% reductions (sum of perpendicular diameters). By NCI-WG criteria, two patients achieved partial responses (10%). SC veltuzumab appeared active in all dose groups, with no obvious exposure-response relationship, despite cumulative doses ranging from 320-5120 mg. Overall median progression-free survival was 7.7 months; three patients remained progression-free >1 year (2 ongoing at 2-year study completion). These data suggest further studies of SC veltuzumab in CLL are warranted. PMID:26389849

  15. p53-Dependent Senescence in Mesenchymal Stem Cells under Chronic Normoxia Is Potentiated by Low-Dose γ-Irradiation

    PubMed Central

    Ingawale, Yashodhara; Hertlein, Heidi; Nelson, Peter J.

    2016-01-01

    Mesenchymal stem cells (MSCs) are a source of adult multipotent cells important in tissue regeneration. Murine MSCs are known to proliferate poorly in vitro under normoxia. The aim of this study is to analyze the interaction of nonphysiological high oxygen and low-dose γ-irradiation onto growth, senescence, and DNA damage. Tri-potent bone marrow-derived MSCs from p53 wildtype and p53−/− mice were cultured under either 21% or 2% O2. Long-term observations revealed a decreasing ability of wildtype mMSCs to proliferate and form colonies under extended culture in normoxia. This was accompanied by increased senescence under normoxia but not associated with telomere shortening. After low-dose γ-irradiation, the normoxic wildtype cells further increased the level of senescence. The number of radiation-induced γH2AX DNA repair foci was higher in mMSCs kept under normoxia but not in p53−/− cells. P53-deficient MSCs additionally showed higher clonogeneity, lower senescence levels, and fewer γH2AX repair foci per cell as compared to their p53 wildtype counterparts irrespective of oxygen levels. These results reveal that oxygen levels together with γ-irradiation and p53 status are interconnected factors modulating growth capacity of BM MSCs in long-term culture. These efforts help to better understand and optimize handling of MSCs prior to their therapeutic use. PMID:26788069

  16. Risk Evaluation of Endocrine-Disrupting Chemicals: Effects of Developmental Exposure to Low Doses of Bisphenol A on Behavior and Physiology in Mice (Mus musculus).

    PubMed

    Gioiosa, Laura; Palanza, Paola; Parmigiani, Stefano; Vom Saal, Frederick S

    2015-01-01

    We review here our studies on early exposure to low doses of the estrogenic endocrine-disrupting chemical bisphenol A (BPA) on behavior and metabolism in CD-1 mice. Mice were exposed in utero from gestation day (GD) 11 to delivery (prenatal exposure) or via maternal milk from birth to postnatal day 7 (postnatal exposure) to 10 µg/kg body weight/d of BPA or no BPA (controls). Bisphenol A exposure resulted in long-term disruption of sexually dimorphic behaviors. Females exposed to BPA pre- and postnatally showed increased anxiety and behavioral profiles similar to control males. We also evaluated metabolic effects in prenatally exposed adult male offspring of dams fed (from GD 9 to 18) with BPA at doses ranging from 5 to 50 000 µg/kg/d. The males showed an age-related significant change in a number of metabolic indexes ranging from food intake to glucose regulation at BPA doses below the no observed adverse effect level (5000 µg/kg/d). Consistent with prior findings, low but not high BPA doses produced significant effects for many outcomes. These findings provide further evidence of the potential risks that developmental exposure to low doses of the endocrine disrupter BPA may pose to human health, with fetuses and infants being highly vulnerable. PMID:26740806

  17. Cell Type-dependent Gene Transcription Profile in Three Dimensional Human Skin Tissue Model Exposed to Low Doses of Ionizing Radiation: Implications for Medical Exposures

    SciTech Connect

    Freiin von Neubeck, Claere H.; Shankaran, Harish; Karin, Norman J.; Kauer, Paula M.; Chrisler, William B.; Wang, Xihai; Robinson, Robert J.; Waters, Katrina M.; Tilton, Susan C.; Sowa, Marianne B.

    2012-04-17

    The concern over possible health risks from exposures to low doses of ionizing radiation has been driven largely by the increase in medical exposures, the routine implementation of X-ray backscatter devices for airport security screening, and, most recently, the nuclear incident in Japan. Due to a paucity of direct epidemiological data at very low doses, cancer risk must be estimated from high dose exposure scenarios. However, there is increasing evidence that low and high dose exposures result in different signaling events and may have different mechanisms of cancer induction. We have examined the radiation induced temporal response of an in vitro three dimensional (3D) human skin tissue model using microarray-based transcriptional profiling. Our data shows that exposure to 100 mGy of X-rays is sufficient to affect gene transcription. Cell type specific analysis showed significant changes in gene expression with the levels of > 1400 genes altered in the dermis and > 400 genes regulated in the epidermis. The two cell types rarely exhibited overlapping responses at the mRNA level. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) measurements validated the microarray data in both regulation direction and value. Key pathways identified relate to cell cycle regulation, immune responses, hypoxia, reactive oxygen signaling, and DNA damage repair. We discuss in particular the role of proliferation and emphasizing how the disregulation of cellular signaling in normal tissue may impact progression towards radiation induced secondary diseases.

  18. Low-dose and combined effects of oral exposure to bisphenol A and diethylstilbestrol on the male reproductive system in adult Sprague-Dawley rats.

    PubMed

    Jiang, Xiao; Chen, Hong-Qiang; Cui, Zhi-Hong; Yin, Li; Zhang, Wen-Long; Liu, Wen-Bin; Han, Fei; Ao, Lin; Cao, Jia; Liu, Jin-Yi

    2016-04-01

    Study of the joint action of xenobiotics is important to fully explore their toxicity and complete risk analysis. In this study, we investigated the effects of low-dose and combined exposure of bisphenol A (BPA) and diethylstilbestrol (DES) on the reproductive system in adult male rats. The results showed that the sperm motility decreased in the BPA/DES and combined groups. Sperm deformity ratios and histological lesions of the testes were significantly higher and more significant, respectively, in the combined group compared with the single treated groups. No dose-effect relationship or significant additive effect on serum hormone levels was observed after combined exposure to BPA/DES. Ultrastructural results showed lesions of the Sertoli and Leydig cells, mainly in the endoplasmic reticulum (ER), in all treated groups. ER stress molecular sensor IRE1 was phosphorylated and activated after BPA and DES treatment in this study. The protein levels of ES stress molecular marker CHOP were significantly up-regulated after exposure to BPA, DES, and BPA and DES combined. These findings indicate that ER stress is important in BPA/DES-induced damage in rat testes. Low-dose and combined exposure to BPA and DES may have toxic effects on male fertility in the adult population. PMID:26970683

  19. NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T1AM treatment

    PubMed Central

    Haviland, J. A.; Reiland, H.; Butz, D. E.; Tonelli, M.; Porter, W. P.; Zucchi, R.; Scanlan, T. S.; Chiellini, G.; Assadi-Porter, F. M.

    2013-01-01

    Objective 3-iodothyronamine (T1AM), an analog of thyroid hormone, is a recently discovered fast-acting endogenous metabolite. High single dose treatments of T1AM have produced rapid short-term effects, including a reduction of body temperature, bradycardia, and hyperglycemia in mice. Design and Methods The present study monitored the effect of daily low doses of T1AM (10mg/Kg) for eight-days on weight loss and metabolism in spontaneously overweight mice. The experiments were repeated twice (n=4). Nuclear magnetic resonance (NMR) spectroscopy of plasma and real-time analysis of exhaled 13CO2 in breath by cavity ringdown spectroscopy (CRDS) were used to detect T1M-induced lipolysis. Results CRDS detected increased lipolysis in breath shortly after T1AM administration that was associated with a significant weight loss but independent of food consumption. NMR spectroscopy revealed alterations in key metabolites in serum: valine, glycine, and 3-hydroxybutyrate, suggesting that the subchronic effects of T1AM include both lipolysis and protein breakdown. After discontinuation of T1AM treatment, mice regained only 1.8% of the lost weight in the following two weeks, indicating lasting effects of T1AM on weight maintenance. Conclusions CRDS in combination with NMR and 13C-metabolic tracing constitute a powerful method of investigation in obesity studies for identifying in vivo biochemical pathway shifts and unanticipated debilitating side effects. PMID:23512955

  20. Sublinear response in lacZ mutant frequency of Muta™ Mouse spermatogonial stem cells after low dose subchronic exposure to N-ethyl-N-nitrosourea.

    PubMed

    O'Brien, Jason M; Walker, Mike; Sivathayalan, Ahalya; Douglas, George R; Yauk, Carole L; Marchetti, Francesco

    2015-05-01

    The transgenic rodent mutation assay was used to compare the dose-response relationship of lacZ mutant frequency (MF) in spermatogonial stem cells exposed acutely or subchronically to N-ethyl-N-nitrosourea (ENU). Muta(™) Mouse males were exposed orally to 0, 25, 50, or 100 mg/kg ENU for acute exposures and 0, 1, 2, or 5 mg/(kg day) for 28-day subchronic exposures. LacZ MF was measured in sperm collected 70 days post-exposure to target spermatogonial stem cells. Dose-response data were fit to linear, quadratic, exponential, or power models. Acute exposure resulted in a dose-dependent increase in MF that was significant (P < 0.05) at all doses tested and was best described by a quadratic dose-response model that was linear in the low dose range. In contrast, similar total doses fragmented over a 28-day subchronic exposure only resulted in a significant increase in lacZ MF at the highest dose tested. Therefore, the subchronic no observable genotoxic effect level (NOGEL) was 2 mg/(kg day) (or 56 mg/kg total dose). The subchronic dose-response was best described by the exponential and power models, which were sublinear in the low dose range. Benchmark dose lower confidence limits (BMDLs) for acute and subchronic exposure were 3.0 and 1.0 mg/(kg day) (or 27.4 mg/kg total dose), respectively. These findings are supportive of a saturable DNA repair mechanism as the mutagenic mode of action for ENU in spermatogonia and imply that sufficiently low exposures would not cause appreciable genotoxic effects over background. This may have important implications for the quantitative risk assessment of germ cell mutagens. PMID:25598316

  1. Efficacy and tolerability of low-dose oral prolonged-release oxycodone/naloxone for chronic nononcological pain in older patients

    PubMed Central

    Guerriero, Fabio; Sgarlata, Carmelo; Marcassa, Claudio; Ricevuti, Giovanni; Rollone, Marco

    2015-01-01

    Purpose Chronic pain is highly prevalent in older adults. Increasing evidence indicates strong opioids as a valid option for chronic pain management in geriatrics. The aim of this study was to evaluate efficacy and safety of low-dose oral prolonged-release oxycodone–naloxone (OXN-PR) in patients aged ≥70 years. Methods This open-label prospective study assessed older patients naïve to strong opioids presenting with moderate-to-severe chronic pain. Patients were prescribed OXN-PR at an initial dose of 10/5 mg/day for 28 days. In case of insufficient analgesia, the initial daily dose could be increased gradually. The primary efficacy measure was change in pain intensity from baseline, assessed by a ten-point Numeric Rating Scale (NRS) at day 28 (T28). Changes in cognitive state, daily functioning, quality of life, constipation, and other adverse events were assessed. Results Of 53 patients enrolled (mean 81.7±6.2 years [range 70–92 years]), 52 (98.1%) completed the 28-day observation. At T28, the primary end point (≥30% reduction in mean pain from baseline in the absence of bowel function deterioration) was achieved in 38 patients (71.7%). OXN-PR significantly relieved pain (NRS score –3.26; P<0.0001), as well as daily need for rescue paracetamol (from 86.8% at baseline to 40.4% at T28; P<0.001), and reduced impact of pain on daily activities (Brief Pain Inventory Short Form from 6.2±1.5 to 3.4±2.1; P<0.0001). OXN-PR was also associated with significant improvement in daily functioning (Barthel Index from 53.3±14.1 to 61.3±14.3; P<0.01). No changes were observed in cognitive status and bowel function. OXN-PR was well tolerated; only one patient (1.9%) prematurely withdrew from treatment, due to drowsiness. Conclusion Findings from this open-label prospective study suggest that low-dose OXN-PR may be effective and well tolerated for treatment of moderate-to-severe chronic pain in older patients. Besides its effectiveness, these data indicate that low-dose

  2. Comparison between two FISH techniques in the in vitro study of cytogenetic markers for low-dose X-ray exposure in human primary fibroblasts

    PubMed Central

    Nieri, D.; Berardinelli, F.; Antoccia, A.; Tanzarella, C.; Sgura, Antonella

    2013-01-01

    This work is about the setup of an in vitro system to report low-dose of X-rays as measured as cytogenetic damage. Q- and multicolor FISH (m-FISH), for telomere length and chromosome instability analysis, respectively, were compared to evaluate their sensitivity in the low-dose range in human primary fibroblasts. No telomere length modulation was observed up to 1 Gy in cycling fibroblasts, though reported for high doses, by that frustrating the purpose of using it as a low-exposure marker. To date the m-FISH is the best setup for the assessment of the chromosome structural damage: it allows stable and instable aberrations to be detected all over the karyotype. Stable ones such as balanced translocations, are not eliminated due to cell-cycle as unstable ones, so they are considered transmissible markers for retrospective dosimetry. The induction of chromosome damage showed a clear dependence on dose delivered; unstable aberrations were demonstrated after doses of 0.1 Gy, and stable aberrations after doses higher than 0.5 Gy. Summarizing, q-FISH is unfit to report low exposures while m-FISH provides better results: unstable aberrations are sensible short-term reporters, while stable ones long report exposures but with a higher induction threshold. PMID:23908663

  3. Deoxynivalenol Impairs Weight Gain and Affects Markers of Gut Health after Low-Dose, Short-Term Exposure of Growing Pigs

    PubMed Central

    Alizadeh, Arash; Braber, Saskia; Akbari, Peyman; Garssen, Johan; Fink-Gremmels, Johanna

    2015-01-01

    Deoxynivalenol (DON) is one of the major mycotoxins produced by Fusarium fungi, and exposure to this mycotoxin requires an assessment of the potential adverse effects, even at low toxin levels. The aim of this study was to investigate the effects of a short-term, low-dose DON exposure on various gut health parameters in pigs. Piglets received a commercial feed or the same feed contaminated with DON (0.9 mg/kg feed) for 10 days, and two hours after a DON bolus (0.28 mg/kg BW), weight gain was determined and samples of different segments of the intestine were collected. Even the selected low dose of DON in the diet negatively affected weight gain and induced histomorphological alterations in the duodenum and jejunum. The mRNA expression of different tight junction (TJ) proteins, especially occludin, of inflammatory markers, like interleukin-1 beta and interleukin-10 and the oxidative stress marker heme-oxigenase1, were affected along the intestine by low levels of DON in the diet. Taken together, our results indicate that even after low-level exposure to DON, which has been generally considered as acceptable in animal feeds, clinically-relevant changes are measurable in markers of gut health and integrity. PMID:26067367

  4. Environmental medicine, part three: long-term effects of chronic low-dose mercury exposure.

    PubMed

    Crinnion, W J

    2000-06-01

    Mercury is ubiquitous in the environment, and in our mouths in the form of "silver" amalgams. Once introduced to the body through food or vapor, mercury is rapidly absorbed and accumulates in several tissues, leading to increased oxidative damage, mitochondrial dysfunction, and cell death. Mercury primarily affects neurological tissue, resulting in numerous neurological symptoms, and also affects the kidneys and the immune system. It causes increased production of free radicals and decreases the availability of antioxidants. It also has devastating effects on the glutathione content of the body, giving rise to the possibility of increased retention of other environmental toxins. Fortunately, effective tests are available to help distinguish those individuals who are excessively burdened with mercury, and to monitor them during treatment. Therapies for assisting the reduction of a mercury load include the use of 2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercato-1-propanesulfonic acid (DMPS). Additional supplementation to assist in the removal of mercury and to reduce its adverse effects is discussed. PMID:10869102

  5. Low-Dose Tramadol and Non-Steroidal Anti-Inflammatory Drug Combination Therapy Prevents the Transition to Chronic Low Back Pain

    PubMed Central

    Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Takane; Suzuki, Miyako; Sakuma, Yoshihiro; Kubota, Go; Oikawa, Yasuhiro; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Takahashi, Kazuhisa; Ohtori, Seiji

    2016-01-01

    Study Design Retrospective study. Purpose To determine whether low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy could prevent the transition of acute low back pain to chronic low back pain. Overview of Literature Inadequately treated early low back pain transitions to chronic low back pain occur in approximately 30% of affected individuals. The administration of non-steroidal anti-inflammatory drugs is effective for treatment of low back pain in the early stages. However, the treatment of low back pain that is resistant to non-steroidal anti-inflammatory drugs is challenging. Methods Patients who presented with acute low back pain at our hospital were considered for inclusion in this study. After the diagnosis of acute low back pain, non-steroidal anti-inflammatory drug administration was started. Forty patients with a visual analog scale score of >5 for low back pain 1 month after treatment were finally enrolled. The first 20 patients were included in a non-steroidal anti-inflammatory drug group, and they continued non-steroidal anti-inflammatory drug therapy for 1 month. The next 20 patients were included in a combination group, and they received low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy for 1 month. The incidence of adverse events and the improvement in the visual analog scale score at 2 months after the start of treatment were analyzed. Results No adverse events were observed in the non-steroidal anti-inflammatory drug group. In the combination group, administration was discontinued in 2 patients (10%) due to adverse events immediately following the start of tramadol administration. At 2 months, the improvement in the visual analog scale score was greater in the combination group than in the non-steroidal anti-inflammatory drug group (p<0.001). Conclusions Low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy might decrease the incidence of adverse events and prevent

  6. Low Dose Risk, Decisions, and Risk Communication

    SciTech Connect

    Flynn, James

    2002-09-14

    The overall research objective was to establish new levels of information about how people, groups, and communities respond to low dose radiation exposure. This is basic research into the social psychology of individual, group, and community responses to radiation exposures. The results of this research are directed to improving risk communication and public participation in management of environmental problems resulting from low dose radiation.

  7. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis

    PubMed Central

    Hu, Zhiwei; Brooks, Samira A.; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W. Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Prudhomme, Kalan R.; Colacci, Annamaria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P.; Woodrick, Jordan; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Lowe, Leroy; Jensen, Lasse; Bisson, William H.; Kleinstreuer, Nicole

    2015-01-01

    One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. PMID:26106137

  8. Perinatal Exposure to a Low Dose of Bisphenol A Impaired Systemic Cellular Immune Response and Predisposes Young Rats to Intestinal Parasitic Infection

    PubMed Central

    Ménard, Sandrine; Guzylack-Piriou, Laurence; Lencina, Corinne; Leveque, Mathilde; Naturel, Manon; Sekkal, Soraya; Harkat, Cherryl; Gaultier, Eric; Olier, Maïwenn; Garcia-Villar, Raphael; Theodorou, Vassilia; Houdeau, Eric

    2014-01-01

    Perinatal exposure to the food contaminant bisphenol A (BPA) in rats induces long lasting adverse effects on intestinal immune homeostasis. This study was aimed at examining the immune response to dietary antigens and the clearance of parasites in young rats at the end of perinatal exposure to a low dose of BPA. Female rats were fed with BPA [5 µg/kg of body weight/day] or vehicle from gestational day 15 to pup weaning. Juvenile female offspring (day (D)25) were used to analyze immune cell populations, humoral and cellular responses after oral tolerance or immunization protocol to ovalbumin (OVA), and susceptibility to infection by the intestinal nematode Nippostrongylus brasiliensis (N. brasiliensis). Anti-OVA IgG titers following either oral tolerance or immunization were not affected after BPA perinatal exposure, while a sharp decrease in OVA-induced IFNγ secretion occurred in spleen and mesenteric lymph nodes (MLN) of OVA-immunized rats. These results are consistent with a decreased number of helper T cells, regulatory T cells and dendritic cells in spleen and MLN of BPA-exposed rats. The lack of cellular response to antigens questioned the ability of BPA-exposed rats to clear intestinal infections. A 1.5-fold increase in N. brasiliensis living larvae was observed in the intestine of BPA-exposed rats compared to controls due to an inappropriate Th1/Th2 cytokine production in infected jejunal tissues. These results show that perinatal BPA exposure impairs cellular response to food antigens, and increases susceptibility to intestinal parasitic infection in the juveniles. This emphasized the maturing immune system during perinatal period highly sensitive to low dose exposure to BPA, altering innate and adaptative immune response capacities in early life. PMID:25415191

  9. Calmodulin Mediates DNA Repair Pathways Involving H2AX in Response to Low-Dose Radiation Exposure of RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Lopez Ferrer, Daniel; Eberlein, P. Elis; Watson, David J.; Squier, Thomas C.

    2009-02-05

    Understanding the molecular mechanisms that modulate macrophage radioresistance is necessary for the development of effective radiation therapies, as tumor-associated macrophages promote both angiogenesis and matrix remodeling that, in turn, enhance metastasis. In this respect, we have identified a dose-dependent increase in the abundance of the calcium regulatory protein calmodulin (CaM) in RAW 264.7 macrophages upon irradiation. CaM overexpression results in increased macrophage survival following radiation exposure, acting to diminish the sensitivity to low-dose exposures. Increases in CaM abundance also result in an increase in the number of phosphorylated histone H2AX protein complexes associated with DNA repair following macrophage irradiation, with no change in the extent of double-stranded DNA damage. In comparison, when NFκB-dependent pathways are inhibited, through the expression of a dominant-negative IκB construct, there is no significant increase in phosphorylated H2AX upon irradiation. These results indicate that the molecular basis for the up-regulation of histone H2AX mediated DNA-repair pathways is not the result of nonspecific NFκB-dependent pathways or a specific threshold of DNA damage. Rather, increases in CaM abundance act to minimize the low-dose hypersensitivity to radiation to enhance macrophage radioresistance through processes that include the upregulation of DNA repair pathways involving histone protein H2AX phosphorylation.

  10. What Have "Omics" Taught Us about the Health Risks Associated with Exposure to Low Doses of Ionizing Radiation

    SciTech Connect

    Morgan, William F.; Sowa, Marianne B.

    2011-04-27

    There is a plethora of data available on the DNA damages associated with exposures to ionizing radiation and the subsequent cellular responses. Indeed, much of radiation research has focused on these initial insults and induced responses, particularly DNA repair, cell signaling pathways, cell cycle checkpoint control, mutation induction, chromosomal rearrangements, transformation and apoptosis etc. While many of these endpoints correlate with exposure dose, few, if any, provide substantive information on human health risk(s) associated with radiation exposure. Here the contribution of recent advances in high throughput ‘omics technologies are evaluated to examine what they have taught us about health risk(s) to humans associated with exposure to ionizing radiation.

  11. The surfactant dipalmitoylphophatidylcholine modifies acute responses in alveolar carcinoma cells in response to low-dose silver nanoparticle exposure.

    PubMed

    Murphy, A; Sheehy, K; Casey, A; Chambers, G

    2015-10-01

    Nanotechnology is a rapidly growing field with silver nanoparticles (AgNP) in particular utilized in a wide variety of consumer products. This has presented a number of concerns relating to exposure and the associated toxicity to humans and the environment. As inhalation is the most common exposure route, this study investigates the potential toxicity of AgNP to A549 alveolar epithelial carcinoma cells and the influence of a major component of lung surfactant dipalmitoylphosphatidylcholine (DPPC) on toxicity. It was illustrated that exposure to AgNP generated low levels of oxidative stress and a reduction in cell viability. While DPPC produced no significant effect on viability studies its presence resulted in increased reactive oxygen species formation. DPPC also significantly modified the inflammatory response generated by AgNP exposure. These findings suggest a possible interaction between AgNP and DPPC causing particles to become more reactive, thus increasing oxidative insult and inflammatory response within A549 cells. PMID:25880159

  12. Acute and chronic administration of a low-dose combination of topiramate and ondansetron reduces ethanol’s reinforcing effects in male Alcohol Preferring (P) rats

    PubMed Central

    Moore, Catherine F; Lycas, Matthew D; Bond, Colin W; Johnson, Bankole A; Lynch, Wendy J

    2014-01-01

    Topiramate (a GABA/glutamate modulator) and ondansetron (a serotonin-3 antagonist) have shown promise as treatments for alcohol use disorders (AUDs), although efficacy is modest/variable for both medications. We recently showed in animal models of consumption and relapse that acute treatment with a combination of these medications was more efficacious than either alone. To determine whether the mechanism for its beneficial effects is through modulation of ethanol’s reinforcing effects, we measured the effect of this combination in male alcohol preferring (P) rats (N=22) responding for ethanol under a progressive-ratio (PR) schedule. Low doses, which either do not affect (ondansetron; 0.001 mg/kg) or only modestly affect (topiramate; 10 mg/kg) alcohol-related behaviors on their own, were selected in an attempt to maximize their combined efficacy while minimizing potential side-effects. In addition to acute treatment (1 day), the effects of chronic administration (10 days) were examined in an attempt to model human treatment approaches. The effects of the combination were compared to the low dose of topiramate alone hypothesizing that the combination would be more efficacious than topiramate alone. While both topiramate and the combination similarly reduced PR responding for ethanol following acute treatment and during the initial phase of chronic treatment (days 1–5), after repeated administration (days 6–10), only the combination produced a sustained reduction in ethanol-maintained responding. These results suggest an advantage of the combination over topiramate alone at producing a sustained reduction in ethanol’s reinforcing effects following prolonged treatment, and lend further support for its use as a potential treatment for AUDs. PMID:24490709

  13. Immune potentiation after fractionated exposure to very low doses of ionizing radiation and/or caloric restriction in autoimmune-prone and normal C57Bl/6 mice

    SciTech Connect

    James, S.J.; Enger, S.M.; Peterson, W.J.; Makinodan, T. )

    1990-06-01

    Very low doses of ionizing radiation can enhance immune responsiveness and extend life span in normal mice. Total lymphoid irradiation at relatively high doses of radiation can retard autoimmune disease in genetically susceptible mice, but may impair immune function. In order to determine whether fractionated low dose exposure would enhance immune response and retard lymphadenopathy in autoimmune-prone mice, groups of C57B1/6 lpr/lpr mice were sham irradiated, exposed 5 days/week for 4 weeks to 0.04 Gy/day, or to 0.1 Gy/day. After the radiation protocol, the mice were evaluated for splenic T cell proliferative capacity, T cell subset distribution, and total spleen cell numbers. The independent and additive effect of caloric restriction was additionally assessed since this intervention has been shown to increase immune responsiveness and retard disease progression in autoimmune-prone mice. The congenic C57B1/6 +/+ immunologically normal strain was evaluated in parallel as congenic control. The results indicated that mitogen-stimulated proliferation was up-regulated in both strains of mice after exposure to 0.04 Gy/day. The proliferative capacity was additively enhanced when radiation at this dose level was combined with caloric restriction. Exposure to 0.1 Gy/day resulted in further augmentation of proliferative response in the lpr/lpr mice, but was depressive in the +/+ mice. Although the proportions of the various T cell subpopulations were altered in both strains after exposure to LDR, the specific subset alterations were different within each strain. Additional experiments were subsequently performed to assess whether the thymus is required for LDR-induced immune potentiation. Thymectomy completely abrogated the LDR effect in the +/+ mice, suggesting that thymic processing and/or trafficking is adaptively altered with LDR in this strain.

  14. Absence of long-term behavioral effects after sub-chronic administration of low doses of methamidophos in male and female rats.

    PubMed

    Temerowski, M; van der Staay, F J

    2005-01-01

    Putative long-term learning and memory effects of low-dose exposure to the cholinesterase inhibitor organophosphate methamidophos (Tamaron) early in life were studied in two parallel studies in middle-aged rats. Methamidophos was administered via the drinking water to female and male Wistar rats using nominal concentrations of 0 (control), 0.5, 1.5 and 4.5 ppm active ingredient for 16 weeks. Animals were then maintained for a recovery period of about 14 months without treatment. They were tested in the standard and repeated acquisition version of the Morris water escape task in two series of tests starting 33 and 55 weeks after termination of the methamidophos treatment. Functional observations and motor activity measurements preceded each series of testing. Exposure to methamidophos was confirmed by measurement of brain cholinesterase (ChE-B) at the end of the 16 weeks of treatment in satellite animals. At 4.5 ppm a biologically relevant reduction in ChE-B activity was observed without clinical signs of intoxication (males: 66%, females: 64% of control activity). Mid- and low-dose exposure to methamidophos revealed ChE-B activity of 90% and 100% in males and 88% and 97% in females, respectively. General examinations of the animals during treatment revealed no clinical signs suggesting cholinergic stimulation. Functional observations and motor activity measurements exhibited no relevant differences between treatment groups and controls. Neither the performance in the standard Morris water escape task that predominantly measures spatial reference memory, nor in the repeated acquisition task in the Morris tank, which predominantly measures spatial working memory, was affected by treatment with methamidophos. A small number of statistically significant differences were noted in the mean performance level between treatment groups, or between treatment by sex groups in both versions of the Morris task. However, these findings appeared to be idiosyncratic for a

  15. Low dose monoethyl phthalate (MEP) exposure triggers proliferation by activating PDX-1 at 1.1B4 human pancreatic beta cells.

    PubMed

    Güven, Celal; Dal, Fulya; Aydoğan Ahbab, Müfide; Taskin, Eylem; Ahbab, Süleyman; Adin Çinar, Suzan; Sırma Ekmekçi, Sema; Güleç, Çağrı; Abacı, Neslihan; Akçakaya, Handan

    2016-07-01

    Phthalate plasticizers used in a wide range of common plastic products are released into the environment and may pose a risk of increased incidence of type 2 diabetes. In this work, we studied the effects of monoethyl phthalate (MEP), the metabolite of diethyl phthalate, exposure on 1.1B4 human pancreatic beta cells at low doses (1-1000 nM). We showed that MEP treatment induced proliferation in 1.1B4 cells. Also PCNA protein expression levels were increased related to proliferation induction. It has been noted that phthalates can exert estrogen mediated response by interacting with ER. In our study 24 h MEP treatment decreased ERα protein expression level conversely it increased the same protein expression level after 72 h treatment. Also MEP treatment decreased ERβ expression after 72 h at 1.1B4 cells. Our results further show that insulin content of 1.1B4 cells were increased with low dose MEP treatment. Along with our insulin content results, PDX- 1 expression levels were also increased at 1.1B4 cells with MEP treatment. These findings suggest that MEP acts as an estrogenic compound and PPARγ agonist at lower concentrations. Also it should be noted that PDX-1 may be a critical regulator of 1.1B4 cells treated with MEP. PMID:27133914

  16. In Utero and Lactational Exposures to Low Doses of Polybrominated Diphenyl Ether-47 Alter the Reproductive System and Thyroid Gland of Female Rat Offspring

    PubMed Central

    Talsness, Chris E.; Kuriyama, Sergio N.; Sterner-Kock, Anja; Schnitker, Petra; Grande, Simone Wichert; Shakibaei, Mehdi; Andrade, Anderson; Grote, Konstanze; Chahoud, Ibrahim

    2008-01-01

    Background Polybrominated diphenyl ethers (PBDEs) are capable of disrupting thyroid hormone homeostasis. PBDE-47 (2,2′,4,4′-tetrabromodiphenyl ether) is one of the most abundant congeners found in human breast adipose tissue and maternal milk samples. Objectives We evaluated the effects of developmental exposure to low doses of PBDE-47 on the female reproductive system. Methods Pregnant Wistar rats were administered vehicle (peanut oil) or PBDE-47 [140 or 700 μg/kg body weight (bw)] on gestation day (GD) 6, or 5 mg 6-n-propyl-2-thiouracil (PTU)/L in the drinking water from GD7 through postnatal day (PND) 21. Results In female offspring sacrificed on PND38, there was a significant decrease in ovarian weight after exposure to PTU or 140 μg/kg PBDE-47. Alterations in folliculogenesis were apparent: we observed a decrease in tertiary follicles and serum estradiol concentrations in the offspring exposed to either PTU or 700 μg/kg PBDE-47. PTU exposure also resulted in a decrease in primordial follicles. On PND100, persistent effects on the thyroid glands included histologic and morphometric changes after exposure to either PTU or PBDE-47. No relevant changes in reproductive indices were observed after mating the exposed F1 females with nontreated males. Conclusions Administration of PBDE-47 at doses relevant to human exposure led to changes in the rat female reproductive system and thyroid gland. PMID:18335096

  17. Repetitive exposure to low-dose X-irradiation attenuates testicular apoptosis in type 2 diabetic rats, likely via Akt-mediated Nrf2 activation.

    PubMed

    Zhao, Yuguang; Kong, Chuipeng; Chen, Xiao; Wang, Zhenyu; Wan, Zhiqiang; Jia, Lin; Liu, Qiuju; Wang, Yuehui; Li, Wei; Cui, Jiuwei; Han, Fujun; Cai, Lu

    2016-02-15

    To determine whether repetitive exposure to low-dose radiation (LDR) attenuates type 2 diabetes (T2DM)-induced testicular apoptotic cell death in a T2DM rat model, we examined the effects of LDR exposure on diabetic and age-matched control rats. We found that testicular apoptosis and oxidative stress levels were significantly higher in T2DM rats than in control rats. In addition, glucose metabolism-related Akt and GSK-3β function was downregulated and Akt negative regulators PTP1B and TRB3 were upregulated in the T2DM group. Superoxide dismutase (SOD) activity and catalase content were also found to be decreased in T2DM rats. These effects were partially prevented or reversed by repetitive LDR exposure. Nrf2 and its downstream genes NQO1, SOD, and catalase were significantly upregulated by repetitive exposure to LDR, suggesting that the reduction of T2DM-induced testicular apoptosis due to repetitive LDR exposure likely involves enhancement of testicular Akt-mediated glucose metabolism and anti-oxidative defense mechanisms. PMID:26704079

  18. Enhancement of regulatory T cell-like suppressive function in MT-2 by long-term and low-dose exposure to asbestos.

    PubMed

    Ying, Chen; Maeda, Megumi; Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Hayashi, Hiroaki; Matsuzaki, Hidenori; Lee, Suni; Yoshitome, Kei; Yamamoto, Shoko; Hatayama, Tamayo; Otsuki, Takemi

    2015-12-01

    Asbestos exposure causes lung fibrosis and various malignant tumors such as lung cancer and malignant mesothelioma. The effects of asbestos on immune cells have not been thoroughly investigated, although our previous reports showed that asbestos exposure reduced anti-tumor immunity. The effects of continuous exposure of regulatory T cells (Treg) to asbestos were examined using the HTLV-1 immortalized human T cell line MT-2, which possesses a suppressive function and expresses the Treg marker protein, Foxp3. Sublines were generated by the continuous exposure to low doses of asbestos fibers for more than one year. The sublines exposed to asbestos showed enhanced suppressive Treg function via cell-cell contact, and increased production of soluble factors such as IL-10 and transforming growth factor (TGF)-β1. These results also indicated that asbestos exposure induced the reduction of anti-tumor immunity, and efforts to develop substances to reverse this reduction may be helpful in preventing the occurrence of asbestos-induced tumors. PMID:26505785

  19. Low-dose and short-term cyclosporine treatment in patients with chronic idiopathic urticaria: a clinical and immunological evaluation.

    PubMed

    Serhat Inaloz, H; Ozturk, Savas; Akcali, Cenk; Kirtak, Necmettin; Tarakcioglu, Mehmet

    2008-05-01

    The present study aimed to evaluate the effectiveness of 2.5 mg/kg/day cyclosporin (CsA) treatment in patients with severe chronic idiopathic urticaria (CIU) and the impact of CsA treatment on several cytokines involved in the etiopathogenesis of CIU. Twenty-seven CIU patients and 24 healthy control subjects were included in the study. The autologous serum skin test (ASST) for autoantibodies and urticaria activity scoring (UAS) were measured for the evaluation of the clinical severity and the response to therapy, and the serum levels of interleukin (IL)-6, IL-8, IL-2 receptor, IL-1beta, tumor necrosis factor (TNF)-alpha and IL-5 were measured. The mean UAS score was 32.07 +/- 7.05 and 6.22 +/- 3.84 before and after CsA treatment, respectively. The serum IL-2 receptor, TNF-alpha and IL-5 levels of patients before CsA treatment were statistically higher than those of the control group (P = 0.001), and after 4 weeks of CsA therapy the mean IL-2R, TNF-alpha and IL-5 levels were significantly decreased. The data from this study demonstrate that CsA therapy is efficient and safe for CIU patients. Increase in clinical efficacy and marked decreases in serum cytokine levels suggest that inhibition of cytokine generation is involved in the action of the drug in this clinical setting. PMID:18477227

  20. Rats with Chronic, Stable Pulmonary Hypertension Tolerate Low Dose Sevoflurane Inhalation as Well as Normal Rats Do

    PubMed Central

    Qin, Gang; Luo, Hui; Liu, Xiao; Zhang, Fan; Ye, Zhi; Zhang, Junjie; Wang, E.

    2016-01-01

    Background The effects of low concentration of sevoflurane on right ventricular (RV) function and intracellular calcium in the setting of pulmonary arterial hypertension (PAH) have not been investigated clearly. We aim to study these effects and associated signaling pathways in rats with PAH. Methods Hemodynamics were assessed with or without sevoflurane inhalation in established PAH rats. We analysis the classic RV function parameters and RV-PA coupling efficiency using steady-state PV loop recordings. The protein levels of SERCA2, PLB and p-PLB expression was analyzed by western blot to assess their relevance in PAH. Results Rats with PAH presented with RV hypertrophy and increased pulmonary arterial pressure. The values of Ea, R/L ratio, ESP, SW, PRSW, +dP/dtmax and the slope of the dP/dtmax-EDV relationship increased significantly in PAH rats (P<0.05). Sevoflurane induced a concentration-dependent decrease of systemic and pulmonary blood pressure, HR, RV contractility, and increased the R/L ratio in both groups. Sevoflurane reduced the expression of SERCA2 and increased the expression of PLB in both groups. Interestingly, sevoflurane only reduced the p-PLB/PLB ratio in PAH rats, not in normal rats. Conclusions Rats with chronic, stable pulmonary hypertension tolerate low concentrations of sevoflurane inhalation as well as normal rats do. It may be related to the modulation of the SERCA2-PLB signaling pathway. PMID:27144451

  1. γ-H2AX responds to DNA damage induced by long-term exposure to combined low-dose-rate neutron and γ-ray radiation.

    PubMed

    Zhang, Junlin; He, Ying; Shen, Xianrong; Jiang, Dingwen; Wang, Qingrong; Liu, Qiong; Fang, Wen

    2016-01-01

    Risk estimates for low-dose radiation (LDR) remain controversial. The possible involvement of DNA repair-related genes in long-term low-dose-rate neutron-gamma radiation exposure is poorly understood. In this study, 60 rats were divided into control groups and irradiated groups, which were exposed to low-dose-rate n-γ combined radiation (LDCR) for 15, 30, or 60 days. The effects of different cumulative radiation doses on peripheral blood cell (PBC), subsets of T cells of peripheral blood lymphocytes (PBL) and DNA damage repair were investigated. Real-time PCR and immunoblot analyses were used to detect expression of DNA DSB-repair-related genes involved in the NHEJ pathway, such as Ku70 and Ku80, in PBL. The mRNA level of H2AX and the expression level of γ-H2AX were detected by real-time PCR, immunoblot, and flow cytometry. White blood cells (WBC) and platelets (PLT) of all ionizing radiation (IR) groups decreased significantly, while no difference was seen between the 30 day and 60 day exposure groups. The numbers of CD3(+), CD4(+) T cells and CD4(+)/CD8(+) in the PBL of IR groups were lower than in the control group. In the 30 day and 60 day exposure groups, CD8(+) T cells decreased significantly. Real-time PCR and immunoblot results showed no significant difference in the mRNA and protein expression of Ku70 and Ku80 between the control groups and IR groups. However, the mRNA of H2AX increased significantly, and there was a positive correlation with dose. There was no difference in the protein expression of γ-H2AX between 30 day and 60 day groups, which may help to explain the damage to PBL. In conclusion, PBL damage increased with cumulative dose, suggesting that γ-H2AX, but neither Ku70 nor Ku80, plays an important role in PBL impairment induced by LDCR. PMID:26774665

  2. Persistent Cognitive Alterations in Rats after Early Postnatal Exposure to Low Doses of the Organophosphate Pesticide, Diazinon

    PubMed Central

    Timofeeva, Olga A.; Roegge, Cindy S.; Seidler, Frederic J.; Slotkin, Theodore A.; Levin, Edward D.

    2008-01-01

    Background Developmental neurotoxicity of organophosphorous insecticides (OPs) involves multiple mechanisms in addition to cholinesterase inhibition. We have found persisting effects of developmental chlorpyrifos (CPF) and diazinon (DZN) on cholinergic and serotonergic neurotransmitter systems and gene expression as well as behavioral function. Both molecular/neurochemical and behavioral effects of developmental OP exposure have been seen at doses below those which cause appreciable cholinesterase inhibition. Objectives We sought to determine if developmental DZN exposure at doses which do not produce significant acetylcholinesterase inhibition cause cognitive deficits. Methods Rats were exposed to DZN on postnatal days 1-4 at doses (0.5 and 2 mg/kg/d) that span the threshold for cholinesterase inhibition. They were later examined with a cognitive battery tests similar to that used with CPF. Results In the T-maze DZN caused significant hyperactivity in the initial trials of the session, but not later. In a longer assessment of locomotor activity no DZN-induced changes were seen over a 1-hour session. Prepulse inhibition was reduced by DZN exposure selectively in males vs. females; DZN eliminated the sex difference present in controls. In the radial maze, the lower but not higher DZN dose significantly impaired spatial learning. This has previously been seen with CPF as well. The lower dose DZN group also showed significantly greater sensitivity to the memory-impairing effects of the anticholinergic drug scopolamine. Conclusions Neonatal DZN exposure below the threshold for appreciable cholinesterase inhibition caused neurocognitive deficits in adulthood. The addition of some inhibition of AChE with a higher dose reversed the cognitive impairment. This non-monotonic dose-effect function has also been seen with neurochemical effects. Some of the DZN effects on cognition resemble those seen earlier for CPF, some differ. Our data suggest that DZN and CPF affect

  3. Induction of potent local cellular immunity with low dose X4 SHIV{sub SF33A} vaginal exposure

    SciTech Connect

    Tasca, Silvana; Tsai, Lily; Trunova, Nataliya; Gettie, Agegnehu; Saifuddin, Mohammed; Bohm, Rudolf; Chakrabarti, Lisa; Cheng-Mayer, Cecilia

    2007-10-10

    Intravaginal inoculation of rhesus macaques with varying doses of the CXCR4 (X4)-tropic SHIV{sub SF33A} isolate revealed a threshold inoculum for establishment of systemic virus infection and a dose dependency in overall viral burden and CD4+ T cell depletion. While exposure to inoculum size of 1000 or greater 50% tissue infectious dose (TCID{sub 50}) resulted in high viremia and precipitous CD4+ T cell loss, occult infection was observed in seven of eight macaques exposed to 500 TCID{sub 50} of the same virus. The latter was characterized by intermittent detection of low level virus with no evidence of seroconversion or CD4+ T cell decline, but with signs of an ongoing antiviral T cell immune response. Upon vaginal re-challenge with the same limiting dose 11-12 weeks after the first, classic pathogenic X4 SHIV{sub SF33A} infection was established in four of the seven previously exposed seronegative macaques, implying enhanced susceptibility to systemic infection with prior exposure. Pre-existing peripheral SIV gag-specific CD4+ T cells were more readily demonstrable in macaques that became systemically infected following re-exposure than those that were not. In contrast, early presence of circulating polyfunctional cytokine secreting CD8+ T cells or strong virus-specific proliferative responses in draining lymph nodes and in the gut associated lymphoid tissue (GALT) following the first exposure was associated with protection from systemic re-infection. These studies identify the gut and lymphoid tissues proximal to the genital tract as sites of robust CD8 T lymphocyte responses that contribute to containment of virus spread following vaginal transmission.

  4. Effects of low dose endosulfan exposure on brain neurotransmitter levels in the African clawed frog Xenopus laevis.

    PubMed

    Preud'homme, Valérie; Milla, Sylvain; Gillardin, Virginie; De Pauw, Edwin; Denoël, Mathieu; Kestemont, Patrick

    2015-02-01

    Understanding the impact of pesticides in amphibians is of growing concern to assess the causes of their decline. Among pesticides, endosulfan belongs to one of the potential sources of danger because of its wide use and known effects, particularly neurotoxic, on a variety of organisms. However, the effect of endosulfan was not yet evaluated on amphibians at levels encompassing simultaneously brain neurotransmitters and behavioural endpoints. In this context, tadpoles of the African clawed frog Xenopus laevis were submitted to four treatments during 27 d: one control, one ethanol control, and two low environmental concentrations of endosulfan (0.1 and 1 μg L(-1)). Endosulfan induced a significant increase of brain serotonin level at both concentrations and a significant increase of brain dopamine and GABA levels at the lower exposure but acetylcholinesterase activity was not modified by the treatment. The gene coding for the GABA transporter 1 was up-regulated in endosulfan contaminated tadpoles while the expression of other genes coding for the neurotransmitter receptors or for the enzymes involved in their metabolic pathways was not significantly modified by endosulfan exposure. Endosulfan also affected foraging, and locomotion in links with the results of the physiological assays, but no effects were seen on growth. These results show that low environmental concentrations of endosulfan can induce adverse responses in X. laevis tadpoles. At a broader perspective, this suggests that more research using and linking multiple markers should be used to understand the complex mode of action of pollutants. PMID:25192837

  5. Effects of repeated low-dose exposure of the nerve agent VX on monoamine levels in different brain structures in mice.

    PubMed

    Graziani, S; Christin, D; Daulon, S; Breton, P; Perrier, N; Taysse, L

    2014-05-01

    In a previous report, alterations of the serotonin metabolism were previously reported in mice intoxicated with repeated low doses of soman. In order to better understand the effects induced by repeated low-dose exposure to organophosphorus compounds on physiological and behavioural functions, the levels of endogenous monoamines (serotonin and dopamine) in different brain areas in mice intoxicated with sublethal dose of (O-ethyl-S-[2(di-isopropylamino) ethyl] methyl phosphonothioate) (VX) were analysed by HPLC method with electrochemical detection. Animals were injected once a day for three consecutive days with 0.10 LD50 of VX (5 μg/kg, i.p). Neither severe signs of cholinergic toxicity nor pathological changes in brain tissue of exposed animals were observed. Cholinesterase (ChE) activity was only inhibited in plasma (a maximum of 30% inhibition 24 h after the last injection of VX), but remained unchanged in the brain. Serotonin and dopamine (DA) metabolism appeared significantly modified. During the entire period of investigation, at least one of the three parameters investigated (i.e. DA and DOPAC levels and DOPAC/DA ratio) was modified. During the toxic challenge, an increase of the serotonin metabolism was noted in hippocampus (HPC), hypothalamus/thalamus, pons medulla and cerebellum (CER). This increase was maintained 4 weeks after exposure in HPC, pons medulla and CER whereas a decrease in cortex 3 weeks after the toxic challenge was observed. The lack of correlation between brain ChE activity and neurochemical outcomes points out to independent mechanisms. The involvement in possibly long-lasting behavioural disorders is discussed. PMID:24676701

  6. Association of Chromosome Translocation Rate with Low Dose Occupational Radiation Exposures in U.S. Radiologic Technologists

    PubMed Central

    Little, Mark P.; Kwon, Deukwoo; Doi, Kazataka; Simon, Steven L.; Preston, Dale L.; Doody, Michele M.; Lee, Terrence; Miller, Jeremy S.; Kampa, Diane M.; Bhatti, Parveen; Tucker, James D.; Linet, Martha S.; Sigurdson, Alice J.

    2016-01-01

    Chromosome translocations are a well-recognized biological marker of radiation exposure and cancer risk. However, there is uncertainty about the lowest dose at which excess translocations can be detected, and whether there is temporal decay of induced translocations in radiation-exposed populations. Dosimetric uncertainties can substantially alter the shape of dose-response relationships; although regression-calibration methods have been used in some datasets, these have not been applied in radio-occupational studies, where there are also complex patterns of shared and unshared errors that these methods do not account for. In this article we evaluated the relationship between estimated occupational ionizing radiation doses and chromosome translocation rates using fluorescent in situ hybridization in 238 U.S. radiologic technologists selected from a large cohort. Estimated cumulative red bone marrow doses (mean 29.3 mGy, range 0–135.7 mGy) were based on available badge–dose measurement data and on questionnaire-reported work history factors. Dosimetric assessment uncertainties were evaluated using regression calibration, Bayesian and Monte Carlo maximum likelihood methods, taking account of shared and unshared error and adjusted for overdispersion. There was a significant dose response for estimated occupational radiation exposure, adjusted for questionnaire-based personal diagnostic radiation, age, sex and study group (5.7 translocations per 100 whole genome cell equivalents per Gy, 95% CI 0.2, 11.3, P = 0.0440). A significant increasing trend with dose continued to be observed for individuals with estimated doses <100 mGy. For combined estimated occupational and personal-diagnostic-medical radiation exposures, there was a borderline-significant modifying effect of age (P 0.0704), but little evidence (P > 0.5) of temporal decay of induced translocations. The three methods of analysis to adjust for dose uncertainty gave similar results. In summary, chromosome

  7. Behavior of Bragg gratings, written in germanosilicate fibers, against [gamma]-ray exposure at low dose rate

    SciTech Connect

    Niay, P.; Bernage, P.; Douay, M.; Fertein, E.; Lahoreau, F. . Lab. de Dynamique Moleculaire et Photonique); Bayon, J.F.; Georges, T.; Monerie, M. ); Ferdinand, P.; Rougeault, S.; Cetier, P. )

    1994-11-01

    Bragg gratings have been written within four germanosilicate fibers either by a pulsed or by a continuous-wave exposure of each fiber to a coherent UV two-beam interference pattern. These gratings have been exposed under steady state conditions to [gamma]-ray doses as high as 10[sup 4] Grays. The dose rates ranged between 10 Gy/h and 1.3 [times] 10[sup 2] Gy/h. The transmission spectra of the fibers have been recorded during and after the [sup 60]Co irradiation, near the grating Bragg wavelengths. Whereas the induced loss reached 600 dB/km near 1.3 [mu]m, no significant change in the spectral characteristics of the gratings could be detected within the experimental accuracy, enabling their future use in a nuclear environment.

  8. Prenatal Exposure to Low Doses of Bisphenol A Increases Pituitary Proliferation and Gonadotroph Number in Female Mice Offspring at Birth1

    PubMed Central

    Brannick, Katherine E.; Craig, Zelieann R.; Himes, Ashley D.; Peretz, Jackye R.; Wang, Wei; Flaws, Jodi A.; Raetzman, Lori T.

    2012-01-01

    ABSTRACT The pituitary gland is composed of hormone-producing cells essential for homeostasis and reproduction. Pituitary cells are sensitive to endocrine feedback in the adult and can have altered hormonal secretion from exposure to the endocrine disruptor bisphenol A (BPA). BPA is a prevalent plasticizer used in food and beverage containers, leading to widespread human exposure. Although prenatal exposure to BPA can impact reproductive function in the adult, the effects of BPA on the developing pituitary are unknown. We hypothesized that prenatal exposure to low doses of BPA impacts gonadotroph cell number or parameters of hormone synthesis. To test this, pregnant mice were administered 0.5 μg/kg/day of BPA, 50 μg/kg/day of BPA, or vehicle beginning on Embryonic Day 10.5. At parturition, pituitaries from female offspring exposed in utero to either dose of BPA had increased proliferation, as assessed by mKi67 mRNA levels and immunohistochemistry. Coincidently, gonadotroph number also increased in treated females. However, we observed a dichotomy between mRNA levels of Lhb and Fshb. Female mice exposed to 0.5 μg/kg/day BPA had increased mRNA levels of gonadotropins and the gonadotropin-receptor hormone (GNRH) receptor (Gnrhr), which mediates GNRH regulation of gonadotropin production and release. In contrast, mice treated with 50 μg/kg/day of BPA had decreased gonadotropin mRNA levels, Gnrhr and Nr5a1, a transcription factor required for gonadotroph differentiation. No other pituitary hormones were altered on the day of birth in response to in utero BPA exposure, and male pituitaries showed no change in the parameters tested. Collectively, these results show that prenatal exposure to BPA affects pituitary gonadotroph development in females. PMID:22875908

  9. Temporary modulation of responses to common vaccines and serum cation status in broilers during exposure to low doses of aflatoxin B1.

    PubMed

    Yunus, A W; Böhm, J

    2013-11-01

    The purpose of this study was to observe the effects of low doses of aflatoxin B1 (AFB1) on responses to common vaccines and levels of serum cations in broilers. Male broilers at 7 d of age were fed control (no AFB1), a 75 µg of AFB1/kg (75 ppb of AFB1) diet, or a 750 µg of AFB1/kg (750 ppb of AFB1) diet. The 750 ppb of AFB1 diet resulted in a temporary increase in ELISA titers against Newcastle disease virus (P = 0.014) and infectious bursal disease virus (P = 0.005) during wk 2 and 4 of exposure, respectively, compared with the control diet. Conversely, lower (P ≤ 0.01) serum protein concentrations were found in broilers under the 750 ppb AFB1 diet during wk 2 and 4. During wk 2 of exposure, lower serum levels of potassium were noted in birds under both the 75 (P = 0.037) and 750 ppb (P = 0.000) AFB1 diets compared with those under the control diet. During wk 5, higher serum magnesium (P = 0.004), and sodium (P = 0.000) under the 750 ppb AFB1 diet were found compared with the control diet. These data indicate that low dietary levels of AFB1 can temporarily increase or decrease the studied serological variables in broilers depending upon the stage of exposure. PMID:24135593

  10. Life-Span Exposure to Low Doses of Aspartame Beginning during Prenatal Life Increases Cancer Effects in Rats

    PubMed Central

    Soffritti, Morando; Belpoggi, Fiorella; Tibaldi, Eva; Esposti, Davide Degli; Lauriola, Michelina

    2007-01-01

    Background In a previous study conducted at the Cesare Maltoni Cancer Research Center of the European Ramazzini Foundation (CMCRC/ERF), we demonstrated for the first time that aspartame (APM) is a multipotent carcinogenic agent when various doses are administered with feed to Sprague-Dawley rats from 8 weeks of age throughout the life span. Objective The aim of this second study is to better quantify the carcinogenic risk of APM, beginning treatment during fetal life. Methods We studied groups of 70–95 male and female Sprague-Dawley rats administered APM (2,000, 400, or 0 ppm) with feed from the 12th day of fetal life until natural death. Results Our results show a) a significant dose-related increase of malignant tumor–bearing animals in males (p < 0.01), particularly in the group treated with 2,000 ppm APM (p < 0.01); b) a significant increase in incidence of lymphomas/leukemias in males treated with 2,000 ppm (p < 0.05) and a significant dose-related increase in incidence of lymphomas/leukemias in females (p < 0.01), particularly in the 2,000-ppm group (p < 0.01); and c) a significant dose-related increase in incidence of mammary cancer in females (p < 0.05), particularly in the 2,000-ppm group (p < 0.05). Conclusions The results of this carcinogenicity bioassay confirm and reinforce the first experimental demonstration of APM’s multipotential carcinogenicity at a dose level close to the acceptable daily intake for humans. Furthermore, the study demonstrates that when life-span exposure to APM begins during fetal life, its carcinogenic effects are increased. PMID:17805418

  11. The Fukushima nuclear accident and the pale grass blue butterfly: evaluating biological effects of long-term low-dose exposures

    PubMed Central

    2013-01-01

    Background On August 9th 2012, we published an original research article in Scientific Reports, concluding that artificial radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant exerted genetically and physiologically adverse effects on the pale grass blue butterfly Zizeeria maha in the Fukushima area. Immediately following publication, many questions and comments were generated from all over the world. Here, we have clarified points made in the original paper and answered questions posed by the readers. Results The following points were clarified. (1) There are many advantages to using the pale grass blue butterfly as an indicator species. (2) The forewings of the individuals collected in Fukushima were significantly smaller than in the northern and southern localities. (3) We observed growth retardation in the butterflies from the Fukushima area. (4) The aberrant colour patterns in the butterflies obtained in the Fukushima area were different from the colour patterns induced by temperature and sibling crosses but similar to those induced by external and internal exposures to the artificial radionuclides and by a chemical mutagen, suggesting that genetic mutations caused the aberrations. (5) This species of butterfly has been plentiful in Fukushima area for at least half a century. We here present specimens collected from Fukushima Prefecture before the accident. (6) Mutation accumulation was detected by the increase in the abnormality rates from May 2011 to September 2011. (7) The abnormal traits were heritable. (8) Our sampling localities were not affected by the tsunami. (9) We used a high enough number of samples to obtain statistically significant results. (10) The standard rearing method was followed, producing normal adults in the control groups. (11) The exposure experiments successfully reproduced the results of the field work. This species of butterfly is vulnerable to long-term low-dose internal and external exposures; however, insect

  12. The potential benefits of nicaraven to protect against radiation-induced injury in hematopoietic stem/progenitor cells with relative low dose exposures

    SciTech Connect

    Ali, Haytham; Galal, Omima; Urata, Yoshishige; Goto, Shinji; Guo, Chang-Ying; Luo, Lan; Abdelrahim, Eman; Ono, Yusuke; Mostafa, Emtethal; Li, Tao-Sheng

    2014-09-26

    Highlights: • Nicaraven mitigated the radiation-induced reduction of c-kit{sup +} stem cells. • Nicaraven enhanced the function of hematopoietic stem/progenitor cells. • Complex mechanisms involved in the protection of nicaraven to radiation injury. - Abstract: Nicaraven, a hydroxyl radical-specific scavenger has been demonstrated to attenuate radiation injury in hematopoietic stem cells with 5 Gy γ-ray exposures. We explored the effect and related mechanisms of nicaraven for protecting radiation injury induced by sequential exposures to a relatively lower dose γ-ray. C57BL/6 mice were given nicaraven or placebo within 30 min before exposure to 50 mGy γ-ray daily for 30 days in sequences (cumulative dose of 1.5 Gy). Mice were victimized 24 h after the last radiation exposure, and the number, function and oxidative stress of hematopoietic stem cells were quantitatively estimated. We also compared the gene expression in these purified stem cells from mice received nicaraven and placebo treatment. Nicaraven increased the number of c-kit{sup +} stem/progenitor cells in bone marrow and peripheral blood, with a recovery rate around 60–90% of age-matched non-irradiated healthy mice. The potency of colony forming from hematopoietic stem/progenitor cells as indicator of function was completely protected with nicaraven treatment. Furthermore, nicaraven treatment changed the expression of many genes associated to DNA repair, inflammatory response, and immunomodulation in c-kit{sup +} stem/progenitor cells. Nicaraven effectively protected against damages of hematopoietic stem/progenitor cells induced by sequential exposures to a relatively low dose radiation, via complex mechanisms.

  13. Effects of perinatal exposure to low-dose cadmium on thyroid hormone-related and sex hormone receptor gene expressions in brain of offspring.

    PubMed

    Ishitobi, Hiromi; Mori, Kohki; Yoshida, Katsumi; Watanabe, Chiho

    2007-07-01

    Perinatal cadmium (Cd) exposure has been shown to alter behaviors and reduce learning ability of offspring. A few studies have shown that Cd reduced serum thyroid hormones (THs), which are important for brain development during the perinatal period. Brain specific genes, neurogranin (RC3) and myelin basic protein (BMP), are known to be regulated by TH through TH receptors (TR). It has been suggested that RC3 may play roles in memory and learning. In addition, Cd has been suggested to have estrogen-like activity. To evaluate the effects of perinatal low-dose exposure to Cd on thyroid hormone-related gene (RC3, TR-beta1, MBP, RAR-beta) and sex hormone receptor gene (ER-alpha, ER-beta and PgR) expressions in the brain and on behaviors of offspring, mice were administered with 10ppm Cd (from gestational day 1 to postnatal day 10) and/or 0.025% methimazole (MMI; anti-thyroid drug) (from gestational day 12 to postnatal day 10) in drinking water. Also, 0.1% MMI was administered as a positive control (high MMI group). RC3 mRNA expression was reduced in the female brain of combined exposure and high MMI groups and was negatively correlated with the activity in the open-field. ER-alpha, ER-beta and PgR mRNA expressions were decreased in male and female Cd, and female Cd+MMI groups, respectively; among these changes the reduced expression of PgR was opposite to estrogenic action. These results suggested that perinatal exposure to Cd disrupted the gene expressions of sex hormone receptors, which could not be considered to be a result of estrogenic action. Our study indicates that alteration in the gene expressions of RC3 and sex hormone receptors in the brain induced by perinatal Cd and MMI exposure might be one mechanism of developmental toxicity of Cd. PMID:17408746

  14. Altered gene expression by low-dose arsenic exposure in humans and cultured cardiomyocytes: Assessment by real-time PCR array

    EPA Science Inventory

    Arsenic contamination in drinking water has become a great public health concern worldwide. Chronic arsenic exposure results in higher risk of skin, lung and bladder cancer, as well as cardiovascular disease and diabetes. The purpose of this study was to investigate the effects o...

  15. The adverse effects of low-dose exposure to Di(2-ethylhexyl) phthalate during adolescence on sperm function in adult rats.

    PubMed

    Hsu, Ping-Chi; Kuo, Ya-Ting; Leon Guo, Yueliang; Chen, Jenq-Renn; Tsai, Shinn-Shyong; Chao, How-Ran; Teng, Yen-Ni; Pan, Min-Hsiung

    2016-06-01

    Di(2-ethylhexyl) phthalate (DEHP) is the most crucial phthalate derivative added to polyvinyl chloride as a plasticizer. This study examined the effects of low-dose exposure to DEHP during adolescence on sperm function in adult rats. The male rats were daily gavaged with 30, 100, 300, and 1000 µg kg(-1) of DEHP or corn oil from postnatal day (PND) 42 until PND 105. The selection of DEHP doses ranged from the mean daily intake by the normal-population exposure levels to no-observed-adverse-effect level of DEHP for the endpoints evaluated until adulthood. Significant increases in the percentage of sperm with tail abnormality, tendency for sperm DNA fragmentation index (DFI) and percentage of sperm with DFI were found in those exposed to 100, 300, and 1000 µg kg(-1) (P < 0.05). We observed a significant increase of hydrogen peroxide (H2 O2 ) generation in the sperm of the 1000 µg kg(-1) group compared with the control group (P < 0.05). The excessive production of sperm H2 O2 coincided with an increase in sperm DFI. In this study, the lowest-observed-adverse-effect level for sperm toxicity was considered to be 100 µg DEHP/kg/day in sperm morphology and chromatin DNA damage. Further research is necessary to clarify the mechanisms of DEHP-related sperm ROS generation on sperm DNA damage. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 706-712, 2016. PMID:25410017

  16. Induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia: effects of low doses and low dose rates

    SciTech Connect

    van Buul, P.P.; Richardson, J.F. Jr.; Goudzwaard, J.H.

    1986-01-01

    The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.

  17. The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex

    PubMed Central

    Kelly, Emily A.; Opanashuk, Lisa A.; Majewska, Ania K.

    2014-01-01

    Bisphenol-A (BPA) is a monomer used in the production of polycarbonate plastics, epoxies and resins and is present in many common household objects ranging from water bottles, can linings, baby bottles, and dental resins. BPA exposure has been linked to numerous negative health effects throughout the body, although the mechanisms of BPA action on the developing brain are still poorly understood. In this study, we sought to investigate whether low dose BPA exposure during a developmental phase when brain connectivity is being organized can cause long-term deleterious effects on brain function and plasticity that outlast the BPA exposure. Lactating dams were orally exposed to 25 μg/kg/day of BPA (one half the U.S. Environmental Protection Agency’s 50 μg/kg/day rodent dose reference) or vehicle alone from postnatal day (P)5 to P21. Pups exposed to BPA in their mother’s milk exhibited deficits in activity-dependent plasticity in the visual cortex during the visual critical period (P28). To determine the possible mechanisms underlying BPA action, we used immunohistochemistry to examine histological markers known to impact cortical maturity and developmental plasticity and quantified cortical dendritic spine density, morphology, and dynamics. While we saw no changes in parvalbumin neuron density, myelin basic protein expression or microglial density in BPA-exposed animals, we observed increases in spine density on apical dendrites in cortical layer five neurons but no significant alterations in other morphological parameters. Taken together our results suggest that exposure to very low levels of BPA during a critical period of brain development can have profound consequences for the normal wiring of sensory circuits and their plasticity later in life. PMID:25374513

  18. Exposure to low-dose (56)Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells.

    PubMed

    Miousse, Isabelle R; Shao, Lijian; Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Zhou, Daohong; Koturbash, Igor

    2014-07-01

    There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to (56)Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose (56)Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to (56)Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to (56)Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to (56)Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in

  19. Exposure to Low-Dose 56Fe-Ion Radiation Induces Long-Term Epigenetic Alterations in Mouse Bone Marrow Hematopoietic Progenitor and Stem Cells

    PubMed Central

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Zhou, Daohong

    2014-01-01

    There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to 56Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose 56Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to 56Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to 56Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to 56Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in the

  20. In Vivo Comparison of Radiation Exposure of Dual-Energy CT Versus Low-Dose CT Versus Standard CT for Imaging Urinary Calculi

    PubMed Central

    Jepperson, Maria A.; Cernigliaro, Joseph G.; Ibrahim, El-Sayed H.; Morin, Richard L.; Haley, William E.

    2015-01-01

    Abstract Purpose: Dual-energy computed tomography (DECT) is an emerging imaging modality with the unique capability of determining urinary stone composition. This study compares radiation exposure of DECT, standard single-energy CT (SECT), and low-dose renal stone protocol single-energy CT (LDSECT) for the evaluation of nephrolithiasis in a single in vivo patient cohort. Materials and Methods: Following institutional review board (IRB) approval, we retrospectively reviewed 200 consecutive DECT examinations performed on patients with suspected urolithiasis over a 6-month period. Of these, 35 patients had undergone examination with our LDSECT protocol, and 30 patients had undergone examination of the abdomen and pelvis with our SECT imaging protocol within 2 years of the DECT examination. The CT dose index volume (CTDIvol) was used to compare radiation exposure between scans. Image quality was objectively evaluated by comparing image noise. Statistical evaluation was performed using a Student's t-test. Results: DECT performed at 80/140 kVp and 100/140 kVp did not produce a significant difference in radiation exposure compared with LDSECT (p=0.09 and 0.18, respectively). DECT performed at 80/140 kVp and 100/140 kVp produced an average 40% and 31%, respectively, reduction in radiation exposure compared with SECT (p<0.001). For patients imaged with the 100/140 kVp protocol, average values for images noise were higher in the LDSECT images compared with DECT images (p<0.001) and there was no significant difference in image noise between DECT and SECT images in the same patient (p=0.88). Patients imaged with the 80/140 kVp protocol had equivocal image noise compared with LDSECT images (p=0.44), however, DECT images had greater noise compared with SECT images in the same patient (p<0.001). Of the 75 patients included in the study, stone material was available for 16; DECT analysis correctly predicted stone composition in 15/16 patients (93%). Conclusion: DECT

  1. Low Dose Effects in Psychopharmacology: Ontogenetic Considerations

    PubMed Central

    Spear, Linda Patia; Varlinskaya, Elena I.

    2005-01-01

    Low doses of psychoactive drugs often elicit a behavioral profile opposite to that observed following administration of more substantial doses. Our laboratory has observed that these effects are often age-specific in rats. For instance, whereas moderate to high doses of the dopamine agonist apomorphine increase locomotion, suppressed locomotor activity is seen following low dose exposure, with this low dose effect not emerging consistently until adolescence. A somewhat earlier emergence of a low dose “paradoxical” effect is seen with the 5HT1a receptor agonist, 8-OH-DPAT, with late preweanling, but not neonatal, rats showing increases in ingestive behavior at low doses but suppression at higher doses. In contrast to these ontogenetic increases in expression of low dose drug effects, low dose facilitation of social behavior is seen following ethanol only in adolescent rats and not their mature counterparts, although suppression of social interactions at higher doses is seen at both ages. This hormesis-like low dose stimulation appears related in part to overcompensation, with brief social suppression preceding the subsequent stimulation response, and also bears a number of ontogenetic similarities to acute tolerance, a well characterized, rapidly emerging adaptation to ethanol. Implications of these and other ontogenetic findings for studies of hormesis are discussed. PMID:19330157

  2. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos.

    PubMed

    Duan, Junchao; Yu, Yang; Li, Yang; Li, Yanbo; Liu, Hongcui; Jing, Li; Yang, Man; Wang, Ji; Li, Chunqi; Sun, Zhiwei

    2016-06-01

    The toxicity mechanism of nanoparticles on vertebrate cardiovascular system is still unclear, especially on the low-level exposure. This study was to explore the toxic effect and mechanisms of low-dose exposure of silica nanoparticles (SiNPs) on cardiac function in zebrafish embryos via the intravenous microinjection. The dosage of SiNPs was based on the no observed adverse effect level (NOAEL) of malformation assessment in zebrafish embryos. The mainly cardiac toxicity phenotypes induced by SiNPs were pericardial edema and bradycardia but had no effect on atrioventricular block. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased in a dose-dependent manner. Microarray analysis and bioinformatics analysis were performed to screen the differential expression genes and possible pathway involved in cardiac function. SiNPs induced whole-embryo oxidative stress and neutrophil-mediated cardiac inflammation in Tg(mpo:GFP) zebrafish. Inflammatory cells were observed in atrium of SiNPs-treated zebrafish heart by histopathological examination. In addition, the expression of TNNT2 protein, a cardiac contraction marker in heart tissue had been down-regulated compared to control group using immunohistochemistry. Confirmed by qRT-PCR and western blot assays, results showed that SiNPs inhibited the calcium signaling pathway and cardiac muscle contraction via the down-regulated of related genes, such as ATPase-related genes (atp2a1l, atp1b2b, atp1a3b), calcium channel-related genes (cacna1ab, cacna1da) and the regulatory gene tnnc1a for cardiac troponin C. Moreover, the protein level of TNNT2 was decreased in a dose-dependent manner. For the first time, our results demonstrated that SiNPs induced cardiac dysfunction via the neutrophil-mediated cardiac inflammation and cardiac contraction in zebrafish embryos. PMID:26551753

  3. AB211. Effect of early chronic low-dose tadalafil administration on erectile dysfunction after cavernous nerve injury in the rat model

    PubMed Central

    Bian, Jun; Liu, Cundong; Yang, Jiankun; Zhou, Qizhao; Sun, Xiangzhou; Deng, Chunhua

    2016-01-01

    Objective To investigate the effect of early chronic tadalafil administration on erectile dysfunction after cavernous nerve (CN) injury in the rat model. Methods Using the CN crush injury model, animals were divided into four groups: no CN injury (sham), bilateral CN injury exposed to either no tadalafil (control) or tadalafil at a dose (2 mg/kg) daily postoperation for 4 weeks, and normal group. At the time point, we assessed erectile function by apomorphine test, measurement of maximum intracavernosal pressure (ICP)/mean arterial pressure (MAP) ratio with major pelvic ganglion (MPG) electrical stimulation. For the histological analyses, the mid-shaft of penis were harvested. Immunohistochemical antibody staining was performed for nNOS and the numbers of nNOS-positive nerve fibers were recorded. Results Penile erection was observed in 50% (6/12) of the rats for (1.13±0.92) times within 30 min in control group, as compared with 0% (0/11) of the rats for (0.00±0.00) times in CN crush group (P<0.05), and 100% (10/10) of the rats for (2.03±0.97) times in sham group (P<0.05), and 100% (10/10) of the rats for (2.36±1.02) times in normal group (P<0.05). No significant differences in ICP/MAP ratio before MPG electrical stimulation in 4 groups (P>0.05), while ICP/MAP ratio after MPG electrical stimulation of control group was significantly higher than that of CN crush group (P<0.05), but significantly lower than that of sham group (P<0.05) and normal group (P<0.05). The numbers of nNOS-positive nerve fibers was significantly larger in control group than in CN crush group (54.11±5.02 vs. 21.34±3.17, P<0.05), but was significantly smaller than that of sham group (76.48±8.24, P<0.05) and normal group (81.09±7.25, P<0.05). Conclusions Early chronic low-dose tadalafil administration on erectile dysfunction after CN injury contributes to restoration of erectile function.

  4. Low-dose oral prolonged-release oxycodone/naloxone for chronic pain in elderly patients with cognitive impairment: an efficacy–tolerability pilot study

    PubMed Central

    Petrò, Emiliano; Ruffini, Elena; Cappuccio, Melania; Guerini, Valeria; Belotti, Gloria; Fascendini, Sara; Licini, Cristina; Marcassa, Claudio

    2016-01-01

    Objective This pilot study evaluated the efficacy and safety of prolonged-release oxycodone/naloxone (OXN-PR) in older subjects with chronic pain and mild-to-moderate cognitive impairment. Methods This was a prospective, observational, open-label study of 45-day duration. Patients with moderate-to-severe chronic pain and naïve to strong opioids were recruited from nursing homes and Alzheimer’s disease centers. OXN-PR was initiated at low doses (5 mg od or bid) and increased to a maximum of 20 mg bid. The primary efficacy endpoint was a pain intensity reduction of ≥30% from baseline (T0) to 15 days after OXN-PR initiation, as assessed by a numerical rating scale or the Pain Assessment in Advanced Dementia scale. Other assessments included the Barthel activities of daily living index, Neuropsychiatric Inventory, Bowel Function Index, and adverse events. Results The analysis included 53 patients (mean age, 83.0 years; mean Mini-Mental State Examination score, 18.6) with severe pain (median Numerical Rating Scale/Pain Assessment in Advanced Dementia 6) and substantial impairment in daily functioning (mean Barthel index, 32.2). The primary endpoint was achieved by 92.4% of patients. OXN-PR significantly reduced mean pain intensity from baseline to study end (numerical rating scale, 6.6±1.0 vs 2.3±1.1, P<0.0001; Pain Assessment in Advanced Dementia, 6.9±1.6 vs 0.9±0.8, P<0.0001). Substantial improvements from T0 to T45 in daily functioning (mean Barthel index, 32.2±16.8 vs 53.7±23.9, P<0.0001) and neuropsychiatric symptoms (mean Neuropsychiatric Inventory, 25.5±27.3 vs 8.8±9.0, P<0.0001) were also reported. OXN-PR was well tolerated and did not worsen bowel function. Conclusion In this pilot study, OXN-PR was effective in improving pain and other symptoms associated with dementia, with a favorable safety and tolerability profile. Large-scale trials in people with dementia are needed to improve clinical guidance for the assessment and treatment of pain in

  5. Low-Dose Carcinogenicity Studies

    EPA Science Inventory

    One of the major deficiencies of cancer risk assessments is the lack of low-dose carcinogenicity data. Most assessments require extrapolation from high to low doses, which is subject to various uncertainties. Only 4 low-dose carcinogenicity studies and 5 low-dose biomarker/pre-n...

  6. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  7. MAMMARY GLAND DEVELOPMENT AS A SENSITIVE END-POINT FOLLOWING ACUTE PERNATAL EXPOSURE TO A LOW DOSE ATRAZINE METABOLITE MIXTURE IN FEMALE LONG EVANS RATS

    EPA Science Inventory

    In order to characterize the potential developmental effects of atrazine (ATR) metabolites at low doses, an environmentally-based mixture (EBM) of ATR and its metabolites hydroxyatrazine, diaminochlorotriazine, deethylatrazine, and deisopropylatrazine was formulated based on surv...

  8. Genome Wide Evaluation of Normal Human Tissue in Response to Controlled, In vivo Low-Dose Low LET Ionizing Radiation Exposure: Pathways and Mechanisms Final Report, September 2013

    SciTech Connect

    Rocke, David M.

    2013-09-09

    During course of this project, we have worked in several areas relevant to low-dose ionizing radiation. Using gene expression to measure biological response, we have examined the response of human skin exposed in-vivo to radation, human skin exposed ex-vivo to radiation, and a human-skin model exposed to radiation. We have learned a great deal about the biological response of human skin to low-dose ionizing radiation.

  9. Pre-exposure with low-dose UVA suppresses lesion development and enhances Th1 response in BALB/c mice infected with Leishmania (Leishmania) amazonensis.

    PubMed

    Khaskhely, N M; Maruno, M; Takamiyagi, A; Uezato, H; Kasem, K M; Hosokawa, A; Kariya, K; Hashiguchi, Y; Landires, E A; Nonaka, S

    2001-07-01

    This study was conducted to determine whether exposing mice to ultraviolet (UV) radiation would alter the pathogenesis of infection with Leishmania (Leishmania) amazonensis (L. amazonensis) which causes progressive cutaneous disease in susceptible mouse strains. BALB/c mice were irradiated with 10 and 30 J/cm(2) UVA on shaved skin of the back from Dermaray (M-DMR-100) for 4 consecutive days before infection with Leishmania promastigotes. The course of disease was recorded by measuring the size of lesions at various times after infection. Mice groups irradiated with UVA 10 and 30 J/cm(2) showed significantly suppressed lesion development compared with the non-irradiated mice. Light and electron microscopy revealed a few parasites at the site of inoculation in UVA-irradiated subjects. Sandwich enzyme-linked-immunosorbent-assay (ELISA) examination of sera showed dose dependently upregulated interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-12, and downregulated interleukin (IL)-4 and interleukin (IL)-10 levels in UVA-irradiated as compared with the non-irradiated mice. Positive signals for IFN-gamma mRNA in irradiated mice were obtained by RT-PCR, while non-irradiated mice showed negative results. None of the examined samples showed signal for IL-4 mRNA. The present study disclosed that exposure of mice to different low-doses of UVA irradiation prior to infection may interfere with immunity to L. amazonensis in the murine model. This indicates that the cell-mediated response switch from Th2 to Th1 pattern suppressed the cutaneous lesions of L. amazonensis. PMID:11390207

  10. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    SciTech Connect

    Truta-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-07

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival.To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  11. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    NASA Astrophysics Data System (ADS)

    TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-01

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  12. Effects of Acute Low-Dose Exposure to the Chlorinated Flame Retardant Dechlorane 602 and Th1 and Th2 Immune Responses in Adult Male Mice

    PubMed Central

    Feng, Yu; Tian, Jijing; Xie, Heidi Qunhui; She, Jianwen; Xu, Sherry Li; Xu, Tuan; Tian, Wenjing; Fu, Hualing; Li, Shuaizhang; Tao, Wuqun; Wang, Lingyun; Chen, Yangsheng; Zhang, Songyan; Zhang, Wanglong; Guo, Tai L.; Zhao, Bin

    2016-01-01

    , Zhang S, Zhang W, Guo TL, Zhao B. 2016. Effects of acute low-dose exposure to the chlorinated flame retardant dechlorane 602 and Th1 and Th2 immune responses in adult male mice. Environ Health Perspect 124:1406–1413; http://dx.doi.org/10.1289/ehp.1510314 PMID:27081854

  13. Altered Gene Expression by Low-Dose Arsenic Exposure in Humans and Cultured Cardiomyocytes: Assessment by Real-Time PCR Arrays

    PubMed Central

    Mo, Jinyao; Xia, Yajuan; Wade, Timothy J.; DeMarini, David M.; Davidson, Mercy; Mumford, Judy

    2011-01-01

    Chronic arsenic exposure results in higher risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. The purpose of this study was to investigate the effects on expression of selected genes in the blood lymphocytes from 159 people exposed chronically to arsenic in their drinking water using a novel RT-PCR TaqMan low-density array (TLDA). We found that expression of tumor necrosis factor-α (TNF-α), which activates both inflammation and NF-κB-dependent survival pathways, was strongly associated with water and urinary arsenic levels. Expression of KCNA5, which encodes a potassium ion channel protein, was positively associated with water and toe nail arsenic levels. Expression of 2 and 11 genes were positively associated with nail and urinary arsenic, respectively. Because arsenic exposure has been reported to be associated with long QT intervals and vascular disease in humans, we also used this TLDA for analysis of gene expression in human cardiomyocytes exposed to arsenic in vitro. Expression of the ion-channel genes CACNA1, KCNH2, KCNQ1 and KCNE1 were down-regulated by 1-μM arsenic. Alteration of some common pathways, including those involved in oxidative stress, inflammatory signaling, and ion-channel function, may underlay the seemingly disparate array of arsenic-associated diseases, such as cancer, cardiovascular disease, and diabetes. PMID:21776218

  14. Altered gene expression by low-dose arsenic exposure in humans and cultured cardiomyocytes: assessment by real-time PCR arrays.

    PubMed

    Mo, Jinyao; Xia, Yajuan; Wade, Timothy J; DeMarini, David M; Davidson, Mercy; Mumford, Judy

    2011-06-01

    Chronic arsenic exposure results in higher risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. The purpose of this study was to investigate the effects on expression of selected genes in the blood lymphocytes from 159 people exposed chronically to arsenic in their drinking water using a novel RT-PCR TaqMan low-density array (TLDA). We found that expression of tumor necrosis factor-α (TNF-α), which activates both inflammation and NF-κB-dependent survival pathways, was strongly associated with water and urinary arsenic levels. Expression of KCNA5, which encodes a potassium ion channel protein, was positively associated with water and toe nail arsenic levels. Expression of 2 and 11 genes were positively associated with nail and urinary arsenic, respectively. Because arsenic exposure has been reported to be associated with long QT intervals and vascular disease in humans, we also used this TLDA for analysis of gene expression in human cardiomyocytes exposed to arsenic in vitro. Expression of the ion-channel genes CACNA1, KCNH2, KCNQ1 and KCNE1 were down-regulated by 1-μM arsenic. Alteration of some common pathways, including those involved in oxidative stress, inflammatory signaling, and ion-channel function, may underlay the seemingly disparate array of arsenic-associated diseases, such as cancer, cardiovascular disease, and diabetes. PMID:21776218

  15. Oral (gavage), in utero and postnatal exposure of Sprague-Dawley rats to low doses of tributyltin chloride. Part 1: Toxicology, histopathology and clinical chemistry.

    PubMed

    Cooke, G M; Tryphonas, H; Pulido, O; Caldwell, D; Bondy, G S; Forsyth, D

    2004-02-01

    Tributyltin (TBT) is a biocide that contaminates foods, especially shellfish. TBT is an endocrine disrupter in several marine species and is neurotoxic and immunotoxic in mammals. We have examined the effects of exposure to low doses of tributyltin chloride (TBTC) from day 8 of gestation until adulthood. Pregnant rats were gavaged daily with 0, 0.025, 0.25 or 2.5 mg TBTC/kg body weight from day 8 of gestation until weaning. Stomach contents of suckling pups contained undetectable levels of TBT and dibutyltin (DBT) levels were detectable only in the highest TBTC dose used, indicating negligible lactational transfer to pups. Post weaning, pups were gavaged daily with the same dose of TBTC administered to their mothers and sacrificed on post-natal days (PND) 30 (males and females), 60 (females) and 90 (males). TBTC had no effects on dams' body weights, food consumption, litter size, sex ratio or survival of pups to weaning. However, all doses of TBTC significantly affected parameters of the growth profile of the pups (mean body weights, average slope, curvature) and the ratio of weekly food consumption to weekly body weight gain indicated enhanced food conversion to body mass in females but a decreased conversion in males. Liver, spleen and thymus weights were also affected by TBTC. In male pups dosed at 2.5 mg/kg/day, reduced serum thyroxine levels were evident, indicating that the thyroid is a target for TBTC toxicity. No histopathological lesions were seen in the liver but elevated serum alanine aminotransferase, gamma-glutamyl transferase and amylase indicated hepatotoxicity. Significant decreases in liver weights in female pups exposed to 0.025 mg/kg/day TBTC were observed at PND 60. Decreases in spleen and thymus weights also pointed towards toxic effects of TBTC on the immune system. The 0.025 mg/kg/day TBTC should have been a no affect dose and yet this dose caused significant effects on growth profiles, decreased liver weights and elevated serum GGT levels in

  16. ADVANCE: Study to Evaluate Cinacalcet Plus Low Dose Vitamin D on Vascular Calcification in Subjects With Chronic Kidney Disease Receiving Hemodialysis

    ClinicalTrials.gov

    2014-07-14

    Chronic Kidney Disease; End Stage Renal Disease; Coronary Artery Calcification; Vascular Calcification; Calcification; Cardiovascular Disease; Chronic Renal Failure; Hyperparathyroidism; Kidney Disease; Nephrology; Secondary Hyperparathyroidism

  17. An innovative in vitro device providing continuous low doses of gamma-rays and altered gravity mimicking spatial exposure: dosimetry study

    NASA Astrophysics Data System (ADS)

    Collin, Laetitia; Courtade-Saidi, Monique; Pereda Loth, Veronica; Franceries, Xavier; Afonso, Anne Sophie; Ayala, Alicia; Bardies, Manuel

    Astronauts are exposed to microgravity and chronic irradiation. Experimental conditions combining these two factors are difficult to reproduce on earth. The aim of our study was to create an experimental device able to combine chronic irradiation and altered gravity that may be used for cell cultures or plant models. Irradiation was provided with Thorium nitrate powder, conditioned in several bags in order to obtain a sealed source. This source was placed in an incubator. Lead leafs covered the internal walls of the incubator in order to protect people outside from radiations. Cell plates or plants seeds could be placed on direct contact with the source or at different distances above the source. Moreover, a random positioning machine (RPM) was placed inside the incubator and positioned on the source. The dosimetry was performed for different experimental conditions. The activity of the source was established considering all the decay chain of thorium. The spectrum of the source calculated according to the natural decrease of radioactivity was compared with gamma spectrometry (InterceptorTM) and showed a very good adequacy. The fluence evaluated with a gamma detector was closed to the theoretical fluence evaluated with our model, attesting that the source was uniformly distributed. Dosimetry was performed with radiophotoluminescent dosimeters (RPL) placed for one month exposition in different locations (x and y axis) inside cell culture dishes. When the dishes were placed directly on the source, we obtained a dose rate from 660 to 983 mSv/year, while it was between 80 to 127 mSv/year at a distance of 14.5 cm above the source. Using the RPM placed on the source we reached median dose rate levels of 140 mSv/year. In conclusion, we have elaborated a new device allowing the combination of chronic radiation exposure and altered gravity. This device can be used by researchers interested in the field of space biology.

  18. Effects of prenatal exposure to a low dose atrazine metabolite mixture on pubertal timing and prostate development of male Long-Evans rats

    SciTech Connect

    Stanko, Jason; Enoch, Rolondo; Rayner, Jennifer L; Davis, Christine; Wolf, Douglas; Malarkey, David; Fenton, Suzanne

    2010-12-01

    The present study examines the postnatal reproductive development of male rats following prenatal exposure to an atrazine metabolite mixture (AMM) consisting of the herbicide atrazine and its environmental metabolites diaminochlorotriazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine. Pregnant Long-Evans rats were treated by gavage with 0.09, 0.87, or 8.73 mg AMM/kg body weight (BW), vehicle, or 100 mg ATR/kg BW positive control, on gestation days 15 19. Preputial separation was significantly delayed in 0.87 mg and 8.73 mg AMM-exposed males. AMM-exposed males demonstrated a significant treatment-related increase in incidence and severity of inflammation in the prostate on postnatal day (PND) 120. A dose-dependent increase in epididymal fat masses and prostate foci were grossly visible in AMM-exposed offspring. These results indicate that a short, late prenatal exposure to mixture of chlorotriazine metabolites can cause chronic prostatitis in male LE rats. The mode of action for these effects is presently unclear.

  19. Chemoimmunotherapy for relapsed/refractory and progressive 17p13-deleted chronic lymphocytic leukemia (CLL) combining pentostatin, alemtuzumab, and low-dose rituximab is effective and tolerable and limits loss of CD20 expression by circulating CLL cells.

    PubMed

    Zent, Clive S; Taylor, Ronald P; Lindorfer, Margaret A; Beum, Paul V; LaPlant, Betsy; Wu, Wenting; Call, Timothy G; Bowen, Deborah A; Conte, Michael J; Frederick, Lori A; Link, Brian K; Blackwell, Sue E; Veeramani, Suresh; Baig, Nisar A; Viswanatha, David S; Weiner, George J; Witzig, Thomas E

    2014-07-01

    Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) patients with purine analog refractory disease or TP53 dysfunction still have limited treatment options and poor survival. Alemtuzumab-containing chemoimmunotherapy regimens can be effective but frequently cause serious infections. We report a Phase II trial testing the efficacy and tolerability of a short-duration regimen combining pentostatin, alemtuzumab, and low-dose high-frequency rituximab designed to decrease the risk of treatment-associated infections and to limit the loss of CD20 expression by CLL cells. The study enrolled 39 patients with progressive CLL that was either relapsed/refractory (n = 36) or previously untreated with 17p13 deletion (17p13-) (n = 3). Thirteen (33%) patients had both 17p13- and TP53 mutations predicted to be dysfunctional, and eight patients had purine analog refractory CLL without TP53 dysfunction. Twenty-six (67%) patients completed therapy, with only five (13%) patients having treatment-limiting toxicity and no treatment-related deaths. Twenty-two (56%) patients responded to treatment, with 11 (28%) complete responses (four with incomplete bone marrow recovery). Median progression-free survival was 7.2 months, time to next treatment was 9.1 months, and overall survival was 34.1 months. The majority of deaths (82%) were caused by progressive disease, including transformed diffuse large B-cell lymphoma (n = 6). Correlative studies showed that low-dose rituximab activates complement and natural killer cells without a profound and sustained decrease in expression of CD20 by circulating CLL cells. We conclude that pentostatin, alemtuzumab, and low-dose high-frequency rituximab is a tolerable and effective therapy for CLL and that low-dose rituximab therapy can activate innate immune cytotoxic mechanisms without substantially decreasing CD20 expression. PMID:24723493

  20. LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group.

    PubMed

    Zeng, Liudan; Ma, Huimin; Pan, Shangxia; You, Jing; Zhang, Gan; Yu, Zhiqing; Sheng, Guoying; Fu, Jiamo

    2016-08-01

    Triclosan (TCS), a frequently used antimicrobial agent in pharmaceuticals and personal care products, exerts liver tumor promoter activities in mice. Previous work showed high-dose TCS (1.25-10μM) induced global DNA hypomethylation in HepG2 cells. However, whether or how tumor suppressor gene methylation changed in HepG2 cells after low-dose and long-term TCS exposure is still unknown. We investigate here the effects and mechanisms of DNA methylation of global DNA(GDM), repetitive genes, and liver tumor suppressor gene (p16) after exposing HepG2 cells to low-dose TCS (0.625-5nM)for two weeks using HPLC-MS/MS, Methylight, Q-MSP, Pyrosequencing, and Massarray methods. We found that low-dose TCS exposure decreased repetitive elements LINE-1 methylation levels, but not global DNA methylation, through down-regulating DNMT1 (DNA methyltransferase 1) and MeCP2 (methylated DNA binding domain) expression, and up-regulating 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. Interestingly, low-dose TCS elevated p16 gene methylation and inhibited p16 expression, which were not observed in high-dose (10μM) group. Meanwhile, methyl-triclosan could not induce these two types of DNA methylation changes, suggesting the involvement of hydroxyl in TCS-mediated DNA methylation changes. Collectively, our results suggested low concentrations of TCS adversely affected HepG2 cells through DNA methylation dysregulation, and hydroxyl group in TCS played an important role in the effects. This study provided a better understanding on hepatotoxicity of TCS at environmentally relevant concentrations through epigenetic pathway. PMID:26970259

  1. Mycosis fungoides progression and chronic solvent exposure.

    PubMed

    Nikkels, Arjen F; Quatresooz, Pascale; Delvenne, Philippe; Balsat, Alain; Piérard, Gérald E

    2004-01-01

    The effect of repeated exposure to specific chemicals on the initiation or progression of mycosis fungoides (MF) remains unsettled. A patient with low-grade patch stage MF progressively developed MF plaques restricted to his arms, and a tumour on his right thigh. These areas were subject to repeated exposure to solvents. His thigh was indeed in close contact with his trousers pocket where he used to store a wiping rag drenched into white spirit and cellulosic thinner. Immunophenotyping these lesions revealed a dense LCA+, CD2+, CD3+, CD4+, CD5+, CD7+, CD45+, CD45RO+ T-cell infiltrate admixed with many factor XIIIa+ dendrocytes. T-cell receptor rearrangement analysis identified a monoclonal T-cell infiltrate. An internal work-up remained negative. Stopping further solvent exposure failed to improve his condition. Oral corticotherapy combined with low-dose interferon-alpha2a halted disease progression. This observation suggests that long-term solvent exposure may trigger MF and hasten its progression from the patch stage to the plaque and tumour stages. PMID:15057012

  2. Harderian Gland Tumorigenesis: Low-Dose and LET Response.

    PubMed

    Chang, Polly Y; Cucinotta, Francis A; Bjornstad, Kathleen A; Bakke, James; Rosen, Chris J; Du, Nicholas; Fairchild, David G; Cacao, Eliedonna; Blakely, Eleanor A

    2016-05-01

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ∼70 keV/μm) and 1,000 MeV/u titanium (LET ∼100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the

  3. Alleviation of pre-exposure of mouse brain with low-dose 12C6+ ion or 60Co gamma-ray on male reproductive endocrine damages induced by subsequent high-dose irradiation.

    PubMed

    Zhang, Hong; Liu, Bing; Zhou, Qingming; Zhou, Guangming; Yuan, Zhigang; Li, Wenjian; Duan, Xin; Min, Fengling; Xie, Yi; Li, Xiaoda

    2006-12-01

    Irradiation has been widely reported to damage organisms by attacking on proteins, nucleic acid and lipids in cells. However, radiation hormesis after low-dose irradiation has become the focus of research in radiobiology in recent years. To investigate the effects of pre-exposure of mouse brain with low-dose (12)C6+ ion or 60Co gamma (gamma)-ray on male reproductive endocrine capacity induced by subsequent high-dose irradiation, the brains of the B6C3F1 hybrid strain male mice were irradiated with 0.05 Gy of (12)C6+ ion or 60Co gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy as challenging irradiation dose at 4 h after pre-exposure. Serum pituitary gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), testosterone, testis weight, sperm count and shape were measured on the 35th day after irradiation. The results showed that there was a significant reduction in the levels of serum FSH, LH, testosterone, testis weight and sperm count, and a significant increase in sperm abnormalities by irradiation of the mouse brain with 2 Gy of (12)C6+ ion or 60Co gamma-ray. Moreover, the effects were more obvious in the group irradiated by (12)C6+ ion than in that irradiated by 60Co gamma-ray. Pre-exposure with low-dose (12)C6+ ion or 60Co gamma-ray significantly alleviated the harmful effects induced by a subsequent high-dose irradiation. PMID:17121657

  4. EARLY INDICATORS OF NITRATE STRESS; EFFECTS TO ECOSYSTEMS OF CHRONIC EXPOSURE TO LOW DOSES OF BIOAVAILABE NITROGEN

    EPA Science Inventory

    Throughout the eastern United States, from the Front Range of the Rocky Mountains to the Atlantic Ocean, bioavailable nitrogen has been falling in the rain since the industrial revolution. Bioavailable nitrogen is a limiting nutrient throughout this region. While long-term rese...

  5. EARLY INDICATORS OF NITRATE STRESS; EFFECTS TO ECOSYSTEMS OF CHRONIC EXPOSURE TO LOW DOSES OF BIOAVAILABLE NITROGEN

    EPA Science Inventory

    Throughout the eastern United States, from the Front Range of the Rocky Mountains to the Atlantic Ocean, bioavailable nitrogen has been falling in the rain since the industrial revolution. Bioavailable nitrogen is a limiting nutrient throughout this region. While long-term rese...

  6. Epigenomic Adaptation to Low Dose Radiation

    SciTech Connect

    Gould, Michael N.

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  7. Overexpression of variant PNPLA3 gene at I148M position causes malignant transformation of hepatocytes via IL-6-JAK2/STAT3 pathway in low dose free fatty acid exposure: a laboratory investigation in vitro and in vivo.

    PubMed

    Liu, Zhengtao; Chen, Tianchi; Lu, Xiaoxiao; Xie, Haiyang; Zhou, Lin; Zheng, Shusen

    2016-01-01

    Epidemiological survey identified that the variant patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene at I148M position exerts direct effect in promoting hepatocellular carcinoma (HCC) under extraneous oxidative stress by interaction with obesity. However, the mechanism is still unknown. HepG2 cells were overexpressed by transinfection of PNPLA3 with wild-type 148I (PNPLA3(WT)) and mutant 148M (PNPLA3(I148M)), respectively. Variation in metabolic indicators, hepatic steatosis, biological behaviors and signaling molecules related to cancer promotion was measured in hepatocytes using low-dose free fatty acid (FFA) exposure. Effect of PNPLA3(I148M) on xenograft biology and its interaction with dietary obesity were also evaluated in animal study. Cells overexpresssing PNPLA3(I148M) in low-dose FFA incubation showed more proliferation, migration, invasion, and less apoptosis (P<0.05). Low-dose FFA specifically activated JAK2/STAT3 phosphorylation of PNPLA3(I148M) cells via upregulation of interleukin-6. Animal study showed high-fat diet accelerated growth of xenografts derived from PNPLA3(I148M) cells incubated in low-dose FFA. In low oxidative stress, PNPLA3(I148M) initiated the hepatocyte malignant transformation through the activation of inflammation-mediated JAK/STAT pathway. Dietary obesity amplified the growth of tumor from PNPLA3(I148M) cells by interaction with local FFA incubation. Anti-inflammation and weight loss might be potential approaches for preventing HCC in high-risk population carrying PNPLA3 variant. PMID:27186262

  8. Overexpression of variant PNPLA3 gene at I148M position causes malignant transformation of hepatocytes via IL-6-JAK2/STAT3 pathway in low dose free fatty acid exposure: a laboratory investigation in vitro and in vivo

    PubMed Central

    Liu, Zhengtao; Chen, Tianchi; Lu, Xiaoxiao; Xie, Haiyang; Zhou, Lin; Zheng, Shusen

    2016-01-01

    Epidemiological survey identified that the variant patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene at I148M position exerts direct effect in promoting hepatocellular carcinoma (HCC) under extraneous oxidative stress by interaction with obesity. However, the mechanism is still unknown. HepG2 cells were overexpressed by transinfection of PNPLA3 with wild-type 148I (PNPLA3WT) and mutant 148M (PNPLA3I148M), respectively. Variation in metabolic indicators, hepatic steatosis, biological behaviors and signaling molecules related to cancer promotion was measured in hepatocytes using low-dose free fatty acid (FFA) exposure. Effect of PNPLA3I148M on xenograft biology and its interaction with dietary obesity were also evaluated in animal study. Cells overexpresssing PNPLA3I148M in low-dose FFA incubation showed more proliferation, migration, invasion, and less apoptosis (P<0.05). Low-dose FFA specifically activated JAK2/STAT3 phosphorylation of PNPLA3I148M cells via upregulation of interleukin-6. Animal study showed high-fat diet accelerated growth of xenografts derived from PNPLA3I148M cells incubated in low-dose FFA. In low oxidative stress, PNPLA3I148M initiated the hepatocyte malignant transformation through the activation of inflammation-mediated JAK/STAT pathway. Dietary obesity amplified the growth of tumor from PNPLA3I148M cells by interaction with local FFA incubation. Anti-inflammation and weight loss might be potential approaches for preventing HCC in high-risk population carrying PNPLA3 variant. PMID:27186262

  9. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  10. Low dose mercury toxicity and human health.

    PubMed

    Zahir, Farhana; Rizwi, Shamim J; Haq, Soghra K; Khan, Rizwan H

    2005-09-01

    Post Minamata incident there has been awareness about mercury toxicity even among the general public. Previous researches contributed a vast amount of data regarding acute mercury exposure, but gradually information about the low dose [Ninomiya, T., Ohmori, H., Hashimoto, K., Tsuruta, K., Ekino, S., 1995. Expansion of methylmercury poisoning outside minamata: an epidemiological study on chronic methylmercury poisoninig outside of Minamata. Environ. Res. 70 (1) 47-50; Lebel, J., Mergler, D., Lucotte, M., Amorim, M., Dolbec, J., Miranda, D., Arantes, G., Rheault, I., Pichet, P., 1996. Evidence of early nervous system dysfunction in Amazonian populations exposed to low-levels of methylmercury. Neurotoxicology 17 (1) 157-167] of mercury toxicity has been trickling in. With mercury contaminating rain-, ground- and sea-water no one is safe. Polluted water leads to mercury laced fish, meat and vegetable. In aquatic environments, inorganic mercury is microbiologically transformed into lipophilic organic compound 'methylmercury'. This transformation makes mercury more prone to biomagnification in food chains. Consequently, populations with traditionally high dietary intake of food originating from fresh or marine environment have highest dietary exposure to mercury. Extensive research done on locals across the globe have already established this, persons who routinely consume fish or a particular species of fish are at an increased risk of methylmercury poisoning. The easy access of the toxicant to man through multiple pathways air, water, food, cosmetic products and even vaccines increase the exposure. Foetus and children are more susceptible towards mercury toxicity. Mothers consuming diet containing mercury pass the toxicant to foetus and to infants through breast milk. Decreased performance in areas of motor function and memory has been reported among children exposed to presumably safe mercury levels. Similarly, disruption of attention, fine motor function and verbal

  11. Chronic exposures and male fertility: the impacts of environment, diet, and drug use on spermatogenesis.

    PubMed

    Gabrielsen, J S; Tanrikut, C

    2016-07-01

    Several recent studies have suggested that sperm concentrations and semen quality have been decreasing over the past several decades in many areas of the world. The etiology of these decreases is currently unknown. Acute events can have significant impacts on spermatogenesis and are often readily identified during the male fertility evaluation. The majority of male factor infertility, however, is idiopathic. Chronic, low-dose exposures to chemicals and nutrients are more difficult to identify, but are extremely prevalent. These exposures have been shown to have dramatic effects on both individual and community health and interest in the cumulative and synergistic impacts of such agents on spermatogenesis has been increasing. While our understanding of these potential hazards is evolving, it is clear that they may significantly influence male reproductive potential. This review explores the literature related to effects of chronic exposures from drug use, dietary intake, and the environment on spermatogenesis in humans and animals. PMID:27230702

  12. Chronic low dose tumor necrosis factor-α (TNF) suppresses early bone accrual in young mice by inhibiting osteoblasts without affecting osteoclasts.

    PubMed

    Gilbert, L C; Chen, H; Lu, X; Nanes, M S

    2013-09-01

    The inflammatory cytokine tumor necrosis factor-α (TNF-α) is known to cause bone resorption and inhibit bone formation in arthritis and aging but less is known about TNF effects in the young growing skeleton. While investigating the mechanism of bone loss in TNF transgenic mice, we identified an early TNF-sensitive period marked by suppression of osteoblasts and bone accrual as the sole mechanism of TNF action, without an effect on osteoclasts or bone resorption. TgTNF mice express low concentrations of hTNFα (≤5 pg/ml). Osteoblasts cultured from TgTNF mice express reduced levels of RUNX2, Osx, alkaline phosphatase, bone sialoprotein, and osteocalcin and have delayed formation of mineralized nodules. Early accrual of bone in TgTNF mice is suppressed until 6 weeks of age, after which the rate of bone accrual normalizes without catch up. Histomorphometry revealed that TgTNF mice fail to generate a transient surge in osteoblast number that is seen in wild type (WT) mice at 4 weeks. Osteoclasts, TRAP staining, erosive surfaces, serum CTx, and OPG/RANKL expression did not differ between young TgTNF and WT mice. Canonical Wnts and signaling through β-catenin were reduced in TgTNF mice at 4 weeks and partially recovered by 12 weeks, associated with reduced cytoplasm to nuclear transfer of β-catenin and Wnt regulated genes. TgTNF mice were crossed with BatGal Wnt reporter mice. Active Wnt signaling in tibial trabecular lining cells was reduced in TgTNF mice at 4 weeks compared to control littermates. Our results demonstrate that a low dose inflammatory stimulus is sufficient to inhibit the early surge in osteoblasts and optimal bone formation of young mice independent of changes in osteoclasts. TNF inhibition of the Wnt pathway contributes to the suppression of osteoblasts. PMID:23756233

  13. The stage-specific testicular germ cell apoptotic response to low-dose radiation and 2,5-hexanedione combined exposure. II: qRT-PCR array analysis reveals dose dependent adaptive alterations in the apoptotic pathway.

    PubMed

    Catlin, Natasha R; Huse, Susan M; Boekelheide, Kim

    2014-12-01

    Testicular effects of chemical mixtures may differ from those of the individual chemical constituents. This study assessed the co-exposure effects of the model germ cell- and Sertoli cell-specific toxicants, X-irradiation (x-ray), and 2,5-hexanedione (HD), respectively. In high-dose studies, HD has been shown to attenuate x-ray-induced germ cell apoptosis. Adult rats were exposed to different levels of x-ray (0.5 Gy, 1 Gy, and 2 Gy) or HD (0.33%), either alone or in combination. To assess cell type-specific attenuation of x-ray effects with HD co-exposure, we used laser capture microdissection (LCM) to enrich the targeted cell population and examine a panel of apoptosis-related transcripts using PCR arrays. The apoptosis PCR arrays identified significant dose-dependent treatment effects on several genes, with downregulation of death receptor 5 (DR5), Naip2, Sphk2, Casp7, Aven, Birc3, and upregulation of Fas. The greatest difference in transcript response to exposure was seen with 0.5 Gy x-ray exposure, and the attenuation effect seen with the combined high-dose x-ray and HD did not persist into the low-dose range. Examination of protein levels in staged tubules revealed a significant upregulation in DR5, following high-dose co-exposure. These results provide insight into the testis cell-specific apoptotic response to low-dose co-exposures of model testicular toxicants. PMID:24670816

  14. Chemoimmunotherapy for Relapsed/Refractory and Progressive 17p13 Deleted Chronic Lymphocytic Leukemia (CLL) Combining Pentostatin, Alemtuzumab, and Low Dose Rituximab is Effective and Tolerable and Limits Loss of CD20 Expression by Circulating CLL Cells

    PubMed Central

    Zent, Clive S.; Taylor, Ronald P.; Lindorfer, Margaret A.; Beum, Paul V.; LaPlant, Betsy; Wu, Wenting; Call, Timothy G.; Bowen, Deborah A.; Conte, Michael J.; Frederick, Lori A.; Link, Brian K.; Blackwell, Sue E.; Veeramani, Suresh; Baig, Nisar A.; Viswanatha, David S.; Weiner, George J.; Witzig, Thomas E.

    2014-01-01

    Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) patients with purine analogue refractory disease or TP53 dysfunction still have limited treatment options and poor survival. Alemtuzumab containing chemoimmunotherapy regimens can be effective but frequently cause serious infections. We report a phase II trial testing the efficacy and tolerability of a short duration regimen combining pentostatin, alemtuzumab, and low dose high frequency rituximab (PAR) designed to decrease the risk of treatment associated infections and limit loss of CD20 expression by CLL cells. The study enrolled 39 patients with progressive CLL that was either relapsed/refractory (n=36) or previously untreated with 17p13 deletion (17p13-)(n=3). Thirteen (33%) patients had both 17p13- and TP53 mutations predicted to be dysfunctional and eight patients had purine analogue refractory CLL without TP53 dysfunction. Twenty-six (67%) patients completed therapy with only five (13%) patients having treatment limiting toxicity, and no treatment related deaths. Twenty-two (56%) patients responded to treatment with 11 (28%) complete responses (four with incomplete bone marrow recovery). Median progression free survival was 7.2 months, time to next treatment 9.1 months, and overall survival 34.1 months. The majority of deaths (82%) were caused by progressive disease including transformed diffuse large B cell lymphoma (n=6). Correlative studies showed that low dose rituximab activates complement and NK cells without a profound and sustained decrease in expression of CD20 by circulating CLL cells. We conclude that PAR is a tolerable and effective therapy for CLL and that low dose rituximab therapy can activate innate immune cytotoxic mechanisms without substantially decreasing CD20 expression. PMID:24723493

  15. [Nervous disorders in those engaged in the cleanup of the accident at the Chernobyl Atomic Electric Power Station subjected to ionizing radiation exposure at low doses].

    PubMed

    Panchenko, E N; Kazakova, S E; Safonova, E F

    1993-07-01

    Neurological, psychiatric, somatic and immune status were studied in 256 patients subjected to ionizing radiation at the dose of 10-45 cGy during liquidation of aftermath of the Chernobyl accident. In 61% of them neurocirculatory dystonia was found, 39% of patients revealed dyscirculatory encephalopathy. Alongside with dystonic disorders structural changes of vessels were detected. Asthenoneurosis diagnosed in 97% of patients was recognized as a key syndrome in 53%, while in 23%--obsessional-phobic syndrome dominated, in 7%--depressive syndrome and in 14%--psycho-organic syndrome were at the foreground. Somatic status in most patients (67%) was burdened by diseases of digestive tract. 191 patients revealed considerable immune imbalance. In 95 patients (33%) it was less pronounced and consisted in moderate decrease of TPR/TPS ratio. Degrees of immune and neurological disorders correlated closely. The conclusion was made that low-dose radiation induces primary damage of immunity and vessels with secondary nervous system involvement. That is why connection between neurological symptoms and radiation in subjects who took part in liquidation of Chernobyl accident aftermath may be considered probable only in association with immune and circulatory disorders. PMID:8079465

  16. Low-dose paroxetine exposure causes lifetime declines in male mouse body weight, reproduction and competitive ability as measured by the novel organismal performance assay

    PubMed Central

    Gaukler, Shannon M.; Ruff, James S.; Galland, Tessa; Kandaris, Kirstie A.; Underwood, Tristan K.; Liu, Nicole M.; Young, Elizabeth L.; Morrison, Linda C.; Yost, Garold S.; Potts, Wayne K.

    2014-01-01

    Paroxetine is a selective serotonin reuptake inhibitor (SSRI) that is currently available on the market and is suspected of causing congenital malformations in babies born to mothers who take the drug during the first trimester of pregnancy. We utilized organismal performance assays (OPAs), a novel toxicity assessment method, to assess the safety of paroxetine during pregnancy in a rodent model. OPAs utilize genetically diverse wild mice (Mus musculus) to evaluate competitive performance between experimental and control animals as they compete amongst each other for limited resources in semi-natural enclosures. Performance measures included reproductive success, male competitive ability and survivorship. Paroxetine-exposed males weighed 13% less, had 44% fewer offspring, dominated 53% fewer territories and experienced a 2.5-fold increased trend in mortality, when compared with controls. Paroxetine-exposed females had 65% fewer offspring early in the study, but rebounded at later time points. In cages, paroxetine-exposed breeders took 2.3 times longer to produce their first litter and pups of both sexes experienced reduced weight when compared with controls. Low-dose paroxetine-induced health declines detected in this study were undetected in preclinical trials with dose 2.5-8 times higher than human therapeutic doses. These data indicate that OPAs detect phenotypic adversity and provide unique information that could useful towards safety testing during pharmaceutical development. PMID:25446017

  17. Health Effects of Chronic Arsenic Exposure

    PubMed Central

    Hong, Young-Seoub; Song, Ki-Hoon; Chung, Jin-Yong

    2014-01-01

    Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments. PMID:25284195

  18. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D.

    1990-01-01

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers two one-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR linearly decreased with HCHO exposure, with estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children.

  19. Chronic effects on JP-8 jet fuel exposure on the lungs. Final technical report, 1 April 1991-31 March 1994

    SciTech Connect

    Witten, M.L.

    1994-06-02

    There are four major findings from the three years of work devoted to the effects of chronic JP-8 jet fuel exposure on the lungs and secondary organs. These findings are the following chronic exposure to JP-8 jet fuel alters pulmonary function and lung structures with an acute response with as little as seven days of low dose, approximately 500 mg/m3, exposure to JP-8 jet fuel; chronic exposure to JP-8 jet fuel increased liver, spleen, and kidney weights compared to controls. Microscopic evaluation of liver sections were normal; however, kidney and spleen had histological changes consistent with organic solvent exposure. There is a correlation between JP-8 jet fuel exposure-induced decreases in lung Substance P levels and lung neutral endopeptidase levels. Chronic exposure to JP-8 jet fuel caused a decrease in lung Substance P levels with a corresponding increase in lung neutral endopeptidase levels; and, there is a recovery process in the 56 day low dose JP-8 jet fuel-exposed lungs as marked by a return to baseline and longitudinal control 99mTcDTPA values. The 99mTcDTPA data was very consistent with our pathologic findings of very little lung injury in the 56 day low dose JP-8 jet fuel-exposed rats. We speculate that this finding indicates that there is a 'threshold' level of JP-8 jet fuel exposure that the lungs' defense mechanism(s) can tolerate.

  20. Role of DNA methylation in the adaptive responses induced in a human B lymphoblast cell line by long-term low-dose exposures to γ-rays and cadmium.

    PubMed

    Ye, Shuang; Yuan, Dexiao; Xie, Yuexia; Pan, Yan; Shao, Chunlin

    2014-10-01

    The possible involvement of epigenetic factors in health risks due to exposures to environmental toxicants and ionizing radiation is poorly understood. We have tested the hypothesis that DNA methylation contributes to the adaptive response (AR) to ionizing radiation or Cd. Human B lymphoblast cells HMy2.CIR were irradiated (0.032 Gy γ-rays) three times per week for 4 weeks or exposed to CdCl2 (0.005, 0.01, or 0.1 μM) for 3 months, and then challenged with a high dose of Cd (50 or 100 μM) or γ-rays (2 Gy). Long-term low-dose radiation (LDR) or long-term low-dose Cd exposure induced AR against challenging doses of Cd and irradiation, respectively. When the primed cells were treated with 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, the ARs were eliminated. These results indicate that DNA methylation is involved in the induction of AR in HMy2.CIR cells. PMID:25308704

  1. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation

    PubMed Central

    Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J

    2015-01-01

    Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases. PMID:25495009

  2. Effects of Prenatal Exposure to a Low Dose Atrazine Metabolite Mixture on pubertal timing and prostrate Development of Male Long Evans Rats.

    EPA Science Inventory

    The present study examines the postnatal reproductive development of male rats following prenatal exposure to an atrazine metabolite mixture (AMM) consisting of the herbicide atrazine and its environmental metabolites diaminochlorotriazine, hydroxyatrazine, deethylatrazine, and d...

  3. Low-dose fludarabine with or without darbepoetin alfa in patients with chronic lymphocytic leukemia and comorbidity: primary results of the CLL9 trial of the German CLL Study Group.

    PubMed

    Goede, Valentin; Busch, Raymonde; Bahlo, Jasmin; Chataline, Viktoria; Kremers, Stephan; Müller, Lothar; Reschke, Daniel; Schlag, Rudolf; Schmidt, Burkhard; Vehling-Kaiser, Ursula; Wedding, Ulrich; Stilgenbauer, Stefan; Hallek, Michael

    2016-01-01

    This study was planned as a phase 3 trial to investigate low-dose fludarabine with or without darbepoetin alfa in older patients with previously untreated or treated chronic lymphocytic leukemia (CLL) and comorbidity. Due to slow recruitment, the study was terminated prematurely after accrual of 97 patients who, on average, were 74 years old and had a cumulative illness rating scale (CIRS) total score of 5. We report toxicity and efficacy of the study treatment. Grade 3-5 neutropenia and infection were observed in 25% and 10% of patients, respectively. Response was seen in 73% (5% complete remissions). Median event-free and overall survival was 12.2 and 44.8 months, respectively. No differences in outcome were found for patients treated with versus without darbepoetin alfa. In subjects with progressive/recurrent CLL during or after study treatment, overall survival was similar for patients receiving chemotherapy versus chemoimmunotherapy as salvage treatment. PMID:26293380

  4. Short-term chamber exposure to low doses of two kinds of wood smoke does not induce systemic inflammation, coagulation or oxidative stress in healthy humans

    PubMed Central

    Sallsten, Gerd; Almerud, Pernilla; Basu, Samar; Barregard, Lars

    2013-01-01

    Introduction: Air pollution increases the risk of cardiovascular diseases. A proposed mechanism is that local airway inflammation leads to systemic inflammation, affecting coagulation and the long-term risk of atherosclerosis. One major source of air pollution is wood burning. Here we investigate whether exposure to two kinds of wood smoke, previously shown to cause airway effects, affects biomarkers of systemic inflammation, coagulation and lipid peroxidation. Methods: Thirteen healthy adults were exposed to filtered air followed by two sessions of wood smoke for three hours, one week apart. One session used smoke from the start-up phase of the wood-burning cycle, and the other smoke from the burn-out phase. Mean particle mass concentrations were 295 µg/m3 and 146 µg/m3, and number concentrations were 140 000/cm3 and 100 000/cm3, respectively. Biomarkers were analyzed in samples of blood and urine taken before and several times after exposure. Results after wood smoke exposure were adjusted for exposure to filtered air. Results: Markers of systemic inflammation and soluble adhesion molecules did not increase after wood smoke exposure. Effects on markers of coagulation were ambiguous, with minor decreases in fibrinogen and platelet counts and mixed results concerning the coagulation factors VII and VIII. Urinary F2-isoprostane, a consistent marker of in vivo lipid peroxidation, unexpectedly decreased after wood smoke exposure. Conclusions: The effects on biomarkers of inflammation, coagulation and lipid peroxidation do not indicate an increased risk of cardiovascular diseases in healthy adults by short-term exposure to wood smoke at these moderate doses, previously shown to cause airway effects. PMID:23808634

  5. Quantification of damage due to low-dose radiation exposure in mice: construction and application of a biodosimetric model using mRNA indicators in circulating white blood cells

    PubMed Central

    Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko; Tanaka, Mika; Yokochi, Kazuko; Fukutsu, Kumiko; Tajima, Katsushi; Nishimura, Mayumi; Shimada, Yoshiya; Akashi, Makoto

    2016-01-01

    Biodosimetry, the measurement of radiation damage in a biologic sample, is a reliable tool for increasing the accuracy of dose estimation. Although established chromosome analyses are suitable for estimating the absorbed dose after high-dose irradiation, biodosimetric methodology to measure damage following low-dose exposure is underdeveloped. RNA analysis of circulating blood containing radiation-sensitive cells is a candidate biodosimetry method. Here we quantified RNA from a small amount of blood isolated from mice following low-dose body irradiation (<0.5 Gy) aimed at developing biodosimetric tools for situations that are difficult to study in humans. By focusing on radiation-sensitive undifferentiated cells in the blood based on Myc RNA expression, we quantified the relative levels of RNA for DNA damage-induced (DDI) genes, such as Bax, Bbc3 and Cdkn1a. The RNA ratios of DDI genes/Myc in the blood increased in a dose-dependent manner 4 h after whole-body irradiation at doses ranging from 0.1 to 0.5 Gy (air-kerma) of X-rays, regardless of whether the mice were in an active or resting state. The RNA ratios were significantly increased after 0.014 Gy (air-kerma) of single X-ray irradiation. The RNA ratios were directly proportional to the absorbed doses in water ranging from 0.1 to 0.5 Gy, based on gamma-irradiation from 137Cs. Four hours after continuous irradiation with gamma-rays or by internal contamination with a beta-emitter, the increased RNA ratios resembled those following single irradiation. These findings indicate that the RNA status can be utilized as a biodosimetric tool to estimate low-dose radiation when focusing on undifferentiated cells in blood. PMID:26589759

  6. Quantification of damage due to low-dose radiation exposure in mice: construction and application of a biodosimetric model using mRNA indicators in circulating white blood cells.

    PubMed

    Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko; Tanaka, Mika; Yokochi, Kazuko; Fukutsu, Kumiko; Tajima, Katsushi; Nishimura, Mayumi; Shimada, Yoshiya; Akashi, Makoto

    2016-01-01

    Biodosimetry, the measurement of radiation damage in a biologic sample, is a reliable tool for increasing the accuracy of dose estimation. Although established chromosome analyses are suitable for estimating the absorbed dose after high-dose irradiation, biodosimetric methodology to measure damage following low-dose exposure is underdeveloped. RNA analysis of circulating blood containing radiation-sensitive cells is a candidate biodosimetry method. Here we quantified RNA from a small amount of blood isolated from mice following low-dose body irradiation (<0.5 Gy) aimed at developing biodosimetric tools for situations that are difficult to study in humans. By focusing on radiation-sensitive undifferentiated cells in the blood based on Myc RNA expression, we quantified the relative levels of RNA for DNA damage-induced (DDI) genes, such as Bax, Bbc3 and Cdkn1a. The RNA ratios of DDI genes/Myc in the blood increased in a dose-dependent manner 4 h after whole-body irradiation at doses ranging from 0.1 to 0.5 Gy (air-kerma) of X-rays, regardless of whether the mice were in an active or resting state. The RNA ratios were significantly increased after 0.014 Gy (air-kerma) of single X-ray irradiation. The RNA ratios were directly proportional to the absorbed doses in water ranging from 0.1 to 0.5 Gy, based on gamma-irradiation from (137)Cs. Four hours after continuous irradiation with gamma-rays or by internal contamination with a beta-emitter, the increased RNA ratios resembled those following single irradiation. These findings indicate that the RNA status can be utilized as a biodosimetric tool to estimate low-dose radiation when focusing on undifferentiated cells in blood. PMID:26589759

  7. Olfactory recognition memory is disrupted in young mice with chronic low-level lead exposure

    PubMed Central

    Flores-Montoya, Mayra Gisel; Alvarez, Juan Manuel; Sobin, Christina

    2015-01-01

    Chronic developmental lead exposure yielding very low blood lead burden is an unresolved child public health problem. Few studies have attempted to model neurobehavioral changes in young animals following very low level exposure, and studies are needed to identify tests that are sensitive to the neurobehavioral changes that may occur. Mechanisms of action are not yet known however results have suggested that hippocampus/dentate gyrus may be uniquely vulnerable to early chronic low-level lead exposure. This study examined the sensitivity of a novel odor recognition task to differences in pre-adolescent C57BL/6J mice chronically exposed from birth to PND 28, to 0 ppm (control), 30 ppm (low-dose), or 330 ppm (higher-dose) lead acetate (N = 33). Blood lead levels (BLLs) determined by ICP-MS ranged from 0.02 to 20.31 µg/dL. Generalized linear mixed model analyses with litter as a random effect showed a significant interaction of BLL × sex. As BLLs increased olfactory recognition memory decreased in males. Among females, non-linear effects were observed at lower but not higher levels of lead exposure. The novel odor detection task is sensitive to effects associated with early chronic low-level lead exposure in young C57BL/6J mice. PMID:25936521

  8. Impulsiveness, overactivity, and poorer sustained attention improve by chronic treatment with low doses of l-amphetamine in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD)

    PubMed Central

    2011-01-01

    Background ADHD is currently defined as a cognitive/behavioral developmental disorder where all clinical criteria are behavioral. Overactivity, impulsiveness, and inattentiveness are presently regarded as the main clinical symptoms. There is no biological marker, but there is considerable evidence to suggest that ADHD behavior is associated with poor dopaminergic and noradrenergic modulation of neuronal circuits that involve the frontal lobes. The best validated animal model of ADHD, the Spontaneously Hypertensive Rat (SHR), shows pronounced overactivity, impulsiveness, and deficient sustained attention. The primary objective of the present research was to investigate behavioral effects of a range of doses of chronic l-amphetamine on ADHD-like symptoms in the SHR. Methods The present study tested the behavioral effects of 0.75 and 2.2 mg l-amphetamine base/kg i.p. in male SHRs and their controls, the Wistar Kyoto rat (WKY). ADHD-like behavior was tested with a visual discrimination task measuring overactivity, impulsiveness and inattentiveness. Results The striking impulsiveness, overactivity, and poorer sustained attention seen during baseline conditions in the SHR were improved by chronic treatment with l-amphetamine. The dose-response curves were, however, different for the different behaviors. Most significantly, the 0.75 mg/kg dose of l-amphetamine improved sustained attention without reducing overactivity and impulsiveness. The 2.2 mg/kg dose improved sustained attention as well as reduced SHR overactivity and impulsiveness. Discussion The effects of l-amphetamine to reduce the behavioral symptoms of ADHD in the SHR were maintained over the 14 days of daily dosing with no evidence of tolerance developing. PMID:21450079

  9. Effects of prenatal exposure to a low dose atrazine metabolite mixture onpubertal timing and prostate development of male Long-Evans rats

    EPA Science Inventory

    Atrazine (ATR) is a chlorotriazine herbicide extensively used in the US and other countries. Studies examining the effects of adult or developmental ATR exposure on the mammary gland (MG) have used either the Sprague Dawley (SD) or Long-Evans (LE) rat, but no strain comparisons h...

  10. Mammography-oncogenecity at low doses.

    PubMed

    Heyes, G J; Mill, A J; Charles, M W

    2009-06-01

    dose exposure, it is not a low dose rate examination, and protraction of dose should not be confused with fractionation. Although there is potential for a suppressive effect at low doses, recent epidemiological data, and several international radiation risk assessments, continue to promote the linear no-threshold (LNT) model. Finally, recent studies have shown that magnetic resonance imaging (MRI) is more sensitive than mammography in detecting invasive breast cancer in women with a genetic sensitivity. Since an increase in the risk associated with mammographic screening would blur the justification of exposure for this high risk subgroup, the use of other (non-ionising) screening modalities is preferable. PMID:19454801

  11. Switching to low-dose oral prolonged-release oxycodone/naloxone from WHO-Step I drugs in elderly patients with chronic pain at high risk of early opioid discontinuation

    PubMed Central

    Lazzari, Marzia; Marcassa, Claudio; Natoli, Silvia; Carpenedo, Roberta; Caldarulo, Clarissa; Silvi, Maria B; Dauri, Mario

    2016-01-01

    Purpose Chronic pain has a high prevalence in the aging population. Strong opioids also should be considered in older people for the treatment of moderate to severe pain or for pain that impairs functioning and the quality of life. This study aimed to assess the efficacy and safety of the direct switch to low-dose strong opioids (World Health Organization-Step III drugs) in elderly, opioid-naive patients. Patients and methods This was a single-center, retrospective, observational study in opioid-naive patients aged ≥75 years, with moderate to severe chronic pain (>6-month duration) and constipation, who initiated treatment with prolonged-release oxycodone/naloxone (OXN-PR). Patients were re-evaluated after 15, 30, and 60 days (T60, final observation). Response to treatment was defined as an improvement in pain of ≥30% after 30 days of therapy without worsening of constipation. Results One-hundred and eighty-six patients (mean ± SD age 80.7±4.7 years; 64.5% women) with severe chronic pain (mean average pain intensity 7.1±1.0 on the 11-point numerical rating scale) and constipation (mean Bowel Function Index 64.1±24.4; 89.2% of patients on laxatives) were initiated treatment with OXN-PR (mean daily dose 11.3±3.5 mg). OXN-PR reduced pain intensity rapidly and was well tolerated; 63.4% of patients responded to treatment with OXN-PR. At T60 (mean daily OXN-PR dose, 21.5±9.7 mg), the pain intensity was reduced by 66.7%. In addition, bowel function improved (mean decrease of Bowel Function Index from baseline to T60, −28.2, P<0.0001) and the use of laxatives decreased. Already after 15 days and throughout treatment, ~70% of patients perceived their status as much/extremely improved. Only 1.6% of patients discontinued treatment due to adverse events. Conclusion Low-dose OXN-PR in elderly patients naive to opioids proved to be an effective option for the treatment of moderate to severe chronic pain. Large-scale trials are needed to improve clinical guidance in

  12. Renal impairment with chronic hydrocarbon exposure.

    PubMed

    Yaqoob, M; Bell, G M; Stevenson, A; Mason, H; Percy, D F

    1993-03-01

    Occupational hydrocarbon exposure is believed by some investigators to play an important role in the development of several non-neoplastic renal diseases. In view of the continuing debate in this area of nephrology we adopted a cross-sectional approach by investigating the prevalence of clinical or sub-clinical renal dysfunction in subjects chronically exposed to hydrocarbons at their work site. Three groups of healthy men working in different and separate areas of a major car manufacturing plant in the North-west of England participated in the study. Group 1 comprised 112 paint sprayers with exposure to paint-based hydrocarbons, group 2 comprised 101 volunteers working in the transmission area of the plant with exposure to petroleum-based mineral oils, and group 3 comprised 92 automated press operators with minimal background exposure to lubricants who acted as internal controls. Early markers of renal dysfunction such as serum creatinine, urinary total protein, albumin, transferrin, retinol binding protein, N-acetyl-glucosaminidase, gamma-glutamyl transferase, and leucine-amino-peptidase excretion were measured. Upper reference values of the parameters measured were derived from 105 comparable laboratory based controls with no occupational exposure to hydrocarbons or heavy metals. Group 1 had a significantly higher prevalence of elevated serum creatinine than the other groups and a higher prevalence of abnormal urinary total protein, N-acetyl-glucosaminidase, gamma-glutamyl transferase, and leucine-amino-peptidase excretion than groups 2 and 3. Group 2 had normal serum creatinine but a significantly higher prevalence of abnormal urinary total protein, transferrin, retinol binding protein, N-acetyl-glucosaminidase, and leucine-amino-peptidase excretion than group 3. Serum albumin was similar in all groups. There was some clustering of abnormal findings but the markers of renal dysfunction used in the study identified 37 individuals in group 1 and 31 subjects in

  13. Effects of gestational and lactational exposure to low dose mercury chloride (HgCl2) on behaviour, learning and hearing thresholds in WAG/Rij rats.

    PubMed

    Sahin, Deniz; Erdolu, Cem Onur; Karadenizli, Sabriye; Kara, Ahmet; Bayrak, Gunce; Beyaz, Sumeyye; Demir, Buse; Ates, Nurbay

    2016-01-01

    We investigated the effects of inorganic mercury exposure during gestational/lactational periods on the behaviour, learning and hearing functions in a total of 32, 5-week-old and 5-month-old WAG/Rij rats (equally divided into 4 groups as 5-week and 5-month control mercury exposure groups). We evaluated the rats in terms of locomotor activity (LA), the Morris-water-maze (MWM) test and the passive avoidance (PA) test to quantify learning and memory performance; we used distortion product otoacoustic emission (DPOAE) tests to evaluate hearing ability. There were no significant differences between the 5-week-old rat groups in LA, and we detected a significant difference (p < 0.05) in the HgCl2-treated group in PA, MWM and DPOAE tests compared with the control group. The HgCl2-treated 5-week-old group exhibited worse emotional memory performance in PA, worse spatial learning and memory performances in MWM. There were no significant differences between the groups of 5-month-old rats in LA, MWM or PA. However, the DPOAE tests worsened in the mid- and high-frequency hearing thresholds. The HgCl2-treated 5-month-old group exhibited the most hearing loss of all groups. Our results convey that mercury exposure in young rats may worsen learning and memory performances as well as hearing at high-frequency levels. While there was no statistically significant difference in the behavior and learning tests in adult rats, the DPOAE test produced poorer results. Early detection of effects of mercury exposure provides medicals team with an opportunity to determinate treatment regimens and mitigate ototoxicity. DPOAE test can be used in clinical and experimental research investigating heavy metal ototoxicity. PMID:27540351

  14. Effects of gestational and lactational exposure to low dose mercury chloride (HgCl2) on behaviour, learning and hearing thresholds in WAG/Rij rats

    PubMed Central

    Sahin, Deniz; Erdolu, Cem Onur; Karadenizli, Sabriye; Kara, Ahmet; Bayrak, Gunce; Beyaz, Sumeyye; Demir, Buse; Ates, Nurbay

    2016-01-01

    We investigated the effects of inorganic mercury exposure during gestational/lactational periods on the behaviour, learning and hearing functions in a total of 32, 5-week-old and 5-month-old WAG/Rij rats (equally divided into 4 groups as 5-week and 5-month control mercury exposure groups). We evaluated the rats in terms of locomotor activity (LA), the Morris-water-maze (MWM) test and the passive avoidance (PA) test to quantify learning and memory performance; we used distortion product otoacoustic emission (DPOAE) tests to evaluate hearing ability. There were no significant differences between the 5-week-old rat groups in LA, and we detected a significant difference (p < 0.05) in the HgCl2-treated group in PA, MWM and DPOAE tests compared with the control group. The HgCl2-treated 5-week-old group exhibited worse emotional memory performance in PA, worse spatial learning and memory performances in MWM. There were no significant differences between the groups of 5-month-old rats in LA, MWM or PA. However, the DPOAE tests worsened in the mid- and high-frequency hearing thresholds. The HgCl2-treated 5-month-old group exhibited the most hearing loss of all groups. Our results convey that mercury exposure in young rats may worsen learning and memory performances as well as hearing at high-frequency levels. While there was no statistically significant difference in the behavior and learning tests in adult rats, the DPOAE test produced poorer results. Early detection of effects of mercury exposure provides medicals team with an opportunity to determinate treatment regimens and mitigate ototoxicity. DPOAE test can be used in clinical and experimental research investigating heavy metal ototoxicity. PMID:27540351

  15. OCCUPATIONAL SILICA EXPOSURE AND CHRONIC KIDNEY DISEASE

    PubMed Central

    Vupputuri, Suma; Parks, Christine G.; Nylander-French, Leena A.; Owen-Smith, Ashli; Hogan, Susan L.; Sandler, Dale P.

    2012-01-01

    Introduction Occupational exposure to silica may be associated with chronic kidney disease (CKD). Most studies have been conducted in occupational cohorts with high levels of exposure but small numbers of cases. We analyzed data from a population-based case-control study of occupational silica exposure and CKD. Methods Cases were hospital patients with newly diagnosed CKD and community controls were selected using random digit dialing and frequency matched by age, gender, race and proximity to the hospital. Silica exposure estimates were assigned by industrial hygiene review of lifetime job history data and weighted for certainty and intensity. Conditional logistic regression was used to estimate the odds ratios (ORs) for CKD conditioned on demographic, lifestyle and clinical variables. Results The mean age of participants was 62 years (range, 30-83 years), 56% were male and 54% were white. Any silica exposure (compared to none) was associated with a 40% increased risk of CKD (OR=1.40, 95% confidence interval [CI]: 1.04, 1.89) in a multivariable adjusted model. The mean cumulative duration of silica exposure was significantly higher in exposed cases than in exposed controls (33.4 vs. 24.8 years, respectively). Overall, compared to non-exposed participants, the ORs (95% CI) for those below and above the median duration of silica exposure were 1.20 (95% CI: 0.77, 1.86) and 1.76 (95% CI: 1.14, 2.71), respectively. Conclusions We found a positive relationship between occupational silica exposure and CKD. A dose-response trend of increasing CKD risk with increasing duration of silica exposure was observed and was particularly strong among non-whites. PMID:22032652

  16. A New Era of Low-Dose Radiation Epidemiology.

    PubMed

    Kitahara, Cari M; Linet, Martha S; Rajaraman, Preetha; Ntowe, Estelle; Berrington de González, Amy

    2015-09-01

    The last decade has introduced a new era of epidemiologic studies of low-dose radiation facilitated by electronic record linkage and pooling of cohorts that allow for more direct and powerful assessments of cancer and other stochastic effects at doses below 100 mGy. Such studies have provided additional evidence regarding the risks of cancer, particularly leukemia, associated with lower-dose radiation exposures from medical, environmental, and occupational radiation sources, and have questioned the previous findings with regard to possible thresholds for cardiovascular disease and cataracts. Integrated analysis of next generation genomic and epigenetic sequencing of germline and somatic tissues could soon propel our understanding further regarding disease risk thresholds, radiosensitivity of population subgroups and individuals, and the mechanisms of radiation carcinogenesis. These advances in low-dose radiation epidemiology are critical to our understanding of chronic disease risks from the burgeoning use of newer and emerging medical imaging technologies, and the continued potential threat of nuclear power plant accidents or other radiological emergencies. PMID:26231501

  17. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  18. [The functional state of the mitochondrial respiratory chain of the small intestine enterocytes of the rats under the low dose rate X-ray total external exposure].

    PubMed

    2013-01-01

    The influence of the low-rate ionizing radiation (0.055 Gy/min) at the doses of 0.1; 0.5 and 1.0 Gy on the functional state of the mitochondria respiratory chain of the rat small intestine enterocytes was investigated. The dysfunction of the electron transport chain enzymes andchanges in the content of cytochromes b, c, a in themitochondrial inner membrane were revealed 1, 12 and 24 hours after exposure to radiation. The re- vealed disorders indicate early membrane sensitivity to the radiation effect. The inhibition of the H+ -ATPase activity in the studied dose range indicates the decrease of the mitochondrial energy capacity. PMID:25508872

  19. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus.

    PubMed

    Stanojlović, M; Guševac, I; Grković, I; Zlatković, J; Mitrović, N; Zarić, M; Horvat, A; Drakulić, D

    2015-12-17

    The present study attempted to investigate how chronic cerebral hypoperfusion (CCH) and repeated low-dose progesterone (P) treatment affect gene and protein expression, subcellular distribution of key apoptotic elements within protein kinase B (Akt) and extracellular signal-regulated kinases (Erk) signal transduction pathways, as well as neurodegenerative processes and behavior. The results revealed the absence of Erk activation in CCH in cytosolic and synaptosomal fractions, indicating a lower threshold of Akt activation in brain ischemia, while P increased their levels above control values. CCH induced an increase in caspase 3 (Casp 3) and poly (ADP-ribose) polymerase (PARP) gene and protein expression. However, P restored expression of examined molecules in all observed fractions, except for the levels of Casp 3 in synapses which highlighted its possible non-apoptotic or even protective function. Our study showed the absence of nuclear factor kappa-light-chain-enhancer of activated b cells (NF-κB) response to this type of ischemic condition and its strong activation under the influence of P. Further, the initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by CCH was significantly reduced by P. Finally, P reversed the CCH-induced reduction in locomotor activity, while promoting a substantial decrease in anxiety-related behavior. Our findings support the concept that repeated low-dose post-ischemic P treatment reduces CCH-induced neurodegeneration in the hippocampus. Neuroprotection is initiated through the activation of investigated kinases and regulation of their downstream molecules in subcellular specific manner, indicating that this treatment may be a promising therapy for alleviation of CCH-induced pathologies. PMID:26518459

  20. In utero and lactational exposure to low-dose genistein-vinclozolin mixture affects the development and growth factor mRNA expression of the submandibular salivary gland in immature female rats.

    PubMed

    Kouidhi, Wided; Desmetz, Catherine; Nahdi, Afef; Bergès, Raymond; Cravedi, Jean-Pierre; Auger, Jacques; El May, Michèle; Canivenc-Lavier, Marie Chantal

    2012-06-01

    It has been suggested that hormonally controlled submandibular salivary gland (SSG) development and secretions may be affected by endocrine disruptor compounds. We investigated the effects of oral gestation-lactation exposure to 1 mg/kg body weight daily dose of the estrogenic soy-isoflavone genistein and/or the anti-androgenic food contaminant vinclozolin in female rats. The SSGs of female offspring were collected at postnatal day 35 to study gland morphogenesis and mRNA expression of sex-hormone receptors and endocrine growth factors as sex-dependent biomarkers. Because of high expression in neonatal SSG, mRNA expression of transforming growth factor α was also studied. Exposure to genistein, vinclozolin, or a genistein+vinclozolin mixture resulted in significantly lower numbers of striated ducts linked to an increase in their area and lower acinar proliferation (Ki-67-positive nuclei). Exposure to the mixture had the highest significant effects, which were particularly associated with repression of epidermal growth factor, nerve growth factor, and transforming growth factor α expression. In conclusion, early exposure to low doses of genistein and vinclozolin can affect glandular structure and endocrine gene mRNA expression in prepubertal SSG in female rats, and the effects are potentialized by the genistein+vinclozolin mixture. Our study provides the first evidence that SSG are targeted by both estrogenic and anti-androgenic disrupting compounds and are more sensitive to mixtures. PMID:22317923

  1. Genome-wide gene expression profiling of low-dose, long-term exposure of human osteosarcoma cells to bisphenol A and its analogs bisphenols AF and S.

    PubMed

    Fic, A; Mlakar, S Jurković; Juvan, P; Mlakar, V; Marc, J; Dolenc, M Sollner; Broberg, K; Mašič, L Peterlin

    2015-08-01

    The bisphenols AF (BPAF) and S (BPS) are structural analogs of the endocrine disruptor bisphenol A (BPA), and are used in common products as a replacement for BPA. To elucidate genome-wide gene expression responses, estrogen-dependent osteosarcoma cells were cultured with 10 nM BPA, BPAF, or BPS, for 8 h and 3 months. Genome-wide gene expression was analyzed using the Illumina Expression BeadChip. Three months exposure had significant effects on gene expression, particularly for BPS, followed by BPAF and BPA, according to the number of differentially expressed genes (1980, 778, 60, respectively), the magnitude of changes in gene expression, and the number of enriched biological processes (800, 415, 33, respectively) and pathways (77, 52, 6, respectively). 'Embryonic skeletal system development' was the most enriched bone-related process, which was affected only by BPAF and BPS. Interestingly, all three bisphenols showed highest down-regulation of genes related to the cardiovascular system (e.g., NPPB, NPR3, TXNIP). BPA only and BPA/BPAF/BPS also affected genes related to the immune system and fetal development, respectively. For BPAF and BPS, the 'isoprenoid biosynthetic process' was enriched (up-regulated genes: HMGCS1, PDSS1, ACAT2, RCE1, DHDDS). Compared to BPA, BPAF and BPS had more effects on gene expression after long-term exposure. These findings stress the need for careful toxicological characterization of BPA analogs in the future. PMID:25912373

  2. Life-span exposure to sinusoidal-50 Hz magnetic field and acute low-dose γ radiation induce carcinogenic effects in Sprague-Dawley rats.

    PubMed

    Soffritti, Morando; Tibaldi, Eva; Padovani, Michela; Hoel, David G; Giuliani, Livio; Bua, Luciano; Lauriola, Michelina; Falcioni, Laura; Manservigi, Marco; Manservisi, Fabiana; Panzacchi, Simona; Belpoggi, Fiorella

    2016-01-01

    Background In 2002 the International Agency for Research on Cancer classified extremely low frequency magnetic fields (ELFMF) as a possible carcinogen on the basis of epidemiological evidence. Experimental bioassays on rats and mice performed up to now on ELFMF alone or in association with known carcinogens have failed to provide conclusive confirmation. Objectives To study the carcinogenic effects of combined exposure to sinusoidal-50 Hz (S-50 Hz) magnetic fields and acute γ radiation in Sprague-Dawley rats. Methods We studied groups of male and female Sprague-Dawley rats exposed from prenatal life until natural death to 20 or 1000 μT S-50 Hz MF and also to 0.1 Gy γ radiation delivered as a single acute exposure at 6 weeks of age. Results The results of the study showed significant carcinogenic effects for the mammary gland in males and females and a significant increased incidence of malignant schwannomas of the heart as well as increased incidence of lymphomas/leukemias in males. Conclusions These results call for a re-evaluation of the safety of non-ionizing radiation. PMID:26894944

  3. Measurement of brevetoxin levels by radioimmunoassay of blood collection cards after acute, long-term, and low-dose exposure in mice.

    PubMed Central

    Woofter, Ricky; Dechraoui, M-Yasmine Bottein; Garthwaite, Ian; Towers, Neale R; Gordon, Christopher J; Córdova, José; Ramsdell, John S

    2003-01-01

    We developed a radioimmunoassay (RIA) using a sheep anti-brevetoxin antiserum to evaluate detection of brevetoxin on blood collection cards from mice treated with the brevetoxin congener PbTx-3. The RIA has high affinity for PbTx-3 [half-maximal effective concentration (EC(50)) +/- SE = 1.2 +/- 0.2 nM; n = 10] and recognizes both type 1 and type 2 brevetoxins, but not ciguatoxin. Direct comparison of the RIA with a radiolabeled [(3)H]-PbTx-3 receptor-binding assay (RBA) revealed excellent sensitivity, congener selectivity, and minimal interference from blood matrix. We first analyzed blood samples from an acute time course exposure, using a maximal nonlethal dose [180 microg/kg body weight (bw)] for 0.5, 1, 2, 4, and 24 hr. Mean blood brevetoxin levels were 36 nM at 30 min and stayed above 20 nM during the 1-4 hr time points. We next analyzed blood brevetoxin levels after longer exposure (0.5, 1, 2, 3, 4, or 7 days). Mean blood brevetoxin levels were 26.0 nM at 0.5 days, decreased to 8.2 nM at 1.0 day, and maintained a significant level (p < 0.05) of 1.3 nM at day 2. We next determined the lowest measurable dose using increasing concentrations of PbTx-3 (10-300 micro g/kg bw). Analysis of the blood samples at 60 min revealed a linear relationship between administered and internal doses (r(2) = 0.993). All doses of brevetoxin administered were detectable at 1 hr, with significant levels found for the lowest administered dose of 10 micro g/kg bw--a dose that was 10-fold lower than the lowest observable effect level. This RIA provides an optimal first-tier detection of brevetoxin from blood collection cards and, used in combination with the RBA and liquid chromatography-mass spectrometry, should provide a complete panel of methods to biomonitor brevetoxin exposure. PMID:14527838

  4. Alterations of cellular redox homeostasis in cultured fibroblast-like renal cells upon exposure to low doses of cytochrome bc1 complex inhibitor kresoxim-methyl.

    PubMed

    Flampouri, Evangelia; Mavrikou, Sofia; Mouzaki-Paxinou, Akrivi-Chara; Kintzios, Spiridon

    2016-08-01

    In this paper we elucidate the effects of the cytochrome bc1 inhibitor, strobilurin fungicide kresoxim-methyl, on the redox balance of a mammalian renal cell line. To explore whether mammalian exposure to sub-nephrotoxic concentrations of kresoxim-methyl induces cellular and biochemical mechanisms of toxicity, its effects on cellular viability and, in particular, several parameters related to oxidative stress, mitochondrial respiratory function and apoptosis were examined in fibroblast-like renal Vero cells. Elevation of mitochondrial superoxide generation, together with a concomitant decrease in mitochondrial transmembrane potential was indicative of mitochondrial dysfunction. Losses on antioxidant enzyme activities and GSH, along with increased H2O2 and nitrite release were associated with oxidative stress and induced impaired cellular migration. Raise of intracellular calcium was also observed, while no experimental evidence of apoptosis was found. Our findings suggest that sub-nephrotoxic concentrations of kresoxim-methyl cause perturbation of multiple pathways in renal mammalian cellular redox homeostasis. PMID:27265144

  5. [The functional state of the mitochondrial respiratory chain of the small intestine enterocytes of the rats under the low dose rate X-ray total external exposure].

    PubMed

    Khizhniak, S V; Stepanova, L I; Grubskaia, L V; Voĭtsitskiĭ, V M

    2013-01-01

    The influence of the low-rate ionizing radiation (0.055 Gy/min) at the doses of 0.1; 0.5 and 1.0 Gy on the functional state of the mitochondria respiratory chain of the rat small intestine enterocytes was investigated. The dysfunction of the electron transport chain enzymes and changes in the content of cytochromes b, c, a in the mitochondrial inner membrane were revealed 1, 12 and 24 hours after exposure to radiation. The revealed disorders indicate early membrane sensitivity to the radiation effect. The inhibition of the H+ -ATPase activity in the studied dose range indicates the decrease of the mitochondrial energy capacity. PMID:25486741

  6. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions.

    PubMed

    Buonanno, Manuela; De Toledo, Sonia M; Howell, Roger W; Azzam, Edouard I

    2015-05-01

    During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low 'flux' of the high atomic number and high energy (HZE) radiations relative to the higher 'flux' of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding of the biological effects of low-LET protons and high-LET HZE particles, the interplay between the biochemical processes modulated by these radiations is unclear. Here we show that exposure of normal human fibroblasts to a low mean absorbed dose of 20 cGy of 0.05 or 1-GeV protons (LET ∼ 1.25 or 0.2 keV/μm, respectively) protects the irradiated cells (P < 0.0001) against chromosomal damage induced by a subsequent exposure to a mean absorbed dose of 50 cGy from 1 GeV/u iron ions (LET ∼ 151 keV/μm). Surprisingly, unirradiated (i.e. bystander) cells with which the proton-irradiated cells were co-cultured were also significantly protected from the DNA-damaging effects of the challenge dose. The mitigating effect persisted for at least 24 h. These results highlight the interactions of biological effects due to direct cellular traversal by radiation with those due to bystander effects in cell populations exposed to mixed radiation fields. They show that protective adaptive responses can spread from cells targeted by low-LET space radiation to bystander cells in their vicinity. The findings are relevant to understanding the health hazards of space travel. PMID:25805407

  7. Changes in the Subpopulations of Porcine Peripheral Blood Lymphocytes Induced by Exposure to Low Doses of Zearalenone (ZEN) and Deoxynivalenol (DON).

    PubMed

    Dąbrowski, Michał; Obremski, Kazimierz; Gajęcka, Magdalena; Gajęcki, Maciej Tadeusz; Zielonka, Łukasz

    2016-01-01

    Zearalenone and deoxynivalenol are secondary metabolites of fungi of the genus Fusarium. The presence of mycotoxins in cereals and the resulting contamination of feeds and foods pose health risks for animals and humans. The dangers associated with high doses of mycotoxins have been extensively researched but very little is known about NOAEL (No Observed Adverse Effect Level) doses or exposure to a combination of mycotoxins (mixed mycotoxicoses). The aim of this study was to determine the effects of six-week exposure to NOAEL doses of individual and combined mycotoxins on the subpopulations of CD4⁺8(-), CD4(-)8⁺ and CD4⁺8⁺ lymphocytes in the peripheral blood of pigs. The experiment was performed on 72 gilts with average body weight of 25 kg, divided into three experimental groups (E1, E2 and E3, administered zearalenone (ZEN), deoxynivalenol (DON) and ZEN + DON, respectively, on a daily basis) and a control group (C) receiving placebo. Changes in lymphocyte subpopulations were evaluated by flow cytometry at weekly intervals (experimental days 7, 14, 21, 28, 35 and 42). A linear increase in the percentage of CD4⁺8⁺ lymphocytes was highly correlated with time (r = 0.682) in group C. The correlations and linear increase in the above subpopulation were disrupted in the remaining groups. In group E3, a statistically significant (p < 0.05) decrease in CD4⁺8⁺ counts was observed in week 5, which could point to a transient depletion of regulatory mechanisms of immune responses. The noted results also suggest that in mixed mycotoxicosis, ZEN and DON exerted stronger immunomodulatory effects. PMID:27128894

  8. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions

    PubMed Central

    Buonanno, Manuela; De Toledo, Sonia M.; Howell, Roger W.; Azzam, Edouard I.

    2015-01-01

    During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low ‘flux’ of the high atomic number and high energy (HZE) radiations relative to the higher ‘flux’ of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding of the biological effects of low-LET protons and high-LET HZE particles, the interplay between the biochemical processes modulated by these radiations is unclear. Here we show that exposure of normal human fibroblasts to a low mean absorbed dose of 20 cGy of 0.05 or 1-GeV protons (LET ∼ 1.25 or 0.2 keV/μm, respectively) protects the irradiated cells (P < 0.0001) against chromosomal damage induced by a subsequent exposure to a mean absorbed dose of 50 cGy from 1 GeV/u iron ions (LET ∼ 151 keV/μm). Surprisingly, unirradiated (i.e. bystander) cells with which the proton-irradiated cells were co-cultured were also significantly protected from the DNA-damaging effects of the challenge dose. The mitigating effect persisted for at least 24 h. These results highlight the interactions of biological effects due to direct cellular traversal by radiation with those due to bystander effects in cell populations exposed to mixed radiation fields. They show that protective adaptive responses can spread from cells targeted by low-LET space radiation to bystander cells in their vicinity. The findings are relevant to understanding the health hazards of space travel. PMID:25805407

  9. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D. )

    1990-08-01

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers during two 1-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR decreased linearly with HCHO exposure, with the estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children. The effects in asthmatic children exposed to HCHO below 50 ppb were greater than in healthy ones. The effects in adults were less evident: decrements in PEFR due to HCHO over 40 ppb were seen only in the morning, and mainly in smokers.

  10. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  11. Retrospective dosimetry related to chronic environmental exposure

    NASA Technical Reports Server (NTRS)

    Degteva, M. O.; Kozheurov, V. P.; Tolstykh, E. I.; Neta, R. (Principal Investigator)

    1998-01-01

    Radioactive contamination of the environment occurred in the early fifties as a result of the releases from the Mayak plutonium production complex (Southern Urals, Russia). The releases of liquid wastes into the Techa river resulted in chronic exposure of 30,000 residents of the riverside communities. Since 1951 90Sr body burdens have been measured for over half of this cohort. This paper presents the analysis of data on 90Sr in humans and describes the reconstruction of internal doses for these people.

  12. Urinary Metabolites of the Dietary Carcinogen PhIP are Predictive of Colon DNA Adducts After a Low Dose Exposure in Humans

    SciTech Connect

    Malfatti, M; Dingley, K; Nowell, S; Ubick, E; Mulakken, N; Nelson, D; Lang, N; Felton, J; Turteltaub, K

    2006-04-28

    Epidemiologic evidence indicates that exposure to heterocyclic amines (HAs) in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of HAs which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of HA bioactivation in humans, the most mass abundant HA, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers were administered a dietary relevant dose of [{sup 14}C]PhIP 48-72 h prior to surgery to remove colon tumors. Urine was collected for 24 h after dosing for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All ten subjects were phenotyped for CYP1A2, NAT2, and SULT1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N{sup 2}-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide, had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.

  13. Sex differences in the adult HPA axis and affective behaviors are altered by perinatal exposure to a low dose of bisphenol A.

    PubMed

    Chen, Fang; Zhou, Libin; Bai, Yinyang; Zhou, Rong; Chen, Ling

    2014-07-01

    Bisphenol A (BPA), an estrogen-mimicking endocrine disrupter, when administered perinatally can affect affective behaviors in adult rodents, however the underlying mechanisms remain largely unclear. Postnatal day (PND) 80 vehicle-injected control female rats showed more obvious depression- and anxiety-like behaviors than males, indicative of sexually dimorphic affective behaviors. When female breeders were subcutaneously injected with BPA (2µg/kg) from gestation day 10 to lactation day 7, sex difference of affective behaviors was impaired in their offspring (PND80 BPA-rats), as results that female BPA-rats showed a visible "antianxiety-like" behavior, and male BPA-rats increased depression-like behavior compared to vehicle-injected controls. Notably, basal levels of serum corticosterone and adrenocorticotropin (ACTH), and corticotropin-releasing hormone mRNA were increased in male BPA-rats, but not in female BPA-rats, in comparison with vehicle-injected controls. Following mild-stressor the elevation of corticosterone or ACTH levels was higher in male BPA-rats, whereas it was lower in female BPA-rats than vehicle-injected controls. In comparison with vehicle-injected controls, the level of glucocorticoid receptor (GR) mRNA in hippocampus or hypothalamic paraventricular nucleus was increased in female BPA-rats, while decreased in male BPA-rats. In addition, the levels of hippocampal mineralocorticoid receptor (MR) mRNA, neuronal nitric oxide synthase (nNOS) and phospho-cAMP response element binding protein (p-CREB) were increased in female BPA-rats, but were decreased in male BPA-rats. Furthermore, the testosterone level was reduced in male BPA-rats. The results indicate that the perinatal exposure to BPA through altering the GR and MR expression disrupts the GR-mediated feedback of hypothalamic-pituitary-adrenal (HPA) axis and MR-induced nNOS-CREB signaling, which alters sex difference in affective behaviors. PMID:24857958

  14. Effects of Low-Dose and Long-Term Treatment with Erythromycin on Interleukin-17 and Interleukin-23 in Peripheral Blood and Induced Sputum in Patients with Stable Chronic Obstructive Pulmonary Disease

    PubMed Central

    Tan, Caimei; Huang, Huijuan; Zhang, Jianquan; He, Zhiyi; Zhong, Xiaoning; Bai, Jing

    2016-01-01

    Objective. To study the effects of low-dose and long-term treatment with erythromycin on IL-17 and IL-23, in peripheral blood and induced sputum, in patients with stable chronic obstructive pulmonary disease (COPD). Methods. Patients were randomly divided into placebo-treated group, group A (12 months of additive treatment with erythromycin, N = 18), and group B (6 months of additive treatment with erythromycin followed by 6 months of follow-up, N = 18). Inflammatory cells in induced sputum, pulmonary function, and the 6-minute walk distance (6MWD) were analyzed. Concentrations of IL-17 and IL-23 in peripheral blood and sputum were measured using enzyme-linked immunosorbent assays. Results. After treatment, sputum and peripheral blood concentrations of IL-17 and IL-23 significantly decreased in groups A and B compared with placebo-treated group. There were no significant differences after erythromycin withdrawal at months 9 and 12 in group B compared with placebo-treated group. An increase in 6MWD was observed after treatment. Conclusions. Erythromycin was beneficial and reduced airway inflammation in COPD patients. Underlying mechanisms may involve inhibition of IL-17 and IL-23 mediated airway inflammation. COPD patients treated with erythromycin for 6 months experienced improved exercise capacity. Finally, treatment for 12 months may be more effective than treatment for 6 months. PMID:27127346

  15. Chronic fatigue syndrome following a toxic exposure.

    PubMed

    Racciatti, D; Vecchiet, J; Ceccomancini, A; Ricci, F; Pizzigallo, E

    2001-04-10

    Chronic fatigue syndrome (CFS) is a clinical entity characterized by severe fatigue lasting more than 6 months and other well-defined symptoms. Even though in most CFS cases the etiology is still unknown, sometimes the mode of presentation of the illness implicates the exposure to chemical and/or food toxins as precipitating factors: ciguatera poisoning, sick building syndrome, Gulf War syndrome, exposure to organochlorine pesticides, etc. In the National Reference Center for CFS Study at the Department of Infectious Diseases of 'G. D'Annunzio' University (Chieti) we examined five patients (three females and two males, mean age: 37.5 years) who developed the clinical features of CFS several months after the exposure to environmental toxic factors: ciguatera poisoning in two cases, and exposure to solvents in the other three cases. These patients were compared and contrasted with two sex- and age-matched subgroups of CFS patients without any history of exposure to toxins: the first subgroup consisted of patients with CFS onset following an EBV infection (post-infectious CFS), and the second of patients with a concurrent diagnosis of major depression. All subjects were investigated by clinical examination, neurophysiological and immunologic studies, and neuroendocrine tests. Patients exposed to toxic factors had disturbances of hypothalamic function similar to those in controls and, above all, showed more severe dysfunction of the immune system with an abnormal CD4/CD8 ratio, and in three of such cases with decreased levels of NK cells (CD56+). These findings may help in understanding the pathogenetic mechanisms involved in CFS. PMID:11327394

  16. Investigation of the Effects of Subchronic Low Dose Oral Exposure to Bisphenol A (BPA) and Ethinyl Estradiol (EE) on Estrogen Receptor Expression in the Juvenile and Adult Female Rat Hypothalamus

    PubMed Central

    Rebuli, Meghan E.; Cao, Jinyan; Sluzas, Emily; Delclos, K. Barry; Camacho, Luísa; Lewis, Sherry M.; Vanlandingham, Michelle M.; Patisaul, Heather B.

    2014-01-01

    Concerns have been raised regarding the long-term impacts of early life exposure to the ubiquitous environmental contaminant bisphenol A (BPA) on brain organization. Because BPA has been reported to affect estrogen signaling, and steroid hormones play a critical role in brain sexual differentiation, there is also concern that BPA exposure could alter neural sex differences. Here, we examine the impact of subchronic exposure from gestation to adulthood to oral doses of BPA below the current no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day on estrogen receptor (ESR) expression in sexually dimorphic brain regions of prepubertal and adult female rats. The dams were gavaged daily with vehicle (0.3% carboxymethylcellulose), 2.5, 25, 260, or 2700 μg BPA/kg bw/day, or 0.5 or 5.0 μg ethinyl estradiol (EE)/kg bw/day from gestational day 6 until labor began. Offspring were then gavaged directly from the day after birth until the day before scheduled sacrifice on postnatal days 21 or 90. Using in situ hybridization, one or more BPA doses produced significant decreases in Esr1 expression in the juvenile female rat anteroventral periventricular nucleus (AVPV) of the hypothalamus and significant decreases in Esr2 expression in the adult female rat AVPV and medial preoptic area (MPOA), relative to vehicle controls. BPA did not simply reproduce EE effects, indicating that BPA is not acting solely as an estrogen mimic. The possible consequences of long-term changes in hypothalamic ESR expression resulting from subchronic low dose BPA exposure on neuroendocrine effects are discussed and being addressed in ongoing, related work. PMID:24752507

  17. Low doses of arsenic, via perturbing p53, promotes tumorigenesis.

    PubMed

    Ganapathy, Suthakar; Li, Ping; Fagman, Johan; Yu, Tianqi; Lafontant, Jean; Zhang, Guojun; Chen, Changyan

    2016-09-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure. PMID:27425828

  18. [Risk of deterministic effects after exposure to low doses of ionizing radiation: retrospective study among health workers in view of a new publication of International Commission on Radiological Protection].

    PubMed

    Negrone, Mario; Di Lascio, Doriana

    2016-01-01

    The new recommended equivalent (publication n. 118 of International Commission on Radiological Protection) dose limit for occupational exposure of the lens of the eye is based on prevention of radiogenic cataracts, with the underlying assumption of a nominal threshold which has been adjusted from 2,5 Gy to 0.5 Gy for acute or protracted exposure. The study aim was to determine the prevalence of ocular lens opacity among healthcare workers (radiologic technologists, physicians, physician assistants) with respect to occupational exposures to ionizing radiations. Therefore, we conducted another retrospective study to explore the relationship between occupational exposure to radiation and opacity lens increase. Healthcare data (current occupational dosimetry, occupational history) are used to investigate risk of increase of opacity lens of eye. The sample of this study consisted of 148 health-workers (64 M and 84 W) aged from 28 to 66 years coming from different hospitals of the ASL of Potenza (clinic, hospital and institute with scientific feature). On the basis of the evaluation of the dosimetric history of the workers (global and effective dose) we agreed to ascribe the group of exposed subjects in cat A (equivalent dose > 2 mSV) and the group of non exposed subjects in cat B (workers with annual absorbed level of dose near 0 mSv). The analisys was conducted using SPSS 15.0 (Statistical Package for Social Science). A trend of increased ocular lens opacity was found with increasing number for workers in highest category of exposure (cat. A, Yates' chi-squared test = 13,7 p = 0,0002); variable significantly related to opacity lens results job: nurse (Χ(2)Y = 14,3 p = 0,0002) physician (Χ(2)Y = 2.2 p = 0,1360) and radiologic technologists (Χ(2)Y = 0,1 p = 0,6691). In conclusion our provides evidence that exposure to relatively low doses of ionizing radiation may be harmful to the lens of the eye and may increase a long-term risk of cataract formation; similary

  19. LOW-DOSE RISK, DECISIONS, AND RISK COMMUNICATION

    EPA Science Inventory

    This grant application seeks funding for a program of basic research in the areas of risk perception and decision making as applied to the role of communication of biological research results on low-dose radiation exposure. Widespread adverse views about radiation exposure makes...

  20. Low-Dose Risk, Decisions, and Risk Communication

    SciTech Connect

    Flynn, James; Slovic, Paul

    2001-06-01

    To conduct basic research on how people receive, evaluate, and form positions on scientific information and its relationship to low-dose radiation exposure. There are three major areas of study in our research program. First is the development of theories, frameworks and concepts essential to guiding data collection and analysis. The second area is a program of experimental studies on risk perception, evaluation of science information, and the structure of individual positions regarding low dose exposures. This involves the study of existing knowledge and the evaluation of science information presented within a variety of formats, as educational information, news media stories, and alternative communication methods (personal contact, small group interaction, email & internet, etc.). Third is the community-level studies to examine and record how the social conditions, under which science communications take place, influence the development of attitudes and opinions about: low- dose exposures, the available management options, control of radiation risks, and preferences for program and policy goals.

  1. Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain.

    PubMed

    Mao, Xiao Wen; Nishiyama, Nina C; Pecaut, Michael J; Campbell-Beachler, Mary; Gifford, Peter; Haynes, Kristine E; Becronis, Caroline; Gridley, Daila S

    2016-06-01

    Microgravity and radiation are stressors unique to the spaceflight environment that can have an impact on the central nervous system (CNS). These stressors could potentially lead to significant health risks to astronauts, both acutely during the course of a mission or chronically, leading to long-term, post-mission decrements in quality of life. The CNS is sensitive to oxidative injury due to high concentrations of oxidizable, unsaturated lipids and low levels of antioxidant defenses. The purpose of this study was to evaluate oxidative damage in the brain cortex and hippocampus in a ground-based model for spaceflight, which includes prolonged unloading and low-dose radiation. Whole-body low-dose/low-dose-rate (LDR) gamma radiation using (57)Co plates (0.04 Gy at 0.01 cGy/h) was delivered to 6 months old, mature, female C57BL/6 mice (n = 4-6/group) to simulate the radiation component. Anti-orthostatic tail suspension was used to model the unloading, fluid shift and physiological stress aspects of the microgravity component. Mice were hindlimb suspended and/or irradiated for 21 days. Brains were isolated 7 days or 9 months after irradiation and hindlimb unloading (HLU) for characterization of oxidative stress markers and microvessel changes. The level of 4-hydroxynonenal (4-HNE) protein, an oxidative specific marker for lipid peroxidation, was significantly elevated in the cortex and hippocampus after LDR + HLU compared to controls (P < 0.05). The combination group also had the highest level of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression compared to controls (P < 0.05). There was a significant decrease in superoxide dismutase (SOD) expression in the animals that received HLU only or combined LDR + HLU compared to control (P < 0.05). In addition, 9 months after LDR and HLU exposure, microvessel densities were the lowest in the combination group, compared to age-matched controls in the cortex (P < 0.05). Our data provide the first evidence

  2. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformations in F1 offspring

    PubMed Central

    Chen, Jiangfei; Huang, Changjiang; Das, Siba R.; La Du, Jane; Corvi, Margaret M.; Bai, Chenglian; Chen, Yuanhong; Tanguay, Robert L.; Dong, Qiaoxiang

    2014-01-01

    Perfluorooctanesulphonicacid (PFOS) is an organic contaminant that is ubiquitous in the environment, wildlife, and humans. Few studies have assessed the effects of chronic PFOS exposure on central nervous system function in aquatic organisms. The present study defined the behavioral effects of varying life span chronic exposures to low dose PFOS in zebrafish. The zebrafish were treated with vehicle control or 0.5μM PFOS during 1–21, 21–120, or 1–120 day post fertilization (dpf). Chronic PFOS exposure impaired the adult zebrafish behavior mode under the tapping stimulus. The movement speed of 1–120 dpf exposed fish was significantly increased compared with control, while 1–21 and 21–120 dpf exposed groups were not severely affected. PFOS residues in F1 embryos derived from parental exposure during both the 1–120 and 21–120 dpf groups was significantly higher than control, and F1 embryos in these two groups showed obvious malformations, such as uninflated swim bladder (USB) and bent spine (BS). Larvae of the parental exposed to PFOS from 1–21 or 21–120 dpf elicited a higher swim rate than control in both the light and dark periods. Embryos derived from the 1–120 dpf group showed a statistically lower speed in the light period and a higher speed in the dark period as compared with control. Though there is little PFOS residue in 1–21 dpf group, the adverse behavioral effects on both adult and F1 larvae indicate that exposure during the first 21 dpf induce long-term neurobehavior toxicity. Our findings demonstrate that chronic exposure to low dose PFOS in different life stage adversely impacts adult behavior, subsequent offspring malformation, and larval behavior. PMID:23059794

  3. Exposure of preimplantation embryos to low-dose bisphenol A impairs testes development and suppresses histone acetylation of StAR promoter to reduce production of testosterone in mice.

    PubMed

    Hong, Juan; Chen, Fang; Wang, Xiaoli; Bai, Yinyang; Zhou, Rong; Li, Yingchun; Chen, Ling

    2016-05-15

    Previous studies have shown that bisphenol A (BPA) is a potential endocrine disruptor and testicular toxicant. The present study focused on exploring the impact of exposure to low dose of BPA on male reproductive development during the early embryo stage and the underlying mechanisms. BPA (20 μg/kg/day) was orally administered to female mice on days 1-5 of gestation. The male offspring were euthanized at PND10, 20, 24, 35 or PND50. We found that the mice exposed to BPA before implantation (BPA-mice) displayed retardation of testicular development with reduction of testosterone level. The diameter and epithelium height of seminiferous tubules were reduced in BPA-mice at PND35. The numbers of spermatogenic cells at different stages were significantly reduced in BPA-mice at PND50. BPA-mice showed a persistent reduction in serum and testicular testosterone levels starting from PND24, whereas GnRH mRNA was significantly increased at PND35 and PND50. The expressions of testicular StAR and P450scc in BPA-mice also decreased relative to those of the controls at PND35 and PND50. Further analysis found that the levels of histone H3 and H3K14 acetylation (Ac-H3 and H3K14ac) in the promoter of StAR were decreased relative to those of control mice, whereas the level of Ac-H3 in the promoter of P450scc was not significantly different between the groups. These results provide evidence that exposure to BPA in preimplantation embryo retards the development of testes by reducing histone acetylation of the StAR promoter to disrupt the testicular testosterone synthesis. PMID:26975478

  4. Low dose ethanol consumption improves insulin sensitivity in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While chronic consumption of high doses of ethanol is well known to have adverse health consequences, intake of low doses have been reported to improve several markers of health outcomes. Published results from our laboratory using total enteral nutrition (TEN) in rats, in which ethanol-containing d...

  5. Low-dose radiation epidemiology studies: status and issues.

    PubMed

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes. PMID:19820457

  6. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  7. Chromosome Damage Caused by Accidental Chronic Whole-Body Gamma Radiation Exposure in Thailand

    PubMed Central

    Dolling, J.; Lavoie, J.; Mitchel, R. E. J.; Boreham, D. R.

    2015-01-01

    In February 2000, a radiation incident involving a medical 60Co source occurred in a metal scrapyard in Thailand. Several individuals were suspected to have received chronic or fractionated exposures ranging from a few mGy to a several Gy. Using fluorescence in situ hybridization to paint chromosomes, we determined the frequencies of chromosome aberrations in peripheral blood lymphocytes of 13 people who entered the scrapyard, 3 people who involved in recovering the source, and 9 nearby residents. Aberration frequencies greater than controls were observed in 13 of the donors at 3 months postexposure. The predominant form of aberration observed was simple, complete, symmetrical translocations. An approximate 50% decrease in these aberrations and in total color junctions was observed in 7 donors resampled at 16 months postexposure. Although high, acute exposures are known to have detrimental effects, the biological consequences of chronic, low dose-rate radiation exposures are unclear. Thirteen of the donors had elevated aberration frequencies, and 6 also had symptoms of acute radiation syndrome. If there are any long-term health consequences of this incident, it will most likely occur among this group of individuals. The consequences for the remaining donors, who presumably received lower total doses delivered at lower dose rates, are less clear. PMID:26740811

  8. Subclinical decelerations during developing hypotension in preterm fetal sheep after acute on chronic lipopolysaccharide exposure.

    PubMed

    Lear, Christopher A; Davidson, Joanne O; Galinsky, Robert; Yuill, Caroline A; Wassink, Guido; Booth, Lindsea C; Drury, Paul P; Bennet, Laura; Gunn, Alistair J

    2015-01-01

    Subclinical (shallow) heart rate decelerations occur during neonatal sepsis, but there is limited information on their relationship with hypotension or whether they occur before birth. We examined whether subclinical decelerations, a fall in fetal heart rate (FHR) that remained above 100 bpm, were associated with hypotension in preterm fetal sheep exposed to lipopolysaccharide (LPS). Chronically-instrumented fetal sheep at 0.7 gestation received continuous low-dose LPS infusions (n = 15, 100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h) or saline (n = 8). Boluses of 1 μg LPS or saline were given at 48 and 72 h. FHR variability (FHRV) was calculated, and sample asymmetry was used to assess the severity and frequency of decelerations. Low-dose LPS infusion did not affect FHR. After the first LPS bolus, 7 fetuses remained normotensive, while 8 developed hypotension (a fall in mean arterial blood pressure of ≥5 mmHg). Developing hypotension was associated with subclinical decelerations, with a corresponding increase in sample asymmetry and FHRV (p < 0.05). The second LPS bolus was associated with similar but attenuated changes in FHR and blood pressure (p < 0.05). In conclusion, subclinical decelerations are not consistently seen during prenatal exposure to LPS, but may be a useful marker of developing inflammation-related hypotension before birth. PMID:26537688

  9. Subclinical decelerations during developing hypotension in preterm fetal sheep after acute on chronic lipopolysaccharide exposure

    PubMed Central

    Lear, Christopher A.; Davidson, Joanne O.; Galinsky, Robert; Yuill, Caroline A.; Wassink, Guido; Booth, Lindsea C.; Drury, Paul P.; Bennet, Laura; Gunn, Alistair J.

    2015-01-01

    Subclinical (shallow) heart rate decelerations occur during neonatal sepsis, but there is limited information on their relationship with hypotension or whether they occur before birth. We examined whether subclinical decelerations, a fall in fetal heart rate (FHR) that remained above 100 bpm, were associated with hypotension in preterm fetal sheep exposed to lipopolysaccharide (LPS). Chronically-instrumented fetal sheep at 0.7 gestation received continuous low-dose LPS infusions (n = 15, 100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h) or saline (n = 8). Boluses of 1 μg LPS or saline were given at 48 and 72 h. FHR variability (FHRV) was calculated, and sample asymmetry was used to assess the severity and frequency of decelerations. Low-dose LPS infusion did not affect FHR. After the first LPS bolus, 7 fetuses remained normotensive, while 8 developed hypotension (a fall in mean arterial blood pressure of ≥5 mmHg). Developing hypotension was associated with subclinical decelerations, with a corresponding increase in sample asymmetry and FHRV (p < 0.05). The second LPS bolus was associated with similar but attenuated changes in FHR and blood pressure (p < 0.05). In conclusion, subclinical decelerations are not consistently seen during prenatal exposure to LPS, but may be a useful marker of developing inflammation-related hypotension before birth. PMID:26537688

  10. The effects of acute pesticide exposure on neuroblastoma cells chronically exposed to diazinon.

    PubMed

    Axelrad, J C; Howard, C V; McLean, W G

    2003-03-14

    Speculation about potential neurotoxicity due to chronic exposure to low doses of organophosphate (OP) pesticides is not yet supported by experimental evidence. The objective of this work was to use a cell culture model of chronic OP exposure to determine if such exposure can alter the sensitivity of nerve cells to subsequent acute exposure to OPs or other compounds. NB2a neuroblastoma cells were grown in the presence of 25 microM diazinon for 8 weeks. The OP was then withdrawn and the cells were induced to differentiate in the presence of various other pesticides or herbicides, including OPs and OP-containing formulations. The resulting outgrowth of neurite-like structures was measured by light microscopy and quantitative image analysis and the IC(50) for each OP or formulation was calculated. The IC(50) values in diazinon-pre-exposed cells were compared with the equivalent values in cells not pre-exposed to diazinon. The IC(50) for inhibition of neurite outgrowth by acute application of diazinon, pyrethrum, glyphosate or a commercial formulation of glyphosate was decreased by between 20 and 90% after pre-treatment with diazinon. In contrast, the IC(50) for pirimiphos methyl was unaffected and those for phosmet or chlorpyrifos were increased by between 1.5- and 3-fold. Treatment of cells with chlorpyrifos or with a second glyphosate-containing formulation led to the formation of abnormal neurite-like structures in diazinon-pre-exposed cells. The data support the view that chronic exposure to an OP may reduce the threshold for toxicity of some, but by no means all, environmental agents. PMID:12505446

  11. A report from the 2013 international symposium: the evaluation of the effects of low-dose radiation exposure in the life span study of atomic bomb survivors and other similar studies.

    PubMed

    Grant, E J; Ozasa, K; Ban, N; de González, A Berrington; Cologne, J; Cullings, H M; Doi, K; Furukawa, K; Imaoka, T; Kodama, K; Nakamura, N; Niwa, O; Preston, D L; Rajaraman, P; Sadakane, A; Saigusa, S; Sakata, R; Sobue, T; Sugiyama, H; Ullrich, R; Wakeford, R; Yasumura, S; Milder, C M; Shore, R E

    2015-05-01

    The RERF International Low-Dose Symposium was held on 5-6 December 2013 at the RERF campus in Hiroshima, Japan, to discuss the issues facing the Life Span Study (LSS) and other low-dose studies. Topics included the current status of low-dose risk detection, strategies for low-dose epidemiological and statistical research, methods to improve communication between epidemiologists and biologists, and the current status of radiological studies and tools. Key points made by the participants included the necessity of pooling materials over multiple studies to gain greater insight where data from single studies are insufficient; generating models that reflect epidemiological, statistical, and biological principles simultaneously; understanding confounders and effect modifiers in the current data; and taking into consideration less studied factors such as the impact of dose rate. It is the hope of all participants that this symposium be used as a trigger for further studies, especially those using pooled data, in order to reach a greater understanding of the health effects of low-dose radiation. PMID:25811153

  12. FINAL REPORT: LOW DOSE RISK, DECISIONS, AND RISK COMMUNICATION

    EPA Science Inventory

    The research project conducted basic research on how people receive, evaluate, and form positions in response to scientific information and its relationship to low-dose radiation exposure. Three major areas of study were addressed in our research program. First was the developmen...

  13. PROGRESS REPORT. LOW-DOSE RISK, DECISIONS, AND RISK COMMUNICATION

    EPA Science Inventory

    The objectives of this research are to conduct basic research on how people receive, evaluate, and form positions on scientific information and its relationship to low-dose radiation exposure. There are three major areas of study in our research program. First is the development ...

  14. LOW-DOSE RISK, DECISIONS, AND RISK COMMUNICATION: YEAR 3

    EPA Science Inventory

    The objective of this project is to conduct basic research on how people receive, evaluate, and form positions on scientific information and its relationship to low-dose radiation exposure. There are three major areas of study in our research program. First is the development of ...

  15. Low dose neutron late effects: Cataractogenesis

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  16. Early-onset scleral and corneal ectasias following low-dose mitomycin-C-augmented trabeculectomy in a uveitic glaucoma patient.

    PubMed

    Pirouzian, A; O'Halloran, H; Scher, C; Jockin, Y

    2006-01-01

    A case of early-onset sclerolimbal ectasia following low-dose topical mitomycin C application during uveitic glaucoma surgery is reported. Intraoperative and postoperative clinical courses were consistent with sclerolimbal ectasia. Adjunctive utilization of intraoperative low-dose 0.02% mitomycin C for the management of chronic uveitic glaucoma patients who are under concomitant systemic immunosuppressive regimen may enhance the risk of subacute postoperative sclerolimbal ectasia. Mitomycin C concentrations < 0.02%, decreased scleral exposure time, and a strict informed consent policy are strongly recommended in this subset of uveitic patients. PMID:17095889

  17. CHRONIC RESPIRATORY EFFECTS OF INDOOR FORMALDEHYDE EXPOSURE

    EPA Science Inventory

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6 - 15 years of age) and 613 adults. CHO measurements were made with passive samplers two one-week periods. ata on chronic cough and phlegm...

  18. Effects of chronic exposure to ozone on collagen in rat lung

    SciTech Connect

    Wright, E.S.; Kehrer, J.P.; White, D.M.; Smiler, K.L.

    1988-03-15

    Pulmonary fibrosis is a consequence of severe injury from some toxic agents including high doses of ozone. It is not known, however, whether chronic exposure to low doses of ozone, such as those encountered in polluted ambient atmospheres, could also result in abnormal accumulations of lung collagen. Rats were exposed to ozone for 20 hr per day, 7 days per week for 3, 6, 12, and 18 months at concentrations of 0.12, 0.25, or 0.50 ppm. Controls were exposed under identical conditions to purified air. Upon removal from the chambers, rats were euthanized and lung tissue slices incubated with (14C)proline. The incorporation of 14C into hydroxyproline and the total hydroxyproline content of lung tissue were measured as estimates of lung collagen synthesis and content, respectively. The formation of labeled hydroxyproline tended to decrease significantly with time in controls and at the three ozone doses. There were, however, no significant dose-related changes at any of the time points tested. Total lung hydroxyproline increased with age in all groups, but no dose-related changes were detected at any time point. It was concluded that chronic exposure of rats to ozone at concentrations which approximate ambient urban concentrations did not affect normal age-related changes in either synthesis or accumulation of lung collagen.

  19. Impact of concomitant low-dose aspirin on the safety and tolerability of naproxen and esomeprazole magnesium delayed-release tablets in patients requiring chronic nonsteroidal anti-inflammatory drug therapy: an analysis from 5 Phase III studies.

    PubMed

    Angiolillo, Dominick J; Datto, Catherine; Raines, Shane; Yeomans, Neville D

    2014-07-01

    Patients receiving chronic nonsteroidal anti-inflammatory drugs (NSAIDs) and concomitant low-dose aspirin (LDA) are at increased risk of gastrointestinal (GI) toxicity. A fixed-dose combination of enteric-coated (EC) naproxen and immediate-release esomeprazole magnesium (NAP/ESO) has been designed to deliver a proton-pump inhibitor followed by an NSAID in a single tablet. To examine safety data from 5 Phase III studies of NAP/ESO in LDA users (≤ 325 mg daily, administered at any time during the study), and LDA non-users, data were analyzed from 6-month studies assessing NAP/ESO versus EC naproxen in patients with osteoarthritis, rheumatoid arthritis, or ankylosing spondylitis (n = 2), 3-month studies assessing NAP/ESO vs celecoxib or placebo in patients with knee osteoarthritis (n = 2), and a 12-month, open-label, safety study of NAP/ESO (n = 1). In an analysis of two studies, incidences of endoscopically confirmed gastric ulcers (GUs) and duodenal ulcers (DUs) were summarized by LDA subgroups. In the pooled analysis from all five studies, incidences of treatment-emergent adverse events (AEs) (including prespecified NSAID-associated upper GI AEs and cardiovascular AEs), serious AEs, and AE-related discontinuations were stratified by LDA subgroups. Overall, 2,317 patients received treatment; 1,157 patients received NAP/ESO and, of these, 298 received LDA. The cumulative incidence of GUs and DUs in the two studies with 6-month follow-up was lower for NAP/ESO vs EC naproxen in both LDA subgroups [GUs: 3.0 vs 27.9%, respectively, for LDA users, 6.4 vs 22.4%, respectively, for LDA non-users (both P < 0.001); DUs: 1.0 vs 5.8% for LDA users, 0.6 vs 5.3% for LDA non-users]. The incidence of erosive gastritis was lower in NAP/ESO- vs EC naproxen-treated patients for both LDA users [18.2 vs 36.5%, respectively (P = 0.004)] and LDA non-users [19.8 vs 38.5%, respectively (P < 0.001)]. Among LDA users, incidences of NSAID-associated upper GI AEs were: NAP/ESO, 16.1%; EC

  20. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish.

    PubMed

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang; Huang, Changjiang; Yang, Dongren

    2016-07-01

    Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening. PMID:27108203

  1. Acceleration of atherogenesis in ApoE−/− mice exposed to acute or low-dose-rate ionizing radiation

    PubMed Central

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J.; Saran, Anna

    2015-01-01

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE−/− mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE−/− females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  2. Acceleration of atherogenesis in ApoE-/- mice exposed to acute or low-dose-rate ionizing radiation.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J; Saran, Anna

    2015-10-13

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE-/- mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE-/- females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  3. Impacts of low doses of pesticide mixtures on liver cell defence systems.

    PubMed

    Rouimi, Patrick; Zucchini-Pascal, Nathalie; Dupont, Gwendoline; Razpotnik, Andrej; Fouché, Edwin; De Sousa, Georges; Rahmani, Roger

    2012-08-01

    Low amounts of residual pesticides are present in the environment, often as mixtures of chemicals which contaminate drinking water and food, being a source of chronic exposure for humans and a growing matter of concern in public health policy. Despite of the needs and growing investigation, little is known about the impact of low doses and mixtures of these chemicals on human health. The purpose of this study was to enlighten if modifications of liver cell metabolic- and/or defence-related capacities could occur under such exposures. In vitro perturbations of several metabolic, stress and survival pathways in human and mice cultured hepatocytes and liver cells were evaluated under exposure to low doses of single molecules or equimolecular combinations of the three pesticides, atrazine, chlorpyrifos and endosulfan. Mainly phases I and II enzymes of detoxification were found modulated, together with apoptotic process deregulation. Hence, CYP3A4 and CYP3A11 were upregulated in primary cultured human and mouse hepatocytes, respectively. These inductions were correlated to an anti-apoptotic process (increased Bcl-xL/Bax ratio, inhibition of the PARP protein cleavage). Such disturbances in pathways involved in cell protection may possibly account for initiation of pathologies or decrease in drugs efficiency in humans exposed to multiple environmental contaminants. PMID:22515965

  4. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    PubMed

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. PMID:25644753

  5. Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish (Danio rerio).

    PubMed

    Gao, Dongxu; Wu, Meifang; Wang, Chonggang; Wang, Yuanchuan; Zuo, Zhenghong

    2015-10-01

    Previous epidemiological and animal studies report that exposure to environmental pollutant exposure links to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Benzo[a]pyrene (BaP), a neurotoxic polycyclic aromatic hydrocarbon, has been increasingly released into the environment during recent decades. So far, the role of BaP on the development of neurodegenerative diseases remaind unclear. This study aimed to determine whether chronic exposure to low dose BaP would cause neurodegenerative disease-like syndromes in zebrafish (Danio rerio). We exposed zebrafish, from early embryogenesis to adults, to environmentally relevant concentrations of BaP for 230 days. Our results indicated that BaP decreased the brain weight to body weight ratio, locomotor activity and cognitive ability; induced the loss of dopaminergic neurons; and resulted in neurodegeneration. In addition, obvious cell apoptosis in the brain was found. Furthermore, the neurotransmitter levels of dopamine and 3,4-dihydroxyphenylacetic acid, the mRNA levels of the genes encoding dopamine transporter, Parkinson protein 7, phosphatase and tensin-induced putative kinase 1, ubiquitin carboxy-terminal hydrolase L1, leucine-rich repeat serine/threonine kinase 2, amyloid precursor protein b, presenilin 1 and presenilin 2 were significantly down-regulated by BaP exposure. These findings suggest that chronic exposure to low dose BaP could cause the behavioral, neuropathological, neurochemical, and genetic features of neurodegenerative diseases. This study provides clues that BaP may constitute an important environmental risk factor for neurodegenerative diseases in humans. PMID:26349946

  6. [Low-dose radiation effects and intracellular signaling pathways].

    PubMed

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2006-10-01

    Accumulated evidence has shown that exposure to low-dose radiation, especially doses less than 0.1 Gy, induces observable effects on mammalian cells. However, the underlying molecular mechanisms have not yet been clarified. Recently, it has been shown that low-dose radiation stimulates growth factor receptor, which results in a sequential activation of the mitogen-activated protein kinase pathway. In addition to the activation of the membrane-bound pathways, it is becoming evident that nuclear pathways are also activated by low-dose radiation. Ionizing radiation has detrimental effects on chromatin structure, since radiation-induced DNA double-strand breaks result in discontinuity of nucleosomes. Recently, it has been shown that ATM protein, the product of the ATM gene mutated in ataxia-telangiectasia, recognizes alteration in the chromatin structure, and it is activated through intermolecular autophosphorylation at serine 1981. Using antibodies against phosphorylated ATM, we found that the activated and phosphorylated ATM protein is detected as discrete foci in the nucleus between doses of 10 mGy and 1 Gy. Interestingly, the size of the foci induced by low-dose radiation was equivalent to the foci induced by high-dose radiation. These results indicate that the initial signal is amplified through foci growth, and cells evolve a system by which they can respond to a small number of DNA double-strand breaks. From these results, it can be concluded that low-dose radiation is sensed both in the membrane and in the nucleus, and activation of multiple signal transduction pathways could be involved in manifestations of low-dose effects. PMID:17016017

  7. TELOMERASE AND CHRONIC ARSENIC EXPOSURE IN HUMANS

    EPA Science Inventory

    Arsenic exposure has been associated with increased risk of skin, lung and bladder cancer in humans. The mechanisms of carcinogenesis are not well understood. Telomerase, a ribonucleoprotein containing human telomerase reverse transcriptase (hTERT), can extend telomeres of eukary...

  8. Mechanisms of Low Dose Radio-Suppression of Genomic Instability

    SciTech Connect

    Engelward, Bevin P

    2009-09-16

    The major goal of this project is to contribute toward the elucidation of the impact of long term low dose radiation on genomic stability. We have created and characterized novel technologies for delivering long term low dose radiation to animals, and we have studied genomic stability by applying cutting edge molecular analysis technologies. Remarkably, we have found that a dose rate that is 300X higher than background radiation does not lead to any detectable genomic damage, nor is there any significant change in gene expression for genes pertinent to the DNA damage response. These results point to the critical importance of dose rate, rather than just total dose, when evaluating public health risks and when creating regulatory guidelines. In addition to these studies, we have also further developed a mouse model for quantifying cells that have undergone a large scale DNA sequence rearrangement via homologous recombination, and we have applied these mice in studies of both low dose radiation and space radiation. In addition to more traditional approaches for assessing genomic stability, we have also explored radiation and possible beneficial effects (adaptive response), long term effects (persistent effects) and effects on communication among cells (bystander effects), both in vitro and in vivo. In terms of the adaptive response, we have not observed any significant induction of an adaptive response following long term low dose radiation in vivo, delivered at 300X background. In terms of persistent and bystander effects, we have revealed evidence of a bystander effect in vivo and with researchers at and demonstrated for the first time the molecular mechanism by which cells “remember” radiation exposure. Understanding the underlying molecular mechanisms by which radiation can induce genomic instability is fundamental to our ability to assess the biological impact of low dose radiation. Finally, in a parallel set of studies we have explored the effects of heavy

  9. Influence of low-dose and low-dose-rate ionizing radiation on mutation induction in human cells

    NASA Astrophysics Data System (ADS)

    Yatagai, F.; Umebayashi, Y.; Suzuki, M.; Abe, T.; Suzuki, H.; Shimazu, T.; Ishioka, N.; Iwaki, M.; Honma, M.

    This is a review paper to introduce our recent studies on the genetic effects of low-dose and low-dose-rate ionizing radiation (IR). Human lymphoblastoid TK6 cells were exposed to γ-rays at a dose-rate of 1.2 mGy/h (total 30 mGy). The frequency of early mutations (EMs) in the thymidine kinase ( TK) gene locus was determined to be 1.7 × 10 -6, or 1.9-fold higher than the level seen in unirradated controls [Umebayashi, Y., Honma, M., Suzuki, M., Suzuki, H., Shimazu, T., Ishioka, N., Iwaki, M., Yatagai, F., Mutation induction in cultured human cells after low-dose and low-dose-rate γ-ray irradiation: detection by LOH analysis. J. Radiat. Res., 48, 7-11, 2007]. These mutants were then analyzed for loss of heterozygosity (LOH) events. Small interstitial-deletion events were restricted to the TK gene locus and were not observed in EMs in unirradated controls, but they comprised about half of the EMs (8/15) after IR exposure. Because of the low level of exposure to IR, this specific type of event cannot be considered to be the direct result of an IR-induced DNA double strand break (DSB). To better understand the effects of low-level IR exposure, the repair efficiency of site-specific chromosomal DSBs was also examined. The pre γ-irradiation under the same condition did not largely influence the efficiency of DSB repair via end-joining, but enhanced such efficiency via homologous recombination to an about 40% higher level (unpublished data). All these results suggest that DNA repair and mutagenesis can be indirectly influenced by low-dose/dose-rate IR.

  10. Psychologic sequelae of chronic toxic waste exposure

    SciTech Connect

    Foulks, E.; McLellen, T. )

    1992-02-01

    Exposure to toxic industrial substances has been a topic of increasing concern to environmentalists, government agencies, industrial engineers, and medical specialists. Our study focuses on the psychologic symptom responses of a community to perceived long-term exposure to toxic waste products. We compared their symptom clusters, as shown by their responses to questions on the Hopkins Symptom Checklist-90 Item (SCL-90) and the Social Adjustment Scale (SAS), with symptom levels of normal and depressed subjects. Issues of media coverage, litigation, and potential for compensation complicate the psychiatric epidemiology of the subject.

  11. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris.

    PubMed

    Stark, Karolina; Scott, David E; Tsyusko, Olga; Coughlin, Daniel P; Hinton, Thomas G

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  12. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE PAGESBeta

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore » affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  13. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris

    PubMed Central

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  14. Chronic Ambient Hydrogen Sulfide Exposure and Cognitive Function

    PubMed Central

    Reed, Bruce R.; Crane, Julian; Garrett, Nick; Woods, David L.; Bates, Michael N.

    2014-01-01

    Background Exposures to hydrogen sulfide gas (H2S) have been inconclusively linked to a variety of negative cognitive outcomes. We investigated possible effects on cognitive function in an urban population with chronic, low-level exposure to H2S. Methods Participants were 1,637 adults, aged 18-65 years from Rotorua city, New Zealand, exposed to ambient H2S from geothermal sources. Exposures at homes and workplaces were estimated from data collected by summer and winter H2S monitoring networks across Rotorua in 2010/11. Metrics for H2S exposure at the time of participation and for exposure over the last 30 years were calculated. H2S exposure was modeled both as continuous variables and as quartiles of exposure covering the range of 0 – 64 ppb (0-88 μg/m3). Outcomes were neuropsychological tests measuring visual and verbal episodic memory, attention, fine motor skills, psychomotor speed and mood. Associations between cognition and measures of H2S exposure were investigated with multiple regression, while covarying demographics and factors known to be associated with cognitive performance. Results The consistent finding was of no association between H2S exposure and cognition. Quartiles of H2S exposure had a small association with simple reaction time: higher exposures were associated with faster response times. Similarly, for digit symbol, higher H2S exposures tended to be marginally associated with better performance. Conclusion The results provide evidence that chronic H2S exposure, at the ambient levels found in and around Rotorua, is not associated with impairment of cognitive function. PMID:24548790

  15. Chronic exposure to ozone causes restrictive lung disease

    SciTech Connect

    Grose, E.C.; Costa, D.L.; Hatch, G.E.; Miller, F.J.; Graham, J.A.

    1989-01-01

    A chronic study to determine the progression and/or reversibility of ozone-induced lung disease was conducted. Male rats were exposed to a diurnal pattern of ozone (O{sub 3}) for 1 week, 3 weeks, 3 months, 12 months, or 18 months. The occurrence of chronic lung disease was determined by structural and functional endpoints. Structurally, a biphasic response was observed with an initial acute inflammatory response after 1 week of exposure, a reduced acute response after 3 weeks of exposure, and an epithelial and interstitial response observed after 3 months which persisted or increased in intensity up to 18 months of exposure. Functional studies showed a persistence of decreased total lung capacity and residual volumes at 3, 12, and 18 months of exposure, a response indicative of restrictive lung disease. Biochemical changes in antioxidant metabolism were also observed after 12 and 18 months of exposure. Most significant changes were resolved after the clean-air recovery period. The study has shown that chronic exposure to O{sub 3} causes restrictive lung disease as characterized by the development of focal interstitial fibrosis.

  16. Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses.

    PubMed

    Murugan, Kadarkarai; Sanoopa, C P; Madhiyazhagan, Pari; Dinesh, Devakumar; Subramaniam, Jayapal; Panneerselvam, Chellasamy; Roni, Mathath; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Kumar, Suresh; Perumalsamy, Haribalan; Ahn, Young-Joon; Benelli, Giovanni

    2016-01-01

    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs. PMID:26284510

  17. Chronic boron exposure and human semen parameters.

    PubMed

    Robbins, Wendie A; Xun, Lin; Jia, Juan; Kennedy, Nola; Elashoff, David A; Ping, Liu

    2010-04-01

    Boron found as borates in soil, food, and water has important industrial and medical applications. A panel reviewing NTP reproductive toxicants identified boric acid as high priority for occupational studies to determine safe versus adverse reproductive effects. To address this, we collected boron exposure/dose measures in workplace inhalable dust, dietary food/fluids, blood, semen, and urine from boron workers and two comparison worker groups (n=192) over three months and determined correlations between boron and semen parameters (total sperm count, sperm concentration, motility, morphology, DNA breakage, apoptosis and aneuploidy). Blood boron averaged 499.2 ppb for boron workers, 96.1 and 47.9 ppb for workers from high and low environmental boron areas (p<0.0001). Boron concentrated in seminal fluid. No significant correlations were found between blood or urine boron and adverse semen parameters. Exposures did not reach those causing adverse effects published in animal toxicology work but exceeded those previously published for boron occupational groups. PMID:19962437

  18. Exposure to Chronic Community Violence: Resilience in African American Children

    ERIC Educational Resources Information Center

    Jones, Janine M.

    2007-01-01

    In many African American communities, violence and poverty are often part of daily living. As a result, children are at risk for difficulties in all aspect of their lives, particularly their emotional well-being. This study explored the relationship between exposure to chronic community violence and the development of complex post-traumatic stress…

  19. Chronic dysphagia and trigeminal anesthesia after trichloroethylene exposure

    SciTech Connect

    Lawrence, W.H.; Partyka, E.K.

    1981-12-01

    A patient is described who inhaled trichloroethylene fumes while working in a closed underground pit. At the time of exposure he developed dysphagia, dysarthria and dyspnea. Assessment of his condition 11 years after the incident indicated major damage of cranial nerves, particularly the trigeminal, chronic involvement of the bulbar cranial nerves, and resultant esophageal and pharnygeal motility impairment. (JMT)

  20. CHRONIC DEVELOPMENTAL LEAD EXPOSURE REDUCES NEUROGENESIS IN ADULT HIPPOCAMPUS.

    EPA Science Inventory

    CHRONIC DEVELOPMENTAL LEAD EXPOSURE REDUCES NEUROGENESIS IN ADULT HIPPOCAMPUS. ME Gilbert1, ME Kelly2, S. Salant3, T Shafer1, J Goodman3 1Neurotoxicology Div, US EPA, RTP, NC, 27711, 2Children's Hospital, Philadelphia, PA, 19104, 3Helen Hayes Hospital, Haverstraw, NY, 10993.
    ...

  1. Mitochondrial reactive oxygen species-mediated genomic instability in low-dose irradiated human cells through nuclear retention of cyclin D1.

    PubMed

    Shimura, Tsutomu; Kunugita, Naoki

    2016-06-01

    Mitochondria are associated with various radiation responses, including adaptive responses, mitophagy, the bystander effect, genomic instability, and apoptosis. We recently identified a unique radiation response in the mitochondria of human cells exposed to low-dose long-term fractionated radiation (FR). Such repeated radiation exposure inflicts chronic oxidative stresses on irradiated cells via the continuous release of mitochondrial reactive oxygen species (ROS) and decrease in cellular levels of the antioxidant glutathione. ROS-induced oxidative mitochondrial DNA (mtDNA) damage generates mutations upon DNA replication. Therefore, mtDNA mutation and dysfunction can be used as markers to assess the effects of low-dose radiation. In this study, we present an overview of the link between mitochondrial ROS and cell cycle perturbation associated with the genomic instability of low-dose irradiated cells. Excess mitochondrial ROS perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of protein phosphatase 2A after low-dose long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 induces genomic instability in low-dose irradiated cells. PMID:27078622

  2. Leukemia risk associated with chronic external exposure to ionizing radiation in a French cohort of nuclear workers.

    PubMed

    Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D

    2012-11-01

    Leukemia is one of the earliest cancer effects observed after acute exposure to relatively high doses of ionizing radiation. Leukemia mortality after external exposure at low doses and low-dose rates has been investigated at the French Atomic Energy Commission (CEA) and Nuclear Fuel Company (AREVA NC) after an additional follow-up of 10 years. The cohort included radiation-monitored workers employed for at least one year during 1950-1994 at CEA or AREVA NC and followed during 1968-2004. Association between external exposure and leukemia mortality was estimated with excess relative risk (ERR) models and time-dependent modifying factors were investigated with time windows. The cohort included 36,769 workers, followed for an average of 28 years, among whom 73 leukemia deaths occurred. Among the workers with a positive recorded dose, the mean cumulative external dose was 21.7 mSv. Results under a 2-year lag assumption suggested that the risk of leukemia (except chronic lymphatic leukemia) increased significantly by 8% per 10 mSv. The magnitude of the association for myeloid leukemia was larger. The higher ERR/Sv for doses received 2-14 years earlier suggest that time since exposure modifies the effect. The ERR/Sv also appeared higher for doses received at exposure rates ≥20 mSv per year. These results are consistent with those found in other studies of nuclear workers. However, confidence intervals are still wide. Further analyses should be conducted in pooled cohorts of nuclear workers. PMID:23050984

  3. Low-Dose Radioactive Iodine Destroys Thyroid Tissue Left after Surgery

    Cancer.gov

    A low dose of radioactive iodine given after surgery for thyroid cancer destroyed (ablated) residual thyroid tissue as effectively as a higher dose, with fewer side effects and less exposure to radiation, according to two randomized controlled trials.

  4. Chronic cadmium exposure: relation to male reproductive toxicity and subsequent fetal outcome

    SciTech Connect

    Zenick, H.; Hastings, L.; Goldsmith, M.; Niewenhuis, R.J.

    1982-03-01

    Acute injections of high doses of Cd induced marked testicular necrosis. However, the effects of low-dose, oral Cd exposure on a chronic basis are not well documented. The present investigation was designed to examine the effects of such exposure as reflected in parameters of spermatotoxicity and histology. Moreover, the impact on fetal outcome was measured by evaluating teratological and postnatal neurobehavior endpoints. Male Long-Evans hooded rats (100 d of age) were exposed to 0, 17.2, 34.4, or 68.8 ppm Cd for 70 d. During this period, the animals were maintained on a semipurified diet to control for the contribution of Zn and other trace elements. Near the end of exposure the males were mated to three female rats. One was sacrificed on d 21 of pregnancy for teratological assessment, including fetal weight, and determination of preimplantation and postimplantation loss. The other two dams were allowed to deliver, and their offspring were tested on tasks of exploratory behavior (d 21) and learning (d 90). Subsequently, the male parent was sacrified and a variety of measures recorded including weights of testes and caudae epididymides, sperm count and sperm morphology, and Cd content of liver and kidney. One of the testes was also evaluated histologically. No significant effects were observed on any of the parameters of reproductive toxicity or fetal outcome. These findings suggest that, at the doses employed in this study, Cd did not have signficant deleterious effects on the male reproductive system. Morever, the traditional view of Cd-related testicular insult, based on acute exposure, injection protocols, needs to be reevaluated in terms of environmental relevance.

  5. Low-dose radiation: a cause of breast cancer

    SciTech Connect

    Land, C.E.

    1980-08-15

    It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporal patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause.

  6. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M. ); Panozzo, J.; Libertin, C.R. )

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following [gamma]-ray exposure in fibroblasts. Our past work had shown differences in the expression of [beta]-protein kinase C and c-fos genes, both being induced following [gamma]-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not [gamma]-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to [gamma] rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  7. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-06-01

    Studies were designed to identify genes induced following low-dose neutron but not following {gamma}-ray exposure in fibroblasts. Our past work had shown differences in the expression of {beta}-protein kinase C and c-fos genes, both being induced following {gamma}-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not {gamma}-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to {gamma} rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  8. Anxiogenic-like effects of chronic nicotine exposure in zebrafish.

    PubMed

    Stewart, Adam Michael; Grossman, Leah; Collier, Adam D; Echevarria, David J; Kalueff, Allan V

    2015-12-01

    Nicotine is one of the most widely used and abused legal drugs. Although its pharmacological profile has been extensively investigated in humans and rodents, nicotine CNS action remains poorly understood. The importance of finding evolutionarily conserved signaling pathways, and the need to apply high-throughput in vivo screens for CNS drug discovery, necessitate novel efficient experimental models for nicotine research. Zebrafish (Danio rerio) are rapidly emerging as an excellent organism for studying drug abuse, neuropharmacology and toxicology and have recently been applied to testing nicotine. Anxiolytic, rewarding and memory-modulating effects of acute nicotine treatment in zebrafish are consistently reported in the literature. However, while nicotine abuse is more relevant to long-term exposure models, little is known about chronic effects of nicotine on zebrafish behavior. In the present study, chronic 4-day exposure to 1-2mg/L nicotine mildly increased adult zebrafish shoaling but did not alter baseline cortisol levels. We also found that chronic exposure to nicotine evokes robust anxiogenic behavioral responses in zebrafish tested in the novel tank test paradigm. Generally paralleling clinical and rodent data on anxiogenic effects of chronic nicotine, our study supports the developing utility of zebrafish for nicotine research. PMID:25643654

  9. Methamphetamine exposure and chronic illness in police officers

    PubMed Central

    Ross, Gerald H; Sternquist, Marie C

    2012-01-01

    Background: The medical literature reports health hazards for law enforcement personnel from repeated exposure to methamphetamine and related chemical compounds. Most effects appear transitory, but some Utah police officers with employment-related methamphetamine exposures developed chronic symptoms, some leading to disability. This report is of an uncontrolled retrospective medical chart evaluation of symptomatic officers treated with a sauna detoxification protocol designed to reduce the chronic symptoms and improve the quality of life. Methods: Sixty-nine officers consecutively entering the Utah Meth Cops Project were assessed before and after a treatment program involving gradual exercise, comprehensive nutritional support and physical sauna therapy. Evaluations included pre- and post-treatment scores of the Research and Development Corporation (RAND) 36-item Short Form Health Survey (SF-36) in comparison with RAND population norms, pre- and post-treatment symptom score intensities, neurotoxicity scores, Mini-Mental Status Examination, presenting symptom frequencies and a structured evaluation of treatment program safety. Results: Statistically significant health improvements were seen in the SF-36 evaluations, symptom scores and neurotoxicity scores. The detoxification protocol was well tolerated, with a 92.8% completion rate. Conclusions: This investigation strongly suggests that utilizing sauna and nutritional therapy may alleviate chronic symptoms appearing after chemical exposures associated with methamphetamine-related law enforcement activities. This report also has relevance to addressing the apparent ill effects of other complex chemical exposures. In view of the positive clinical outcomes in this group, broader investigation of this sauna-based treatment regimen appears warranted. PMID:22089658

  10. Gamma radiation at a human relevant low dose rate is genotoxic in mice

    PubMed Central

    Graupner, Anne; Eide, Dag M.; Instanes, Christine; Andersen, Jill M.; Brede, Dag A.; Dertinger, Stephen D.; Lind, Ole C.; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K.

    2016-01-01

    Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1−/−) and control animals (Ogg1+/−). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBCCD24−) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer. PMID:27596356

  11. Gamma radiation at a human relevant low dose rate is genotoxic in mice.

    PubMed

    Graupner, Anne; Eide, Dag M; Instanes, Christine; Andersen, Jill M; Brede, Dag A; Dertinger, Stephen D; Lind, Ole C; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K

    2016-01-01

    Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1(-/-)) and control animals (Ogg1(+/-)). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBC(CD24-)) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer. PMID:27596356

  12. Low Dose Effects: Benefit or Harm?

    PubMed

    Woloschak, Gayle E

    2016-03-01

    This forum article discusses issues related to the effects of low dose radiation, an area that is under intense study but difficult to assess. Experiments with large-scale animal studies are included in this paper; these studies point to the need for international consortia to examine and balance the results of these large-scale studies and databases. PMID:26808889

  13. Solid cancer mortality associated with chronic external radiation exposure at the French atomic energy commission and nuclear fuel company.

    PubMed

    Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D

    2011-07-01

    Studies of nuclear workers make it possible to directly quantify the risks associated with ionizing radiation exposure at low doses and low dose rates. Studies of the CEA (Commissariat à l'Energie Atomique) and AREVA Nuclear Cycle (AREVA NC) cohort, currently the most informative such group in France, describe the long-term risk to nuclear workers associated with external exposure. Our aim is to assess the risk of mortality from solid cancers among CEA and AREVA NC nuclear workers and its association with external radiation exposure. Standardized mortality ratios (SMRs) were calculated and internal Poisson regressions were conducted, controlling for the main confounding factors [sex, attained age, calendar period, company and socioeconomic status (SES)]. During the period 1968-2004, there were 2,035 solid cancers among the 36,769 CEA-AREVA NC workers. Cumulative external radiation exposure was assessed for the period 1950-2004, and the mean cumulative dose was 12.1 mSv. Mortality rates for all causes and all solid cancers were both significantly lower in this cohort than in the general population. A significant excess of deaths from pleural cancer, not associated with cumulative external dose, was observed, probably due to past asbestos exposure. We observed a significant excess of melanoma, also unassociated with dose. Although cumulative external dose was not associated with mortality from all solid cancers, the central estimated excess relative risk (ERR) per Sv of 0.46 for solid cancer mortality was higher than the 0.26 calculated for male Hiroshima and Nagasaki A-bomb survivors 50 years or older and exposed at the age of 30 years or older. The modification of our results after stratification for SES demonstrates the importance of this characteristic in occupational studies, because it makes it possible to take class-based lifestyle differences into account, at least partly. These results show the great potential of a further joint international study of

  14. Enhanced somatic mutation rates induced in stem cells of mice by low chronic exposure to ethylnitrosourea.

    PubMed Central

    Shaver-Walker, P M; Urlando, C; Tao, K S; Zhang, X B; Heddle, J A

    1995-01-01

    We have found that the somatic mutation rate at the Dlb-1 locus increases exponentially during low daily exposure to ethylnitrosourea over 4 months. This effect, enhanced mutagenesis, was not observed at a lacI transgene in the same tissue, although the two loci respond very similarly to acute doses. Since both mutations are neutral, the mutant frequency was expected to increase linearly with time in response to a constant mutagenic exposure, as it did for lacI. Enhanced mutagenesis does not result from an overall sensitization of the animals, since mice that had first been treated with a low daily dose for 90 days and then challenged with a large acute dose were not sensitized to the acute dose. Nor was the increased mutant frequency due to selection, since animals that were treated for 90 days and then left untreated for up to 60 days showed little change from the 90-day frequency. The effect is substantial: about 8 times as many Dlb-1 mutants were induced between 90 and 120 days as in the first 30 days. This resulted in a reverse dose rate effect such that 90 mg/kg induced more mutants when delivered at 1 mg/kg per day than at 3 mg/kg per day. We postulate that enhanced mutagenesis arises from increased stem cell proliferation and the preferential repair of transcribed genes. Enhanced mutagenesis may be important for risk evaluation, as the results show that chronic exposures can be more mutagenic than acute ones and raise the possibility of synergism between chemicals at low doses. PMID:8524785

  15. MELODI: the 'Multidisciplinary European Low-Dose Initiative'.

    PubMed

    Belli, M; Salomaa, S; Ottolenghi, A

    2011-02-01

    The importance of research to reduce uncertainties in risk assessment of low and protracted exposures is now recognised globally. In Europe a new initiative, called 'Multidisciplinary European LOw Dose Initiative' (MELODI), has been proposed by a 'European High Level and Expert Group on low-dose risk research' (www.hleg.de), aimed at integrating national and EC (Euratom) efforts. Five national organisations: BfS (DE), CEA (FR), IRSN (FR), ISS (IT) and STUK (FI), with the support of the EC, have initiated the creation of MELODI by signing a letter of intent. In the forthcoming years, MELODI will integrate in a step-by-step approach EU institutions with significant programmes in the field and will be open to other scientific organisations and stakeholders. A key role of MELODI is to develop and maintain over time a strategic research agenda (SRA) and a road map of scientific priorities within a multidisciplinary approach, and to transfer the results for the radiation protection system. Under the coordination of STUK a network has been proposed in the 2009 Euratom Programme, called DoReMi (Low-Dose Research towards Mutidisciplinary Integration), which can help the integration process within the MELODI platform. DoReMi and the First MELODI Open Workshop, organised by BfS in September 2009, are now important inputs for the European SRA. PMID:21106638

  16. Does chronic exposure to mobile phones affect cognition?

    PubMed Central

    Mohan, Mamta; Khaliq, Farah; Panwar, Aprajita; Vaney, Neelam

    2016-01-01

    Summary Mobile phones form an integral part of our modern lifestyle. Following the drastic rise in mobile phone use in recent years, it has become important to study its potential public health impact. Amongst the various mobile phone health hazards, the most alarming is the possible effect on the brain. The aim of the present study was to explore whether chronic exposure to mobile phones affects cognition. Ninety subjects aged 17–25 years with normal hearing were recruited for the study and divided into three groups according to their duration of mobile phone use. No significant differences in N100, P200, N200, P300 latencies or N2-P300 amplitude were observed. Our results suggest that chronic mobile phone exposure does not have detrimental effects on cognition. PMID:27027894

  17. Mitochondrial-Derived Oxidants and Cellular Responses to Low Dose/Low LET Ionizing Radiation

    SciTech Connect

    Spitz, Douglas R.

    2009-11-09

    Exposure to ionizing radiation results in the immediate formation of free radicals and other reactive oxygen species (ROS). It has been assumed that the subsequent injury processes leading to genomic instability and carcinogenesis following radiation, derive from the initial oxidative damage caused by these free radicals and ROS. It is now becoming increasingly obvious that metabolic oxidation/reduction (redox) reactions can be altered by irradiation leading to persistent increases in steady-state levels of intracellular free radicals and ROS that contribute to the long term biological effects of radiation exposure by causing chronic oxidative stress. The objective during the last period of support (DE-FG02-05ER64050; 5/15/05-12/31/09) was to determine the involvement of mitochondrial genetic defects in metabolic oxidative stress and the biological effects of low dose/low LET radiation. Aim 1 was to determine if cells with mutations in succinate dehydrogenase (SDH) subunits C and D (SDHC and SDHD in mitochondrial complex II) demonstrated increases in steady-state levels of reactive oxygen species (ROS; O2•- and H2O2) as well as demonstrating increased sensitivity to low dose/low LET radiation (10 cGy) in cultured mammalian cells. Aim #2 was to determine if mitochondrially-derived ROS contributed to increased sensitivity to low dose/low LET radiation in mammalian cells containing mutations in SDH subunits. Aim #3 was to determine if a causal relationship existed between increases in mitochondrial ROS production, alterations in electron transport chain proteins, and genomic instability in the progeny of irradiated cells. Evidence gathered in the 2005-2009 period of support demonstrated that mutations in genes coding for mitochondrial electron transport chain proteins (ETC); either Succinate Dehydrogenase (SDH) subunit C (SDHC) or subunit D (SDHD); caused increased ROS production, increased genomic instability, and increased sensitivity to low dose/low LET radiation

  18. Statistical analysis of honeybee survival after chronic exposure to insecticides.

    PubMed

    Dechaume Moncharmont, François-Xavier; Decourtye, Axel; Hennequet-Hantier, Christelle; Pons, Odile; Pham-Delègue, Minh-Hà

    2003-12-01

    Studies concerning long-term survival of honeybees raise the problem of the statistical analysis of mortality data. In the present study, we used a modeling approach of survival data of caged bees under chronic exposure to two pesticides (imidacloprid and deltamethrin). Our model, based on a Cox proportional hazard model, is not restricted to a specific hazard functional form, such as in parametric approaches, but takes into account multiple covariates. We consider not only the pesticide treatment but also a nuisance variable (variability between replicates). Moreover, considering the occurrence of social interactions, the model integrates the fact that bees do not die independently of each other. We demonstrate the chronic toxicity induced by imidacloprid and deltamethrin. Our results also underline the role of the replicate effect, the density-dependent effect, and their interactions with the treatment effect. None of these parameters can be neglected in the assessment of chronic toxicity of pesticides to the honeybee. PMID:14713054

  19. MECHANISMS OF ENHANCED CELL KILLING AT LOW DOSES: IMPLICATIONS FOR RADIATION RISK

    EPA Science Inventory

    We have determined previously that radiation sensitivity can be dose-dependent so that small acute exposures (and possibly exposures at very low dose rates) are more lethal per unit dose than larger exposures above a threshold (typically 5-40 cGy) where radioresistance increases....

  20. Cellular impact of combinations of endosulfan, atrazine, and chlorpyrifos on human primary hepatocytes and HepaRG cells after short and chronic exposures.

    PubMed

    Nawaz, Ahmad; Razpotnik, Andrej; Rouimi, Patrick; de Sousa, Georges; Cravedi, Jean Pierre; Rahmani, Roger

    2014-02-01

    Chronic exposure to low doses of pesticides present in the environment is increasingly suspected to cause major health issues to humans. Toxicological evaluations become more complex when the exposure concerns chemical combinations. Atrazine, chlorpyrifos, and endosulfan are pesticides used worldwide in agriculture and are therefore currently found at residual levels in food and the environment, even in countries in which they are now banned. Our study aimed to use Real-Time Cell Impedance Analyzer to investigate changes in phenotypical status of primary human hepatocytes and differentiated HepaRG cells induced by short and chronic exposures to these three chemicals. In contrast to the traditionally used endpoint cytotoxicity test, this technology allows kinetic measurements in real-time throughout the entire experiment. Our data show significantly higher cytotoxic effects of mixtures as compared to individual pesticides and a greater susceptibility of human hepatocytes as compared to HepaRG to short-term exposure (24 h). Repeated exposure over 2 weeks to endosulfan and endosulfan-containing mixture induced HepaRG cell death in a time- and dose-dependent manner. Of the typical genes involved in metabolism and cell-response to xenobiotics, we found an exposure time- and condition-dependent deregulation of the expression of CYP3A4 and UGT1A in HepaRG cells exposed to low doses of pesticides and mixtures. Our data demonstrate the usefulness of real-time cell monitoring in long-term toxicological evaluations of co-exposure to xenobiotics. In addition, they support but at the same time highlight certain limitations in the use of HepaRG cells as the gold standard liver cell model in toxicity studies. PMID:24343343

  1. Chronic exposure to ELF fields may induce depression

    SciTech Connect

    Wilson, B.W.

    1988-01-01

    Exposure to extremely-low-frequency (ELF) electric or magnetic fields has been postulated as a potentially contributing factor in depression. Epidemiologic studies have yielded positive correlations between magnetic- and/or electric-field strengths in local environments and the incidence of depression-related suicide. Chronic exposure to ELF electric or magnetic fields can disrupt normal circadian rhythms in rat pineal serotonin-N-acetyltransferase activity as well as in serotonin and melatonin concentrations. Such disruptions in the circadian rhythmicity of pineal melatonin secretion have been associated with certain depressive disorders in human beings. In the rat, ELF fields may interfere with tonic aspects of neuronal input to the pineal gland, giving rise to what may be termed functional pinealectomy. If long-term exposure to ELF fields causes pineal dysfunction in human beings as it does in the rat, such dysfunction may contribute to the onset of depression or may exacerbate existing depressive disorders. 85 references.

  2. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yin, Xindao; Shi, Luyao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis; Toumoulin, Christine

    2013-08-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.

  3. Chronic marijuana smoke exposure in the rhesus monkey. I. Plasma cannabinoid and blood carboxyhemoglobin concentrations and clinical chemistry parameters.

    PubMed

    Slikker, W; Paule, M G; Ali, S F; Scallet, A C; Bailey, J R

    1991-08-01

    This report is the first in a series about a large multidisciplinary study designed to determine whether chronic marijuana (MJ) smoke exposure results in residual behavioral and/or neuropathological alterations in the rhesus monkey. Prior to the initiation of a year of chronic MJ smoke exposure, 64 periadolescent male rhesus monkeys were trained for 1 year to perform five operant behavioral tasks and then divided, according to their performance in these tasks, into four exposure groups (n = 15-16/group): (1) a high dose (HI) group, exposed 7 days/week to the smoke of one standard MJ cigarette; (2) a low dose (LO) group, exposed on weekend days only to the smoke of a standard MJ cigarette; (3) an extracted MJ cigarette (EX) group, exposed 7 days/week to the smoke of one ethanol-extracted MJ cigarette; and (4) a sham group (SH), exposed 7 days/week to sham exposure conditions. Daily exposures for 1 year were accomplished using a mask that covered the subjects' nose and mouth. Average body weights (initially 3.7 +/- 0.5 kg, mean +/- SD) and rates of weight gain (approximately 0.1 kg/month) were the same for all groups throughout the entire experiment. During the first week of exposure, plasma concentrations of delta-9-tetrahydrocannabinol and 11-nor-9-carboxy-THC in the HI group were 59 +/- 7 (mean +/- SE) and 5.5 +/- 1.5 ng/ml, respectively, 45 min after MJ smoke administration and did not change significantly at similar times after exposure throughout the remainder of the year. Whole blood carboxyhemoglobin levels increased to approximately 13% 1 min after exposure to smoke in either the MJ or the EX groups. Comparison of blood chemistry and hematology values before, during, and after exposure indicated no differences for most parameters. During exposure, lymphocytes, alkaline phosphatase and gamma-glutamyl transferase were depressed in the HI group compared to in the SH group. During exposure, aspartate aminotransferase was elevated for both the HI and EX groups

  4. Effects of Mild Chronic Intermittent Cold Exposure on Rat Organs

    PubMed Central

    Wang, Xiaohui; Che, Honglei; Zhang, Wenbin; Wang, Jiye; Ke, Tao; Cao, Rui; Meng, Shanshan; Li, Dan; Weiming, Ouyang; Chen, Jingyuan; Luo, Wenjing

    2015-01-01

    Cold adaptation is a body's protective response to cold stress. Mild chronic intermittent cold (CIC) exposure has been used to generate animal models for cold adaptation studies. However, the effects of mild CIC exposure on vital organs are not completely characterized. In the present study, we exposed rats to mild CIC for two weeks, and then measured the body weights, the weights of brown adipose tissue (BAT), the levels of ATP and reactive oxygen species (ROS) in the brains, livers, hearts, muscles and BATs. Rats formed cold adaptation after exposure to CIC for two weeks. Compared to rats of the control group that were hosted under ambient temperature, rats exposed to mild CIC showed a lower average body weight, but a higher weight of brown adipose tissue (BAT). Rats exposed to CIC for two weeks also exhibited higher levels of ATP and ROS in all examined organs as compared to those of the control group. In addition, we determined the expression levels of cold-inducible RNA binding protein (Cirbp) and thioredoxin (TRX) in rat tissues after 2 weeks of CIC exposure. Both Cirbp and TRX were increased, suggesting a role of these two proteins for establishment of cold adaptation. Together, this study reveals the effects of mild CIC exposure on vital organs of rats during CIC exposure. PMID:26327811

  5. Analysis of cellular response by exposure to acute or chronic radiation in human lymphoblastoid TK-6 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Yasumoto, J.; Takahashi, A.; Ohnishi, K.

    To clarify the biological effects of low-dose rate radiation on human health for long-term stay in space, we analyzed the induction of apoptosis and apoptosis-related gene expression after irradiation with different dose-rate in human lymphoblastoid TK-6 cells harboring wild-type p53 gene. We irradiated TK-6 cells by X-ray at 1.5 Gy (1 Gy/min) and then sampled at 25 hr after culturing. We also irradiated by gamma-ray at 1.5 Gy (1 mGy/min) and then sampled immediately or 25 hr after irradiation. For DNA ladder analysis, we extracted DNA from these samples and electrophoresed with 2% agarose gel. In addition, we extracted mRNA from these samples for DNA-array analysis. mRNA from non-irradiated cells was used as a control. After labeling the cDNA against mRNA with [α -33P]-dCTP and hybridizing onto DNA array (Human Apoptosis Expression Array, R&D Systems), we scanned the profiles of the spots by a phosphorimager (BAS5000, FUJI FILM) and calculated using a NIH Image program. The data of each DNA-array were normalized with eight kinds of house keeping genes. We analyzed the expression level of apoptosis-related genes such as p53-related, Bcl-2 family, Caspase family and Fas-related genes. DNA ladders were obviously detected in the cells exposed to a high dose-rate radiation. We detected the induction of the gene expression of apoptosis-promotive genes. In contrast, almost no apoptosis was observed in the cells exposed to the chronic radiation at a low dose-rate. In addition, we detected the induction of the gene expression of apoptosis-suppressive genes as compared with apoptosis promotive-genes immediately after chronic irradiation. These results lead the importance of biological meaning of exposure to radiation at low dose-rate from an aspect of carcinogenesis. Finally, the effects of chronic irradiation become a highly important issue in space radiation biology for human health.

  6. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    PubMed Central

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a six month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. PMID:22521957

  7. Metabolic consequences of chronic intermittent mild stress exposure.

    PubMed

    Thompson, Abigail K; Fourman, Sarah; Packard, Amy E B; Egan, Ann E; Ryan, Karen K; Ulrich-Lai, Yvonne M

    2015-10-15

    Chronic stress in humans has divergent effects on food intake, with some individuals reporting increased vs. decreased food intake during stress. This divergence may depend in part on stress intensity, with higher-intensity stressors preferentially promoting anorexia. Consistent with this idea, rodents given a high-intensity chronic variable stress paradigm have robustly decreased food intake and body weight gain. However, the metabolic effects of a less intense chronic stress paradigm are not clear. Thus in the present study, adult male rats were given chronic intermittent mild stress (CIMS) exposure (3 cycles, in which each cycle consists of once daily mild stress for 5 days/week for 2 weeks, followed by 2 weeks of no stress) vs. non-stress controls, combined with ongoing access to a palatable diet (PD; choice of chow, high-fat diet, 30% sucrose drink, and water) vs. control diet (chow and water). As expected, access to PD increased caloric intake, body weight gain, and adiposity, and impaired glucose tolerance. CIMS decreased body weight gain only during the first cycle of stress and did not affect body weight gain thereafter, regardless of diet. Moreover, CIMS did not alter total food intake, adiposity or glucose tolerance regardless of diet. Lastly, CIMS transiently increased high-fat diet preference in PD-fed rats during the first stress cycle. Collectively, these results suggest that CIMS has relatively modest metabolic effects that occur primarily during initial stress exposure. These results support the hypothesis that the metabolic consequences of chronic stress vary with stress intensity and/or frequency. PMID:25711718

  8. Chronic exposures to low levels of estradiol and their effects on the ovaries and reproductive hormones: Comparison with aging

    PubMed Central

    Gilbreath, Ebony T.; MohanKumar, Sheba M.J.; Balasubramanian, Priya; Agnew, Dalen W.; MohanKumar, P.S.

    2015-01-01

    Aging in female rats is characterized by a state called “constant estrous” in which rats are unable to ovulate, have polycystic ovaries and moderately elevated estrogen levels. We hypothesized that chronic exposure of young animals to low levels of E2 can produce reproductive changes similar to that seen in aging animals. Adult female rats were sham-implanted (control) or implanted with slow-release E2 (20 ng/day) pellets for 30, 60, or 90 days. Old constant estrous (OCE) rats were used for comparison. Estrous cyclicity was monitored periodically. At the end of treatment, animals were sacrificed, trunk blood was collected for hormone measurements and ovaries for immunohistochemistry. Young animals became acyclic with increasing duration of E2 exposure while OCE rats were in a state of acyclicity. Ovaries became increasingly more cystic with E2 exposure, and were comparable to OCE rats; however, there was a marked reduction in interstitial tissue with exogenous E2 treatment. Exogenous E2 also decreased Mullerian inhibiting substance expression, increased infiltration of macrophages without much impact on apoptosis in the ovaries. Serum testosterone levels decreased in E2-treated young animals, while it increased significantly in OCE rats. There was a marked reduction in LH but not FSH levels with E2 exposure in both young and old animals. These results indicate that even very low doses of E2 are capable of inducing aging-like changes in young animals. PMID:26779558

  9. Increased oxidative stress following acute and chronic high altitude exposure.

    PubMed

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude. PMID:15072717

  10. Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries

    PubMed Central

    Cardis, E; Vrijheid, M; Blettner, M; Gilbert, E; Hakama, M; Hill, C; Howe, G; Kaldor, J; Muirhead, C R; Schubauer-Berigan, M; Yoshimura, T; Bermann, F; Cowper, G; Fix, J; Hacker, C; Heinmiller, B; Marshall, M; Thierry-Chef, I; Utterback, D; Ahn, Y-O; Amoros, E; Ashmore, P; Auvinen, A; Bae, J-M; Solano, J Bernar; Biau, A; Combalot, E; Deboodt, P; Sacristan, A Diez; Eklof, M; Engels, H; Engholm, G; Gulis, G; Habib, R; Holan, K; Hyvonen, H; Kerekes, A; Kurtinaitis, J; Malker, H; Martuzzi, M; Mastauskas, A; Monnet, A; Moser, M; Pearce, M S; Richardson, D B; Rodriguez-Artalejo, F; Rogel, A; Tardy, H; Telle-Lamberton, M; Turai, I; Usel, M; Veress, K

    2005-01-01

    Objectives To provide direct estimates of risk of cancer after protracted low doses of ionising radiation and to strengthen the scientific basis of radiation protection standards for environmental, occupational, and medical diagnostic exposures. Design Multinational retrospective cohort study of cancer mortality. Setting Cohorts of workers in the nuclear industry in 15 countries. Participants 407 391 workers individually monitored for external radiation with a total follow-up of 5.2 million person years. Main outcome measurements Estimates of excess relative risks per sievert (Sv) of radiation dose for mortality from cancers other than leukaemia and from leukaemia excluding chronic lymphocytic leukaemia, the main causes of death considered by radiation protection authorities. Results The excess relative risk for cancers other than leukaemia was 0.97 per Sv, 95% confidence interval 0.14 to 1.97. Analyses of causes of death related or unrelated to smoking indicate that, although confounding by smoking may be present, it is unlikely to explain all of this increased risk. The excess relative risk for leukaemia excluding chronic lymphocytic leukaemia was 1.93 per Sv (< 0 to 8.47). On the basis of these estimates, 1-2% of deaths from cancer among workers in this cohort may be attributable to radiation. Conclusions These estimates, from the largest study of nuclear workers ever conducted, are higher than, but statistically compatible with, the risk estimates used for current radiation protection standards. The results suggest that there is a small excess risk of cancer, even at the low doses and dose rates typically received by nuclear workers in this study. PMID:15987704

  11. The estimation of low-dose hazards by extrapolation from high doses.

    PubMed

    Rossi, H H

    1981-01-01

    Empirical information on the effects of low doses of ionizing radiation is beset by severe limitations. Theoretical considerations of biophysics can guide the analysis of epidemiological data by indicating certain dose-response relations or eliminating others. Thus, it can be shown that at low doses there must be proportionality between dose and effect on non-interacting cells and that one must anticipate different dose-effect relations upon exposure to markedly different types of radiation. PMID:7336764

  12. Radiobiological Response of Cervical Cancer Cell Line in Low Dose Region: Evidence of Low Dose Hypersensitivity (HRS) and Induced Radioresistance (IRR)

    PubMed Central

    Singh, Rabiraja; George, Daicy; Vijaykumar, T.S.; John, Subhashini

    2015-01-01

    Background Purpose of the present study was to examine the response of cervical cancer cell line (HeLa cell line) to low dose radiation using clonogenic assay and mathematical modeling of the low dose response by Joiner’s induced repair model. Materials and Methods Survival of HeLa cells following exposure to single and fractionated low doses of γ (gamma)-ray, 6 MV, and 15 MV photon was measured by clonogenic assay. Results HeLa cell line demonstrated marked low dose response consisting of an area of HRS and IRR in the dose region of <1 Gy. The two gradients of the low dose region (αs and αr) were distinctly different with a transition dose (Dc) of 0.28-0.40 cGy. Conclusion HeLa cell line demonstrates marked HRS and IRR with distinct transition dose. This may form the biological basis of the clinical study to investigate the chemo potentiating effect of low dose radiation in cervical cancer. PMID:26266200

  13. Reductions in carotid chemoreceptor activity with low-dose dopamine improves baroreflex control of heart rate during hypoxia in humans.

    PubMed

    Mozer, Michael T; Holbein, Walter W; Joyner, Michael J; Curry, Timothy B; Limberg, Jacqueline K

    2016-07-01

    The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes. PMID:27418545

  14. Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction

    SciTech Connect

    Deng Jun; Liu Chunsheng; Yu Liqin; Zhou Bingsheng

    2010-02-15

    Tribromophenol (2,4,6-TBP) is ubiquitously found in aquatic environments and biota. In this study, we exposed zebrafish embryos (F{sub 0}; 2'''' days post-fertilization, dpf) to environmental concentration (0.3 mug/L) and a higher concentration (3.0 mug/L) of TBP and assessed the impact of chronic exposure (120 dpf) on reproduction. TBP exposure did not cause a significant increase in the malformation and reduction in the survival in the F{sub 0}-generation fish. After TBP exposure, the plasma testosterone and estradiol levels significantly increased in males and decreased in females. The transcription of steroidogenic genes (3beta-HSD, 17beta-HSD, CYP17, CYP19A, CYP19B) was significantly upregulated in the brain and testes in males and downregulated in the brain and ovary in females. TBP exposure significantly downregulated and upregulated the expression of VTG in the liver of female and male fish, respectively. Meanwhile, TBP exposure altered the sex ratio toward a male-dominant state. The F{sub 1}-generation larvae exhibited increased malformation, reduced survival, and retarded growth, suggesting that TBP in the aquatic environment has significant adverse effects on fish population.

  15. Chronic bisphenol A exposure alters behaviors of zebrafish (Danio rerio).

    PubMed

    Wang, Ju; Wang, Xia; Xiong, Can; Liu, Jian; Hu, Bing; Zheng, Lei

    2015-11-01

    The adult zebrafish (Danio rerio) were exposed to treated-effluent concentration of bisphenol A (BPA) or 17β-estradiol (E2) for 6 months to evaluate their effects on behavioral characteristics: motor behavior, aggression, group preference, novel tank test and light/dark preference. E2 exposure evidently dampened fish locomotor activity, while BPA exposure had no marked effect. Interestingly, BPA-exposed fish reduced their aggressive behavior compared with control or E2. Both BPA and E2 exposure induced a significant decrease in group preference, as well as a weaker adaptability to new environment, exhibiting lower latency to reach the top, more entries to the top, longer time spent in the top, fewer frequent freezing, and fewer erratic movements. Furthermore, the circadian rhythmicity of light/dark preference was altered by either BPA or E2 exposure. Our results suggest that chronic exposure of treated-effluent concentration BPA or E2 induced various behavioral anomalies in adult fish and enhanced ecological risk to wildlife. PMID:26204572

  16. Does the Sympathetic Nervous System Adapt to Chronic Altitude Exposure?

    PubMed

    Sander, Mikael

    2016-01-01

    During continued exposure to hypobaric hypoxia in acclimatizing lowlanders increasing norepinephrine levels indirectly indicate sympathoexcitation, and in a few subjects serial measurements have suggested some adaptation over time. A few studies have provided direct microneurographic evidence for markedly increased muscle sympathetic nervous activity (MSNA) after 1-50 days of exposure of lowlanders to altitudes of 4100-5260 m above sea level. Only one study has provided two MSNA-measurements over time (10 and 50 days) in altitude (4100 m above sea level) and continued robust sympathoexcitation without adaptation was found in acclimatizing lowlanders. In this study, norepinephrine levels during rest and exercise also remained highly elevated over time. In comparison, acute exposure to hypoxic breathing (FiO2 0.126) at sea level caused no change in sympathetic nervous activity, although the same oxygen saturation in arterial blood (around 90 %) was present during acute (FiO2 0.126) and chronic hypoxic exposure (4100 m above sea level). These findings strongly suggest that the chemoreflex-mechanisms underlying acute hypoxia-induced increases in MSNA are sensitized over time. Collectively, the MSNA data suggests that sensitization of the sympathoexcitatory chemoreflex is evident but not complete within the first 24 h, but is complete after 10 days of altitude exposure. After return from high altitude to sea level the MSNA remains significantly elevated for at least 5 days but completely normalized after 3 months. The few MSNA measurements in high altitude natives have documented high sympathetic activity in all subjects studied. Because serial measurements of MSNA in high altitude natives during sea level exposure are lacking, it is unclear whether the sympathetic nervous system have somehow adapted to lifelong altitude exposure. PMID:27343109

  17. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  18. [Low dose naltrexone for treatment of pain].

    PubMed

    Plesner, Karin Bruun; Vægter, Henrik Bjarke; Handberg, Gitte

    2015-10-01

    Recent years have seen an increasing interest in the use of low dose naltrexone (LDN) for off-label treatment of pain in diseases as fibromyalgia, multiple sclerosis and morbus Crohn. The evidence is poor, with only few randomized double-blind placebo-controlled studies. The studies currently available are reviewed in this paper. LDN could be a potentially useful drug in the future for the treatment of pain in fibromyalgia, but more studies are needed to verify that it is superior to placebo, and currently it cannot be recommended as first-line therapy. PMID:26509454

  19. Chronic Lead Poisoning From Industrial Exposure: A Review

    PubMed Central

    Yassi, Annalee

    1980-01-01

    Lead poisoning from chronic industrial exposure is not uncommon. Early diagnosis is important in avoiding irreversible effects. A good occupational history is key to alerting the unsuspecting physician to the correct diagnosis. Blood lead levels are useful but ridden with shortcomings. Specific tests to assess functional impairment, such as urinary aminolevulinic acid (ALA) and coproporphyrins should be included in the diagnostic work-up. Lead poisoning is a preventable disease well worth the consideration of the family practitioner. (Can Fam Physician 1980; 26:1056-1062). PMID:21293668

  20. Chronic Ethanol Exposure: Pathogenesis of Pulmonary Disease and Dysfunction

    PubMed Central

    Traphagen, Nicole; Tian, Zhi; Allen-Gipson, Diane

    2015-01-01

    Ethanol (EtOH) is the world’s most commonly used drug, and has been widely recognized as a risk factor for developing lung disorders. Chronic EtOH exposure affects all of the organ systems in the body and increases the risk of developing pulmonary diseases such as acute lung injury and pneumonia, while exacerbating the symptoms and resulting in increased mortality in many other lung disorders. EtOH and its metabolites inhibit the immune response of alveolar macrophages (AMs), increase airway leakage, produce damaging reactive oxygen species (ROS), and disrupt the balance of antioxidants/oxidants within the lungs. In this article, we review the role of EtOH exposure in the pathogenesis and progression of pulmonary disease. PMID:26492278

  1. Surrogates of protection in repeated low-dose challenge experiments.

    PubMed

    Long, Dustin M; Hudgens, Michael G; Wu, Chih-Da

    2015-05-10

    A critical step toward developing a successful vaccine to control the human immunodeficiency virus pandemic entails evaluation of vaccine candidates in non-human primates (NHPs). Historically, these studies have usually entailed challenges (i.e., exposures) with very high doses of a simian version of human immunodeficiency virus, resulting in infection of all NHPs in the experiment after a single challenge. More recently, researchers have begun to conduct repeated low-dose challenge (RLC) studies in NHPs that are believed to more closely mimic typical exposure in natural human transmission settings. One objective of RLC studies is to assess whether measured immune responses to vaccination can serve as surrogate endpoints for the primary endpoint of interest, namely infection. In this paper, different designs of RLC studies for assessing a binary surrogate of protection are considered. PMID:25628249

  2. Surrogates of Protection in Repeated Low-Dose Challenge Experiments

    PubMed Central

    Long, Dustin M.; Hudgens, Michael G.; Wu, Chih-Da

    2015-01-01

    A critical step toward developing a successful vaccine to control the human immunodeficiency virus (HIV) pandemic entails evaluation of vaccine candidates in non-human primates (NHPs). Historically, these studies have usually entailed challenges (i.e., exposures) with very high doses of a simian version of HIV, resulting in infection of all NHPs in the experiment after a single challenge. More recently, researchers have begun to conduct repeated low-dose challenge (RLC) studies in NHPs that are believed to more closely mimic typical exposure in natural human transmission settings. One objective of RLC studies is to assess whether measured immune responses to vaccination can serve as surrogate endpoints for the primary endpoint of interest, namely infection. In this paper, different designs of RLC studies for assessing a binary surrogate of protection are considered. PMID:25628249

  3. Impacts of chronic sublethal exposure to clothianidin on winter honeybees.

    PubMed

    Alkassab, Abdulrahim T; Kirchner, Wolfgang H

    2016-07-01

    A wide application of systemic pesticides and detection of their residues in bee-collected pollen and nectar at sublethal concentrations led to the emergence of concerns about bees' chronic exposure and possible sublethal effects on insect pollinators. Therefore, special attention was given to reducing unintentional intoxications under field conditions. The sensitivity of winter bees throughout their long lifespan to residual exposure of pesticides is not well known, since most previous studies only looked at the effects on summer bees. Here, we performed various laboratory bioassays to assess the effects of clothianidin on the survival and behavior of winter bees. Oral lethal and sublethal doses were administered throughout 12-day. The obtained LD50 values at 48, 72, 96 h and 10 days were 26.9, 18.0, 15.1 and 9.5 ng/bee, respectively. Concentrations <20 µg/kg were found to be sublethal. Oral exposure to sublethal doses was carried out for 12-day and, the behavioral functions were tested on the respective 13th day. Although slight reductions in the responses at the concentrations 10 and 15 µg/kg were observed, all tested sublethal concentrations had showed non-significant effects on the sucrose responsiveness, habitation of the proboscis extension reflex and olfactory learning performance. Nevertheless, chronic exposure to 15 µg/kg affected the specificity of the early long-term memory (24 h). Since the tested concentrations were in the range of field-relevant concentrations, our results strongly suggest that related-effects on winter and summer bees' sensitivity should also be studied under realistic conditions. PMID:27090425

  4. Responses of Hyalella azteca to acute and chronic microplastic exposures.

    PubMed

    Au, Sarah Y; Bruce, Terri F; Bridges, William C; Klaine, Stephen J

    2015-11-01

    Limited information is available on the presence of microplastics in freshwater systems, and even less is known about the toxicological implications of the exposure of aquatic organisms to plastic particles. The present study was conducted to evaluate the effects of microplastic ingestion on the freshwater amphipod, Hyalella azteca. Hyalella azteca was exposed to fluorescent polyethylene microplastic particles and polypropylene microplastic fibers in individual 250-mL chambers to determine 10-d mortality. In acute bioassays, polypropylene microplastic fibers were significantly more toxic than polyethylene microplastic particles; 10-d lethal concentration 50% values for polyethylene microplastic particles and polypropylene microplastic fibers were 4.64 × 10(4) microplastics/mL and 71.43 microplastics/mL, respectively. A 42-d chronic bioassay using polyethylene microplastic particles was conducted to quantify effects on reproduction, growth, and egestion. Chronic exposure to polyethylene microplastic particles significantly decreased growth and reproduction at the low and intermediate exposure concentrations. During acute exposures to polyethylene microplastic particles, the egestion times did not significantly differ from the egestion of normal food materials in the control; egestion times for polypropylene microplastic fibers were significantly slower than the egestion of food materials in the control. Amphipods exposed to polypropylene microplastic fibers also had significantly less growth. The greater toxicity of microplastic fibers than microplastic particles corresponded with longer residence times for the fibers in the gut. The difference in residence time might have affected the ability to process food, resulting in an energetic effect reflected in sublethal endpoints. PMID:26042578

  5. Low-Dose Total Body Irradiation and Donor Peripheral Blood Stem Cell Transplant Followed by Donor Lymphocyte Infusion in Treating Patients With Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia, or Multiple Myeloma

    ClinicalTrials.gov

    2015-10-30

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Testicular Lymphoma; Waldenström Macroglobulinemia

  6. [Complications of low-dose amiodarone].

    PubMed

    Feigl, D; Gilad, R; Katz, E

    1991-11-15

    Complications of low-dose amiodarone in 83 patients, in whom the drug was effective and who were followed for 1-13 years, are presented. Hypothyroidism was diagnosed in 11 (in 8 by the finding of elevated TSH). In 2 of the 3 in whom clinical signs of hypothyroidism were evident, amiodarone was continued, but thyroxine was also given. In 5 others thyrotoxicosis ensued. Propylthiouracil (PTU) was given and amiodarone was discontinued. PTU was then stopped within 4-8 months, without recurrence of the hyperthyroidism. In 1 patient pneumonitis resolved spontaneously a few weeks after stopping amiodarone. Because of gastrointestinal distress amiodarone was stopped in 1 patient. In none were liver enzymes elevated, nor was the nervous system affected clinically. Photosensitivity in 6 patients and skin discoloration in 2 did not necessitate discontinuation of the drug. Blurred vision was reported by 4, but its connection with amiodarone was not proven. There was sinus bradycardia in 2. There was no arrhythmic effect of amiodarone seen on ECG nor on Holter monitoring, nor was there any mortality. We conclude that amiodarone in low doses causes many complications, most of them mild and transient. However, in only a few cases is discontinuation of the drug indicated. PMID:1752553

  7. Chronic bronchiolitis in nonhuman primates after prolonged ozone exposure

    SciTech Connect

    Eustis, S.L.; Schwartz, L.W.; Kosch, P.C.; Dungworth, D.L.

    1981-01-01

    Bonnet monkeys (Macaca radiata) were exposed to 0.0, 0.5, or 0.8 ppm ozone for 7, 28, or 90 consecutive days, 8 hours per day. The pulmonary response was evaluated by means of pulmonary function testing, light microscopy, scanning electron microscopy, transmission microscopy, autoradiography, and morphometry. Pulmonary function values obtained before exposure did not statistically differ from values obtained after exposure. A general trend of increased quasistatic compliance of the lung was observed in both groups of exposed monkeys. Morphologic changes were principally characterized as low-grade chronic respiratory bronchiolitis. Tritiated thymidine labeling and counts of respiratory bronchiolar epithelium demonstrated up to a 37-fold increase in labeling index at 7 days but only a sevenfold increase at 90 days. Differential cell counts demonstrated an increase in the proportion of cuboidal bronchiolar cells constituting the respiratory bronchiolar epithelium. In control monkeys, 60% of the epithelial cells were cuboidal bronchiolar cells. At 90 days of exposure, more than 90% of the respiratory bronchiolar cells were cuboidal in appearance. The cuboidal bronchiolar cell in control monkeys does not appear secretory, but membrane-bound electron-dense secretory granules are present in this cell type from exposed monkeys. Epithelial hyperplasia (increased number of cells per millimeter of airway length) persisted through 90 days of exposure at a level slightly above that present at 7 days.

  8. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  9. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  10. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  11. [Chronic obstructive pulmonary disease by biomass smoke exposure].

    PubMed

    Lopez, Matías; Mongilardi, Nicole; Checkley, William

    2014-01-01

    In this article, the relationship between chronic obstructive pulmonary disease (COPD) and biomass smoke will be discussed. More than half of the world population uses biomass for fuel, especially in rural areas and in developing countries where usage reaches 80%. Biomass smoke inhalation creates an inflammatory chronic state, which is accompanied by metalloproteinases activation and mucociliary mobility reduction. This could explain the existing association between biomass exposure and COPD, revealed by observational and epidemiological studies from developing and developed countries. In this review, the differences between COPD caused by tobacco and biomass were explored. It was found that despite the pathophysiological differences, most of the clinical characteristics, quality of life and mortality were similar. In the last ten years there have been interventions to reduce the biomass smoke exposure by using improved stoves and cleaner fuels. However, these strategies have not yet been successful due to inability to reduce contamination levels to those recommended by the World Health Organization as well as due to the lack of use. Therefore, there is an urgent need for carefully conducted, randomized field trials to determine the actual range of potentially reachable contamination reductions, the probability of use and the long term benefits of reducing the global burden of COPD. PMID:24718533

  12. Chronic Exposure to Diquat Causes Reproductive Toxicity in Female Mice

    PubMed Central

    Zhang, Jia-Qing; Gao, Bin-Wen; Wang, Jing; Wang, Xian-Wei; Ren, Qiao-Ling; Chen, Jun-Feng; Ma, Qiang; Xing, Bao-song

    2016-01-01

    Diquat is a bipyridyl herbicide that has been widely used as a model chemical for in vivo studies of oxidative stress due to its generation of superoxide anions, and cytotoxic effects. There is little information regarding the toxic effects of diquat on the female reproductive system, particularly ovarian function. Thus, we investigated the reproductive toxic effects of diquat on female mice. Chronic exposure to diquat reduced ovary weights, induced ovarian oxidative stress, resulted in granulosa cell apoptosis, and disrupted oocyte developmental competence, as shown by reactive oxygen species (ROS) accumulation, decreased polar body extrusion rates and increased apoptosis-related genes expression. Additionally, after diquat treatment, the numbers of fetal mice and litter sizes were significantly reduced compared to those of control mice. Thus, our results indicated that chronic exposure to diquat induced reproductive toxicity in female mice by promoting the ROS production of gruanousa cells and ooctyes, impairing follicle development, inducing apoptosis, and reducing oocyte quality. In conclusion, our findings indicate that diquat can be used as a potent and efficient chemical for in vivo studies of female reproductive toxicity induced by oxidative stress. Moreover, the findings from this study will further enlarge imitative research investigating the effect of ovarian damage induced by oxidative stress on reproductive performance and possible mechanisms of action in large domestic animals. PMID:26785375

  13. Chronic Exposure to Diquat Causes Reproductive Toxicity in Female Mice.

    PubMed

    Zhang, Jia-Qing; Gao, Bin-Wen; Wang, Jing; Wang, Xian-Wei; Ren, Qiao-Ling; Chen, Jun-Feng; Ma, Qiang; Xing, Bao-Song

    2016-01-01

    Diquat is a bipyridyl herbicide that has been widely used as a model chemical for in vivo studies of oxidative stress due to its generation of superoxide anions, and cytotoxic effects. There is little information regarding the toxic effects of diquat on the female reproductive system, particularly ovarian function. Thus, we investigated the reproductive toxic effects of diquat on female mice. Chronic exposure to diquat reduced ovary weights, induced ovarian oxidative stress, resulted in granulosa cell apoptosis, and disrupted oocyte developmental competence, as shown by reactive oxygen species (ROS) accumulation, decreased polar body extrusion rates and increased apoptosis-related genes expression. Additionally, after diquat treatment, the numbers of fetal mice and litter sizes were significantly reduced compared to those of control mice. Thus, our results indicated that chronic exposure to diquat induced reproductive toxicity in female mice by promoting the ROS production of gruanousa cells and ooctyes, impairing follicle development, inducing apoptosis, and reducing oocyte quality. In conclusion, our findings indicate that diquat can be used as a potent and efficient chemical for in vivo studies of female reproductive toxicity induced by oxidative stress. Moreover, the findings from this study will further enlarge imitative research investigating the effect of ovarian damage induced by oxidative stress on reproductive performance and possible mechanisms of action in large domestic animals. PMID:26785375

  14. Risk of Low Dose/Low Dose Rate Ionizing Radiation to Humans Symposium at the EMS 2009 Annual Meeting - September 2006

    SciTech Connect

    Morgan, William F.; von Borstel, Robert C.; Brenner, David; Redpath, J. Leslie; Erickson, Barbra E.; Brooks, Antone L.

    2009-11-12

    The low dose symposium thoughtfully addressed controversy of risk from low dose radiation exposure, hormesis and radon therapy. The stem cell symposium cogently considered the role of DNA damage and repair in hematopoietic stem cells underlying aging and malignancy and provocatively presented evidence that stem cells may have distinct morphologies and replicative properties, as well as special roles in cancer initiation. In the epigenetics symposium, studies illustrated the long range interaction of epigenetic mechanisms, the roles of CTCF and BORIS in region/specific regulation of epigenetic processes, the impact of DNA damage on epigenetic processes as well as links between epigenetic mechanisms and early nutrition and bystander effects.

  15. Modeling low-dose mortality and disease incubation period of inhalational anthrax in the rabbit.

    PubMed

    Gutting, Bradford W; Marchette, David; Sherwood, Robert; Andrews, George A; Director-Myska, Alison; Channel, Stephen R; Wolfe, Daniel; Berger, Alan E; Mackie, Ryan S; Watson, Brent J; Rukhin, Andrey

    2013-07-21

    There is a need to advance our ability to conduct credible human risk assessments for inhalational anthrax associated with exposure to a low number of bacteria. Combining animal data with computational models of disease will be central in the low-dose and cross-species extrapolations required in achieving this goal. The objective of the current work was to apply and advance the competing risks (CR) computational model of inhalational anthrax where data was collected from NZW rabbits exposed to aerosols of Ames strain Bacillus anthracis. An initial aim was to parameterize the CR model using high-dose rabbit data and then conduct a low-dose extrapolation. The CR low-dose attack rate was then compared against known low-dose rabbit data as well as the low-dose curve obtained when the entire rabbit dose-response data set was fitted to an exponential dose-response (EDR) model. The CR model predictions demonstrated excellent agreement with actual low-dose rabbit data. We next used a modified CR model (MCR) to examine disease incubation period (the time to reach a fever >40 °C). The MCR model predicted a germination period of 14.5h following exposure to a low spore dose, which was confirmed by monitoring spore germination in the rabbit lung using PCR, and predicted a low-dose disease incubation period in the rabbit between 14.7 and 16.8 days. Overall, the CR and MCR model appeared to describe rabbit inhalational anthrax well. These results are discussed in the context of conducting laboratory studies in other relevant animal models, combining the CR/MCR model with other computation models of inhalational anthrax, and using the resulting information towards extrapolating a low-dose response prediction for man. PMID:23567649

  16. Low-dose aripiprazole for refractory burning mouth syndrome.

    PubMed

    Umezaki, Yojiro; Takenoshita, Miho; Toyofuku, Akira

    2016-01-01

    We report a case of refractory burning mouth syndrome (BMS) ameliorated with low dose of aripiprazole. The patient was a 66-year-old female who had suffered from chronic burning pain in her tongue for 13 months. No abnormality associated with the burning sensation was detected in the laboratory tests and the oral findings. Considering the clinical feature and the history together, we diagnosed the burning sensation as BMS. The BMS pain was decreased by aripiprazole (powder) 1.0 mg/d, though no other antidepressants had satisfying pain relief. It could be supposed that the efficacy of aripiprazole is caused by dopamine stabilization in this case, and BMS might have a subtype that is reactive to aripiprazole. Further studies are needed to confirm the efficacy of aripiprazole for BMS. PMID:27279742

  17. Hereditary hemorrhagic telangiectasia treated with low dose intravenous bevacizumab

    PubMed Central

    Wee, Jee Wan; Jeon, Young Woo; Eun, Jun Young; Kim, Han Jo; Bae, Sang Byung

    2014-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder that leads to mucocutaneous telangiectasias, epistaxis, and gastrointestinal bleeding. Depending on the severity and manifestation of the disease, various therapeutic modalities have been used, from local bleeding control to surgery or concomitant drug therapy. Several articles under review have presented guidelines for treatment of HHT with bevacizumab as a direct anti-angiogenesis strategy. Still, neither the exact optimal dose nor the minimum effective dose of intravenous bevacizumab in patients with severe HHT has been reported. A 55-year-old man presented with long-standing epistaxis, recent melena, dizziness, and a three-generation family history of chronic epistaxis, anemia, and regular blood transfusions. Treatment with argon plasma coagulation (APC) for the gastrointestinal bleeding failed to raise hemoglobin levels, we considered using the bevacizumab. We report a patient with severe HHT, who was treated with low-dose bevacizumab (2 mg/kg) and improved substantially. PMID:25325040

  18. Low-dose aripiprazole for refractory burning mouth syndrome

    PubMed Central

    Umezaki, Yojiro; Takenoshita, Miho; Toyofuku, Akira

    2016-01-01

    We report a case of refractory burning mouth syndrome (BMS) ameliorated with low dose of aripiprazole. The patient was a 66-year-old female who had suffered from chronic burning pain in her tongue for 13 months. No abnormality associated with the burning sensation was detected in the laboratory tests and the oral findings. Considering the clinical feature and the history together, we diagnosed the burning sensation as BMS. The BMS pain was decreased by aripiprazole (powder) 1.0 mg/d, though no other antidepressants had satisfying pain relief. It could be supposed that the efficacy of aripiprazole is caused by dopamine stabilization in this case, and BMS might have a subtype that is reactive to aripiprazole. Further studies are needed to confirm the efficacy of aripiprazole for BMS. PMID:27279742

  19. Chronic escalating cocaine exposure, abstinence/withdrawal, and chronic re-exposure: effects on striatal dopamine and opioid systems in C57BL/6J mice.

    PubMed

    Zhang, Yong; Schlussman, Stefan D; Rabkin, Jacqui; Butelman, Eduardo R; Ho, Ann; Kreek, Mary Jeanne

    2013-04-01

    Cocaine addiction is a chronic relapsing disease with periods of chronic escalating self-exposure, separated by periods of abstinence/withdrawal of varying duration. Few studies compare such cycles in preclinical models. This study models an "addiction-like cycle" in mice to determine neurochemical/molecular alterations that underlie the chronic, relapsing nature of this disease. Groups of male C57BL/6J mice received acute cocaine exposure (14-day saline/14-day withdrawal/13-day saline + 1-day cocaine), chronic cocaine exposure (14 day cocaine) or chronic re-exposure (14-day cocaine/14-day withdrawal/14-day cocaine). Escalating-dose binge cocaine (15-30 mg/kg/injection × 3/day, i.p. at hourly intervals) or saline (14-day saline) was administered, modeling initial exposure. In "re-exposure" groups, after a 14-day injection-free period (modeling abstinence/withdrawal), mice that had received cocaine were re-injected with 14-day escalating-dose binge cocaine, whereas controls received saline. Microdialysis was conducted on the 14th day of exposure or re-exposure to determine striatal dopamine content. Messenger RNA levels of preprodynorphin (Pdyn), dopamine D1 (Drd1) and D2 (Drd2) in the caudate putamen were determined by real-time PCR. Basal striatal dopamine levels were lower in mice after 14-day escalating exposure or re-exposure than in those in the acute cocaine group and controls. Pdyn mRNA levels were higher in the cocaine groups than in controls. Long-term adaptation was observed across the stages of this addiction-like cycle, in that the effects of cocaine on dopamine levels were increased after re-exposure compared to exposure. Changes in striatal dopaminergic responses across chronic escalating cocaine exposure and re-exposure are a central feature of the neurobiology of relapsing addictive states. PMID:23164614

  20. Violence exposure, a chronic psychosocial stressor, and childhood lung function

    PubMed Central

    Suglia, Shakira Franco; Ryan, Louise; Laden, Francine; Dockery, Douglas; Wright, Rosalind J

    2011-01-01

    Background Chronic psychosocial stressors, including violence, have been linked to neuropsychological and behavioral development in children as well as physiologic alterations that may lead to broader health effects. Methods We examined the relationship between violence and childhood lung function in a prospective birth cohort of 313 urban children 6 and 7 years of age. Mothers reported on their child’s lifetime exposure to community violence (ETV) and interparental conflict in the home [Conflict Tactics Scale (CTS)] within one year of the lung function assessment. Results In linear regression analyses, adjusting for maternal education, child’s age, race, birthweight, tobacco smoke exposure, and medical history, girls in the highest CTS verbal aggression tertile had a 5.5% (95% CI: −9.6, −1.5) decrease in percent predicted FEV1 and a 5.4% (95% CI: −9.7, −1.1) decrease in FVC compared to girls in the lowest tertile. The CTS verbal aggression subscale was associated with lung function among boys in the same direction, albeit this was not statistically significant. Boys in the highest ETV tertile had a 3.4% (95% CI: −8.0, 1.1) lower FEV1 and 5.3% lower (95% CI: −10.2, −0.4) FVC compared to boys in the lowest tertile. The ETV score was not a significant predictor of girl’s lung function. Conclusions Interparental conflict, specifically verbal aggression, and exposure to community violence were associated with decreased childhood lung function independent of socioeconomic status, tobacco smoke exposure, birthweight and respiratory illness history. Gender differences were noted based on the type of violence exposure which may warrant further exploration. PMID:18158365

  1. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    SciTech Connect

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  2. Culmination of Low-Dose Pesticide Effects

    PubMed Central

    2013-01-01

    Pesticides applied in agriculture can affect the structure and function of nontarget populations at lower doses and for longer timespans than predicted by the current risk assessment frameworks. We identified a mechanism for this observation. The populations of an aquatic invertebrate (Culex pipiens) exposed over several generations to repeated pulses of low concentrations of the neonicotinoid insecticide (thiacloprid) continuously declined and did not recover in the presence of a less sensitive competing species (Daphnia magna). By contrast, in the absence of a competitor, insecticide effects on the more sensitive species were only observed at concentrations 1 order of magnitude higher, and the species recovered more rapidly after a contamination event. The underlying processes are experimentally identified and reconstructed using a simulation model. We conclude that repeated toxicant pulse of populations that are challenged with interspecific competition may result in a multigenerational culmination of low-dose effects. PMID:23859631

  3. Zebrafish reproductive toxicity induced by chronic perfluorononanoate exposure.

    PubMed

    Zhang, Wei; Sheng, Nan; Wang, Minhui; Zhang, Hongxia; Dai, Jiayin

    2016-06-01

    Perfluoroalkyl acids (PFAAs) are a group of anthropogenic compounds that have been widely used in consumer products for over 50 years. One of the most dominant PFAAs is perfluorononanoate (PFNA), a compound detected ubiquitously in aquatic ecosystems. While PFNA is suspected of being an endocrine disruptor, the mechanisms behind PFNA-induced reproductive disorders are poorly understood. The aim of this study was to investigate the reproduction-related effects and possible mechanisms of PFNA on adult zebrafish (Danio rerio) following 180 days of exposure at different concentrations (0.01, 0.1, 1mg/L). PFNA concentration in the gonads of zebrafish was tested by HPLC-MS/MS after chronic exposure to study possible inconsistent accumulation between the genders. The results showed that the accumulation of PFNA in the male gonads was almost one-fold higher than that in the female gonads, indicating a possible higher PFAA gonad burden for male zebrafish. Significant reductions in the male gonadosomatic index (GSI) and female egg production were observed. In addition, the decreased 72h hatching rate displayed an evident dosage effect, indicating that maternal exposure to PFNA might impair offspring developmental success. To investigate how PFNA exposure affects the hypothalamic-pituitary-gonadal-liver axis (HPGL axis), the transcriptional levels of genes were measured by real-time PCR. The disrupted expression of genes, such as ERα, ERβ, FSHR, LHR, StAR, and 17βHSD, indicated the possible interference of PFNA on the HPGL axis function and sex hormone synthesis. Furthermore, testosterone (T) and estradiol (E2) levels in serum and VTG content in the liver were detected to clarify the influences of PFNA on sex hormone levels. Except for the increase in serum estrogen levels, as an estrogen analogue, PFNA also induced the synthesis of biomarker protein vitellogenin (VTG) in the adult male liver. The results of this study indicate that chronic exposure to PFNA can lead to

  4. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  5. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  6. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    SciTech Connect

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  7. Activation of NF-kappaB in bone marrow cells of BALB/cJ mice following exposure in vivo to low doses of (137)Cs gamma-rays.

    PubMed

    Rithidech, Kanokporn Noy; Tungjai, Montree; Arbab, Edgar; Simon, Sanford R

    2005-10-01

    We measured levels of NF-kappaB activation in bone marrow (BM) cells collected at 1 and 4 h from male BALB/cJ mice (10-12 weeks old) given a whole body dose of 0, 0.05, 0.1 and 1 Gy of (137)Cs gamma-rays (at the dose rate of 0.75 Gy/min). At each harvest time-point, BM cells were collected from five mice per dose of radiation. We used two methods for detecting NF-kappaB activation (1) the NF-kappaB/p65 transcription factor enzyme-linked immunosorbance assay (ELISA) and (2) immunofluorescence staining with NF-kappaB/p65 antibody. Results from ELISA indicated 2.0 and 2.8-fold increases in NF-kappaB activation in BM cells isolated at 1 h post-exposure of mice to 0.1 or 1.0 Gy. The immunofluorescence staining method showed similar results. In samples isolated 4 h post-irradiation, however, no activated NF-kappaB signal was found, regardless of the method of detection. The data also demonstrated that NF-kappaB was not activated in bone marrow cells collected either at 1 or 4 h from BALB/cJ mice exposed to a single dose of 0.05 Gy (137)Cs gamma-rays. Taken together, the results from our in vivo study indicate the involvement of NF-kappaB activation in early response to 0.1 and 1.0 Gy (but not 0.05 Gy) of (137)Cs gamma-rays. PMID:16052312

  8. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully. PMID:26808877

  9. Chronic Acetaminophen Exposure in Pediatric Acute Liver Failure

    PubMed Central

    Alonso, Estella M.; Im, Kelly; Belle, Steven H.; Squires, Robert H.

    2013-01-01

    BACKGROUND: Acetaminophen (N-acetyl-p-aminophenol [APAP]) is a widely used medication that can cause hepatotoxicity. We examined characteristics and outcomes of children with chronic exposure (CE) to APAP in the multinational Pediatric Acute Liver Failure (PALF) Study. METHODS: A total of 895 children enrolled from 2002 to 2009 were grouped by APAP exposure history as: CE (received multiple doses \\x{2265}2 days; n = 83), single dose exposure (SE; n = 85), and no exposure (NE; n = 498). CE was the reference group for pairwise comparisons. Median values are shown. RESULTS: Patients with CE compared with those with SE were younger (3.5 vs 15.2 years, P < .0001), less likely to be female (46% vs 82%, P < .0001), and more likely to be Hispanic (25% vs 7%, P = .001), but they did not differ significantly from the NE group. At enrollment, total bilirubin was lower with CE than with NE (3.2 vs 13.1 mg/dL, P < .001). Alanine aminotransferase levels were higher with CE than with NE (2384 vs 855 IU/L, P < .0001), but lower than with SE (5140 IU/L, P < .0001). Survival without liver transplantation at 21 days was worse for CE than for SE (68% vs 92%, P = .0004) but better than for NE (49%, P = .008). CONCLUSIONS: Children in the PALF study with CE had lower bilirubin and higher alanine aminotransferase than those with NE. Outcomes with CE were worse than with SE but better than with NE. Potential reasons for this outcomes advantage over non–APAP-exposed subjects should be explored. PMID:23439908

  10. CHRONIC PERCHLORATE EXPOSURE CAUSES MORPHOLOGICAL ABNORMALITIES IN DEVELOPING STICKLEBACK

    PubMed Central

    Bernhardt, Richard R.; Von Hippel, Frank A.; O’Hara, Todd M.

    2011-01-01

    Few studies have examined the effects of chronic perchlorate exposure during growth and development, and fewer still have analyzed the effects of perchlorate over multiple generations. We describe morphological and developmental characteristics for threespine stickleback (Gasterosteus aculeatus) that were spawned and raised to sexual maturity in perchlorate-treated water (G1,2003) and for their offspring (G2,2004) that were not directly treated with perchlorate. The G1,2003 displayed a variety of abnormalities, including impaired formation of calcified traits, slower growth rates, aberrant sexual development, poor survivorship, and reduced pigmentation that allowed internal organs to be visible. Yet these conditions were absent when the offspring of contaminated fish (G2,2004) were raised in untreated water, suggesting a lack of transgenerational effects and that surviving populations may be able to recover following remediation of perchlorate-contaminated sites PMID:21465539

  11. Chronic exposure to simulated space conditions predominantly affects cytoskeleton remodeling and oxidative stress response in mouse fetal fibroblasts.

    PubMed

    Beck, Michaël; Moreels, Marjan; Quintens, Roel; Abou-El-Ardat, Khalil; El-Saghire, Hussein; Tabury, Kevin; Michaux, Arlette; Janssen, Ann; Neefs, Mieke; Van Oostveldt, Patrick; De Vos, Winnok H; Baatout, Sarah

    2014-08-01

    Microgravity and cosmic rays as found in space are difficult to recreate on earth. However, ground-based models exist to simulate space flight experiments. In the present study, an experimental model was utilized to monitor gene expression changes in fetal skin fibroblasts of murine origin. Cells were continuously subjected for 65 h to a low dose (55 mSv) of ionizing radiation (IR), comprising a mixture of high‑linear energy transfer (LET) neutrons and low-LET gamma-rays, and/or simulated microgravity using the random positioning machine (RPM), after which microarrays were performed. The data were analyzed both by gene set enrichment analysis (GSEA) and single gene analysis (SGA). Simulated microgravity affected fetal murine fibroblasts by inducing oxidative stress responsive genes. Three of these genes are targets of the nuclear factor‑erythroid 2 p45-related factor 2 (Nrf2), which may play a role in the cell response to simulated microgravity. In addition, simulated gravity decreased the expression of genes involved in cytoskeleton remodeling, which may have been caused by the downregulation of the serum response factor (SRF), possibly through the Rho signaling pathway. Similarly, chronic exposure to low-dose IR caused the downregulation of genes involved in cytoskeleton remodeling, as well as in cell cycle regulation and DNA damage response pathways. Many of the genes or gene sets that were altered in the individual treatments (RPM or IR) were not altered in the combined treatment (RPM and IR), indicating a complex interaction between RPM and IR. PMID:24859186

  12. Quantifying exploratory low dose compounds in humans with AMS

    PubMed Central

    Dueker, Stephen R.; Vuong, Le T.; Lohstroh, Peter N.; Giacomo, Jason A.; Vogel, John S.

    2010-01-01

    Accelerator Mass Spectrometry is an established technology whose essentiality extends beyond simply a better detector for radiolabeled molecules. Attomole sensitivity reduces radioisotope exposures in clinical subjects to the point that no population need be excluded from clinical study. Insights in human physiochemistry are enabled by the quantitative recovery of simplified AMS processes that provide biological concentrations of all labeled metabolites and total compound related material at non-saturating levels. In this paper, we review some of the exploratory applications of AMS 14C in toxicological, nutritional, and pharmacological research. This body of research addresses the human physiochemistry of important compounds in their own right, but also serves as examples of the analytical methods and clinical practices that are available for studying low dose physiochemistry of candidate therapeutic compounds, helping to broaden the knowledge base of AMS application in pharmaceutical research. PMID:21047543

  13. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice

    PubMed Central

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal. PMID:26962395

  14. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE PAGESBeta

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; et al

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initiallymore » improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  15. Cardiovascular risks associated with low dose ionizing particle radiation.

    PubMed

    Yan, Xinhua; Sasi, Sharath P; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A

    2014-01-01

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ((1)H; 0.5 Gy, 1 GeV) and iron ion ((56)Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in (56)Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, (56)Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy. PMID:25337914

  16. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    SciTech Connect

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  17. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    PubMed Central

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-01-01

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy. PMID:25337914

  18. Cytogenetic Low-Dose Hyperradiosensitivity Is Observed in Human Peripheral Blood Lymphocytes

    SciTech Connect

    Seth, Isheeta; Joiner, Michael C.; Tucker, James D.

    2015-01-01

    Purpose: The shape of the ionizing radiation response curve at very low doses has been the subject of considerable debate. Linear-no-threshold (LNT) models are widely used to estimate risks associated with low-dose exposures. However, the low-dose hyperradiosensitivity (HRS) phenomenon, in which cells are especially sensitive at low doses but then show increased radioresistance at higher doses, provides evidence of nonlinearity in the low-dose region. HRS is more prominent in the G2 phase of the cell cycle than in the G0/G1 or S phases. Here we provide the first cytogenetic mechanistic evidence of low-dose HRS in human peripheral blood lymphocytes using structural chromosomal aberrations. Methods and Materials: Human peripheral blood lymphocytes from 2 normal healthy female donors were acutely exposed to cobalt 60 γ rays in either G0 or G2 using closely spaced doses ranging from 0 to 1.5 Gy. Structural chromosomal aberrations were enumerated, and the slopes of the regression lines at low doses (0-0.4 Gy) were compared with doses of 0.5 Gy and above. Results: HRS was clearly evident in both donors for cells irradiated in G2. No HRS was observed in cells irradiated in G0. The radiation effect per unit dose was 2.5- to 3.5-fold higher for doses ≤0.4 Gy than for doses >0.5 Gy. Conclusions: These data provide the first cytogenetic evidence for the existence of HRS in human cells irradiated in G2 and suggest that LNT models may not always be optimal for making radiation risk assessments at low doses.

  19. Contraception. Low-dose pill launched.

    PubMed

    1993-01-01

    At a vibrant ceremony in Kampala, Uganda, the Minister of Women in Development, Youth and Culture launched the new low-dose oral contraceptive Pilplan which provides women more options for birth spacing. Diplomats, physicians, government officials, and business leaders attended the ceremony at the Sheraton Hotel Kampala. A dance group did an interpretation of "Women in Uganda: Gaining Momentum." The Minister considered the introduction of this new pill as a turning point for reproductive rights. A baseline survey among Ugandan women has shown that although almost all women were familiar with the pill, only 36% have ever used it and only 15% were currently using it. 80% thought that pill use was preferable to having an unplanned pregnancy. These findings convinced the Minister that ignorance and misconception keep women from using the pill. The government, health providers, and others need to educate women about Pilplan and how to use it correctly. A bilateral agreement between the Ministry of Health and USAID set in motion a social marketing project which has now launched two contraceptive methods: Pilplan in 1993 and the Protector condom in 1990. USAID vowed to continue to support Pilplan, particularly if men could also help in supporting birth spacing. A Uganda-based pharmaceutical firm will distribute Pilplan in Uganda through pharmacies, clinics, and health facilities. Pilplan targets all middle- to low-income women. PMID:12319754

  20. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses

    PubMed Central

    Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas

    2012-01-01

    For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778

  1. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses.

    PubMed

    Vandenberg, Laura N; Colborn, Theo; Hayes, Tyrone B; Heindel, Jerrold J; Jacobs, David R; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M; vom Saal, Frederick S; Welshons, Wade V; Zoeller, R Thomas; Myers, John Peterson

    2012-06-01

    For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778

  2. Is There a Safe Level of Exposure to a Carcinogen?

    ERIC Educational Resources Information Center

    Hrudey, Steve E.; Krewski, Daniel

    1995-01-01

    Presents an approach to estimating the "safe" levels of low-dose exposure to carcinogens that involves working upward from the smallest conceivable chronic dose instead of extrapolating downward from high exposures. Discusses expert and public opinion and other issues related to quantitative cancer risk assessment. (LZ)

  3. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    SciTech Connect

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    The formation of functional tissue units is necessary in maintaining homeostasis within living systems, with individual cells contributing to these functional units through their three-dimensional organization with integrin and adhesion proteins to form a complex extra-cellular matrix (ECM). This is of particular importance in those tissues susceptible to radiation-induced tumor formation, such as epithelial glands. The assembly of epithelial cells of the thyroid is critical to their normal receipt of, and response to, incoming signals. Traditional tissue culture and live animals present significant challenges to radiation exposure and continuous sampling, however, the production of bioreactor-engineered tissues aims to bridge this gap by improve capabilities in continuous sampling from the same functional tissue, thereby increasing the ability to extrapolate changes induced by radiation to animals and humans in vivo. Our study proposes that the level of tissue organization will affect the induction and persistence of low dose radiation-induced genomic instability. Rat thyroid cells, grown in vitro as 3D tissue analogs in bioreactors and as 2D flask grown cultures were exposed to acute low dose (1, 5, 10 and 200 cGy) gamma rays. To assess immediate (6 hours) and delayed (up to 30 days) responses post-irradiation, various biological endpoints were studied including cytogenetic analyses, apoptosis analysis and cell viability/cytotoxicity analyses. Data assessing caspase 3/7 activity levels show that, this activity varies with time post radiation and that, overall, 3D cultures display more genomic instability (as shown by the lower levels of apoptosis over time) when compared to the 2D cultures. Variation in cell viability levels were only observed at the intermediate and late time points post radiation. Extensive analysis of chromosomal aberrations will give further insight on the whether the level of tissue organization influences genomic instability patterns after

  4. Protection against Noise-Induced Hearing Loss in Young CBA/J Mice by Low-Dose Kanamycin

    PubMed Central

    Fernandez, Elizabeth A.; Gagnon, Patricia M.; Clark, William W.

    2010-01-01

    Animal studies indicate that a combination of kanamycin (KM) and noise produces a synergistic effect, whereby the threshold shift from the combination is greater than the sum of the shifts caused by either agent alone. Most such studies have focused on adult animals, and it has remained unclear whether younger, presumably more susceptible, animals show an even greater synergistic effect. The present study tested the hypothesis that young CBA/J mice receiving a low dose of KM (300 mg/kg, 2×/day, s.c.) from 20 to 30 days post-gestational age followed by brief noise exposure (110 dB SPL; 4–45 kHz, 30 s) would show greater noise-induced permanent threshold shifts (NIPTS) than mice receiving either treatment alone. Noise exposure produced 30–40 dB of NIPTS and moderate hair cell loss in young saline-treated mice. KM alone at this dose had no effect on thresholds. Surprisingly, mice receiving KM plus noise were protected from NIPTS, showing ABR thresholds not significantly different from unexposed controls. Mice receiving KM prior to noise exposure also showed significantly less outer hair cell loss than saline-treated mice. Additional experiments indicated protection by KM when the noise was applied either 24 or 48 h after the last KM injection. Our results demonstrate a powerful protective effect of sub-chronic low-dose kanamycin against NIPTS in young CBA/J mice. Repeated kanamycin exposure may establish a preconditioned protective state, the molecular bases of which remain to be determined. PMID:20094753

  5. ANNUAL PROGRESS REPORT. LOW-DOSE RISK, DECISIONS, AND RISK COMMUNICATION

    EPA Science Inventory

    This report summarizes work after 20 month of a 36-month project. To conduct basic research on how people receive, evaluate, and form positions on scientific information and its relationship to low-dose radiation exposure. There are three major areas of study in our research prog...

  6. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.

    PubMed

    Sasaki, Masao S; Tachibana, Akira; Takeda, Shunichi

    2014-05-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. PMID:24366315

  7. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors

    PubMed Central

    Sasaki, Masao S.; Tachibana, Akira; Takeda, Shunichi

    2014-01-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the ‘integrate-and-fire’ algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to 239Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation–environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. PMID:24366315

  8. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    SciTech Connect

    Gridley, Daila S.

    2008-10-31

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of “dirty bombs” by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to

  9. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER BRAINSTEM AUDITORY EVOKED RESPONSE (BAERS) IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in auditory structures in the periphery and the brainstem and is altered following chlorpyrifos exposure. This study e...

  10. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER FLASH OR PATTERN REVERSAL EVOKED POTENTIALS IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...

  11. Combined exposure to simulated microgravity and acute or chronic radiation reduces neuronal network integrity and cell survival

    NASA Astrophysics Data System (ADS)

    Benotmane, Rafi

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. This study aimed at assessing the effect of these combined conditions on neuronal network density, cell morphology and survival, using well-connected mouse cortical neuron cultures. To this end, neurons were exposed to acute low and high doses of low LET (X-rays) radiation or to chronic low dose-rate of high LET neutron irradiation (Californium-252), under the simulated microgravity generated by the Random Positioning Machine (RPM, Dutch space). High content image analysis of cortical neurons positive for the neuronal marker βIII-tubulin unveiled a reduced neuronal network integrity and connectivity, and an altered cell morphology after exposure to acute/chronic radiation or to simulated microgravity. Additionally, in both conditions, a defect in DNA-repair efficiency was revealed by an increased number of γH2AX-positive foci, as well as an increased number of Annexin V-positive apoptotic neurons. Of interest, when combining both simulated space conditions, we noted a synergistic effect on neuronal network density, neuronal morphology, cell survival and DNA repair. Furthermore, these observations are in agreement with preliminary gene expression data, revealing modulations in cytoskeletal and apoptosis-related genes after exposure to simulated microgravity. In conclusion, the observed in vitro changes in neuronal network integrity and cell survival induced by space simulated conditions provide us with mechanistic understanding to evaluate health risks and the development of countermeasures to prevent neurological disorders in astronauts over long-term space travels. Acknowledgements: This work is supported partly by the EU-FP7 projects CEREBRAD (n° 295552)

  12. Impact of chronic lead exposure on selected biological markers.

    PubMed

    Jangid, Ambica P; John, P J; Yadav, D; Mishra, Sandhya; Sharma, Praveen

    2012-01-01

    Lead poisoning remains a major problem in India due to the lack of awareness of its ill effects among the clinical community. Blood lead, δ-aminolevulinic acid dehydratase (δ-ALAD) and zinc protoporphyrin (ZPP) concentrations are widely used as biomarkers for lead toxicity The present study was designed to determine the impact of chronic lead exposure on selected biological markers. A total of 250 subjects, of both sexes, ranging in age from 20 to 70 years, were recruited. On the basis of BLLs, the subjects were categorized into four groups: Group A (BLL: 0-10 μg/dl), Group B (BLL: 10-20 μg/dl). Group C (BLL: 20-30 μg/dl) and Group D (BLL: 30-40 μg/dl) having BLLs of 3.60 ± 2.71 μg/dl, 15.21 ± 2.65 μg/dl, 26.82 ± 2.53 μg/dl and 36.38 ± 2.83 μg/dl, respectively. Significant changes in biological markers due to elevated BLLs were noted. The relation of BLL and biological markers to demographic characteristics such as sex, habits, diet and substances abuse (smoking effect) were also studied in the present investigation. Males, urban population, non-vegetarians, and smokers had higher blood lead levels. δ-ALAD activity was found to be significantly lower with increased BLL (P < 0.001), while the ZPP level was significantly higher with increased BLL (P < 0.001). Further, BLL showed a negative correlation with δ-ALAD (r = -0.425, P < 0.001, N = 250) and a positive correlations with ZPP (r = 0.669, P < 0.001, N = 250). Chronic lead exposure affects the prooxidant-antioxidant equilibrium leading to cellular oxidative stress. PMID:23277717

  13. A Low-Dose Ipsilateral Lung Restriction Improves 3-D Conformal Planning for Partial Breast Radiation Therapy

    SciTech Connect

    Mitchell, Tracy; Truong, Pauline T.; Salter, Lee; Graham, Cathy; Gaffney, Helene; Beckham, Wayne; Olivotto, Ivo A.

    2011-04-01

    In trials of 3D conformal external beam partial breast radiotherapy (PBRT), the dosimetrist must balance the priorities of achieving high conformity to the target versus minimizing low-dose exposure to the normal structures. This study highlights the caveat that in the absence of a low-dose lung restriction, the use of relatively en-face fields may meet trial-defined requirements but expose the ipsilateral lung to unnecessary low-dose radiation. Adding a low-dose restriction that {<=}20% of the ipsilateral lung should receive 10% of the prescribed dose resulted in successful plans in 88% of cases. This low-dose lung limit should be used in PBRT planning.

  14. HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA: I. BIOMARKERS FOR ASSESSING EXPOSURE AND EFFECTS

    EPA Science Inventory

    Health Effects of Chronic Exposure to Arsenic via Drinking Water in Inner Mongolia: I. Biomarkers for Assessing Exposure and Effects

    Judy L. Mumford, Ph.D., Mike Schmitt, M.S.P.H., Richard K. Kwok, M.S.P.H., Rebecca Calderon, Ph.D., National Health and Environmental Effect...

  15. Acute and chronic poisoning from residential exposures to elemental mercury--Michigan, 1989-1990

    SciTech Connect

    Not Available

    1991-06-14

    From May 1989 through November 1990, eight episodes of elemental mercury exposure in private residences or schools in the United States were reported to the Agency for Toxic Substances and Disease Registry (ATSDR). The case studies in this report document two of these episodes (both in Michigan) of residential mercury poisoning--one involving acute mercury exposure, and the other, chronic exposure to elemental mercury. These episodes illustrate the differing clinical and toxicologic manifestations of acute and chronic mercury poisoning.

  16. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure

    PubMed Central

    Buczynski, Matthew W.; Herman, Melissa A.; Natividad, Luis A.; Irimia, Cristina; Polis, Ilham Y.; Pugh, Holly; Chang, Jae Won; Niphakis, Micah J.; Cravatt, Benjamin F.; Roberto, Marisa; Parsons, Loren H.

    2016-01-01

    Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE. PMID:26755579

  17. Effects of chronic normobaric hypoxic and hypercapnic exposure in rats: Prevention of experimental chronic mountain sickness by hypercapnia

    NASA Astrophysics Data System (ADS)

    Lincoln, B.; Bonkovsky, H. L.; Ou, Lo-Chang

    1987-09-01

    A syndrome of experimental chronic mountain sickness can be produced in the Hilltop strain of Sprague-Dawley rats by chronic hypobaric hypoxic exposure. This syndrome is characterized by polycythemia, plasma hemoglobinemia, pulmonary hypertension and right ventricular hypertrophy with eventual failure and death. It has generally been assumed that these changes are caused by chronic hypoxemia, not by hypobaric exposure per se. We have now confirmed this directly by showing that chronic normobaric hypoxic exposure (10.5% O2) produces similar hematologic and hemodynamic changes. Further, the addition of hypercapnic exposure to the hypoxic exposure blunted or prevented the effects of the hypoxic exposure probably by stimulating respiration, thus increasing the rate of oxygen delivery to the cells. Changes in the rate-controlling enzymes of hepatic heme metabolism, 5-aminolevulinate synthase and heme oxygenase, and in cytochrome(s) P-450, the major hepatic hemoprotein(s), were also measured in hypoxic and hypercapnic rats. Hypoxia decreased 5-aminolevulinate synthase and increased cytochrome(s) P-450, probably by increasing the size of a “regulatory” heme pool within hepatocytes. These changes were also prevented by the addition of hypercapnic to hypoxic exposure.

  18. Comparison of Image Filters for Low Dose Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Hungler, P. C.; Bennett, L. G. I.; Lewis, W. J.; Bevan, G.; Metzler, J.

    Neutron imaging using low flux sources, such as accelerators or low flux nuclear reactors, produces images which contain significant amounts of noise. The noise indications are a result of high energy gamma radiation and some neutron scattering which hit the CCD detector despite heavy shielding. The amount of noise in an image is a factor of the exposure time required to produce images with adequate dynamic ranges. Minimization of noise and maximization of the dynamic range are inversely proportional and the exposure time is often extended to increase incident neutrons at the expense of noise. The resultant noise can be reduced using image filters; however, these filters usually increase the signal to noise ratio (SNR) at the expense of spatial resolution. Three filters were applied to low dose neutron images acquired at RMC; a median filter, a Z-projection filter and a hybrid PDE filter. The median filter and the hybrid PDE filter showed similar performance in 3D with regards to SNR and spatial resolution, however, the median filter created numerous artefacts in the resultant tomogram. The Z-projection filter using 5 projections had the best performance in 2D improving the SNR of the raw image from 10.2 ± 0.767 to 22.5 ± 1.52 and the spatial resolution from 331 ± 2.89 to 309 ± 0.846, respectively. The Z-projection filter was not evaluated in 3D due to facility induced constraints.

  19. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    SciTech Connect

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.; Altman, K.I.

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  20. Chronic particulate exposure, mortality and cardiovascular outcomes in the nurses health study

    EPA Science Inventory

    Adverse health effects of exposures to acute air pollution have been well studied. Fewer studies have examined effects of chronic exposure. Previous studies used exposure estimates for narrow time periods and were limited by the geographic distribution of pollution monitors. This...

  1. Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways.

    PubMed

    Vandenhove, Hildegarde; Vanhoudt, Nathalie; Cuypers, Ann; van Hees, May; Wannijn, Jean; Horemans, Nele

    2010-09-01

    Arabidopsis thaliana was exposed to low-dose chronic gamma irradiation during a full life cycle (seed to seed) and several biological responses were investigated. Applied dose rates were 2336, 367 and 81 microGy h(-1). Following 24 days (inflorescence emergence), 34 days (approximately 50% of flowers open) and 54 days (silice ripening) exposure, plants were harvested and monitored for biometric parameters, capacities of enzymes involved in the antioxidative defence mechanisms (SOD, APOD, GLUR, GPOD, SPOD, CAT, ME), glutathione and ascorbate pool, lipid peroxidation products, altered gene expression of selected genes encoding for antioxidative enzymes or reactive oxygen species production, and DNA integrity. Root fresh weight was significantly reduced after gamma exposure compared to the control at all stages monitored but no significant differences in root weight for the different dose rates applied was observed. Leaf and stem fresh weight were significantly reduced at the highest irradiation level after 54 days exposure only. Also total plant fresh was significantly lower at silice riping and this for the highest and medium dose rate applied. The dose rate estimated to result in a 10% reduction in growth (EDR-10) ranged between 60 and 80 microGy h(-1). Germination of seeds from the gamma irradiated plants was not hampered. For several of the antioxidative defence enzymes studied, the enzyme capacity was generally stimulated towards flowering but generally no significant effect of dose rate on enzyme capacity was observed. Gene analysis revealed a significant transient and dose dependent change in expression of RBOHC indicating active reactive oxygen production induced by gamma irradiation. No effect of irradiation was observed on concentration or reduction state of the non-enzymatic antioxidants, ascorbate and glutathione. The level of lipid peroxidation products remained constant throughout the observation period and was not affected by dose rate. The comet assay

  2. What can be learned from epidemiologic studies of persons exposed to low doses of radiation?

    SciTech Connect

    Gilbert, E.S.

    1993-04-01

    The main objective of radiation risk assessment is to determine the risk of various adverse health effects associated with exposure to low doses and low dose rates. Extrapolation of risks from studies of persons exposed at high doses (generally exceeding 1 Sv) and dose rates has been the primary approach used to achieve this objective. The study of Japanese atomic bomb survivors in Hiroshima and Nagasaki has played an especially important role in risk assessment efforts. A direct assessment of the dose-response function based on studies of persons exposed at low doses and dose rates is obviously desirable. This paper focuses on the potential of both current and future nuclear workers studies for investigating the dose-response functions at low doses, and also discusses analyses making use of the low dose portion of the atomic bomb survivor data. Difficulties in using these data are the statistical imprecision of estimated dose-response parameters, and potential bias resulting from confounding factors and from uncertainties in dose estimates.

  3. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa.

    PubMed

    Otani, Atsushi; Kojima, Hiroshi; Guo, Congrong; Oishi, Akio; Yoshimura, Nagahisa

    2012-01-01

    The existence of radiation hormesis is controversial. Several stimulatory effects of low-dose (LD) radiation have been reported to date; however, the effects on neural tissue or neurodegeneration remain unknown. Here, we show that LD radiation has a neuroprotective effect in mouse models of retinitis pigmentosa, a hereditary, progressive neurodegenerative disease that leads to blindness. Various LD radiation doses were administered to the eyes in a retinal degeneration mouse model, and their pathological and physiological effects were analyzed. LD gamma radiation in a low-dose-rate (LDR) condition rescues photoreceptor cell apoptosis both morphologically and functionally. The greatest effect was observed in a condition using 650 mGy irradiation and a 26 mGy/minute dose rate. Multiple rounds of irradiation strengthened this neuroprotective effect. A characteristic up-regulation (563%) of antioxidative gene peroxiredoxin-2 (Prdx2) in the LDR-LD-irradiated retina was observed compared to the sham-treated control retina. Silencing the Prdx2 using small-interfering RNA administration reduced the LDR-LD rescue effect on the photoreceptors. Our results demonstrate for the first time that LDR-LD irradiation has a biological effect in neural cells of living animals. The results support that radiation exhibits hormesis, and this effect may be applied as a novel therapeutic concept for retinitis pigmentosa and for other progressive neurodegenerative diseases regardless of the mechanism of degeneration involved. PMID:22074737

  4. Inconsistencies and open questions regarding low-dose health effects of ionizing radiation.

    PubMed Central

    Nussbaum, R H; Köhnlein, W

    1994-01-01

    The effects on human health of exposures to ionizing radiation at low doses have long been the subject of dispute. In this paper we focus on open questions regarding the health effects of low-dose exposures that require further investigations. Seemingly contradictory findings of radiation health effects have been reported for the same exposed populations, or inconsistent estimates of radiation risks were found when different populations and exposure conditions were compared. Such discrepancies may be indicative of differences in sensitivities among the applied methods of epidemiological analysis or indicative of significant discrepancies in health consequences after comparable total exposures of different populations under varying conditions. We focus first on inconsistencies and contradictions in presentations of the state of knowledge by different authoritative experts. We then review studies that found positive associations between exposure and risks in dose ranges where traditional notions (generalized primarily from high-dose studies of A-bomb survivors or exposed animals) would have predicted negligible effects. One persistent notion in many reviews of low-dose effects is the hypothesis of reduced biological effectiveness of fractionated low-dose exposures, compared to that of the same acute dose. This assumption is not supported by data on human populations. From studies of populations that live in contaminated areas, more and more evidence is accumulating on unusual rates of various diseases other than radiation-induced malignancies, health effects that are suspected to be associated with relatively low levels of internal exposures originating from radioactive fallout. Such effects include congenital defects, neonatal mortality, stillbirths, and possibly genetically transmitted disease. A range of open questions challenges scientists to test imaginative hypotheses about induction of disease by radiation with novel research strategies. Images Figure 1. PMID

  5. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review.

    PubMed

    Song, Dongmei; Fang, Guoqiang; Greenberg, Harly; Liu, Shu Fang

    2015-12-01

    Obstructive sleep apnea (OSA) is highly prevalent in the USA and is recognized as an independent risk factor for atherosclerotic cardiovascular disease. Identification of atherosclerosis risk factor attributable to OSA may provide opportunity to develop preventive measures for cardiovascular risk reduction. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA pathophysiology and may be a major mechanism linking OSA to arteriosclerosis. Animal studies demonstrated that CIH exposure facilitated high-cholesterol diet (HCD)-induced atherosclerosis, accelerated the progression of existing atherosclerosis, and induced atherosclerotic lesions in the absence of other atherosclerosis risk factors, demonstrating that CIH is an independent causal factor of atherosclerosis. Comparative studies revealed major differences between CIH-induced and the classic HCD-induced atherosclerosis. Systemically, CIH was a much weaker inducer of atherosclerosis. CIH and HCD differentially activated inflammatory pathways. Histologically, CIH-induced atherosclerotic plaques had no clear necrotic core, contained a large number of CD31+ endothelial cells, and had mainly elastin deposition, whereas HCD-induced plaques had typical necrotic cores and fibrous caps, contained few endothelial cells, and had mainly collagen deposition. Metabolically, CIH caused mild, but HCD caused more severe dyslipidemia. Mechanistically, CIH did not, but HCD did, cause macrophage foam cell formation. NF-κB p50 gene deletion augmented CIH-induced, but not HCD-induced atherosclerosis. These differences reflect the intrinsic differences between the two types of atherosclerosis in terms of pathological nature and underlying mechanisms and support the notion that CIH-induced atherosclerosis is a new paradigm that differs from the classic HCD-induced atherosclerosis. PMID:26407987

  6. Temperature modulates phototrophic periphyton response to chronic copper exposure.

    PubMed

    Lambert, Anne Sophie; Dabrin, Aymeric; Morin, Soizic; Gahou, Josiane; Foulquier, Arnaud; Coquery, Marina; Pesce, Stéphane

    2016-01-01

    Streams located in vineyard areas are highly prone to metal pollution. In a context of global change, aquatic systems are generally subjected to multi-stress conditions due to multiple chemical and/or physical pressures. Among various environmental factors that modulate the ecological effects of toxicants, special attention should be paid to climate change, which is driving an increase in extreme climate events such as sharp temperature rises. In lotic ecosystems, periphyton ensures key ecological functions such as primary production and nutrient cycling. However, although the effects of metals on microbial communities are relatively well known, there is scant data on possible interactions between temperature increase and metal pollution. Here we led a study to evaluate the influence of temperature on the response of phototrophic periphyton to copper (Cu) exposure. Winter communities, collected in a 8 °C river water, were subjected for six weeks to four thermal conditions in microcosms in presence or not of Cu (nominal concentration of 15 μg L(-1)). At the initial river temperature (8 °C), our results confirmed the chronic impact of Cu on periphyton, both in terms of structure (biomass, distribution of algal groups, diatomic composition) and function (photosynthetic efficiency). At higher temperatures (13, 18 and 23 °C), Cu effects were modulated. Indeed, temperature increase reduced Cu effects on algal biomass, algal class proportions, diatom assemblage composition and photosynthetic efficiency. This reduction of Cu effects on periphyton may be related to lower bioaccumulation of Cu and/or to selection of more Cu-tolerant species at higher temperatures. PMID:26608872

  7. Sudden Gains in Prolonged Exposure and Sertraline for Chronic PTSD

    PubMed Central

    Jun, Janie J.; Zoellner, Lori A.; Feeny, Norah C.

    2014-01-01

    Background Sudden gains are significant, rapid improvements in symptoms, larger than typical between-session symptom reduction.[8] Sudden gains in a large sample of individuals with PTSD have not been studied, and only one study has looked at it in pharmacotherapy, but not in PTSD. In the present study, we examined the occurrence of sudden gains in psychotherapy, specifically prolonged exposure (PE), and pharmacotherapy, specifically sertraline, for chronic PTSD. Method Sudden gains in PTSD symptoms (PTSD Symptom Scale-Self-Report[23]) were assessed in 200 individuals with PTSD during 10 weeks of PE or sertraline. Results Individuals in both PE (42.2%) and sertraline (31%) exhibited sudden gains. Individuals in PE made more gains toward the end of treatment (7.2%) than sertraline (2%, OR = 3.82). However, individuals in sertraline made larger gains during early treatment (M = 18.35, SD = 8.15) than PE (M = 12.53, SD = 5.16, d = .85). Notably, those on sertraline were more likely to exhibit a reversal of sudden gains than those in PE (OR = .23). Pointing to clinical significance, the presence of a sudden gain was associated with better reduction in symptoms from pre- to post-treatment (β = -.49). Conclusions Individuals in both PE and sertraline experienced gains, though sertraline was associated with earlier large but reversible gains, and PE was associated with later gains. This differential pattern of discontinuous change highlights potential differential mechanism for these therapies and marks important transition points for further detailed analyses of change mechanisms. PMID:23633445

  8. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    SciTech Connect

    Wang, Ya

    2010-05-14

    The major goal of this study is to determine the effects of the Fhit pathway on low dose (< 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repair genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.

  9. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    SciTech Connect

    Ya Wang

    2010-05-31

    The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repair genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.

  10. Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment

    PubMed Central

    Vaiserman, Alexander M.

    2010-01-01

    Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444

  11. Occupational airways diseases from chronic low-level exposures to irritants.

    PubMed

    Balmes, John R

    2002-12-01

    Short-term, high-level exposures to dusts, gases, mists, fumes, and smoke that are irritating to the respiratory tract are capable of inducing asthma, the so-called reactive airways dysfunction syndrome. Such exposures, however, do not occur frequently; chronic or recurrent exposures to lower levels of irritants are much more common. This article reviews the evidence that supports the concept that low-level exposures to respiratory tract irritants can contribute to the development of chronic obstructive pulmonary disease and asthma. PMID:12512162

  12. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    SciTech Connect

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimate human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.

  13. Low dose irradiation profoundly affects transcriptome and microRNAme in rat mammary gland tissues

    PubMed Central

    Luzhna, Lidia; Kovalchuk, Olga

    2014-01-01

    Ionizing radiation has been successfully used in medical tests and treatment therapies for a variety of medical conditions. However, patients and health-care workers are greatly concerned about overexposure to medical ionizing radiation and possible cancer induction due to frequent mammographies and/or CT scans. Diagnostic imaging involves the use of low doses of ionizing radiation, and its potential carcinogenic role creates a cancer risk concern for exposed individuals. In this study, the effects of X-ray exposure of different doses on the gene expression patterns and the micro-RNA expression patterns in normal breast tissue were investigated in rats. Our results revealed the activation of immune response pathways upon low dose of radiation exposure. These included natural killer mediated cytotoxicity pathways, antigen processing and presentation pathways, chemokine signaling pathways, and T- and B-cell receptor signaling pathways. Both high and low doses of radiation led to miRNA expression alterations. Increased expression of miR-34a may be linked to cell cycle arrest and apoptosis. Up-regulation of miR-34a was correlated with down-regulation of its target E2F3 and up-regulation of p53. This data suggests that ionizing radiation at specific high and low doses leads to cell cycle arrest and a possible initiation of apoptosis. PMID:25594002

  14. Lack of nontargeted effects in murine bone marrow after low-dose in vivo X irradiation.

    PubMed

    Zyuzikov, Nikolay A; Coates, Philip J; Parry, John M; Lorimore, Sally A; Wright, Eric G

    2011-03-01

    Exposure to high doses of ionizing radiation unequivocally produces adverse health effects including malignancy. At low doses the situation is much less clear, because effects are generally too small to be estimated directly by epidemiology, and extrapolation of risk and establishment of international rules and standards rely on the linear no-threshold (LNT) concept. Claims that low doses are more damaging than would be expected from LNT have been made on the basis of in vitro studies of nontargeted bystander effects and genomic instability, but relevant investigations of primary cells and tissues are limited. Here we show that after low-dose low-LET in vivo radiation exposures in the 0-100-mGy range of murine bone marrow there is no evidence of a bystander effect, assessed by p53 pathway signaling, nor is there any evidence for longer-term chromosomal instability in the bone marrow at doses below 1000 mGy. The data are not consistent with speculations based on in vitro nontargeted effects that low-dose X radiation is more damaging than would be expected from linear extrapolation. PMID:21388275

  15. Low-Dose Isotretinoin: An Option for Difficult-to-Treat Papulopustular Rosacea.

    PubMed

    van Zuuren, Esther J; Fedorowicz, Zbys

    2016-06-01

    Rosacea is a chronic disease with a profound impact on quality of life. Although there are a range of treatments for its many manifestations, some cases are difficult to treat. Sbidian et al. show in this double-blind, randomized, placebo-controlled trial that low-dose isotretinoin can be effective in treating difficult-to-treat and frequently relapsing papulopustular rosacea. PMID:27212646

  16. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    SciTech Connect

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides with 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.

  17. Biomarkers for assessing potential carcinogenic effects of chronic arsenic exposure in Inner Mongolia, CHINA

    EPA Science Inventory

    Arsenic is ubiquitous in the environment. Chronic arsenic exposure via drinking water has been associated. with carcinogenic, cardiovascular, neurological and diabetic effects in humans and has been of great public health concern worldwide. In 2001, U.S. Environmental Protection ...

  18. Analysis of repeated low-dose challenge studies.

    PubMed

    Nolen, Tracy L; Hudgens, Michael G; Senb, Pranab K; Koch, Gary G

    2015-05-30

    Preclinical evaluation of candidate human immunodeficiency virus (HIV) vaccines entails challenge studies whereby non-human primates such as macaques are vaccinated with either an active or control vaccine and then challenged (exposed) with a simian-version of HIV. Repeated low-dose challenge (RLC) studies in which each macaque is challenged multiple times (either until infection or some maximum number of challenges is reached) are becoming more common in an effort to mimic natural exposure to HIV in humans. Statistical methods typically employed for the testing for a vaccine effect in RLC studies include a modified version of Fisher's exact test as well as large sample approaches such as the usual log-rank test. Unfortunately, these methods are not guaranteed to provide a valid test for the effect of vaccination. On the other hand, valid tests for vaccine effect such as the exact log-rank test may not be easy to implement using software available to many researchers. This paper details which statistical approaches are appropriate for the analysis of RLC studies, and how to implement these methods easily in SAS or R. PMID:25752266

  19. Personalized low dose CT via variable kVp

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Jin, Yannan; Yao, Yangyang; Wu, Mingye; Yan, Ming; Tao, Kun; Yin, Zhye; De Man, Bruno

    2015-03-01

    Computerized Tomography (CT) is a powerful radiographic imaging technology but the health risk due to the exposure of x-ray radiation has drawn wide concern. In this study, we propose to use kVp modulation to reduce the radiation dose and achieve the personalized low dose CT. Two sets of simulation are performed to demonstrate the effectiveness of kVp modulation and the corresponding calibration. The first simulation used the helical body phantom (HBP) that is an elliptical water cylinder with high density bone inserts. The second simulation uses the NCAT phantom to emulate the practical use of kVp modulation approach with region of interest (ROI) selected in the cardiac region. The kVp modulation profile could be optimized view by view based on the knowledge of patient attenuation. A second order correction is applied to eliminate the beam hardening artifacts. To simplify the calibration process, we first generate the calibration vectors for a few representative spectra and then acquire other calibration vectors with interpolation. The simulation results demonstrate the beam hardening artifacts in the images with kVp modulation can be eliminated with proper beam hardening correction. The results also show that the simplification of calibration did not impair the image quality: the calibration with the simplified and the complete vectors both eliminate the artifacts effectively and the results are comparable. In summary, this study demonstrates the feasibility of kVp modulation and gives a practical way to calibrate the high order beam hardening artifacts.

  20. Occupational exposures and chronic respiratory symptoms: a population-based study

    SciTech Connect

    Korn, R.J.; Dockery, D.W.; Speizer, F.E.; Ware, J.H.; Ferris, B.G.

    1987-01-01

    Data from a random sample of 8515 white adults residing in six cities in the eastern and midwestern United States were used to examine the relationships between occupational exposures to dust or to gases and fumes and chronic respiratory symptoms. 31% of the population had a history of occupational dust exposure and 30% reported exposure to gas or to fumes. After adjusting for smoking habits, age, gender, and city of residence, subjects with either occupational exposure had significantly elevated prevalence of chronic cough, chronic phlegm, persistent wheeze, and breathlessness. The adjusted relative odds of chronic respiratory symptoms for subjects exposed to dust ranged from 1.32 to 1.60. Subjects with gas or fume exposure had relative odds of symptoms between 1.27 and 1.43 when compared to unexposed subjects. Occupational dust exposure was associated with a higher prevalence of chronic obstructive pulmonary disease (COPD) as defined by an FEV1/FVC ratio of less than 0.6, when comparing exposed and unexposed participants (OR=1.53, 95% CI=1.17-2.08). Gas or fume exposure was associated with a small, but not significant, increase in COPD prevalence. Significant trends were noted for wheeze and phlegm with increasing duration of dust exposure. Although 36% of exposed subjects reported exposure to both dust and fumes, there was no evidence of a multiplicative interaction between the effects of the individual exposures. Smoking was a significant independent predictor of symptoms, but did not appear to modify the effect of dust or fumes on symptom reporting. These data, obtained in random samples of general populations, demonstrate that chronic respiratory disease can be independently associated with occupational exposures.

  1. Occupational exposures and chronic respiratory symptoms. A population-based study

    SciTech Connect

    Korn, R.J.; Dockery, D.W.; Speizer, F.E.; Ware, J.H.; Ferris, B.G. Jr.

    1987-08-01

    Data from a random sample of 8515 white adults residing in 6 cities in the eastern and midwestern United States were used to examine the relationships between occupational exposures to dust or to gases and fumes and chronic respiratory symptoms; 31% of the population had a history of occupational dust exposure and 30% reported exposure to gas or fumes. After adjusting for smoking habits, age, gender, and city of residence, subjects with either occupational exposure had significantly elevated prevalences of chronic cough, chronic phlegm, persistent wheeze, and breathlessness. The adjusted relative odds of chronic respiratory symptoms for subjects exposed to dust ranged from 1.32 to 1.60. Subjects with gas or fume exposure had relative odds of symptoms between 1.27 and 1.43 when compared with unexposed subjects. Occupational dust exposure was associated with a higher prevalence of chronic obstructive pulmonary disease as defined by an FEV1/FVC ratio of less than 0.6, when comparing exposed and unexposed participants (OR = 1.53, 95% Cl = 1.17-2.08). Gas or fume exposure was associated with a small, but not significant, increase in COPD prevalence. Significant trends were noted for wheeze and phlegm with increasing duration of dust exposure. Although 36% of exposed subjects reported exposure to both dust and fumes, there was no evidence of a multiplicative interaction between the effects of the individual exposures. Smoking was a significant independent predictor of symptoms, but did not appear to modify the effect of dust or fumes on symptom reporting. These data, obtained in random samples of general populations, demonstrate that chronic respiratory symptoms and disease can be independently associated with occupational exposures.

  2. CHRONIC EXPOSURE TO OZONE CAUSES RESTRICTIVE LUNG DISEASE

    EPA Science Inventory

    A chronic study to determine the progression and or/reversibility of ozone-induced lung disease was conducted. ale rats were exposed to a diurnal pattern of ozone (O3) for 1 wk, 3 wk, 3 mo, 12 mo, or 18 mo. he occurrence of chronic lung disease was determined by structural and fu...

  3. Metabolomic analysis of the toxic effects of chronic exposure to low-level dichlorvos on rats using ultra-performance liquid chromatography-mass spectrometry.

    PubMed

    Yang, Jindan; Sun, Xiaowei; Feng, Zhijing; Hao, Dongfang; Wang, Maoqing; Zhao, Xiujuan; Sun, Changhao

    2011-10-30

    The purpose of the current study was to assess the effects of long-term exposure to low levels of DDVP on the biochemical parameters and metabolic profiles of rats. Three different doses (2.4, 7.2, and 21.6 mg/kg body weight/day) of DDVP were administered to rats through their drinking water over 24 weeks. Significant changes in blood cholinesterase, creatinine, urea nitrogen, aspartate aminotransferase, alanine aminotransferase, and albumin concentrations were observed in the middle and high dose groups. Changes in the concentration of some urine metabolites were detected via ultra performance liquid chromatography-mass spectrometry (UPLC-MS). Dimethyl phosphate (DMP), which was exclusively detected in the treated groups, can be an early, sensitive biomarker for DDVP exposure. Moreover, DDVP treatment resulted in an increase in the lactobionic acid, estrone sulfate, and indoxyl sulfic concentrations, and a decrease in citric acid, suberic acid, gulonic acid, urea, creatinine, and uric acid. These results suggest that chronic exposure to low-level DDVP can cause a disturbance in carbohydrate and fatty acid metabolism, the antioxidant system, etc. Therefore, an analysis of the metabolic profiles can contribute to the understanding of the adverse effects of long-term exposure to low doses of DDVP. PMID:21889581

  4. The Impact of Chronic Pesticide Exposure on Neuropsychological Functioning

    ERIC Educational Resources Information Center

    Schultz, Caitlin G.; Ferraro, F. Richard

    2013-01-01

    This study compared neuropsychological test performance of individuals (n = 18) with an occupational history of pesticide exposure to individuals (n = 35) with no such exposure history. Results showed that a history of pesticide-related occupation exposure led to deficits in only Digit Symbol performance. Additionally, the correlation between…

  5. Low Dose Radiation Hypersensitivity is Caused by p53-dependent Apoptosis

    SciTech Connect

    Enns, L; Bogen, K; Wizniak, J; Murtha, A; Weinfeld, M

    2004-04-08

    Exposure to environmental radiation and the application of new clinical modalities, such as radioimmunotherapy, have heightened the need to understand cellular responses to low dose and low-dose rate ionizing radiation. Many tumor cell lines have been observed to exhibit a hypersensitivity to radiation doses below 50 cGy, which manifests as a significant deviation from the clonogenic survival response predicted by a linear-quadratic fit to higher doses. However, the underlying processes for this phenomenon remain unclear. Using a gel microdrop/flow cytometry assay to monitor single cell proliferation at early times post irradiation, we examined the response of human A549 lung carcinoma, T98G glioma and MCF7 breast carcinoma cell lines exposed to gamma radiation doses from 0 to 200 cGy delivered at 0.18 and 22 cGy/min. The A549 and T98G cells, but not MCF7 cells, showed the marked hypersensitivity at doses <50 cGy. To further characterize the low-dose hypersensitivity, we examined the influence of low-dose radiation on cell cycle status and apoptosis by assays for active caspase-3 and phosphatidylserine translocation (annexi