Buckling of angle-ply laminated circular cylindrical shells
NASA Technical Reports Server (NTRS)
Hirano, Y.
1979-01-01
This note presents closed-form solutions for axisymmetrical and axially unsymmetrical buckling of angle-ply laminated circular cylindrical shells under axial compression. The axisymmetrical and axially unsymmetrical buckling stress are found to be different from each other, and the best lamination angles which give the highest buckling stress are obtained.
Buckling of circular cylindrical shells under dynamically applied axial loads
NASA Technical Reports Server (NTRS)
Tulk, J. D.
1972-01-01
A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.
Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory
NASA Technical Reports Server (NTRS)
Lee, J. K.; Leissa, A. W.; Wang, A. J.
1983-01-01
Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.
Load Tests on a Stiffened Circular Cylindrical Shell
NASA Technical Reports Server (NTRS)
Schapitz, E; Krumling, G
1938-01-01
The present report describes tests in which the stress distribution may be determined in a stiffened circular cylindrical shell loaded longitudinally at four symmetrically situated points. As being of particular importance are the cases investigated of groups of bending and arching or convexing forces, respectively. From the stress measurements on the longitudinal stiffeners, the shear stresses and the bulkhead ring stresses in the skin could be evaluated. These measurements showed that the "simple shear field" used in theoretical computations in which all normal stresses in the skin are neglected, must be extended by the addition of the transverse or circumferential stresses if the bulkhead rings are not riveted to the skin.
Internal resonance of axially moving laminated circular cylindrical shells
NASA Astrophysics Data System (ADS)
Wang, Yan Qing; Liang, Li; Guo, Xing Hui
2013-11-01
The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell's nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell's nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin's method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency-response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.
Simplified dispersion curves for circular cylindrical shells using shallow shell theory
NASA Astrophysics Data System (ADS)
Sarkar, Abhijit; Sonti, Venkata R.
2009-04-01
An alternative derivation of the dispersion relation for the transverse vibration of a circular cylindrical shell is presented. The use of the shallow shell theory model leads to a simpler derivation of the same result. Further, the applicability of the dispersion relation is extended to the axisymmetric mode and the high frequency beam mode.
Nonlinear vibrations of fluid-filled clamped circular cylindrical shells
NASA Astrophysics Data System (ADS)
Karagiozis, K. N.; Amabili, M.; Païdoussis, M. P.; Misra, A. K.
2005-12-01
In this study, the nonlinear vibrations are investigated of circular cylindrical shells, empty or fluid-filled, clamped at both ends and subjected to a radial harmonic force excitation. Two different theoretical models are developed. In the first model, the standard form of the Donnell's nonlinear shallow-shell equations is used; in the second, the equations of motion are derived by a variational approach which permits the inclusion of constraining springs at the shell extremities and taking in-plane inertial terms into account. In both cases, the solution includes both driven and companion modes, thus allowing for a travelling wave in the circumferential direction; they also include axisymmetric modes to capture the nonlinear inward shell contraction and the correct type (softening) nonlinear behaviour observed in experiments. In the first model, the clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions, leading to a 7 degree-of-freedom (dof) expansion for the solution. In the second model, rotational springs are used at the ends of the shell, which when large enough reproduce a clamped end; the solution involves a sine series for axial variations of the shell deformation, leading to a 54 dof expansion for the solution. In both cases the modal expansions satisfy the boundary conditions and the circumferential continuity condition exactly. The Galerkin method is used to discretize the equations of motion, and AUTO to integrate the discretized equations numerically. When the shells are fluid-filled, the fluid is assumed to be incompressible and inviscid, and the fluid structure interaction is described by linear potential flow theory. The results from the two theoretical models are compared with existing experimental data, and in all cases good qualitative and quantitative agreement is observed.
NASA Astrophysics Data System (ADS)
Amabili, M.
2003-07-01
Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur'e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.
A parametric study on inelastic buckling in steel cylindrical shells with circular cutouts
NASA Astrophysics Data System (ADS)
Miladi, S.; Razzaghi, M. S.
2014-03-01
Thin-walled cylindrical shells are important components of many industrial complexes. Most of these components have circular cutouts in manholes and pipe-to-shell junctions. Performance of cylindrical shells due to the extreme loading conditions shows that buckling is the major failure mode in such components. This study aims to indicate the effect of circular cutouts on buckling capacity of cylindrical shells due to pure axial compression. To this end, cylindrical shells of different geometric specifications and various arrangements and sizes of cutouts were considered. Numerical nonlinear analyses were conducted using ANSYS software. Result of this study revealed that cutouts can play a noticeable role in creating stress concentration and affect destructively the stability of structures. It is shown that there is a noticeable difference between the effects on cutouts in buckling of thinner shells and thicker ones. Cutouts reduce the local buckling capacity of shell about 10-15 % in the cylindrical shells, with the diameter to thickness ratio of less than 1,000. Meanwhile in shells with diameter to thickness, more than 1,000 such cutouts reduce the shell capacity about 30-35 %.
Effect of a circular hole on the buckling of cylindrical shells loaded by axial compression.
NASA Technical Reports Server (NTRS)
Starnes, J. H., Jr.
1972-01-01
An experimental and analytical investigation of the effect of a circular hole on the buckling of thin cylindrical shells under axial compression was carried out. The experimental results were obtained from tests performed on seamless electroformed copper shells and Mylar shells with a lap joint seam. These results indicated that the character of the shell buckling was dependent on a parameter which is proportional to the hole radius divided by the square root of the product of the shell radius and thickness. For small values of this parameter, there was no apparent effect of the hole on the buckling load. For slightly larger values of the parameter, the shells still buckled into a general collapse configuration, but the buckling loads were sharply reduced as the parameter increased. For still larger values of the parameter, the buckling loads were further reduced, and the shells buckled into a stable local buckling configuration.
NASA Astrophysics Data System (ADS)
Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua
2015-12-01
Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
1999-08-01
The study presented is an investigation of the non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid incompressible fluid flow. Non-linearities due to large-amplitude shell motion are considered by using the non-linear Donnell's shallow shell theory, with account taken of the effect of viscous structural damping. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretiszd by Galerkin's method, and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Two different boundary conditions are applied to the fluid flow beyond the shell, corresponding to: (i) infinite baffles (rigid extensions of the shell), and (ii) connection with a flexible wall of infinite extent in the longitudinal direction, permitting solution by separation of variables; they give two different kinds of dynamical behaviour of the system, as a consequence of the fact that axisymmetric contraction, responsible for the softening non-linear dynamical behaviour of shells, is not allowed if the fluid flow beyond the shell is constrained by rigid baffles. Results show that the system loses stability by divergence.
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Guo, X. H.; Li, Y. G.; Li, J.
2010-03-01
This is a study of nonlinear traveling wave response of a cantilever circular cylindrical shell subjected to a concentrated harmonic force moving in a concentric circular path at a constant velocity. Donnell's shallow-shell theory is used, so that moderately large vibrations are analyzed. The problem is reduced to a system of ordinary differential equations by means of the Galerkin method. Frequency-responses for six different mode expansions are studied and compared with that for single mode to find the more contracted and accurate mode expansion investigating traveling wave vibration. The method of harmonic balance is applied to study the nonlinear dynamic response in forced oscillations of this system. Results obtained with analytical method are compared with numerical simulation, and the agreement between them bespeaks the validity of the method developed in this paper. The stability of the period solutions is also examined in detail.
NASA Technical Reports Server (NTRS)
Ramsey, J. W., Jr.
1975-01-01
The effect on stresses in a cylindrical shell with a circular penetration subject to internal pressure was investigated in thin, shallow linearly, elastic cylindrical shells. Results provide numerical predictions of peak stress concentration factors around nonreinforced and reinforced penetrations in pressurized cylindrical shells. Analytical results were correlated with published formulas, as well as theoretical and experimental results. An accuracy study was made of the finite element program for each of the configurations considered important in pressure vessel technology. A formula is developed to predict the peak stress concentration factor for analysis and/or design in conjunction with the ASME Boiler and Pressure Vessel Code.
On the mechanism of buckling of a circular cylindrical shell under axial compression
NASA Technical Reports Server (NTRS)
Yoshimura, Yoshimaru
1955-01-01
The present paper deals with the buckling of a circular cylindrical shell under axial compression from the viewpoint of energy and the characteristics of deformation. It is shown first, both theoretically and experimentally, that the reason why the buckling of a cylindrical shell is quite different from that of a flat plate is attributable to the existence of a nearly developable surface far apart from the original cylindrical surface. Based upon this result, the experimental fact that the buckling is really not general but local, that is, that the buckled region is limited axially to a range of 1.5 times the wave length of the lobe, is explained by the theoretical result that the minimum buckling load is smaller in the local buckling than in the general buckling case. The occurrence of local buckling is affirmed also from the viewpoint of the energy barrier to be jumped over during buckling, and from a comparison of the theoretical post-buckling state with the experimental results. Finally, the local buckling with the load applied by a spring is analyzed, and it is proved that the minimum buckling load increased with an increase of rigidity of the spring.
NASA Astrophysics Data System (ADS)
Lee, HyunWook; Kwak, Moon K.
2015-09-01
This study uses the Rayleigh-Ritz method to derive a dynamic model for the free vibration analysis of a circular cylindrical shell. In particular, explicit expressions for the mass and stiffness matrices are obtained to easily implement a computer simulation under different shell theories and boundary conditions. The dynamic model is constructed according to the Donnell-Mushtari theory, which is fully discussed herein, and then, dynamic models are constructed by using Sanders theory, Love-Timoshenko theory, Reissner theory, Flügge theory, and Vlasov theory. This paper also discusses the use of eigenfunctions of a uniform beam as admissible functions that produce compact expressions for the mass and stiffness matrices. The numerical results indicate that the Donnell-Mushtari theory is not sufficiently accurate to calculate the natural frequencies and that there is no discernible difference between the other shell theories considered in this study.
NASA Astrophysics Data System (ADS)
Sabri, Farhad
circular cylindrical shell or truncated conical shell subjected to internal/external pressure and axial compression loading. This is a typical example of external liquid propellant tanks of space shuttles and re-entry vehicles where they may experience this kind of loading during the flight. In the current work, different end boundary conditions of a circular cylindrical shell with different filling ratios were analyzed. To the best author' knowledge this is the first study where this kind of complex loading and boundary conditions are treated together during such an analysis. Only static instability, divergence, was observed where it showed that the fluid filling ratio does not have any effect on the critical buckling pressure and axial compression. It only reduces the vibration frequencies. It also revealed that the pressurized shell loses its stability at a higher critical axial load. (ii) Aeroelastic analysis of empty or partially liquid filled circular cylindrical and conical shells. Different boundary conditions with different geometries of shells subjected to supersonic air flow are studied here. In all of cases shell loses its stability though the coupled mode flutter. The results showed that internal pressure has a stabilizing effect and increases the critical flutter speed. It is seen that the value of critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by increasing the length ratio the decrement of flutter speed is decreased and vanishes. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at large filling ratios indicate that the fluid near the bottom of the shell is largely influenced by elastic deformation when a shell is subjected to external subsonic flow. Based on comparison with the existing numerical, analytical and experimental data and the power of capabilities of this hybrid finite element method to model different boundary conditions and
Nonlinear dynamics and stability of cantilevered circular cylindrical shells conveying fluid
NASA Astrophysics Data System (ADS)
Paak, M.; Païdoussis, M. P.; Misra, A. K.
2013-07-01
In this paper, the nonlinear dynamics of thin circular cylindrical shells with clamped-free boundary conditions subjected to axial internal flow is theoretically analyzed for the first time. The nonlinearity is geometric and is related to the large deformation of the structure. The nonlinear model of the shell is based on the Flügge shell theory; in this model, in-plane inertia terms and all the nonlinear terms due to the mid-surface stretching are retained. The fluid is considered to be inviscid and incompressible, and its modelling is based on linearized potential flow theory. The fluid behaviour beyond the free end of the shell is described by an outflow model, which characterizes the fluid boundary condition at the free end of the shell. At the clamped end, however, it is assumed that the fluid remains unperturbed. The Fourier transform method is used to solve the governing equations for the fluid and to obtain the hydrodynamic forces. The extended Hamilton principle is utilized to formulate the coupled fluid-structure system, and a direct approach is employed to discretize the space domain of the problem. The resulting coupled nonlinear ODEs are integrated numerically, and bifurcation analyses are performed using the AUTO software. Results indicate that the shell loses stability through a supercritical Hopf bifurcation giving rise to a stable periodic motion (limit cycle). The amplitude of this oscillation grows with flow velocity until it loses stability to nonperiodic oscillatory motion, namely, quasiperiodic and chaotic oscillation. The values of the critical flow velocities for various length-to-radius ratios obtained by nonlinear theory agree well with available experimental data.
Nonlinear dynamics of harmonically excited circular cylindrical shells containing fluid flow
NASA Astrophysics Data System (ADS)
Karagiozis, K.; Amabili, M.; Païdoussis, M. P.
2010-08-01
In the present study, the geometrically nonlinear vibrations of circular cylindrical shells, subjected to internal fluid flow and to a radial harmonic excitation in the spectral neighbourhood of one of the lowest frequency modes, are investigated for different flow velocities. The shell is modelled by Donnell's nonlinear shell theory, retaining in-plane inertia and geometric imperfections; the fluid is modelled as a potential flow with the addition of unsteady viscous terms obtained by using the time-averaged Navier-Stokes equations. A harmonic concentrated force is applied at mid-length of the shell, acting in the radial direction. The shell is considered to be immersed in an external confined quiescent liquid and to contain a fluid flow, in order to reproduce conditions in previous water-tunnel experiments. For the same reason, complex boundary conditions are applied at the shell ends simulating conditions intermediate between clamped and simply supported ends. Numerical results obtained by using pseudo-arclength continuation methods and bifurcation analysis show the nonlinear response at different flow velocities for (i) a fixed excitation amplitude and variable excitation frequency, and (ii) fixed excitation frequency by varying the excitation amplitude. Bifurcation diagrams of Poincaré maps obtained from direct time integration are presented, as well as the maximum Lyapunov exponent, in order to classify the system dynamics. In particular, periodic, quasi-periodic, sub-harmonic and chaotic responses have been detected. The full spectrum of the Lyapunov exponents and the Lyapunov dimension have been calculated for the chaotic response; they reveal the occurrence of large-dimension hyperchaos.
NASA Astrophysics Data System (ADS)
Bich, Dao Huy; Xuan Nguyen, Nguyen
2012-12-01
In the present work, the study of the nonlinear vibration of a functionally graded cylindrical shell subjected to axial and transverse mechanical loads is presented. Material properties are graded in the thickness direction of the shell according to a simple power law distribution in terms of volume fractions of the material constituents. Governing equations are derived using improved Donnell shell theory ignoring the shallowness of cylindrical shells and kinematic nonlinearity is taken into consideration. One-term approximate solution is assumed to satisfy simply supported boundary conditions. The Galerkin method, the Volmir's assumption and fourth-order Runge-Kutta method are used for dynamical analysis of shells to give explicit expressions of natural frequencies, nonlinear frequency-amplitude relation and nonlinear dynamic responses. Numerical results show the effects of characteristics of functionally graded materials, pre-loaded axial compression and dimensional ratios on the dynamical behavior of shells. The proposed results are validated by comparing with those in the literature.
NASA Astrophysics Data System (ADS)
Liu, Y. Z.; Hao, Y. X.; Zhang, W.; Chen, J.; Li, S. B.
2015-07-01
The nonlinear vibration of a simply supported FGM cylindrical shell with small initial geometric imperfection under complex loads is studied. The effects of radial harmonic excitation, compressive in-plane force combined with supersonic aerodynamic and thermal loads are considered. The small initial geometric imperfection of the cylindrical shell is characterized in the form of the sine-type trigonometric functions. The effective material properties of this FGM cylindrical shell are graded in the radial direction according to a simple power law in terms of the volume fractions. Based on Reddy's third-order shear deformation theory, von Karman-type nonlinear kinematics and Hamilton's principle, the nonlinear partial differential equation that controls the shell dynamics is derived. Both axial symmetric and driven modes of the cylindrical shell deflection pattern are included. Furthermore, the equations of motion can be reduced into a set of coupled nonlinear ordinary differential equations by applying Galerkin's method. In the study of the nonlinear dynamics responses of small initial geometric imperfect FGM cylindrical shell under complex loads, the 4th order Runge-Kutta method is used to obtain time history, phase portraits, bifurcation diagrams and Poincare maps with different parameters. The effects of external loads, geometric imperfections and volume fractions on the nonlinear dynamics of the system are discussed.
NASA Astrophysics Data System (ADS)
Khalifa, Ahmed Mousa
2011-11-01
The combination of Flügge's shell theory, the transfer matrix approach and the Romberg integration method are used to investigate the free vibration behaviour of stepped orthotropic cylindrical shells. The hoop step on the shell surface is described by a reduced thickness over part of its circumference. Modal displacements of the shell can be described by trigonometric functions and Fourier's approach is used to separate the variables. The vibration equations of the shell are reduced to eight first-order differential equations in the circumferential coordinate, and by using the transfer matrix of the shell, these equations can be written in a matrix differential equation. The transfer matrix is derived from the non-linear differential equations of the cylindrical shells by introducing the trigonometric functions in the longitudinal direction and applying the numerical integration in the circumferential direction. The proposed model is used to get the vibration frequencies and the corresponding mode shapes for symmetrical and antisymmetrical type-modes. Computed results indicate the sensitivity of the frequency parameters and the bending deformations to the geometry of stepped shell, and also to the axial and circumferential rigidities of the shell.
NASA Astrophysics Data System (ADS)
Pellicano, F.; Amabili, M.
2006-05-01
In the present paper the dynamic stability of circular cylindrical shells subjected to static and dynamic axial loads is investigated. Both Donnell's nonlinear shallow shell and Sanders-Koiter shell theories have been applied to model finite-amplitude static and dynamic deformations. Results are compared in order to evaluate the accuracy of these theories in predicting instability onset and post-critical nonlinear response. The effect of a contained fluid on the stability and the post-critical behaviour is analyzed in detail. Geometric imperfections are considered and their influence on the dynamic instability and post-critical behaviour is investigated. Chaotic dynamics of pre-compressed shells is investigated by means of nonlinear time-series techniques, extracting correlation dimension and Lyapunov exponents.
NASA Astrophysics Data System (ADS)
Amabili, M.
2003-05-01
The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of some of the lowest natural frequencies is investigated. Donnell's non-linear shallow-shell theory is used and the solution is obtained by the Galerkin method. Several expansions involving 16 or more natural modes of the shell are used. The boundary conditions on the radial displacement and the continuity of circumferential displacement are exactly satisfied. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The non-linear equations of motion are studied by using a code based on the arclength continuation method. A series of accurate experiments on forced vibrations of an empty and water-filled stainless-steel shell have been performed. Several modes have been intensively investigated for different vibration amplitudes. A closed loop control of the force excitation has been used. The actual geometry of the test shell has been measured and the geometric imperfections have been introduced in the theoretical model. Several interesting non-linear phenomena have been experimentally observed and numerically reproduced, such as softening-type non-linearity, different types of travelling wave response in the proximity of resonances, interaction among modes with different numbers of circumferential waves and amplitude-modulated response. For all the modes investigated, the theoretical and experimental results are in strong agreement.
NASA Astrophysics Data System (ADS)
Leonov, V. I.
A cylindrical shell is considered which is loaded via a round rigid bracket by a force normal to its middle surface and also by a bending moment relative to the generatrix. The shell is reinforced by an annular patch around the bracket. The stressed state of the shell is analyzed as a function of the geometrical parameters of the reinforcement.
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
2000-11-01
The response of simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of one of the lowest natural frequencies is investigated by using improved mode expansions with respect to those assumed in Parts I and II of the present study. Two cases are studied: (1) shells in vacuo; and (2) shells filled with stagnant water. The improved expansions allow checking the accuracy of the solutions previously obtained and giving definitive results within the limits of Donnell's non-linear shallow-shell theory. The improved mode expansions include: (1) harmonics of the circumferential mode number n under consideration, and (2) only the principal n, but with harmonics of the longitudinal mode included. The effect of additional longitudinal modes is absolutely insignificant in both the driven and companion mode responses. The effect of modes with 2 n circumferential waves is very limited on the trend of non-linearity, but is significant in the response with companion mode participation in the case of lightly damped shells (empty shells). In particular, the travelling wave response appears for much lower vibration amplitudes and presents a frequency range without stable responses, corresponding to a beating phenomenon. A liquid (water) contained in the shell generates a much stronger softening behaviour of the system. Experiments with a water-filled circular cylindrical shell made of steel are in very good agreement with the present theory.
NASA Astrophysics Data System (ADS)
Estève, Simon J.; Johnson, Marty E.
2002-12-01
A modal expansion method is used to model a cylindrical enclosure excited by an external plane wave. A set of distributed vibration absorbers (DVAs) and Helmholtz resonators (HRs) are applied to the structure to control the interior acoustic levels. Using an impedance matching method, the structure, the acoustic cavity, and the noise reduction devices are fully coupled to yield an analytical formulation of the structural kinetic energy and acoustic potential energy of a treated cylindrical cavity. Lightweight DVAs and small HRs tuned to the natural frequencies of the targeted structural and acoustic modes, respectively, result in significant acoustic and structural attenuation when the devices are optimally damped. Simulations show that significant interior noise reduction can only be achieved by adding damping to both structural and acoustic modes, which are resonant in the frequency bandwidth of interest. In order to be independent of the azimuth angle of the excitation and to avoid unwanted modal interactions, the devices are distributed evenly around the cylinder in rings. This treatment can only achieve good performance if the structure and the acoustic cavity are lightly damped.
NASA Astrophysics Data System (ADS)
Amabili, M.; Sarkar, A.; Païdoussis, M. P.
2006-03-01
The geometric nonlinear response of a water-filled, simply supported circular cylindrical shell to harmonic excitation in the spectral neighbourhood of the fundamental natural frequency is investigated. The response is investigated for a fixed excitation frequency by using the excitation amplitude as bifurcation parameter for a wide range of variation. Bifurcation diagrams of Poincaré maps obtained from direct time integration and calculation of the Lyapunov exponents and Lyapunov dimension have been used to study the system. By increasing the excitation amplitude, the response undergoes (i) a period-doubling bifurcation, (ii) subharmonic response, (iii) quasi-periodic response and (iv) chaotic behaviour with up to 16 positive Lyapunov exponents (hyperchaos). The model is based on Donnell's nonlinear shallow-shell theory, and the reference solution is obtained by the Galerkin method. The proper orthogonal decomposition (POD) method is used to extract proper orthogonal modes that describe the system behaviour from time-series response data. These time-series have been obtained via the conventional Galerkin approach (using normal modes as a projection basis) with an accurate model involving 16 degrees of freedom (dofs), validated in previous studies. The POD method, in conjunction with the Galerkin approach, permits to build a lower-dimensional model as compared to those obtainable via the conventional Galerkin approach. Periodic and quasi-periodic response around the fundamental resonance for fixed excitation amplitude, can be very successfully simulated with a 3-dof reduced-order model. However, in the case of large variation of the excitation, even a 5-dof reduced-order model is not fully accurate. Results show that the POD methodology is not as "robust" as the Galerkin method.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Schultz, Marc R.
2012-01-01
A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
1999-12-01
The non-linear response of empty and fluid-filled circular cylindrical shells to harmonic excitations is investigated. Both modal and point excitations have been considered. The model is suitable to study simply supported shells with and without axial constraints. Donnell's non-linear shallow-shell theory is used. The boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. The radial deflection of the shell is expanded by using a basis of seven linear modes. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The equations of motion, obtained in Part I of this study, are studied by using a code based on the collocation method. The validation of the present model is obtained by comparison with other authoritative results. The effect of the number of axisymmetric modes used in the expansion on the response of the shell is investigated, clarifying questions open for a long time. The results show the occurrence of travelling wave response in the proximity of the resonance frequency, the fundamental role of the first and third axisymmetric modes in the expansion of the radial deflection with one longitudinal half-wave, and limit cycle responses. Modes with two longitudinal half-waves are also investigated.
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
2000-11-01
The response of a shell conveying fluid to harmonic excitation, in the spectral neighbourhood of one of the lowest natural frequencies, is investigated for different flow velocities. The theoretical model has already been presented in Part I of the present study. Non-linearities due to moderately large-amplitude shell motion are considered by using Donnell's non-linear shallow-shell theory. Linear potential flow theory is applied to describe the fluid-structure interaction by using the model proposed by Paı̈doussis and Denise. For different amplitudes and frequencies of the excitation and for different flow velocities, the following are investigated numerically: (1) periodic response of the system; (2) unsteady and stochastic motion; (3) loss of stability by jumps to bifurcated branches. The effect of the flow velocity on the non-linear periodic response of the system has also been investigated. Poincaré maps and bifurcation diagrams are used to study the unsteady and stochastic dynamics of the system. Amplitude modulated motions, multi-periodic solutions, chaotic responses, cascades of bifurcations as the route to chaos and the so-called “blue sky catastrophe” phenomenon have all been observed for different values of the system parameters; the latter two have been predicted here probably for the first time for the dynamics of circular cylindrical shells.
Vibration of perforated cylindrical shells
NASA Astrophysics Data System (ADS)
Cousseau, Peter L.
For a credible design of an inertial confinement fusion (ICF) target chamber, the vibration characteristics of the chamber must be completely understood. Target chambers are usually cylindrical or spherical in shape and contain hundreds of perforations (called ports) to allow access to the inside of the chamber. The fusion reaction within the chamber creates a uniform impulsive loading, which the chamber walls must be designed to contain. Also prior to an implosion, a delicate alignment process of the drivers and diagnostics takes place. The vibration of the chamber from rotating machinery, e.g., vacuum pumps, and ambient sources must be completely understood and accounted for during these alignment procedures. This dissertation examines the vibration characteristics of perforated cylindrical shells. Because the target chambers' thickness-to-radius ratio is small, such chambers can be modeled as thin shells. Included in the text is a literature review of perforated plates and shells and examples of the use of perforated structures in constructed and proposed ICF target chambers. The natural frequencies and corresponding mode shapes of perforated and unperforated cylindrical shells are studied analytically, numerically (via finite elements) and experimentally. Conclusions and comparisons between the different solution methods are made for both the perforated and unperforated cases. In addition, the dynamic response of perforated cylindrical shells to an axisymmetric impulsive loading has been identified. A demonstration showing how the convolution integral can be used to determine the response of a cylinder to a non-impulsive loading is presented.
NASA Astrophysics Data System (ADS)
Castillo, Henry A., Jr.
1992-06-01
The objective of this research is to create a flexible code which is to be used in the investigation of optimum (minimum weight) shell designs. A shell analysis/design program, DAPS3, and a general purpose numerical optimization program, ADS, are incorporated into a single code, THESIS. This code provides the user great flexibility in changing the design variables and constraints which model the optimization problem. The optimum designs produced by this code are compared to DAPS3 optimum designs in order to identify any improvements made by the numerical optimization technique.
Crack problems in cylindrical and spherical shells
NASA Technical Reports Server (NTRS)
Erdogan, F.
1976-01-01
Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.
Sound transmission into a laminated composite cylindrical shell
NASA Technical Reports Server (NTRS)
Koval, L. R.
1980-01-01
In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a laminated composite circular cylindrical shell. Numerical results are obtained for geometry typical of a narrow-bodied jet transport. Results indicate that from the viewpoint of noise attenuation on laminated composite shell does not appear to offer any significant advantage over an aluminum shell. However, the transmission loss of a laminated composite shell is sensitive to the orientation of the fibers and this suggests the possibility of using a laminated composite shell to tailor the noise attenuation characteristics to meet a specific need.
Vibration of cylindrical shells of bimodulus composite materials
NASA Astrophysics Data System (ADS)
Bert, C. W.; Kumar, M.
1982-03-01
A theory is formulated for the small amplitude free vibration of thick, circular cylindrical shells laminated of bimodulus composite materials, which have different elastic properties depending upon whether the fiber-direction strain is tensile or compressive. The theory used is the dynamic, shear deformable (moderately thick shell) analog of the Sanders best first approximation thin shell theory. By means of tracers, the analysis can be reduced to that of various simpler shell theories, namely Love's first approximation, and Donnell's shallow shell theory. As an example of the application of the theory, a closed form solution is presented for a freely supported panel or complete shell. To validate the analysis, numerical results are compared with existing results for various special cases. Also, the effects of the various shell theories, thickness shear flexibility, and bimodulus action are investigated.
Omnidirectional, circularly polarized, cylindrical microstrip antenna
NASA Technical Reports Server (NTRS)
Stanton, Philip H. (Inventor)
1985-01-01
A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.
Distributed neural signals on parabolic cylindrical shells
NASA Astrophysics Data System (ADS)
Hu, S. D.; Li, H.; Tzou, H. S.
2013-06-01
Parabolic cylindrical shells are commonly used as key components in communication antennas, space telescopes, solar collectors, etc. This study focuses on distributed modal neural sensing signals on a flexible simply-supported parabolic cylindrical shell panel. The parabolic cylindrical shell is fully laminated with a piezoelectric layer on its outer surface and the piezoelectric layer is segmented into infinitesimal elements (neurons) to investigate the microscopic distributed neural sensing signals. Since the dominant vibration component of the shell is usually the transverse oscillation, a new transverse mode shape function is defined. Two shell cases, i.e., the ratio of the meridian height to the half span distance of a parabola at 1:4 (shallow) and 1:1 (deep), are studied to reveal the curvature effect to the neural sensing signals. Studies suggest that the membrane signal component dominates for lower natural modes and the bending signal component dominates for higher natural modes. The meridional membrane and bending signal components are mostly concentrated on the high-curvature areas, while the longitudinal bending component is mostly concentrated on the relatively flat areas. The concentration behavior becomes more prominent as the parabolic cylindrical shell deepens, primarily resulting from the enhanced membrane effect due to the increased curvature.
SPSM and its application in cylindrical shells
NASA Astrophysics Data System (ADS)
Nie, Wu; Zhou, Su-Lian; Peng, Hui
2008-03-01
In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.
Vibrations of cantilevered shallow cylindrical shells of rectangular planform
NASA Technical Reports Server (NTRS)
Leissa, A. W.; Lee, J. K.; Wang, A. J.
1981-01-01
A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.
Vibrations of cantilevered shallow cylindrical shells of rectangular planform
NASA Astrophysics Data System (ADS)
Leissa, A. W.; Lee, J. K.; Wang, A. J.
1981-10-01
A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.
Scaling Instability in Buckling of Axially Compressed Cylindrical Shells
NASA Astrophysics Data System (ADS)
Grabovsky, Yury; Harutyunyan, Davit
2016-02-01
In this paper, we continue the development of mathematically rigorous theory of "near-flip" buckling of slender bodies of arbitrary geometry, based on hyperelasticity. In order to showcase the capabilities of this theory, we apply it to buckling of axially compressed circular cylindrical shells. The theory confirms the classical formula for the buckling load, whereby the perfect structure buckles at the stress that scales as the first power of shell's thickness. However, in the case of imperfections of load, the theory predicts scaling instability of the buckling stress. Depending on the type of load imperfections, buckling may occur at stresses that scale as thickness to the power 1.5 or 1.25, corresponding to the lower and upper ends, respectively, of the historically accumulated experimental data.
NASA Astrophysics Data System (ADS)
Mercan, Kadir; Demir, Çiğdem; Civalek, Ömer
2016-01-01
In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.
NASA Technical Reports Server (NTRS)
Leissa, A. W.
1973-01-01
The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.
Buckling analysis of cylindrical shells with cracks
Limam, A.; Jullien, J.F.; Ouayou, B.S.
1995-12-31
In many areas of aeronautical nuclear and civil engineering practice, large thin-walled structural panels are increasingly becoming characteristic architectural features. Indeed, nuclear reactor vessels and cryogenic tanks of a launcher, for instance, are made up of several thin-walled panels welded together. Instability and buckling phenomenon present over-riding constraints on the design process. In addition, the presence of joints which are very often the origin of surface fissures poses increasing dangers on the overall stability of these structures. This research deals with the analysis of the effects of cracks on the behavior of cylindrical shells subject to external pressure. The study was divided into two major parts. In the first part, experiments were carried out with shells without cracks, in order to obtain reference data. A numerical study of various models explains the experimental results and shows the combined effect of the geometric imperfections and boundary conditions on the critical load. The second part focused on several experimental tests and numerical simulations on shells with in- depth fissures as a function of their population, orientation, length and position with respect to the welds or joints. The agreement between numerical and experimental results confirms the new possibility to design with the aid of the finite element program under the condition that the calculations are carried out by means of an appropriate numerical method.
A circumferential crack in a cylindrical shell under tension.
NASA Technical Reports Server (NTRS)
Duncan-Fama, M. E.; Sanders, J. L., Jr.
1972-01-01
A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.
Plasmon modes of circular cylindrical double-layer graphene.
Zhao, Tao; Hu, Min; Zhong, Renbin; Chen, Xiaoxing; Zhang, Ping; Gong, Sen; Zhang, Chao; Liu, Shenggang
2016-09-01
In this paper, a theoretical investigation on plasmon modes in a circular cylindrical double-layer graphene structure is presented. Due to the interlayer electromagnetic interaction, there exist two branches of plasmon modes, the optical plasmon mode and the acoustic plasmon mode. The characteristics of these two modes, such as mode pattern, effective mode index and propagation loss, are analyzed. The modal behaviors can be effectively tuned by changing the distance between two graphene layers, the chemical potential of graphene and the permittivity of interlayer dielectric. Importantly, the breakup of tradeoff between mode confinement and propagation loss is discovered in the distance-dependent modal behavior, which originates from the unique dispersion properties of a double-layer graphene system. As a consequence, both strong mode confinement and longer propagation length can be achieved. Our results may provide good opportunities for developing applications based on graphene plasmonics in circular cylindrical structure. PMID:27607651
NASA Technical Reports Server (NTRS)
Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.
1996-01-01
Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.
Developments in Cylindrical Shell Stability Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Starnes, James H., Jr.
1998-01-01
Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.
Dynamic stability of simply supported composite cylindrical shells under partial axial loading
NASA Astrophysics Data System (ADS)
Dey, Tanish; Ramachandra, L. S.
2015-09-01
The parametric vibration of a simply supported composite circular cylindrical shell under periodic partial edge loadings is discussed in this article. Donnell's nonlinear shallow shell theory considering first order shear deformation theory is used to model the shell. The applied partial edge loading is represented in terms of a Fourier series and stress distributions within the cylindrical shell are determined by prebuckling analysis. The governing equations of the dynamic instability of shells are derived in terms of displacements (u-v-w) and rotations (φx, φθ). Employing the Galerkin and Bolotin methods the dynamic instability regions are computed. Using the expression for the stress function derived in this paper, the pre-buckling stresses in the cylindrical shell due to partial loading can be calculated explicitly. Numerical results are presented to show the influence of radius-to-thickness ratio, different partial edge loading distributions and shear deformation on the dynamic instability regions. The linear and nonlinear responses in the stable and unstable regions are presented to bring out the characteristic features of the dynamic instability regions, such as the existence of beats, its dependence on forcing frequency and effect of nonlinearity on the response. The effect of dynamic load amplitude on the nonlinear response is also studied. It is found that for higher values of dynamic loading, the shell exhibits chaotic behavior.
Sound Transmission through a Cylindrical Sandwich Shell with Honeycomb Core
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Robinson, Jay H.; Silcox, Richard J.
1996-01-01
Sound transmission through an infinite cylindrical sandwich shell is studied in the context of the transmission of airborne sound into aircraft interiors. The cylindrical shell is immersed in fluid media and excited by an oblique incident plane sound wave. The internal and external fluids are different and there is uniform airflow in the external fluid medium. An explicit expression of transmission loss is derived in terms of modal impedance of the fluids and the shell. The results show the effects of (a) the incident angles of the plane wave; (b) the flight conditions of Mach number and altitude of the aircraft; (c) the ratios between the core thickness and the total thickness of the shell; and (d) the structural loss factors on the transmission loss. Comparisons of the transmission loss are made among different shell constructions and different shell theories.
Sound Transmission through Two Concentric Cylindrical Sandwich Shells
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.
1996-01-01
This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.
Nagal, K.; Yamaguchi, T.
1995-11-01
This paper presents numerical solutions for the chaotic oscillations of a shallow cylindrical shell. The shell having a circular cylindrical surface and a rectangular boundary is excited by periodic acceleration laterally. The Donnell equations modified with the transverse inertia force are used. The basic equation is reduced to the nonlinear differential equation of a multiple-degree-of-freedom system by the Galerkin procedure. The fundamental characteristics are found for the shell of a square boundary and of all boundaries simply supported. The time progresses of the chaotic responses are investigated by the numerical integration by the Runge-Kutta-Gill method. The chaotic response is identified by the Lyapunov exponent and the Poincare projection onto the phase space. The Lyapunov dimension is examined by changing the assumed modes of vibration.
A higher order theory of laminated composite cylindrical shells
NASA Technical Reports Server (NTRS)
Krishna Murthy, A. V.; Reddy, T. S. R.
1986-01-01
A new higher order theory has been proposed for the analysis of composite cylindrical shells. The formulation allows for arbitrary variation of inplane displacements. Governing equations are presented in the form of a hierarchy of sets of partial differential equations. Each set describes the shell behavior to a certain degree of approximation. The natural frequencies of simply-supported isotropic and laminated shells and stresses in a ring loaded composite shell have been determined to various orders of approximation and compared with three dimensional solutions. These numerical studies indicate the improvements achievable in estimating the natural frequencies and the interlaminar shear stresses in laminated composite cylinders.
Flow-induced vibration of circular cylindrical structures
NASA Astrophysics Data System (ADS)
Chen, Shoei-Sheng
The vibrational response of circular cylinder (CC) structures subjected to flow is characterized analytically, summarizing the results of recent theoretical and experimental investigations. Topics addressed include a single CC in quiescent fluid, multiple CCs in quiescent fluid, CC shells containing fluid, pipes conveying fluid, and CCs in axial flow. Consideration is given to cross-flow configurations involving a single CC, an array of CCs, and two CCs; the fluid-elastic instability of a group of CCs in cross flow; and design techniques. Diagrams and graphs are provided, and the vibration of damped linear systems, the general fluid equations, and characteristic equations and adjoint eigenfunctions are treated in appendices.
Evolution of bulk strain solitons in cylindrical inhomogeneous shells
Shvartz, A. Samsonov, A.; Dreiden, G.; Semenova, I.
2015-10-28
Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.
Evolution of bulk strain solitons in cylindrical inhomogeneous shells
NASA Astrophysics Data System (ADS)
Shvartz, A.; Samsonov, A.; Dreiden, G.; Semenova, I.
2015-10-01
Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.
Vibration control of cylindrical shells using active constrained layer damping
NASA Astrophysics Data System (ADS)
Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.
1997-05-01
The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
A cylindrical shell with an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1982-01-01
The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system of five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented.
Prakash, Vijay S; Sonti, Venkata R
2015-11-01
Nonlinear acoustic wave propagation is considered in an infinite orthotropic thin circular cylindrical waveguide. The modes are non-planar having small but finite amplitude. The fluid is assumed to be ideal and inviscid with no mean flow. The cylindrical waveguide is modeled using the Donnell's nonlinear theory for thin cylindrical shells. The approximate solutions for the acoustic velocity potential are found using the method of multiple scales (MMS) in space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrödinger Equation (NLSE). The first objective is to study the nonlinear term in the NLSE, as the sign of the nonlinear term determines the stability of the amplitude modulation. On the other hand, at other specific frequencies, interactions occur between the primary wave and its higher harmonics. Here, the objective is to identify the frequencies of the higher harmonic interactions. Lastly, the linear terms in the NLSE obtained using the MMS calculations are validated. All three objectives are met using an asymptotic analysis of the dispersion equation. PMID:26627797
Nonlinear vibrations and imperfection sensitivity of a cylindrical shell containing axial fluid flow
NASA Astrophysics Data System (ADS)
del Prado, Z.; Gonçalves, P. B.; Païdoussis, M. P.
2009-10-01
The high imperfection sensitivity of cylindrical shells under static compressive axial loads is a well-known phenomenon in structural stability. On the other hand, less is known of the influence of imperfections on the nonlinear vibrations of these shells under harmonic axial loads. The aim of this work is to study the simultaneous influence of geometric imperfections and an axial fluid flow on the nonlinear vibrations and instabilities of simply supported circular cylindrical shells under axial load. The fluid is assumed to be non-viscous and incompressible and the flow to be isentropic and irrotational. The behavior of the thin-walled shell is modeled by Donnell's nonlinear shallow-shell equations. It is subjected to a static uniform compressive axial pre-load plus a harmonic axial load. A low-dimensional modal expansion, which satisfies the relevant boundary and continuity conditions, and takes into account all relevant nonlinear modal interactions observed in the past in the nonlinear vibrations of cylindrical shells with and without flow is used together with the Galerkin method to derive a set of eight coupled nonlinear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. The shell is considered to be initially at rest, in a position corresponding to a pre-buckling configuration. Then, a harmonic excitation is applied and conditions for parametric instability and dynamic snap-through are sought. The results clarify the marked influence of geometric imperfections and fluid flow on the dynamic stability boundaries, bifurcations and basins of attraction.
2DEG on a cylindrical shell with a screw dislocation
NASA Astrophysics Data System (ADS)
Filgueiras, Cleverson; Silva, Edilberto O.
2015-09-01
A two dimensional electron gas on a cylindrical surface with a screw dislocation is considered. More precisely, we investigate how both the geometry and the deformed potential due to a lattice distortion affect the Landau levels of such system. The case showing the deformed potential can be thought in the context of 3D common semiconductors where the electrons are confined on a cylindrical shell. We will show that important quantitative differences exist due to this lattice distortion. For instance, the effective cyclotron frequency is diminished by the deformed potential, which in turn enhances the Hall conductivity.
Nonlinear stability of cylindrical shells subjected to axial flow: Theory and experiments
NASA Astrophysics Data System (ADS)
Karagiozis, K. N.; Païdoussis, M. P.; Amabili, M.; Misra, A. K.
2008-01-01
This paper, is concerned with the nonlinear dynamics and stability of thin circular cylindrical shells clamped at both ends and subjected to axial fluid flow. In particular, it describes the development of a nonlinear theoretical model and presents theoretical results displaying the nonlinear behaviour of the clamped shell subjected to flowing fluid. The theoretical model employs the Donnell nonlinear shallow shell equations to describe the geometrically nonlinear structure. The clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions and the circumferential continuity condition exactly. The fluid is assumed to be incompressible and inviscid, and the fluid-structure interaction is described by linear potential flow theory. The partial differential equation of motion is discretized using the Galerkin method and the final set of ordinary differential equations are integrated numerically using a pseudo-arclength continuation and collocation techniques and the Gear backward differentiation formula. A theoretical model for shells with simply supported ends is presented as well. Experiments are also described for (i) elastomer shells subjected to annular (external) air-flow and (ii) aluminium and plastic shells with internal water flow. The experimental results along with the theoretical ones indicate loss of stability by divergence with a subcritical nonlinear behaviour. Finally, theory and experiments are compared, showing good qualitative and reasonable quantitative agreement.
Non-linear dynamic analysis of anisotropic cylindrical shells
Lakis, A.A.; Selmane, A.; Toledano, A.
1996-12-01
A theory to predict the influence of geometric non-linearities on the natural frequencies of an empty anisotropic cylindrical shell is presented in this paper. It is a hybrid of finite element and classical thin shell theories. Sanders-Koiter non-linear and strain-displacement relations are used. Displacement functions are evaluated using linearized equations of motion. Modal coefficients are then obtained for these displacement functions. Expressions for the mass, linear and non-linear stiffness matrices are derived through the finite element method. The uncoupled equations are solved with the help of elliptic functions. The period and frequency variations are first determined as a function of shell amplitudes and then compared with the results in the literature.
NASA Astrophysics Data System (ADS)
Amabili, M.
2014-03-01
Bich and Xuan Nguyen [1] studied nonlinear free and forced vibrations of FG shells under pre-load compression at constant temperature. Based on Donnell's shell theory and neglecting in-plane inertia, they employed a single-mode Galerkin approximation to discretize the transverse displacement. An averaging method was used to obtain the backbone curves while a Runge-Kutta scheme was utilized to obtain the frequency-response curves.
The Destructive High Pressure Tests of Cylindrical Shells
Yasumi Kitajima; Satoru Shibata
2002-07-01
We conducted the limit state tests of cylindrical shells to establish criteria for the occurrence of steel wall/liner tearing in the reactor containment vessels (such as Steel Containment Vessels (SCV), Prestressed Concrete Containment Vessels (PCCV) and Reinforced Concrete Containment Vessels (RCCV)) under the limit state pressure. In the tests, precisely manufactured cylindrical shell vessels (about 800 mm in height and 300 mm in diameter) were pressurized to the failure using water. We also conducted the finite element analyses. The conclusions are as follows: 1. We obtained good agreement (within 2-3%) between the tests and the analyses in structural behavior such as internal pressure loading vs. displacement and strain to the failure. However, in the case of the test piece which included weld line on the cylindrical wall, the difference between the tests and the analyses was larger (about 1.5 times) than the rest. 2. The localized strains began to increase when radial strains in general structure reached 5-10%. We are intended to apply these results to the finite element analyses and the integrity evaluation of containment vessels (SCV, PCCV and RCCV). (authors)
Explosion-Induced Implosions of Cylindrical Shell Structures
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Duncan, J. H.
2010-11-01
An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P∞=αPc, where Pc is the natural implosion pressure of the model and α is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.
An Experimental Investigation of the Implosion of Cylindrical Shell Structures
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Wilkerling, J.; Duncan, J. H.
2009-11-01
An experimental study of the physics of the implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and the implosions occur when the water pressure is raised above the shell buckling stability limit. High-speed photography (27,000 fps) was used to observe and measure the motion of the structure during its implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 13 positions in the tank. The cylindrical models are made from various aluminum alloys (diameter D = 39.1 mm, wall thickness t = 0.89 mm) and brass (D = 16.7 to 25.4 mm, t = 0.33 to 0.36 mm). The ends of the tubes were sealed with Aluminum caps. The pressure records are interpreted in light of the high-speed movies. Cylinder length-to-diameter (L/D) ratios between 6 and 10 were examined; in this range the cylinders implode in a mode 2 cross-sectional shape at pressures between 6.9 and 28.7 bar. It is found that the pressure versus time records from sensors placed at the same dimensionless radial position (r/D) from the cylinder surface scale well with time and pressure scales from cavitation bubble collapse theory.
A cylindrical shell with an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1983-01-01
The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system to five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented. Previously annunced in STAR as N83-16783
Preliminary analysis techniques for ring and stringer stiffened cylindrical shells
NASA Technical Reports Server (NTRS)
Graham, J.
1993-01-01
This report outlines methods of analysis for the buckling of thin-walled circumferentially and longitudinally stiffened cylindrical shells. Methods of analysis for the various failure modes are presented in one cohesive package. Where applicable, more than one method of analysis for a failure mode is presented along with standard practices. The results of this report are primarily intended for use in launch vehicle design in the elastic range. A Microsoft Excel worksheet with accompanying macros has been developed to automate the analysis procedures.
Transverse shear effect in a circumferentially cracked cylindrical shell
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1979-01-01
The objectives of the paper are to solve the problem of a circumferentially-cracked cylindrical shell by taking into account the effect of transverse shear, and to obtain the stress intensity factors for the bending moment as well as the membrane force as the external load. The formulation of the problem is given for a specially orthotropic material within the framework of a linearized shallow shell theory. The particular theory used permits the consideration of all five boundary conditions as to moment and stress resultants on the crack surface. The effect of Poisson's ratio on the stress intensity factors and the nature of the out-of-plane displacement along the edges of the crack, i.e., bulging, are also studied.
Flow-induced vibration of circular cylindrical structures
Chen, S.S.
1985-06-01
This report summarizes the flow-induced vibration of circular cylinders in quiescent fluid, axial flow, and crossflow, and applications of the analytical methods and experimental data in design evaluation of various system components consisting of circular cylinders. 219 figs., 30 tabs. (JDB)
Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2012-01-01
Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2014-01-01
Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.
NASA Astrophysics Data System (ADS)
Talebitooti, R.; Daneshjou, K.; Kornokar, M.
2016-02-01
This paper proposes an extension of the full method to investigate sound transmission through poroelastic cylindrical shell. The "extended full method" is presented based on Biot theory with considering the 3-D wave propagation in a cylindrical shell. Contrary to previous methods, it could be applicable for both poroelastic cylindrical shells and double-walled cylindrical shells lined with poroelastic materials with an excellent accuracy. In the extended full method, the well-known Helmholtz decomposition is used to obtain the displacement fields, solid stresses and the fluid pressure. In order to verify the results of the poroelastic cylindrical shell the porosity goes into zero with eliminating the fluid phase of the poroelastic material. Thus, the results are compared with those of TLs for isotropic shell with high accuracy. The results also indicate that enhancing the porosity of the poroelastic cylindrical shells efficiently leads into decreasing the TL. It is also designated that with doubling the thickness of the poroelastic shell, the TL is improved about 6 dB in a broad-band frequency. Also, the present method is investigated for the case of a double-walled cylindrical shell composed of isotropic skins and poroelastic core. The first-order shear deformation theory is applied to modeling the isotropic shells. The results indicate that presented method is more accurate than simplified method, particularly in the case of small radius cylindrical shells. Moreover, the results indicate that with increasing the radius of the shell, the double-walled cylindrical shell behaves in a same trend as a double-walled flat plate.
A note on the interference of two collinear cracks in a cylindrical shell
NASA Technical Reports Server (NTRS)
Erdogan, F.; Ratwani, M.
1973-01-01
A stress analysis of a pressurized shallow cylindrical shell containing two collinear axial cracks of equal length was conducted. The mathematical relationships for conducting the stress analysis are developed. Graphs are presented to show the stress intensity factor ratio in the cylindrical shell and the bending components of the stress intensity factor ratio.
Flow-induced vibration of circular cylindrical structures
Chen, S.S.
1987-01-01
This book presents the flow-induced vibration of circular cylinders in quiescent fluid, axial flow, and crossflow, and applications of the analytical methods and experimental data in design evaluation of various system components consisting of circular cylinders. The information is organized into five general topical areas: Introduction: Chapter 1 presents an overview of flow-induced vibration of circular cylinders. It includes examples of flow-induced vibration, various fluid force components, and nondimensional parameters as well as different excitation mechanisms. The general principles are applicable under different flow conditions. Quiescent Fluid: Fluid inertia and fluid damping are discussed in Chapters 2, 3 and 4. Various flow theories are applied in different situations. Axial Flow: Axial flow can cause subcritical vibration and instability. Chapter 5 summarizes the results for internal flow, while Chapter 6 considers external flow. Both theoretical results and experimental data are examined. Crossflow: Different excitation mechanisms can be dominant in different conditions for crossflow. Those include turbulent buffeting, acoustic resonance, vortex excitation, and dynamic instability. Design Considerations: Applications of the general methods of analysis in the design evaluation of system components are described and various techniques to avoid detrimental vibration are presented.
Stress Analysis of Composite Cylindrical Shells With an Elliptical Cutout
NASA Technical Reports Server (NTRS)
Nemeth, M. P.; Oterkus, E.; Madenci, E.
2005-01-01
A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.
Stress Analysis of Composite Cylindrical Shells with an Elliptical Cutout
NASA Technical Reports Server (NTRS)
Oterkus, E.; Madenci, E.; Nemeth, M. P.
2007-01-01
A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; non-uniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.
NASA Astrophysics Data System (ADS)
Amabili, M.; Sarkar, A.; Païdoussis, M. P.
2003-09-01
The nonlinear (large-amplitude) response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of some of their lowest natural frequencies is investigated. The shell is assumed to be completely filled with an incompressible and inviscid fluid at rest. Donnell's nonlinear shallow-shell theory is used, and the solution is obtained by the Galerkin method. The proper orthogonal decomposition (POD) method is used to extract proper orthogonal modes that describe the system behaviour from time-series response data. These time series have been obtained via the conventional Galerkin approach (using normal modes as a projection basis) with an accurate model involving 16 degrees of freedom, validated in previous studies. The POD method, in conjunction with the Galerkin approach, permits a lower-dimensional model as compared to those obtainable via the conventional Galerkin approach. Different proper orthogonal modes computed from time series at different excitation frequencies are used and solutions are compared. Some of these sets of modes are capable of describing the system behaviour over the whole frequency range around the fundamental resonance with good accuracy and with only 3 degrees of freedom. They allow a drastic reduction in the computational effort, as compared to using the 16 degree-of-freedom model necessary when the conventional Galerkin approach is used.
Efficient method for analyzing multiple circular cylindrical nanoparticles on a substrate
NASA Astrophysics Data System (ADS)
Lu, Xun; Lu, Ya Yan
2016-05-01
Due to the existing nanofabrication techniques, many metallic or dielectric nanoparticles are cylindrical objects with top and bottom surfaces parallel to a substrate and side boundaries perpendicular to the substrate. In this paper, we develop a relatively simple and efficient semi-analytic method for analyzing the scattering of light by a set of circular cylindrical objects (of finite height) on a layered background. The method relies on expanding the field in one-dimensional modes in layered regions where the material properties change with one spatial variable only, to establish a linear system on the boundaries separating the layered regions. Although the ‘expansion coefficients’ are two-dimensional (2D) functions, they satisfy scalar 2D Helmholtz equations which have analytic solutions due to the special geometry. The method is used to analyze dielectric and metallic circular cylindrical nanoparticles on a substrate or in free space.
Effects of Stiffening and Mechanical Load on Thermal Buckling of Stiffened Cylindrical Shells
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Card, Michael F.
1995-01-01
A study of thermal buckling of stiffened cylindrical shells with the proportions of a preliminary supersonic transport fuselage design (1970) is presented. The buckling analysis is performed using an axisymmetric shell-of-revolution code, BOSOR4. The effects of combined mechanical (axial loading) and thermal loading (heated skins) are investigated. Results indicate that the location of longitudinal eccentric stiffening has a very large effect on the thermal buckling strength of longitudinally stiffened shells, and on longitudinally stiffened shells with rings.
Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading
NASA Astrophysics Data System (ADS)
Allahbakhsh, Hamidreza; Shariati, Mahmoud
2013-10-01
A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.
NASA Astrophysics Data System (ADS)
Qiu, Q.; Fang, Z. P.; Wan, H. C.; Zheng, L.
2013-07-01
Based on the Donnell assumptions and linear visco-elastic theory, the constitutive equations of the cylindrical shell with multilayer Passive Constrained Layer Damping (PCLD) treatments are described. The motion equations and boundary conditions are derived by Hamilton principle. After trigonometric series expansion and Laplace transform, the state vector is introduced and the dynamic equations in state space are established. The transfer function method is used to solve the state equation. The dynamic performance including the natural frequency, the loss factor and the frequency response of clamped-clamped multi-layer PCLD cylindrical shell is obtained. The results show that multi-layer PCLD cylindrical shell is more effective than the traditional three-layer PCLD cylindrical shell in suppressing vibration and noise if the same amount of material is applied. It demonstrates a potential application of multi-layer PCLD treatments in many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2013-01-01
In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water. PMID:23389344
Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.
Yu, Tai-Ho
2015-09-01
This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. PMID:26074457
The vector potential of a circular cylindrical antenna in terms of a toroidal harmonic expansion
NASA Astrophysics Data System (ADS)
Selvaggi, Jerry; Salon, Sheppard; Chari, M. V. K.
2008-08-01
A toroidal harmonic expansion is developed which is used to represent the vector potential due to a circular cylindrical antenna with a rectangular cross section at any arbitrary point in space. The singular part of the antenna kernel is represented by an associated toroidal harmonic expansion and the analytic part of the kernel is represented by a binomial expansion. A simple example is given to illustrate the application of the toroidal expansion.
NASA Technical Reports Server (NTRS)
Koval, L. R.
1980-01-01
In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a finite cylindrical shell stiffened by stringers and ring frames. The rings and stringers are modeled as discrete structural elements. The numerical case studied was typical of a narrow-bodied jet transport fuselage. The numerical results show that the ring-frequency dip in the transmission loss curve that is present for a monocoque shell is still present in the case of a stiffened shell. The ring frequency effect is a result of the cylindrical geometry of the shell. Below the ring frequency, stiffening does not appear to have any significant effect on transmission loss, but above the ring frequency, stiffeners can enhance the transmission loss of a cylindrical shell.
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2004-01-01
The results of an experimental and numerical study of the effects of initial imperfections on the buckling response and failure of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have six different orthotropic or quasi-isotropic shell-wall laminates and two different shell-radius-to-thickness ratios. The numerical results include the effects of geometric shell-wall mid-surface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform end loads, and the effects of elastic boundary conditions. Selected cylinder parameter uncertainties were also considered. Results that illustrate the effects of imperfections and uncertainties on the nonlinear response characteristics, buckling loads and failure the shells are presented. In addition, a common failure analysis is used to predict material failures in the shells.
NASA Astrophysics Data System (ADS)
Lai, Changliang; Wang, Junbiao; Liu, Chuang
2014-10-01
Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.
NASA Astrophysics Data System (ADS)
Torki, Mohammad Ebrahim; Kazemi, Mohammad Taghi; Mahmoudkhani, Saied
2012-12-01
The effect of length and thickness on dynamic stability analysis of cantilever cylindrical shells under follower forces is addressed. Beck's, Leipholz's, and Hauger's problems were solved for cylindrical shells with different length-to-radius and thicknesses-to-radius ratios using the Galerkin method. First-order shear theory was used, and rotary inertias were considered in deriving the differential equations. Critical circumferential and longitudinal mode numbers and loads were evaluated for each case. Diagrams containing nondimensional load parameters vs. length and thickness parameters were plotted for each problem. For some shells with small length-to-radius ratios, flutter occurred in high longitudinal mode numbers where the first-order shear theory may not suffice to accurately evaluate the deformations. However, for long and moderately thick shells, there are ranges in which the shell can be analyzed using the simplified equivalent beam model.
The implosion of cylindrical shell structures in a high-pressure water environment
Ikeda, C. M.; Wilkerling, J.; Duncan, J. H.
2013-01-01
The implosion of cylindrical shell structures in a high-pressure water environment is studied experimentally. The shell structures are made from thin-walled aluminium and brass tubes with circular cross sections and internal clearance-fit aluminium end caps. The structures are filled with air at atmospheric pressure. The implosions are created in a high-pressure tank with a nominal internal diameter of 1.77 m by raising the ambient water pressure slowly to a value, Pc, just above the elastic stability limit of each shell structure. The implosion events are photographed with a high-speed digital movie camera, and the pressure waves are measured simultaneously with an array of underwater blast sensors. For the models with larger values of length-to-diameter ratio, L/D0, the tubes flatten during implosion with a two-lobe (mode 2) cross-sectional shape. In these cases, it is found that the pressure wave records scale primarily with Pc and the time scale (where Ri is the internal radius of the tube and ρ is the density of water), whereas the details of the structural design produce only secondary effects. In cases with smaller values of L/D0, the models implode with higher-mode cross-sectional shapes. Pressure signals are compared for various mode-number implosions of models with the same available energy, PcV , where V is the internal air-filled volume of the model. It is found that the pressure records scale well temporally with the time scale , but that the shape and amplitudes of the pressure records are strongly affected by the mode number. PMID:24353473
The implosion of cylindrical shell structures in a high-pressure water environment.
Ikeda, C M; Wilkerling, J; Duncan, J H
2013-12-01
The implosion of cylindrical shell structures in a high-pressure water environment is studied experimentally. The shell structures are made from thin-walled aluminium and brass tubes with circular cross sections and internal clearance-fit aluminium end caps. The structures are filled with air at atmospheric pressure. The implosions are created in a high-pressure tank with a nominal internal diameter of 1.77 m by raising the ambient water pressure slowly to a value, P c, just above the elastic stability limit of each shell structure. The implosion events are photographed with a high-speed digital movie camera, and the pressure waves are measured simultaneously with an array of underwater blast sensors. For the models with larger values of length-to-diameter ratio, L/D 0, the tubes flatten during implosion with a two-lobe (mode 2) cross-sectional shape. In these cases, it is found that the pressure wave records scale primarily with P c and the time scale [Formula: see text] (where R i is the internal radius of the tube and ρ is the density of water), whereas the details of the structural design produce only secondary effects. In cases with smaller values of L/D 0, the models implode with higher-mode cross-sectional shapes. Pressure signals are compared for various mode-number implosions of models with the same available energy, P c V , where V is the internal air-filled volume of the model. It is found that the pressure records scale well temporally with the time scale [Formula: see text], but that the shape and amplitudes of the pressure records are strongly affected by the mode number. PMID:24353473
A cylindrical shell with an axial crack under skew-symmetric loading.
NASA Technical Reports Server (NTRS)
Yuceoglu, U.; Erdogan, F.
1973-01-01
The skew-symmetric problem for a cylindrical shell containing an axial crack is considered. It is assumed that the material has a special orthotropy - namely, that the shear modulus may be evaluated from the measured Young's moduli and Poisson ratios and is not an independent material constant. The problem is solved within the confines of an eighth-order linearized shallow shell theory. As numerical examples, the torsion of an isotropic cylinder and that of a specially orthotropic cylinder (titanium) are considered. The membrane and bending components of the stress intensity factor are calculated and are given as functions of a dimensionless shell parameter. In the torsion problem for the axially cracked cylinder the bending effects appear to be much more significant than that found for the circumferentially cracked cylindrical shell. Also, as the shell parameter increases, unlike the results found in the pressurized shell, the bending stresses around crack ends do not change sign.
A Simplified Method of Elastic-Stability Analysis for Thin Cylindrical Shells
NASA Technical Reports Server (NTRS)
Batdorf, S B
1947-01-01
This paper develops a new method for determining the buckling stresses of cylindrical shells under various loading conditions. In part I, the equation for the equilibrium of cylindrical shells introduced by Donnell in NACA report no. 479 to find the critical stresses of cylinders in torsion is applied to find critical stresses for cylinders with simply supported edges under other loading conditions. In part II, a modified form of Donnell's equation for the equilibrium of thin cylindrical shells is derived which is equivalent to Donnell's equation but has certain advantages in physical interpretation and in ease of solution, particularly in the case of shells having clamped edges. The question of implicit boundary conditions is also considered.
Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2009-01-01
Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.
A Circular-cylindrical Flux-rope Analytical Model for Magnetic Clouds
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Linton, M. G.; Hidalgo, M. A.; Vourlidas, A.; Savani, N. P.; Szabo, A.; Farrugia, C.; Yu, W.
2016-05-01
We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.
NASA Astrophysics Data System (ADS)
Paranin, Vyacheslav D.; Karpeev, Sergey V.; Kazanskiy, Nikolay L.; Krasnov, Andrey P.
2016-03-01
The optical system for converting laser beams with circular polarization to cylindrical vector beams on the basis of anisotropic crystals has been developed. The experimental research of beam formation quality has been carried out on the both polarization and structural characteristics. The research showed differences in the formation of the azimuthal and radial polarizations for Gaussian modes and Bessel beams. The boundaries of changes of the optical system parameters to form different types of polarizations with different amplitude and phase distributions have been identified.
Ray-based modeling of reverberation in subsurface circular cylindrical void
NASA Astrophysics Data System (ADS)
Chen, Ping; Xia, Dan; Chen, Boyuan; Li, Lin; Li, Xiuzhong; Dong, Tian-lin
2011-03-01
Ray representation of electromagnetic resonance (reverberation) mode in subsurface circular cylindrical dielectric resonator (including void) is proposed. The modal ray path must be regular polygon or polystar. Travel time formulas for fundamental resonance multiples and the detecting conditions for non-exact-backscattering rays are derived. Simulation of time-distance curves of a modal hollow concrete block is generally concurred to the measured ground penetrating radar signal pattern. The proposed modeling method can be generalized to other resonant cavities with different profiles and provide a sound base for further applications of other more complicated geophysics science and engineering fields, particularly in ray-based tomography.
Swimming at low Reynolds number of a cylindrical body in a circular tube
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2010-11-01
Swimming at low Reynolds number of a cylindrical body due to wavelike surface displacement is studied for the situation where the fluid is confined to a circular tube. The body has infinite length and swims in the direction of the tube axis. The swimming speed and dissipation are calculated to second order in the surface displacement for four different strokes. Both speed and dissipation are affected significantly by the confinement. For a helical stroke the body achieves both a translational and a rotational swimming velocity.
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1981-01-01
An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.
Kelker, D.; Langenberg, C.W.
1988-08-01
A folded surface can be represented by the orientation of normals to the surface measured at several locations. When plotted on the unit sphere, the pattern of normals determines the type of fold. Poles from a cylindrical fold give a great circle on the unit sphere, whereas poles of a circular conical fold give a small circle, and poles from an elliptical conical fold give the projection of an ellipse onto the surface of the sphere. Several statistical tests that appear in the literature for classifying folds are discussed and compared. All but one of the tests use quantities obtained from an iterative least-squares procedure that fits the appropriate curve on the sphere. The classification procedure is illustrated with folds from the Canadian Rocky Mountains and uses for examples a cylindrical fold and a circular conical fold from the Smoky River coal field near Grande Cache, Alberta, and an elliptical conical fold near Jasper, Alberta. This methodology has resulted in new coal reserves in the Grande Cache area.
Circular-cylindrical flux-rope analytical model for Magnetic Clouds
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, Teresa; Linton, Mark; Hidalgo, Miguel A.; Vourlidas, Angelos; Savani, Neel P.; Szabo, Adam; Farrugia, Charlie; Yu, Wenyuan
2016-05-01
We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds ( MCs). The model extends the circular-cylindrical concept of Hidalgo et al. (2000) by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation.The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in-situ observations. Four Earth directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic fi eld and plasma in situ observations and with a new parameter (EPP, Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of theplasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical.
NASA Astrophysics Data System (ADS)
Kapuria, S.; Kumari, P.; Nath, J. K.
2009-07-01
An exact two-dimensional (2D) piezoelasticity solution is presented for free vibration and steady-state forced response of simply supported piezoelectric angle-ply laminated circular cylindrical panels in cylindrical bending under harmonic electromechanical load, with and without damping. The piezoelectric layers are polarized along radial direction to induce extension actuation/sensing mechanism. The variables are expanded layerwise in Fourier series to satisfy the boundary conditions at the simply supported ends. The governing equations get reduced to ordinary differential equations in thickness direction with variable coefficients and these are solved by the modified Frobenius method. The unknown coefficients of the solution are obtained using the transfer matrix method. Results for the natural frequency and its variation with ply angle and for steady-state response due to harmonic electromechanical excitation are presented for single layer piezoelectric panel, and hybrid multilayered inhomogeneous test, composite and sandwich panels. The numerical results presented in tabular form would serve as useful benchmark for assessing one-dimensional (1D) panel theories for free vibration and harmonic response of hybrid cylindrical panels.
Cylindrical acoustic levitator/concentrator having non-circular cross-section
Kaduchak, Gregory; Sinha, Dipen N.
2003-11-11
A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow piezoelectric crystal which has been formed with a cylindrical cross-section to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. By deforming the circular cross-section of the transducer, the acoustic force is concentrated along axial regions parallel to the axis of the transducer. The cylinder does not require accurate alignment of a resonant cavity. The concentrated regions of acoustic force cause particles in the fluid to concentrate within the regions of acoustic force for separation from the fluid.
The crack problem in a reinforced cylindrical shell
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1986-01-01
In this paper a partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z=0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.
The crack problem in a reinforced cylindrical shell
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1986-01-01
A partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z = 0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.
Equations of nonlinear dynamics of elastic shells in cylindrical Eulerian coordinates
NASA Astrophysics Data System (ADS)
Zubov, L. M.
2016-05-01
The equations of dynamics of elastic shells subjected to large deformations are formulated. The Eulerian coordinates on a circular cylinder and time are accepted as independent variables, and one of the unknown functions is the distance from a point of the shell surface to the cylinder axis. The equations of dynamics of nonlinearly elastic shells in the Eulerian coordinates are convenient for exact formulation of the problem on the interaction of strongly deformable shells with moving fluids and gases. The equations obtained can be used for dynamic calculations of fluids and gases flowings in pipelines, blood vessels, hoses, and other nonlinearly deformable thin-walled tubular elements of constructions.
Influence of transverse shear on an axial crack in a cylindrical shell
NASA Technical Reports Server (NTRS)
Krenk, S.
1977-01-01
An axial crack in a cylindrical shell is investigated by use of a 10th order shell theory, which accounts for transverse shear deformations as well as a special kind of orthotropy. The symmetric problem is formulated in terms of two coupled singular integral equations, which are solved numerically. The asymptotic membrane and bending stress fields ahead of the crack are found to be self similar. Stress intensity factors are given as a function of the shell parameter for various values of the ratio crack length to shell thickness. Considerable differences from 8th order shell theory results are found for the bending stresses, while the membrane stresses of the 8th order theory seems to be a lower limit reached for very thin shells.
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Young, Richard D.; Starnes, James H., Jr.
1999-01-01
Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or "bulging factors" that account for increased stresses due to curvature for longitudinal cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in graphs of the bulging factor as a function of the applied load and as a function of geometric parameters that include the shell radius, the shell thickness and the crack length. The computed bulging factors are compared with solutions based on linear shallow shell theory, and with semi-empirical solutions that approximately account for the nonlinear deformation in the vicinity of the crack. The effect of biaxial loads on the computed bulging factors is also discussed.
Influence of transverse shear on an axial crack in a cylindrical shell
NASA Technical Reports Server (NTRS)
Krenk, S.
1976-01-01
An axial crack in a cylindrical shell is investigated by use of a 10th order shell theory, which accounts for transverse shear deformations as well as a special kind of orthotropy. The symmetric problem is formulated in terms of two coupled singular integral equations, which are solved numerically. The asymptotic membrane and bending stress fields ahead of the crack are found to be self similar. Stress intensity factors are given as a function of the shell parameter for various values of the ratio crack length to shell thickness. considerable differences from 8th order shell theory results are found for the bending stresses, while the membrane stresses of the 8th order theory seem to be a lower limit reached for very thin shells.
Optimal design of geodesically stiffened composite cylindrical shells
NASA Technical Reports Server (NTRS)
Gendron, G.; Guerdal, Z.
1992-01-01
An optimization system based on the finite element code Computations Structural Mechanics (CSM) Testbed and the optimization program, Automated Design Synthesis (ADS), is described. The optimization system can be used to obtain minimum-weight designs of composite stiffened structures. Ply thickness, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells and shells stiffened by rings and stingers are also obtained. Trends in the design of geodesically stiffened shells are identified. An approach to include local stress concentrations during the design optimization process is then presented. The method is based on a global/local analysis technique. It employs spline interpolation functions to determine displacements and rotations from a global model which are used as 'boundary conditions' for the local model. The organization of the strategy in the context of an optimization process is described. The method is validated with an example.
Buckling Behavior of Compression-Loaded Composite Cylindrical Shells with Reinforced Cutouts
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2002-01-01
Results from a numerical study of the response of thin-wall compression-loaded quasi-isotropic laminated composite cylindrical shells with reinforced and unreinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A high-fidelity nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate how a compression-loaded shell with an unreinforced cutout can exhibit a complex nonlinear response. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, the addition of reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell, as expected. However, results are presented that show how certain reinforcement configurations can actually cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved response characteristics.
Buckling characteristic of multi-laminated composite elliptical cylindrical shells
NASA Astrophysics Data System (ADS)
Kassegne, Samuel Kinde; Chun, Kyoung-Sik
2015-03-01
Fiber-reinforced composite materials continue to experience increased adoption in aerospace, marine, automobile, and civil structures due to their high specific strength, high stiffness, and light weight. This increased use has been accompanied by applications involving non-traditional configurations such as compression members with elliptical cross-sections. To model such shapes, we develop and report an improved generalized shell element called 4EAS-FS through a combination of enhanced assumed strain and the substitute shear strain fields. A flat shell element has been developed by combining a membrane element with drilling degree-of-freedom and a plate bending element. We use the element developed to determine specifically buckling loads and mode shapes of composite laminates with elliptical cross-section including transverse shear deformations. The combined influence of shell geometry and elliptical cross-sectional parameters, fiber angle, and lay-up on the buckling loads of an elliptical cylinder is examined. It is hoped that the critical buckling loads and mode shapes presented here will serve as a benchmark for future investigations.
Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys
NASA Astrophysics Data System (ADS)
Asadi, H.; Akbarzadeh, A. H.; Chen, Z. T.; Aghdam, M. M.
2015-04-01
The present paper deals with the nonlinear thermal instability of geometrically imperfect sandwich cylindrical shells under uniform heating. The sandwich shells are made of a shape memory alloy (SMA)-fiber-reinforced composite and functionally graded (FG) face sheets (FG/SMA/FG). The Brinson phenomenological model is used to express the constitutive characteristics of SMA fibers. The governing equations are established within the framework of the third-order shear deformation shell theory by taking into account the von Karman geometrical nonlinearity and initial imperfection. The material properties of constituents are assumed to be temperature dependent. The Galerkin technique is utilized to derive expressions of the bifurcation points and bifurcation paths of the sandwich cylindrical shells. Using the developed closed-form solutions, extensive numerical results are presented to provide an insight into the influence of the SMA fiber volume fraction, SMA pre-strain, core thickness, non-homogeneity index, geometrical imperfection, geometry parameters of sandwich shells and temperature dependency of materials on the stability of shells. The results reveal that proper application of SMA fibers postpones the thermal bifurcation point and dramatically decreases thermal post-buckling deflection. Moreover, the induced tensile recovery stress of SMA fibers could also stabilize the geometrically imperfect shells during the inverse martensite phase transformation.
Active structural acoustic control of a smart cylindrical shell using a virtual microphone
NASA Astrophysics Data System (ADS)
Loghmani, Ali; Danesh, Mohammad; Kwak, Moon K.; Keshmiri, Mehdi
2016-04-01
This paper investigates the active structural acoustic control of sound radiated from a smart cylindrical shell. The cylinder is equipped with piezoelectric sensors and actuators to estimate and control the sound pressure that radiates from the smart shell. This estimated pressure is referred to as a virtual microphone, and it can be used in control systems instead of actual microphones to attenuate noise due to structural vibrations. To this end, the dynamic model for the smart cylinder is derived using the extended Hamilton’s principle, the Sanders shell theory and the assumed mode method. The simplified Kirchhoff-Helmholtz integral estimates the far-field sound pressure radiating from the baffled cylindrical shell. A modified higher harmonic controller that can cope with a harmonic disturbance is designed and experimentally evaluated. The experimental tests were carried out on a baffled cylindrical aluminum shell in an anechoic chamber. The frequency response for the theoretical virtual microphone and the experimental actual microphone are in good agreement with each other, and the results show the effectiveness of the designed virtual microphone and controller in attenuating the radiated sound.
Free vibration of composite skewed cylindrical shell panel by finite element method
NASA Astrophysics Data System (ADS)
Haldar, Salil
2008-03-01
In this paper a composite triangular shallow shell element has been used for free vibration analysis of laminated composite skewed cylindrical shell panels. In the present element first-order shear deformation theory has been incorporated by taking transverse displacement and bending rotations as independent field variables. The interpolation function used to approximate transverse displacement is one order higher than for bending rotations. This has made the element free from locking in shear. Two types of mass lumping schemes have been recommended. In one of the mass lumping scheme the effect of rotary inertia has been incorporated in the element formulations. Free vibration of skewed composite cylindrical shell panels having different thickness to radius ratios ( h/R=0.01-0.2), length to radius ratios ( L/R), number of layers and fiber orientation angles have been analyzed following the shallow shell method. The results for few examples obtained in the present analysis have compared with the published results. Some new results of composite skewed cylindrical shell panels have been presented which are expected to be useful to future research in this direction.
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2000-01-01
Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.
NASA Astrophysics Data System (ADS)
Kim, Young-Wann
2015-12-01
The free vibration characteristics of fluid-filled functionally graded cylindrical shells buried partially in elastic foundations are investigated by an analytical method. The elastic foundation of partial axial and angular dimensions is represented by the Pasternak model. The motion of the shells is represented by the first-order shear deformation theory to account for rotary inertia and transverse shear strains. The functionally graded cylindrical shells are composed of stainless steel and silicon nitride. Material properties vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The governing equation is obtained using the Rayleigh-Ritz method and a variation approach. The fluid is described by the classical potential flow theory. Numerical examples are presented and compared with existing available results to validate the present method.
An explicit model of expanding cylindrical shells subjected to high explosive detonations
Martineau, R.L.; Prime, M.B.; Anderson, C.A.; Smith, F.W.
1999-04-01
A viscoplastic constitutive model was formulated to model the high strain-rate expansion of thin cylindrical shells subjected to internal explosive detonations. This model provides insight into the development of plastic instabilities, which occur on the surface of the shells prior to failure. The effects of shock heating and damage in the form of microvoid nucleation, growth, and coalescence were incorporated using the Johnson-Cook strength model with the Mie-Grueneisen equation of state and a modified Gurson yield surface. This model was implemented into ABAQUS/Explicit as a user material subroutine. A cylindrical copper shell was modeled using both axisymmetric and plane strain elements. The high explosive material inside of the cylinder was simulated using the high explosive burn model in ABAQUS/Explicit. Two experiments were conducted involving explosive-filled, copper cylinders and good agreement was obtained between the numerical results and experimental data.
NASA Astrophysics Data System (ADS)
Zhou, Jie; Bhaskar, Atul; Zhang, Xin
2015-11-01
This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.
Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.
Pavone, S C; Ettorre, M; Casaletti, M; Albani, M
2016-05-16
In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity. PMID:27409933
Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Mixing in Stratified Cylindrical Shells
Mikaelian, K O
2004-04-15
We study the linear stability of an arbitrary number N of cylindrical concentric shells undergoing a radial implosion or explosion.We derive the evolution equation for the perturbation {eta}{sub i} at interface i; it is coupled to the two adjacent interfaces via {eta}{sub i{+-}1}. For N=2, where there is only one interface, we verify Bell's conjecture as to the form of the evolution equation for arbitrary {rho}{sub 1} and {rho}{sub 2}, the fluid densities on either side of the interface. We obtain several analytic solutions for the N=2 and 3 cases. We discuss freeze-out, a phenomenon that can occur in all three geometries (planar, cylindrical, or spherical), and ''critical modes'' that are stable for any implosion or explosion history and occur only in cylindrical or spherical geometries. We present numerical simulations of possible gelatin-ring experiments illustrating perturbation feedthrough from one interface to another. We also develop a simple model for the evolution of turbulent mix in cylindrical geometry and define a geometrical factor G as the ratio h{sub cylindrical}/h{sub planar} between cylindrical and planar mixing layers. We find that G is a decreasing function of R/R{sub o}, implying that in our model h{sub cylindrical} evolves faster (slower) than h{sub planar} during an implosion (explosion).
Study of the vibration of bulkhead-stiffened cylindrical shells by laser-based methods
NASA Astrophysics Data System (ADS)
Zhu, Ninghui
The first part of this dissertation work deals with an experimental study of the vibration behavior of bulkhead stiffened cylindrical shells by using laser-based vibration measurement methods. Holographic interferometry and laser speckle photography are first demonstrated on revealing the dynamic behavior of a 22 ft long cylindrical shell. These methods are thereafter further explored to study the vibration characteristic of cylindrical shells with different stiffeners such as a full bulkhead or a partial bulkhead. Many experimentally obtained holograms and specklegrams reveal interesting features of the vibration of bulkhead stiffened cylindrical shells. The experimentally obtained results are compared with those obtained from a finite element model developed by General Dynamic Electric Boat Division, and the finite element model is generally validated. Mode localization theory is used to explain some interesting findings in experiments and the reason of some discrepancies between the finite element analysis and experiment results. The presence of irregularities in a weakly coupled structure such as a bulkhead-stiffened cylindrical shell is shown to be able to localize the modes of vibration and inhibit the propagation of vibration within the shell. A numerical simulation based on the finite element modal analysis indicates the validation of this explanation of the experimental findings. Thereafter, the eigensolutions of disordered, plate-stiffened cylindrical shell stiffened are derived by the use of receptance method. Numerical calculations are thereafter performed based upon this model and indeed reveal the exist of localized vibration in this kind of structure. This analytical study provides physical insights into the mode localization phenomenon in stiffened cylindrical shell type of structures from a more systematic manner. The conditions and the effect of mode localization on natural frequencies and mode shapes of cylindrical shell structure are also
Scattering of cylindrical electric field waves from an elliptical dielectric cylindrical shell
NASA Astrophysics Data System (ADS)
Urbanik, E. A.
1982-12-01
This thesis examines the scattering of cylindrical waves by large dielectric scatterers of elliptic cross section. The solution method was the method of moments using a Galerkin approach. Sinusoidal basis and testing functions were used resulting in a higher convergence rate. The higher rate of convergence made it possible for the program to run on the Aeronautical Systems Division's CYBER computers without any special storage methods. This report includes discussion on moment methods, solution of integral equations, and the relationship between the electric field and the source region or self cell singularity. Since the program produced unacceptable run times, no results are contained herein. The importance of this work is the evaluation of the practicality of moment methods using standard techniques. The long run times for a mid-sized scatterer demonstrate the impracticality of moment methods for dielectrics using standard techniques.
Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Sarnes, James H., Jr.
2004-01-01
Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The results indicate that a local buckling response occurs in the shell near the cutout when subjected to load and is caused by a nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell is shown to retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.
Effectiveness of the magnetostatic shielding by the cylindrical shells
NASA Astrophysics Data System (ADS)
Grabchikov, S. S.; Trukhanov, A. V.; Trukhanov, S. V.; Kazakevich, I. S.; Solobay, A. A.; Erofeenko, V. T.; Vasilenkov, N. A.; Volkova, O. S.; Shakin, A.
2016-01-01
The experimental research of the magnetostatic shielding effectiveness and the analytical calculations of the average magnetic permeability of single-layer cylindrical sample of the shields based on electrolytically deposited Ni80Fe20 alloy are carried out. The locations of maxima on the Ef(H) and μ(H) curves do not match each other, which is difficult to interpret in terms of the shunting model. The results are explained by the non-linear distribution of the magnetic permeability through the thickness of the shield. It has been shown that in the magnetic fields range from 100 A/m up to 2700 A/m, the shields based on the Ni80Fe20 alloy are preferred over ones based on the 84KHSR amorphous ribbon. It is concluded that at the selection of shield materials it should take into account not only the main magnetic characteristics - μ; Hs; Hc but also Hmax parameter, which is important to evaluate the effectiveness of magnetic shielding.
Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery
NASA Astrophysics Data System (ADS)
Zhang, Xiaowei; Wierzbicki, Tomasz
2015-04-01
Most of the literature on lithium-ion battery cells is concerned with modeling of jellyroll with little attention to properties of shell casing. However, shell casing provides substantial strength and fracture resistance under mechanical loading and therefore must be an important part of modeling of lithium-ion batteries. The paper reports on a comprehensive test program on commercially available empty shell casing of 18650 lithium-ion cylindrical cells. Part of the tests was used to determine plastic and fracture properties from sub-size specimens cut from lateral part of the cans. The other part served to validate plasticity and fracture models under various loading conditions. The associated flow rule was used to simulate plasticity behavior and Modified Mohr-Coulomb (MMC) fracture model was adopted to predict crack initiation and propagation of shell casing. Simulation results confirmed that present plasticity and fracture models could predict global plastic behavior of the cells under different loading conditions. The jellyroll model with volumetric hardening was introduced to compare the performance of empty shell casing, bare jellyroll and complete battery cell. It was shown that in many loading situations, for example, three point bending of the cylindrical cells, the metallic shell casing provides most of mechanical resistance.
Modal analysis of thin cylindrical shells with cardboard liners and estimation of loss factors
NASA Astrophysics Data System (ADS)
Koruk, Hasan; Dreyer, Jason T.; Singh, Rajendra
2014-04-01
Cardboard liners are often installed within automotive drive shafts to reduce radiated noise over a certain frequency range. However, the precise mechanisms that yield noise attenuation are not well understood. To overcome this void, a thin shell (under free boundaries) with different cardboard liner thicknesses is examined using analytical, computational and experimental methods. First, an experimental procedure is introduced to determine the modal behavior of a cylindrical shell with a cardboard liner. Then, acoustic and vibration frequency response functions are measured in acoustic free field, and natural frequencies and the loss factors of structures are determined. The adverse effects caused by closely spaced modes during the identification of modal loss factors are minimized, and variations in measured natural frequencies and loss factors are explored. Material properties of a cardboard liner are also determined using an elastic plate treated with a thin liner. Finally, the natural frequencies and modal loss factors of a cylindrical shell with cardboard liners are estimated using analytical and computational methods, and the sources of damping mechanisms are identified. The proposed procedure can be effectively used to model a damped cylindrical shell (with a cardboard liner) to predict its vibro-acoustic response.
Flutter of a sandwich cylindrical shell supported with annular ribs and loaded with axial forces
NASA Astrophysics Data System (ADS)
Bakulin, V. N.; Volkov, E. N.; Nedbaj, A. Ya.
2015-08-01
The supersonic flutter of a sandwich cylindrical shell supported from within with annular ribs and loaded with axial forces on the end faces is investigated. The shell motion is described by the equations of the theory of sandwich orthotropic shells. The solution of the equations is sought as a trigonometric series with respect to the axial coordinate. With the help of the Bubnov—Galerkin method, this problem is reduced to the set of algebraic equations for the analysis of the stability of which one uses the Routh—Hurwits criterion. By a numerical example, the effect of the number and the heights of the ribs on the critical velocity of the flow around the shell is shown.
Buckling and Failure of Compression-loaded Composite Cylindrical Shells with Reinforced Cutouts
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Nemeth, Michael P.
2005-01-01
Results from a numerical and experimental study that illustrate the effects of selected cutout reinforcement configurations on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of reinforcement size, thickness, and orthotropy on the overall response of compression-loaded shells are described. In general, reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response and material failure near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause a significant increase in the local interlaminar failures that can accumulate near the free edges of a cutout during a local buckling event.
Elastic-plastic fracture of cylindrical shells containing a part-through circumferential crack
Ezzat, H.; Erdogan, F.
1982-11-01
The problem of fatigue crack propagation and ductile fracture of a cylindrical shell containing a macroscopic circumferential flaw is considered. The main interest in the study is in applications to line pipes and other cylindrical containers under secondary axial stresses in addition to the primary stresses coming from the internal pressure. The stress intensity factor for the part-through crack used in analyzing and correlating the fatigue crack propagation rate is obtained by using a line spring model in conjunction with Reissner's shell theory. To analyze the ductile fracture instability and to correlate the experimental and theoretical results, the crack mouth opening displacement is used as the parameter. The limited data on fatigue crack propagation give the expected result, namely that the crack propagation rate in pipes may be predicted from the fatigue results performed on simpler geometries provided the stress intensity factors in pipes are calculated with sufficient accuracy. 14 references.
Optical trapping of core-shell magnetic microparticles by cylindrical vector beams
Zhong, Min-Cheng; Gong, Lei; Li, Di; Zhou, Jin-Hua; Wang, Zi-Qiang; Li, Yin-Mei
2014-11-03
Optical trapping of core-shell magnetic microparticles is experimentally demonstrated by using cylindrical vector beams. Second, we investigate the optical trapping efficiencies. The results show that radially and azimuthally polarized beams exhibit higher axial trapping efficiencies than the Gaussian beam. Finally, a trapped particle is manipulated to kill a cancer cell. The results make possible utilizing magnetic particles for optical manipulation, which is an important advantage for magnetic particles as labeling agent in targeted medicine and biological analysis.
Thernisien, A.
2011-06-01
The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.
NASA Astrophysics Data System (ADS)
Thernisien, A.
2011-06-01
The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.
NASA Astrophysics Data System (ADS)
Gonçalves, P. B.; Silva, F. M. A.; Del Prado, Z. J. G. N.
2008-08-01
In formulating mathematical models for dynamical systems, obtaining a high degree of qualitative correctness (i.e. predictive capability) may not be the only objective. The model must be useful for its intended application, and models of reduced complexity are attractive in many cases where time-consuming numerical procedures are required. This paper discusses the derivation of discrete low-dimensional models for the nonlinear vibration analysis of thin cylindrical shells. In order to understand the peculiarities inherent to this class of structural problems, the nonlinear vibrations and dynamic stability of a circular cylindrical shell subjected to static and dynamic loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly nonlinear behavior under both static and dynamic loads. Geometric nonlinearities due to finite-amplitude shell motions are considered by using Donnell's nonlinear shallow-shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the nonlinear vibration modes and the discretized equations of motion are obtained by the Galerkin method using modal expansions for the displacements that satisfy all the relevant boundary and symmetry conditions. Next, the model is analyzed via the Karhunen-Loève expansion to investigate the relative importance of each mode obtained by the perturbation solution on the nonlinear response and total energy of the system. The responses of several low-dimensional models are compared. It is shown that rather low-dimensional but properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.
España, Aubrey L; Williams, Kevin L; Plotnick, Daniel S; Marston, Philip L
2014-07-01
Understanding the physics governing the interaction of sound with targets in an underwater environment is essential to improving existing target detection and classification algorithms. To illustrate techniques for identifying the key physics, an examination is made of the acoustic scattering from a water-filled cylindrical shell. Experiments were conducted that measured the acoustic scattering from a water-filled cylindrical shell in the free field, as well as proud on a sand-water interface. Two modeling techniques are employed to examine these acoustic scattering measurements. The first is a hybrid 2-D/3-D finite element (FE) model, whereby the scattering in close proximity to the target is handled via a 2-D axisymmetric FE model, and the subsequent 3-D propagation to the far field is determined via a Helmholtz integral. This model is characterized by the decomposition of the fluid pressure and its derivative in a series of azimuthal Fourier modes. The second is an analytical solution for an infinitely long cylindrical shell, coupled with a simple approximation that converts the results to an analogous finite length form function. Examining these model results on a mode-by-mode basis offers easy visualization of the mode dynamics and helps distinguish the different physics driving the target response. PMID:24993199
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2000-01-01
Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased crack-tip stresses due to curvature for longitudinal and circumferential cracks in unstiffened cylindrical shells subjected to combined loads are presented. Nondimensional parameters varied in the study include the shell curvature parameter, l , which is a function of the shell radius, the shell wall thickness, and the crack length; a pressure loading parameter, h , which is a function of the shell geometry, material properties and the applied internal pressure; and a biaxial loading parameter, c , which is the ratio of the farfield axial stress to the farfield circumferential stress. The major results are presented in the form of contour plots of the bulging factor as a function of these three nondimensional parameters. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant, and show the effect of the biaxial loads on the value of the bulging factor. Simple empirical expressions for the bulging factor are then derived from the numerical results and are shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks.
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.
1996-01-01
This paper examines sound transmission into two concentric cylindrical sandwich shells subject to turbulent flow on the exterior surface of the outer shell. The interior of the shells is filled with fluid medium and there is an airgap between the shells in the annular space. The description of the pressure field is based on the cross-spectral density formulation of Corcos, Maestrello, and Efimtsov models of the turbulent boundary layer. The classical thin shell theory and the first-order shear deformation theory are applied for the inner and outer shells, respectively. Modal expansion and the Galerkin approach are used to obtain closed-form solutions for the shell displacements and the radiation and transmission pressures in the cavities including both the annular space and the interior. The average spectral density of the structural responses and the transmitted interior pressures are expressed explicitly in terms of the summation of the cross-spectral density of generalized force induced by the boundary layer turbulence. The effects of acoustic and hydrodynamic coincidences on the spectral density are observed. Numerical examples are presented to illustrate the method for both subsonic and supersonic flows.
NASA Astrophysics Data System (ADS)
Mahadev, Sthanu
Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically
Extension, inflation and torsion of a residually stressed circular cylindrical tube
NASA Astrophysics Data System (ADS)
Merodio, José; Ogden, Ray W.
2016-03-01
In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress.
Convective heat transfer from circular cylinders located within perforated cylindrical shrouds
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Ash, R. L.
1986-01-01
The influence of perforated cylindrical shrouds on the convective heat transfer to circular cylinders in transverse flow has been studied experimentally. Geometries studied were similar to those used in industrial platinum resistance thermometers. The influence of Reynolds number, ventilation factor (ratio of the open area to the total surface area of shroud), radius ratio (ratio of shroud's inside radius to bare cylinder's radius), and shroud orientation with respect to flow were studied. The experiments showed that perforated shrouds with ventilation factors in the range 0.1 to 0.4 and radius ratios in the range 1.1 to 2.1 could enhance the convective heat transfer to bare cylinders up to 50%. The maximum enhancement occurred for a radius ratio of 1.4 and ventilation factors between 0.2 and 0.3. It was found that shroud orientation influenced the heat transfer, with maximum heat transfer generally occurring when the shroud's holes were centered on either side of the stagnation line. However, the hole orientation effect is of second order compared to the influence of ventilation factor and radius ratio.
Influence of an asymmetric ring on the modeling of an orthogonally stiffened cylindrical shell
NASA Technical Reports Server (NTRS)
Rastogi, Naveen; Johnson, Eric R.
1994-01-01
Structural models are examined for the influence of a ring with an asymmetrical cross section on the linear elastic response of an orthogonally stiffened cylindrical shell subjected to internal pressure. The first structural model employs classical theory for the shell and stiffeners. The second model employs transverse shear deformation theories for the shell and stringer and classical theory for the ring. Closed-end pressure vessel effects are included. Interacting line load intensities are computed in the stiffener-to-skin joints for an example problem having the dimensions of the fuselage of a large transport aircraft. Classical structural theory is found to exaggerate the asymmetric response compared to the transverse shear deformation theory.
Generalized asymptotic expansions for coupled wavenumbers in fluid-filled cylindrical shells
NASA Astrophysics Data System (ADS)
Kunte, M. V.; Sarkar, Abhijit; Sonti, Venkata R.
2010-12-01
Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order ( n). The shallow shell theory (which is more accurate at higher frequencies) is used to model the cylinder. Initially, the in vacuo shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high- and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter μ, we find solutions for the limiting cases of small and large μ. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases, Poisson's ratio ν is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory ( in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders ( n).
Sound scattering by free surface piercing and fluid-loaded cylindrical shells.
Avital, Eldad J; Miloh, Touvia
2011-07-28
A vertical flexible, thin, cylindrical shell is considered to be clamped to a rigid base in shallow water and piercing its surface. The shell is composed of an isotropic and homogeneous material and may be empty inside or filled with compressible fluid. Linear acoustics and structural dynamics are used to model sound scattering caused by an external incident sound wave. A solution is derived using a Fourier transform in the tangential and vertical directions. A collocation technique coupled with an orthogonalization procedure is used to account for the edge conditions of the shell. It is shown that zero sound scattering, indicating acoustic invisibility, is theoretically attainable and can be achieved when a continuous distribution of an oscillating pressure load is applied on the shell's wall. Similarly, zero sound transmission into the shell's inner fluid can also be considered. The possibility of using a pre-determined discrete distribution of the applied pressure load is also discussed. The derived equations are numerically solved to examine sound scattering by a thin aluminium shell in shallow water. PMID:21690137
Experiments and analysis on chaotic vibrations of a shallow cylindrical shell-panel
NASA Astrophysics Data System (ADS)
Nagai, K.; Maruyama, S.; Murata, T.; Yamaguchi, T.
2007-08-01
Detailed experimental results and analytical results are presented on chaotic vibrations of a shallow cylindrical shell-panel subjected to gravity and periodic excitation. The shallow shell-panel with square boundary is simply supported for deflection. In-plane displacement at the boundary is elastically constrained by in-plain springs. In the experiment, the cylindrical shallow shell-panel with thickness 0.24 mm, square form of length 140 mm and mean radius 5150 mm is used for the test specimen. All edges around the shell boundary are simply supported by adhesive flexible films. First, to find fundamental properties of the shell-panel, linear natural frequencies and characteristics of restoring force of the shell-panel are measured. These results are compared with the relevant analytical results. Then, geometrical parameters of the shell-panel are identified. Exciting the shell-panel with lateral periodic acceleration, nonlinear frequency responses of the shell-panel are obtained by sweeping the frequency of periodic acceleration. In typical ranges of the exciting frequency, predominant chaotic responses are generated. Time histories of the responses are recorded for inspection of the chaos. In the analysis, the Donnell equation with lateral inertia force is introduced. Assuming mode functions, the governing equation is reduced to a set of nonlinear ordinary differential equations by the Galerkin procedure. Periodic responses are calculated by the harmonic balance method. Chaotic responses are integrated numerically by the Runge-Kutta-Gill method. The chaotic responses, which are obtained by the experiment and the analysis, are inspected with the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov dimension. It is found that the dominant chaotic responses of the shell-panel are generated from the responses of the sub-harmonic resonance of {1}/{2} order and of the ultra-sub-harmonic resonance of {2}/{3} order. By the
Dranchenko, B.N.; Portnov, B.B.; Seleznev, A.V.; Danilova, T.N.; Komarova, S.N.; Ponomareva, V.K.
1994-06-01
Cylindrical shells with regular perforation are widely used in power generating equipment and in particular in collectors 1 of the circuit of steam generators of power generating installations with water-water reactors (WWPR) The state of stress of collectors is determined by a broad spectrum of technological and operational loads, it is therefore difficult to analyze it theoretically. The aim of the present work is the experimental investigation of stresses in the cylindrical shells of collectors subjected to internal pressure, the generalization and systematization of empirical data in the form of engineering formulas and nomographs. The investigations were carried out with photoelastic three-dimensional models with the use of {open_quotes}freezing{close_quotes}. The basic characteristics of the state of stress of perforated shells (in particular those used in calculations of the strength and life of collectors) are the values of the stress intensity factor K and of the stress intensification factor {gamma}{sub {bar {sigma}}}{sub me} of the mean integral stress level in the neck between neighboring holes. The presented data make it possible to establish quantitatively the regularities of change of K and {gamma}{sub {bar {sigma}}}{sub me} in dependence on the geometry of the perforated shells. These data were systematized according to a special program of multifactor regression analysis. It follows from the presented formulas and nomographs in particular that in the ranges of the geometry of the perforated shells K may change from 2.5 to 4.0, and {gamma}{sub {bar {sigma}}}{sub me} from 1.1 to 2.3. Therefore varied geometric parameters have a substantial effect on the load intensity of perforated shells, and that once again confirms how topical it is to obtain new experimental data, to generalize and systematize them.
NASA Astrophysics Data System (ADS)
Kapuria, S.; Kumar, Amit
2010-04-01
The work presents an analytical three-dimensional solution for simply supported angle-ply piezoelectric (hybrid) laminated cylindrical shells in cylindrical bending with interlaminar bonding imperfections, in an electro-thermomechanical loading environment. The jumps in displacements, electric potential and temperature at the imperfect interfaces are modeled using linear spring-layer model. The solution includes the case when, besides at inner and outer surfaces, electric potentials are prescribed at layer interfaces also for effective actuation/sensing. The entities for each layer are expanded in Fourier series in circumferential coordinate to satisfy the boundary conditions at the simply supported ends. The resulting ordinary differential equations in thickness coordinate with variable coefficients are solved by the modified Frobenius method. Numerical results are presented for hybrid composite and sandwich shells with varying imperfection compliance. The effect of location of imperfect interface on the response is studied for cross-ply panels while the effect of ply angle on the sensitivity towards imperfection is studied for angle-ply panels. The effect of weak bonding at actuator/sensor interface on the actuation/sensing authority is investigated. The presented results would also help assessing 2D shell theories that incorporate interlaminar bonding imperfections.
Vibration characteristics of thin rotating cylindrical shells with various boundary conditions
NASA Astrophysics Data System (ADS)
Sun, Shupeng; Chu, Shiming; Cao, Dengqing
2012-08-01
An analysis is presented for the vibration characteristics of thin rotating cylindrical shells with various boundary conditions by use of Fourier series expansion method. Based on Sanders' shell equations, the governing equations of motion which take into account the effects of centrifugal and Coriolis forces as well as the initial hoop tension due to rotating are derived. The displacement field is expressed as a product of Fourier series expressions which represents the axial modal displacements and trigonometric functions which represents the circumferential modal displacements. Stokes' transformation is employed to derive the derivatives of the Fourier series expressions. Then, through the process of formula derivation, an explicit expression of the exact frequency equation can be obtained for a thin rotating cylinder with classical boundary conditions of any type. Once the frequency equation has been determined, the frequencies are calculated numerically. To validate the present analysis, comparisons between the results of the present method and previous studies are performed and very good agreement is achieved. Finally, the method is applied to investigate the vibration characteristics of thin rotating cylindrical shells under various boundaries, and the results are presented.
NASA Astrophysics Data System (ADS)
Wang, Bin; Nie, Guo-Hua
2015-10-01
A theoretical model is proposed in this paper to predict the bi-stable states of initially stressed cylindrical shell structures attached by surface anisotropic piezoelectric layers. The condition for existence of bi-stability of the shell structural system is presented and analytical expressions for corresponding rolled-up radii of the stable shell are given based on the principle of minimum strain energy. The resulting solution indicates that the shell system may have two stable configurations besides its initial state under a combined action of the actuating electric field and initial stresses characterized by the bending moment. If the piezoelectric layer materials act as only sensor materials without the actuating electric field, initial stresses may produce the bi-stable states, but one corresponding to its initial state. For the shell without initial stresses, the magnitude in the actuating electric field determines the number of the stable states, one or two stable configurations besides the initial state. The theoretical prediction for the bi-stable states is verified by finite element method (FEM) simulation by using the ABAQUS code.
NASA Astrophysics Data System (ADS)
Torki, Mohammad Ebrahim; Kazemi, Mohammad Taghi; Reddy, Junuthula N.; Haddadpoud, Hassan; Mahmoudkhani, Saeid
2014-02-01
In this paper, flutter of functionally graded material (FGM) cylindrical shells under distributed axial follower forces is addressed. The first-order shear deformation theory is used to model the shell, and the material properties are assumed to be graded in the thickness direction according to a power law distribution using the properties of two base material phases. The solution is obtained by using the extended Galerkin's method, which accounts for the natural boundary conditions that are not satisfied by the assumed displacement functions. The effect of changing the concentrated (Beck's) follower force into the uniform (Leipholz's) and linear (Hauger's) distributed follower loads on the critical circumferential mode number and the minimum flutter load is investigated. As expected, the flutter load increases as the follower force changes from the so-called Beck's load into the so-called Leipholz's and Hauger's loadings. The increased flutter load was calculated for homogeneous shell with different mechanical properties, and it was found that the difference in elasticity moduli bears the most significant effect on the flutter load increase in short, thick shells. Also, for an FGM shell, the increase in the flutter load was calculated directly, and it was found that it can be derived from the simple power law when the corresponding increase for the two base phases are known.
Scalar Casimir densities induced by a cylindrical shell in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Saharian, A. A.; Manukyan, V. F.
2015-01-01
We evaluate the positive-frequency Wightman function, the vacuum expectation values (VEVs) of the field squared, and the energy-momentum tensor for a massive scalar field with general curvature coupling for a cylindrical shell in the background of de Sitter (dS) spacetime. The field is prepared in the Bunch-Davies vacuum state and on the shell, and the corresponding operator obeys the Robin boundary condition (BC). In the region inside the shell and for non-Neumann BC, the Bunch-Davies vacuum is a physically realizable state for all values of the mass and curvature coupling parameter. For both interior and exterior regions, the VEVs are decomposed into boundary-free dS and shell-induced parts. We show that the shell-induced part of the vacuum energy-momentum tensor has a nonzero off-diagonal component corresponding to the energy flux along the radial direction. Unlike in the case of a shell in Minkowski bulk, for the dS background, the axial stresses are not equal to the energy density. In dependence of the mass and the coefficient in the BC, the vacuum energy density and the energy flux can be either positive or negative. The influence of the background gravitational field on the boundary-induced effects is crucial at distances from the shell larger than the dS curvature scale. In particular, the decay of the VEVs with distance is power-law (monotonic or oscillatory with dependence of the mass) for both massless and massive fields. For the Neumann BC, the decay is faster than that for non-Neumann conditions.
A viscoplastic model of expanding cylindrical shells subjected to internal explosive detonations
Martineau, R.L.
1998-04-01
Magnetic flux compression generators rely on the expansion of thin ductile shells to generate magnetic fields. These thin shells are filled with high explosives, which when detonated, cause the shell to expand to over 200% strain at strain-rates on the order of 10{sup 4} s{sup {minus}1}. Experimental data indicate the development and growth of multiple plastic instabilities which appear in a quasi-periodic pattern on the surfaces of the shells. These quasi-periodic instabilities are connected by localized zones of intense shear that are oriented approximately 45{degree} from the outward radial direction. The quasi-periodic instabilities continue to develop and eventually become through-cracks, causing the shell to fragment. A viscoplastic constitutive model is formulated to model the high strain-rate expansion and provide insight into the development of plastic instabilities. The formulation of the viscoplastic constitutive model includes the effects of shock heating and damage in the form of microvoid nucleation, growth, and coalescence in the expanding shell. This model uses the Johnson-Cook strength model with the Mie-Grueneisen equation of state and a modified Gurson yield surface. The constitutive model includes the modifications proposed by Tvergaard and the plastic strain controlled nucleation introduced by Neeleman. The constitutive model is implemented as a user material subroutine into ABAQUS/Explicit, which is a commercially available nonlinear explicit dynamic finite element program. A cylindrical shell is modeled using both axisymmetric and plane strain elements. Two experiments were conducted involving plane wave detonated, explosively filled, copper cylinders. Instability, displacement, and velocity data were recorded using a fast framing camera and a Fabry-Perot interferometer. Good agreement is shown between the numerical results and experimental data. An additional explosively bulged cylinder experiment was also performed and a photomicrograph of
Steady-state temperature distribution in living tissue modeled as cylindrical shells.
NASA Technical Reports Server (NTRS)
Shitzer, A.; Chato, J. C.
1971-01-01
Closed form, analytical solutions to the problem of steady-state heat transfer in living tissue modeled as cylindrical shells are presented and discussed. These solutions are particularly useful for the study of temperature distributions in the extremities. Metabolic heat generation, conduction, and heat transported by the blood perfusing the tissue are considered in the model. The results demonstrate the important role that the blood stream plays in the transfer of heat inside living tissue. Solutions are also presented for the limiting cases of diminishing blood flow that would occur during vasoconstriction or occlusion of blood by external means.
On sound transmission into a thin cylindrical shell under 'flight conditions'
NASA Technical Reports Server (NTRS)
Koval, L. R.
1975-01-01
A mathematical model for sound transmission into a thin cylindrical shell is used to study sound transmission under flight conditions, i.e., under conditions of external air flow past a pressurized cylinder at flight altitude. Numerical results for different incidence angles are presented for a typical narrow-bodied jet in cruising flight at 10,660 m with interior pressure at 2440 m. A comparison is made between no-flow sound transmission at standard conditions on the ground to sound transmission under flight conditions. It is shown that at M = 0, the cylinder transmission loss (TL) has dips at the cylinder ring frequency (fR) and the critical frequency (fc) for a flat panel of same material and thickness as shell. Between fR and fc, cylinder TL follows a mass-law behavior. Flow provides a modest increase in TL in the mass-law region, and strongly interacts with the cylinder resonances below fR.
Ray and wave scattering in smoothly curved thin shell cylindrical ridges
NASA Astrophysics Data System (ADS)
Søndergaard, Niels; Chappell, David J.
2016-09-01
We propose wave and ray approaches for modelling mid- and high-frequency structural vibrations through smoothed joints on thin shell cylindrical ridges. The models both emerge from a simplified classical shell theory setting. The ray model is analysed via an appropriate phase-plane analysis, from which the fixed points can be interpreted in terms of the reflection and transmission properties. The corresponding full wave scattering model is studied using the finite difference method to investigate the scattering properties of an incident plane wave. Through both models we uncover the scattering properties of smoothed joints in the interesting mid-frequency region close to the ring frequency, where there is a qualitative change in the dynamics from anisotropic to simple geodesic propagation.
A simplified method of elastic-stability analysis for thin cylindrical shells I : Donnell's equation
NASA Technical Reports Server (NTRS)
Batdorf, S B
1947-01-01
The equation for the equilibrium of cylindrical shells introduced by Donnell in NACA Technical Report no. 479 to find the critical stresses of cylinders in torsion is applied to find critical stresses for cylinders with simply supported edges under other loading conditions. It is shown that by this method solutions may be obtained very easily and the results in each case may be expressed in terms of two nondimensional parameters, one dependent on the critical stress and the other essentially determined by the geometry of the cylinder. The influence of boundary conditions related to edge displacements in the shell median surface is discussed. The accuracy of the solutions found is established by comparing them with previous theoretical solutions and with test results. The solutions to a number of problems concerned with the buckling of cylinders with simply supported edges on the basis of a unified viewpoint are presented in a convenient form for practical use. (author)
Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge
NASA Astrophysics Data System (ADS)
Rubín de Celis, Emilio
2016-02-01
The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature {κ ^p}_q. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if {κ p}p=κ <0 (ordinary matter) and attracted toward the shell if κ >0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q=-κ r_e, with r_e the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q_{∓}^{wh}/q=-1/ (κ_{wh} r_{± }).
A cylindrical shell with a stress-free end which contains an axial part-through or through crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Yahsi, O. S.
1983-01-01
The interaction problem of a through or a part through crack with a stress free boundary in a semi-infinite cylindrical shell is considered. It is assumed that the crack lies in a meridional plane which is a plane of symmetry with respect to the external loads as well as the geometry. The circular boundary of the semi-infinite cylinder is assumed to be stress free. By using a transverse shear theory the problem is formulated in terms of a system of singular integral equations. The line spring model is used to treat the part through crack problem. In the case of a through crack the interaction between the perturbed stress fields due to the crack and the free boundary is quite strong and there is a considerable increase in the stress intensity factors caused by the interaction. On the other hand in the problem of a surface crack the interaction appears to be much weaker and consequently the magnification in the stress intensity factors is much less significant.
A cylindrical shell with a stress-free end which contains an axial part-through or through crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Yahsi, O. S.
1985-01-01
The interaction problem of a through or a part through crack with a stress free boundary in a semi-infinite cylindrical shell is considered. It is assumed that the crack lies in a meridional plane which is a plane of symmetry with respect to the external loads as well as the geometry. The circular boundary of the semi-infinite cylinder is assumed to be stress free. By using a transverse shear theory the problem is formulated in terms of a system of singular integral equations. The line spring model is used to treat the part through crack problem. In the case of a through crack the interaction between the perturbed stress fields due to the crack and the free boundary is quite strong and there is a considerable increase in the stress intensity factors caused by the interaction. On the other hand in the problem of a surface crack the interaction appears to be much weaker and consequently the magnification in the stress intensity factors is much less significant.
Steel, Robin; Fish, Peter J
2002-02-01
Flow phantoms used in medical ultrasound usually employ a plastic tube as a blood vessel mimic. These tubes often have acoustic properties differing significantly from the tissue and blood-mimicking media, which results in distortion of the acoustic pressure field within the tubes and, hence, of the Doppler flow spectra. Previous analyses of this problem have used some form of the infinite plate transmission coefficient, although at least one ray-based analysis has considered a cylindrical interface but with zero wall thickness. In this paper, we compare these approximate pressure fields with the exact solution for oblique incidence on a viscoelastic cylindrical shell at 5 MHz to find for which materials the plate approximation is valid. The shell has water both inside and outside, but it can be modified to use a different fluid inside and also to include absorption in either fluid. We find the plate approximation is reasonable for soft tubes such as the copolymer Cflex (Cole-Palmer, Niles, IL) but much less so for hard tubes such as polymethylmethacrylate (PMMA). PMID:11885684
Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
Rajabi, M; Hasheminejad, Seyyed M
2009-12-01
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established. PMID:19586650
NASA Astrophysics Data System (ADS)
Rajabi, Majid
2016-05-01
The method of wave function expansion is adopted to study the three dimensional scattering of a plane progressive harmonic acoustic wave incident upon an arbitrarily thick-walled helically filament-wound composite cylindrical shell submerged in and filled with compressible ideal fluids. An approximate laminate model in the context of the so-called state-space formulation is employed for the construction of T-matrix solution to solve for the unknown modal scattering coefficients. Considering the nonaxisymmetric wave propagation phenomenon in anisotropic cylindrical components and following the resonance scattering theory which determines the resonance and background scattering fields, the stimulated resonance frequencies of the shell are isolated and classified due to their fundamental mode of excitation, overtone and style of propagation along the cylindrical axis (i.e., clockwise or anticlockwise propagation around the shell) and are identified as the helically circumnavigating waves.
NASA Astrophysics Data System (ADS)
Plattenburg, Joseph; Dreyer, Jason T.; Singh, Rajendra
2016-06-01
This paper proposes a new analytical model for a thin cylindrical shell that utilizes a homogeneous cardboard liner to increase modal damping. Such cardboard liners are frequently used as noise and vibration control devices for cylindrical shell-like structures in automotive drive shafts. However, most prior studies on such lined structures have only investigated the associated damping mechanisms in an empirical manner. Only finite element models and experimental methods have been previously used for characterization, whereas no analytical studies have addressed sliding friction interaction at the shell-liner interface. The proposed theory, as an extension of a prior experimental study, uses the Rayleigh-Ritz method and incorporates material structural damping along with frequency-dependent viscous and Coulomb interfacial damping formulations for the shell-liner interaction. Experimental validation of the proposed model, using a thin cylindrical shell with three different cardboard liner thicknesses, is provided to validate the new model, and to characterize the damping parameters. Finally, the model is used to investigate the effect of the liner and the damping parameters on the modal attenuation of the shell vibration, in particular for the higher-order coupled shell modes.
NASA Technical Reports Server (NTRS)
Hulcher, Anthony Bruce; McGowan, David M.; Grimsley, Brian W.; Johnston, Norman J.; Gordon, Gail H. (Technical Monitor)
2001-01-01
Two 61-cm-diameter eight-ply quasi-isotropic IM7/PEEK cylindrical shells were fabricated by automated fiber placement the NASA Langley Research Center using only infrared radiant heat to preheat the substrate and incoming composite uni-tape. The shells were characterized by ultrasonic c-scans for overall consolidation quality, and by optical microscopy and acid digestion for void content. Compression tests were also performed. Although the material used in the study was of generally poor quality due to numerous splits and dry fiber regions, the process was able to achieve a net reduction in void content in the as-placed component. Microscopy of the composite shells revealed well-consolidated, void-free interfaces. The two cylinders were then tested in uni-axial compression in a 1334 kN-capacity hydraulic test machine until buckling occurred. A geometrically nonlinear finite element analysis was conducted, and the differences between the predicted and measured values were 18.0 and 25.8%, respectively. Inclusion of measured imperfections of the cylinder into the analysis is expected to reduce these differences.
NASA Astrophysics Data System (ADS)
Guggenberger, W.
2006-05-01
In this paper the elastic stability and imperfection sensitivity of axially loaded cylindrical shells on narrow discrete supports is explored. This is done by parametric geometrically nonlinear finite element analyses of the perfect and imperfect cylinders up to the critical load maxima. In addition, classical buckling eigenvalues are computed for reference purposes. The obtained numerical results are plotted in a systematic unified way and related curve-fit expressions are developed for the critical load maxima in dependency of the geometrical parameters of the problem. The support width, the shell slenderness and the type of local support, i.e. flexible versus rigid local support conditions, are varied. The present basic investigation is restricted to shells with linear-elastic material behaviour. The study of the buckling behaviour for narrow local supports, including the limiting case of point supports is of special concern. Strictly speaking, point supports exist only in the mathematical limit, since the stress singularities which occur in this case are mere artefacts and have no direct physical significance. But it turns out that the local buckling behaviour, like shape and evolution of buckles, magnitude of buckling loads etc. tends to an invariant typical limiting scenario, which is surprising but understandable at the same time. This typical local mono-modal buckling scenario, which is also investigated and presented in this paper, may be viewed as the counterpart to the well-known multi-modal characteristic global buckling scenario which occurs under uniform axial compression.
Flow-induced vibrations of an elastic cylindrical shell conveying a compressible fluid
NASA Astrophysics Data System (ADS)
Sorokin, S. V.; Terentiev, A. V.
2006-10-01
The paper addresses the effects of generation and transmission of the vibro-acoustic energy in an elastic cylindrical shell filled with water. The energy input is produced by velocity and pressure pulsations due to the presence of an obstacle in a flowing fluid. It is assumed that there is no back-reaction of the vibro-acoustic response on the driving turbulent field. The concept of modal Green's functions and modal boundary integral equations is introduced and the role of elastic deformations of a tube is highlighted in view of the energy re-distribution between the structural and the acoustical transmission paths. Another important aspect of the problem of 'flow-induced sound generation', which is addressed in this paper, is the treatment of a CFD pressure output for the modelling of vibro-acoustic field generation. For an elastic shell in heavy fluid loading conditions, it is indicated that only the pressure distribution at the surface of a shell provided by a CFD solver is requested in order to adequately predict its coupled vibro-acoustic response. The 'inner' and 'outer' acousto-elastic domains are introduced and the low-order system of linear algebraic equations is set up, which is constituted by modal boundary equations and continuity conditions. Several 'generic' excitation cases are studied and the results of analysis are explained.
NASA Technical Reports Server (NTRS)
Kriegesmann, Benedikt; Hilburger, Mark W.; Rolfes, Raimund
2012-01-01
Results from a numerical study of the buckling response of a thin-walled compressionloaded isotropic circular cylindrical shell with initial geometric and loading imperfections are used to determine a lower bound buckling load estimate suitable for preliminary design. The lower bound prediction techniques presented herein include an imperfection caused by a lateral perturbation load, an imperfection in the shape of a single stress-free dimple (similar to the lateral pertubation imperfection), and a distributed load imperfection that induces a nonuniform load in the shell. The ABAQUS finite element code is used for the analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection types are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. The results indicate that compression-loaded shells subjected to a lateral perturbation load or a single dimple imperfection, and a nonuniform load imperfection, exhibit similar buckling behavior and lower bound trends and the predicted lower bounds are much less conservative than the corresponding design recommendation NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation technique and the distributed load imperfection produce response characteristics that are physically meaningful and can be validated via laboratory testing.
Model-based failure detection for cylindrical shells from noisy vibration measurements.
Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H
2014-12-01
Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data. PMID:25480059
Design Optimization and Residual Strength Assessment of a Cylindrical Composite Shell Structure
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
2000-01-01
A summary of research conducted during the specified period is presented. The research objectives included the investigation of an efficient technique for the design optimization and residual strength assessment of a semi-monocoque cylindrical shell structure made of composite materials. The response surface methodology is used in modeling the buckling response of individual skin panels under the combined axial compression and shear loading. These models are inserted into the MSC/NASTRAN code for design optimization of the cylindrical structure under a combined bending-torsion loading condition. The comparison between the monolithic and sandwich skin design cases indicated a 35% weight saving in using sandwich skin panels. In addition, the residual strength of the optimum design was obtained by identifying the most critical region of the structure and introducing a damage in the form of skin-stringer and skin-stringer-frame detachment. The comparison between the two skin design concepts indicated that the sandwich skin design is capable of retaining a higher residual strength than its monolithic counterpart. The results of this investigation are presented and discussed in this report.
Active Control of Coupled Wave Propagation in Fluid-Filled Elastic Cylindrical Shells.
NASA Astrophysics Data System (ADS)
Brevart, Bertrand Jean
The vibrational energy propagating in straight fluid-filled elastic pipes is carried by the structure as well as by the internal fluid. This study demonstrates that, whether the propagating energy is predominantly conveyed in the shell or in the fluid, large attenuations of the total power flow may be achieved by using an active control approach. As the shell and fluid motions are fully coupled, the implementation of intrusive sources/sensors in the acoustic field can be also avoided. The approach is based on using radial control forces applied to the outer shell wall and error sensors observing the structural motion. The cylindrical shell is assumed to be infinite, in vacuo or filled with water. The first disturbance source investigated is a propagating free wave of circumferential order n = 0 or n = 1. The control forces are appropriate harmonic line forces radially applied to the structure. The radial displacement of the shell wall at discrete locations downstream of the control forces is minimized using linear quadratic optimal control theory. The attenuation of the total power flow in the system after control is used to study the impact of the fluid on the performance of the control approach. Results for the shell in vacuo are presented for comparison. Considering the breathing mode (n = 0), the fluid decreases the control performance when the disturbance is a structural-type incident wave. Significant reductions of the transmitted power flow can be achieved when the disturbance is a fluid-type of wave. Regarding the beam mode (n = 1), the fluid increases the control performance below the first acoustic cut-off frequency and decreases it above this frequency. The analytical study is then extended to the active control of the pipe vibrations induced by more realistic disturbances such as a point force or an internal monopole source. The point force disturbance addresses the problem of mechanical excitation whereas the internal monopole source directs the
NASA Astrophysics Data System (ADS)
Honeycutt, T. E.; Roberts, T. G.
1986-05-01
Brass retainer rings are currently fastened to artillery shells by spinning each shell at a high rate and then jamming the ring on it so that it is fastened or welded by friction between the two objects. This is an energy-inefficient process which heats and weakens more material than is desirable. The shell spinning at a high rate is also potentially dangerous. A laser welder is provided that generates output energy focused on a circular or cylindrical shape for simultaneously welding around a 360 degs circumference without unnecessarily heating large amounts of material. The welder may be used to fasten cylindrical shaped objects, gears and shafts together, which is difficult to do by conventional means. The welder may also be used to fasten one cylinder to another. To accomplish the welding, a laser has an unstable optical cavity arranged with its feedback mirror centered to generate a circular output beam having an obscuration in the center. A circularly-symmetric, off-axis concave mirror focuses the output beam onto the objects being fastened and away from the center line or axis of the circular beam.
Semi-analytic computation of the driven fields in right circular cylindrical microwave applicators
Nelson, E.M.; Kares, R.J.; Stringfield, R.M.
1995-05-01
A semi-analytic technique for computing the driven fields in a pillbox microwave applicator composed of concentric right circular cylinders (e.g., load, tube and air regions) is described. The fields are driven by idealized apertures on the cavity wall. A modal expansion of the driven fields provides insight about thermal energy deposition in the load.
Design guide for calculating fluid damping for circular cylindrical structures. [LMFBR
Chen, S.S.
1983-06-01
Fluid damping plays an important role for structures submerged in fluid, subjected to flow, or conveying fluid. This design guide presents a summary of calculational procedures and design data for fluid damping for circular cylinders vibrating in quiescent fluid, crossflow, and parallel flow.
NASA Technical Reports Server (NTRS)
Starnes, James H.; Rose, Cheryl A.
1998-01-01
The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Behzad, Mehdi
2014-10-01
A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.
NASA Technical Reports Server (NTRS)
Mindle, W. L.; Torvik, P. J.
1986-01-01
The natural frequencies and associated mode shapes for three thick open cantilevered cylindrical shells were determined both numerically and experimentally. The shells ranged in size from moderately to very thick with length to thickness ratios of 16, 8 and 5.6, the independent dimension being the shell thickness. The shell geometry is characterized by a circumferential angle of the 142 degrees and a ratio of length to inner radii arc length near 1.0. The finite element analysis was performed using NASTRAN's (COSMIC) triangular plate bending element CTRIA2, which includes membrane effects. The experimental results were obtained through holographic interferometry which enables one to determine the resonant frequencies as well as mode shapes from photographs of time-averaged holograms.
NASA Astrophysics Data System (ADS)
Bakulin, V. N.; Volkov, E. N.; Nedbai, A. Ya.
2016-06-01
The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces changing harmonically with time was investigated with regard for the axial contact interaction of the shell with the ribs. A solution of the differential equations defining this process has been obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of the Mathieu-Hill equations of motion was used for construction of the main region of instability of the shell. As a result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example of this solution is presented.
NASA Astrophysics Data System (ADS)
Bakulin, V. N.; Volkov, E. N.; Nedbai, A. Ya.
2016-05-01
The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces changing harmonically with time was investigated with regard for the axial contact interaction of the shell with the ribs. A solution of the differential equations defining this process has been obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of the Mathieu-Hill equations of motion was used for construction of the main region of instability of the shell. As a result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example of this solution is presented.
NASA Astrophysics Data System (ADS)
Dajun, Wang; Chunyan, Zhou; Li, Junbao; Shen, Song; Li, Min; Liu, Xijun
2013-07-01
This paper presents an experimental investigation on nonlinear low frequency gravity water waves in a partially filled cylindrical shell subjected to high frequency horizontal excitations. The characteristics of natural frequencies and mode shapes of the water-shell coupled system are discussed. The boundaries for onset of gravity waves are measured and plotted by curves of critical excitation force magnitude with respect to excitation frequency. For nonlinear water waves, the time history signals and their spectrums of motion on both water surface and shell are recorded. The shapes of water surface are also measured using scanning laser vibrometer. In particular, the phenomenon of transitions between different gravity wave patterns is observed and expressed by the waterfall graphs. These results exhibit pronounced nonlinear properties of shell-fluid coupled system.
Chaotic Energy Exchange Through Auto-Parametric Resonance in Cylindrical Shells
NASA Astrophysics Data System (ADS)
POPOV, A. A.; THOMPSON, J. M. T.; MCROBIE, F. A.
2001-11-01
Internal auto-parametric instabilities in the free non-linear vibrations of a cylindrical shell are studied numerically, focusing on two modes (a concertina mode and a chequerboard mode) whose non-linear interaction breaks the in-out symmetry of the linear vibration theory. The two-mode interaction leads to preferred vibration patterns with larger deflection inwards than outwards, and at internal resonance, significant energy transfer occurs between the modes. This has regular and chaotic features. Here, direct numerical integration is employed to examine chaotic motions. Using a set of 2-D Poincaré sections, each valid for a fixed level of the Hamiltonian, H, the instability under increasing H appears, as a supercritical period-doubling pitchfork bifurcation. Chaotic motions near a homoclinic separatrix appear immediately after the bifurcation, giving an irregular exchange of energy. This chaos occurs at arbitrarily low amplitude as perfect tuning is approached. The instability manifests itself as repeating excursions around the separatrix, and a number of practical predictions can be made. These include the magnitude of the excursion, the time taken to reach this magnitude and the degree of chaos and unpredictability in the outcome. The effect of small damping is to pull the motion away from what was the chaotic separatrix, giving a response that resembles, for a while, the lower-energy quasi-periodic orbits of the underlying Hamiltonian system.
HL-20 structural design comparison - Conformal shell versus cylindrical crew compartment
NASA Astrophysics Data System (ADS)
Bush, Lance B.; Wahls, Deborah M.; Robinson, James C.
1993-04-01
Extensive studies have been performed at NASA Langley Research Center (LaRC) on personnel launch systems (PLS) concepts. The primary mission of a PLS is the transport of Space Station crew members from Earth to the Space Station and return. The NASA LaRC PLS studies have led to the design of a lifting body configuration named the HL-20. In this study, two different HL-20 structural configurations are evaluated. The two configurations are deemed the conformal shell and the cylindrical crew compartment. The configurations are based on two different concerns for maintenance and operations. One configuration allows for access to subsystems while on-orbit from the interior, while the other allows for easy access to the subsystems during ground maintenance and operations. For each concept, the total structural weight required to sustain the applied loads is quantified through a structural evaluation. Structural weight for both configurations is compared along with the particular attributes of each. Analyses of both configurations indicate no appreciable weight or load relief advantage of one concept over the other. Maintainability and operability, therefore become the primary discriminator, leading to a choice of a crew compartment configuration.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, R. C.
1993-01-01
A fully coupled mathematical model describing the interactions between a vibrating thin cylindrical shell and enclosed acoustic field is presented. Because the model will ultimately be used in control applications involving piezoceramic actuators, the loads and material contributions resulting from piezoceramic patches bonded to the shell are included in the discussion. Theoretical and computational issues lead to the consideration of a weak form of the modeling set of partial differential equations (PDE's) and through the use of a semigroup formulation, well-posedness results for the system model are obtained.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found. PMID:24719582
NASA Astrophysics Data System (ADS)
Daneshfar, Nader; Moradbeigi, Nasrin
2015-12-01
This article considers the problem of finding the electrostatic potential that is given in terms of a scalar function called Green function in dielectric cylindrical nanoparticles with core-shell structure using the image charge method. By using this method that allows us to solve differential form of electric potential problem by the Green function, we investigate the distribution of the electric field in the configuration of a cylindrical nanoparticle surrounded by a continuum dielectric medium. By utilizing this well-known method, we obtain exact analytical formulas for the electrostatic potential and the electric field inside the shell, core and surrounding space of nanoparticle that can be applied to analysis of electromagnetic problems, electrostatic interactions in biomolecular simulations and also computer simulations of condensed-matter media.
NASA Astrophysics Data System (ADS)
Liu, Hongmin; Chen, Suwen; Peng, Yan; Sun, Jianliang
2015-01-01
As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary forming technology, and the upper and lower rolls have different radii and speeds. To quickly predict the three-dimensional stresses and eliminate fishtail defect, an improved strip layer method is developed, in which the asymmetry of the upper and lower rolls, non-uniform deformation and stress, as well as the asymmetrical spread on the end surface are considered. The deformation zone is divided into a certain number of layers and strips along the thickness and width, respectively. The transverse displacement model is constructed by polynomial function, in order to increase the computation speed greatly. From the metal plastic mechanics principle, the three-dimensional stress models are established. The genetic algorithm is used for optimization calculation in an industrial experiment example. The results show that the rolling pressure, the normal stresses, the upper and lower friction stress distributions are not similar with those of a general plate rolling. There are two relative maximum values in rolling pressure distribution. The upper and lower longitudinal friction stresses change direction nearby the upper and lower neutral points, respectively. The fishtail profile of spread on the end surface is predicted satisfactorily. The reduction could be helpful to eliminate fishtail defect. The large cylindrical shell rolling example illustrates the calculation results acquired rapidly are good agreements with the finite element simulation and experimental values of previous study. A highly effective and reliable three-dimensional simulation method is proposed for large cylindrical shell rolling and other asymmetrical rolling.
NASA Astrophysics Data System (ADS)
Sun, Dongming; Wang, Sheng; Sakurai, Junpei; Choi, Kee-Bong; Shimokohbe, Akira; Hata, Seiichi
2010-04-01
A piezoelectric linear ultrasonic motor is proposed, with a cylindrical stator and slider structure. The length and diameter of the motor are about 10 and 1.5 mm, respectively. The stator consists of two piezoelectric ceramic (PZT) tubes connected by a thin film metallic glass (TFMG) pipe. The stator is designed based on theoretical analyses and finite element method (FEM) simulation. The traveling wave propagation is obtained in the FEM simulation under the proper geometrical sizes, suitable boundary conditions and driving voltage signals. The trajectories of particles on the TFMG pipe are elliptical motion. In the experiment, a 25 µm thick TFMG pipe is fabricated using the rotating magnetron sputtering technique and the vibration characteristics of the stator are measured by a laser Doppler vibrometer (LDV) system. Bidirectional motion of the slider is observed around 600 kHz, the maximum velocity is near to 40 mm s - 1 at 50 Vp-p for the loose slider and the maximum output force is 6 mN at 70 Vp-p for the tight slider.
On the Flutter of Cylindrical Shells and Panels Moving in a Flow of Gas
NASA Technical Reports Server (NTRS)
Stepanov, R. D.
1958-01-01
The equations of shells are taken in the form of the general technical theory of shallow shells and shells of medium length. The aerodynamic forces acting on a shell are taken into account only as forces of excess pressure according to the formula proposed by A.A. Iliushin in reference 3.
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The line-spring model developed by Rice and Levy (1972) is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. A Reissner type theory is used to account for the effects of the transverse shear deformations, and the stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided, and qualitatively the line-spring model gives the expected results in comparison with elasticity solutions.
NASA Astrophysics Data System (ADS)
Ng, Kam Wing
A theoretical and experimental study was conducted to investigate the flow-induced noise and vibration caused by confined jet flows in a cylindrical duct. Unrestricted pipe flow and flows restricted by various orifices were tested for a wide range of velocities to simulate the flow in piping systems. Wall pressure data showed that the noise levels vary with the pipe's axial location and the peak noise is located at the vicinity of the end of the jet potential core. A non-dimensional wall pressure spectrum was established for the various confined jets by the Strouhal relationship, where the length scale is the jet hydraulic diameter. This jet pressure spectrum agrees with the wall pressure spectrum of a turbulent boundary layer above a rigid plane. Correlations of wall pressure fluctuations and pipe wall acceleration signals showed that jet flows generate more deterministic features than pipe flow. The coherence functions of the wall pressure and pipe wall acceleration signals are relatively high near the exit of the jet. The high coherence is probably due to the large-scale coherent structures. An analytical model was developed to study the effect of the turbulent jet flow field on the wall pressure and vibratory motion of the duct wall. Based on flow field measurements, the blocked surface pressure was calculated using Lighthill's method, and then used to drive the fluid -filled shell. The wall pressure and pipe wall acceleration were determined by solving the coupled fluid solid interaction problem. The wall pressure was obtained by summing the blocked surface pressure and the pressure due to the wall vibration. An amplitude modulated convecting wave field was used to simulate the moving acoustic sources of the jet. The random nature of the turbulent jet was incorporated into the analytical model. Specifically, the acoustic pressure was assumed to result from hydrodynamic pressure fluctuations which are uncorrelated in the radial direction, but are correlated in
NASA Astrophysics Data System (ADS)
Kivity, Y.; Florie, C.; Lenselink, H.
1993-02-01
This paper considers the plastic deformation of a thin cylindrical shell subjected to an internal explosion. It is assumed that the explosive charge is placed on the axis of symmetry of the shell so that an axisymmetric blast wave is produced. The shell response is calculated assuming an elastic-perfectly plastic material. The plastic response is evaluated for two types of loads. In the first type, the blast is assumed to have an ideal shock front with a discontinuous jump to the peak pressure. In the second type of loading, the shock front has a finite rise-time. This type of loading was introduced to study the effect of finite width shock fronts. Such finite width shock fronts are typical of hydrocode calculations when simulating problems involving blast waves and their interactions with adjacent structures. It is found that for equal impulse loads, the numerical rise-time reduces the shell plastic response significantly. Numerical calculations with a three-dimensional hydrocode are presented to illustrate the analytical results. A generalization of the analysis is given which may be used to determine the required mesh resolution of a hydrocode calculation in order to obtain a prescribed accuracy in the shell response.
NASA Astrophysics Data System (ADS)
Biglar, Mojtaba; Mirdamadi, Hamid Reza; Danesh, Mohammad
2014-02-01
In this study, the active vibration control and configurational optimization of a cylindrical shell are analyzed by using piezoelectric transducers. The piezoelectric patches are attached to the surface of the cylindrical shell. The Rayleigh-Ritz method is used for deriving dynamic modeling of cylindrical shell and piezoelectric sensors and actuators based on the Donnel-Mushtari shell theory. The major goal of this study is to find the optimal locations and orientations of piezoelectric sensors and actuators on the cylindrical shell. The optimization procedure is designed based on desired controllability and observability of each contributed and undesired mode. Further, in order to limit spillover effects, the residual modes are taken into consideration. The optimization variables are the positions and orientations of piezoelectric patches. Genetic algorithm is utilized to evaluate the optimal configurations. In this article, for improving the maximum power and capacity of actuators for amplitude depreciation of negative velocity feedback strategy, we have proposed a new control strategy, called "Saturated Negative Velocity Feedback Rule (SNVF)". The numerical results show that the optimization procedure is effective for vibration reduction, and specifically, by locating actuators and sensors in their optimal locations and orientations, the vibrations of cylindrical shell are suppressed more quickly.
Yilmaz, M. F.; Safronova, A. S.; Esaulov, A. A.; Kantsyrev, V. L.; Quart, N. D.; Williamson, K. M.; Shrestha, I.
2009-01-21
K-shell radiation of Al and Mg and L-shell radiation of Mo from implosions of compact cylindrical wire arrays (CCWA) on the 1 MA UNR Zebra generator was studied. Specifically, radiation from implosions of 3 and 6 mm CCWA with (16-24) Al-5052 (95% Al and 5% Mg) and Al-5052 (97.5% Al and 2.5% Mg) and Mo wires was analyzed using the full set of diagnostics: PCD and current signals, and X-ray pinhole images and spectra. Previously developed non-LTE models were applied to model spatially resolved time integrated as well as time-gated spatially integrated spectra from Al, Mg, and Mo plasmas. Derived electron temperature and density spatial gradients as well as percentage of radiating mass were studied and compared. In addition, the novel Wire Dynamics Model (WDM) was used to analyze the implosion dynamics of compact wire array loads.
NASA Astrophysics Data System (ADS)
Wang, Qingshan; Shi, Dongyan; Pang, Fuzhen; Liang, Qian
2016-04-01
A Fourier-Ritz method for predicting the free vibration of composite laminated circular panels and shells of revolution subjected to various combinations of classical and non-classical boundary conditions is presented in this paper. A modified Fourier series approach in conjunction with a Ritz technique is employed to derive the formulation based on the first-order shear deformation theory. The general boundary condition can be achieved by the boundary spring technique in which three types of liner and two types of rotation springs along the edges of the composite laminated circular panels and shells of revolution are set to imitate the boundary force. Besides, the complete shells of revolution can be achieved by using the coupling spring technique to imitate the kinematic compatibility and physical compatibility conditions of composite laminated circular panels at the common meridian with θ = 0 and 2π. The comparisons established in a sufficiently conclusive manner show that the present formulation is capable of yielding highly accurate solutions with little computational effort. The influence of boundary and coupling restraint parameters, circumference angles, stiffness ratios, numbers of layer and fiber orientations on the vibration behavior of the composite laminated circular panels and shells of revolution are also discussed.
NASA Technical Reports Server (NTRS)
Block, D. L.
1972-01-01
Results of analytical study to determine desirable ring and stringer stiffener parameters and proportions for axially compressed stiffened isotropic cylinders with and without internal pressure are presented. This investigation examines the panel and general instability buckling modes of a stiffened cylindrical shell and from this determines desirable stiffener parameters and proportions. Classical buckling equations are used which retain the important effects of the stiffeners. The results determined by using the simpler classical buckling equations are then spot checked and verified using buckling equations which considered discrete ring stiffeners and nonlinear prebuckling deformations. For both rings and stringers, T-shaped stiffeners are preferable and the effects to stiffener shape are much more pronounced at low or zero values of the internal pressure parameter. Simple analytical expressions are developed and presented which express the stiffener area parameter, the ratio of stiffener area and elastics to shell wall area and elastic modulus, in terms of the cylinder geometry and internal pressure parameter.
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1977-01-01
The problem of a cylindrical shell containing a circumferential through crack is considered by taking into account the effect of transverse shear deformations. The formulation is given for a specially orthotropic material within the confines of a linearized shallow shell theory. The particular theory used permits the consideration of all five boundary conditions regarding moment and stress resultants on the crack surface. Consequently, aside from multiplicative constants representing the stress intensity factors, the membrane and bending components of the asymptotic stress fields near the crack tip are found to be identical. The stress intensity factors are calculated separately for a cylinder under a uniform membrane load, and that under a uniform bending moment. Sample results showing the nature of the out-of-plane crack surface displacement and the effect of the Poisson's ratio are presented.
Velikovich, A. L.; Schmit, P. F.
2015-12-28
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Schmit, P. F.
2015-12-01
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].
Velikovich, A. L.; Schmit, P. F.
2015-12-15
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].
Velikovich, A. L.; Schmit, P. F.
2015-12-28
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].
NASA Astrophysics Data System (ADS)
Gleiser, Reinaldo J.; Barraco, Daniel E.
2014-03-01
In this paper we study the evolution of the ‘Momentarily Static and Radiation Free’ (MSRF) initial data for the Apostolatos-Thorne cylindrical shell model. After briefly reviewing the equations of motion, the definition of the MSRF initial data and of its relation to the static solution that corresponds to the given conserved intrinsic parameters of the shell, we show that for MSRF data the initial acceleration of the shell is always directed towards the static radius. We analyse in detail the relation between the parameters characterizing the configuration corresponding to the initial data and those for the assumed final static configuration, and show that, once the appropriate properties of the solutions of the cylindrical wave equation are taken into account, there is a priori no conflict for any choice of initial MSRF data, in contrast with some recent results of Nakao, Ida and Kurita. To obtain a more detailed description of the evolution we consider the case where the problem can be analysed in the linear approximation, and show that the evolution is stable in all cases. The possible form of the approach to the final static configuration is also analysed. We find that this approach is very slow, with an inverse logarithmic dependence on time at fixed radius. Given the absence of analytic solutions for the problem, we introduce a numerical computation procedure that allows us to visualize the explicit form of the evolution of the shell and the gravitational field up to large times. The results are in agreement with the qualitative behaviour conjectured by Apostolatos and Thorne, with an initial damped oscillatory stage, but we find that these oscillations are not about the final static radius but rather about a position that approaches slowly that of the static final state, as indicated by our analysis. We also include one appendix, where we review some properties of the solutions of the cylindrical wave equation, and prove the existence of solutions with
NASA Astrophysics Data System (ADS)
Tornabene, Francesco; Viola, Erasmo; Inman, Daniel J.
2009-12-01
This paper focuses on the dynamic behavior of functionally graded conical, cylindrical shells and annular plates. The last two structures are obtained as special cases of the conical shell formulation. The first-order shear deformation theory (FSDT) is used to analyze the above moderately thick structural elements. The treatment is developed within the theory of linear elasticity, when materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal that are graded through the thickness, from one surface of the shell to the other. Two different power-law distributions are considered for the ceramic volume fraction. The homogeneous isotropic material is inferred as a special case of functionally graded materials (FGM). The governing equations of motion, expressed as functions of five kinematic parameters, are discretized by means of the generalized differential quadrature (GDQ) method. The discretization of the system leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. For the homogeneous isotropic special case, numerical solutions are compared with the ones obtained using commercial programs such as Abaqus, Ansys, Nastran, Straus, Pro/Mechanica. Very good agreement is observed. Furthermore, the convergence rate of natural frequencies is shown to be very fast and the stability of the numerical methodology is very good. Different typologies of non-uniform grid point distributions are considered. Finally, for the functionally graded material case numerical results illustrate the influence of the power-law exponent and of the power-law distribution choice on the mechanical behavior of shell structures.
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1983-01-01
A cylindrical shell having a very stiff and plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flaw which may be modeled as a part through surface crack or a through crack. The effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter is studied. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the Mode 1 stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part through crack problem is treated by using a line spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equations of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem.
NASA Astrophysics Data System (ADS)
Corrado, Charles N., Jr.
The measurements and analyses were conducted over a mid-frequency range of 2 < ka < 12 corresponding to about 1/2 to 3 times the ring frequency of the empty shell. The measurements were all conducted with the use of wide-band pulses yielding good time resolution of propagating waves. Various time and frequency domain representations of the scattered field are presented to illustrate the evolution of observed backscattering processes. Although the field measured at all aspect angles is reviewed, emphasis is placed on interpretation of the backscatter observed over a range within 30 degrees of beam aspect where phase matched (coincident) excitation of membrane waves occurs. Coincident shear wave radiation is the dominant source of backscatter generated by the empty shell at oblique angles of incidence within 30^circ of beam aspect. Peak levels of backscatter are generally found at combinations of aspect angle and frequency where coincidence and peak levels of length-scale modulation coexist. Coincident back radiation of shear waves remains evident in the backscatter of the ring stiffened shell, but the backscatter is smeared in time and frequency because the rings directly scatter energy to the acoustic medium, as well as from one membrane wave type to another, and to subsonic flexural waves. The decay rate of the empty shell backscatter exceeds that of the ring stiffened shell by a factor of 2-3 because the rings scatter energy to poorly radiating waves. Although details of the backscatter produced by the empty and ring stiffened shells differ, peak levels of target strength consistently fall within a range of -20 to -15 dB re 1 m. The internal loading further impairs coincident radiation but increases the target strength by about 2 dB for ka > 5.5. The damping provided by the resilient mounts increases backscatter decay rates by roughly 1.2 to 1.4 relative to those of the ring stiffened shell. Bistatic measurements of the internally loaded shell also demonstrate
Non-linear vibrations of laminated cylindrical shallow shells under thermomechanical loading
NASA Astrophysics Data System (ADS)
Ribeiro, P.; Jansen, E.
2008-08-01
The geometrically non-linear vibrations of linear elastic composite laminated shallow shells under the simultaneous action of thermal fields and mechanical excitations are analysed. For this purpose, a model based on a very efficient p-version first-order shear deformation finite element, with hierarchical basis functions, is employed. The equations of motion are solved in the time domain by a Newmark implicit time integration method. The model and code developed are partially validated by comparison with published data. Parametric studies are carried out in order to study the influence of temperature change, initial curvature, panel thickness and fibre orientation on the shells' dynamics.
NASA Astrophysics Data System (ADS)
Ebaid, A.
2008-08-01
In this Letter, we considered a numerical treatment for the solution of the hydromagnetic peristaltic flow of a bio-fluid with variable viscosity in a circular cylindrical tube using Adomian decomposition method and a modified form of this method. The axial velocity is obtained in a closed form. Comparison is made between the results obtained by only three terms of Adomian series with those obtained previously by perturbation technique. It is observed that only few terms of the series expansion are required to obtain the numerical solution with good accuracy.
Some applications of NASTRAN to the buckling of thin cylindrical shells with cutouts
NASA Technical Reports Server (NTRS)
Williams, J. G.; Starnes, J. H., Jr.
1972-01-01
The buckling of isotropic and waffle-stiffened circular cylinders with and without cutouts was studied using NASTRAN's Rigid Format 5 for the case of axial compressive loading. The results obtained for the cylinders without cutouts are compared with available reference solutions. The results for the isotropic cylinders containing a single circular cutout with selected radii are compared with available experimental data. For the waffle-stiffened cyclinder, the effect of two diametrically opposed rectangular cutouts was studied. A DMAP alter sequence was used to permit the necessary application of different prebuckling and buckling boundary conditions. Advantage was taken of available symmetry planes to formulate equivalent NASTRAN model segments which reduced the associated computational cost of performing the analyses. Limitations of the applicability of NASTRAN for the solution of problems with nonlinear characteristics are discussed.
NASA Technical Reports Server (NTRS)
Li, Yi-Wei; Elishakoff, Isaac; Starnes, James H., Jr.; Bushnell, David
1998-01-01
This study is an extension of a previous investigation of the combined effect of axisymmetric thickness variation and axisymmetric initial geometric imperfection on buckling of isotropic shells under uniform axial compression. Here the anisotropic cylindrical shells are investigated by means of Koiter's energy criterion. An asymptotic formula is derived which can be used to determine the critical buckling load for composite shells with combined initial geometric imperfection and thickness variation. Results are compared with those obtained by the software packages BOSOR4 and PANDA2.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Schmit, P. F.
2015-11-01
Bell-Plesset effects accounting for the time dependence of the radius, velocity and acceleration of the Rayleigh-Taylor-unstable surface are ubiquitous in the instability of spherical laser targets and magnetically driven cylindrical liners. We present an analytical model that, for an ideal incompressible fluid and small perturbation amplitudes, exactly accounts for the Bell-Plesset effects in finite-thickness targets and liners through acceleration and deceleration phases. We derive the time-dependent dispersion equations determining the ``instantaneous growth rate'' and demonstrate that by integrating this growth rate over time (the WKB approximation) we accurately evaluate the number of perturbation e-foldings during the acceleration phase. In the limit of the small target/liner thickness, we obtain the exact thin-shell perturbation equations and approximate thin-shell dispersion relations, generalizing the earlier results of Harris (1962), Ott (1972) and Bud'ko et al. (1989). This research was supported by the US DOE/NNSA (A.L.V.), and in part by appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering (P.F.S.), which is part of the Laboratory Directed Research and Development (LDRD) Program, Project No. 165746, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000.
Validation of Lower-Bound Estimates for Compression-Loaded Cylindrical Shells
NASA Technical Reports Server (NTRS)
Haynie, Waddy T.; Hilburger, Mark W.; Bogge, Massimiliano; Kriegesmann, Benedikt
2012-01-01
The traditional approach used in the design of stability critical thin-walled circular cylin- ders, is to reduce unconservative buckling load predictions with an empirical knockdown factor. An alternative analysis-based approach to determine a lower bound buckling load for cylinders under axial compression is to use a lateral perturbation load to create an initial imperfection and determine the buckling load while that load is applied. This paper describes a preliminary e ort to develop a test capability to verify this approach. Results from tests of three aluminum alloy cylinders are described and compared to nite element predictions.
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1985-01-01
In this paper a cylindrical shell having a very stiff end plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flow which may be modeled as a part-through surface crack or through crack. The primary objective is to study the effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the mode I stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built-in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part-through crack problem is treated by using a line-spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equation of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem. Even though the problem is formulated for a general surface crack profile and arbitrary crack surface tractions, the numerical results are obtained only for a semielliptic part-through axial crack located at the inside or outside surface of the cylinder and for internal pressure acting on the cylinder. The stress intensity factors are calculated and presented for a relatively wide range of dimensionless length parameters of the problem.
NASA Astrophysics Data System (ADS)
Britt, Vicki Owen
A preliminary design tool for metallic stiffened fuselage cylindrical panels subjected to longitudinal compression has been developed and validated by comparison to test results. Several methodologies for stiffened panel buckling and failure predictions were examined and evaluated. An appropriate level of analysis fidelity was determined for different failure modes and design details. Results from panel tests conducted to verify analytical methods used to design the Gulfstream V aircraft were presented. The panels were representative of four general skin/stringer configurations on the aircraft. Finite Element analyses and standard analytical methods were used to predict panel failure loads. The accuracy of the finite element analysis predictions was dependent upon the level of detail included in the model. The inclusion of such details as fasteners had a significant effect on the predicted failure load. The omission of such complexities from the finite element model led to unconservative failure predictions. Standard analytical methods were found to be more efficient than finite element methods and produced conservative panel failure loads. Improvements for a preliminary design tool were identified to reduce conservatism in failure predictions and thereby reduce structural weight.
NASA Technical Reports Server (NTRS)
Agarwal, B. L.; Sobel, L. H.
1976-01-01
This work presents optimum designs for unstiffened, hat stringer-stiffened and honeycomb sandwich cylinders under axial compression. Optimization results for graphite-epoxy cylinders show about a 50 percent weight savings over corresponding optimized aluminum cylinders for a wide loading range. The inclusion of minimum gage considerations results in a significant weight penalty, especially for a lightly loaded cylinder. Effects of employing a smeared stiffener buckling theory in the optimization program are investigated through comparison of results obtained from a more accurate branched shell buckling computer code. It was found that the stiffener cross-sectional deformations, which are usually ignored in smeared stiffener theory, result in about a 30 percent lower buckling load for the graphite-epoxy hat stiffened cylinder.
Series solution for a cylindrical composite shell subject to axisymmetric loadings
NASA Astrophysics Data System (ADS)
Lindstrom, D. W.
1990-07-01
Elasticity equations were solved to an arbitrary degree of precision for a thick-walled orthotropic cylinder subject to axisymmetric loading. The theory is directly applicable to a layered composite material where each layer is orthotropic in character. The solution proceeds by representing the deformations of the cylinder wall as a power series in a nondimensional radial parameter. By introducing a generalized stress resultant and a generalized stiffness for the material, a series of coupled second order differential equations in the coefficients of the deformation series results. These were solved using a generalized eigenvalue technique for an infinitely long cylinder, a simply held cylinder, and a rigidly clamped cylinder. The solution was shown to reduce to standard shell solutions for thin cylinders. A thick-walled filament wound test specimen is also described that when fabricated and pressurized would experimentally verify the refined theory developed.
A Study of Failure in Small Pressurized Cylindrical Shells Containing a Crack
NASA Technical Reports Server (NTRS)
Barwell, Craig A.; Eber, Lorenz; Fyfe, Ian M.
1998-01-01
The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental models. The loading applied was either symmetric or unsymmetric about the crack plane, the latter being caused by structural constraints such as stringers. The objective was two fold - one, to provide the experimental results which will allow computer modeling techniques to be evaluated for deformations that are significantly different from that experienced by flat plates, and the other to examine the deformations and conditions associated with the onset of crack kinking which often precedes crack curving. The stresses which control crack growth in a cylindrical geometry depend on conditions introduced by the axial bulging, which is an integral part of this type of failure. For the symmetric geometry, both the hoop and radial strain just ahead off the crack, r = a, were measured and these results compared with those obtained from a variety of structural analysis codes, in particular STAGS [1], ABAQUS and ANSYS. In addition to these measurements, the pressures at the onset of stable and unstable crack growth were obtained and the corresponding crack deformations measured as the pressures were increased to failure. For the unsymmetric cases, measurements were taken of the crack kinking angle, and the displacements in the vicinity of the crack. In general, the strains ahead of the crack showed good agreement between the three computer codes and between the codes and the experiments. In the case of crack behavior, it was determined that modeling stable tearing with a crack-tip opening displacement fracture criterion could be successfully combined with the finite-element analysis techniques as used in structural analysis codes. The analytic results obtained in this study were very compatible with the experimental observations of crack growth
NASA Astrophysics Data System (ADS)
Shi, Tong; Wang, Yikang; Wan, Linfeng; Cheng, Xin; Ding, Mingde; Zhang, Jie
2015-06-01
Accurately predicting the arrival of coronal mass ejections (CMEs) to the Earth based on remote images is of critical significance for the study of space weather. In this paper, we make a statistical study of 21 Earth-directed CMEs, specifically exploring the relationship between CME initial speeds and transit times. The initial speed of a CME is obtained by fitting the CME with the Graduated Cylindrical Shell model and is thus free of projection effects. We then use the drag force model to fit results of the transit time versus the initial speed. By adopting different drag regimes, i.e., the viscous, aerodynamics, and hybrid regimes, we get similar results, with a least mean estimation error of the hybrid model of 12.9 hr. CMEs with a propagation angle (the angle between the propagation direction and the Sun–Earth line) larger than their half-angular widths arrive at the Earth with an angular deviation caused by factors other than the radial solar wind drag. The drag force model cannot be reliably applied to such events. If we exclude these events in the sample, the prediction accuracy can be improved, i.e., the estimation error reduces to 6.8 hr. This work suggests that it is viable to predict the arrival time of CMEs to the Earth based on the initial parameters with fairly good accuracy. Thus, it provides a method of forecasting space weather 1–5 days following the occurrence of CMEs.
Hoffman, E.L.; Ammerman, D.J.
1993-08-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry.
NASA Astrophysics Data System (ADS)
Pollock, Justin G.; Iyer, Ashwin K.; Pratap, Dheeraj; Anantha Ramakrishna, S.
2016-02-01
This paper investigates a class of circular waveguiding structures containing anisotropic metamaterials and explores their potential benefits in applications from RF to optical frequencies. The introduction of anisotropy in these waveguides is shown to provide substantial control of the dispersion and field distributions of several supported modes. For exotic material parameters such as permittivity and permeability that are typically associated with metamaterials, intriguing propagation phenomena such as backward-wave behavior, frequency-reduced modes, monomodal propagation, and field confinement are observed and provide enabling functionalities for a wide range of RF/microwave and optical applications.
NASA Astrophysics Data System (ADS)
Schmidt, J. M.; Cairns, Iver H.; Xie, Hong; St. Cyr, O. C.; Gopalswamy, N.
2016-03-01
Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Jaunky, Navin
1999-01-01
The goal of this research project is to develop modelling and analysis strategy for the penetration of aluminium plates impacted by titanium impactors. Finite element analysis is used to study the penetration of aluminium plates impacted by titanium impactors in order to study the effect of such uncontained engine debris impacts on aircraft-like skin panels. LS-DYNA3D) is used in the simulations to model the impactor, test fixture frame and target barrier plate. The effects of mesh refinement, contact modeling, and impactor initial velocity and orientation were studied. The research project also includes development of a design tool for optimum design of grid-stiffened non-circular shells or panels subjected to buckling.
NASA Technical Reports Server (NTRS)
Lin, H. C.
1976-01-01
The endochronic theory of plasticity originated by Valanis was applied to study the axially symmetric motion of circular cylindrical thick shells subjected to an arbitrary pressure transient applied at its inner surface. The constitutive equations for the thick shells were obtained. The governing equations are solved by means of the nearcharacteristics method.
NASA Astrophysics Data System (ADS)
Liu, Yu; He, Chuanbo
2015-12-01
In this discussion, the corrections to the errors found in the derivations and the numerical code of a recent analytical study (Zhou et al. Journal of Sound and Vibration 333 (7) (2014) 1972-1990) on sound transmission through double-walled cylindrical shells lined with poroelastic material are presented and discussed, as well as the further effect of the external mean flow on the transmission loss. After applying the corrections, the locations of the characteristic frequencies of thin shells remain unchanged, as well as the TL results above the ring frequency where BU and UU remain the best configurations in sound insulation performance. In the low-frequency region below the ring frequency, however, the corrections attenuate the TL amplitude significantly for BU and UU, and hence the BB configuration exhibits the best performance which is consistent with previous observations for flat sandwich panels.
NASA Astrophysics Data System (ADS)
Isaev, S. A.; Guvernyuk, S. V.; Zubin, M. A.; Baranov, P. A.; Ermakov, A. M.
2015-01-01
Comparative analysis of the results of solution of the steady-state Reynolds equations closed with the use of the shear-stress transfer model for the air fl ow in a divergent channel with suction of the air from the surface of the cylindrical central body positioned in the circular vortex cavity built in the lower wall of the channel with the corresponding experimental data has been performed.
Small bending and stretching of sandwich-type shells
NASA Technical Reports Server (NTRS)
Reissner, Eric
1950-01-01
A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.
2011-01-01
A versatile anodization method was reported to anodize Ti wires into cylindrical core-shell-like and thermally crystallized TiO2 nanotube (TNT) arrays that can be directly used as the photoanodes for semi- and all-solid fiber-type dye-sensitized solar cells (F-DSSC). Both F-DSSCs showed higher power conversion efficiencies than or competitive to those of previously reported counterparts fabricated by depositing TiO2 particles onto flexible substrates. The substantial enhancement is presumably attributed to the reduction of grain boundaries and defects in the prepared TNT anodes, which may suppress the recombination of the generated electrons and holes, and accordingly lead to more efficient carrier-transfer channels. PMID:21711629
Technology Transfer Automated Retrieval System (TEKTRAN)
. This paper describes a method to determine the moisture content of in-shell peanuts with a parallel-plate electrode system fitted inside a cylinder by using impedance measurements made on the system. Two parallel-plate electrodes were mounted inside a cylinder, made of acrylic material, and the s...
Effect of heating rate on the stress-strain state in a cylindrical shell with a stiffener ring
Sorokina, I.V.; Babanskii, V.G.; Rachkov, V.I.
1988-05-01
The effect of the heating rate on the stress-strain state of chemical production systems during start-up was examined in a quasistatic formulation of the thermoelasticity problem. The temperature fields were determined for a thin-walled shell with a stiffener ring by solving the nonstationary problem of heat conductivity. The calculations incorporate heat balance equations using the thermal conductivity and specific heat of the shell and ring materials. Thermoelastic stresses were determined for the calculated temperature field as a function of time. Results show that the heating rate has a strong effect on the stress-strain state of the thin-wall structures in the zone of the edge effect and that a linear increase in heating rate increases thermal stresses almost proportionally. The method was designed for optimizing the time required for startup and shutdown of chemical plant equipment and maximizing plant efficiency.
Response of moderately thick laminated cross-ply composite shells subjected to random excitation
NASA Technical Reports Server (NTRS)
Elishakoff, Isaak; Cederbaum, Gabriel; Librescu, Liviu
1989-01-01
This study deals with the dynamic response of transverse shear deformable laminated shells subjected to random excitation. The analysis encompasses the following problems: (1) the dynamic response of circular cylindrical shells of finite length excited by an axisymmetric uniform ring loading, stationary in time, and (2) the response of spherical and cylindrical panels subjected to stationary random loadings with uniform spatial distribution. The associated equations governing the structural theory of shells are derived upon discarding the classical Love-Kirchhoff (L-K) assumptions. In this sense, the theory is formulated in the framework of the first-order transverse shear deformation theory (FSDT).
Cup Cylindrical Waveguide Antenna
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.
2008-01-01
The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).
Hoffman, E.L.; Ammerman, D.J.
1995-04-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement.
NASA Astrophysics Data System (ADS)
Martin, Matthew; McBride, Ryan; Greenly, John
2012-10-01
Recent experiments on the Z machine at Sandia National Laboratories have demonstrated the measurement of magnetic fields inside an imploding cylindrical liner. The aspect ratio six beryllium liner had a two micron thick aluminum radiographic tracer layer on its inner surface and was driven with approximately 20MA of current over a 100ns rise time. B-dot probes were placed at varying radial positions inside the liner and a time-dependent magnetic field was measured. We compare the results of these experiments to simulations performed with the multi-physics ALEGRA code. These simulations suggest that the measured magnetic field is due to flux frozen into the release from the liner's inner surface. In short pulse mode, the surface magnetic pressure drives a shock into the liner. This shock has a magnetic component which is then frozen into the release wave formed when the shock reaches the liner's free inner surface. Simulations suggest this magnetized low density release then flows past the B-dot probe and is the source of the measured magnetic field. We demonstrate how these experimental measurements could be utilized to infer the amount of magnetic field at the shock front just before it releases into the vacuum. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Experiments on shells under base excitation
NASA Astrophysics Data System (ADS)
Pellicano, Francesco; Barbieri, Marco; Zippo, Antonio; Strozzi, Matteo
2016-05-01
The aim of the present paper is a deep experimental investigation of the nonlinear dynamics of circular cylindrical shells. The specific problem regards the response of circular cylindrical shells subjected to base excitation. The shells are mounted on a shaking table that furnishes a vertical vibration parallel to the cylinder axis; a heavy rigid disk is mounted on the top of the shells. The base vibration induces a rigid body motion, which mainly causes huge inertia forces exerted by the top disk to the shell. In-plane stresses due to the aforementioned inertias give rise to impressively large vibration on the shell. An extremely violent dynamic phenomenon suddenly appears as the excitation frequency varies up and down close to the linear resonant frequency of the first axisymmetric mode. The dynamics are deeply investigated by varying excitation level and frequency. Moreover, in order to generalise the investigation, two different geometries are analysed. The paper furnishes a complete dynamic scenario by means of: (i) amplitude frequency diagrams, (ii) bifurcation diagrams, (iii) time histories and spectra, (iv) phase portraits and Poincaré maps. It is to be stressed that all the results presented here are experimental.
Free Vibration Analysis of Cylindrical Tanks Partially Filled with Liquid
NASA Astrophysics Data System (ADS)
Gonçalves, P. B.; Ramos, N. R. S. S.
1996-08-01
A simple but effective modal solution based on the underlying ideas of the hierarchical finite element method is presented for evaluating the free vibration characteristics of vertical, thin, circular, cylindrical shells, partially or completely filled with liquid and subjected to any variationally consistent set of boundary conditions on the lower and upper boundaries. Effects of static liquid pressure, in-plane inertias and liquid free surface motions are taken into account. The solution of the shell problem is obtained through a procedure in which Sander's shell equations are transformed into a new system of first order ordinary differential equations which are solved by the Galerkin error-minimization procedure. The system variables are those quantities which appear in the boundary conditions on a rotationally symmetric edge of a cylindrical shell. The liquid is taken as non-viscous and incompressible, and the coupling between the deformable shell and this medium is taken into account. The solution for the liquid velocity potential is assumed as a sum of two sets of linear combinations of suitable harmonic functions which satisfy Laplace equation and the relevant boundary conditions. This procedure leads to a determinantal equation for the determination of the shell and liquid natural frequencies and the associated mode shapes. Application of the method to a few selected cases and comparisons of the numerical results with those obtained by other theories and from experiments are found to be good and demonstrate the effectiveness and accuracy of the present methodology.
NASA Astrophysics Data System (ADS)
Zhou, Jie; Bhaskar, Atul; Zhang, Xin
2014-03-01
Sound transmission through a system of double shells, lined with poroelastic material in the presence of external mean flow, is studied. The porous material is modeled as an equivalent fluid because shear wave contributions are known to be insignificant. This is achieved by accounting for the energetically most dominant wave types in the calculations. The transmission characteristics of the sandwich construction are presented for different incidence angles and Mach numbers over a wide frequency range. It is noted that the transmission loss exhibits three dips on the frequency axis as opposed to flat panels where there are only two such frequencies—results are discussed in the light of these observations. Flow is shown to decrease the transmission loss below the ring frequency, but increase this above the ring frequency due to the negative stiffness and the damping effect added by the flow. In the absence of external mean flow, porous material provides superior insulation for most part of the frequency band of interest. However, in the presence of external flow, this is true only below the ring frequency—above this frequency, the presence of air gap in sandwich constructions is the dominant factor that determines the acoustic performance. In the absence of external flow, an air gap always improves sound insulation.
A Geometric Theory of Nonlinear Morphoelastic Shells
NASA Astrophysics Data System (ADS)
Sadik, Souhayl; Angoshtari, Arzhang; Goriely, Alain; Yavari, Arash
2016-08-01
Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.
NASA Technical Reports Server (NTRS)
Giltrud, M. E.; Lucas, D. S.
1979-01-01
The transient response of an elastic cylindrical shell immersed in an acoustic media that is engulfed by a plane wave is determined numerically. The method applies to the USA-STAGS code which utilizes the finite element method for the structural analysis and the doubly asymptotic approximation for the fluid-structure interaction. The calculations are compared to an exact analysis for two separate loading cases: a plane step wave and an exponentially decaying plane wave.
NASA Astrophysics Data System (ADS)
Abrosimov, N. A.; Novosel'tseva, N. A.
2015-11-01
A method for identification of material parameters of the constitutive relations of elastoplastic and viscoelastic deformation of isotropic and composite materials is developed. The method is based on minimizing the functional of the residue of results of numerical and experimental analysis of unsteady deformation of structural elements made of examined materials. The method is tested, and prospects of its application for determining material parameters of viscoelastic and elastoplastic models of nonlinear deformation of cylindrical metal-plastic shells under explosive loading are demonstrated.
Mobility Power Flow (MPF) approach applied to a fluid-loaded shell with a plate bulkhead
NASA Astrophysics Data System (ADS)
McCain, Thomas Scott; Cuschieri, Joseph M.
Cylindrical shells, immersed in heavy fluids, coupled to plate-like bulkheads are commonly encountered in engineered structures. Often the performance of such systems is dependent upon the vibrational characteristics of the system as a whole or parts thereof. In distributed systems such as these, characterization of vibrational energy transmission between substructures, in addition to the vibrational response, is required for complete understanding of the vibrational characteristics of the system. In this paper, the vibrational characteristics of an infinite, thin cylindrical shell, immersed in an unbounded heavy fluid, coupled internally to a damped, circular plate is considered.
NASA Astrophysics Data System (ADS)
McBride, Ryan
2011-06-01
The Z accelerator delivers approximately 4-MV, 26-MA electrical pulses with adjustable current rise times of 100--600 ns, as well as adjustable pulse waveforms. The magnetic pressure produced is used for various applications, including magnetically-driven implosions. The Z-Beamlet Laser (ZBL) is a pulsed (0.3-1.5 ns), multi-kJ, TW-class Nd:glass laser system that provides x-ray radiography capabilities for Z experiments. This talk focuses primarily on the radiography diagnostic used to study the magnetically-driven implosions of initially solid cylindrical shells (also referred to as ``liners''). Specifically, we discuss the 6.151-keV monochromatic backlighting system and its use in obtaining radiographs of imploding beryllium (Be) liners. The high transmission efficiency of 6.151-keV photons in Be allowed us to obtain radiographs with finite transmission throughout the radial extent of the imploding liners. Abel inverting these data, we have obtained time-resolved measurements of the imploding liner's density as a function of both axial and radial location throughout the field of view. These data are allowing us to study magneto-Rayleigh-Taylor (MRT) growth for inertial-confinement-fusion applications, as well as compression-wave propagation for equation-of-state studies (see talks by R.L. Lemke and M.R. Martin). Additionally, Z's pulse-shaping capabilities have enabled us to obtain data for both shock- and quasi-isentropically-compressed Be. Example data from MRT, shock-compression, and quasi-isentropic-compression experiments will be shown. We will also discuss planned upgrades to 25-keV radiography that will allow us to study materials with opacities beyond that of beryllium. This work was done in collaboration with R.W. Lemke, M.R. Martin, J.-P. Davis, M.D. Knudson, D.B. Sinars, S.A. Slutz, C.A. Jennings, M.E. Cuneo, D.G. Flicker, and M.C. Herrmann. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin company, for the US
Circularly-Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Stanton, P. H.
1985-01-01
Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1996-01-01
Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.
NASA Astrophysics Data System (ADS)
Serebryannikov, A. E.; Ozbay, Ekmel
2009-11-01
We demonstrate that a circular dielectric cylinder can be nearly invisible at multiple frequencies when being coated with a ring shell, which is made of an isotropic material simultaneously showing large positive or large negative values of permittivity and permeability. The suggested cloaking mechanism is based on the use of radial resonances, which are similar to those in conventional Fabry-Perot resonators. It can be used for cylindrical objects for a wide range of variation of the diameter-to-wavelength ratio, which includes the values corresponding to subwavelength to resonant-sized objects. The presence of frequency dispersion of the shell material positively affects the possibility of multifrequency operation.
NASA Astrophysics Data System (ADS)
Yilmaz, Mehmet F.; Safronova, Alla S.; Kantsyrev, Victor L.; Esaulov, Andrey A.; Williamson, Kenneth M.; Shrestha, Ishor K.; Weller, Michael E.; Osborne, Glenn C.; Shlyaptseva, Veronica V.
2012-03-01
Radiative emission from alloyed Al single, double and compact cylindrical wire arrays have been studied using the 1 MA Zebra UNR generator. Single planar wire arrays using ten wires and double planar wire arrays and compact cylindrical wire arrays (CCWA) that both had sixteen wires were utilized. The wire composition is Al-5056 (95% of Al and 5% of Mg). We have observed that implosion of these alloyed Al wire loads generated optically thick Al plasmas that can be diagnosed using K-shell Mg lines. In particular, among the considered loads, the K-shell lines of Al from implosions of the double planar wire arrays have the highest optical depth for He-like Al resonance transitions, which occurred near the stagnation phase. X-ray time-gated and time-integrated spectra and pinhole images as well as photoconductive detectors signals were analyzed to provide information on the plasma parameters; electron temperatures and densities, implosion dynamics features and power and yields of the X-ray radiation. Previously developed non-LTE models were applied to model axially-resolved time-integrated, as well as time-gated spatially-integrated, K-shell spectra from Al and Mg. The derived time-dependent electron temperature, density and axial opacity were studied and compared. In addition, the wire ablation dynamics model (WADM) was used to calculate the kinetic energy of the plasma, which with the aid of a Local Thermal Equilibrium (LTE) magneto-hydrodynamics (MHD) simulation, allowed to estimate the precursor and stagnated z-pinch plasma electron temperatures from implosions of wire array loads.
Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C Q
2016-01-01
Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson's ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering. PMID:27624892
Bronnikov, K. A.; Lemos, Jose P. S.
2009-05-15
It is shown that the existence of static, cylindrically symmetric wormholes does not require violation of the weak or null energy conditions near the throat, and cylindrically symmetric wormhole geometries can appear with less exotic sources than wormholes whose throats have a spherical topology. Examples of exact wormhole solutions are given with scalar, spinor and electromagnetic fields as sources, and these fields are not necessarily phantom. In particular, there are wormhole solutions for a massless, minimally coupled scalar field in the presence of a negative cosmological constant, and for an azimuthal Maxwell electromagnetic field. All these solutions are not asymptotically flat. A no-go theorem is proved, according to which a flat (or string) asymptotic behavior on both sides of a cylindrical wormhole throat is impossible if the energy density of matter is everywhere nonnegative.
Batdorf parameter for the spherical shells tectonics
NASA Astrophysics Data System (ADS)
Kikuchi, Kazuhei; Nagahama, Hiroyuki
2015-04-01
The buckling phenomena of the subducting lithosphere due to the sphericity of the earth has been studied as spherical shell tectonics which happen the megaquake along the boundary of subducting lithosphere. The earthquake scale is decided by slab length or arc length. However, a relationship between slab length and the normalized hydrostatic pressure along the bottom circumferential edge of a hemispherical shell has not been clear yet. So, by using the data set of the geometrical parameters for subducting lithosphere andBuckingham's Pi-theorem, we found out a new linear relationship between Batdorf parameter Z = L2(l - v2)0.5/(Rh) for the measurement of the slab length L and the normalized hydrostatic pressure along the bottom circumferential edge of a hemispherical shell Q = qRL2/(π2D), where D = Eh3/[12(1 - v2)] with E = modulus of elasticity of lithosphere, R is Earth radius, q is the hydrostatic pressure along the bottom circumferential edge of a hemispherical shell, and h is the thickness of subducting lithosphere. In the engineering sciences, a similar relationship between Batdorf parameter for the panel length and normalized hydrostatic pressure was proposed for the buckling of partially liquid-filled circular cylindrical shells under hydrostatic pressure. Moreover, by previous researches, the slab length is approximately proportional to the arc length or the lithosphere thickness related to lithosphere age. Therefore, the Batdorf parameter for subducting lithosphere is an important parameter for the spherical shells tectonics.
Response of long shallow cylindrical panels to radial line loads
NASA Technical Reports Server (NTRS)
Johnson, E. R.; Hyer, M. W.; Carper, D. M.
1984-01-01
The large displacement static response of shallow orthotropic panels subjected to lateral loading is examined both theoretically and experimentally. The panels are circular cylindrical open shells which are also thin and long. The straight edges are simply supported at a fixed distance apart, and the curved edges are free. The lateral load is a spatially uniform line load acting along the generator direction of the cylinder, and is directed radially inward toward the center of curvature. The load induces a circumferential thrust, and the panel can, and does, snap-through to an inverted configuration at the buckling load. The effect of load position on the response is also examined. The test panels discussed in the paper are /(90/0)3/S graphite-epoxy laminates. Nominal dimensions are a radius of 60 in., a thickness of 0.060 in., and an arc length of 12 in. Very good agreement between theory and experiment is achieved.
NASA Technical Reports Server (NTRS)
Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)
2001-01-01
Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.
NASA Astrophysics Data System (ADS)
Soldatos, K. P.
1987-11-01
This paper is concerned with the influence of thickness shear deformation and rotatory inertia on the free vibrations of antisymmetric angle-ply laminated circular cylindrical panels. Two kinds of thickness shear deformable shell theories are considered. In the first one, uniformly distributed thickness shear strains through the shell thickness and, therefore, thickness shear correction factors are used. In the second theory a parabolic variation of thickness shear strains and stresses with zero values at the inner and outer shell surfaces is assumed. The analysis is mainly based on Love's approximations but, for purposes of comparison, Donnell's shallow shell approximations are also considered. For a simply supported panel, the equations of motion of the aforementioned theories, as well as of the corresponding classical theories, are solved by using Galerkin's method. For a family of graphite-epoxy angle-ply laminated plates and circular cylindrical panels, numerical results are obtained, compared and discussed and some interesting conclusions are made regarding the shell theories considered as well as the mathematical method employed.
GRIPPING DEVICE FOR CYLINDRICAL OBJECTS
Pilger, J.P.
1964-01-21
A gripping device is designed for fragile cylindrical objects such as for drawing thin-walled tubes. The gripping is done by multiple jaw members held in position by two sets of slots, one defined by keystone-shaped extensions of the outer shell of the device and the other in a movable sleeve held slidably by the extensions. Forward movement oi the sleeve advances the jaws, thereby exerting a controlled, radial pressure on the object being gripped. (AEC)
Energy Science and Technology Software Center (ESTSC)
1999-04-29
The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to sendmore » data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.« less
Hall, Thomas E.
1999-04-29
The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.
Optimum rotationally symmetric shells for flywheel rotors
Blake, Henry W.
2000-01-01
A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.
Holographic measurement of wave propagation in axi-symmetric shells
NASA Technical Reports Server (NTRS)
Evensen, D. A.; Aprahamian, R.; Jacoby, J. L.
1972-01-01
The report deals with the use of pulsed, double-exposure holographic interferometry to record the propagation of transverse waves in thin-walled axi-symmetric shells. The report is subdivided into sections dealing with: (1) wave propagation in circular cylindrical shells, (2) wave propagation past cut-outs and stiffeners, and (3) wave propagation in conical shells. Several interferograms are presented herein which show the waves reflecting from the shell boundaries, from cut-outs, and from stiffening rings. The initial response of the shell was nearly axi-symmetric in all cases, but nonsymmetric modes soon appeared in the radial response. This result suggests that the axi-symmetric response of the shell may be dynamically unstable, and thus may preferentially excite certain circumferential harmonics through parametric excitation. Attempts were made throughout to correlate the experimental data with analysis. For the most part, good agreement between theory and experiment was obtained. Occasional differences were attributed primarily to simplifying assumptions used in the analysis. From the standpoint of engineering applications, it is clear that pulsed laser holography can be used to obtain quantitative engineering data. Areas of dynamic stress concentration, stress concentration factors, local anomalies, etc., can be readily determined by holography.
Imperfection Insensitive Thin Shells
NASA Astrophysics Data System (ADS)
Ning, Xin
The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century. This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells. Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression
Titovich, Alexey S; Norris, Andrew N; Haberman, Michael R
2016-06-01
The use of cylindrical elastic shells as elements in acoustic metamaterial devices is demonstrated through simulations and underwater measurements of a cylindrical-to-plane wave lens. Transformation acoustics of a circular region to a square dictate that the effective density in the lens remain constant and equal to that of water. Piecewise approximation to the desired effective compressibility is achieved using a square array with elements based on the elastic shell metamaterial concept developed by Titovich and Norris [J. Acoust. Soc. Am. 136(4), 1601-1609 (2014)]. The sizes of the elements are chosen based on availability of shells, minimizing fabrication difficulties. The tested device is neutrally buoyant comprising 48 elements of nine different types of commercial shells made from aluminum, brass, copper, and polymers. Simulations indicate a broadband range in which the device acts as a cylindrical to plane wave lens. The experimental findings confirm the broadband quadropolar response from approximately 20 to 40 kHz, with positive gain of the radiation pattern in the four plane wave directions. PMID:27369162
Vibration Analysis of a Railway Carbody Using a Shell Model
NASA Astrophysics Data System (ADS)
Ishiguri, Kotaro; Kobayashi, Yukinori; Tomioka, Takahiro; Hoshino, Yohei
This paper models a railway carbody as a non-circular cylindrical shell with simply-supported ends, where the shell does not have end plates or other equipment attached. Transfer matrix method (TMM) was applied to the analysis of three-dimensional elastic vibration problems on this carbody. A 1/12 size carbody model was made for experimental studies to verify the validity of the numerical simulation. This model has end plates and was placed on soft sponge at both ends to simulate the freely-supported condition. Modal analysis was applied to the experimental model, and natural frequencies and mode shapes of vibration were measured. Comparing the results by TMM and experiments, the natural frequencies and mode shapes of vibration for lower modes show good agreement in spite of the differences in boundary conditions. The effect of stiffening members installed on the experimental model was also investigated.
Computational procedures for postbuckling of composite shells
NASA Technical Reports Server (NTRS)
Stanley, G. M.; Felippa, Carlos A.
1989-01-01
A recently developed finite-element capability for general nonlinear shell analysis, featuring the use of three-dimensional constitutive equations within an efficient resultant-oriented framework, is employed to simulate the postbuckling response of an axially compressed composite cylindrical panel with a circular cutout. The problem is a generic example of modern composite aircraft components for which postbuckling strength (i.e., fail-safety) is desired in the presence of local discontinuities such as holes and cracked stiffeners. While the computational software does a reasonable job of predicting both the buckling load and the qualitative aspects of postbuckling (compared both with experiment and another code) there are some discrepancies due to: (1) uncertainties in the nominal layer material properties, (2) structural sensitivity to initial imperfections, and (3) the neglect of dynamic and local material delamination effects in the numerical model. Corresponding refinements are suggested for the realistic continuation of this type of analysis.
NASA Astrophysics Data System (ADS)
Newton, Isaac; Henry, Richard Conn
2000-07-01
An extraordinarily simple and transparent derivation of the formula for the acceleration that occurs in uniform circular motion is presented, and is advocated for use in high school and college freshman physics textbooks.
NASA Technical Reports Server (NTRS)
Ko, William L.
1994-01-01
Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading). The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were investigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio. A mechanical stress analysis of the tank also was conducted when the tank was under: (1) cryogen liquid pressure loading; (2) internal pressure loading; and (3) tank-wall inertia loading. Deformed shapes of the cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on the tank wall for the strain-gage installations. The accuracies of solutions from different finite element models were compared.
Self-referenced interferometer for cylindrical surfaces.
Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef
2015-11-20
We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm. PMID:26836560
Cylindrical Piezoelectric Fiber Composite Actuators
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
NASA Astrophysics Data System (ADS)
Narita, Y.; Nitta, T.
1998-07-01
Free vibration and corresponding optimal design problems are solved for laminated composite shallow shells of rectangular planform. The shells have symmetric laminated construction and are supported by shear diaphragms along the edges. The first-order transverse shear deformation is assumed in the Donnell type shell theory to account for the thickness shear effect, and an analytical solution is presented which is exact for cross-ply laminates and is approximate for angle-ply laminates. A simplified formula is also derived by neglecting inplane inertia terms. Analytical solutions with/without the inplane inertia terms from the classical thin shell theory are also shown. In numerical examples, natural frequencies are presented for various types of shell curvature, e.g., circular cylindrical, spherical and hyperbolic paraboloidal shells. Fibre orientation angles, which cause the maximized fundamental frequencies of the alternating angle-ply shells, are determined, and effects of using the four different vibration solutions are discussed on the optimal frequencies and fibre orientation angles. Questions of how the different solutions quantitatively affect the optimal design results and which solution is recommended in the present type of optimization problems are clarified in the conclusions.
NASA Astrophysics Data System (ADS)
Bich, Dao Huy; Nguyen, Nguyen Xuan
2014-03-01
We thank Professor Amabili for his discussion of our paper. We would like to give the following responses: In our paper we have established the explicit equations in terms of displacement components (Eq. (15)) based on the improved Donnell equations. This system of equations is independent of the choice of solutions in the following sections of our paper. We used the single-mode solution w = W (t) sin (mπx / L) sin (ny / R) because we utilized this solution in the previous studies [1-3] as shown in our paper. We admit that we have not profoundly studied the axisymmetric contribution when we employed such a solution.
Multipole Analysis of Circular Cylindircal Magnetic Systems
J Selvaggi
2006-01-09
This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six-pole permanent magnet motor in terms of
Flexural Vibrations of Circular Beams
NASA Astrophysics Data System (ADS)
Silverman, I. K.
1998-03-01
For circular cylindrical beams, the Timoshenko theory, which includes shear and rotary effects, can be applied by introducing a constantK‧=0·9. The study presented here takes into account the actual configuration and thus makes it an integral part of the analysis. A variational approach previously used [7] is followed. A simplification of the three-dimensional problem is obtained using the inverse method due to St. Venant. A biquadratic equation yields numerical results for the natural frequencies of the first three modes for the following cases: simply supported, fixed-fixed, free-free and fixed-free.
Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow
NASA Astrophysics Data System (ADS)
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2016-06-01
Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.
Leung, Ka-Ngo
2009-12-29
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Leung, Ka-Ngo
2008-04-22
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Leung, Ka-Ngo
2005-06-14
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Cylindrically symmetric wormholes
Kuhfittig, Peter K.F.
2005-05-15
This paper discusses traversable wormholes that differ slightly but significantly from those of the Morris-Thorne type under the assumption of cylindrical symmetry. The throat is a piecewise smooth cylindrical surface resulting in a shape function that is not differentiable at some value. It is proposed that the regular derivative be replaced by a one-sided derivative at this value. The resulting wormhole geometry satisfies the weak energy condition.
Dual frequency launcher for circularly polarized antenna
NASA Astrophysics Data System (ADS)
Chen, Ming H.
1989-10-01
A dual frequency antenna feed is formed from a central, circular waveguide connected to the flat boundry of circular, disk-shaped resonant cavity. A second circular waveguide is connected one end of a disk-shaped resonant cavity. Energy of one frequency enters and exits the cavity along the common axis of the waveguides. Energy of the second frequency is introduced to the same resonant cavity by way of a plurality of bandpass filters, also connected to the cavity. This energy enters by way of slots in the cylindrical walls of the cavity. The central circular waveguide is propagating at one frequency but cut off at the second frequency. These bandpass filters are at this pass band for the second frequency, but at the rejection band for the first frequency. Therefore, the isolation between these two input ports are obtained.
Layzer type models for pressure driven shells
Hurricane, O A
2004-09-16
Models for the nonlinear instability of finite thickness shells driven by pressure are constructed in the style of Layzer. Equations for both Cartesian and cylindrically convergent/divergent geometries are derived. The resulting equations are appropriate for incompressible shells with unity Atwood number. Predictions from the equations compare well with two-dimensional simulations.
NASA Technical Reports Server (NTRS)
Cohen, Gerald A.; Haftka, Raphael T.
1989-01-01
Buckling load sensitivity calculations in the shell-of-revolution program FASOR are discussed. This development is based on Koiter's initial postbuckling theory, which has been generalized to include the effect of stiffness changes, as well as geometric imperfections. The implementation in FASOR is valid for anisotropic, as well as orthotropic, shells. Examples are presented for cylindrical panels under axial compression, complete cylindrical shells in torsion, and antisymmetric angle-ply cylindrical panels under edge shear.
Gravitational radiation from a cylindrical naked singularity
Nakao, Ken-ichi; Morisawa, Yoshiyuki
2005-06-15
We construct an approximate solution which describes the gravitational emission from a naked singularity formed by the gravitational collapse of a cylindrical thick shell composed of dust. The assumed situation is that the collapsing speed of the dust is very large. In this situation, the metric variables are obtained approximately by a kind of linear perturbation analysis in the background Morgan solution which describes the motion of cylindrical null dust. The most important problem in this study is what boundary conditions for metric and matter variables should be imposed at the naked singularity. We find a boundary condition that all the metric and matter variables are everywhere finite at least up to the first order approximation. This implies that the spacetime singularity formed by this high-speed dust collapse is very similar to that formed by the null dust and the final singularity will be a conical one. Weyl curvature is completely released from the collapsed dust.
Cylindrically converging blast waves in air
NASA Astrophysics Data System (ADS)
Matsuo, H.; Nakamura, Y.
1981-07-01
Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.
Simple Analytic Expressions for the Magnetic Field of a Circular Current Loop
NASA Technical Reports Server (NTRS)
Simpson, James C.; Lane, John E.; Immer, Christopher D.; Youngquist, Robert C.; Steinrock, Todd (Technical Monitor)
2001-01-01
Analytic expressions for the magnetic induction and its spatial derivatives for a circular loop carrying a static current are presented in Cartesian, spherical and cylindrical coordinates. The solutions are exact throughout all space outside the conductor.
Microfabricated cylindrical ion trap
Blain, Matthew G.
2005-03-22
A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.
ERIC Educational Resources Information Center
Jones, Dustin L.
2009-01-01
The author describes an activity where prospective mathematics teachers made hypotheses about the dimensions of a fair cylindrical die and conducted experiments with different cylinders. He also provides a model that estimates the probability that a cylinder would land on the lateral surface, depending on the height and diameter of the cylinder.…
Tool for Torquing Circular Electrical-Connector Collars
NASA Technical Reports Server (NTRS)
Gaulke, Kathryn; Werneth, Russell; Grunsfeld, John; O'Neill, Patrick; Snyder, Russ
2006-01-01
An improved tool has been devised for applying torque to lock and unlock knurled collars on circular electrical connectors. The tool was originally designed for, and used by, astronauts working in outer space on the Hubble Space Telescope (HST). The tool is readily adaptable to terrestrial use in installing and removing the same or similar circular electrical connectors as well as a wide variety of other cylindrical objects, the tightening and loosening of which entail considerable amounts of torque.
Parametric vibrations and stability of viscoelastic shells
NASA Astrophysics Data System (ADS)
Ilyasov, M. H.
2010-05-01
The problem of dynamic stability of viscoelastic extremely shallow and circular cylindrical shells with any hereditary properties, including time-dependence of Poisson’s ratio, are reduced to the investigation of stability of the zero solution of an ordinary integro-differential equation with variable coefficients. Using the Laplace integral transform, an integro-differential equation is reduced to the new integro-differential one of which the main part coincides with the damped Hill equation and the integral part is proportional to the product of two small parameters. Changing this equation for the system of two linear equations of the first order and using the averaging method, the monodromy matrix of the obtained system is constructed. Considering the absolute value of the eigen-values of monodromy matrix is greater than unit, the condition for instability of zero solution is obtained in the three-dimensional space of parameters corresponding to the frequency, viscosity and amplitude of external action. Analysis of form and size of instability domains is carried out.
Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments
NASA Astrophysics Data System (ADS)
Kurpa, Lidia; Pilgun, Galina; Amabili, Marco
2007-10-01
Geometrically nonlinear vibrations of shallow circular cylindrical panels with complex shape of the boundary are considered. The R-functions theory and variational methods are used to study the problem. The R-functions method (RFM) allows constructing in analytical form the sequence of basis functions satisfying the given boundary conditions in case of complex shape of the boundary. The problem is reduced to a single second-order differential equation with quadratic and cubic nonlinear terms. The method developed has been initially applied to study free vibrations of shallow circular cylindrical panels with rectangular base for different boundary conditions: (i) clamped edges, (ii) in-plane immovable simply supported edges, (iii) classically simply supported edges, and (iv) in-plane free simply supported edges. Then, the same approach is applied to a shell with complex shape of the boundary. Experiments have been conducted on an aluminum panel with complex shape of the boundary in order to identify the nonlinear response of the fundamental mode; these experimental results have been compared to numerical results.
NASA Astrophysics Data System (ADS)
Bílek, M.; Jungwiert, B.; Ebrová, I.; Bartošková, K.
2015-03-01
Context. Many ellipticals are surrounded by round stellar shells probably stemming from minor mergers. A new method for constraining gravitational potential in elliptical galaxies has recently been suggested. It uses the spectral line profiles of these shells to measure the circular velocity at the edge of the shell and the expansion velocity of the shell itself. MOND is an alternative to the dark matter framework aiming to solve the missing mass problem. Aims: We study how the circular and expansion velocities behave in MOND for large shells. Methods: The asymptotic behavior for infinitely large shells is derived analytically. The applicability of the asymptotic results for finitely sized shells is studied numerically on a grid of galaxies modeled with Sérsic spheres. Results: Circular velocity settles asymptotically at a value determined by the baryonic mass of the galaxy forming the baryonic Tully-Fisher relation known for disk galaxies. Shell expansion velocity also becomes asymptotically constant. The expansion velocities of large shells form a multibranched analogy to the baryonic Tully-Fisher relation, together with the galactic baryonic masses. For many - but not all - shell galaxies, the asymptotic values of these two types of velocities are reached under the effective radius. If MOND is assumed to work in ellipticals, then the shell spectra allow many details of the history to be revealed about the formation of the shell system, including its age. The results pertaining to circular velocities apply to all elliptical galaxies, not only those with shells.
Cylindrically symmetric electrohydrodynamic patterning.
Deshpande, Paru; Pease, Leonard F; Chen, Lei; Chou, Stephen Y; Russel, William B
2004-10-01
Cylindrically symmetric structures such as concentric rings and rosettes arise out of thin polymeric films subjected to strong electric fields. Experiments that formed concentric rings and theory capable of explaining these and other cylindrical structures are presented. These rings represent an additional member of a class of structures, including pillars and holes, formed by electrohydrodynamic patterning of thin films, occasionally referred to as lithographically induced self-assembly. Fabrication of a set of concentric rings begins by spin coating a thin poly(methyl methacrylate) film onto a silicon wafer. A mask is superimposed parallel to the film leaving a similarly thin air gap. Electric fields, acting in opposition to surface tension, destabilize the free interface when raised above the glass transition temperature. Central pillars nucleate under small cylindrical protrusions patterned on the mask. Rings then emerge sequentially, with larger systems having as many as 10 fully formed rings. Ring-to-ring spacings and annular widths, typically on the order of a micron, are approximately constant within a concentric cluster. The formation rate is proportional to the viscosity and, consequently, has the expected Williams-Landel-Ferry dependence on temperature. In light of these developments we have undertaken a linear stability analysis in cylindrical coordinates to describe these rings and ringlike structures. The salient feature of this analysis is the use of perturbations that incorporate their radial dependence in terms of Bessel functions as opposed to the traditional sinusoids of Cartesian coordinates. The theory predicts approximately constant ring-to-ring spacings, constant annular widths, and growth rates that agree with experiment. A secondary instability is observed at higher temperatures, which causes the rings to segment into arcs or pillar arrays. The cylindrical theory may be generalized to describe hexagonal pillar/hole packing, gratings, and
Cylindrically polarized nondiffracting optical pulses
NASA Astrophysics Data System (ADS)
Ornigotti, Marco; Conti, Claudio; Szameit, Alexander
2016-07-01
We extend the concept of radially and azimuthally polarized optical beams to the polychromatic domain by introducing cylindrically polarized nondiffracting optical pulses. In particular, we discuss in detail the case of cylindrically polarized X-waves, both in the paraxial and nonparaxial regime. The explicit expressions for the electric and magnetic fields of cylindrically polarized X-waves are also reported.
Structural Concepts Study of Non-circular Fuselage Configurations
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivel
1996-01-01
A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.
Polar POLICRYPS diffractive structures generate cylindrical vector beams
Alj, Domenico; Caputo, Roberto Umeton, Cesare; Paladugu, Sathyanarayana; Volpe, Giovanni
2015-11-16
Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.
Static cylindrically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Fjällborg, Mikael
2007-05-01
We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.
Magnetically induced cylindrical stress waves in a thermoelastic conductor
NASA Technical Reports Server (NTRS)
Chian, C. T.; Moon, F. C.
1981-01-01
The problem of stress wave generation in a linear thermoelastic solid by a pulsed magnetic field is investigated both analytically and experimentally for a cylindrically symmetric conducting solid. A dynamic response analysis is developed to correlate magnetic, thermal, and stress fields in the solid with the time history of the electric current. In the experiment, a transient magnetic field was applied normal to a large conducting plate with a circular hole. Initially the field was confined to the interior of the circular hole. The field was generated by discharging a large capacitor bank through a solenoidal coil. The plane-stress cylindrical stress waves are 1-D in nature. The relative effects of the magnetic body force and thermoelastic stresses, both generated by the electromagnetic field, are assessed.
Conformal approach to cylindrical DLA
NASA Astrophysics Data System (ADS)
Taloni, A.; Caglioti, E.; Loreto, V.; Pietronero, L.
2006-09-01
We extend the conformal mapping approach elaborated for the radial diffusion limited aggregation model (DLA) to cylindrical geometry. We introduce in particular a complex function which allows a cylindrical cluster to be grown using as an intermediate step a radial aggregate. The aggregate grown exhibits the same self-affine features as the original cylindrical DLA. The specific choice of the transformation allows us to study the relationship between the radial and the cylindrical geometry. In particular the cylindrical aggregate can be seen as a radial aggregate with particles of size increasing with the radius. On the other hand, the radial aggregate can be seen as a cylindrical aggregate with particles of size decreasing with the height. This framework, which shifts the point of view from the geometry to the size of the particles, can open the way to more quantitative studies on the relationship between radial and cylindrical DLA.
Postbuckling analysis of composite laminated cylindrical panels under axial compression
NASA Astrophysics Data System (ADS)
Kweon, J. H.; Hong, C. S.
1993-08-01
The nonlinear finite element method is used to analyze the postbuckling behavior of composite laminated cylindrical panels with various stacking sequences under compression. The analysis is based on the updated Lagrangian formulation, an eight-node degenerated shell element, and an improved load-increment method based on the arc-length scheme. Results reveal that the postbuckling loads carrying capacities of laminated cylindrical panels under compression are largely dependent on the bending stiffness component. Not only the buckling loads but also the postbuckling load-carrying capacities should be considered in designing the structure.
Four-Sector Cylindrical Radio-Frequency Ion Trap
NASA Technical Reports Server (NTRS)
Melbourne, Ruthann K.; Prestage, John D.; Maleki, Lutfollah
1992-01-01
Proposed linear radio-frequency ion trap consists of closed metal cylinder partitioned into four equal cylindrical-sector electrodes and two circular end electrodes. Features include relatively large ion-storage capacity and shielding against external fields. Used in frequency-standard laboratories to confine 199Hg+ ions electrodynamically in isolation from external environment. Similar to device described in "Linear Ion Trap for Atomic Clock" (NPO-17758).
Chirped microlens arrays for diode laser circularization and beam expansion
NASA Astrophysics Data System (ADS)
Schreiber, Peter; Dannberg, Peter; Hoefer, Bernd; Beckert, Erik
2005-08-01
Single-mode diode lasers are well-established light sources for a huge number of applications but suffer from astigmatism, beam ellipticity and large manufacturing tolerances of beam parameters. To compensate for these shortcomings, various approaches like anamorphic prism pairs and cylindrical telescopes for circularization as well as variable beam expanders based on zoomed telescopes for precise adjustment of output beam parameters have been employed in the past. The presented new approach for both beam circularization and expansion is based on the use of microlens arrays with chirped focal length: Selection of lenslets of crossed cylindrical microlens arrays as part of an anamorphic telescope enables circularization, astigmatism correction and divergence tolerance compensation of diode lasers simultaneously. Another promising application of chirped spherical lens array telescopes is stepwise variable beam expansion for circular laser beams of fiber or solid-state lasers. In this article we describe design and manufacturing of beam shaping systems with chirped microlens arrays fabricated by polymer-on-glass replication of reflow lenses. A miniaturized diode laser module with beam circularization and astigmatism correction assembled on a structured ceramics motherboard and a modulated RGB laser-source for photofinishing applications equipped with both cylindrical and spherical chirped lens arrays demonstrate the feasibility of the proposed system design approach.
Nonideal contact in a composite shell structure with a deformable filler
Bedzir, A.A.; Shatskii, I.P.; Shopa, V.M.
1995-11-01
In [8], a model was proposed for investigating the frictional contact accompanying the compression of a deformable filler in an elastic cylindrical shell. The elastic equilibrium of coaxial continuous cylindrical shells and a deformable filler was considered in [5], taking account of the friction at the contact surfaces. In the present work, the stress-strain state and pliability of a shell system consisting of two coaxial cylindrical shells, one slotted and one continuous, that are separated by elastic filler is investigated in conditions of frictional contact. The model developed here serves as the basis for calculating the slotted elastic elements of drill shock absorbers.
Characterization of Circular RNAs.
Zhang, Yang; Yang, Li; Chen, Ling-Ling
2016-01-01
Accumulated lines of evidence reveal that a large number of circular RNAs are produced in transcriptomes from fruit fly to mouse and human. Unlike linear RNAs shaped with 5' cap and 3' tail, circular RNAs are characterized by covalently closed loop structures without open terminals, thus requiring specific treatments for their identification and validation. Here, we describe a detailed pipeline for the characterization of circular RNAs. It has been successfully applied to the study of circular intronic RNAs derived from intron lariats (ciRNAs) and circular RNAs produced from back spliced exons (circRNAs) in human. PMID:26721494
NASA Astrophysics Data System (ADS)
Sharma, J. N.; Pathania, Vijayata
2005-03-01
The propagation of thermoelastic waves along circumferential direction in homogeneous, transversely isotropic, cylindrical curved plates has been investigated in the context of theories of thermoelasticity. This type of study is important for ultrasonic non-destructive inspection of large-diameter pipes, which helps in the health monitoring of ailing infrastructure. Longitudinal stress-corrosion cracks are usually temperature dependent and can be detected more efficiently by inducing circumferential waves; hence the study of generalized thermoelastic wave propagation in the circumferential direction in a pipe wall is essential. Mathematical modeling of the problem of obtaining dispersion curves for curved transversely isotropic thermally conducting elastic plates leads to coupled differential equations. The model has been simplified by using the Helmholtz decomposition technique and the resulting equations have been solved by using separation of variable method to obtain the secular equations in isolated mathematical conditions for the plates with stress-free or rigidly fixed, thermally insulated and isothermal boundary surfaces. The closed form solutions are also obtained under different situations and conditions. The longitudinal shear motion and axially symmetric shear vibration modes get decoupled from the rest of the motion and are not affected by thermal variations, whereas for the non-axially symmetric case of plane strain vibrations, these modes remain coupled and are affected by temperature changes. Moreover, these vibration modes are found to be dispersive and dissipative in character. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a zinc plate. The obtained results are also compared with those available in the literature in case of waves in cylindrical shell/circular annulus in the absence of thermomechanical coupling and thermal relaxation times.
Measurement of cylindrical parts
NASA Astrophysics Data System (ADS)
Knight, Paul Douglas, Jr.
The form of cylindrical parts has been traditionally evaluated using stylus-based mechanical instruments. The Tropel Corporation has developed a grazing incidence interferometer (GII) for the measurement of cylindrical parts. The repeatability of this instrument due to various instrument uncertainties was measured. Differing instrument configurations that produce the same systematic error were determined to produce a zonal calibration method for determining systematic error over the full range of the instrument, given knowledge of the error in a single zone. The effect of the aperture stop on the response of the imaging system to axially sinusoidal artifacts was simulated. Diamond-turned axially sinusoidal artifacts, with amplitude of order1 um and spatial wavelength of order10 mm, were measured to test the axial response of the interferometer. The modulation transfer function of the instrument's imaging system, measured using a knife edge test, predicts the response observed with the sinusoidal artifacts. A diffraction analysis predicts that the measured axial form is modified by a second order envelope function with phase that varies with the relative position of the imaging system focal plane and part position. A compensation method is proposed for this effect. A comparison of roundness measurements by both a traditional stylus-based instrument and the GII was performed demonstrating that the roundness measurements of the two instruments are equivalent when the measurements are properly corrected for the differing effects of surface finish.
Structural durability of stiffened composite shells
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Rivers, James M.; Murthy, Pappu L. N.; Chamis, Christos C.
1992-01-01
The durability of a stiffened composite cylindrical shell panel is investigated under several loading conditions. An integrated computer code is utilized for the simulation of load induced structural degradation. Damage initiation, growth, and accumulation up to the stage of propagation to fracture are included in the computational simulation. Results indicate significant differences in the degradation paths for different loading cases. The effects of combined loading on structural durability and ultimate structural strength of a stiffened shell are assessed.
Experimental Simulation of Boiling Phenomena with a Cylindrical Annulus Moderator Cell
Lee, C.H.; Lee, D.J.; Chan, Y.K.; Chang, C.J.
2002-07-01
The improvement and utilization promotion project of the Taiwan Research Reactor (TRR-II) has been carried out at the Institute of Nuclear Energy Research (INER). The Cold Neutron Source (CNS) with a two-phase thermosyphon will be installed in the heavy water reactor. The hydrogen cold loop consists of a cylindrical moderator cell, a single transfer tube, and a condenser. A cylindrical annulus moderator cell consists of the outer shell and the inner shell of which bottom part is open. A series of mockup tests were performed by using the full-scale mock-up test facility and Freon-11 as a working fluid. The test results show that the inner shell contains only vapor and the outer shell contains boiling liquid for simulating the TRR-II CNS in the full power operations. The liquid level in the outer shell is stable without producing a sudden bubbling against the increase of 30% power. (authors)
Cracked shells under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Lelale, F.
1982-01-01
A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Stress concentrations in cylindrically orthotropic plates with radial variation of the compliances
NASA Technical Reports Server (NTRS)
Muser, C.; Hoff, N . J.
1982-01-01
The stresses in a circular composite plate with a central circular hole in which the material is cylindrically orthotropic and the compliances vary with distance from the center are calculated. A numerical example shows that an arrangement of the fibers at predominantly + or - 45 deg to the radii in the neighborhood of the hole reduces the stress concentrations significantly in an otherwise quasi-isotropic plate.
Eddy current distributions in cylindrical samples: effect on equivalent sample resistance.
Harpen, M D
1989-09-01
We present a general technique for the determination of eddy current distributions within an irregularly shaped conducting sample in the uniform field of an NMR RF coil. Also presented is a general expression for the sample-induced coil resistance. The technique is applied specifically to a conducting cylindrical solid. Unlike previous descriptions of cylindrical samples in solenoidal coils where the induction is parallel to the axis of the cylinder and eddy current streamlines are circular, we treat the case where the induction is perpendicular to the cylindrical axis and where consequently eddy current streamlines take on an irregular shape. PMID:2798558
Cryogenic line insulation made from prefabricated polyurethane shells
NASA Technical Reports Server (NTRS)
Lerma, G.
1975-01-01
Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.
NASA Astrophysics Data System (ADS)
Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.
2016-07-01
We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.
Stage Cylindrical Immersive Display
NASA Technical Reports Server (NTRS)
Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.
2011-01-01
Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of
Acoustic radiation of a submerged cylindrical shell in low frequency.
Van de Loock, Julien; Décultot, Dominique; Léon, Fernand; Chati, Farid; Maze, Gérard; Rajaona, Dominique Raphael; Klauson, Aleksander
2013-01-01
The evaluation of sound pressure levels produced by submerged structures is a part of regulations on underwater noise pollution. The purpose of this work is the study of the underwater acoustic radiation of a stainless steel tube subjected to vibrations generated by a shock obtained by using a hammer. The vibrations of the tube, placed successively in air and in water, are measured by using accelerometers. In water, the acoustic radiation measurements are performed by using a hydrophone. Results are presented as frequency spectra and are confronted with results of the elastic theory. PMID:23298014
Shape Optimization of Cylindrical Shell for Interior Noise
NASA Technical Reports Server (NTRS)
Robinson, Jay H.
1999-01-01
In this paper an analytic method is used to solve for the cross spectral density of the interior acoustic response of a cylinder with nonuniform thickness subjected to turbulent boundary layer excitation. The cylinder is of honeycomb core construction with the thickness of the core material expressed as a cosine series in the circumferential direction. The coefficients of this series are used as the design variable in the optimization study. The objective function is the space and frequency averaged acoustic response. Results confirm the presence of multiple local minima as previously reported and demonstrate the potential for modest noise reduction.
New optical cylindrical microresonators
NASA Astrophysics Data System (ADS)
Gun'ko, Yurii K.; Balakrishnan, Sivakumar; McCarthy, Joseph E.; Rakovich, Yuri P.; Donegan, John F.; Perova, Tatiana S.; Melnikov, Vasily
2007-10-01
In this paper we describe a novel technique for the fabrication of aluminosilicate microfibres and microtubes which are shown to act as optical cylindrical microresonators. The alumosilicate microfibres and microtubes were fabricated by using vacuum-assisted wetting and filtration of silica gel through a microchannel glass matrix. The microfibres and microtubes were studied using Scanning Electron Microscopy (SEM), micro-photoluminescence spectroscopy and fluorescence lifetime imaging confocal microscopy. In the emission spectra of the micro-resonators we find very narrow periodic peaks corresponding to the whispering gallery modes of two orthogonal polarizations with quality factors up to 3200. A strong enhancement in photoluminescence decay rates at high excitation power demonstrates the occurrence of amplified spontaneous emission from a single microtube. These microtubes show a large evanescent field extending many microns beyond the tube radius. Potential applications for these novel microresonators will be in the area of optical microsensors for a single molecule detection of biological and chemical species, including anti-terrorism and defense sectors.
Shearfree cylindrical gravitational collapse
Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.
2009-09-15
We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.
2. Northwest circular bastion, seen from edge of southwest circular ...
2. Northwest circular bastion, seen from edge of southwest circular bastion wall. Metal roof beams extend up to form peak. World War II gun installation at right. - Fort Hamilton, Northwest Circular Bastion, Rose Island, Newport, Newport County, RI
Adaptive piezoelectric shell structures: theory and experiments
NASA Astrophysics Data System (ADS)
Tzou, H. S.; Zhong, J. P.
1993-07-01
Active "smart" space and mechanical structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g. flexible space structures, flexible robots, "smart" machines etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. Electromechanical equations of motion and generalised boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilising the converse piezoelectric effect. Applications of the theory is demonstrated in a bimorph beam case and a cylindrical shell case. Frequency manipulation of the bimorph beam is studied theoretically and experimentally. Damping control of the cylindrical shell via in-plane membrane forces is also investigated.
Cylindrical Projection of Jupiter
NASA Technical Reports Server (NTRS)
1979-01-01
This computer generated map of Jupiter was made from 10 color images of Jupiter taken Feb. 1, 1979, by Voyager 1, during a single, 10 hour rotation of the planet. Computers at Jet Propulsion Laboratory's Image Processing Lab then turned the photos into this cylindrical projection. Such a projection is invaluable as an instantaneous view of the entire planet. Along the northern edge of the north equatorial belt (NEB) are four dark brown, oblong regions believed by some scientists to be openings in the more colorful upper cloud decks, allowing the darker clouds beneath to be seen. The broad equatorial zone (EZ) is dominated by a series of plumes, possibly regions of intense convective activity, encircling the entire planet. In the southern hemisphere the Great Red Spot is located at about 75 degrees longitude. South of the Great Red Spot in the south temperate zone (STeZ) three large white ovals, seen from Earth-based observatories for the past few decades, are located at 5 degrees, 85 degrees and 170 degrees longitude. Resolution in this map is 375 miles (600 kilometers). Since Jupiter's atmospheric features drift around the planet, longitude is based on the orientation of the planet's magnetic field. Symbols at right edge of photo denote major atmospheric features (dark belts and light zones): NTeZ - north temperate zone; NTrZ - north tropical zone; NEB - north equatorial belt; EZ - equatorial zone; SEB - south equatorial belt; STrZ - south tropical zone; and STeZ - south temperate zone. Voyager belt; EZ - equatorial zone; SEB - south tropical zone; Voyager is managed for NASA's Office of Space Science by Jet Propulsion Laboratory.
Optimization of Cylindrical Hall Thrusters
Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fi
2007-07-24
The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation. __________________________________________________
Optimization of Cylindrical Hall Thrusters
Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fisch
2007-11-27
The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.
Cylindrical millimeter-wave imaging technique and applications
NASA Astrophysics Data System (ADS)
Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.
2006-05-01
The wideband microwave or millimeter-wave cylindrical imaging technique has been developed at Pacific Northwest National Laboratory (PNNL) for several applications including concealed weapon detection and automated body measurement for apparel fitting. This technique forms a fully-focused, diffraction-limited, three-dimensional image of the person or imaging target by scanning an inward-directed vertical array around the person or imaging target. The array is switched electronically to sequence across the array at high-speed, so that a full 360 degree mechanical scan over the cylindrical aperture can occur in 2-10 seconds. Wideband, coherent reflection data from each antenna position are recorded in a computer and subsequently reconstructed using an FFT-based image reconstruction algorithm developed at PNNL. The cylindrical scanning configuration is designed to optimize the illumination of the target and minimize non-returns due to specular reflection of the illumination away from the array. In this paper, simulated modeling data are used to explore imaging issues that affect the cylindrical imaging technique. Physical optics scattering simulations are used to model realistic returns from curved surfaces to determine the extent to which specular reflection affects the signal return and subsequent image reconstruction from these surfaces. This is a particularly important issue for the body measurement application. Also, an artifact in the imaging technique, referred to as "circular convolution aliasing" is discussed including methods to reduce or eliminate it. Numerous simulated and laboratory measured imaging results are presented.
Benz, Zachary; McCain, Jonathan; Bauer, Travis
2008-06-03
Provides the shell of a plugin based application environment that builds on MVC Framework to allow one to rapidly construct an application by using a collection of plugins. The MVC Shell is implemented in C# as a .NET 2.0 application that can then be used as a shell for building a plugin based application. The infrastructure allows for dynamically processing a specified collection of plugins in order to determine the functionality of the application, where all plugins operate within the context of the underlying MVC Framework environment.
Energy Science and Technology Software Center (ESTSC)
2008-06-03
Provides the shell of a plugin based application environment that builds on MVC Framework to allow one to rapidly construct an application by using a collection of plugins. The MVC Shell is implemented in C# as a .NET 2.0 application that can then be used as a shell for building a plugin based application. The infrastructure allows for dynamically processing a specified collection of plugins in order to determine the functionality of the application, wheremore » all plugins operate within the context of the underlying MVC Framework environment.« less
Precise DOA Estimation Using SAGE Algorithm with a Cylindrical Array
NASA Astrophysics Data System (ADS)
Takanashi, Masaki; Nishimura, Toshihiko; Ogawa, Yasutaka; Ohgane, Takeo
A uniform circular array (UCA) is a well-known array configuration which can accomplish estimation of 360° field of view with identical accuracy. However, a UCA cannot estimate coherent signals because we cannot apply the SSP owing to the structure of UCA. Although a variety of studies on UCA in coherent multipath environments have been done, it is impossible to estimate the DOA of coherent signals with different incident polar angles. Then, we have proposed Root-MUSIC algorithm with a cylindrical array. However, the estimation performance is degraded when incident signals arrive with close polar angles. To solve this problem, in the letter, we propose to use SAGE algorithm with a cylindrical array. Here, we adopt a CLA Root-MUSIC for the initial estimation and decompose two-dimensional search to double one-dimensional search to reduce the calculation load. The results show that the proposal achieves high resolution with low complexity.
Inflation of stressed cylindrical tubes: an experimental study
NASA Astrophysics Data System (ADS)
Guo, Zhiming; Wang, Shibin; Li, Linan; Ji, Hongwei; Wang, Zhiyong; Cai, Songbao
2014-06-01
The inflation of an initially stressed cylindrical shell provides a good illustration of the phenomenon of the initiation and propagation of an instability, which shares the same mathematical and mechanical features with a variety of other strain localization phenomena in engineering structures and materials. The high speed CCD camera and digital image processing system were used to measure the 3D shape of the inflated cylindrical tube. The localized bulge of a cylindrical tube with closed ends forms when the internal pressure reaches a critical value Pcr. As more air is filled into the tube, the pressure drops but the radius at the centre of the bulge will increase until it reaches a maximum value rmax. With continued inflation, the pressure stays at a constant value Pp. The purpose of this study is to investigate the critical and propagation pressures in the tubes and the profile outside when the shells under axial tension and internal pressure were inflating. We focus on the influence of the axial tension on the critical pressure. In this paper the problem is explored through experimental efforts. A series of experiments were conducted on commercially available natural rubber latex tubes involving different geometries and initial axial tensions, which were regarded as isotropic, homogeneous, incompressible and hyper-elastic materials.
Kim, Joshua; Ionascu, Dan; Zhang, Tiezhi
2013-01-01
Purpose: To accelerate iterative algebraic reconstruction algorithms using a cylindrical image grid. Methods: Tetrahedron beam computed tomography (TBCT) is designed to overcome the scatter and detector problems of cone beam computed tomography (CBCT). Iterative algebraic reconstruction algorithms have been shown to mitigate approximate reconstruction artifacts that appear at large cone angles, but clinical implementation is limited by their high computational cost. In this study, a cylindrical voxelization method on a cylindrical grid is developed in order to take advantage of the symmetries of the cylindrical geometry. The cylindrical geometry is a natural fit for the circular scanning trajectory employed in volumetric CT methods such as CBCT and TBCT. This method was implemented in combination with the simultaneous algebraic reconstruction technique (SART). Both two- and three-dimensional numerical phantoms as well as a patient CT image were utilized to generate the projection sets used for reconstruction. The reconstructed images were compared to the original phantoms using a set of three figures of merit (FOM). Results: The cylindrical voxelization on a cylindrical reconstruction grid was successfully implemented in combination with the SART reconstruction algorithm. The FOM results showed that the cylindrical reconstructions were able to maintain the accuracy of the Cartesian reconstructions. In three dimensions, the cylindrical method provided better accuracy than the Cartesian methods. At the same time, the cylindrical method was able to provide a speedup factor of approximately 40 while also reducing the system matrix storage size by 2 orders of magnitude. Conclusions: TBCT image reconstruction using a cylindrical image grid was able to provide a significant improvement in the reconstruction time and a more compact system matrix for storage on the hard drive and in memory while maintaining the image quality provided by the Cartesian voxelization on a
Concentration profiles in drying cylindrical filaments
NASA Astrophysics Data System (ADS)
Czaputa, Klaus; Brenn, Günter; Meile, Walter
2008-12-01
We analyze theoretically the drying of cylindrical filaments. For modelling the mass transfer on the gas side of the liquid-gas interface of the shrinking circular cylindrical filament, we apply the model of Abramzon and Sirignano, which was originally developed for spherical geometry. As a consequence of mass transfer at constant Sherwood number, we obtain a d2-law for the shrinkage of the cylinder as in the case of the spherical geometry, which expresses that the cross-sectional area of the cylinder shrinks at a constant rate with time. For this situation, the diffusion equation for the liquid phase mixture components becomes separable upon transformation into similarity coordinates and is solved analytically to obtain the concentration profiles inside the filament as functions of time. The dependency of the profiles on the radial coordinate is determined by a series of Kummer’s functions. Applying this result, we study the evolution of the concentration profiles in the liquid phase with time as dependent on a parameter given as the ratio of rate of shrinkage of the cross-sectional area of the cylinder to liquid-phase diffusion coefficient, which was identified as relevant for the shape of the concentration profiles formed in the liquid during the drying process. As an example, we present computed results for the constant evaporation rate regime in the dry-spinning process of a polyvinyl-alcohol (PVA)-water system. Comparison of our analytical results with full numerical solutions of the diffusion equation from the literature, achieved with concentration-dependent diffusion coefficient, reveals very good agreement.
ERIC Educational Resources Information Center
Gordon, Russell
2008-01-01
Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…
Tunable circular patch antennas
NASA Astrophysics Data System (ADS)
Lan, G.-L.; Sengupta, D. L.
1985-10-01
A method to control the resonant or operating frequencies of circular patch antennas has been investigated experimentally and theoretically. It consists of the placement of passive metallic or tuning posts at approximate locations within the input region of the antenna. Comparison of measured and analytical results seems to establish the validity of a theoretical model proposed to determine the input performance of such circular patch antennas.
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Daniel, Timothy D.; Abawi, Ahmad T.; Kirsteins, Ivars
2015-11-01
The modulated radiation pressure (MRP) of ultrasound has been used for decades to selectively excite low frequency modes associated with surface tension of fluid objects in water. Much less is known about the excitation of low frequency modes of less compliant metallic objects. Here we use MRP of focused ultrasound to excite resonant flexural vibrations of a circular metal plate in water. The source transducer was driven with a double-sideband suppressed carrier voltage as in. The response of the target (detected with a hydrophone) was at twice the modulation frequency and proportional to the square of the drive voltage. Since the radiation pressure of focused beams is spatially localized, mode shapes could be identified by scanning the source along the target while measuring the target's response. Additional measurements were done with an open-ended water-filled copper circular cylindrical shell in which resonant frequencies and mode shapes were also identified. These experiments show how focused ultrasound can be used to identify low-frequency modes of elastic objects without direct contact. Supported by ONR.
Low Dimensional Models of Shell Vibrations. Parametrically Excited Vibrations of Cylinder Shells
NASA Astrophysics Data System (ADS)
Popov, A. A.; Thompson, J. M. T.; McRobie, F. A.
1998-01-01
Vibrations of cylindrical shells parametrically excited by axial forcing are considered. The governing system of two coupled non-linear partial differential equations is discretized by using Lagrange equations. The computation is simplified significantly by the application of computer algebra and as a result low dimensional models of shell vibrations are readily obtained. After applying numerical continuation techniques and ideas from dynamical systems theory, complete bifurcation diagrams are constructed. The principal aim is to investigate the interaction between different modes of shell vibration. Results for system models with two of the lowest modes are discussed.
Mikkelsen, Paula M
2002-01-01
In his contributions to the monographic series "Manual of Conchology", Henry Pilsbry reviewed the subgroup Tectibranchiata, comprising those opisthobranch snails that (at least primitively) still possess a shell (Pilsbry, 1894-1896). Exemplified by the Cephalaspidea (bubble shells), others included in this group at Pilsbry's time and since were Anaspidea (sea hares) and the shelled members of Notaspidea (side-gilled slugs) and Sacoglossa (leaf slugs). Pilsbry (and others since his time) considered tectibranchs to be the "root stock" from which more advanced gastropods such as Nudibranchia and Pulmonata were derived. Tectibranch systematics is firmly based on conchology and most species were originally described from empty shells. However, soft-anatomical characters were acknowledged quite early on as equally important in tectibranchs, due to the reduction of their shells and their evolutionary proximity to unshelled gastropods. Today, Tectibranchiata is not recognized as a natural taxon although the word "tectibranch" (like "prosobranch" and "mesogastropod") continues in vernacular use. Shelled opisthobranchs have been redistributed among various taxa, including several new ones--the unresolved basal opisthobranchs (Architectibranchia) and the "lower Heterobranchia", an enigmatic and currently much-studied group of families considered basal to all of Euthyneura (Opisthobranchia and landsnails (Pulmonata)). Despite their polyphyletic status, shelled opisthobranchs remain important subjects in evolutionary studies of gastropods--as the most basal members of nearly every opisthobranch clade and as organisms with mosaic combinations of primitive and derived features within evolutionary "trends" (e.g., loss of the shell, detorsion, concentration of the nervous system, ecological specialization, etc.). Although they play a pivotal role, the shelled opisthobranchs have received minimal attention in more comprehensive gastropod studies, often relegated to token
Stability analysis of thin-shell wormholes from charged black string
Sharif, M.; Azam, M. E-mail: azammath@gmail.com
2013-04-01
In this paper, we construct thin-shell wormholes from charged black string through cut and paste procedure and investigate its stability. We assume modified generalized Chaplygin gas as a dark energy fluid (exotic matter) present in the thin layer of matter-shell. The stability of these constructed thin-shell wormholes is investigated in the scenario of linear perturbations. We conclude that static stable as well as unstable configurations are possible for cylindrical thin-shell wormholes.
Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.
1984-01-01
A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.
Cylindrical acoustic levitator/concentrator
Kaduchak, Gregory; Sinha, Dipen N.
2002-01-01
A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.
Vibrations of moderately thick shallow spherical shells at large amplitudes
NASA Astrophysics Data System (ADS)
Sathyamoorthy, M.
1994-04-01
A shallow shell theory is presented for the geometrically nonlinear analysis of moderately thick isotropic spherical shells. Effects of transverse shear deformation and rotatory inertia are included in the governing equations of motion by means of tracing constants. When these effects are ignored, the governing equations readily reduce to those applicable for thin shallow spherical shells. Solutions to the system of thick shell equations are obtained by means of Galerkin's method and the numerical Runge-Kutta procedure. Numerical results are presented for certain cases of shallow spherical shells considering different geometric shell parameters. Transverse shear and rotatory inertia effects are found to be important in linear as well as nonlinear responses of shallow spherical shells. The nonlinear frequency-amplitude behavior is of the softening type for shallow spherical shells and of the hardening type for circular plates. Frequency ratios are lower at any given amplitude when the effects of transverse shear and rotatory inertia are included in the analysis.
Compact waveguide circular polarizer
Tantawi, Sami G.
2016-08-16
A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.
Cloaking by shells with radially inhomogeneous anisotropic permittivity.
Reshetnyak, V Yu; Pinkevych, I P; Sluckin, T J; Evans, D R
2016-01-25
We model electromagnetic cloaking of a spherical or cylindrical nanoparticle enclosed by an optically anisotropic and optically inhomogeneous symmetric shell, by examining its electric response in a quasi-static uniform electric field. When the components of the shell permittivity are radially anisotropic and power-law dependent (ε~r(m)) whereris distance to the shell center, and m a positive or negative exponent which can be varied), the problem is analytically tractable. Formulas are calculated for the degree of cloaking in the general case, allowing the determination of a dielectric condition for the shells to be used as an invisibility cloak. Ideal cloaking is known to require that homogeneous shells exhibit an infinite ratio of tangential and radial components of the shell permittivity, but for radially inhomogeneous shells ideal cloaking can occur even for finite values of this ratio. PMID:26832575
The cylindrical δ-potential and the Dirac equation
NASA Astrophysics Data System (ADS)
Loewe, M.; Marquez, F.; Zamora, R.
2012-11-01
In this paper, we discuss the Dirac equation in the presence of an attractive cylindrical δ-shell potential V(ρ) = -aδ(ρ - ρ0), where ρ is the radial coordinate and a > 0. We present a detailed discussion on the boundary conditions the wavefunction has to satisfy when crossing the support of the potential, proceeding then to explore the dependence of the ground state on the parameter a, analyzing the occurrence of supercritical effects. We also apply the Foldy-Wouthuysen transformation, discussing the non-relativistic limit of this problem.
Rotating cylindrical wormholes: a no-go theorem
NASA Astrophysics Data System (ADS)
Bronnikov, K. A.
2016-02-01
The existing solutions to the Einstein equations describing rotating cylindrical wormholes are not asymptotically flat and therefore cannot describe wormhole entrances as local objects in our Universe. To overcome this difficulty, flat asymptotic regions are added to wormhole solutions by matching them at some surfaces ∑- and ∑+. It is shown, however, that if the wormhole solution is obtained for scalar fields with arbitrary potentials, possibly interacting with an azimuthal electric or magnetic field, then the matter content of one or both thin shells appearing on ∑- and ∑+ violate the Null Energy Condition. Thus exotic matter is still necessary for obtaining a twice asymptotically flat wormhole.
Damping control of 'smart' piezoelectric shell structures
NASA Astrophysics Data System (ADS)
Tzou, H. S.
Advanced 'smart' structures with self-sensation and control capabilities have attracted much attention in recent years. 'Smart' piezoelectric structures (conventional structures integrated with piezoelectric sensor and actuator elements) possessing self-monitoring and adaptive static and/or dynamic characteristics are very promising in many applications. This paper presents a study on 'smart' piezoelectric shell structures. A generic piezoelastic vibration theory for a thin piezoelectric shell continuum made of a hexagonal piezoelectric material is first derived. Piezoelastic system equation and electrostatic charge equation are formulated using Hamilton's principle and Kirchhoff-Love thin shell assumptions. Dynamic adaptivity, damping control, of a simply supported cylindrical shell structure is demonstrated in a case study. It shows that the system damping increases with the increase of feedback voltage for odd modes. The control scheme is ineffective for all even modes because of the symmetrical boundary conditions.
Telescoping cylindrical piezoelectric fiber composite actuator assemblies
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2010-01-01
A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.
JKR adhesion in cylindrical contacts
NASA Astrophysics Data System (ADS)
Sundaram, Narayan; Farris, T. N.; Chandrasekar, S.
2012-01-01
Planar JKR adhesive solutions use the half-plane assumption and do not permit calculation of indenter approach or visualization of adhesive force-displacement curves unless the contact is periodic. By considering a conforming cylindrical contact and using an arc crack analogy, we obtain closed-form indenter approach and load-contact size relations for a planar adhesive problem. The contact pressure distribution is also obtained in closed-form. The solutions reduce to known cases in both the adhesion-free and small-contact solution ( Barquins, 1988) limits. The cylindrical system shows two distinct regimes of adhesive behavior; in particular, contact sizes exceeding the critical (maximum) size seen in adhesionless contacts are possible. The effects of contact confinement on adhesive behavior are investigated. Some special cases are considered, including contact with an initial neat-fit and the detachment of a rubbery cylinder from a rigid cradle. A comparison of the cylindrical solution with the half-plane adhesive solution is carried out, and it indicates that the latter typically underestimates the adherence force. The cylindrical adhesive system is novel in that it possesses stable contact states that may not be attained even on applying an infinite load in the absence of adhesion.
Optics Demonstrations Using Cylindrical Lenses
ERIC Educational Resources Information Center
Ivanov, Dragia; Nikolov, Stefan
2015-01-01
In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…
Finite-amplitude dynamics of coupled cylindrical menisci.
Cox, B L; Steen, P H
2011-10-01
The cylindrical meniscus is a liquid/gas interface of circular-cap cross-section constrained along its axis and bounded by end-planes. The inviscid motions of coupled cylindrical menisci are studied here. Motions result from the competition between inertia and surface tension forces. Restriction to shapes that are of circular-cap cross-section leads to an ordinary differential equation (ode) model, with the advantage that finite-amplitude stability can be examined. The second-order nonlinear ode model has a Hamiltonian structure, showing dynamical behavior like the Duffing-oscillator. The energy landscape has either a single- or double-welled potential depending on the extent of volume overfill. Total liquid volume is a bifurcation parameter, as in the corresponding problem for coupled spherical-cap droplets. Unlike the spherical-cap problem, however, axial disturbances can also destabilize, depending on overfill. For large volumes, previously known axial stability results are applied to find the limit at which axial symmetry is lost and comparison is made to the Plateau-Rayleigh limit. PMID:21723560
ERIC Educational Resources Information Center
Atkinson, Bill
1982-01-01
The author critiques the program design and educational aspects of the Shell Games, a program developed by Apple Computer, Inc., which can be used by the teacher to design objective tests for adaptation to specific assessment needs. (For related articles, see EC 142 959-962.) (Author)
Wiimote Experiments: Circular Motion
ERIC Educational Resources Information Center
Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary
2013-01-01
The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. Copyright Office.
This circular answers some of the questions that are frequently asked about copyright, a form of protection provided by the laws of the United States to authors of "original works of authorship" including library, dramatic musical, artistic, and certain other intellectual works. The Copyright Act of 1976 (title 17 of the United States Code), which…
Wiimote Experiments: Circular Motion
NASA Astrophysics Data System (ADS)
Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary
2013-03-01
The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.
Rotating cylindrical wormholes and energy conditions
NASA Astrophysics Data System (ADS)
Bronnikov, K. A.; Krechet, V. G.
2016-01-01
We seek wormholes among rotating cylindrically symmetric configurations in general relativity. Exact wormhole solutions are presented with such sources of gravity as a massless scalar field, a cosmological constant, and a scalar field with an exponential potential. However, none of these solutions are asymptotically flat, which excludes the existence of wormhole entrances as local objects in our Universe. To overcome this difficulty, we try to build configurations with flat asymptotic regions using the cut-and-paste procedure: on both sides of the throat, a wormhole solution is matched to a properly chosen region of flat space-time at some surfaces Σ- and Σ+. It is shown, however, that if the source of gravity in the throat region is a scalar field with an arbitrary potential, then one or both thin shells appearing on Σ- and Σ+ inevitably violate the null energy condition. Thus, although rotating wormhole solutions are easily found without exotic matter, such matter is still necessary for obtaining asymptotic flatness.
Building Atoms Shell by Shell.
ERIC Educational Resources Information Center
Sussman, Beverly
1993-01-01
Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…
Piskun, V.V.
1985-11-01
The present study numerically investigates the axisymmetric thermoelastoplastic stress state of a discretely nonuniform cylindrical shell in the region of an annular weld with allowance for the history of mechanical and thermal loading. This is based on the assumption that there are no residual stresses and strains after welding and creep strain can be ignored. The authors assume that the shell is a component part of a closed cylindrical vessel which is under internal pressure. They examine a loading process, consiting of three stages. Two calculations are performed with the loading history described in the paper.
Cylindrical magnets and ideal solenoids
NASA Astrophysics Data System (ADS)
Derby, Norman; Olbert, Stanislaw
2010-03-01
Both wire-wound solenoids and cylindrical magnets can be approximated as ideal azimuthally symmetric solenoids. We present an exact solution for the magnetic field of an ideal solenoid in an easy to use form. The field is expressed in terms of a single function that can be rapidly computed by means of a compact efficient algorithm, which can be coded as an add-in function to a spreadsheet, making field calculations accessible to introductory students. These expressions are not only accurate but are also as fast as most approximate expressions. We demonstrate their utility by simulating the dropping of a cylindrical magnet through a nonmagnetic conducting tube and comparing the calculation with data obtained from experiments suitable for an undergraduate laboratory.
NASA Astrophysics Data System (ADS)
Roy, Kenneth I.; Kennedy, Robert G., III; Fields, David E.
2013-02-01
The traditional concept of terraforming assumes ready availability of candidate planets with acceptable qualities: orbiting a star in its "Goldilocks zone", liquid water, enough mass, years longer than days, magnetic field, etc. But even stipulating affordable interstellar travel, we still might never find a good candidate elsewhere. Whatever we found likely would require centuries of heavy terraforming, just as Mars or Venus would here. Our increasing appreciation of the ubiquity of life suggests that any terra nova would already possess it. We would then face the dilemma of introducing alien life forms (us, our microbes) into another living world. Instead, we propose a novel method to create habitable environments for humanity by enclosing airless, sterile, otherwise useless planets, moons, and even large asteroids within engineered shells, which avoids the conundrum. These shells are subject to two opposing internal stresses: compression due to the primary's gravity, and tension from atmospheric pressure contained inside. By careful design, these two cancel each other resulting in zero net shell stress. Beneath the shell an Earth-like environment could be created similar in almost all respects to that of Home, except for gravity, regardless of the distance to the sun or other star. Englobing a small planet, moon, or even a dwarf planet like Ceres, would require astronomical amounts of material (quadrillions of tons) and energy, plus a great deal of time. It would be a quantum leap in difficulty over building Dyson Dots or industrializing our solar system, perhaps comparable to a mission across interstellar space with a living crew within their lifetime. But when accomplished, these constructs would be complete (albeit small) worlds, not merely large habitats. They could be stable across historic timescales, possibly geologic. Each would contain a full, self-sustaining ecology, which might evolve in curious directions over time. This has interesting implications
NASA Technical Reports Server (NTRS)
Nielsen, Jack N
1955-01-01
A theoretical method is presented for calculating the flow field about wing-body combinations employing bodies deviating only slightly in shape from a circular cylinder. The method is applied to the calculation of the pressure field acting between a circular cylindrical body and a rectangular wing. The case of zero body angle of attack and variable wing incidence is considered as well as the case of zero wing incidence and variable body angle of attack. An experiment was performed especially for the purpose of checking the calculative examples.
Dynamics of tilted cylindrical geometry
NASA Astrophysics Data System (ADS)
Sharif, M.; Sadiq, Sobia
2016-09-01
In this paper, we study the dynamics of tilted cylindrical model with imperfect matter distribution. We formulate the field equations and develop relations between tilted and non-tilted variables. We evaluate kinematical as well as dynamical quantities and discuss the inhomogeneity factor. We also obtain the Raychaudhuri equation to study evolution of expansion scalar. The solutions of field equations are also investigated for static cylinder under isotropy and conformally flat condition. Finally, we analyze some thermoinertial aspects of the system.
Cylindrical solutions in mimetic gravity
NASA Astrophysics Data System (ADS)
Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay; Raza, Muhammad
2016-06-01
This paper is devoted to investigate cylindrical solutions in mimetic gravity. The explicit forms of the metric of this theory, namely mimetic-Kasner (say) have been obtained. In this study we have noticed that the Kasner's family of exact solutions needs to be reconsidered under this type of modified gravity. A no-go theorem is proposed for the exact solutions in the presence of a cosmological constant.
Cylindrical solutions in braneworld gravity
Khoeini-Moghaddam, S.; Nouri-Zonoz, M.
2005-09-15
In this article we investigate exact cylindrically symmetric solutions to the modified Einstein field equations in the braneworld gravity scenarios. It is shown that for the special choice of the equation of state 2U+P=0 for the dark energy and dark pressure, the solutions found could be considered formally as solutions of the Einstein-Maxwell equations in 4-D general relativity.
Experimental system for measuring the full scattering profile of circular phantoms
Feder, Idit; Duadi, Hamootal; Fixler, Dror
2015-01-01
Optical methods for monitoring physiological tissue state are important and useful because they are non-invasive and sensitive. Experimental measurements of the full scattering profile of circular phantoms are presented. We report, for the first time, an experimental observation of a typical reflected light intensity behavior for a circular structure characterized by the isobaric point. We previously suggested a new theoretically method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we present that the experimental result match the simulation results. We show the isobaric point at 105° for a cylindrical phantom with a 7mm diameter, while for a 16mm diameter phantom the isobaric point is at 125°. Furthermore, the experimental work present a new crossover point of the full scattering profiles of subjects with different diameters of the cylindrical tissues. PMID:26309752
Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.
2004-01-01
An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.
Cracked shells under skew-symmetric loading. [Reissner theory
NASA Technical Reports Server (NTRS)
Delale, F.
1981-01-01
The general problem of a shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and anti-plane elasticity solutions. Results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform in-plane shearing, out of plane shearing, and torsion. The problem is formulated for specially orthostropic materials, therefore, the effect of orthotropy on the results is also studied.
Modelling apical constriction in epithelia using elastic shell theory.
Jones, Gareth Wyn; Chapman, S Jonathan
2010-06-01
Apical constriction is one of the fundamental mechanisms by which embryonic tissue is deformed, giving rise to the shape and form of the fully-developed organism. The mechanism involves a contraction of fibres embedded in the apical side of epithelial tissues, leading to an invagination or folding of the cell sheet. In this article the phenomenon is modelled mechanically by describing the epithelial sheet as an elastic shell, which contains a surface representing the continuous mesh formed from the embedded fibres. Allowing this mesh to contract, an enhanced shell theory is developed in which the stiffness and bending tensors of the shell are modified to include the fibres' stiffness, and in which the active effects of the contraction appear as body forces in the shell equilibrium equations. Numerical examples are presented at the end, including the bending of a plate and a cylindrical shell (modelling neurulation) and the invagination of a spherical shell (modelling simple gastrulation). PMID:19859751
Circular inferences in schizophrenia.
Jardri, Renaud; Denève, Sophie
2013-11-01
A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia. PMID:24065721
Switchable circular beam deflectors
NASA Astrophysics Data System (ADS)
Shang, Xiaobing; Joshi, Pankaj; Tan, Jin-Yi; De Smet, Jelle; Cuypers, Dieter; Baghdasaryan, Tigran; Vervaeke, Michael; Thienpont, Hugo; De Smet, Herbert
2016-04-01
In this work, we report two types of electrically tunable photonic devices with circularly symmetric polarization independent beam steering performance (beam condensing resp. beam broadening). The devices consist of circular micro grating structures combined with nematic liquid crystal (LC) layers with anti-parallel alignment. A single beam deflector converts a polarized and monochromatic green laser beam (λ =543.5 nm) into a diffraction pattern, with the peak intensity appearing at the third order when 0~{{V}\\text{pp}} is applied and at the zeroth order (no deflection) for voltages above 30~{{V}\\text{pp}} . Depending on the shape of the grating structure (non-inverted or inverted), the deflection is inwards or outwards. Both grating types can be made starting from the same diamond-tooled master mold. A polarized white light beam is symmetrically condensed resp. broadened over 2° in the off state and is passed through unchanged in the on state. By stacking two such devices with mutually orthogonal LC alignment layers, polarization independent switchable circular beam deflectors are realized with a high transmittance (>80%), and with the same beam steering performance as the polarization dependent single devices.
NASA Astrophysics Data System (ADS)
Botman, J. I. M.; Hagedoorn, H. L.
1992-02-01
A Hamiltonian description is given of charged particle motion around a circular design trajectory in static electromagnetic systems possessing cylindrical symmetry. In particular the ion motion in a constant magnetic field in the z-direction and a hyperboloid electric potential, V(x,y,z) = {1}/{2}k 2z 2 - {1}/{4}k 2(x 2 + y 2) , where k2 is the potential strength parameter, is considered in Cartesian coordinates, to provide an exact solution to the Hamiltonian problem. The Wien filter can be considered as a special application of the system described. For a general electric field shape an expansion of the potential around the design orbit is required and a treatment in cylindrical coordinates seems more appropriate. Applications of these systems can be found in inflectors and deflectors in circular ion accelerators as well as in Wien filters or ion separators in various ion optical devices.
Puckett, A.D.
2000-09-01
The ability to model wave propagation in circular cylindrical bars of finite length numerically or analytically has many applications. In this thesis the capability of an explicit finite element method to model longitudinal waves in cylindrical rods with circular cross-sections is explored. Dispersion curves for the first four modes are compared to the analytical solution to determine the accuracy of various element sizes and time steps. Values for the time step and element size are determined that retain accuracy while minimizing computational time. The modeling parameters are validated by calculating a signal propagated with a broadband input force. Limitations on the applicability are considered along with modeling parameters that should be applicable to more general geometries.
Cylindrical Implosion Experiments using Laser Direct Drive
NASA Astrophysics Data System (ADS)
Tubbs, David
1998-11-01
Development of high-gain targets for the National Ignition Facility relies considerably on computational modeling, and it is important that our codes are validated against relevant experimental data in convergent geometry.(W. J. Krauser et al., Phys. Plasmas 3, 2084 (1996); D. C. Wilson et al., Phys. Plasmas 5, 1953 (1998)) In collaboration with the University of Rochester, we have begun a campaign of hydrodynamic instability experiments in cylindrical geometry using direct drive,(D. L. Tubbs et al., submitted to Laser and Particle Beams (1998); C. W. Barnes et al., submitted to Rev. Sci. Instrm. (1998)) building on our success in indirect drive.( W. W. Hsing et al., Phys. Plasmas 5, 1832 (1997); W. W. Hsing and N. M. Hoffman, Phys. Rev. Lett., 3876 (1997)) Cylindrical targets facilitate direct diagnostic access to the convergent, hydrodynamic flow. The energy advantage of direct drive and its excellent target-illumination symmetry (achieved at OMEGA through use of Distributed Phase Plates and SSD) permit more energetic implosions, larger target scale (hence greater diagnostic resolution), longer acceleration timescales, and higher convergence than were possible using indirect drive. We estimate that specific laser energy delivered to the target for direct drive at OMEGA is roughly 4 times that achieved for indirect drive at Nova. Our first experiments (January 1998) yield excellent data for the first highly symmetrical direct-drive implosions, with which we benchmark zeroth-order hydrodynamic simulations. Two-dimensional (2-D) LASNEX calculations, using as-shot laser power histories and no further physics adjustments, match measured target-implosion data within theoretical and experimental errors. In addition, 2-D LASNEX simulations of single-mode (m=28, azimuthally symmetric) perturbation growth agree well with data obtained during our first week of experiments. For 1.5-micron initial perturbation amplitude, we observe Rayleigh-Taylor growth factors of order 10
Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Haselschwardt, Sally
2012-01-01
A Radial Internal Material Handling System (RIMS) has been developed to service a circular floor area in variable gravity. On planetary surfaces, pressurized human habitable volumes will require a means to carry heavy equipment between various locations within the volume of the habitat, regardless of the partial gravity (Earth, moon, Mars, etc). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand off lifted items to other material handling systems through the side hatches, such as through an airlock. This paper describes the RIMS system which is scalable for application in a variety of circular habitat volumes.
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2004-01-01
The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.
Investigation of spherical and cylindrical Luneburg lens antennas by the Green's function method
NASA Astrophysics Data System (ADS)
Knyazev, S.; Korotkov, A.; Panchenko, B.; Shabunin, S.
2016-03-01
Luneburg lens antenna radiation fields are calculated with Green's functions of spherical and cylindrical layered structures. Electric field components of spherical and cylindrical Luneburg lenses excited by linear and circular polarized incident field are analysed. Dipole, slot and aperture antennas are described by electric and magnetic extraneous currents. Radiation patterns of cylindrical and spherical Luneburg lens are analysed. Co-polarized and cross-polarized field radiation patterns are shown. The proposed method significantly reduces the computing time for multi-layered lenses in comparison with the most commonly used in antenna design. The first step antenna structure optimization may be performed for a shorter time. The results may be used as the first approximation for Ansys HFSS and other software.
Near-Field Characterization of Radial and Axial Blast Waves From a Cylindrical Explosive Charge
NASA Astrophysics Data System (ADS)
McNesby, Kevin; Homan, Barrie
This paper uses experiment (high speed imaging) and simulation (ALE-3D) to investigate radial and axial blast waves produced by uncased, cylindrical charges of TNT (trinitrotoluene). Recently there has been work reported on predicting secondary blast waves in the explosive mid-field (approximately 1 meter from charge center of mass) for cylindrical charges of RDX (trimethylenetrinitramine)/binder formulations. The work we will present seeks to provide complementary information in the explosive near-field, including the approach to chemical ``freeze out'', for end-detonated, right circular cylinders of TNT. Additionally, this work attempts to retrieve state variables (temperature, pressure, velocities) from high-definition images of the explosive event. Keywords: cylindrical charges, blast, shock waves
Supercooling Water in Cylindrical Capsules
NASA Astrophysics Data System (ADS)
Guzman, J. J. Milón; Braga, S. L.
2005-11-01
An experimental apparatus was developed to investigate the supercooling phenomenon of water inside cylindrical capsules used for a cold storage process. The coolant is a water-alcohol mixture controlled by a constant temperature bath (CTB). Temperatures varying with time are measured inside and outside the capsule. Cylinders with an internal diameter and thickness of 45 and 1.5 mm, respectively, were made from four different materials: acrylic, PVC, brass, and aluminum. The supercooling period of the water and the nucleation temperature were investigated for different coolant temperatures. The supercooling and nucleation probabilities are shown as a function of the coolant temperature for the four different materials.
Multi-stable cylindrical lattices
NASA Astrophysics Data System (ADS)
Pirrera, Alberto; Lachenal, Xavier; Daynes, Stephen; Weaver, Paul M.; Chenchiah, Isaac V.
2013-11-01
We present a cylindrical lattice structure that mimics the behaviour of the virus bacteriophage T4 in having two (or more) stable states which differ in their radii and length. While the virus achieves bistability through molecular mechanisms we use composite materials to exploit the interplay between pre-stress, material properties and structural geometry. We demonstrate (computationally) that multi-stability is a robust phenomenon. We also show (analytically) that it is possible to choose the design variables so that the energy is independent of the radius, thus resulting in every state of the structure being stable.
A probabilistic method for the buckling assessment of stiffened composite shells
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Abumeri, Galib H.; Singhal, Surendra N.; Chamis, Christos C.
1993-01-01
A method is described to computationally simulate probabilistic buckling behavior of multilayered composite shells. The simulation accounts for all naturally-occurring uncertainties including those in constituent (fiber/matrix) material properties, fabrication variables, and structure geometry. The method is demonstrated for probabilistically assessing the buckling survivability of a specific case of a stiffened composite cylindrical shell with and without cutouts. The sensitivities of various uncertain variables on the buckling survivability are evaluated at specified reliability. The results show that the buckling survivability for a shell without cutouts depends primarily on shell skin related uncertainties. However, stringer related uncertainties become important for a shell with cutouts.
NASA Astrophysics Data System (ADS)
Lee, S. J.; Reddy, J. N.
2004-10-01
Third-order shear deformation theories of laminated composite shells are developed using the strain-displacement relations of Donnell and Sanders theories. These theories also account for geometric nonlinearity in the von Kármán sense. Analytical (Navier) solutions for vibration suppression in cross-ply laminated composite shells with surface mounted smart material layers are developed using the linear versions of the two shell theories and for simply supported boundary conditions. Numerical results are presented to bring out the parametric effects of shell types (cylindrical, spherical, and doubly curved shells) and material properties on vibration suppression. A simple negative velocity feedback control in a closed loop is used.
Models of cylindrical bubble pulsation
Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.
2012-01-01
Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863
Loads for pulsed power cylindrical implosion experiments
Anderson, W.E.; Armijo, E.V.; Barthell, B.L.; Bartos, J.J.; Bush, H.; Foreman, L.R.; Garcia, F.P.; Gobby, P.L.; Gomez, V.M.; Gurule, V.A.
1994-07-01
Pulse power can be used to generate high energy density conditions in convergent hollow cylindrical geometry through the use of appropriate electrode configuration and cylindrical loads. Cylindrically symmetric experiments are conducted with the Pegasus-H inductive store, capacitor energized pulse power facility at Los Alamos using both precision machined cylindrical liner loads and low mass vapor deposited cylindrical foil loads. The liner experiments investigate solid density hydrodynamic topics. Foil loads vaporize from Joule heating to generate an imploding cylindrical plasma which can be used to simulate some fluxes associated with fusion energy processes. Similar experiments are conducted with {open_quotes}Procyon{close_quotes} inductive store pulse power assemblies energized by explosively driven magnetic flux compression.
The structure of the dust shells around IRC +10216
NASA Astrophysics Data System (ADS)
Sloan, G. C.; Egan, M. P.
1995-05-01
We have investigated IRC +10216 using a long-slit mid-infrared spectrometer and modeling the circumstellar dust with a radiative transfer algorithm. Maximum entropy reconstructions of the spectral images made with the slit oriented north/south and east/west reveal three components. Two shells of cool carbon-rich dust are seen, as well as a region of blue emission between the shells, approximately 1 sec north of the central source. The dust shell structure agrees well with previous interferometric observations: a circularly symmetric inner shell enclosed within an outer shell elongated roughly north/south. The blue emission appears to arise from a region of small grains of radiatively heated amorphous carbon and implies that the polar regions of the inner shell are optically thinner that the equatorial regions.
Large Deformation Behavior of Long Shallow Cylindrical Composite Panels
NASA Technical Reports Server (NTRS)
Carper, Douglas M.; Hyer, Michael W.; Johnson, Eric R.
1991-01-01
An exact solution is presented for the large deformation response of a simply supported orthotropic cylindrical panel subjected to a uniform line load along a cylinder generator. The cross section of the cylinder is circular and deformations up to the fully snapped through position are investigated. The orthotropic axes are parallel to the generator and circumferential directions. The governing equations are derived using laminated plate theory, nonlinear strain-displacement relations, and applying variational principles. The response is investigated for the case of a panel loaded exactly at midspan and for a panel with the load offset from midspan. The mathematical formulation is one dimensional in the circumferential coordinate. Solutions are obtained in closed-form. An experimental apparatus was designed to load the panels. Experimental results of displacement controlled tests performed on graphite-epoxy curved panels are compared with analytical predictions.
The cylindrical magnetic Rayleigh-Taylor instability for viscous fluids
Chambers, K.; Forbes, L. K.
2012-10-15
This paper considers a cylindrical Rayleigh-Taylor instability, in which a heavy fluid surrounds a light fluid, and gravity is directed radially inwards. A massive object is located at the centre of the light fluid, and it behaves like a line dipole both for fluid flow and magnetic field strength. The initially circular interface between the two conducting fluids evolves into plumes, dependent on the magnetic and fluid dipole strengths and the nature of the initial disturbance to the interface. A spectral method is presented to solve the time-dependent interface shapes, and results are presented and discussed. Bipolar solutions are possible, and these are of particular relevance to astrophysics. The solutions obtained resemble structures of some HII regions and nebulae.
Traveling circumferential unstable wave of cylindrical flame front
NASA Astrophysics Data System (ADS)
Trilis, A. V.; Vasiliev, A. A.; Sukhinin, S. V.
2016-06-01
The researches of stability of cylindrical front of deflagration combustion in an annular combustion chamber were made using phenomenological model. The flame front is described as discontinuity of gasdynamic parameters. It is considered that the combustion products are under chemical equilibrium. The combustible mixture and the combustion products are ideal gases. The velocity of deflagration combustion is determined using the Chapman-Jouget theory. It depends on the temperature of combustible mixture only. It is found that the combustible flame front is unstable for several types of small disturbances in the system Mechanics of instabilities are examined using both the numeric and analytical methods. The cases of evolution of the unstable waves rotating in circular channel are presented.
Oscillation of circular shock waves with upstream nonuniformity
NASA Astrophysics Data System (ADS)
Park, Myeong-Kwan; Oshima, Shuzo; Yamane, Ryuichiro
1992-01-01
Up to previous reports by Park et al. on the oscillation of the circular shock waves, the investigations have been concerned with situations where the upstream flow is uniform, and oscillation and deformation were induced by only downstream conditions. But in the centrifugal diffuser of a centrifugal compressor, the flow into the diffuser becomes nonuniform due to the impeller wake and the stall in the upstream impeller, which causes deformation and oscillation of the shock wave. Here, the above effects are considered, and the upstream disturbance is generated by cylindrical bars. The imperfect circular shock wave was induced by the effect of the wake, and the oscillation state, along with the oscillation modes caused by forced oscillation, is investigated experimentally. It was found that the basic mode of the oscillation is predominant and that the oscillation is weaker than in the case of uniform upstream.
Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1999-01-01
Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.
Propagation Mechanism of Cylindrical Cellular Detonation
NASA Astrophysics Data System (ADS)
Han, Wen-Hu; Wang, Cheng; Ning, Jian-Guo
2012-10-01
We investigate the evolution of cylindrical cellular detonation with different instabilities. The numerical results show that with decreasing initial temperature, detonation becomes more unstable and the cells of the cylindrical detonation tend to be irregular. For stable detonation, a divergence of cylindrical detonation cells is formed eventually due to detonation instability resulting from a curved detonation front. For mildly unstable detonation, local overdriven detonation occurs. The detonation cell diverges and its size decreases. For highly unstable detonation, locally driven detonation is more obvious and the front is highly wrinkled. As a result, the diverging cylindrical detonation cell becomes highly irregular.
Teixidó, Mercè; Pallejà, Tomàs; Font, Davinia; Tresanchez, Marcel; Moreno, Javier; Palacín, Jordi
2012-01-01
This paper presents the use of an external fixed two-dimensional laser scanner to detect cylindrical targets attached to moving devices, such as a mobile robot. This proposal is based on the detection of circular markers in the raw data provided by the laser scanner by applying an algorithm for outlier avoidance and a least-squares circular fitting. Some experiments have been developed to empirically validate the proposal with different cylindrical targets in order to estimate the location and tracking errors achieved, which are generally less than 20 mm in the area covered by the laser sensor. As a result of the validation experiments, several error maps have been obtained in order to give an estimate of the uncertainty of any location computed. This proposal has been validated with a medium-sized mobile robot with an attached cylindrical target (diameter 200 mm). The trajectory of the mobile robot was estimated with an average location error of less than 15 mm, and the real location error in each individual circular fitting was similar to the error estimated with the obtained error maps. The radial area covered in this validation experiment was up to 10 m, a value that depends on the radius of the cylindrical target and the radial density of the distance range points provided by the laser scanner but this area can be increased by combining the information of additional external laser scanners. PMID:23443390
Teixidó, Mercè; Pallejà, Tomàs; Font, Davinia; Tresanchez, Marcel; Moreno, Javier; Palacín, Jordi
2012-01-01
This paper presents the use of an external fixed two-dimensional laser scanner to detect cylindrical targets attached to moving devices, such as a mobile robot. This proposal is based on the detection of circular markers in the raw data provided by the laser scanner by applying an algorithm for outlier avoidance and a least-squares circular fitting. Some experiments have been developed to empirically validate the proposal with different cylindrical targets in order to estimate the location and tracking errors achieved, which are generally less than 20 mm in the area covered by the laser sensor. As a result of the validation experiments, several error maps have been obtained in order to give an estimate of the uncertainty of any location computed. This proposal has been validated with a medium-sized mobile robot with an attached cylindrical target (diameter 200 mm). The trajectory of the mobile robot was estimated with an average location error of less than 15 mm, and the real location error in each individual circular fitting was similar to the error estimated with the obtained error maps. The radial area covered in this validation experiment was up to 10 m, a value that depends on the radius of the cylindrical target and the radial density of the distance range points provided by the laser scanner but this area can be increased by combining the information of additional external laser scanners. PMID:23443390
Plastic Limit Load Analysis of Cylindrical Pressure Vessels with Different Nozzle Inclination
NASA Astrophysics Data System (ADS)
Prakash, Anupam; Raval, Harit Kishorchandra; Gandhi, Anish; Pawar, Dipak Bapu
2016-04-01
Sudden change in geometry of pressure vessel due to nozzle cutout, leads to local stress concentration and deformation, decreasing its strength. Elastic plastic analysis of cylindrical pressure vessels with different inclination angles of nozzle is important to estimate plastic limit load. In the present study, cylindrical pressure vessels with combined inclination of nozzles (i.e. in longitudinal and radial plane) are considered for elastic plastic limit load analysis. Three dimensional static nonlinear finite element analyses of cylindrical pressure vessels with nozzle are performed for incremental pressure loading. The von Mises stress distribution on pressure vessel shows higher stress zones at shell-nozzle junction. Approximate plastic limit load is obtained by twice elastic slope method. Variation in limit pressure with different combined inclination angle of nozzle is analyzed and found to be distinct in nature. Reported results can be helpful in optimizing pressure vessel design.
Development of laser finishing for non-circular profiles
Liu, K.W.; Sheng, P.S.
1995-03-01
A laser-based technique for finishing of non-circular cylindrical parts is presented. In this process, the frequency characteristics of a desired non-circular shape is extracted from a CAD through a Fast Fourier Transform algorithm and implemented through a CO{sub 2} laser machining system. A galvanometer-based scanner is used in the process to achieve programmable beam trajectories and high-speed finishing. An error estimation scheme can be developed to determine the final dimensional error of the non-circular profile. This process can be selected as both a batch production tool and a rapid prototyping tool based on the designated processing rate and precision. Initial experimental results include the production of two- and three-lobed profiles, as well as definition of part feature using higher-order harmonics, in polymethylmethacrylate (PMMA) with corresponding R{sub a} values of less than 1 {mu}m. The machine tool elements and general procedure for non-circular laser finishing are also presented.
NASA Astrophysics Data System (ADS)
Starostin, E. L.
2013-04-01
A simple model of a circularly closed double-stranded DNA in a poor solvent is considered as an example of a semi-flexible polymer with self-attraction. To find the ground states, the conformational energy is computed as a sum of the bending and torsional elastic components and the effective self-attraction energy. The model includes a relative orientation or sequence dependence of the effective attraction forces between different pieces of the polymer chain. Two series of conformations are analysed: a multicovered circle (a toroid) and a multifold two-headed racquet. The results are presented as a diagram of state. It is suggested that the stability of particular conformations may be controlled by proper adjustment of the primary structure. Application of the model to other semi-flexible polymers is considered.
Kerley, P.L.
1959-01-01
A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.
Array gain for a cylindrical array with baffle scatter effects.
Bertilone, Derek C; Killeen, Damien S; Bao, Chaoying
2007-11-01
Cylindrical arrays used in sonar for passive underwater surveillance often have sensors surrounding a cylindrical metal baffle. In some operational sonars, the phones in each stave (i.e., each line of phones aligned with the cylinder axis) are hardwired together so that the array is equivalent to a baffled circular array of directional elements, where each element corresponds to a line array of omnidirectional phones steered to broadside. In this paper a model is introduced for computing the array gain of such an array at high frequencies, which incorporates baffle scatter using infinite, rigid cylinder scattering theory, and with ambient noise described by an angular spectral density function. In practice the phones are often offset from the baffle surface, and the acoustic field sampled by the staves is distorted at high frequencies due to interference between the incident and scattered fields. Examples are given to illustrate the resulting array gain degradation, using three noise distributions that are frequently used in sonar performance modeling: three-dimensional isotropic, two-dimensional isotropic, and surface dipole noise. PMID:18189560
Microwave Imaging and Holographic Diagnostic to Antennas in Cylindrical Near-Field Measurement
NASA Technical Reports Server (NTRS)
Hussein, Ziad A.
1995-01-01
In this paper, the issues pertaining to microwave imaging and holographic diagnostic to antennas in cylindrical near-field measurements are addressed. The theoretical approach is based on expanding the work in [1] and [2] where a cylindrical wave expansion of the field on a cylindrical near-field surface is given. The sampling probe is modeled by its equivalent aperture current (idealized circular aperture) and incorporated into the near-field to far-field transformation. The method of steepest decent is applied to obtain the far-field. In its implementation, however, one could specify directly the angular spectrum at which the far-field is desired to be calculated without resorting to interpolation. The microwave imaging and holographic diagnostic is based on back projection where a plane wave expansion of the far-field is obtained. This approach necessitates the knowledge of the far-field at exact angular spectrum resulting from application of 2-D FFT. Hence, we were able to construct simply the near-field on a plane not necessarily on the aperture plane of the test antenna but also on planes perpendicular to the aperture plane [3]. And a 3-D high resolution and high precision antenna imaging of the test antenna is obtained from cylindrical near-field simulated measurements. In addition microwave holographic diagnostic of large NASA scatterometer radar antenna obtained from measured near-field on a cylindrical surface will be given if time permits.
Children's Sensitivity to Circular Explanations
ERIC Educational Resources Information Center
Baum, Laura A.; Danovitch, Judith H.; Keil, Frank C.
2008-01-01
The ability to evaluate the quality of explanations is an essential part of children's intellectual growth. Explanations can be faulty in structural ways such as when they are circular. A circular explanation reiterates the question as if it were an explanation rather than providing any new information. Two experiments (N=77) examined children's…
Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.
Observations of ion-acoustic cylindrical solitons
NASA Technical Reports Server (NTRS)
Hershkowitz, N.; Romesser, T.
1974-01-01
Experimental observations of cylindrical solitons in a collisionless plasma are presented. The data obtained show that cylindrical solitonlike objects exist and that their properties are consistent with those of one- and three-dimensional solitons. It is found that compressive density perturbations evolve into solitons. The number of the solitons is determined by the width and amplitude of the applied pulse.
Circular chemiresistors for microchemical sensors
Ho, Clifford K.
2007-03-13
A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.
Ductile fracture of cylindrical vessels containing a large flaw
NASA Technical Reports Server (NTRS)
Erdogan, F.; Irwin, G. R.; Ratwani, M.
1976-01-01
The fracture process in pressurized cylindrical vessels containing a relatively large flaw is considered. The flaw is assumed to be a part-through or through meridional crack. The flaw geometry, the yield behavior of the material, and the internal pressure are assumed to be such that in the neighborhood of the flaw the cylinder wall undergoes large-scale plastic deformations. Thus, the problem falls outside the range of applicability of conventional brittle fracture theories. To study the problem, plasticity considerations are introduced into the shell theory through the assumptions of fully-yielded net ligaments using a plastic strip model. Then a ductile fracture criterion is developed which is based on the concept of net ligament plastic instability. A limited verification is attempted by comparing the theoretical predictions with some existing experimental results.
Electromagnetic response of buried cylindrical structures for line current excitation
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Ponti, Cristina
2013-04-01
The Cylindrical-Wave Approach (CWA) rigorously solves, in the spectral domain, the electromagnetic forward scattering by a finite set of buried two-dimensional perfectly-conducting or dielectric objects [1]-[2]. In this technique, the field scattered by underground objects is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum [1] to take into account the interaction of such waves with the planar interface between air and soil, and between different layers eventually present in the ground [3]. Obstacles of general shape can be simulated through the CWA with good results, by using a suitable set of small circular-section cylinders [4]. Recently, we improved the CWA by facing the fundamental problem of losses in the ground [5]: this is of significant importance in remote-sensing applications, since real soils often have complex permittivity and conductivity, and sometimes also a complex permeability. While in previous works concerning the CWA a monochromatic or pulsed plane-wave incident field was considered, in the present work a different source of scattering is present: a cylindrical wave radiated by a line source. Such a source is more suitable to model the practical illumination field used in GPR surveys. The electric field radiated by the line current is expressed by means of a first-kind Hankel function of 0-th order. The theoretical solution to the scattering problem is developed for both dielectric and perfectly-conducting cylinders buried in a dielectric half-space. The approach is implemented in a Fortran code; an accurate numerical evaluation of the involved spectral integrals is performed, the highly-oscillating behavior of the homogeneous waves is correctly followed and evanescent contributions are taken into account. The electromagnetic field scattered in both air and ground can be obtained, in near- and far-field regions, for arbitrary radii and permittivity of the buried cylinders, as well as for
Nuclear spin circular dichroism
Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia
2014-04-07
Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.
Investigation of Buckling Behavior of Composite Shell Structures with Cutouts
NASA Astrophysics Data System (ADS)
Arbelo, Mariano A.; Herrmann, Annemarie; Castro, Saullo G. P.; Khakimova, Regina; Zimmermann, Rolf; Degenhardt, Richard
2015-12-01
Thin-walled cylindrical composite shell structures can be applied in space applications, looking for lighter and cheaper launcher transport system. These structures are prone to buckling under axial compression and may exhibit sensitivity to geometrical imperfections. Today the design of such structures is based on NASA guidelines from the 1960's using a conservative lower bound curve generated from a database of experimental results. In this guideline the structural behavior of composite materials may not be appropriately considered since the imperfection sensitivity and the buckling load of shells made of such materials depend on the lay-up design. It is clear that with the evolution of the composite materials and fabrication processes this guideline must be updated and / or new design guidelines investigated. This need becomes even more relevant when cutouts are introduced to the structure, which are commonly necessary to account for access points and to provide clearance and attachment points for hydraulic and electric systems. Therefore, it is necessary to understand how a cutout with different dimensions affects the buckling load of a thin-walled cylindrical shell structure in combination with other initial geometric imperfections. In this context, this paper present some observations regarding the buckling load behavior vs. cutout size and radius over thickness ratio, of laminated composite curved panels and cylindrical shells, that could be applied in further recommendations, to allow identifying when the buckling of the structure is dominated by the presence of the cutout or by other initial imperfections.
Effect of Circular p- n Junction Curvature on the Diode Current Density
NASA Astrophysics Data System (ADS)
Borblik, Vitalii
2016-08-01
The influence of the circular geometry of a p- n junction built into a nanowire or a nanorod, on the radial diode current density is investigated. While the current density from the core to the shell proves to be larger than that in a planar diode at the same values of the parameters, the density of the diode current from the shell to the core, on the contrary, proves to be smaller. A dependence of the effect on the core and the shell radii has been demonstrated. The nature of the effect is explained on the basis of radial distributions of the nonequilibrium current carriers.
Modeling of circular-grating surface-emitting lasers
NASA Astrophysics Data System (ADS)
Shams-Zadeh-Amiri, Ali M.
Grating-coupled surface-emitting lasers became an area of growing interest due to their salient features. Emission from a broad area normal to the wafer surface, makes them very well suited in high power applications and two- dimensional laser arrays. These new possibilities have caused an interest in different geometries to fully develop their potential. Among them, circular-grating lasers have the additional advantage of producing a narrow beam with a circular cross section. This special feature makes them ideal for coupling to optical fibers. All existing theoretical models dealing with circular- grating lasers only consider first-order gratings, or second-order gratings, neglecting surface emission. In this thesis, the emphasis is to develop accurate models describing the laser performance by considering the radiation field. Toward this aim, and due to the importance of the radiation modes in surface-emitting structures, a theoretical study of these modes in multilayer planar structures has been done in a rigorous and systematic fashion. Problems like orthogonality of the radiation modes have been treated very accurately. We have considered the inner product of radiation modes using the distribution theory. Orthogonality of degenerate radiation modes is an important issue. We have examined its validity using the transfer matrix method. It has been shown that orthogonality of degenerate radiation modes in a very special case leads to the Brewster theorem. In addition, simple analytical formulas for the normalization of radiation modes have been derived. We have shown that radiation modes can be handled in a much easier way than has been thought before. A closed-form spectral dyadic Green's function formulation of multilayer planar structures has been developed. In this formulation, both rectangular and cylindrical structures can be treated within the same mathematical framework. The Hankel transform of some auxiliary functions defined on a circular aperture has
Passive jet control of flow around a circular cylinder
NASA Astrophysics Data System (ADS)
Chen, Wen-Li; Gao, Dong-Lai; Yuan, Wen-Yong; Li, Hui; Hu, Hui
2015-11-01
In the present study, a passive flow control method, which is featured by passive windward suction combined with leeward jet over a circular cylinder for drag reduction and dynamic wind loading suppression, was experimentally investigated to manipulate unsteady wake vortex shedding from a circular cylinder. Four perforated pipe designs with different numbers of suction/jet holes (i.e., from 2 to 24 suction/jet holes) were used to create flow communicating channels between the windward and leeward stagnation points of a cylindrical test model. The experimental study was performed in a wind tunnel at a Reynolds number of Re = 4.16 × 104 based on the cylinder diameter and oncoming airflow speed. In addition to measuring surface pressure distributions to determine the dynamic wind loads acting on the test model, a digital particle image velocimetry (PIV) system was also used to quantify the wake flow characteristics in order to assess the effectiveness of the passive jet control method with different perforated pipe designs, in comparison with a baseline case without passive jet control. It was found that the passive jet control method is very effective in manipulating the wake vortex shedding process from the circular cylinder. The perforated pipe designs with more suction/jet holes were found to be more effective in reducing drag and suppressing fluctuating amplitude of the dynamic wind loads acting on the test model. With 24 suction/jet holes evenly distributed over the cylindrical test model (i.e., the N13 design of the present study), the passive jet control method was found to be able to achieve up to 33.7 % in drag reduction and 90.6 % in fluctuating wind loading suppression, in comparison with the baseline case. The PIV measurement results revealed clearly that the passive jet control method would cause airflow jets into the cylinder wake and change the shedding modes of the wake vortex structures from the cylindrical test model. Because of the dynamic
Growing Yeast into Cylindrical Colonies
Vulin, Clément; Di Meglio, Jean-Marc; Lindner, Ariel B.; Daerr, Adrian; Murray, Andrew; Hersen, Pascal
2014-01-01
Microorganisms often form complex multicellular assemblies such as biofilms and colonies. Understanding the interplay between assembly expansion, metabolic yield, and nutrient diffusion within a freely growing colony remains a challenge. Most available data on microorganisms are from planktonic cultures, due to the lack of experimental tools to control the growth of multicellular assemblies. Here, we propose a method to constrain the growth of yeast colonies into simple geometric shapes such as cylinders. To this end, we designed a simple, versatile culture system to control the location of nutrient delivery below a growing colony. Under such culture conditions, yeast colonies grow vertically and only at the locations where nutrients are delivered. Colonies increase in height at a steady growth rate that is inversely proportional to the cylinder radius. We show that the vertical growth rate of cylindrical colonies is not defined by the single-cell division rate, but rather by the colony metabolic yield. This contrasts with cells in liquid culture, in which the single-cell division rate is the only parameter that defines the population growth rate. This method also provides a direct, simple method to estimate the metabolic yield of a colony. Our study further demonstrates the importance of the shape of colonies on setting their expansion. We anticipate that our approach will be a starting point for elaborate studies of the population dynamics, evolution, and ecology of microbial colonies in complex landscapes. PMID:24853750
Filling of charged cylindrical capillaries.
Das, Siddhartha; Chanda, Sourayon; Eijkel, J C T; Tas, N R; Chakraborty, Suman; Mitra, Sushanta K
2014-10-01
We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because of decreased velocity gradients at the wall. Both these effects essentially stem from the spontaneous formation of an electric double layer (EDL) and the resulting streaming potential caused by the net capillary-flow-driven advection of ionic species within the EDL. Our results demonstrate that filling of charged capillaries also exhibits the well-known linear and Washburn regimes witnessed for uncharged capillaries, although the filling rate is always lower than that of the uncharged capillary. We attribute this to a competitive success of the lowering of the driving forces (because of electroviscous effects), in comparison to the effect of weaker drag forces. We further reveal that the time at which the transition between the linear and the Washburn regime occurs may become significantly altered with the introduction of surface charges, thereby altering the resultant capillary dynamics in a rather intricate manner. PMID:25375597
Intrinsic cylindrical and spherical waves
NASA Astrophysics Data System (ADS)
Ludlow, I. K.
2008-02-01
Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed.
Circular Scan Streak Tube Development
NASA Technical Reports Server (NTRS)
Nevin, S.
1980-01-01
A streak tube having circular scan was designed, built and tested. Continuous circular scan, easily derived from out of phase sine waves applied to the conventional deflection plates, permits the timing of pulses traveling long baselines. At the tube's output a circular array of 720 elements is scanned to provide 30 to 40 picosecond resolution. Initial difficulties with electron bombarded silicon arrays were circumvented by using microchannel plates within the streak tube to provide the needed electronic amplification and digital sensitivity and coupling the 720 element arrays to the electron beam by means of a phosphor on a fiber optics. Two ceramic body tubes with S-20 photocathodes were tested and delivered.
Analysis, Design and Optimization of Non-Cylindrical Fuselage for Blended-Wing-Body (BWB) Vehicle
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Sobieszczanski-Sobieski, J.; Kosaka, I.; Quinn, G.; Charpentier, C.
2002-01-01
Initial results of an investigation towards finding an efficient non-cylindrical fuselage configuration for a conceptual blended-wing-body flight vehicle were presented. A simplified 2-D beam column analysis and optimization was performed first. Then a set of detailed finite element models of deep sandwich panel and ribbed shell construction concepts were analyzed and optimized. Generally these concepts with flat surfaces were found to be structurally inefficient to withstand internal pressure and resultant compressive loads simultaneously. Alternatively, a set of multi-bubble fuselage configuration concepts were developed for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls. An outer-ribbed shell was designed to prevent buckling due to external resultant compressive loads. Initial results from finite element analysis appear to be promising. These concepts should be developed further to exploit their inherent structurally efficiency.
NASA Astrophysics Data System (ADS)
Shirai, Atsushi; Fujita, Ryo; Hayase, Toshiyuki
The former analysis of neutrophil's transit through pulmonary capillary network used the result of a micropipette aspiration experiment to model the transit in single capillary segment despite blunt tip geometry of the pipette is largely different from the real capillary segment. In the previous work, we have numerically investigated the transit of passive and fMLP-stimulated neutrophils through an arc-shaped constriction, establishing the analytical expression for the transit time. This paper intends to give a simplified model for the transit of a neutrophil through a capillary segment based on the numerical analysis and the stress-strain relationship of a Maxwell material. It is shown that the transit time is in proportion to the viscosity of the cell and in inverse proportion to the square root of the curvature radius of the constriction. The definition of the driving pressure of the cell into a micropipette is also applicable to that into the constriction.
An analytical approach to wake interference effects on circular cylindrical structures
NASA Astrophysics Data System (ADS)
Williams, Rupert G.; Suaris, Wimal
2006-08-01
When a body is immersed in the wake of another body the additional buffeting force due to the vortices shed from the upstream structure magnifies the amplitude of vibration of the downstream structure. The proposed semi-empirical model is of the coupled Rayleigh wake-oscillator type with the equation of motion including an additional buffeting force. For two structures consisting of different structural parameters and placed in tandem with a wind flow, the buffeting force experienced by the downstream structure can be extrapolated from the lift force of the upstream structure, by using the ratios of the Scruton number, for the two structures. The paper highlights the aerodynamic response of tandem structures in the three primary interference regions: the proximity interference region, where the separation of the structures lies between 1.0 D and 1.1 D; the proximity induced galloping region where the separation lies between 1.1 D and 3.8 D; and the wake interference region where the separation is greater than 3.8 D.
Beam Rounders for Circular Colliders
A. Burov; S. Nagaitsev; Ya. Derbenev
2001-07-01
By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.
Transverse shear stiffness of laminated anisotropic shells
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1978-01-01
Equations are derived for the transverse shear stiffness of laminated anisotropic shells. Without making assumptions for thickness distribution for either transverse shear stresses or strains, constitutive equations for the transverse shear deformation theory of anisotropic heterogeneous shells are found. The equations are based on Taylor series expansions about a generic point for stress resultants and couples, identically satisfying plate equilibrium equations. These equations are used to find statically correct expressions for in-surface stresses, transverse shear stresses, and the area density of transverse shear strain energy, in terms of transverse shear stress resultants and redundants. The application of Castigliano's theorem of least work minimizes shear strain energy with respect to the redundants. Examples are presented for several laminated walls. Good agreement is found between the results and those of exact three-dimensional elasticity solutions for the cylindrical bending of a plate.
Circularization time of binary galaxies
NASA Astrophysics Data System (ADS)
Junqueira, S.; de Freitas Pacheco, J. A.
1994-11-01
We report the results of numerical experiments performed to study the orbital circularization time of binary galaxies. We find that the time scale is quite long (larger than the Hubble time), confirming earlier calculations. The results depend on the initial conditions. From our simulations we obtained a fitting formula for the circularization time as a function of the initial orbital parameters like the pericentric distance, mass ratio, and eccentricity.
Neural potentials and micro-signals of non-linear deep and shallow conical shells
NASA Astrophysics Data System (ADS)
Chai, W. K.; Smithmaitrie, P.; Tzou, H. S.
2004-07-01
Conventional sensors, such as proximeters and accelerometers, are add-on devices usually adding additional weights to structures and machines. Health monitoring of flexible structures by electroactive smart materials has been investigated over the years. Thin-film piezoelectric material, e.g. polyvinylidene fluoride (PVDF) polymeric material, is a lightweight and dynamic sensitive material appearing to be a perfect candidate in monitoring structure's dynamic state and health status of flexible shell structures with complex geometries. The complexity of shell structures has thwarted the progress in studying the distributed sensing of shell structures. Linear distributed sensing of various structures have been studied, e.g. beams, plates, cylindrical shells, conical shells, spherical shells, paraboloidal shells and toroidal shells. However, distributed microscopic neural signals of non-linear shell structures has not been carried out rigorously. This study is to evaluate microscopic signals, modal voltages and distributed micro-neural signal components of truncated non-linear conical shells laminated with distributed infinitesimal piezoelectric neurons. Signal generation of distributed neuron sensors laminated on conical shells is defined first. The dynamic neural signal of truncated non-linear conical shells consists of microscopic linear and non-linear membrane components and linear bending component based on the von Karman geometric non-linearity. Micro-signals, modal voltages and distributed neural signal components of two different truncated non-linear conical shells are investigated and their sensitivities discussed.
FOUR PI CALIBRATION AND MODELING OF A BARE GERMANIUM DETECTOR IN A CYLINDRICAL FIELD SOURCE
Dewberry, R.; Young, J.
2011-04-29
In reference 1 the authors described {gamma}-ray holdup assay of a Mossbauer spectroscopy instrument where they utilized two axial symmetric cylindrical shell acquisitions and two disk source acquisitions to determine Am-241 and Np-237 contamination. The measured contents of the two species were determined using a general detector efficiency calibration taken from a 12-inch point source.2 The authors corrected the raw spectra for container absorption as well as for geometry corrections to transform the calibration curve to the applicable axial symmetric cylindrical source - and disk source - of contamination. The authors derived the geometry corrections with exact calculus that are shown in equations (1) and (2) of our Experimental section. A cylindrical shell (oven source) acquisition configuration is described in reference 3, where the authors disclosed this configuration to gain improved sensitivity for holdup measure of U-235 in a ten-chamber oven. The oven was a piece of process equipment used in the Savannah River Plant M-Area Uranium Fuel Fabrication plant for which a U-235 holdup measurement was necessary for its decontamination and decommissioning in 2003.4 In reference 4 the authors calibrated a bare NaI detector for these U-235 holdup measurements. In references 5 and 6 the authors calibrated a bare HpGe detector in a cylindrical shell configuration for improved sensitivity measurements of U-235 in other M-Area process equipment. Sensitivity was vastly improved compared to a close field view of the sample, with detection efficiency of greater than 1% for the 185.7-keV {gamma}-ray from U-235. In none of references 3 - 7 did the authors resolve the exact calculus descriptions of the acquisition configurations. Only the empirical efficiency for detection of the 185.7-keV photon from U-235 decay was obtained. Not until the 2010 paper of reference 1 did the authors derive a good theoretical description of the flux of photons onto the front face of a detector
Determination of the critical loads of shells by nondestructive methods
NASA Technical Reports Server (NTRS)
Horton, W. H.; Nassar, E. M.; Singhal, M. K.
1977-01-01
Two methods for determining the location of and load level to produce instability of compressed cylindrical shells are presented. The first relates the variation in the wall normal stiffness as a function of applied compressive force to the critical load. It uses the distribution of stiffness over the surface of the shell as a guide to buckle location. The second method associates the local dynamic mass with instability behavior. The test data presented show that either method will give excellent prediction capability from low-load-level data for shells of orthodox form. Neither method appears to apply to spirally stiffened shells. This is thought to be due to the fact that there is a substantial difference between the buckle pattern under axial compression and the imperfection shape induced by the normal displacement which is used to ascertain the wall stiffness and the dynamic mass.
View factors of cylindrical spiral surfaces
NASA Astrophysics Data System (ADS)
Lebedev, Vladimir A.; Solovjov, Vladimir P.
2016-03-01
Analytical expressions are presented for the view factors (radiative configuration factors) associated with the flat right cylindrical spiral surface. Such cylindrical spiral systems are widely applied as electrical resistance heating elements for lighting devices, electronic radio tubes, high-speed gas flow heaters, and other appliances used for scientific, industrial and domestic purposes. Derivation of the view factors is based on the invariant principles and the results presented in Lebedev (2000, 2003,1988) [1-3].
Damage experiments in cylindrical geometry update
Kaul, Anne; Holtkamp, David; Rodriguez, George
2009-01-01
Using a cylindrical configuration to study spallation damage allows for a natural recollection of the damaged material under proper driving conditions. Previous experiments provided data about failure initiation in aluminum in a cylindrical geometry and the behavior of material recollected after damage from pressures in the damage initiation regime. The current series of experiments studied the behavior of material recollected after complete failure. Results from the current experiments will be presented.
Simulating flow and segregation of cylindrical particles
NASA Astrophysics Data System (ADS)
Zhao, Yongzhi; Umbanhowar, Paul B.; Lueptow, Richard M.
2015-11-01
Efficient and accurate simulation of cylindrical particles using discrete element method (DEM) is a challenge. Typical approaches to simulating cylindrical particle systems are based on the glued spheres method, which has low accuracy, or real shape models, which have high computational cost. In this work we utilize super-ellipsoids, which belong to super-quadrics, to model cylindrical particles in DEM simulations. Simulations of a single cylinder impacting a flat wall indicate that super-ellipsoids provide the same accuracy as real shape models and much better accuracy than the glued sphere method. Simulations of super-ellipsoid cylindrical particles in rotating tumblers result in nearly the same angle of repose as experiments and real shape simulations, demonstrating the accuracy of super-ellipsoid DEM simulations for multi-particle systems. The segregation of bidisperse cylindrical particles differing in length in a bounded heap was simulated by super-ellipsoid DEM, and the results are similar to the experiment. In spite of these advantages of using super-ellipsoid cylindrical particles, simulations of filling a box with particles indicate that the simulation times for super-ellipsoid cylinders is about an order of magnitude longer than that for the same number of spherical particles.
Electroosmosis in a Finite Cylindrical Pore: Simple Models of End Effects
2015-01-01
A theoretical model of electroosmosis through a circular pore of radius a that traverses a membrane of thickness h is investigated. Both the cylindrical surface of the pore and the outer surfaces of the membrane are charged. When h ≫ a, end effects are negligible, and the results of full numerical computations of electroosmosis in an infinite pore agree with theory. When h = 0, end effects dominate, and computations again agree with analysis. For intermediate values of h/a, an approximate analysis that combines these two limiting cases captures the main features of computational results when the Debye length κ–1 is small compared with the pore radius a. However, the approximate analysis fails when κ–1 ≫ a, when the charge cloud due to the charged cylindrical walls of the pore spills out of the ends of the pore, and the electroosmotic flow is reduced. When this spilling out is included in the analysis, agreement with computation is restored. PMID:25020257
Wang, Xiahui; Xu, Miao; Ren, Hongwen; Wang, Qionghua
2013-07-01
We report a simple method to prepare an array of polarization converters using a twisted-azimuthal nematic liquid crystal (NLC) in cylindrical polymer cavities. When a NLC is filled in a cylindrical polymer cavity, LC in the cavity presents concentrically circular orientations. By treating LC on one side of the cavity with homogeneous alignment, a twisted-azimuthal texture is formed. Such a LC texture can convert a linear polarization light to either radial or azimuthal polarization light depending on the polarization direction of the incident light. The LC surface on the other side of the cavity is convex, so the light after passing through the cavity can be focused as well. The LC texture can be fixed firmly using polymer network. In comparison with previous polarization converters, our polarization converter has the merits of individually miniature size, array of pattern, and lens character. Our polarization converter array has potential applications in tight focusing, imaging, and material processing. PMID:23842407
NASA Astrophysics Data System (ADS)
Sone, Yoshio; Sugimoto, Hiroshi; Aoki, Kazuo
1999-02-01
A rarefied gas between two coaxial circular cylinders made of the condensed phase of the gas is considered, where each cylinder is kept at a uniform temperature and is rotating at a constant angular velocity around its axis (cylindrical Couette flows of a rarefied gas with evaporation or condensation on the cylinders). The steady behavior of the gas, with special interest in bifurcation of a flow, is studied on the basis of kinetic theory from the continuum to the Knudsen limit. The solution shows profound variety: reversal of direction of evaporation-condensation with variation of the speed of rotation of the cylinders; contrary to the conventional cylindrical Couette flow without evaporation and condensation, bifurcation of a flow in a simple case where the state of the gas is circumferentially and axially uniform.
Cylindrical confinement of semiflexible polymers
NASA Astrophysics Data System (ADS)
Vázquez-Montejo, Pablo; McDargh, Zachary; Deserno, Markus; Guven, Jemal
2015-06-01
Equilibrium states of a closed semiflexible polymer binding to a cylinder are described. This may be either by confinement or by constriction. Closed completely bound states are labeled by two integers: the number of oscillations, n , and the number of times it winds the cylinder, p , the latter being a topological invariant. We examine the behavior of these states as the length of the loop is increased by evaluating the energy, the conserved axial torque, and the contact force. The ground state for a given p is the state with n =1 ; a short loop with p =1 is an elliptic deformation of a parallel circle; as its length increases it elongates along the cylinder axis with two hairpin ends. Excited states with n ≥2 and p =1 possess n -fold axial symmetry. Short (long) loops possess energies ≈p E0 (n E0 ), with E0 the energy of a circular loop with same radius as the cylinder; in long loops the axial torque vanishes. Confined bound excited states are initially unstable; however, above a critical length each n -fold state becomes stable: The folded hairpin cannot be unfolded. The ground state for each p is also initially unstable with respect to deformations rotating the loop off the surface into the interior. A closed planar elastic curve aligned along the cylinder axis making contact with the cylinder on its two sides is identified as the ground state of a confined loop. Exterior bound states behave very differently, if free to unbind, as signaled by the reversal in the sign of the contact force. If p =1 , all such states are unstable. If p ≥2 , however, a topological obstruction to complete unbinding exists. If the loop is short, the bound state with p =2 and n =1 provides a stable constriction of the cylinder, partially unbinding as the length is increased. This motif could be relevant to an understanding of the process of membrane fission mediated by dynamin rings.
Ab Initio Computation of the Energies of Circular Quantum Dots
Lohne, M. Pedersen; Hagen, Gaute; Hjorth-Jensen, M.; Kvaal, S.; Pederiva, F.
2011-01-01
We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger systems of electrons.
Deformation of compound shells under action of internal shock wave loading
NASA Astrophysics Data System (ADS)
Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin
2015-09-01
The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.
Defect tolerance of pressurized fiber composite shell structures
Gotsis, P.K.; Chamis, C.C.; Minnetyan, L.
1996-12-31
Progressive damage and fracture of pressurized graphite/epoxy thin composite shells are evaluated via computational simulation. An integrated computer code that scales up constituent micromechanics level material properties to the structure level and accounts for all possible failure modes is used for the simulation of composite degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulation. Design implications with regard to defect and damage tolerance of thin walled composite cylindrical shells are examined. A procedure is outlined regarding the use of this type of information for setting quality acceptance criteria, design allowables, damage tolerance, and retirement-for-cause criteria.
LQR Control of Shell Vibrations Via Piezoceramic Actuators
NASA Technical Reports Server (NTRS)
delRosario, R. C. H.; Smith, R. C.
1997-01-01
A model-based Linear Quadratic Regulator (LQR) method for controlling vibrations in cylindrical shells is presented. Surface-mounted piezo-ceramic patches are employed as actuators which leads to unbounded control input operators. Modified Donnell-Mushtari shell equations incorporating strong or Kelvin-Voigt damping are used to model the system. The model is then abstractly formulated in terms of sesquilinear forms. This provides a framework amenable for proving model well-posedness and convergence of LQR gains using analytic semigroup results combined with LQR theory for unbounded input operators. Finally, numerical examples demonstrating the effectiveness of the method are presented.
Magnetization processes in core/shell exchange-spring structures
NASA Astrophysics Data System (ADS)
Jiang, J. S.
2015-05-01
The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the flux-closure allows cylindrical and spherical core/shell exchange-spring elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.
Circular polarization interferometry: circularly polarized modes of cholesteric liquid crystals.
Sanchez-Castillo, A; Eslami, S; Giesselmann, F; Fischer, P
2014-12-15
We describe a novel polarization interferometer which permits the determination of the refractive indices for circularly-polarized light. It is based on a Jamin-Lebedeff interferometer, modified with waveplates, and permits us to experimentally determine the refractive indices nL and nR of the respectively left- and right-circularly polarized modes in a cholesteric liquid crystal. Whereas optical rotation measurements only determine the circular birefringence, i.e. the difference (nL - nR), the interferometer also permits the determination of their absolute values. We report refractive indices of a cholesteric liquid crystal in the region of selective (Bragg) reflection as a function of temperature. PMID:25607071
Shock-Sensitivity in Shell-Like Structures: With Simulations of Spherical Shell Buckling
NASA Astrophysics Data System (ADS)
Thompson, J. Michael T.; Sieber, Jan
Under increasing compression, an unbuckled shell is in a metastable state which becomes increasingly precarious as the buckling load is approached. So to induce premature buckling, a lateral disturbance will have to overcome a decreasing energy barrier which reaches zero at buckling. Two archetypal problems that exhibit a severe form of this behavior are the axially-compressed cylindrical shell and the externally pressurized spherical shell. Focusing on the cylinder, a nondestructive technique was recently proposed to estimate the “shock-sensitivity” of a laboratory specimen using a lateral probe to measure the nonlinear load-deflection characteristic. If a symmetry-breaking bifurcation is encountered on the path, computer simulations showed how this can be suppressed by a controlled secondary probe. Here, we extend our understanding by assessing in general terms how a single control can capture remote saddle solutions: in particular, how a symmetric probe could locate an asymmetric solution. Then, more specifically, we analyze the spherical shell with point and ring probes, to test the procedure under challenging conditions to assess its range of applicability. Rather than a bifurcation, the spherical shell offers the challenge of a destabilizing fold (limit point) under the rigid control of the probe.
Generalized bi-circular projections
NASA Astrophysics Data System (ADS)
Lin, Pei-Kee
2008-04-01
Recall that a projection P on a complex Banach space X is a generalized bi-circular projection if P+[lambda](I-P) is a (surjective) isometry for some [lambda] such that [lambda]=1 and [lambda][not equal to]1. It is easy to see that every hermitian projection is generalized bi-circular. A generalized bi-circular projection is said to be nontrivial if it is not hermitian. Botelho and Jamison showed that a projection P on C([0,1]) is a nontrivial generalized bi-circular projection if and only if P-(I-P) is a surjective isometry. In this article, we prove that if P is a projection such that P+[lambda](I-P) is a (surjective) isometry for some [lambda], then either P is hermitian or [lambda] is an nth unit root of unity. We also show that for any nth unit root [lambda] of unity, there are a complex Banach space X and a nontrivial generalized bi-circular projection P on X such that P+[lambda](I-P) is an isometry.
Circular codes, symmetries and transformations.
Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz
2015-06-01
Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes. PMID:25008961
Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere.
Chen, Shizhen; Zhou, Xinxing; Liu, Yachao; Ling, Xiaohui; Luo, Hailu; Wen, Shuangchun
2014-09-15
We propose and experimentally demonstrate a novel interferometric approach to generate arbitrary cylindrical vector beams on the higher order Poincaré sphere (HOPS). Our scheme is implemented by collinear superposition of two orthogonal circular polarizations with opposite topological charges. By modifying the amplitude and phase factors of the two beams, respectively, any desired vector beams on the HOPS with high tunability can be acquired. Our research provides a convenient way to evolve the polarization states in any path on the high order Poincaré sphere. PMID:26466249
Cylindrical vector beams of light from an electrically excited plasmonic lens
Cao, Shuiyan Le Moal, Eric; Boer-Duchemin, Elizabeth; Dujardin, Gérald; Drezet, Aurélien; Huant, Serge
2014-09-15
The production of cylindrical vector beams from a low-energy, electric, microscale light source is demonstrated both experimentally and theoretically. This is achieved by combining a “plasmonic lens” with the ability to locally and electrically excite propagating surface plasmons on gold films. The plasmonic lens consists of concentric circular subwavelength slits that are etched in a thick gold film. The local excitation arises from the inelastic tunneling of electrons from the tip of a scanning tunneling microscope. We report on the emission of radially polarized beams with an angular divergence of less than ±4°.
NASA Technical Reports Server (NTRS)
Grissom, D. S.; Michalopoulos, C. D.
1973-01-01
A problem in the linear theory of elasticity is considered wherein a layer with a circular cylindrical hole is subjected to a nonuniform axisymmetric radial displacement. The solution utilizes Navier's equations of elasticity which are solved by means of extended Hankel transforms. A special case in which the radial displacement is a linear function of the axial coordinate is presented. Numerical results are given in graphical form for the case when hole radius and layer thickness are equal. The inversion integrals were evaluated numerically using Longman's technique for computing infinite integrals of oscillatory functions.
High-Fidelity Nonlinear Analysis of Compression-Loaded Composite Shells
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2001-01-01
The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have four different shell-wall laminates and two different shell-radius-to-thickness ratios. The shell-wall laminates include two different orthotropic laminates and two different quasi-isotropic laminates. The shell-radius-to-thickness ratios include shell-radius-to-thickness ratios equal to 100 and 200. The results identify the effects of traditional and nontraditional initial imperfections on the nonlinear response characteristics and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfections that are commonly discussed in the literature on thin shell buckling. The nontraditional imperfections include shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these traditional and nontraditional imperfections on the nonlinear response characteristics and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts the stable response characteristics of the shells, and a nonlinear transient analysis that predicts the unstable response characteristics. The results of a local shell-wall stress analysis used to estimate failure stresses are also described.
Shell Worlds: The Question of Shell Stability
NASA Astrophysics Data System (ADS)
Roy, K. L.; Kennedy, R. G., III; Fields, D. E.
The initial idea of shell worlds was first proposed in the January 2009 edition of JBIS. In that paper the stability of the shell around a central world was not discussed at any length except to say that it was stable due to forces induced by gravity. This paper demonstrates in a qualitative and quantitative manner that a material shell supported by atmospheric pressure around a moon or small planet is indeed stable and does not require active measures to remain centered, provided that the central body is large enough. The minimal size of the central body to provide this stability is discussed.
Fracture mechanics analyses of partial crack closure in shell structures
NASA Astrophysics Data System (ADS)
Zhao, Jun
2007-12-01
This thesis presents the theoretical and finite element analyses of crack-face closure behavior in shells and its effect on the stress intensity factor under a bending load condition. Various shell geometries, such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with double curvatures, are all studied. In addition, the influence of material orthotropy on the crack closure effect in shells is also considered. The theoretical formulation is developed based on the shallow shell theory of Delale and Erdogan, incorporating the effect of crack-face closure at the compressive edges. The line-contact assumption, simulating the crack-face closure at the compressive edges, is employed so that the contact force at the closure edges is introduced, which can be translated to the mid-plane of the shell, accompanied by an additional distributed bending moment. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, that is, along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. It is found that due to the curvature effects crack closure may not always occur on the entire length of the crack, depending on the direction of the bending load and the geometry of the shell. The crack-face closure influences significantly the magnitude of the stress intensity factors; it increases the membrane component but decreases the bending component. The maximum stress intensity factor is reduced by the crack-face closure. The significant influence of geometry and material orthotropy on rack closure behavior in shells is also predicted based on the analytical solutions. Three-dimensional FEA is performed to validate the theoretical solutions. It demonstrates that the crack face closure occurs actually over an area, not on a line, but the theoretical solutions of the stress intensity
Circular birefringence of banded spherulites.
Cui, Xiaoyan; Shtukenberg, Alexander G; Freudenthal, John; Nichols, Shane; Kahr, Bart
2014-04-01
Crystal optical properties of banded spherulites of 21 different compounds--molecular crystals, polymers, and minerals--with helically twisted fibers were analyzed with Mueller matrix polarimetry. The well-established radial oscillations in linear birefringence of many polycrystalline ensembles is accompanied by oscillations in circular birefringence that cannot be explained by the natural optical activity of corresponding compounds, some of which are centrosymmetric in the crystalline state. The circular birefringence is shown to be a consequence of misoriented, overlapping anisotropic lamellae, a kind of optical activity associated with the mesoscale stereochemistry of the refracting components. Lamellae splay as a consequence of space constraints related to simultaneous twisting of anisometric lamellae. This mechanism is supported by quantitative simulations of circular birefringence arising from crystallite twisting and splaying under confinement. PMID:24625095
The Dizzying Depths of the Cylindrical Mirror
NASA Astrophysics Data System (ADS)
DeWeerd, Alan J.; Hill, S. Eric
2005-02-01
A typical introduction to geometrical optics treats plane and spherical mirrors. At first glance, it may be surprising that texts seldom mention the cylindrical mirror, except for the occasional reference to use in fun houses and to viewing anamorphic art.1,2 However, even a cursory treatment reveals its complexity. Holzberlein used an extended object to qualitatively illustrate that images are produced both before and behind a concave cylindrical mirror.3 He also speculated on how this extreme astigmatism results in an observer's dizziness. By considering a simple point object, we make a more detailed analysis of the cylindrical mirror and the dizziness it induces. First, we illustrate how rays from a point object reflect to form not one point image but two line images. Next, we describe how an observer perceives a likeness of the object. Finally, we suggest how confusing depth cues induce dizziness. Although we focus on the concave cylindrical mirror, the discussion is easy to generalize to the convex cylindrical mirror.
Ductile fracture of pipes and cylindrical containers with a circumferential flaw
Erdogan, F.; Delale, F.
1981-05-01
The problem of ductile fracture of a pipe or cylindrical container having a relatively long and deep circumferential part-through crack or through a crack and subjected to a uniform axial membrane load in the crack region is discussed. After describing the evolution of the ductile fracture process, first the results of the elasticity solution for the circumferentially cracked cylindrical shell based on the Reissner's Transverse Shear Theory are presented. The elastic-plastic part-through crack problem then is considered. In the analysis the plastic deformations are approximated by a perfectly plastic layer similar to the conventional Dugdale model. The load carrying capacity of the cylinder is estimated in various ways by using the crack opening stretch along the leading edge of the crack as the critical load factor. 20 references.
Podokinetic circular vection: characteristics and interaction with optokinetic circular vection.
Becker, W; Kliegl, K; Kassubek, J; Jürgens, R
2016-07-01
Stabilising horizontal body orientation in space without sight on a rotating platform by holding to a stationary structure and circular 'treadmill' stepping in the opposite direction can elicit an illusion of self-turning in space (Bles and Kapteyn in Agressologie 18:325-328, 1977). Because this illusion is analogous to the well-known illusion of optokinetic circular vection (oCV), we call it 'podokinetic circular vection' (pCV) here. Previous studies using eccentric stepping on a path tangential to the rotation found that pCV was always contraversive relative to platform rotation. In contrast, when our subjects stepped at the centre of rotation about their vertical axis, we observed an inverted, ipsiversive pCV as a reproducible trait in many of our subjects. This ipCV occurred at the same latency as the pCV of subjects reporting the actually expected contraversive direction, but had lower gain. In contrast to pCV, the nystagmus accompanying circular treadmill stepping had the same direction in all individuals (slow phase in the direction of platform motion). The direction of an individual's pCV predicted the characteristics of the CV resulting from combined opto- and podokinetic stimulation (circular treadmill stepping while viewing a pattern rotating together with the platform): in individuals with contraversive pCV, latency shortened and both gain and felt naturalness increased in comparison with pure oCV, whereas the opposite (longer latency, reduced gain and naturalness) occurred in individuals with ipCV. Taken together, the reproducibility of ipCV, the constant direction of nystagmus and the fact that pCV direction predicts the outcome of combined stimulation suggest that ipCV is an individual trait of many subjects during compensatory stepping at the centre of rotation. A hypothetical model is presented of how ipCV possibly could arise. PMID:26965438
Maximal dinucleotide and trinucleotide circular codes.
Michel, Christian J; Pellegrini, Marco; Pirillo, Giuseppe
2016-01-21
We determine here the number and the list of maximal dinucleotide and trinucleotide circular codes. We prove that there is no maximal dinucleotide circular code having strictly less than 6 elements (maximum size of dinucleotide circular codes). On the other hand, a computer calculus shows that there are maximal trinucleotide circular codes with less than 20 elements (maximum size of trinucleotide circular codes). More precisely, there are maximal trinucleotide circular codes with 14, 15, 16, 17, 18 and 19 elements and no maximal trinucleotide circular code having less than 14 elements. We give the same information for the maximal self-complementary dinucleotide and trinucleotide circular codes. The amino acid distribution of maximal trinucleotide circular codes is also determined. PMID:26382231
NASA Technical Reports Server (NTRS)
Stein, M.
1985-01-01
Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.
Laser diode assembly including a cylindrical lens
Snyder, J.J.; Reichert, P.
1992-01-14
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. 11 figs.
Laser diode assembly including a cylindrical lens
Snyder, James J.; Reichert, Patrick
1992-01-01
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing.
Current pulse effects on cylindrical damage experiments
Kaul, Ann M; Rousculp, Christopher L
2009-01-01
A series of joint experiments between LANL and VNIIEF use a VNIIEF-designed helical generator to provide currents for driving a LANL-designed cylindrical spallation experimental load. Under proper driving conditions, a cylindrical configuration allows for a natural recollection of the damaged material. In addition, the damaged material is able to come to a complete stop due to its strength, avoiding application of further forces. Thus far, experiments have provided data about failure initiation of a well-characterized material (aluminum) in a cylindrical geometry, behavior of material recollected after damage from pressures in the damage initiation regime, and behavior of material recollected after complete failure. In addition to post-shot collection of the damaged target material for subsequent metallographic analysis, dynamic in-situ experimental diagnostics include velocimetry and transverse radial radiography. This paper will focus on the effects of tailoring the driving current pulse to obtain the desired data.
Fluctuating shells under pressure
Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.
2012-01-01
Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558
Light scattering from cylindrical structures on surfaces.
Taubenblatt, M A
1990-03-01
Light scattering from a dielectric cylindrical structure on a surface by a plane wave with field vector along the cylinder axis is calculated with a modification of the coupled-dipole method. The interaction matrix is calculated with the use of both the direct contribution of a polarization current filament and its reflection from the surface. The reflected cylindrical waves are computed with the use of the Sommerfeld-type integral expression. Light scattering from structures of arbitrary cross section and the size of the order of a wavelength can be quickly determined with this method. PMID:19759774
Stability diagrams for a rigid gyrostat in a circular orbit
NASA Astrophysics Data System (ADS)
Hughes, P. C.; Golla, D. F.
1984-05-01
The dynamics of a rigid gyrostat travelling in a circular orbit are reviewed. The two torques to be balanced are the gyroscopic torque associated with the once per orbit precession of the in plane angular momentum vector, and the gravitational torque that results from the principal inertial axes not being aligned with the orbiting axes. Different methods of balancing these two torques lead to different classes of relative equilibria, viz., the cylindrical case, the conical case, the hyperbolic case, and the general case. The principal contribution is to present a large number of stability diagrams for the many different cases and subcases that arise. A large number of equilbria are, in fact, unstable. However, as shown here, they can usually be stabilized by adding a momentum wheel aligned with the pitch axis.
Circular RNA expands its territory.
Bao, Chunyang; Lyu, Dongbin; Huang, Shenglin
2016-03-01
Circular RNAs (circRNAs) represent a novel class of widespread non-coding RNAs in eukaryotes. They are unusually stable RNA molecules with cell type-specific expression patterns, and are predominantly present in the cytoplasm. We recently demonstrated the existence of abundant circRNAs in exosomes and suggest a potential application of exosomal circRNAs for cancer detection. PMID:27308606
Polyelectrolyte Stars and Cylindrical Brushes Made by ATRP: New Building Blocks in Nanotechnology
NASA Astrophysics Data System (ADS)
Plamper, Felix; Xu, Youyong; Yuan, Jiayin; Ballauff, Matthias; Müller, Axel H. E.
Star polymers and cylindrical polymer brushes (CPBs), i.e. polymers possessing side groups densely grafted from a linear main chain, have attracted considerable experimental and theoretical interest over the past decade, owing to their peculiar solution and bulk properties. We have used the grafting-from approach via ATRP to synthesize well-defined star polymers and core—shell CPBs with homopolymer and block copolymer side chains. The diblock copolymer side chains may include combinations of soft-hard, hydrophilic-hydrophobic and crystalline-amorphous block segments. In particular, we have been interested in polyelectrolyte blocks; then the polymers resemble intramolecular spherical and cylindrical micelles, respectively. Star polymers of poly(acrylic acid) (PAA) and poly(N,N-dimethylaminoethyl methacrylate) (DMAEMA) were made using sugar- or silsesquioxane-based ATRP initiators. Their LCST and UCST phase behaviour depends on pH, counterion charge, temperature, and light. PDMAEMA CPBs react in a similar way, and on addition of trivalent counterions they even form helical structures. We have also synthesized hybrid nanowires of semiconducting CdS and CdSe or nanomagnets of γ-Fe2O3 inside the PAA core of CPBs. Here, we present novel water-soluble and biocompatible silica nanowires based on CPBs. They have a core consisting of a silsesquioxane network of crosslinked poly(3-acryloylpropyl trimethoxysilane) (PAPTS) and a shell of poly(oligoe-thyleneglycol methacrylate) (POEGMA). Sequential ATRP of APTS and OEGMA initiated by a polyinitiator backbone (DP = 3,200) was carried out in benzene. Due to the cylindrical shape of the brushes the functional TMS moieties were arranged into a 1D manner and then crosslinked via alkaline condensation, rendering the rigid core—shell hybrid CPBs. Finally, uniform silica nanowires were achieved by the simultaneous removal of the hybrid CPB template via pyrolysis. The length as well as the diameter of silica nanowires are well-defined.
Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures
Talebi, Elnaz; Tahir, Mahmood Md.; Yasreen, Airil
2014-01-01
The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system. PMID:24526915
Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.
Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir
2014-01-01
The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system. PMID:24526915
SHELL - PRESSURE VOLUME PROPERTIES OF METALLIC BELLOWS
NASA Technical Reports Server (NTRS)
Kiefling, L.
1994-01-01
A majority of the liquid-fueled rocket vehicles developed in the past have been plagued by an instability known as POGO. The POGO phenomenon involves dynamics of the vehicle structure, dynamics of the propellant in the feedline, and the engine dynamic transfer function. Each of these three items must be accurately known in order to determine stability. Metallic bellows are commonly used as segments of propellant feedlines for rocket-propelled vehicles to accommodate temperature-induced length variations, manufacturing tolerances, and gimbaling of the engines. These bellows sections deform radially and change volume when internal pressure varies, and the magnitude of such deformation is much higher than that for the straight, cylindrical segments of the line. The greater flexibility of the bellows decreases the frequency of acoustic oscillations in the line. Calculating elastic stiffness is difficult due to the radial deformation of a bellows section. SHELL was developed specifically to calculate changes in volume of a bellows due to changes in internal pressure. Input to the program consists of tables describing the material, the geometry of the convolutions and loading. The output gives displacements and volume change that can be used for POGO or waterhammer analysis. SHELL is written in standard FORTRAN 77. This program was originally developed on a Univac 1100 series computer and has been successfully implemented on IBM 370 series computers running MVS and DEC VAX series computers running VMS. The main memory requirement for running SHELL under VMS is 116K. The program source code, IBM JCL for compiling and running SHELL, and sample input are provided with the program. SHELL is available on a 9-track 1600 BPI ASCII CARD IMAGE magnetic tape. This program was developed in 1989. IBM is a trademark of International Business Machines Corporation. DEC, VAX and VMS are registered trademarks of Digital Equipment Corporation. Univac 1100 is a trademark of Unisys
Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2000-01-01
The results of an experimental and numerical study of the effects of imperfections on the buckling response of unstiffened thin-walled composite cylindrical shells are presented. Results that identify the individual and combined effects of traditional initial geometric shell-wall imperfections and non-traditional shell-wall thickness variations, shell-end geometric imperfections and variations in loads applied to the ends of the shells on the shell buckling response are included. In addition, results illustrating the effects of manufacturing flaws in the form of gaps between adjacent pieces of graphite-epoxy tape in some of the laminate plies are presented in detail. The shells have been analyzed with a nonlinear finite-element analysis code that accurately accounts for these effects on the buckling and nonlinear responses of the shells. The numerical results indicate that traditional and nontraditional initial imperfections can cause a significant reduction in the buckling load of a compression-loaded composite shell. Furthermore, the results indicate that the imperfections couple in a nonlinear manner. The numerical results correlate well with the experimental results. The nonlinear analysis results are also compared to the results from a traditional linear bifurcation buckling analysis. The results suggest that the nonlinear analysis procedure can be used for determining accurate, high-fidelity design knockdown factors for shell buckling and collapse. The results can also be used to determine the effects of manufacturing tolerances on the buckling response of composite shells.
Core-shell potassium niobate nanowires for enhanced nonlinear optical effects.
Richter, J; Steinbrück, A; Zilk, M; Sergeyev, A; Pertsch, T; Tünnermann, A; Grange, R
2014-05-21
We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte. We show that the latter leads to a smoother and complete core-shell nanostructure and an easier-to-use synthesis process. A Mie-theory based theoretical approach is presented to model the enhanced second-harmonic generated (SHG) signal of the core-shell wires, illustrating the influence of the fabrication-induced varying geometrical factors of wire radius and shell thickness. A spectroscopic measurement on a core-shell nanowire shows a strong localized surface plasmon resonance close to 900 nm, which matches with the SHG resonance obtained from nonlinear optical experiments with the same nanowire. According to the simulation, this corresponds to a wire radius of 35 nm and a shell thickness of 7.5 nm. By comparing SHG signals measured from an uncoated nanowire and the coated one, we obtain a 250 times enhancement factor. This is less than the calculated enhancement, which considers a cylindrical nanowire with a perfectly smooth shell. Thus, we explain this discrepancy mainly with the roughness of the synthesized gold shell. PMID:24675780
Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes
NASA Technical Reports Server (NTRS)
Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit
2013-01-01
On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.
Lindl, J.D.; Bangerter, R.O.
1975-10-31
Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.
O'Brien, Matthew N; Jones, Matthew R; Kohlstedt, Kevin L; Schatz, George C; Mirkin, Chad A
2015-02-11
Herein, we report the synthesis of structurally uniform gold circular disks as two-dimensional plasmonic nanostructures that complement the well-established one-dimensional rod and three-dimensional shell structures. We show that a Au conproportionation reaction can be used to etch a collection of nonuniform triangular prisms into a uniform circular disk product with thickness and diameter varying <10%. These new particles have broadly tunable plasmon resonances (650-1000 nm) with narrow bandwidths (0.23-0.28 eV) and can be described as "effectively two-dimensional" plasmonic structures, as they do not support a significant transverse mode. PMID:25562383
Optical methods for cylindrical rough surface testing
NASA Astrophysics Data System (ADS)
Perez Quintian, F.; Rebollo, Maria A.; Gaggioli, Nestor G.; Raffo, C. A.
1999-07-01
This work studies theoretically the scattering of light from cylindrical rough surfaces. It is shown, for the conical diffraction configuration, that the mean intensity on an observation plane perpendicular to the cylinder longitudinal axis, is related to the statistical parameters that characterize the surface: the roughness (sigma) and the correlation length T.
Conformal cylindrically symmetric spacetimes in modified gravity
NASA Astrophysics Data System (ADS)
Türkog˜lu, Murat Metehan; Dog˜ru, Melis Ulu
2015-11-01
We investigate cylindrically symmetric spacetimes in the context of f(R) gravity. We firstly attain conformal symmetry of the cylindrically symmetric spacetime. We obtain solutions to use features of the conformal symmetry, field equations and their solutions for cylindrically symmetric spacetime filled with various cosmic matters such as vacuum state, perfect fluid, anisotropic fluid, massive scalar field and their combinations. With the vacuum state solutions, we show that source of the spacetime curvature is considered as Casimir effect. Casimir force for given spacetime is found using Wald’s axiomatic analysis. We expose that the Casimir force for Boulware, Hartle-Hawking and Unruh vacuum states could have attractive, repulsive and ineffective features. In the perfect fluid state, we show that matter form of the perfect fluid in given spacetime must only be dark energy. Also, we offer that potential of massive and massless scalar field are developed as an exact solution from the modified field equations. All solutions of field equations for vacuum case, perfect fluid and scalar field give a special f(R) function convenient to Λ-CDM model. In addition to these solutions, we introduce conformal cylindrical symmetric solutions in the cases of different f(R) models. Finally, geometrical and physical results of the solutions are discussed.
Light Transmission Through Reflecting Cylindrical Tubes
ERIC Educational Resources Information Center
Cohen, D. K.; Potts, J. E.
1978-01-01
Describes an experiment in which a point source of light, when viewed through a cylindrical tube having reflecting inner walls, appears as a series of sharply defined rings, due to the multiple reflections from the inner walls of the tube. ( GA)
Cylindrical Induction Melter Modicon Control System
Weeks, G.E.
1998-04-01
In the last several years an extensive R{ampersand}D program has been underway to develop a vitrification system to stabilize Americium (Am) and Curium (Cm) inventories at SRS. This report documents the Modicon control system designed for the 3 inch Cylindrical Induction Melter (CIM).
Tamm plasmon polaritons in multilayered cylindrical structures
NASA Astrophysics Data System (ADS)
Little, C. E.; Anufriev, R.; Iorsh, I.; Kaliteevski, M. A.; Abram, R. A.; Brand, S.
2012-12-01
It is shown that cylindrical Bragg reflector structures with either a metal core, a metal cladding, or both can support Tamm plasmon polaritons (TPPs) that can propagate axially along the interface between the metallic layer and the adjacent dielectric. A transfer matrix formalism for cylindrical multilayered structures is used in association with cavity phase matching considerations to design structures that support Tamm plasmon polaritons at specified frequencies, and to explore the field distributions and the dispersion relations of the excitations. The cylindrical TPPs can exist in both the TE and TM polarizations for the special cases of modes with either azimuthal isotropy or zero axial propagation constant and also as hybrid cylindrical modes when neither of those conditions applies. In the cases considered the TPPs have low effective masses and low group velocities. Also, when there is both metallic core and cladding, near degenerate modes localized at each metallic interface can couple to produce symmetric and antisymmetric combinations whose frequency difference is in the terahertz regime.
NASA Astrophysics Data System (ADS)
Yumak, Mehmet; Ture, Kerim; Aktas, Gulen; Vega, Victor; Prida, Victor; Garcia, Carlos
2012-02-01
Porous anodic alumina is a particularly attractive self-ordered system used as template to fabricate nanostructures. The anodic film contains a self-ordered hexagonal array of parallel pores with tunable pore size and interpore distance, and whose pore locations can be templated. Deposition of magnetic films onto porous alumina leads to the formation of porous magnetic films, whose properties differ significantly from those of unpatterned films. The study of antidot arrays has both technological and fundamental importance. Although porous alumina films are typically synthesized in a planar geometry, in this work we deposited NiFe and Ti/CoCrPt magnetic films with in-plane and out-of-plane anisotropy onto cylindrical-geometry porous anodic alumina substrates to achieve cylindrical antidot arrays. The effect of both, the magnitude of the AC current and the circular magnetic field on the magnetization reversal has been studied for in-plane and perpendicular anisotropies. The level of reduction in the switching field was found to be dependent on the power, the frequency of the microwave pulses and the circular applied magnetic field. Such a reduction is associate with the competition between pumping and damping processes.
17 CFR 230.253 - Offering circular.
Code of Federal Regulations, 2014 CFR
2014-04-01
... in boldfaced type at least as large as that used generally in the body of such offering circular: THE... COMPLETENESS OF ANY OFFERING CIRCULAR OR OTHER SELLING LITERATURE. THESE SECURITIES ARE OFFERED PURSUANT TO...
Stafford, A.; Keim, S. F.; Osborne, Glenn C.; Esaulov, Andrey A.; Shrestha, I.; Kantsyrev, Victor Leonidovich; Shlyaptseva, V.; Coverdale, Christine Anne; Williamson, K. M.; Ouart, Nicholas D.; Safronova, Alla S.; Weller, M. E.
2010-11-01
Experimental results of nested cylindrical wire arrays (NCWA) consisting of brass (70% Cu and 30% Zn) wires on one array and Al (5056, 5% Mg) wires on the other array performed on the UNR Zebra generator at 1.0 MA current are compared and analyzed. Specifically, radiative properties of K-shell Al and Mg ions and L-shell Cu and Zn ions are compared as functions of the placements of the brass and Al wires on the inner and outer arrays. A full diagnostic set which included more than ten different beam-lines was implemented. Identical loads were fielded to allow the timing of time-gated pinhole and x-ray spectrometers to be shifted to get a more complete understanding of the evolution of plasma parameters over the x-ray pulse. The importance of the study of NCWAs with different wire materials is discussed.
Single-photon superradiance and radiation trapping by atomic shells
NASA Astrophysics Data System (ADS)
Svidzinsky, Anatoly A.; Li, Fu; Li, Hongyuan; Zhang, Xiwen; Ooi, C. H. Raymond; Scully, Marlan O.
2016-04-01
The collective nature of light emission by atomic ensembles yields fascinating effects such as superradiance and radiation trapping even at the single-photon level. Light emission is influenced by virtual transitions and the collective Lamb shift which yields peculiar features in temporal evolution of the atomic system. We study how two-dimensional atomic structures collectively emit a single photon. Namely, we consider spherical, cylindrical, and spheroidal shells with two-level atoms continuously distributed on the shell surface and find exact analytical solutions for eigenstates of such systems and their collective decay rates and frequency shifts. We identify states which undergo superradiant decay and states which are trapped and investigate how size and shape of the shell affects collective light emission. Our findings could be useful for quantum information storage and the design of optical switches.
Review of high convergence implosion experiments with single and double shell targets
Delamater, N. D.; Watt, R. G.; Varnum, W. S.
2002-01-01
Experiments have been been performed in recent years at the Omega laser studying double shell capsules as an a1 teinative, 11011 cryogenic, path towards ignition at NTF. Double shell capsules designed to mitigate the Au M-band radiation asymmetries, were experimentally found to perform well in both spherical and cylindrical hohlraums, achieving near 1-D (-90 %) clean calculated yield at convergence comparable to that required for NIF ignition. Near-term plans include directly driven double shell experiments at Omega, which eliminates Au M-band radiation as a yield degradation m ec h an i s in.
NASA Astrophysics Data System (ADS)
Artem'eva, A. A.; Bazhenov, V. G.; Zhegalov, D. V.; Kazakov, D. A.; Nagornykh, E. V.
2015-11-01
A method of the numerical solution of nonlinear unsteady problems of axisymmetric elastoplastic straining of shells of revolution with allowance for torque loading at high strains is proposed. The method is based on the geometrically nonlinear theory of the Timoshenko shells and the plasticity theory with due allowance for combined isotropic and kinematic hardening. The problem is solved with the use of the variational difference method. Results of numerical and experimental investigations of elastoplastic straining of cylindrical shells under proportional and sequential kinematic tensile and torque loading are reported.
Walnut shell and meat classification using texture analysis and SVMs
NASA Astrophysics Data System (ADS)
Jin, Fenghua; Qin, Lei; Rao, Xiuqin; Tao, Yang
2007-09-01
The classification of walnuts shell and meat has a potential application in industry walnuts processing. A dark-field illumination method is proposed for the inspection of walnuts. Experiments show that the dark-field illuminated images of walnut shell and meat have distinct text patterns due to the differences in the light transmittance property of each. A number of rotation invariant feature analysis methods are used to characterize and discriminate the unique texture patterns. These methods include local binary pattern operator, wavelet analysis, circular Gabor filters, circularly symmetric gray level co-occurrence matrix and the histogram-related features. A recursive feature elimination method (SVM-RFE), is used to remove uncorrelated and redundant features and to train the SVM classifier at the same time. Experiments show that, by using only the top six ranked features, an average classification accuracy of 99.2% can be achieved.
Improved Method of Design for Folding Inflatable Shells
NASA Technical Reports Server (NTRS)
Johnson, Christopher J.
2009-01-01
An improved method of designing complexly shaped inflatable shells to be assembled from gores was conceived for original application to the inflatable outer shell of a developmental habitable spacecraft module having a cylindrical mid-length section with toroidal end caps. The method is also applicable to inflatable shells of various shapes for terrestrial use. The method addresses problems associated with the assembly, folding, transport, and deployment of inflatable shells that may comprise multiple layers and have complex shapes that can include such doubly curved surfaces as toroids and spheres. One particularly difficult problem is that of mathematically defining fold lines on a gore pattern in a double- curvature region. Moreover, because the fold lines in a double-curvature region tend to be curved, there is a practical problem of how to implement the folds. Another problem is that of modifying the basic gore shapes and sizes for the various layers so that when they are folded as part of the integral structure, they do not mechanically interfere with each other at the fold lines. Heretofore, it has been a common practice to design an inflatable shell to be assembled in the deployed configuration, without regard for the need to fold it into compact form. Typically, the result has been that folding has been a difficult, time-consuming process resulting in a An improved method of designing complexly shaped inflatable shells to be assembled from gores was conceived for original application to the inflatable outer shell of a developmental habitable spacecraft module having a cylindrical mid-length section with toroidal end caps. The method is also applicable to inflatable shells of various shapes for terrestrial use. The method addresses problems associated with the assembly, folding, transport, and deployment of inflatable shells that may comprise multiple layers and have complex shapes that can include such doubly curved surfaces as toroids and spheres. One
Lee, One-Sun; Stupp, Samuel I.; Schatz, George C.
2011-01-01
Relaxation of a self-assembled structure of 144 peptide amphiphile (PA) molecules into cylindrical nanofibers is studied using atomistic molecular dynamics simulations including explicit water with physiological ion concentration. The PA for these studies includes a hydrophobic alkyl chain that is attached to the N-terminus of the sequence SLSLAAAEIKVAV. The self-assembly is initiated with PA molecules in a roughly cylindrical configuration, as suggested from previous experimental and theoretical investigations, and the cylindrical configuration that results is found to be stable during 40 ns simulations. In the converged structure of the resulting nanofiber, the cylinder radius is ~44 Å, a result that is consistent with experimental results. Water and sodium ions can penetrate into the peptide portion of the fiber but not between the alkyl chains. Even though each PA has an identical sequence, a broad distribution of secondary structure is found in the converged structure of the nanofiber. The β-sheet population for the SLSL and IKV segments of the peptide is ~25%, which is consistent with previous circular dichroism results. We also found that the epitope sequence IKVAV is located on the surface of the nanofiber, as designed for the promotion of the neurite growth. Our findings will be useful for designing new PA fibers that have improved bioactive properties.
Microwave frequency electromagnetic coupling to a thin membrane as one end of a cylindrical cavity
NASA Astrophysics Data System (ADS)
Castelli, Alessandro; Martinez, Luis; Speer, Jerry; Sharping, Jay; Chiao, Raymond
2015-03-01
We demonstrate coupling of an 11.1 GHz radio frequency (RF) TE011 cylindrical cavity mode to the mechanical motion of a silicon nitride (Si3N4) membrane. The membrane is driven into motion through radiation pressure forces arising from the transverse magnetic field present at the membrane boundary. We use a cylindrical aluminum cavity where one end consists of a 500-nm thick Si3N4 membrane that has been sputtered with 300 nm of niobium (Nb). Cavity frequency tuning is controlled via an aluminum plunger attached to a micrometer at the other end of the cavity. The membrane is driven into motion by modulating the amplitude of the RF signal at the membrane's resonant frequency in the KHz range. The membrane's displacement is measured by means of a Michelson interferometer. We compare results from experimental runs utilizing both square and circular membrane geometries. This experiment shows that the TE011 mode gives rise to radiation pressure on the ends of a cylindrical cavity and demonstrates the feasibility of future work using high Q superconducting RF cavities to realize a dynamical Casimir effect (DCE) due to the membrane's motion at GHz frequencies.
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.
Cylindrical isomorphic mapping applied to invariant manifold dynamics for Earth-Moon Missions
NASA Astrophysics Data System (ADS)
Giancotti, Marco; Pontani, Mauro; Teofilatto, Paolo
2014-11-01
Several families of periodic orbits exist in the context of the circular restricted three-body problem. This work studies orbital motion of a spacecraft among these periodic orbits in the Earth-Moon system, using the planar circular restricted three-body problem model. A new cylindrical representation of the spacecraft phase space (i.e., position and velocity) is described, and allows representing periodic orbits and the related invariant manifolds. In the proximity of the libration points, the manifolds form a four-fold surface, if the cylindrical coordinates are employed. Orbits departing from the Earth and transiting toward the Moon correspond to the trajectories located inside this four-fold surface. The isomorphic mapping under consideration is also useful for describing the topology of the invariant manifolds, which exhibit a complex geometrical stretch-and-folding behavior as the associated trajectories reach increasing distances from the libration orbit. Moreover, the cylindrical representation reveals extremely useful for detecting periodic orbits around the primaries and the libration points, as well as the possible existence of heteroclinic connections. These are asymptotic trajectories that are ideally traveled at zero-propellant cost. This circumstance implies the possibility of performing concretely a variety of complex Earth-Moon missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining a suitable, convenient end-of-life strategy for spacecraft placed in any of the unstable orbits. The final disposal orbit is an externally confined trajectory, never approaching the Earth or the Moon, and can be entered by means of a single velocity impulse (of modest magnitude) along the right unstable manifold that emanates from the Lyapunov orbit at L_2.
Circular on planned parenthood, 1987.
1987-01-01
In 1987 fourteen units of the Government of Henan issued a Circular stating that: "Planned parenthood must be publicized deep into the grass roots and among the people, and importance must be attached to results." The Circular stresses: "In the propaganda drive, it is necessary to successfully grasp three key links: 1. It is necessary to disseminate intensively the important directive on population problems that is contained in the report of the 13th CPC National Congress and the seriousness of the population situation of our country and province so that the cadres and the masses can understand the relationship between population control and the achievement of the strategic target of the three big steps, understand the reason for carrying out planned parenthood, understand that the one-child policy is still advocated, and conscientiously carry out planned parenthood. 2. It is essential to succeed in propagating knowledge of contraception, sterilization, childbirth, and child care and in conducting ideological education for those who undergo operations and for their family members. 3. It is imperative to visit those who have undergone operations and to help them solve practically their difficulties in making a living." The Circular concludes by demanding that under the unified leadership of party committees and governments at all levels, the propaganda drive be carried out by relying on the efforts of all of society. In conjunction with their own work, departments, including the propaganda, education, public health, and cultural departments, must carry out propaganda and education for planned parenthood. PMID:12346601
NASA Astrophysics Data System (ADS)
Liu, Yan
2002-06-01
Some shells from both salt water and fresh water show the phenomenon of iridescence color. Pearls and mother-of-pearls also display this phenomenon. In the past, the cause of the iridescence color was attributed to interference. A scanning electron microscope (SEM) was used to study the surface structure of the shell of the mollusk Pinctada Margaritifera. There is a groove structure of reflection grating on the surface area in where the iridescence color appears. An optic experiment with a laser obtained a diffraction pattern produced by the reflection grating structure of the shell. The study led to a conclusion that the iridescence color of the shell is caused by diffraction. A SEM image of the shells of an abalone Haliotis Rufescens (red abalone) showed a statistically regularly arranged tile structure that serves as a two-dimensional grating. This grating structure causes the iridescence color of the shell of red abalone. The dominant color of the iridescence of shells is caused by the uneven grating efficiency in the visible wavelength range when a shell functions as a reflection grating. The wavelength of the dominant color should be at or near the wavelength of the maximum efficiency of the grating.
NASA Astrophysics Data System (ADS)
Takanishi, Yoichi; Ogasawara, Toyokazu; Ishikawa, Ken; Takezoe, Hideo; Watanabe, Junji; Takahashi, Yumiko; Iida, Atsuo
2003-07-01
The local layer structures have been investigated by x-ray microbeam diffraction in the circular domains of the SmCP phase of a banana-shaped molecule. Originally, the molecules form tilted layers with a certain tilt angle as well as nontilted ones. The application of a low electric field induces a tilted layer with a continuous change of the tilt angle; i.e., the tilted layer gradually changes the tilt angle, finally being upright at the center of circular domains. Upon application of a high electric field, the smectic layer forms a cylindrical-type structure. The layer structure changes from cylindrical to onionlike after turning off the high field.
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert
2007-01-01
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
Core-shell potassium niobate nanowires for enhanced nonlinear optical effects
NASA Astrophysics Data System (ADS)
Richter, J.; Steinbrück, A.; Zilk, M.; Sergeyev, A.; Pertsch, T.; Tünnermann, A.; Grange, R.
2014-04-01
We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte. We show that the latter leads to a smoother and complete core-shell nanostructure and an easier-to-use synthesis process. A Mie-theory based theoretical approach is presented to model the enhanced second-harmonic generated (SHG) signal of the core-shell wires, illustrating the influence of the fabrication-induced varying geometrical factors of wire radius and shell thickness. A spectroscopic measurement on a core-shell nanowire shows a strong localized surface plasmon resonance close to 900 nm, which matches with the SHG resonance obtained from nonlinear optical experiments with the same nanowire. According to the simulation, this corresponds to a wire radius of 35 nm and a shell thickness of 7.5 nm. By comparing SHG signals measured from an uncoated nanowire and the coated one, we obtain a 250 times enhancement factor. This is less than the calculated enhancement, which considers a cylindrical nanowire with a perfectly smooth shell. Thus, we explain this discrepancy mainly with the roughness of the synthesized gold shell.We demonstrate the synthesis as well as the optical characterization of core-shell nanowires. The wires consist of a potassium niobate (KNbO3) core and a gold shell. The nonlinear optical properties of the core are combined with the plasmonic resonance of the shell and offer an enhanced optical signal in the near infrared spectral range. We compare two different functionalization schemes of the core material prior to the shell growth process: silanization and polyelectrolyte
Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Starnes, James H., Jr.
2002-01-01
The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The results identify the effects of traditional and non-traditional initial imperfections on the non-linear response and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfect ions that are commonly discussed in the literature on thin shell buckling. The non-traditional imperfections include shell-wall thickness variations local shell-wall ply-gaps associated with the fabrication process, sheltered geometric imperfections, non-uniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity non-linear shell analysis procedure that accurately accounts for the effects of these traditional and non-traditional imperfections on the nonlinear response, and buckling loads of the shells is described. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable response characteristics.
The circular internal hydraulic jump
NASA Astrophysics Data System (ADS)
Thorpe, S. A.; Kavcic, I.
Circular hydraulic jumps are familiar in single layers. Here we report the discovery of similar jumps in two-layer flows. A thin jet of fluid impinging vertically onto a rigid horizontal plane surface submerged in a deep layer of less-dense miscible fluid spreads radially, and a near-circular internal jump forms within a few centimetres from the point of impact with the plane surface. A jump is similarly formed as a jet of relatively less-dense fluid rises to the surface of a deep layer of fluid, but it appears less stable or permanent in form. Several experiments are made to examine the case of a downward jet onto a horizontal plate, the base of a square or circular container. The inlet Reynolds numbers, Re, of the jet range from 112 to 1790. Initially jumps have an undular, laminar form with typically 2-4 stationary waves on the interface between the dense and less-dense layers but, as the depth of the dense layer beyond the jump increases, the transitions become more abrupt and turbulent, resulting in mixing between the two layers. During the transition to a turbulent regime, single and sometimes moving multiple cusps are observed around the periphery of jumps. A semi-empirical model is devised that relates the parameters of the laboratory experiment, i.e. flow rate, inlet nozzle radius, kinematic viscosity and reduced gravity, to the layer depth beyond the jump and the radius at which an undular jump occurs. The experiments imply that surface tension is not an essential ingredient in the formation of circular hydraulic jumps and demonstrate that stationary jumps can exist in stratified shear flows which can be represented as two discrete layers. No stationary circular undular jumps are found, however, in the case of a downward jet of dense fluid when the overlying, less-dense, fluid is stratified, but a stationary turbulent transition is observed. This has implications for the existence of stationary jumps in continuously stratified geophysical flows: results
Experimental study of noise emitted by circular cylinders with large roughness
NASA Astrophysics Data System (ADS)
Alomar, Antoni; Angland, David; Zhang, Xin; Molin, Nicolas
2014-12-01
The aerodynamic noise generated by high Reynolds number flow around a bluff body with large surface roughness was investigated. This is a relevant problem in many applications, in particular aircraft landing gear noise. A circular cylinder in cross-flow and a zero-pressure-gradient turbulent boundary layer with various types of roughness was tested in a series of wind tunnel experiments. It has been shown that distributed roughness covering a circular cylinder affects the spectra over the entire frequency range. Roughness noise is dominant at high frequencies, and the peak frequency is well described by Howe's roughness noise model when scaled with the maximum outer velocity. There are differences between hemispherical and cylindrical roughness elements for both the circular cylinder and the zero-pressure-gradient turbulent boundary layer cases, indicating a dependence on roughness shape, not described by the considered roughness noise models. Cylindrical roughness generates higher noise levels at the highest frequencies, especially for the zero-pressure-gradient turbulent boundary layer case. Cable-type roughness aligned with the mean flow does not generate roughness noise, and its spectrum has been found to collapse with the smooth cylinder at medium and high frequencies. At low and medium frequencies the noise spectra have the same features as the smooth cylinder, but with higher shedding peak levels and fall-off levels, despite the decrease in spanwise correlation length. Roughness induces early separation, and thus a shift of the spectra to lower frequencies.
Circular dichroism measurements at an x-ray free-electron laser with polarization control.
Hartmann, G; Lindahl, A O; Knie, A; Hartmann, N; Lutman, A A; MacArthur, J P; Shevchuk, I; Buck, J; Galler, A; Glownia, J M; Helml, W; Huang, Z; Kabachnik, N M; Kazansky, A K; Liu, J; Marinelli, A; Mazza, T; Nuhn, H-D; Walter, P; Viefhaus, J; Meyer, M; Moeller, S; Coffee, R N; Ilchen, M
2016-08-01
A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source. PMID:27587106
On axisymmetric/diamond-like mode transitions in axially compressed core-shell cylinders
NASA Astrophysics Data System (ADS)
Xu, Fan; Potier-Ferry, Michel
2016-09-01
Recent interests in curvature- and stress-induced pattern formation and pattern selection motivate the present study. Surface morphological wrinkling of a cylindrical shell supported by a soft core subjected to axial compression is investigated based on a nonlinear 3D finite element model. The post-buckling behavior of core-shell cylinders beyond the first bifurcation often leads to complicated responses with surface mode transitions. The proposed finite element framework allows predicting and tracing these bifurcation portraits from a quantitative standpoint. The occurrence and evolution of 3D instability modes including sinusoidally deformed axisymmetric patterns and non-axisymmetric diamond-like modes will be highlighted according to critical dimensionless parameters. Besides, the phase diagram obtained from dimensional analyses and numerical results could be used to guide the design of core-shell cylindrical systems to achieve the desired instability patterns.
Exon circularization requires canonical splice signals.
Starke, Stefan; Jost, Isabelle; Rossbach, Oliver; Schneider, Tim; Schreiner, Silke; Hung, Lee-Hsueh; Bindereif, Albrecht
2015-01-01
Circular RNAs (circRNAs), an abundant class of noncoding RNAs in higher eukaryotes, are generated from pre-mRNAs by circularization of adjacent exons. Using a set of 15 circRNAs, we demonstrated their cell-type-specific expression and circular versus linear processing in mammalian cells. Northern blot analysis combined with RNase H cleavage conclusively proved a circular configuration for two examples, LPAR1 and HIPK3. To address the circularization mechanism, we analyzed the sequence requirements using minigenes derived from natural circRNAs. Both canonical splice sites are required for circularization, although they vary in flexibility and potential use of cryptic sites. Surprisingly, we found that no specific circRNA exon sequence is necessary and that potential flanking intron structures can modulate circularization efficiency. In combination with splice inhibitor assays, our results argue that the canonical spliceosomal machinery functions in circRNA biogenesis, constituting an alternative splicing mode. PMID:25543144
Chu, Xiaoliang; Zhang, Bin; Wen, Qiao
2003-07-20
The second-order intensity moments and the beam-propagation M2 factor of partially coherent beams that propagate through a circular-symmetry hard-edged aperture are in the cylindrical coordinate system. AJo-correlated Schell-model beam with a Gaussian intensity distribution is an example. The analytical expression for the generalized M2 factor is derived. The numerical calculation results are analyzed. PMID:12921275
Observing of tree trunks and other cylindrical objects using GPR
NASA Astrophysics Data System (ADS)
Jezova, Jana; Lambot, Sebastien
2016-04-01
Trees are a part of our everyday life, hence it is important to prevent their collapse to protect people and urban infrastructures. It is also important to characterize tree wood properties for usages in construction. In order to investigate internal parts of tree trunks non-invasively, ground-penetrating radar (GPR), or in this case, ultra-wideband microwave radar as a general tool, appears to be a very promising technology. Nevertheless, tree trunk tomography using microwave radar is a complicated task due to the circular shape of the trunk and the very complex (heterogeneous and anisotropic) internal structures of the trunk. Microwave sensing of tree trunks is also complicated due to the electromagnetic properties of living wood, which strongly depend on water content, density and temperature of wood. The objective of this study is to describe tree trunk radar cross sections including specific features originating from the particular circumferential data acquisition geometry. In that respect, three experiments were performed: (1) numerical simulations using a finite-difference time-domain software, namely, gprMax 2D, (2) measurements on a simplified laboratory trunk model including plastic and cardboard pipes, sand and air, and (3) measurements over a real tree trunk. The analysis was further deepened by considering: (1) common zero-offset reflection imaging, (2) imaging with a planar perfect electrical conductor (PEC) at the opposite side of the trunk, and (3) imaging with a PEC arc at the opposite side of the trunk. Furthermore, the shape of the reflection curve of a cylindrical target was analytically derived based on the straight-ray propagation approximation. Subsequently, the total internal reflection (TIR) phenomenon occurring in cylindrical objects was observed and analytically described. Both the straight-ray reflection curve and TIR were well observed on the simulated and laboratory radar data. A comparison between all experiments and radar
NASA Technical Reports Server (NTRS)
Mccomb, Harvey G , Jr
1954-01-01
Equations are derived for the stress distributions caused by three types of loading on infinitely long circular, semimonocoque cylinders with flexible rings. The results are given as formula for the stringer loads and shear flows in the shell due to each type of loading. For each loading case these formulas can be used to construct tables of influence coefficients giving stringer loads and shear flows in the neighborhood of the load due to a unit magnitude of the load. (author)
Quantum Cylindrical Waves and Parametrized Field Theory
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
In this article, we review some illustrative results in the study of two related toy models for quantum gravity, namely cylindrical waves (which are cylindrically symmetric gravitational fields)and parametrized field theory (which is just free scalar field theory on a flat space-time in generally covariant disguise). In the former, we focus on the phenomenon of unexpected large quantum gravity effects in regions of weak classical gravitational fields and on an analysis of causality in a quantum geometry. In the latter, we focus on Dirac quantization, argue that this is related to the unitary implementability of free scalar field evolution along curved foliations of the flat space-time and review the relevant results for unitary implementability.
Nonaxisymmetric radiative transfer in cylindrical enclosures
Moder, J.P.; Lee, H.S.; Chai, J.C.; Parthasarathy, G.; Patankar, S.V.
1996-12-31
A finite-volume method for radiative transfer in cylindrical enclosures is presented. Angular redistribution terms in the equation of transfer are avoided by defining radiation directions in terms of angular coordinates measured with respect to Cartesian base vectors; this definition of radiation directions can result in control angles which overlap control-volume faces, depending on the type of spatial and angular grids used in the azimuthal direction. A simple treatment for such control-angle overlaps is presented which is also applicable to nonorthogonal curvilinear spatial-coordinates. A comparison of the present procedure with other similar methods is given. Solutions are presented for axisymmetric transfer through a cylinder and nonaxisymmetric transfer through two- and three-dimensional annular sectors. Results show that the procedure produces reasonable solutions for transparent and participating media in axisymmetric and nonaxisymmetric cylindrical enclosures.
Surface superconductivity in thin cylindrical Bi nanowire.
Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W
2015-03-11
The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress. PMID:25658139
Damage experiments in a cylindrical geometry
Kaul, Ann M
2010-09-21
Studying spallation damage with a cylindrical configuration allows for a natural recollection of the damaged material under proper driving conditions. Additionally, the damaged material can come to a complete rest without the application of further stopping forces. Specific areas of research include the damage initiation regime in convergent geometry, behavior of material recollected after damage, and effects of convergent geometry on the material response. Such experiments produce unique strain and shear stress states, motivating improvements in existing computational material models and increasing the predictive capabilities of codes. A LANL/VNIIEF joint experimental series has produced cylindrical aluminum failure initiation data and studied the behavior of material recollected after damage initiation and after complete failure. In addition to post-shot collection of the damaged target material for subsequent metallographic analysis, dynamic in-situ experimental diagnostics include velocimetry and transverse radial radiography. This paper will discuss the current experimental status.
Jamming of Cylindrical Grains in Vertical Channels
NASA Astrophysics Data System (ADS)
Baxter, G. William; Spier, Gregory; Barr, Nicholas; Steel, Fiona
2012-02-01
We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. These cylindrical grains resemble antacid tablets, poker chips, or coins since their height is less than their diameter. Grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Within this channel, grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by the grain dimensions and channel size. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories.
Multiple Bifurcations of a Cylindrical Dynamical System
NASA Astrophysics Data System (ADS)
Han, Ning; Cao, Qingjie
2016-03-01
This paper focuses on multiple bifurcations of a cylindrical dynamical system, which is evolved from a rotating pendulum with SD oscillator. The rotating pendulum system exhibits the coupling dynamics property of the bistable state and conventional pendulum with the ho- moclinic orbits of the first and second type. A double Andronov-Hopf bifurcation, two saddle-node bifurcations of periodic orbits and a pair of homoclinic bifurcations are detected by using analytical analysis and nu- merical calculation. It is found that the homoclinic orbits of the second type can bifurcate into a pair of rotational limit cycles, coexisting with the oscillating limit cycle. Additionally, the results obtained herein, are helpful to explore different types of limit cycles and the complex dynamic bifurcation of cylindrical dynamical system.
Buckling optimisation of sandwich cylindrical panels
NASA Astrophysics Data System (ADS)
Abouhamzeh, M.; Sadighi, M.
2016-06-01
In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.
Nanolaminate Membranes as Cylindrical Telescope Reflectors
NASA Technical Reports Server (NTRS)
Dooley, Jennifer; Dragovan, Mark; Hickey, Gregory; Lih, Shyh-Shiu Lih
2010-01-01
A document discusses a proposal to use axially stretched metal nanolaminate membranes as lightweight parabolic cylindrical reflectors in the Dual Anamorphic Reflector Telescope (DART) - a planned spaceborne telescope in which the cylindrical reflectors would be arranged to obtain a point focus. The discussion brings together a combination of concepts reported separately in several prior NASA Tech Briefs articles, the most relevant being "Nanolaminate Mirrors With Integral Figure-Control Actuators" NPO -30221, Vol. 26, No. 5 (May 2002), page 90; and "Reflectors Made From Membranes Stretched Between Beams" NPO -30571, Vol. 33, No. 10 (October 2009), page 11a. The engineering issues receiving the greatest emphasis in the instant document are (1) the change in curvature associated with the Poisson contraction of a stretched nanolaminate reflector membrane and (2) the feasibility of using patches of poly(vinylidene fluoride) on the rear membrane surface as piezoelectric actuators to correct the surface figure for the effect of Poisson contraction and other shape errors.
Buckling and Failure of Compression-Loaded Composite Laminated Shells With Cutouts
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.
2007-01-01
Results from a numerical and experimental study that illustrate the effects of laminate orthotropy on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of orthotropy on the overall response of compression-loaded shells is described. In general, preliminary numerical results appear to accurately predict the buckling and failure characteristics of the shell considered herein. In particular, some of the shells exhibit stable post-local-buckling behavior accompanied by interlaminar material failures near the free edges of the cutout. In contrast another shell with a different laminate stacking sequence appears to exhibit catastrophic interlaminar material failure at the onset of local buckling near the cutout and this behavior correlates well with corresponding experimental results.
Machining Thin-Walled Cylindrical Parts
NASA Technical Reports Server (NTRS)
Cimbak, Joe; Spagnolo, Jim; Kraus, Dan
1988-01-01
Cylindrical walls only few thousandths of inch thick machined accurately and without tears or punctures with aid of beryllium copper mandrel. Chilled so it contracts, then inserted in cylinder. As comes to room temperature, mandrel expands and fits snugly inside cylinder. Will not allow part to slide and provides solid backup to prevent deflection when part machined by grinding wheel. When machining finished, cylinder-and-mandrel assembly inserted in dry ice, mandrel contracts and removed from part.
Domain wall dynamics in cylindrical nanomagnet
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Soumik; Singh, Amrita; Ghosh, Arindam
2011-06-01
The stochasticity associated with domain wall nucleation and propagation in a cylinderical nanowire has been studied using time resolved resistance measurement in presence of magnetic field. We have shown that the propagation stochasticity of domain wall in a cylindrical nanowire is reflected in the magnetic field dependent velocity distribution whereas the stochasticity involved in the domain wall nucleation can be effectively tuned by varying the angle between the direction of applied magnetic field and the long axis of the cylinder.
Moiré effect in cylindrical objects
NASA Astrophysics Data System (ADS)
Saveljev, Vladimir
2016-05-01
The moiré effect in single-walled cylindrical objects (gridshells) is investigated. The surface of such an object is a rolled-up periodic grating (mesh). Analytical formulae are obtained for the period of the moiré patterns, which depends particularly on the direction of the wavevector of the grating. The experiments confirm the theory. The results can be applied to nanoparticles and to three-dimensional autostereoscopic displays.