Science.gov

Sample records for circularly polarized luminescence

  1. Circularly Polarized Luminescence from Simple Organic Molecules.

    PubMed

    Sánchez-Carnerero, Esther M; Agarrabeitia, Antonia R; Moreno, Florencio; Maroto, Beatriz L; Muller, Gilles; Ortiz, María J; de la Moya, Santiago

    2015-09-21

    This article aims to show the identity of "circularly polarized luminescent active simple organic molecules" as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. PMID:26136234

  2. Thermally activated delayed fluorescence with circularly polarized luminescence characteristics.

    PubMed

    Imagawa, Takuro; Hirata, Shuzo; Totani, Kenro; Watanabe, Toshiyuki; Vacha, Martin

    2015-09-01

    A metal-free aromatic compound with a chiral carbon sandwiched between a donor moiety and an acceptor moiety was designed. Under thermally activated delayed fluorescence, the compound displayed a photoluminescence quantum yield of 26%, and showed circularly polarized luminescence with a dissymmetry factor of 10(-3). PMID:26207648

  3. Chiral supramolecular polymerization leading to eye differentiable circular polarization in luminescence.

    PubMed

    Kumar, Jatish; Marydasan, Betsy; Nakashima, Takuya; Kawai, Tsuyoshi; Yuasa, Junpei

    2016-08-01

    This work demonstrates a simple methodology to tune the chiroptical properties of chiral europium(iii) complexes by supramolecular polymerization. Helical aggregation of the cesium derivative has updated the highest luminescence dissymmetry factor to date leading to naked eye visualization of circular polarized luminescence using circularly polarized filters. PMID:27405857

  4. Simulation of circularly polarized luminescence spectra using coupled cluster theory

    SciTech Connect

    McAlexander, Harley R.; Crawford, T. Daniel

    2015-04-21

    We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL

  5. Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence.

    PubMed

    Ray, César; Sánchez-Carnerero, Esther M; Moreno, Florencio; Maroto, Beatriz L; Agarrabeitia, Antonia R; Ortiz, María J; López-Arbeloa, Íñigo; Bañuelos, Jorge; Cohovi, Komlan D; Lunkley, Jamie L; Muller, Gilles; de la Moya, Santiago

    2016-06-20

    Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs. PMID:27123965

  6. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    SciTech Connect

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen; Cohen, Seth M.; Raymond,Kenneth N.

    2006-07-10

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.

  7. Strong Circularly Polarized Luminescence from Highly Emissive Terbium Complexes in Aqueous Solution

    SciTech Connect

    Samuel, Amanda; Lunkley, Jamie; Muller, Gilles; Raymond, Kenneth

    2010-03-15

    Two luminescent terbium(III) complexes have been prepared from chiral ligands containing 2-hydroxyisophthalamide (IAM) antenna chromophores and their non-polarized and circularly-polarized luminescence properties have been studied. These tetradentate ligands, which form 2:1 ligand/Tb{sup III} complexes, utilize diaminocyclohexane (cyLI) and diphenylethylenediamine (dpenLI) backbones, which we reasoned would impart conformational rigidity and result in Tb{sup III} complexes that display both large luminescence quantum yield ({phi}) values and strong circularly polarized luminescence (CPL) activities. Both Tb{sup III} complexes are highly emissive, with {phi} values of 0.32 (dpenLI-Tb) and 0.60 (cyLI-Tb). Luminescence lifetime measurements in H{sub 2}O and D{sub 2}O indicate that while cyLI-Tb exists as a single species in solution, dpenLI-Tb exists as two species: a monohydrate complex with one H{sub 2}O molecule directly bound to the Tb{sup III} ion and a complex with no water molecules in the inner coordination sphere. Both cyLI-Tb and dpenLI-Tb display increased CPL activity compared to previously reported Tb{sup III} complexes made with chiral IAM ligands. The CPL measurements also provide additional confirmation of the presence of a single emissive species in solution in the case of cyLI-Tb, and multiple emissive species in the case of dpenLI-Tb.

  8. Circularly Polarized Luminescence of Curium: A New Characterization of the 5f Actinide Complexes

    PubMed Central

    Law, Ga-Lai; Andolina, Christopher M.; Xu, Jide; Luu, Vinh; Rutkowski, Philip X.; Muller, Gilles; Shuh, David K.; Gibson, John K.; Raymond, Kenneth N.

    2012-01-01

    A key distinction between the lanthanide (4f) and actinide (5f) transition elements is the increased role of f-orbital covalent bonding in the latter. Circularly polarized luminescence (CPL) is an uncommon but powerful spectroscopy which probes the electronic structure of chiral, luminescent complexes or molecules. While there are many examples of CPL spectra for the lanthanides, this report is the first for an actinide. Two chiral, octadentate chelating ligands based on orthoamide phenol (IAM) were used to complex curium(III). While the radioactivity kept the amount of material limited to micromole amounts, the spectra of the highly luminescent complexes showed significant emission peak-shifts between the different complexes, consistent with ligand field effects previously observed in luminescence spectra. PMID:22920726

  9. Circularly Polarized Luminescence from Helically Chiral N,N,O,O-Boron-Chelated Dipyrromethenes.

    PubMed

    Alnoman, Rua B; Rihn, Sandra; O'Connor, Daniel C; Black, Fiona A; Costello, Bernard; Waddell, Paul G; Clegg, William; Peacock, Robert D; Herrebout, Wouter; Knight, Julian G; Hall, Michael J

    2016-01-01

    Helically chiral N,N,O,O-boron chelated dipyrromethenes showed solution-phase circularly polarized luminescence (CPL) in the red region of the visible spectrum (λem (max) from 621 to 663 nm). The parent dipyrromethene is desymmetrised through O chelation of boron by the 3,5-ortho-phenolic substituents, inducing a helical chirality in the fluorophore. The combination of high luminescence dissymmetry factors (|glum | up to 4.7 ×10(-3) ) and fluorescence quantum yields (ΦF up to 0.73) gave exceptionally efficient circularly polarized red emission from these simple small organic fluorophores, enabling future application in CPL-based bioimaging. PMID:26555772

  10. Circularly Polarized Luminescence from Helically Chiral N,N,O,O‐Boron‐Chelated Dipyrromethenes

    PubMed Central

    Alnoman, Rua B.; Rihn, Sandra; O'Connor, Daniel C.; Black, Fiona A.; Costello, Bernard; Waddell, Paul G.; Clegg, William; Peacock, Robert D.; Herrebout, Wouter

    2015-01-01

    Abstract Helically chiral N,N,O,O‐boron chelated dipyrromethenes showed solution‐phase circularly polarized luminescence (CPL) in the red region of the visible spectrum (λ em(max) from 621 to 663 nm). The parent dipyrromethene is desymmetrised through O chelation of boron by the 3,5‐ortho‐phenolic substituents, inducing a helical chirality in the fluorophore. The combination of high luminescence dissymmetry factors (|g lum| up to 4.7 ×10−3) and fluorescence quantum yields (Φ F up to 0.73) gave exceptionally efficient circularly polarized red emission from these simple small organic fluorophores, enabling future application in CPL‐based bioimaging. PMID:26555772

  11. Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope

    SciTech Connect

    Mühlenberend, Svenja; Gruyters, Markus; Berndt, Richard

    2015-12-14

    The electroluminescence from p-type GaAs(110) in a scanning tunneling microscope has been investigated at 6 K. Unexpectedly, high degrees of circular polarization have often been observed with ferromagnetic Ni tips and also with paramagnetic W and Ag tips. The data are interpreted in terms of two distinct excitation mechanisms. Electron injection generates intense luminescence with low polarization. Plasmon-mediated generation of electron-hole pairs leads to less intense emission, which, however, is highly polarized for many tips.

  12. Protonation-induced red-coloured circularly polarized luminescence of [5]carbohelicene fused by benzimidazole.

    PubMed

    Sakai, Hayato; Kubota, Takako; Yuasa, Junpei; Araki, Yasuyuki; Sakanoue, Tomo; Takenobu, Taishi; Wada, Takehiko; Kawai, Tsuyoshi; Hasobe, Taku

    2016-07-12

    Benzimidazole-fused [5]carbohelicene ([5]HeliBI) was newly synthesized to examine the spectroscopic and chiroptical properties. The reversible protonation and deprotonation processes of [5]HeliBI were successfully investigated using (1)H NMR, absorption and fluorescence spectral measurements. We also confirmed the circularly polarized luminescence of protonated [5]HeliBI (H(+)-[5]HeliBI). This is the first observation of red-coloured CPL of a helicene derivative. PMID:27319321

  13. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    PubMed Central

    Seitz, Michael; Do, King; Ingram, Andrew J.; Moore, Evan G.; Muller, Gilles; Raymond, Kenneth N.

    2009-01-01

    Abstract: Circulaly polarized luminescence from terbium(III) complexed and excited by chiral antenna ligands gives strong emission The modular synthesis of three new octadentate, enantiopure ligands are reported - one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields ΦEu = 0.05–0.08 and ΦTb = 0.30–0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08 – 0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments. PMID:19639983

  14. Induced circularly polarized luminescence arising from anion or protein binding to racemic emissive lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Carr, Rachel; Puckrin, Robert; McMahon, Brian K.; Pal, Robert; Parker, David; Pålsson, Lars-Olof

    2014-06-01

    A circularly polarized luminescence (CPL) spectrometer has been built and used to study the binding interaction of lactate and four different proteins with racemic EuIII and TbIII complexes in aqueous solution. Lactate binding gives rise to strong induced CPL spectra, and the observed emission dissymmetry factors vary linearly with enantiomeric composition. Particularly strong induced TbIII CPL also characterizes the binding interaction of alpha-1-acid glycoprotein with a dissociation constant, Kd, of 2.5 μM.

  15. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    SciTech Connect

    Seitz, Michael; Do, King; Ingram, Andrew; Moore, Evan; Muller, Gilles; Raymond, Kenneth

    2009-06-04

    The modular syntheses of three new octadentate, enantiopure ligands are reported, one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with bidentate 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands, are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields {phi}{sub Eu} = 0.05-0.08 and {phi}{sub Tb} = 0.30-0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08-0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments.

  16. Circularly Polarized Luminescence of Chiral Perylene Diimide Based Enantiomers Triggered by Supramolecular Self-Assembly.

    PubMed

    Li, Fei; Li, Yunzhi; Wei, Guo; Wang, Yuxiang; Li, Shuhua; Cheng, Yixiang

    2016-08-26

    Two perylene diimide (PDI) enantiomers (d/l-PDI) incorporating the d/l-alanine moiety have been designed and synthesized. d/l-PDI in chloroform displays bright-yellow fluorescence that is redshifted to orange-red when the solvent contains a methanol fraction of 99 vol %. No circular dichroism (CD) or circularly polarized luminescence (CPL) signals were observed for d/l-PDI enantiomers in CHCl3 . Interestingly, the d/l-PDI enantiomers exhibit clear mirror-image Cotton effects and CPL emission in the aggregate state. The optical anisotropy factor (glum ) is as high as 0.02 at fm =99 %, which can be attributed to self-assembly through intermolecular π-π interactions in the aggregate state. PMID:27470269

  17. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    PubMed

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample. PMID:27475590

  18. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application

    NASA Astrophysics Data System (ADS)

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  19. Helically Assembled Pyrene Arrays on an RNA Duplex That Exhibit Circularly Polarized Luminescence with Excimer Formation.

    PubMed

    Nakamura, Mitsunobu; Suzuki, Junpei; Ota, Fuyuki; Takada, Tadao; Akagi, Kazuo; Yamana, Kazushige

    2016-06-27

    Circularly polarized luminescence (CPL) was observed in pyrene zipper arrays helically arranged on an RNA duplex. Hybridization of complementary RNA strands having multiple (two to five) 2'-O-pyrenylmethyl modified nucleosides affords an RNA duplex with normal thermal stability. The pyrene fluorophores are assembled like a zipper in a well-defined helical manner along the axis of RNA duplex, which, upon 350 nm UV illumination, resulted in CPL emission with pyrene excimer formation. CPL (glum ) levels observed for the pyrene arrays in dilute aqueous solution were +2×10(-2) -+3.5×10(-2) , which are comparable with |glum | for chiral organic molecules and related systems. The positive CPL signals are consistent with a right-handed helical structure. Temperature dependence on CPL emission indicates that the stable rigid RNA structure is responsible for the strong CPL signals. The single pyrene-modified RNA duplex did not show any CPL signal. PMID:27150679

  20. Vibronic Coupling Explains the Different Shape of Electronic Circular Dichroism and of Circularly Polarized Luminescence Spectra of Hexahelicenes.

    PubMed

    Liu, Yanli; Cerezo, Javier; Mazzeo, Giuseppe; Lin, Na; Zhao, Xian; Longhi, Giovanna; Abbate, Sergio; Santoro, Fabrizio

    2016-06-14

    We present the simulation of the absorption (ABS), electronic circular dichroism (ECD), emission (EMI), and circularly polarized luminescence (CPL) spectra for the weak electronic transition between the ground (S0) and the lowest excited state (S1) of hexahelicene, 2-methylhexahelicene, 2-bromohexahelicene, and 5-azahexahelicene. Vibronic contributions have been computed at zero Kelvin and at room temperature in harmonic approximation including Duschinsky effects and accounting for both Franck-Condon and Herzberg-Teller contributions. Our results nicely capture the effects of the different substituents on the experimental spectra. They also show that HT effects dominate the shape of ECD and CPL spectra where they even induce changes of signs; HT effects are also relevant in ABS and EMI, tuning the relative intensities of the different vibronic bands. HT effects are the main reason for the differences in the line shapes of ABS and ECD and of EMI and CPL spectra and for the mirror-symmetry breaking between ABS and EMI and between ECD and CPL spectra. In order to check the robustness of our results, given also that few examples of calculations of vibronic CPL spectra exist, we adopted both adiabatic and vertical approaches to define the model potential energy surfaces of the (S0) and the (S1) states; moreover we expanded the electric and magnetic dipole transition moments around both the S0 and S1 equilibrium geometries. PMID:27120334

  1. Potential switchable circularly polarized luminescence from chiral cyclometalated platinum(II) complexes.

    PubMed

    Zhang, Xiao-Peng; Chang, Victoria Y; Liu, Jian; Yang, Xiao-Liang; Huang, Wei; Li, Yizhi; Li, Cheng-Hui; Muller, Gilles; You, Xiao-Zeng

    2015-01-01

    A series of chiral cyclometalated platinum(II) complexes, [Pt((-)-L1)(Dmpi)]Cl ((-)-1), [Pt((+)-L1)(Dmpi)]Cl ((+)-1), [Pt((-)-L2)(Dmpi)]Cl ((-)-2), [Pt((+)-L2)(Dmpi)]Cl ((+)-2), [Pt3((-)-L2)2(Dmpi)4](ClO4)4 ((-)-3), and [Pt3((+)-L2)2(Dmpi)4](ClO4)4 ((+)-3) [(-)-L1 = (-)-4,5-pinene-6'-phenyl-2,2'-bipyridine, (+)-L1 = (+)-4,5-pinene-6'-phenyl-2,2'-bipyridine), (-)-L2 = (-)-1,3-bis(2-(4,5-pinene)pyridyl)benzene, (+)-L2 = (+)-1,3-bis(2-(4,5-pinene)pyridyl)benzene, Dmpi = 2,6-dimethylphenyl isocyanide], have been designed and synthesized. In aqueous solutions, (-)-1 and (+)-1 aggregate into one-dimensional helical chain structures through Pt···Pt, π-π, and hydrophobic-hydrophobic interactions. (-)-3 and (+)-3 represent a novel helical structure with Pt-Pt bonds. The formation of helical structures results in enhanced and distinct chiroptical properties as evidenced by circular dichroism spectra. Circularly polarized luminescence (CPL) was observed from the aggregates of (-)-1 and (+)-1 in water, as well as (-)-3 and (+)-3 in dichloromethane. The CPL activity can be switched reversibly (for (-)-1 and (+)-1) or irreversibly (for (-)-3 and (+)-3) by varying the temperature. PMID:25495433

  2. Potential Switchable Circularly Polarized Luminescence from Chiral Cyclometalated Platinum(II) Complexes

    PubMed Central

    2015-01-01

    A series of chiral cyclometalated platinum(II) complexes, [Pt((−)-L1)(Dmpi)]Cl ((−)-1), [Pt((+)-L1)(Dmpi)]Cl ((+)-1), [Pt((−)-L2)(Dmpi)]Cl ((−)-2), [Pt((+)-L2)(Dmpi)]Cl ((+)-2), [Pt3((−)-L2)2(Dmpi)4](ClO4)4 ((−)-3), and [Pt3((+)-L2)2(Dmpi)4](ClO4)4 ((+)-3) [(−)-L1 = (−)-4,5-pinene-6′-phenyl-2,2′-bipyridine, (+)-L1 = (+)-4,5-pinene-6′-phenyl-2,2′-bipyridine), (−)-L2 = (−)-1,3-bis(2-(4,5-pinene)pyridyl)benzene, (+)-L2 = (+)-1,3-bis(2-(4,5-pinene)pyridyl)benzene, Dmpi = 2,6-dimethylphenyl isocyanide], have been designed and synthesized. In aqueous solutions, (−)-1 and (+)-1 aggregate into one-dimensional helical chain structures through Pt···Pt, π–π, and hydrophobic–hydrophobic interactions. (−)-3 and (+)-3 represent a novel helical structure with Pt–Pt bonds. The formation of helical structures results in enhanced and distinct chiroptical properties as evidenced by circular dichroism spectra. Circularly polarized luminescence (CPL) was observed from the aggregates of (−)-1 and (+)-1 in water, as well as (−)-3 and (+)-3 in dichloromethane. The CPL activity can be switched reversibly (for (−)-1 and (+)-1) or irreversibly (for (−)-3 and (+)-3) by varying the temperature. PMID:25495433

  3. The effect of pea chloroplast alignment and variation of excitation wavelength on the circularly polarized chlorophyll luminescence.

    PubMed

    Barzda, Virginijus; Ionov, Maksim; van Amerongen, Herbert; Gussakovsky, Eugene E; Shahak, Yosepha

    2004-03-01

    Circularly polarized luminescence (CPL) is a powerful technique to study the macroorganization of photosynthetic light-harvesting apparatus in vivo and in vitro. It is particularly useful for monitoring environmental stress induced molecular re-organization of thylakoid membranes in green leaves. The current study focuses on two questions which are important to perform and interpret such experiments: how does CPL depend on the excitation wavelength and how on the orientation of the granal thylakoids. CPL and circular dichroism (CD) of pea chloroplasts were complementarily applied when chloroplasts were either in suspension or trapped in a polyacrylamide gel (PAAG) after alignment in a magnetic field. In contrast to the CD spectrum, the CPL signal was found to be independent of the excitation wavelength in both the Soret and the Qy absorption region for chloroplasts in both suspension and PAAG. The improved resolution of luminescence measurements revealed a relatively small negative CPL band in addition to the previously described large positive band. No effect of photoselection upon excitation on the CPL spectra was detected. The CPL intensity at 690 nm at the edge of the granal thylakoids was found to be higher than at the face of the grana suggesting the CPL anisotropy. PMID:15615047

  4. Magnetic circular polarization of luminescence of dysprosium-yttrium aluminum garnet Dy0.2Y2.8Al5O12

    NASA Astrophysics Data System (ADS)

    Valiev, U. V.; Gruber, J. B.; Rakhimov, Sh. A.; Sokolov, V. Yu.

    2004-07-01

    Magnetic circular polarization of the luminescence of the radiative 4 f-4 f transitions 6 H 15/2→6 F 9/2 in dysprosium-yttrium aluminum garnet Dy0.2Y2.8Al5O13 was studied at T=85 K. The revealed features of the spectral dependences of the magnetically polarized luminescence of Dy3+ ions are attributed to the quasi-Ising behavior of rare-earth ions in the garnet structure. The symmetry of the wave functions for a number of Stark sublevels of the multiplets of the ground configuration 4 f( n) that combine in observed radiative transitions is determined.

  5. Synthetic Control of the Excited-State Dynamics and Circularly Polarized Luminescence of Fluorescent "Push-Pull" Tetrathia[9]helicenes.

    PubMed

    Yamamoto, Yuki; Sakai, Hayato; Yuasa, Junpei; Araki, Yasuyuki; Wada, Takehiko; Sakanoue, Tomo; Takenobu, Taishi; Kawai, Tsuyoshi; Hasobe, Taku

    2016-03-14

    A series of fluorescent "push-pull" tetrathia[9]helicenes based on quinoxaline (acceptor) fused with tetrathia[9]helicene (donor) derivatives was synthesized for control of the excited-state dynamics and circularly polarized luminescence (CPL) properties. In this work, introduction of a quinoxaline onto the tetrathia[9]helicene skeleton induced the "push-pull" character, which was enhanced by further introduction of an electron-releasing Me2 N group or an electron-withdrawing NC group onto the quinoxaline unit (denoted as Me2 N-QTTH and NC-QTTH, respectively). These trends were successfully discussed in terms of by electrochemical measurements and density functional theory (DFT) calculations. As a consequence, significant enhancements in the fluorescence quantum yields (ΦFL ) were achieved. In particular, the maximum ΦFL of Me2 N-QTTH was 0.43 in benzene (NC-QTTH: ΦFL =0.30), which is more than 20 times larger than that of a pristine tetrathia[9]helicene (denoted as TTH; ΦFL =0.02). These enhancements were also explained by kinetic discussion of the excited-state dynamics such as fluorescence and intersystem crossing (ISC) pathways. Such significant enhancements of the ΦFL values thus enabled us to show the excellent CPL properties. The value of anisotropy factor gCPL (normalized difference in emission of right-handed and left-handed circularly polarized light) was estimated to be 3.0 × 10(-3) for NC-QTTH. PMID:26863928

  6. Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43.

    PubMed

    Hall, Jeremy; Renger, Thomas; Picorel, Rafael; Krausz, Elmars

    2016-01-01

    Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions. PMID:26449206

  7. Compact waveguide circular polarizer

    DOEpatents

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  8. Creation of circularly polarized luminescence from an achiral polyfluorene derivative through complexation with helix-forming polysaccharides: importance of the meta-linkage chain for helix formation.

    PubMed

    Shiraki, Tomohiro; Tsuchiya, Youichi; Noguchi, Takao; Tamaru, Shun-ichi; Suzuki, Nozomu; Taguchi, Makoto; Fujiki, Michiya; Shinkai, Seiji

    2014-01-01

    A circularly polarized luminescence (CPL) material has been created by polymer-polymer complexation between a helix-forming polysaccharide, schizophyllan (SPG), and a meta-phenylene-linked polyfluorene derivative (mPFS). Computational modeling revealed that mPFS can adopt a helical structure although a conventional polyfluorene derivative with a para-phenylene linkage tends to enjoy a rigid rodlike conformation. Our detailed experimental examination showed that mPFS forms a chiral nanowire complex through cohelix formation with SPG. We have found, as expected, that this cohelical complex emits highly efficient CPL even in an aqueous solution. The appearance of the high CPL property is due to 1) a high quantum yield of the fluorene unit and 2) immobilization of the helically twisted conformation of mPFS in an isolated manner through cohelix formation with SPG. One can propose, therefore, that the SPG/mPFS complex acts as a new high-performance CPL material with a solvent-dispersible nanowire structure. PMID:24151104

  9. The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: Emitting states of CP47 assigned via circularly polarized luminescence.

    PubMed

    Hall, Jeremy; Renger, Thomas; Müh, Frank; Picorel, Rafael; Krausz, Elmars

    2016-09-01

    The identification of low-energy chlorophyll pigments in photosystem II (PSII) is critical to our understanding of the kinetics and mechanism of this important enzyme. We report parallel circular dichroism (CD) and circularly polarized luminescence (CPL) measurements at liquid helium temperatures of the proximal antenna protein CP47. This assembly hosts the lowest-energy chlorophylls in PSII, responsible for the well-known "F695" fluorescence band of thylakoids and PSII core complexes. Our new spectra enable a clear identification of the lowest-energy exciton state of CP47. This state exhibits a small but measurable excitonic delocalization, as predicated by its CD and CPL. Using structure-based simulations incorporating the new spectra, we propose a revised set of site energies for the 16 chlorophylls of CP47. The significant difference from previous analyses is that the lowest-energy pigment is assigned as Chl 612 (alternately numbered Chl 11). The new assignment is readily reconciled with the large number of experimental observations in the literature, while the most common previous assignment for the lowest energy pigment, Chl 627(29), is shown to be inconsistent with CD and CPL results. Chl 612(11) is near the peripheral light-harvesting system in higher plants, in a lumen-exposed region of the thylakoid membrane. The low-energy pigment is also near a recently proposed binding site of the PsbS protein. This result consequently has significant implications for our understanding of the kinetics and regulation of energy transfer in PSII. PMID:27342201

  10. Circularly-Polarized Microstrip Antenna

    NASA Technical Reports Server (NTRS)

    Stanton, P. H.

    1985-01-01

    Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.

  11. The use of lanthanide luminescence as a reporter in the solid state: Desymmetrization of the prochiral layers of γ-zirconium phosphate/phosphonate and circularly polarized luminescence

    PubMed Central

    Brunet, Ernesto; Jiménez, Laura; de Victoria-Rodriguez, María; Luu, Vinh; Muller, Gilles; Juanes, Olga; Rodríguez-Ubis, Juan Carlos

    2012-01-01

    Solid-state CPL measurements were performed for the first time on hybrid, laminar materials based on γ-ZrP pillared with organic diphosphonates. Ad hoc optically pure diphosphonates were synthesized and the luminescence properties of their complexation with Tb(III) were verified in solution. CD and CPL measurements showed that the bistriazolylpyridine chromophores bonded to the metal provided an effective chiral environment that produced significant signals. In the case of the γ-ZrP-derived materials, experimental evidence and simple molecular modeling hinted to the occurrence of supramolecular chirality in the particles, induced by the intrinsic dissymmetry of the organic diphosphonates or by the intercalation of chiral species such as 1-phenethylamine. Chirality at the supramolecular level was revealed in the solid state by the CPL signals measured from reporter Tb(III) ions intercalated in the hybrid matrix. PMID:23329880

  12. Time-resolved circularly polarized protein phosphorescence.

    PubMed Central

    Schauerte, J A; Steel, D G; Gafni, A

    1992-01-01

    The existence of circular polarization in room-temperature protein phosphorescence is demonstrated, and time-resolved circularly polarized phosphorescence (TR-CPP) is used to characterize unique tryptophan environments in multitryptophan proteins. Circularly polarized luminescence studies provide information regarding the excited state chirality of a lumiphore which can be used to extract sensitive structural information. It is shown by time resolving the circular polarization that it is possible to correlate the excited state chirality with unique decay components in a multiexponential phosphorescence decay profile. The present study presents a concurrent analysis of room-temperature time-resolved phosphorescence and TR-CPP of bacterial glucose-6-phosphate dehydrogenase as well as those of horse liver alcohol dehydrogenase. Only one of the two tryptophan residues per subunit of dimeric alcohol dehydrogenase is believed to phosphorescence, while the dimeric glucose-6-phosphate dehydrogenase has eight tryptophan residues per subunit and shows a corresponding complexity in its phosphorescence decay profile. The anisotropy factor [g(em) = delta I/(Itotal/2); delta I = Ileft circular-Iright circular] for alcohol dehydrogenase is time independent, suggesting a unique excited state chirality. The phosphorescence decay of glucose-6-phosphate dehydrogenase can be well fitted with four exponential terms of 4, 23, 76, and 142 msec, and the TR-CPP of this enzyme shows a strong time dependence that can be resolved into four individual time-independent anisotropy factors of -4.0, -2.1, +6.5, and +6.9 (x10(-3)), each respectively associated with one of the four lifetime components. These results demonstrate how the use of TR-CPP can facilitate the study of proteins with multiple lumiphores. PMID:1438204

  13. Circular polarization interferometry: circularly polarized modes of cholesteric liquid crystals.

    PubMed

    Sanchez-Castillo, A; Eslami, S; Giesselmann, F; Fischer, P

    2014-12-15

    We describe a novel polarization interferometer which permits the determination of the refractive indices for circularly-polarized light. It is based on a Jamin-Lebedeff interferometer, modified with waveplates, and permits us to experimentally determine the refractive indices nL and nR of the respectively left- and right-circularly polarized modes in a cholesteric liquid crystal. Whereas optical rotation measurements only determine the circular birefringence, i.e. the difference (nL - nR), the interferometer also permits the determination of their absolute values. We report refractive indices of a cholesteric liquid crystal in the region of selective (Bragg) reflection as a function of temperature. PMID:25607071

  14. Generation of circular polarization of the CMB

    NASA Astrophysics Data System (ADS)

    Zarei, M.; Bavarsad, E.; Haghighat, M.; Mohammadi, R.; Motie, I.; Rezaei, Z.

    2010-04-01

    According to the standard cosmology, near the last scattering surface, the photons scattered via Compton scattering are just linearly polarized and then the primordial circular polarization of the cosmic microwave background (CMB) photons is zero. In this work we show that CMB polarization acquires a small degree of circular polarization when a background magnetic field is considered or the quantum electrodynamic sector of standard model is extended by Lorentz-noninvariant operators as well as noncommutativity. The existence of circular polarization for the CMB radiation may be verified during future observation programs, and it represents a possible new channel for investigating new physics effects.

  15. Circular Polarization in PKS 1519-273

    NASA Astrophysics Data System (ADS)

    Bennett, W.; Macquart, J. P.; Johnston, H.; Jauncey, D.

    2005-12-01

    The intra-day variable BL Lac PKS 1519-273 exhibits variations at centimeter wavelengths in total intensity, linear polarization, and circular polarization. Their variability is caused by scintillation due to the interstellar medium. PKS 1519-273 displays 4% circular polarization at 4.8 GHz and the variability has persisted as long as the source has been observed. We present observations of this source over several years, showing that the circularly polarized emission is highly variable on micro-arcsecond scales. We determine properties of the structure of the emission by examining the light curves and associated scintillation theory.

  16. Circular polarization of sunlight reflected by clouds.

    NASA Technical Reports Server (NTRS)

    Hansen, J. E.

    1971-01-01

    Measurements of circular polarization of visible light from planets have recently been reported. It is pointed out that the values measured for the circular polarization for Jupiter and Venus are of the magnitude expected for sunlight reflected by a cloudy planetary atmosphere. The variations of the sense of the polarization with phase angle and with location on the planetary disk are also consistent with expectations for reflection by clouds.

  17. Circularly polarized waves in a plasma with vacuum polarization effects

    SciTech Connect

    Lundin, J.; Stenflo, L.; Brodin, G.; Marklund, M.; Shukla, P. K.

    2007-06-15

    The theory for large amplitude circularly polarized waves propagating along an external magnetic field is extended in order to also include vacuum polarization effects. A general dispersion relation, which unites previous results, is derived.

  18. Microstrip Antenna Generates Circularly Polarized Beam

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1986-01-01

    Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.

  19. A broadband, circular-polarization selective surface

    NASA Astrophysics Data System (ADS)

    Momeni Hasan Abadi, Seyed Mohamad Amin; Behdad, Nader

    2016-06-01

    We introduce a new technique for designing wideband circular-polarization selective surfaces (CPSSs) based on anisotropic miniaturized element frequency selective surfaces. The proposed structure is a combination of two linear-to-circular polarization converters sandwiching a linear polarizer. This CPSS consists of a number of metallic layers separated from each other by thin dielectric substrates. The metallic layers are in the form of two-dimensional arrays of subwavelength capacitive patches and inductive wire grids with asymmetric dimensions and a wire grid polarizer with sub-wavelength period. The proposed device is designed to offer a wideband circular-polarization selection capability allowing waves with left-hand circular polarization to pass through while rejecting those having right-hand circular polarization. A synthesis procedure is developed that can be used to design the proposed CPSS based on its desired band of operation. Using this procedure, a prototype of the proposed CPSS operating in the 12-18 GHz is designed. Full-wave electromagnetic simulations are used to predict the response of this structure. These simulation results confirm the validity of the proposed design concept and synthesis procedure and show that proposed CPSS operates within a fractional bandwidth of 40% with a co-polarization transmission discrimination of more than 15 dB. Furthermore, the proposed design is shown to be capable of providing an extremely wide field of view of ±60°.

  20. Beam scanning reflectarray antenna with circular polarization

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor); Pogorzelski, Ronald J. (Inventor)

    2000-01-01

    A novel means of scanning a circularly polarized reflectarray antenna. The reflectarray is an array of metallic elements arranged on a surface designed to compensate for the various path lengths of the optical rays from an illuminating feed to the reflecting surface and then to the antenna aperture. With appropriate design, the phase in the aperture can be made to vary linearly in any desired direction and also to produce a radiated beam normal to the constant phase surface. In the case of circular polarization, this path length compensation can be accomplished by rotation of the individual elements.

  1. Circular polarization sensitive absorbers based on graphene

    NASA Astrophysics Data System (ADS)

    Yang, Kunpeng; Wang, Min; Pu, Mingbo; Wu, Xiaoyu; Gao, Hui; Hu, Chenggang; Luo, Xiangang

    2016-04-01

    It is well known that the polarization of a linearly polarized (LP) light would rotate after passing through a single layer graphene under the bias of a perpendicular magnetostatic field. Here we show that a corresponding phase shift could be expected for circularly polarized (CP) light, which can be engineered to design the circular polarization sensitive devices. We theoretically validate that an ultrathin graphene-based absorber with the thickness about λ/76 can be obtained, which shows efficient absorption >90% within incident angles of ±80°. The angle-independent phase shift produced by the graphene is responsible for the nearly omnidirectional absorber. Furthermore, a broadband absorber in frequencies ranging from 2.343 to 5.885 THz with absorption over 90% is designed by engineering the dispersion of graphene.

  2. Circular polarization sensitive absorbers based on graphene

    PubMed Central

    Yang, Kunpeng; Wang, Min; Pu, Mingbo; Wu, Xiaoyu; Gao, Hui; Hu, Chenggang; Luo, Xiangang

    2016-01-01

    It is well known that the polarization of a linearly polarized (LP) light would rotate after passing through a single layer graphene under the bias of a perpendicular magnetostatic field. Here we show that a corresponding phase shift could be expected for circularly polarized (CP) light, which can be engineered to design the circular polarization sensitive devices. We theoretically validate that an ultrathin graphene-based absorber with the thickness about λ/76 can be obtained, which shows efficient absorption >90% within incident angles of ±80°. The angle-independent phase shift produced by the graphene is responsible for the nearly omnidirectional absorber. Furthermore, a broadband absorber in frequencies ranging from 2.343 to 5.885 THz with absorption over 90% is designed by engineering the dispersion of graphene. PMID:27034257

  3. Continuous-wave circular polarization terahertz imaging

    NASA Astrophysics Data System (ADS)

    Martin, Jillian P.; Joseph, Cecil S.; Giles, Robert H.

    2016-07-01

    Biomedical applications of terahertz (THz) radiation are appealing because THz radiation is nonionizing and has the demonstrated ability to detect intrinsic contrasts between cancerous and normal tissue. A linear polarization-sensitive detection technique for tumor margin delineation has already been demonstrated; however, utilization of a circular polarization-sensitive detection technique has yet to be explored at THz frequencies. A reflective, continuous-wave THz imaging system capable of illuminating a target sample at 584 GHz with either linearly or circularly polarized radiation, and capable of collecting both cross- and copolarized signals remitted from the target, is implemented. To demonstrate the system's utility, a fresh ex vivo human skin tissue specimen containing nonmelanoma skin cancer was imaged. Both polarization-sensitive detection techniques showed contrast between tumor and normal skin tissue, although some differences in images were observed between the two techniques. Our results indicate that further investigation is required to explain the contrast mechanism, as well as to quantify the specificity and sensitivity of the circular polarization-sensitive detection technique.

  4. Omnidirectional, circularly polarized, cylindrical microstrip antenna

    NASA Technical Reports Server (NTRS)

    Stanton, Philip H. (Inventor)

    1985-01-01

    A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.

  5. A fractal circular polarized RFID tag antenna

    NASA Astrophysics Data System (ADS)

    Chaouki, Guesmi; Ferchichi, Abdelhak; Gharsallah, Ali

    2013-09-01

    In this paper, we present a novel fractal antenna for radiofrequency identification (RFID) tags. The proposed antenna has a resonant frequency equal to 2.45GHz and circular polarization. The fractal technique was very useful to obtain a miniaturization of antenna size by more than 30%. The gain and directivity of the antenna are acceptable for the desired RFID application. All the results are obtained using CST Microwave simulation tool.

  6. Simple Broadband Circular Polarizer in Oversized Waveguide

    NASA Astrophysics Data System (ADS)

    Stange, Torsten

    2016-02-01

    In this paper, a possibility is shown to realize a simple waveguide polarizer producing nearly the same circular polarization over a broad frequency range up to an octave. It is based upon the combination of two smoothly squeezed oversized waveguides with different diameters. The principle is similar to an achromatic lens in optics, where two counteracting lenses with differently sloped wavelength dependencies of the refractive index are combined to compensate the dispersion in the desired wavelength range. Consequently, two different wavelengths of light are brought into focus at the same plane. A waveguide for the transmission of microwaves has a similar frequency dependence of the refractive index resulting in a frequency-dependent phase shift between two propagating waves polarized along the symmetry axes of a waveguide with an elliptical cross section. For this reason, an incident wave with a linear polarization between the axes of symmetry can be only converted into a circularly polarized wave over a limited frequency range. However, the diameter and the shape along two counteracting squeezed waveguides can be adjusted in such a way that the frequency dependence of the resultant phase shift is finally canceled out.

  7. The Primordial Inflation Polarization Explorer: Science from Circular Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Switzer, Eric; Ade, P.; Benford, D. J.; Bennett, C. L.; Chuss, D. T.; Dotson, J. L.; Eimer, J.; Fixsen, D. J.; Halpern, M.; Hinshaw, G. F.; Irwin, K.; Jhabvala, C.; Johnson, B.; Kogut, A. J.; Lazear, J.; Mirel, P.; Moseley, S. H.; Staguhn, J.; Tucker, C. E.; Weston, A.; Wollack, E.

    2014-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne CMB polarimeter designed to constrain the B-mode signature of cosmological inflation. Sequential one-day flights from Northern- and Southern- Hemisphere sites will yield maps of Stokes I, Q, U and V at 200, 270, 350 and 600 GHz over 85% of the sky. The full optical path is cooled to 1.5 K by liquid helium in the ARCADE bucket dewar, and a variable-delay polarization modulator (VPM) at the front of the optics modulates the polarization response. Independent Q and U cameras each have two 32x40 Transition Edge Sensor array receivers. In addition to its primary inflationary science goal, PIPER will also measure the circular (Stokes V) polarization to a depth similar to that of the primary linear polarization. The circular polarization has received relatively little attention in large-area surveys, with constraints from the 1980’s and recent results by the Milan Polarimeter. Astrophysical circular polarization is generally tied to the presence of magnetic fields, either in relativistic plasmas or Zeeman splitting of resonances. These effects are thought to be undetectable at PIPER's frequencies and resolution, despite the depth. The expectation of a null result makes the deep Stokes V map a good cross-check for experimental systematics. More fundamentally, the fact that the sky is expected to be dark in Stokes V makes it a sector sensitive to processes such as Lorentz-violating terms in the standard model or magnetic fields in the CMB era.

  8. High circular polarization in a MoSe2 light-emitting transistor

    NASA Astrophysics Data System (ADS)

    Onga, Masaru; Zhang, Yijin; Suzuki, Ryuji; Iwasa, Yoshihiro

    The exclusive coupling between the valley degree of freedom and the optical helicity is a unique phenomenon in transition metal dichalcogenides (TMDs), and thus the circularly polarized luminescence is one of the main research topics in these materials. MoSe2, however, is known to exhibit exceptionally low polarization in photoluminescence (PL). Here, we report electroluminescence (EL) properties of MoSe2 demonstrating electrical switching of the optical helicity in the same manner as WSe2. More importantly, the observed polarization in EL is one order of magnitude higher than that in PL. The present results reveal that the mechanism of EL polarization possesses the intrinsic robustness against intervalley scattering

  9. Build a circularly polarized waveguide slot antenna

    NASA Astrophysics Data System (ADS)

    Kisliuk, M.; Axelrod, A.

    1987-06-01

    The development and design of a circularly polarized waveguide slot antenna are described. Consideration is given to the resonance frequency, radiation efficiencies, excitement, and resonant conductance of the transverse and longitudinal slots. The transverse and longitudinal slots in a rectangular guide are analyzed. The voltage distribution across the slot is calculated from the solution of a standard transmission line equation; and using the Poynting theorem the fields scattered by the slot in an arbitrary frequency range are determined. The proposed antenna is examined using an equivalent circuit; a diagram of the circuit is given. The radiation, slot, and antenna efficiencies are measured.

  10. High Performance Circularly Polarized Microstrip Antenna

    NASA Technical Reports Server (NTRS)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  11. Circular polarization of sunlight reflected by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Kawata, Y.

    1978-01-01

    Multiple scattering calculations are performed in order to investigate the nature of the circular polarization of sunlight reflected by planetary atmospheres. Contour diagrams as a function of size parameter and phase angle are made for the integrated light from a spherical but locally plane-parallel atmosphere of spherical particles. To investigate the origin of the circular polarization, results are also computed for second-order scattering and for a simpler semiquantitative model of scattering by two particles. Observations of the circular polarization of the planets are presently too meager for accurate deduction of cloud particle properties. However, certain very broad constraints can be placed on the properties of the dominant cloud particles on Jupiter and Saturn. The cloud particle size and refractive index deduced for the Jupiter clouds by Loskutov, Morozhenko, and Yanovitskii from analyses of the linear polarization are not consistent with the circular polarization. The few available circular polarization observations of Venus are also examined.

  12. Circularly Polarized Light and Growth of Plants

    NASA Astrophysics Data System (ADS)

    Shibayev, Pavel; Pergolizzi, Robert

    2011-03-01

    The influence of linearly polarized light on the direction of plants growth has been recently demonstrated. The state of circularly polarized (CP) light can also change when it is reflected from the surface of leaves and stems. However, the role of light handedness in the development of plants and CP light interaction with the complexes of chlorophyll molecules have still not been studied enough. In this work, the role of left CP light in the accelerated growth of lentil and pea plants is revealed and studied. The mechanism of such an enhancement is discussed in terms of the model considering transmission, absorption, and scattering of CP light on micro and macro levels of leaf organization. Theoretical modeling of light interaction with the interior of the leaf was conducted for a number of recently proposed models of organization of chlorophyll molecules and chloroplasts. All the calculations were performed by employing a 4x4 matrix method in solving Maxwell equations. It is shown that left-handed chiral organization of chlorophyll molecules can greatly enhance the absorption of light and therefore lead to the enhanced growth of the whole plant under CP light.

  13. High circular polarization in electroluminescence from MoSe2

    NASA Astrophysics Data System (ADS)

    Onga, Masaru; Zhang, Yijin; Suzuki, Ryuji; Iwasa, Yoshihiro

    2016-02-01

    The coupling between the valley degree of freedom and the optical helicity is one of the unique phenomena in transition metal dichalcogenides. The significant valley polarization evaluated from circularly polarized photoluminescence (PL) has been reported in many transition metal dichalcogenides, except in MoSe2. This compound is an anomalous material showing ultra-fast relaxation of the valley polarized states, which causes negligible polarization in the PL. Meanwhile, circularly polarized electroluminescence (EL) has been recently reported in a WSe2 light-emitting transistor, providing another method for using the valley degree of freedom. Here, we report the EL properties of MoSe2, demonstrating electrical switching of the optical helicity. Importantly, we observed high circular polarization reaching 66%. The results imply that the dominant mechanism of circularly polarized EL is robust against intervalley scattering, in marked contrast to the PL.

  14. Research on object detection based on circular polarization property

    NASA Astrophysics Data System (ADS)

    Wu, Yun-zhi; Zeng, Xian-fang; Yin, Cheng-liang; Luo, Xiao-lin

    2013-09-01

    It is an important subject in information scout, battlefield surveillance and automatic target recognition to detect interesting objects from complicated background. Compared with intensity detection, polarization detection has its advantage in identifying some camouflage targets. Usually, in the studies of target polarization detection, circular polarization property is usually neglected because of its small value. But in particular conditions, the circular polarization property of target will be used to accomplish object detection with their obviously different value. In this study, a single reflectance model of Mueller matrix is established, and based on Fresnel's law, circular polarization property of object is analyzed which is obvious while linear polarization property is obscure in particular condition. It is available to use the circular polarization component to detect target.

  15. Conceptual design of X band waveguide dual circular polarizer

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Tantawi, Sami; Wang, Juwen

    2016-06-01

    A new design of dual circular polarizer is presented in this paper. This innovative design converts radiofrequency (rf) energy from TE10 mode in a rectangular waveguide to two polarized TE11 modes in a circular waveguide. A reflection less than -20 db is achieved and breakdown field is less than 42 MV /m at input of 1 MW. Meanwhile, this polarizer has a megahertz bandwidth, and the thermal stability is also discussed. This device can be used for broadcasting and receiving the circular polarized signals.

  16. Up-conversion luminescence polarization control in Er3+-doped NaYF4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Hui, Zhang; Yun-Hua, Yao; Shi-An, Zhang; Chen-Hui, Lu; Zhen-Rong, Sun

    2016-02-01

    We propose a femtosecond laser polarization modulation scheme to control the up-conversion (UC) luminescence in Er3+-doped NaYF4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304396), the National Natural Science Foundation of China (Grant Nos. 11474096 and 51132004), and the Shanghai Municipal Science and Technology Commission, China (Grant No. 14JC1401500).

  17. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  18. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  19. Detection of circular polarization in light scattered from photosynthetic microbes

    PubMed Central

    Sparks, William B.; Hough, James; Germer, Thomas A.; Chen, Feng; DasSarma, Shiladitya; DasSarma, Priya; Robb, Frank T.; Manset, Nadine; Kolokolova, Ludmilla; Reid, Neill; Macchetto, F. Duccio; Martin, William

    2009-01-01

    The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Because of the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches. PMID:19416893

  20. No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle.

    PubMed

    Blahó, Miklós; Egri, Adám; Hegedüs, Ramón; Jósvai, Júlia; Tóth, Miklós; Kertész, Krisztián; Biró, László Péter; Kriska, György; Horváth, Gábor

    2012-02-28

    The strongest known circular polarization of biotic origin is the left-circularly polarized (LCP) light reflected from the metallic shiny exocuticle of certain beetles of the family Scarabaeidae. This phenomenon has been discovered by Michelson in 1911. Although since 1955 it has been known that the human eye perceives a visual illusion when stimulated by circularly polarized (CP) light, it was discovered only recently that a stomatopod shrimp is able to perceive circular polarization. It is pertinent to suppose that scarab beetles reflecting LCP light in an optical environment (vegetation) being deficient in CP signals may also perceive circular polarization and use it to find each other (mate/conspecifics) as until now it has been believed. We tested this hypothesis in six choice experiments with several hundred individuals of four scarab species: Anomala dubia, Anomala vitis (Coleoptera, Scarabaeidae, Rutelinae), and Cetonia aurata, Potosia cuprea (Coleoptera, Scarabaeidae, Cetoniinae), all possessing left-circularly polarizing exocuticle. From the results of our experiments we conclude that the studied four scarab species are not attracted to CP light when feeding or looking for mate or conspecifics. We demonstrated that the light reflected by host plants of the investigated scarabs is circularly unpolarized. Our results finally solve a puzzle raised over one hundred years ago, when Michaelson discovered that scarab beetles reflect circularly polarized light. PMID:22155007

  1. Electrically pumped semiconductor laser with monolithic control of circular polarization

    PubMed Central

    Rauter, Patrick; Lin, Jiao; Genevet, Patrice; Khanna, Suraj P.; Lachab, Mohammad; Giles Davies, A.; Linfield, Edmund H.; Capasso, Federico

    2014-01-01

    We demonstrate surface emission of terahertz (THz) frequency radiation from a monolithic quantum cascade laser with built-in control over the degree of circular polarization by “fishbone” gratings composed of orthogonally oriented aperture antennas. Different grating concepts for circularly polarized emission are introduced along with the presentation of simulations and experimental results. Fifth-order gratings achieve a degree of circular polarization of up to 86% within a 12°-wide core region of their emission lobes in the far field. For devices based on an alternative transverse grating design, degrees of circular polarization as high as 98% are demonstrated for selected far-field regions of the outcoupled THz radiation and within a collection half-angle of about 6°. Potential and limitations of integrated antenna gratings for polarization-controlled emission are discussed. PMID:25512515

  2. Electrically pumped semiconductor laser with monolithic control of circular polarization.

    PubMed

    Rauter, Patrick; Lin, Jiao; Genevet, Patrice; Khanna, Suraj P; Lachab, Mohammad; Giles Davies, A; Linfield, Edmund H; Capasso, Federico

    2014-12-30

    We demonstrate surface emission of terahertz (THz) frequency radiation from a monolithic quantum cascade laser with built-in control over the degree of circular polarization by "fishbone" gratings composed of orthogonally oriented aperture antennas. Different grating concepts for circularly polarized emission are introduced along with the presentation of simulations and experimental results. Fifth-order gratings achieve a degree of circular polarization of up to 86% within a 12°-wide core region of their emission lobes in the far field. For devices based on an alternative transverse grating design, degrees of circular polarization as high as 98% are demonstrated for selected far-field regions of the outcoupled THz radiation and within a collection half-angle of about 6°. Potential and limitations of integrated antenna gratings for polarization-controlled emission are discussed. PMID:25512515

  3. Circularly polarized light emission from semiconductor planar chiral nanostructures.

    PubMed

    Konishi, Kuniaki; Nomura, Masahiro; Kumagai, Naoto; Iwamoto, Satoshi; Arakawa, Yasuhiko; Kuwata-Gonokami, Makoto

    2011-02-01

    We demonstrate circularly polarized light emission from InAs quantum dots embedded in the waveguide region of a GaAs-based chiral nanostructure. The observed phenomenon originates due to a strong imbalance between left- and right-circularly polarized components of the vacuum field and results in a degree of polarization as high as 26% at room temperature. A strong circular anisotropy of the vacuum field modes inside the chiral nanostructure is visualized using numerical simulation. The results of the simulation agree well with experimental results. PMID:21405435

  4. Circularly Polarized Light as a Communication Signal in Mantis Shrimps.

    PubMed

    Gagnon, Yakir Luc; Templin, Rachel Marie; How, Martin John; Marshall, N Justin

    2015-12-01

    Animals that communicate using conspicuous body patterns face a trade-off between desired detection by intended receivers and undesired detection from eavesdropping predators, prey, rivals, or parasites. In some cases, this trade-off favors the evolution of signals that are both hidden from predators and visible to conspecifics. Animals may produce covert signals using a property of light that is invisible to those that they wish to evade, allowing them to hide in plain sight (e.g., dragonfish can see their own, otherwise rare, red bioluminescence). The use of the polarization of light is a good example of a potentially covert communication channel, as very few vertebrates are known to use polarization for object-based vision. However, even these patterns are vulnerable to eavesdroppers, as sensitivity to the linearly polarized component of light is widespread among invertebrates due to their intrinsically polarization sensitive photoreceptors. Stomatopod crustaceans appear to have gone one step further in this arms race and have evolved a sensitivity to the circular polarization of light, along with body patterns producing it. However, to date we have no direct evidence that any of these marine crustaceans use this modality to communicate with conspecifics. We therefore investigated circular polarization vision of the mantis shrimp Gonodactylaceus falcatus and demonstrate that (1) the species produces strongly circularly polarized body patterns, (2) they discriminate the circular polarization of light, and (3) that they use circular polarization information to avoid occupied burrows when seeking a refuge. PMID:26585281

  5. Circularly polarized synchrotron radiation from the crossed undulator at BESSY

    SciTech Connect

    Bahrdt, J.; Gaupp, A.; Gudat, W.; Mast, M.; Molter, K.; Peatman, W.B.; Scheer, M.; Schroeter, T.; Wang, C. , Lentzeallee 100, D-1000 Berlin 33 )

    1992-01-01

    The first experimental results from a double undulator with crossed magnetic fields for producing circularly polarized synchrotron radiation in the vacuum ultraviolet-soft x-ray range are presented. The observed variation of the extent of circularly polarized radiation with photon energy is discussed. A strong dependence of the state and degree of polarization on the exact details of the tuning of the two undulators and the monochromator is observed. This probably accounts for the measured degree of polarization being smaller than theoretically expected.

  6. CIRCULAR POLARIZATION IN PULSARS DUE TO CURVATURE RADIATION

    SciTech Connect

    Gangadhara, R. T.

    2010-02-10

    The beamed radio emission from relativistic plasma (particles or bunches), constrained to move along the curved trajectories, occurs in the direction of velocity. We have generalized the coherent curvature radiation model to include the detailed geometry of the emission region in pulsar magnetosphere and deduced the polarization state in terms of Stokes parameters. By considering both the uniform and modulated emissions, we have simulated a few typical pulse profiles. The antisymmetric type of circular polarization survives only when there is modulation or discrete distribution in the emitting sources. Our model predicts a correlation between the polarization angle swing and sign reversal of circular polarization as a geometric property of the emission process.

  7. Negative circular polarization as a universal property of quantum dots

    SciTech Connect

    Taylor, Matthew W.; Spencer, Peter; Murray, Ray

    2015-03-23

    This paper shows that negative circular polarization, a spin flip of polarized carriers resulting in emission of opposite helicity, can be observed in undoped, n-doped, and p-doped InAs/GaAs quantum dots. These results contradict the usual interpretation of the effect. We show using power dependent and time resolved spectroscopy that the generation of negative circular polarization correlates with excited state emission. Furthermore, a longer spin lifetime of negatively polarized excitons is observed where emission is largely ground state in character.

  8. Aharonov-Bohm effect induced by circularly polarized light

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Kibis, O. V.; Shelykh, I. A.

    2015-11-01

    We demonstrated theoretically that the strong electron interaction with circularly polarized photons in ring-like nanostructures changes the phase of electron wave. This optically-induced effect is caused by the breaking of time-reversal symmetry and is similar to the Aharonov-Bohm effect. As a consequence of this phenomenon, the conductance of mesoscopic rings irradiated by a circularly polarized electromagnetic wave behaves as an oscillating function of the intensity and frequency of the wave.

  9. Dual frequency launcher for circularly polarized antenna

    NASA Astrophysics Data System (ADS)

    Chen, Ming H.

    1989-10-01

    A dual frequency antenna feed is formed from a central, circular waveguide connected to the flat boundry of circular, disk-shaped resonant cavity. A second circular waveguide is connected one end of a disk-shaped resonant cavity. Energy of one frequency enters and exits the cavity along the common axis of the waveguides. Energy of the second frequency is introduced to the same resonant cavity by way of a plurality of bandpass filters, also connected to the cavity. This energy enters by way of slots in the cylindrical walls of the cavity. The central circular waveguide is propagating at one frequency but cut off at the second frequency. These bandpass filters are at this pass band for the second frequency, but at the rejection band for the first frequency. Therefore, the isolation between these two input ports are obtained.

  10. SIMULTANEOUS MEASUREMENT OF CIRCULAR DICHROISM AND FLUORESCENCE POLARIZATION ANISOTROPY.

    SciTech Connect

    SUTHERLAND,J.C.

    2002-01-19

    Circular dichroism and fluorescence polarization anisotropy are important tools for characterizing biomolecular systems. Both are used extensively in kinetic experiments involving stopped- or continuous flow systems as well as titrations and steady-state spectroscopy. This paper presents the theory for determining circular dichroism and fluorescence polarization anisotropy simultaneously, thus insuring the two parameters are recorded under exactly the same conditions and at exactly the same time in kinetic experiments. The approach to measuring circular dichroism is that used in almost all conventional dichrographs. Two arrangements for measuring fluorescence polarization anisotropy are described. One uses a single fluorescence detector and signal processing with a lock-in amplifier that is similar to the measurement of circular dichroism. The second approach uses classic ''T'' format detection optics, and thus can be used with conventional photon-counting detection electronics. Simple extensions permit the simultaneous measurement of the absorption and excitation intensity corrected fluorescence intensity.

  11. Wide-Band, Wide-Scan Antenna For Circular Polarization

    NASA Technical Reports Server (NTRS)

    Huang, John

    1988-01-01

    Circular polarization generated by linearly polarized elements. Basic two-by-two subarray of antenna elements made of microstrip patches. Patches arranged in orthogonal pattern. Fed through different phase shifters so signal at feed points have same orthogonal relationship in phase. Antennas of this general type useful in communications and phased-array radar.

  12. An invisible medium for circularly polarized electromagnetic waves.

    PubMed

    Tamayama, Y; Nakanishi, T; Sugiyama, K; Kitano, M

    2008-12-01

    We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect. PMID:19065225

  13. Harmonic generation by circularly polarized laser beams propagating in plasma

    SciTech Connect

    Agrawal, Ekta; Hemlata,; Jha, Pallavi

    2015-04-15

    An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.

  14. Remote Sensing of Life using Circular Polarization

    NASA Astrophysics Data System (ADS)

    Nagdimunov, L.; Kolokolova, L.; Sparks, W. B.

    2012-12-01

    An emerging interest in circular polarization (CP) has developed over the last fifteen years in astronomy, stimulated by the discovery of high CP in the Orion nebula, and its possible connection to prebiotic chemistry. Traditionally, CP was thought to be rarely present in astronomy, and has been technically difficult to measure. Nevertheless, CP has now been reliably measured in planets, interstellar dust, molecular clouds, stars, protoplanetary disks, and comets. Several effects can produce CP in such objects: multiple scattering in asymmetric media, scattering by aligned particles, and scattering by intrinsically asymmetric particles; the later effect is of particular interest to this study. One of the most widespread and intriguing intrinsic asymmetries is homochirality, which is the dominance of one handedness of chiral organic molecules that exist in two mirror-symmetric forms. Homochirality is a property shared by all terrestrial life, and the presence of this microscopic asymmetry has the potential to have macroscopic consequences by introducing CP in scattered light. Recently this effect has been studied in the lab by Sparks et al [2009, PNAS, 7816], who found that light scattered by photosynthesizing organisms (such as macroscopic vegetation or microscopic bacteria), has a significant degree of CP with a peculiar and possibly unique spectral pattern. Non-homochiral aggregates do not display any detectable CP. To further investigate CP induced by homochirality, we modeled light scattering by biological objects, representing them as aggregates of spheres since aggregated structure is typical for many biological objects, e.g. chlorophyll in leaves and colonies of bacteria. Our computations were based on the T-matrix code recently updated to treat chiral materials [Mackowski et al, 2011, JQSRT 112, 1726]. Results of our computations replicated the lab measurements. They showed that inside the absorption band, CP experienced a dramatic change in slope, which

  15. Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna.

    PubMed

    Rui, Guanghao; Nelson, Robert L; Zhan, Qiwen

    2011-12-01

    In this Letter, we study the emission properties of an electric dipole emitter coupled to a plasmonic spiral structure. The plasmonic spiral structure functions as an optical antenna, coupling the electric dipole emission into circularly polarized unidirectional emission in the far field. Increasing number of turns of the spiral leads to narrower angular width of the emission pattern in the far field. For a spiral antenna with six turns, antenna directivity of 23.5 dB with a directional emission into a narrow angular cone of 4.3° can be achieved. The emitted photons carry spin that is essentially determined by the handedness of the spiral antenna. By reversing the spiral, one can switch the polarization of the emission field between left-hand and right-hand circular polarizations. The spiral antenna may be used as a nanoscale circular polarization source in single molecule sensing, single-photo sources, and integrated photonic circuits. PMID:22139233

  16. Magnetized Weibel filaments as a source of circularly polarized light

    NASA Astrophysics Data System (ADS)

    Sinha, Ujjwal; Martins, Joana; Vieira, Jorge; Fonseca, Ricardo; Silva, Luis

    2015-11-01

    We investigate radiation spectra of plasma particles trapped in Weibel filaments generated from multidimensional particle in cell simulations with OSIRIS in magnetized and unmagnetized plasmas. We show that an important parameter determining polarization of emitted radiation is the magnetization of ambient media. Polarization of radiation emitted during counter-propagating plasma flows with different magnetizations is explored by extracting trajectories of particles sampled from PIC simulations and computing their radiation spectrum. Particle trajectories in magnetized plasmas undergo EXB drift at Weibel boundaries leading to a preferential drift direction, whereas, in unmagnetized case the particles have no net drift. As a result, significant fraction of radiated energy from magnetized filament is circularly polarized (CP). Energy attributed to different polarizations is calculated by measuring degree of polarizations. With increasing magnetization, the fraction of radiated energy attributed to CP increases. The direction of circular polarization also changes with direction of applied magnetic field. The study is of significance for understanding radiation from Gamma Ray Bursts.

  17. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light.

    PubMed

    Shi, Xuetao; Li, Wen; Schlegel, H Bernhard

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C2 core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H2CCH(+) ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C2H3 (+) has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10(13) W/cm(2) and 3.15 × 10(13) W/cm(2), respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C2H3 (+). The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C2 core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C2 core of protonated acetylene. PMID:27586924

  18. Circular polarization in a non-magnetic resonant tunneling device.

    PubMed

    Dos Santos, Lara F; Gobato, Yara Galvão; Teodoro, Márcio D; Lopez-Richard, Victor; Marques, Gilmar E; Brasil, Maria Jsp; Orlita, Milan; Kunc, Jan; Maude, Duncan K; Henini, Mohamed; Airey, Robert J

    2011-01-01

    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects. PMID:21711613

  19. Radio linear and circular polarization from M 81*

    NASA Astrophysics Data System (ADS)

    Brunthaler, A.; Bower, G. C.; Falcke, H.

    2006-06-01

    We present results from archival and new Very Large Array (VLA) data observations to investigate the long term behavior of the circular polarization of M 81*, the nuclear radio source in the nearby galaxy M 81. We also used the Berkeley-Illinois-Maryland Association (BIMA) array to observe M 81* at 86 and 230 GHz. M 81* is unpolarized in the linear sense at a frequency as high as 86 GHz and shows variable circular polarization at a frequency as high as 15 GHz. The spectrum of the fractional circular polarization is inverted in most of our observations. The sign of circular polarization is constant over frequency and time. The absence of linear polarization sets a lower limit to the accretion rate of 10-7~M_⊙~y-1. The polarization properties are strikingly similar to the properties of Sgr A*, the central radio source in the Milky Way. This supports the hypothesis that M 81* is a scaled up version of Sgr A*. On the other hand, the broad band total intensity spectrum declines towards milimeter wavelengths which differs from previous observations of M 81* and also from Sgr A*.

  20. Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality

    PubMed Central

    Shi, J. H.; Shi, Q. C.; Li, Y. X.; Nie, G. Y.; Guan, C. Y.; Cui, T. J.

    2015-01-01

    Chirality is ubiquitous in nature. The associated optical activity has received much attention due to important applications in spectroscopy, analytical chemistry, crystallography and optics, however, artificial chiral optical materials are complex and difficult to fabricate, especially in the optical range. Here, we propose an ultrathin dual-polarity metamaterial circular polarizer by exploiting the mechanism of giant extrinsic chirality. The polarity of the circular polarizer with large suppression of linear anisotropy can be switched by changing the sign of incident angle. The microwave experiments and optical simulations demonstrate that the large angle of incidence facilitates the high-efficiency circular polarizer, which can be realized in the whole spectra from microwave to visible frequencies. The ultrathin single-layer metamaterials with extrinsic chirality will be a promising candidate for circular polarization devices. PMID:26559746

  1. Frequency-reconfigurable water antenna of circular polarization

    NASA Astrophysics Data System (ADS)

    Zou, Meng; Shen, Zhongxiang; Pan, Jin

    2016-01-01

    A circularly polarized frequency-reconfigurable water antenna with high radiation efficiency is proposed based on the design concept of combining a frequency-reconfigurable radiating structure with a frequency-independent feeding structure. In this letter, a resonator made of distilled water and an Archimedean spiral slot are employed as the radiating and feeding structures, respectively. The operating frequency of the antenna can be continuously tuned over a very wide range while maintaining good impendence matching and circular polarization by changing the dimensions of the water resonator. A prototype antenna is designed, fabricated, and measured. Simulated and measured results demonstrate that the designed antenna exhibits a wide tuning frequency range from 155 MHz to 400 MHz with an average radiation efficiency of about 90% and good circular polarization.

  2. Circular polarization of light scattered by asymmetrical particles

    NASA Astrophysics Data System (ADS)

    Guirado, D.; Hovenier, J. W.; Moreno, F.

    2007-07-01

    We present calculations of the degree of circular polarization of light singly scattered by some kinds of asymmetrical particles in random orientation as a function of the scattering angle, using the T-matrix method. To clarify the possible contribution of asymmetry of particles to circular polarization we considered aggregates of optically inactive homogeneous identical spheres. We analysed the effect of changing the size of the monomers and the refractive index. We also performed calculations for two different geometries. The values of the computed degree of circular polarization are generally in the range of the observed ones for light scattered by dust particles in comets P/Halley, C/1995 O1 (Hale-Bopp) and C/1999 S4 (LINEAR), in the interplanetary medium and in the interstellar medium of our galaxy.

  3. A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material

    NASA Technical Reports Server (NTRS)

    Lee, C. S.; Lee, S. W.; Justice, D. W.

    1986-01-01

    A circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. This device is cheaper and lighter in weight than the corrugated one.

  4. A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material

    NASA Astrophysics Data System (ADS)

    Lee, Choon S.; Justice, D. W.; Lee, Shung-Wu

    1988-02-01

    It is shown that a circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. The device is cheaper and lighter in weight than the corrugated one.

  5. A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Lee, S. W.; Justice, D. W.

    1986-08-01

    A circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. This device is cheaper and lighter in weight than the corrugated one.

  6. A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material

    NASA Technical Reports Server (NTRS)

    Lee, Choon S.; Justice, D. W.; Lee, Shung-Wu

    1988-01-01

    It is shown that a circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. The device is cheaper and lighter in weight than the corrugated one.

  7. Plasmonic magnetization during circularly polarized excitation (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sheldon, Matthew T.

    2015-09-01

    In contrast with linearly polarized excitation, which necessarily has zero magnitude electrical field twice during an optical cycle, the electrical field vector of circularly polarized light has constant magnitude. During an optical cycle the electric field vector rotates in the plane normal to the wave propagation. Consequently, if plasmonic structures are resonant with circularly polarized excitation, it is possible for them to exhibit regions of strongly modified carrier density for the duration of the optical cycle. Here, we study a class of achiral toroid and `sun burst' nano-patterned plasmonic surfaces that show persistent, circulating charge density waves during circularly polarized illumination. The direction of the continuously circulating wave (clockwise or counterclockwise) depends on the handedness of the incident beam. Our interest stems from whether these charge density waves can support circular electric currents (DC) manifest experimentally as static magnetic fields during illumination. Using full-wave optical modeling (FDTD method), and mechanistic calculations of the circulating potential acting on electrons in the toroid resonators, we outline the conditions that maximize optical excitation of both circulating displacement currents and electron transport currents. We show that in the limit of very weak coupling to the solenoid-like electron transport, or when < 1 x 10^-6% of the plasmonically active electron population enters the circular transport modes, relatively strong magnetic fields, > 1 G, can be expected. We discuss scanning probe measurements for monitoring the induced magnetic field, as well as the relationship between this phenomenon and the inverse Faraday effect observed in continuous media.

  8. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  9. Circular polarization in star- formation regions: implications for biomolecular homochirality

    PubMed

    Bailey; Chrysostomou; Hough; Gledhill; McCall; Clark; Menard; Tamura

    1998-07-31

    Strong infrared circular polarization resulting from dust scattering in reflection nebulae in the Orion OMC-1 star-formation region has been observed. Circular polarization at shorter wavelengths might have been important in inducing chiral asymmetry in interstellar organic molecules that could be subsequently delivered to the early Earth by comets, interplanetary dust particles, or meteors. This could account for the excess of L-amino acids found in the Murchison meteorite and could explain the origin of the homochirality of biological molecules. PMID:9685254

  10. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Wang, Xinke; Kan, Qiang; Qu, Shiliang; Zhang, Yan

    2015-12-01

    A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysis of chiral molecules in biology.

  11. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons

    SciTech Connect

    Wang, Sen; Zhang, Yan; Wang, Xinke; Kan, Qiang; Qu, Shiliang

    2015-12-14

    A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysis of chiral molecules in biology.

  12. Spontaneous circular polarization of photoluminescence from WS2 single layers

    NASA Astrophysics Data System (ADS)

    Scrace, Thomas; Tsai, Yutsung; Barman, Biplob; Zhang, Peiyao; Petrou, Athos; Kioseoglou, George; Korkusinski, Marek; Ozfidan, Isil; Hawrylak, Pawel

    2015-03-01

    We have carried out a magnetoluminescence study of WS2 single layer crystals excited with linearly polarized light. The photoluminescence (PL) contains two features. The first is associated with the neutral exciton (X0) ; the second feature is due to the recombination of negatively charged excitons (X-) in the presence of a two-dimensional electron gas (2DEG). The X- - 2 DEG feature has a non-zero circular polarization up to 19% at zero magnetic field even though the PL excitation light is linearly polarized. The circular polarization is effected by an external magnetic field applied perpendicular to the crystal plane at 2 % / Tesla . The zero field circular polarization of the X- - 2 DEG photoluminescence feature is interpreted as due to the existence of a spontaneously valley polarized 2DEG. This is a new state possible in WS2 due to valley and spin locking and a strong electron-electron interaction. Work at SUNY Buffalo has been supported by ONR. I.O., M.K. and P.H. acknowledge support of NRC QPSS program and of NSERC.

  13. Circular polarization in the optical afterglow of GRB 121024A

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; Covino, S.; Toma, K.; van der Horst, A. J.; Varela, K.; Min, M.; Greiner, J.; Starling, R. L. C.; Tanvir, N. R.; Wijers, R. A. M. J.; Campana, S.; Curran, P. A.; Fan, Y.; Fynbo, J. P. U.; Gorosabel, J.; Gomboc, A.; Götz, D.; Hjorth, J.; Jin, Z. P.; Kobayashi, S.; Kouveliotou, C.; Mundell, C.; O'Brien, P. T.; Pian, E.; Rowlinson, A.; Russell, D. M.; Salvaterra, R.; di Serego Alighieri, S.; Tagliaferri, G.; Vergani, S. D.; Elliott, J.; Fariña, C.; Hartoog, O. E.; Karjalainen, R.; Klose, S.; Knust, F.; Levan, A. J.; Schady, P.; Sudilovsky, V.; Willingale, R.

    2014-05-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  14. Circular polarization in the optical afterglow of GRB 121024A.

    PubMed

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets. PMID:24776800

  15. NON-ZEEMAN CIRCULAR POLARIZATION OF MOLECULAR ROTATIONAL SPECTRAL LINES

    SciTech Connect

    Houde, Martin; Jones, Scott; Rajabi, Fereshte; Hezareh, Talayeh

    2013-02-10

    We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably {sup 12}CO (J = 2 {yields} 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectral Line Polarimeter. We find levels of polarization of up to 1%-2% in general; for {sup 12}CO (J = 2 {yields} 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.

  16. Polarization Dependent Switching of Asymmetric Nanorings with a Circular field

    NASA Astrophysics Data System (ADS)

    Pradhan, Nihar; Tuominen, Mark; Aidala, Katherine

    2012-02-01

    We present experimental switching from the onion to vortex states in asymmetric cobalt nanorings in an applied circular field. We initialize the onion state in two polarizations, along the symmetric or asymmetric axes. We apply a circular field by passing current through a solid metal AFM tip positioned at the center of the ring [1]. The asymmetry of the ring leads to different switching fields depending on the location of the domain walls (DWs) and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than moving the DWs to the larger side of the ring. The direction of the DW motion is controlled by the circular field. When polarizing the ring along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value. We will be presenting detail of the switching field of cobalt nanoring by circular field with two different direction of polarization. (1) T. Yang, N. R. Pradhan, A. Goldman, A. Licht, Y. Li, M. T. Tuominen and K. E. Aidala, Applied Physics Letter, 98, 242505, (2011)

  17. Circularly polarized millimeter-wave imaging for personnel screening

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Lechelt, Wayne M.; Griffin, Jeffrey W.

    2005-05-01

    A novel polarimetric millimeter-wave imaging technique has been developed at the Pacific Northwest National Laboratory (PNNL) for concealed weapon detection applications. Wideband millimeter-wave imaging systems developed at PNNL utilize low-power, coherent, millimeter-wave illumination in the 10-100 GHz range to form high-resolution images of personnel. Electromagnetic waves in these frequency ranges easily penetrate most clothing materials and are reflected from the body and any concealed items. Three-dimensional images are formed using computer image reconstruction algorithms developed to mathematically focus the received wavefronts scattered from the target. Circular polarimetric imaging can be employed to obtain additional information from the target. Circularly polarized waves incident on relatively smooth reflecting targets are typically reversed in their rotational handedness, e.g. left-hand circular polarization (LHCP) is reflected to become right-hand circular polarization (RHCP). An incident wave that is reflected twice (or any even number) of times prior to returning to the transceiver, has its handedness preserved. Sharp features such as wires and edges tend to return linear polarization, which can be considered to be a sum of both LHCP and RHCP. These characteristics can be exploited for personnel screening by allowing differentiation of smooth features, such as the body, and sharper features present in many concealed items. Additionally, imaging artifacts due to multipath can be identified and eliminated. Laboratory imaging results have been obtained in the 10-20 GHz frequency range and are presented in this paper.

  18. Circularly polarized printed arrays composed of strip dipoles and slots

    NASA Astrophysics Data System (ADS)

    Ito, Koichi

    1987-04-01

    This paper presents circularly polarized printed arrays composed of strip dipoles and slots (CP-PASS). A design method for CP-PASS is described on the basis of its equivalent circuit model. A linear array with a Chebyshev pattern and a middle-gain planar array are designed and measured at S band.

  19. Circularly Polarized Millimeter-Wave Imaging for Personnel Screening

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Lechelt, Wayne M.; Griffin, Jeffrey W.

    2005-08-01

    A novel polarimetric millimeter-wave imaging technique has been developed at the Pacific Northwest National Laboratory (PNNL) for concealed weapon detection applications. Wideband millimeter-wave imaging systems developed at PNNL utilize low-power, coherent, millimeter-wave illumination in the 10-100 GHz range to form high-resolution images of personnel. Electromagnetic waves in these frequency ranges easily penetrate most clothing materials and are reflected from the body and any concealed items. Three-dimensional images are formed using computer image reconstruction algorithms developed to mathematically focus the received wavefronts scattered from the target. Circular polarimetric imaging can be employed to obtain additional information from the target. Circularly polarized waves incident on relatively smooth reflecting targets are typically reversed in their rotational handedness, e.g. left-hand circular polarization (LHCP) is reflected to become right-hand circular polarization (RHCP). An incident wave that is reflected twice (or any even number) of times prior to returning to the transceiver, has its handedness preserved. Sharp features such as wires and edges tend to return linear polarization, which can be considered to be a sum of both LHCP and RHCP. These characteristics can be exploited for personnel screening by allowing differentiation of smooth features, such as the body, and sharper features present in many concealed items. Additionally, imaging artifacts due to multipath can be identified and eliminated. Laboratory imaging results have been obtained in the 10-20 GHz frequency range and are presented in this paper.

  20. Circularly Polarized Antenna with Wide Projection and Range: A Concept

    NASA Technical Reports Server (NTRS)

    VanAtta, L. C.; Mailloux, R. J.

    1970-01-01

    The slotted antenna structure discussed in this tech brief radiates a circularly polarized beam pattern over a wide angle. The basic structure, composed of waveguide slots, can be flush mounted in an airplane or spacecraft, and could be used in the communication link between an airplane and an air traffic satellite.

  1. Circularly polarized antennas for active holographic imaging through barriers

    SciTech Connect

    McMakin, Douglas L; Severtsen, Ronald H; Lechelt, Wayne M; Prince, James M

    2011-07-26

    Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.

  2. Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology

    PubMed Central

    Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret

    2016-01-01

    Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date. PMID:26989782

  3. Anisotropic metasurface with near-unity circular polarization conversion

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoxiao; Meng, Yan; Wang, Li; Tian, Jingxuan; Dai, Shiwei; Wen, Weijia

    2016-05-01

    We demonstrate a bi-layer ultrathin anisotropic metasurface which could near-completely convert the circular-polarized electromagnetic wave to its cross polarization. The bi-layer metasurface is composed of periodic 180°-twisted double-cut split ring resonators on both sides of an F4B substrate. At resonance, cross-polarized transmission larger than 94% is observed both in simulations and experiments. The resonant frequency of the metasurface could be effectively tuned by adjusting the geometric parameters of the metasurface, while relatively high conversion efficiency is preserved. The high efficiency and ease of fabrication suggest that the ultrathin metasurface could have potential applications in telecommunications.

  4. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-01

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  5. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    SciTech Connect

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-21

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  6. Spectra of circularly polarized radiation from astrophysical OH masers

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1990-01-01

    A striking feature of astrophysical masers is the tendency for either one or the other of the circular polarizations to dominate in the radiation from the strong, widely observed masing transitions of OH at 18 cm. Spectral line profiles are calculated for polarized maser radiation due to the combined effects of a velocity gradient and, as is indicated for these transitions, a Zeeman splitting that is at least comparable with the thermal contributions to the breadths of the spectral lines. The resulting spectral features are similar in appearance, including the presence of large net circular polarization and narrow line breadths, to the commonly observed spectra of OH masers in molecular clouds. The calculations presented here are performed as a function of frequency without making the approximations of a large velocity gradient. Rapid cross relaxation, which has been advocated by others for the OH masers, is assumed.

  7. Polarization dependent switching of asymmetric nanorings with a circular field

    NASA Astrophysics Data System (ADS)

    Pradhan, Nihar R.; Tuominen, Mark T.; Aidala, Katherine E.

    2016-01-01

    We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs) with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  8. Reconfigurable Wideband Circularly Polarized Microstrip Patch Antenna for Wireless Applications

    NASA Astrophysics Data System (ADS)

    Khidre, Ahmed

    In this thesis, developments of rectangular microstrip patch antenna to have circular polarization agility with wideband performance, for wireless applications are presented. First, a new technique to achieve circularly polarized (CP) probe feed single-layer microstrip patch antenna with wideband characteristics is proposed. The antenna is a modified form of the popular E-shaped patch, used to broaden the impedance bandwidth of a basic rectangular patch antenna. This is established by letting the two parallel slots of the E-patch unequal. Thus, by introducing asymmetry two orthogonal currents on the patch are excited and circularly polarized fields are realized. The proposed technique exhibits the advantage of the simplicity inherent in the E-shaped patch design. It requires only slot lengths, widths, and position parameters to be determined. Also, it is suitable for later adding the reconfigurable capability. With the aid of full-wave simulator Ansoft HFSS, investigations on the effect of various dimensions of the antenna have been carried out via parametric analysis. Based on these investigations, a design procedure for a CP E-shaped patch is summarized. Various design examples with different substrate thicknesses and material types are presented and compared, with CP U-slot patch antennas, recently proposed in the literature. A prototype has been constructed following the suggested design procedure to cover the IEEE 802.11b/g WLAN band. The performance of the fabricated antenna was measured and compared with the simulation results for the reflection coefficient, axial ratio, radiation pattern, and antenna gain. Good agreement is achieved between simulation and measured results demonstrating a high gain and wideband performance. Second, a polarization reconfigurable single feed E-shaped patch antenna with wideband performance is proposed. The antenna is capable of switching from right-hand circular polarization (RHCP) to left-hand circular polarization (LHCP) and

  9. A novel x-ray circularly polarized ranging method

    NASA Astrophysics Data System (ADS)

    Song, Shi-Bin; Xu, Lu-Ping; Zhang, Hua; Gao, Na; Shen, Yang-He

    2015-05-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. Projects supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014 CXJJ-DH 12), the Xi’an Science and Technology Plan, China (Grant No. CXY1350(4)), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 201413B, 201412B, and JB141303), and the Open Fund of Key Laboratory of Precision Navigation and Timing Technology, National Time Service Center, Chinese

  10. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz. PMID:27563897

  11. Manipulating photoinduced voltage in metasurface with circularly polarized light.

    PubMed

    Bai, Qiang

    2015-02-23

    Recently, the concept of metasurface has provided one an unprecedented opportunity and ability to control the light in the deep subwavelength scale. However, so far most efforts are devoted to exploiting the novel scattering properties and applications of metasurface in optics. Here, I theoretically and numerically demonstrate that longitudinal and transverse photoinduced voltages can be simultaneously realized in the proposed metasurface utilizing the magnetic resonance under the normal incidence of circularly polarized light, which may extend the concept and functionality of metasurface into the electronics and may provide a potential scheme to realize a nanoscale tunable voltage source through a nanophotonic roadmap. The signs of longitudinal and transverse photoin-duced voltages can be manipulated by tuning the resonant frequency and the handedness of circularly polarized light, respectively. Analytical formulae of photoinduced voltage are presented based on the theory of symmetry of field. This work may bridge nanophotonics and electronics, expands the capability of metasurface and has many potential applications. PMID:25836566

  12. Numerical study of carbon nanotubes under circularly polarized irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Nakajima, Yudai; Wakabayashi, Katsunori

    2016-08-01

    We numerically study the energy band structures and the corresponding wavefunctions of carbon nanotubes under circularly polarized irradiation perpendicular to the tube axis on the basis of the Floquet–Bloch theory. We focus on two typical irradiation frequencies, ħΩ ≪ γ and ħΩ ∼ γ, where γ ≈ 3 eV is the hopping energy of graphene. Circularly polarized irradiation is found to open gaps for metallic zigzag nanotubes near the Fermi energy and shift the degenerate points of armchair nanotubes in the energy spectra away from the K and K‧ points. Furthermore, high-frequency irradiation localizes the wavefunctions on either side of the nanotubes; in particular, the localized wavefunctions have different valley indices on each side of the nanotubes.

  13. Laser-assisted bremsstrahlung for circular and linear polarization

    SciTech Connect

    Schnez, Stephan; Loetstedt, Erik; Jentschura, Ulrich D.; Keitel, Christoph H.

    2007-05-15

    We numerically evaluate the cross sections for spontaneous bremsstrahlung emission in a laser field for both circular and linear laser polarization, in a regime where the classical ponderomotive energies for the considered laser intensities are considerably larger than the rest mass of the electron. A fully relativistic quantum-electrodynamic approach using the Volkov solutions of an electron in an external field and Dirac-Volkov propagators for the intermediate electrons is applied. We compare circular to linear polarization and point out several interesting features of the laser-dressed cross sections. Regularizations in both electron and photon propagators are required. Specifically, imaginary mass and energy shifts of the electron must be implemented near resonances which correspond to Doppler-shifted harmonics of the laser frequency. We also introduce a screening to the Coulomb potential in order to avoid long-range Coulomb infinities at zero momentum transfer.

  14. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    SciTech Connect

    Kortright, J.B.; Rice, M.; Hussain, Z.

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  15. Circular polarization of light scattered by randomly built aggregates.

    NASA Astrophysics Data System (ADS)

    Guirado, D.; Moreno, F.; Hovenier, J. W.

    2007-06-01

    We present calculations of the scattering angle dependence of the degree of linear polarization of light singly scattered at 500 nm by randomly oriented randomly built aggregates of optically inactive homogenous identical spheres. Using the T-matrix method we analyzed the effect of changing the size of the monomers for two different geometries. The values of the computed degreee of circular polarization are comparable to the observed ones for light scattered by dust particles in comets P/Halley, C/1995 O1 (Hale-Bopp) and C/1999 S4 (LINEAR).

  16. Recollisions and Correlated Double Ionization with Circularly Polarized Light

    SciTech Connect

    Mauger, F.; Chandre, C.; Uzer, T.

    2010-08-20

    It is generally believed that the recollision mechanism of atomic nonsequential double ionization is suppressed in circularly polarized laser fields because the returning electron is unlikely to encounter the core. On the contrary, we find that recollision can and does significantly enhance double ionization, even to the extent of forming a ''knee,'' the signature of the nonsequential process. Using a classical model, we explain two apparently contradictory experiments, the absence of a knee for helium and its presence for magnesium.

  17. Tomographic Reconstruction of Circularly Polarized High Harmonic Fields: 3D Attosecond Metrology

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrick; Cohen, Oren; Plaja, Lius; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret

    Bright, circularly polarized, extreme ultraviolet (EUV) and soft X-ray high harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. In the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency and polarization. Here, we extend attosecond metrology techniques to circularly polarized light for the first time by simultaneously irradiating a copper surface with circularly polarized high harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date.

  18. Modulational instability of finite-amplitude, circularly polarized Alfven waves

    NASA Technical Reports Server (NTRS)

    Derby, N. F., Jr.

    1978-01-01

    The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.

  19. Series-fed circularly polarized microstrip antennas with broad bandwidth

    NASA Astrophysics Data System (ADS)

    Mao, Shau-Gang; Chen, Shiou-Li; Yeh, Jen-Chun; Lin, Tien-Min

    2007-08-01

    A new series-fed circularly polarized antenna (SFCPA) in microstrip configuration, which consists of a traveling-wave-type crank-line antenna (CLA) and a resonant-type square-ring slot antenna (SRSA), is developed. Unlike the conventional crank-line (CL) antenna array with an open end or a resistive load, the proposed SFCPA uses the SRSA at the termination of the CLA and thus exhibits not only a broad circularly polarized (CP) bandwidth but also a large antenna gain. The characteristics of the SFCPA, including the leaky-wave radiation and the circular polarization, are examined in terms of the dispersion diagram and the current distribution. The SFCPA with the two-cell CLA and the terminated SRSA is fabricated and measured to demonstrate the 10-dB return loss and 3-dB axial ratio (AR) bandwidths of 34.3% and 30.5%, respectively. The frequency-scanning radiation patterns with a 5-7 dBi antenna gain are also presented in the operating band.

  20. Generation of circularly polarized stereoscopic transparencies and prints

    NASA Astrophysics Data System (ADS)

    Walworth, Vivian K.; Slafer, W. Dennis

    2010-02-01

    We describe a new iteration of the StereoJet process, which has been simplified by changes in materials and improved by the conversion from linear to circular polarization. A prototype StereoJet process for producing full color stereoscopic images, described several years ago by Scarpetti et al., was developed at the Rowland Institute for Science, now part of Harvard University. The system was based on the inkjet application of inks comprising dichroic dyes to Polaroid Vectograph sheet, a concept explored earlier by Walworth and Chiulli at the Polaroid Research Laboratories. Vectograph sheet comprised two oppositely oriented layers of stretched polyvinyl alcohol (PVA) laminated to opposite surfaces of a cellulose triacetate support sheet. The two PVA layers were oriented at +45 and -45 degrees, respectively, with respect to the running edge of the support sheet. A left-eye and right-eye stereoscopic image pair were printed sequentially on the respective surfaces, and the resulting stereoscopic image viewed with conventional linearly polarized glasses having +45 and -45 degree orientation. StereoJet, Inc. has developed new, simplified technology based on the use of PVA substrate of the type used in sheet polarizer manufacture with orientation parallel to the running edge of the support. Left- and right-eye images are printed at 0 and 90 degrees, then laminated in register. Addition of a thin layer of 1/4-wave retarder to the front surface converts the image pair's respective orientations to right- and left-circular polarization. The full color stereoscopic images are viewed with circularly polarized glasses.

  1. Circular polarization terahertz iolarization of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Martin, Jillian P.

    The use of terahertz (THz) radiation for imaging human tissue and delineating tumor margins has become an appealing topic in the biomedical field because THz radiation is non-ionizing and has the demonstrated ability to differentiate between cancerous and normal tissue without the need for exogenous contrast agents. Previously, a reflective continuous-wave (CW) THz imaging system utilizing a linear polarization-sensitive detection technique was demonstrated and used to delineate tumor margins for nonmelanoma skin cancers [1, 2] and determine reflectivity differences between normal and cancerous colon tissue [3 - 5]. This detection technique involves illuminating ex vivo tissue samples with linearly polarized light and collecting the signal remitted by the sample after passing through an analyzing wire grid polarizer oriented with its transmission axis perpendicular to the linear polarization incident on the sample. By collecting the cross-polarization signal, the strong Fresnel surface reflections from the sample holder interfaces are eliminated and predominantly signal from within the tissue volume is obtained. The aim of the proposed research is to enhance this polarization-sensitive detection technique by incorporating circular polarization illumination and detection channels. This technique has been demonstrated at optical wavelengths [6], where the scattering of light within the tissue volume has been extensively studied; however, it has yet to be implemented using THz radiation. In addition, this detection technique has the potential to demonstrate increased contrast between cancerous and normal tissue, and experimental results may shed light on the mechanism behind the observed contrast.

  2. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.; Wang, Wenyi; Govorov, Alexander O.; Valentine, Jason

    2015-09-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform.

  3. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials.

    PubMed

    Li, Wei; Coppens, Zachary J; Besteiro, Lucas V; Wang, Wenyi; Govorov, Alexander O; Valentine, Jason

    2015-01-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform. PMID:26391292

  4. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

    PubMed Central

    Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.; Wang, Wenyi; Govorov, Alexander O.; Valentine, Jason

    2015-01-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform. PMID:26391292

  5. Efficient IR Transmission Diffraction Grating for Circularly Polarized Light

    NASA Technical Reports Server (NTRS)

    Cole, Helen; Chambers, Diana

    1999-01-01

    Numerical methods, using rigorous coupled wave theory, are used to design rectangular relief diffraction gratings for an infrared application which requires comparable first order efficiencies in the TE and TM polarization states. The depth, period, and fill factor of the grating are varied to identify optimal two level binary lamellar grating profiles which predict efficiencies for individual TM and TE polarizations above 75 percent, while keeping the difference between the two efficiencies within 10 percent. The application at hand is a rotating, transmissive diffractive scanner for space-based coherent lidar. The operating wavelength is 2.0 microns. A collimated, circularly polarized beam is incident on the diffractive scanner at the Bragg angle; 30 and 45 degree beam deflection angles being studied. Fused silica is the substrate material of choice. Selected designs are fabricated on 3 inch fused silica substrates using lithographic methods. The performance of the test pieces is measured and compared to theoretical predictions.

  6. Creating circularly polarized light with a phase-shifting mirror

    NASA Astrophysics Data System (ADS)

    Aurand, Bastian; Kuschel, Stephan; Rödel, Christian; Heyer, Martin; Wunderlich, Frank; Jäckel, Oliver; Kaluza, Malte C.; Paulus, Gerhard G.; Kühl, Thomas

    2011-08-01

    We report on the performance of a system employing a multi-layer coated mirror creating circularly polarized light in a fully reflective setup. With one specially designed mirror we are able to create laser pulses with an ellipticity of more than ɛ = 98% over the entire spectral bandwidth from initially linearly polarized Titanium:Sapphire femtosecond laser pulses. We tested the homogeneity of the polarization with beam sizes of the order of approximately 10 cm. The damage threshold was determined to be nearly 400 times higher than for a transmissive quartz-wave plate which suggests applications in high intensity laser experiments. Another advantage of the reflective scheme is the absence of nonlinear effects changing the spectrum or the pulse-form and the scalability of coating fabrication to large aperture mirrors.

  7. The circular polarization interferometer based surface plasmon biosensor

    NASA Astrophysics Data System (ADS)

    Jan, C.-M.; Lee, Y.-H.; Lee, C.-K.

    2010-02-01

    Circular polarization interferometry configuration was used to develop surface plasmon based instrument, which had two light beams with p- and s- polarization states individually within the common path. We used evanescent field to determine the concentration of the biological sample via varying incident angles enabled phase interrogation. The instrument named "OBMorph" includes a light source, an easy to use incident angle varying scheme based on a parabolic and a spherical mirrors, and prism coupled sample stages. To increase the metrology sensitivity, which depends on precisely control the angular resolution, a precision step-motor coupled with a parabolic mirror were used to control the incident angle accurately. By using fault tolerance algorithm, the imperfect adjustment of circular polarization interferometer was eliminated to obtain a perfect Lissajous curve needed for circular polarization interferometry. The instrument developed was shown to have resolution as high as 4.92×10-6 RIU. The effect that refractive index of ITO thin film changes with respect to externally applied voltage was also adopted by coating an ITO thin film onto biochips so as to shift the surface plasmon resonance angle for larger phase interrogation ranges. We successfully measured CRP and anti-CRP specific interaction in 0.75 μg/ml ~ 400 μg/ml ranges. In addition, the concentrations of tuberculosis inhibitor - DHFR and compound Mg2P4O7 that can interact with CYP450 were also quantified successfully. The OBMorph was shown to have potential applications in areas such as flat panel displays, optical coating, and drug delivery, to name a few.

  8. RHCP- DESIGNING RECTANGULAR RIGHT-HANDED CIRCULARLY POLARIZED MICROSTRIP ANTENNAS

    NASA Technical Reports Server (NTRS)

    Davidson, S. E.

    1994-01-01

    RHCP, the Right-Handed, Circularly Polarized Microstrip Antenna program, aids in the design of a rectangular antenna element, given the desired frequency of operation and substrate characteristics. RHCP begins the design calculations based on a square element with linear polarization. The effective dielectric constant and changes in electrical length due to fringing at the radiating element edges are taken into account. A coaxial feed is inset with 50 ohms input impedance. By placing the feed such that two orthonormal modes are produced in the antenna cavity, right- or left-handed circular polarization is obtained. Input to RHCP consists of desired frequency, dielectric constant, and substrate thickness. Output consists of the final rectangular geometry, the proposed feed inset placement, and actual input impedance. RHCP has been used successfully for frequencies between 2 and 15 GHz for thin substrates. This program was used to fabricate antenna elements for the S-band quad antennas on board the Space Shuttle, and is a part of the design project for the S-band phased array antenna radiating aperture. RHCP is written in FORTRAN 77 for interactive execution and has been implemented on a DEC VAX series computer operating under VMS. This program was developed in 1985.

  9. Broadband circular polarizers constructed using helix-like chiral metamaterials

    NASA Astrophysics Data System (ADS)

    Ji, Ruonan; Wang, Shao-Wei; Liu, Xingxing; Chen, Xiaoshuang; Lu, Wei

    2016-08-01

    In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical response. For only a four-layer helix-like metamaterial, the maximum extinction ratio can reach 19.7. The operation band is in the wavelength range of 4.69 μm to 8.98 μm with an average extinction ratio of 6.9. And the transmittance for selective polarization is above 0.8 in the entire operation band. Such a structure is a promising candidate for integratable and scalable broadband circular polarizers, especially it has great potential to act as a broadband circular micropolarizer in the field of the full-Stokes division of focal plane polarimeters.In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical

  10. A 20 GHz circularly polarized, fan beam slot array antenna

    NASA Astrophysics Data System (ADS)

    Weikle, D. C.

    1982-03-01

    An EHF waveguide slot array was developed for possible use as a receive-only paging antenna for ground mobile terminals. The design, fabrication, and measured performance of this antenna are presented. The antenna generates a circularly polarized fan beam that is narrow in azimuth and broad in elevation. When mechanically rotated in azimuth, it can receive a 20 GHz satellite transmission independent of mobile terminal direction. Azimuth plane sidelobe levels, which are typically <-40 dB from the main lobe, provide for discrimination against ground and airborne jammers.

  11. Circular polarization of sunlight reflected by Jupiter. [caused by aerosol scattering

    NASA Technical Reports Server (NTRS)

    Kawata, Y.; Hansen, J. E.

    1976-01-01

    Circular-polarization observations of Jupiter are described, and the circular polarization of other planets is discussed to the extent that it aids interpretation of the Jupiter data. The evidence strongly supports the interpretation that the circular polarization arises from scattering by aerosols in a gaseous atmosphere. Accurate calculations of the circular polarization are made for multiple scattering by an atmosphere with spherical aerosols, as a function of particle size and refractive index as well as the mixing ratio of aerosols and gas. The calculations for spheres and the few available circular-polarization observations of Jupiter permit only very limited constraints to be placed on the haze and cloud properties of the atmosphere of Jupiter. However, multispectral circular-polarization observations, combined with measurements of linear polarization and intensity, would permit detailed analysis of atmospheric aerosol properties.

  12. Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Kato, Ryo; Soda, Jiro

    2016-03-01

    We study the detectability of circular polarization in a stochastic gravitational wave background from various sources such as supermassive black hole binaries, cosmic strings, and inflation in the early universe with pulsar timing arrays. We calculate generalized overlap reduction functions for the circularly polarized stochastic gravitational wave background. We find that the circular polarization cannot be detected for an isotropic background. However, there is a chance to observe the circular polarization for an anisotropic gravitational wave background. We also show how to separate polarized gravitational waves from unpolarized gravitational waves.

  13. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres

    PubMed Central

    Zhang, Jia; Feng, Wenchun; Zhang, Huangxi; Wang, Zhenlong; Calcaterra, Heather A.; Yeom, Bongjun; Hu, Ping An; Kotov, Nicholas A.

    2016-01-01

    Nacre-like composites have been investigated typically in the form of coatings or free-standing sheets. They demonstrated remarkable mechanical properties and are used as ultrastrong materials but macroscale fibres with nacre-like organization can improve mechanical properties even further. The fiber form or nacre can, simplify manufacturing and offer new functional properties unknown yet for other forms of biomimetic materials. Here we demonstrate that nacre-like fibres can be produced by shear-induced self-assembly of nanoplatelets. The synergy between two structural motifs—nanoscale brick-and-mortar stacking of platelets and microscale twisting of the fibres—gives rise to high stretchability (>400%) and gravimetric toughness (640 J g−1). These unique mechanical properties originate from the multiscale deformation regime involving solid-state self-organization processes that lead to efficient energy dissipation. Incorporating luminescent CdTe nanowires into these fibres imparts the new property of mechanically tunable circularly polarized luminescence. The nacre-like fibres open a novel technological space for optomechanics of biomimetic composites, while their continuous spinning methodology makes scalable production realistic. PMID:26907888

  14. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Feng, Wenchun; Zhang, Huangxi; Wang, Zhenlong; Calcaterra, Heather A.; Yeom, Bongjun; Hu, Ping An; Kotov, Nicholas A.

    2016-02-01

    Nacre-like composites have been investigated typically in the form of coatings or free-standing sheets. They demonstrated remarkable mechanical properties and are used as ultrastrong materials but macroscale fibres with nacre-like organization can improve mechanical properties even further. The fiber form or nacre can, simplify manufacturing and offer new functional properties unknown yet for other forms of biomimetic materials. Here we demonstrate that nacre-like fibres can be produced by shear-induced self-assembly of nanoplatelets. The synergy between two structural motifs--nanoscale brick-and-mortar stacking of platelets and microscale twisting of the fibres--gives rise to high stretchability (>400%) and gravimetric toughness (640 J g-1). These unique mechanical properties originate from the multiscale deformation regime involving solid-state self-organization processes that lead to efficient energy dissipation. Incorporating luminescent CdTe nanowires into these fibres imparts the new property of mechanically tunable circularly polarized luminescence. The nacre-like fibres open a novel technological space for optomechanics of biomimetic composites, while their continuous spinning methodology makes scalable production realistic.

  15. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres.

    PubMed

    Zhang, Jia; Feng, Wenchun; Zhang, Huangxi; Wang, Zhenlong; Calcaterra, Heather A; Yeom, Bongjun; Hu, Ping An; Kotov, Nicholas A

    2016-01-01

    Nacre-like composites have been investigated typically in the form of coatings or free-standing sheets. They demonstrated remarkable mechanical properties and are used as ultrastrong materials but macroscale fibres with nacre-like organization can improve mechanical properties even further. The fiber form or nacre can, simplify manufacturing and offer new functional properties unknown yet for other forms of biomimetic materials. Here we demonstrate that nacre-like fibres can be produced by shear-induced self-assembly of nanoplatelets. The synergy between two structural motifs--nanoscale brick-and-mortar stacking of platelets and microscale twisting of the fibres--gives rise to high stretchability (>400%) and gravimetric toughness (640 J g(-1)). These unique mechanical properties originate from the multiscale deformation regime involving solid-state self-organization processes that lead to efficient energy dissipation. Incorporating luminescent CdTe nanowires into these fibres imparts the new property of mechanically tunable circularly polarized luminescence. The nacre-like fibres open a novel technological space for optomechanics of biomimetic composites, while their continuous spinning methodology makes scalable production realistic. PMID:26907888

  16. Broadband circular polarizers constructed using helix-like chiral metamaterials.

    PubMed

    Ji, Ruonan; Wang, Shao-Wei; Liu, Xingxing; Chen, Xiaoshuang; Lu, Wei

    2016-08-01

    In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical response. For only a four-layer helix-like metamaterial, the maximum extinction ratio can reach 19.7. The operation band is in the wavelength range of 4.69 μm to 8.98 μm with an average extinction ratio of 6.9. And the transmittance for selective polarization is above 0.8 in the entire operation band. Such a structure is a promising candidate for integratable and scalable broadband circular polarizers, especially it has great potential to act as a broadband circular micropolarizer in the field of the full-Stokes division of focal plane polarimeters. PMID:27352818

  17. Astronomical sources of circularly polarized light and the origin of homochirality.

    PubMed

    Bailey, J

    2001-01-01

    Possible astronomical sources of ultraviolet circularly polarized light (UVCPL) which might be responsible for enantiomeric selection in interstellar organic molecules are considered, Synchrotron radiation from magnetic neutron stars has been suggested as a possible source of UVCPL. However, synchrotron radiation in these situations is not predicted to be strongly circularly polarized. Very few such sources show optical synchrotron radiation and in the few that do circular polarization has not been observed. Magnetic white dwarfs and white dwarf binaries (Polars) can be highly circularly polarized but any effect on molecular clouds and star formation regions must rely on rare chance encounters. Recent observations show that substantial levels of circular polarization are present in reflection nebulae in star formation regions. This mechanism produces polarized light exactly when and where it is needed in regions where star formation is occurring and organic molecules are known to be present. PMID:11296520

  18. Circularly polarized electroluminescence of light-emitting InGaAs/GaAs (III, Mn)V diodes on the basis of structures with a tunneling barrier

    SciTech Connect

    Malysheva, E. I. Dorokhin, M. V.; Ved’, M. V.; Kudrin, A. V.; Zdoroveishchev, A. V.

    2015-11-15

    The comparative investigation of circularly polarized electroluminescence in Zener diodes based on InGaAs/n-GaAs/n{sup +}-GaAs/GaMnAs and InGaAs/n-GaAs/n{sup +}-GaAs/GaMnSb is carried out. It is established that the circularly polarized electroluminescence is associated with the spin injection of electrons from a ferromagnetic semiconductor layer. The luminescence parameters are determined by the properties of these layers. It is shown that the ferromagnetic properties of the GaMnSb layer allow us to obtain circularly polarized emission at room temperature from InGaAs/n-GaAs/n{sup +}-GaAs/GaMnSb heterostructures.

  19. Non-collinear generation of angularly isolated circularly polarized high harmonics

    NASA Astrophysics Data System (ADS)

    Hickstein, Daniel D.; Dollar, Franklin J.; Grychtol, Patrik; Ellis, Jennifer L.; Knut, Ronny; Hernández-García, Carlos; Zusin, Dmitriy; Gentry, Christian; Shaw, Justin M.; Fan, Tingting; Dorney, Kevin M.; Becker, Andreas; Jaroń-Becker, Agnieszka; Kapteyn, Henry C.; Murnane, Margaret M.; Durfee, Charles G.

    2015-11-01

    We generate angularly isolated beams of circularly polarized extreme ultraviolet light through the first implementation of non-collinear high harmonic generation with circularly polarized driving lasers. This non-collinear technique offers numerous advantages over previous methods, including the generation of higher photon energies, the separation of the harmonics from the pump beam, the production of both left and right circularly polarized harmonics at the same wavelength and the capability of separating the harmonics without using a spectrometer. To confirm the circular polarization of the beams and to demonstrate the practicality of this new light source, we measure the magnetic circular dichroism of a 20 nm iron film. Furthermore, we explain the mechanisms of non-collinear high harmonic generation using analytical descriptions in both the photon and wave models. Advanced numerical simulations indicate that this non-collinear mixing enables the generation of isolated attosecond pulses with circular polarization.

  20. Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-06-26

    It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by √[ω(p)(2)+ω(c)(2)/4]+ω(c)/2, where ω(p) is the plasma frequency and ω(c) is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ω(p)(2)/ω(c). The B field provides a tunability in the radiation frequency, spectrum width, and field strength. PMID:26197126

  1. Non-Zeeman circular polarization of molecular maser spectral lines

    SciTech Connect

    Houde, Martin

    2014-11-01

    We apply the anisotropic resonant scattering model developed to explain the presence of non-Zeeman circular polarization signals recently detected in the {sup 12}CO (J = 2 → 1) and (J = 1 → 0) transitions in molecular clouds to Stokes V spectra of SiO v = 1 and v = 2, (J = 1 → 0) masers commonly observed in evolved stars. It is found that the observed antisymmetric 'S'- and symmetric '∪'- or '∩'-shaped spectral profiles naturally arise when the maser radiation scatters off populations of foreground molecules located outside the velocity range covered by the background maser radiation. Using typical values for the relevant physical parameters, it is estimated that magnetic field strengths on the order of a few times 15 mG are sufficient to explain the observational results found in the literature.

  2. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Crne, Matija; Park, Jung Ok; Srinivasarao, Mohan

    2009-07-01

    The iridescent metallic green beetle, Chrysina gloriosa, which selectively reflects left circularly polarized light, possesses an exoskeleton decorated by hexagonal cells (~10 μm) that coexist with pentagons and heptagons. The fraction of hexagons decreases with an increase in curvature. In bright field microscopy, each cell contains a bright yellow core, placed in a greenish cell with yellowish border, but the core disappears in dark field. With use of confocal microscopy, we observe that these cells consist of nearly concentric nested arcs that lie on the surface of a shallow cone. We infer that the patterns are structurally and optically analogous to the focal conic domains formed spontaneously on the free surface of a cholesteric liquid crystal. These textures provide the basis for the morphogenesis as well as key insights for emulating the intricate optical response of the exoskeleton of scarab beetles.

  3. Structural origin of circularly polarized iridescence in jeweled beetles

    NASA Astrophysics Data System (ADS)

    Crne, Matija; Sharma, Vivek; Park, Jung O.; Srinivasarao, Mohan

    2010-03-01

    The iridescent metallic green beetle, Chrysina gloriosa, selectively reflects left circularly polarized light. The exoskeleton is decorated by hexagonal cells (˜10 micron) that coexist with pentagons and heptagons. We find that the fraction of hexagons decreases with an increase in curvature. In bright field microscopy, each cell contains a bright yellow core, placed in a greenish cell with yellowish border, but the core disappears in the dark field. Using confocal microscopy, we observe that these cells consist of nearly concentric, nested arcs that lie on surface of a shallow cone. We infer that the patterns are structurally and optically analogous to the focal conic domains formed spontaneously on the free surface of a cholesteric liquid crystal. The microstructure provides the bases for the morphogenesis as well as key insights for emulating the intricate optical response the exoskeleton of scarab beetles.

  4. Annular billiard dynamics in a circularly polarized strong laser field

    NASA Astrophysics Data System (ADS)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2012-01-01

    We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.

  5. Large-amplitude circularly polarized electromagnetic waves in magnetized plasma

    SciTech Connect

    Vasko, I. Y. Artemyev, A. V.; Zelenyi, L. M.

    2014-05-15

    We consider large-amplitude circularly polarized (LACP) waves propagating in a magnetized plasma. It is well-known that the dispersion relation for such waves coincides with the dispersion relation given by the linear theory. We develop the model of LACP wave containing a finite population of Cerenkov resonant particles. We find that the current of resonant particles modifies the linear dispersion relation. Dispersion curves of low-frequency (i.e., whistler and magnetosonic) waves are shifted toward larger values of the wave vector, i.e., waves with arbitrarily large wavelengths do not exist in this case. Dispersion curves of high-frequency waves are modified so that the wave phase velocity becomes smaller than the speed of light.

  6. Uniplanar circularly polarized slot-ring antenna architectures

    NASA Astrophysics Data System (ADS)

    Fries, Matthias K.; Vahldieck, Rüdiger

    2002-04-01

    This paper presents a novel printed uniplanar antenna architecture for circular polarization. The structure consists of a single-fed slot-ring antenna with asymmetrically placed perturbations. The influence of different kinds of perturbations and substrates on the size of the antenna, its impedance bandwidth, and its axial ratio bandwidth is investigated. Various feed circuits based on coplanar waveguides (CPWs), coaxial line, and microstrip are investigated as well. Low-cost applications such as tagging antennas at 2.45 GHz are tested in combination with a coaxial line and CPW feed circuit. It was found that antennas achieving an impedance bandwidth over 60% and an axial ratio bandwidth up to 15% can be realized without the need of airbridges and rf-substrates.

  7. NEAR-INFRARED CIRCULAR POLARIZATION IMAGES OF NGC 6334-V

    SciTech Connect

    Kwon, Jungmi; Tamura, Motohide; Hashimoto, Jun; Kusakabe, Nobuhiko; Kandori, Ryo; Lucas, Phil W.; Hough, James H.; Nakajima, Yasushi; Nagayama, Takahiro; Nagata, Tetsuya

    2013-03-01

    We present results from deep imaging linear and circular polarimetry of the massive star-forming region NGC 6334-V. These observations show high degrees of circular polarization (CP), as much as 22% in the K{sub s} band, in the infrared nebula associated with the outflow. The CP has an asymmetric positive/negative pattern and is very extended ({approx}80'' or 0.65 pc). Both the high CP and its extended size are larger than those seen in the Orion CP region. Three-dimensional Monte Carlo light-scattering models are used to show that the high CP may be produced by scattering from the infrared nebula followed by dichroic extinction by an optically thick foreground cloud containing aligned dust grains. Our results show not only the magnetic field orientation of around young stellar objects, but also the structure of circumstellar matter such as outflow regions and their parent molecular cloud along the line of sight. The detection of the large and extended CP in this source and the Orion nebula may imply the CP origin of the biological homochirality on Earth.

  8. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE PAGESBeta

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; Kemme, S. A.; Dereniak, E. L.

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  9. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    SciTech Connect

    van der Laan, J. D.; Scrymgeour, D. A.; Kemme, S. A.; Dereniak, E. L.

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.

  10. Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation

    SciTech Connect

    Li, Jiaming; Wang, Jiajian; Tang, Peng; Liu, Wei; Huang, Tao; Wang, Yanqi; Lin, Feng; Fang, Zheyu; Zhu, Xing

    2015-04-20

    Analyzing the polarization of a circularly polarized light is a critical issue. We have fabricated a spiral nano-structure on the Au film by using focused ion beam etching technique. The fabricated structure can be used as a plasmonic circular polarization analyzer. By designing the relative orientation of two nano-apertures in the spiral structural unit, the propagation direction of the surface plasmon polaritons excited by circularly polarized light of opposite handedness can be controlled. Therefore, the spiral structure could be used to accurately determine the helicity of the excited circularly polarized light. Based on the results of scanning near-field optical microscopy, the obtained circular polarization extinction ratio of this structure was above 500. This structure can be used for a flexible detecting size and a very wide spectrum.

  11. Circular polarization of the CMB: Foregrounds and detection prospects

    NASA Astrophysics Data System (ADS)

    King, Soma; Lubin, Philip

    2016-07-01

    The cosmic microwave background (CMB) is one of the finest probes of cosmology. Its all-sky temperature and linear polarization fluctuations have been measured precisely at a level of δ T /TCMB˜10-6 . In contrast, circular polarization (C P ) of the CMB has not been precisely explored. The current upper limit on the C P of the CMB is at a level of δ V /TCMB˜10-4 and is limited on large scales. Some of the cosmologically important sources which can induce a C P in the CMB include early Universe symmetry breaking, a primordial magnetic field, galaxy clusters, and Pop III stars (also known as the first stars). Among these sources, Pop III stars are expected to induce the strongest signal with levels strongly dependent on the frequency of observation and on the number, Np, of the Pop III stars per halo. Optimistically, a C P signal in the CMB resulting from the Pop III stars could be at a level of δ V /TCMB˜2 ×10-7 in scales of 1° at 10 GHz, which is much smaller than the currently existing upper limits on the C P measurements. Primary foregrounds in the cosmological C P detection will come from the galactic synchrotron emission, which is naturally (intrinsically) circularly polarized. We use data-driven models of the galactic magnetic field, thermal electron density, and relativistic electron density to simulate all-sky maps of the galactic C P . This work also points out that the galactic C P levels are important below 50 GHz and is an important factor for telescopes aiming to detect primordial B modes using C P as a systematic rejection channel. In this paper, we focus on a SNR evaluation for the detectability of the Pop III induced C P signal in the CMB. We find that a SNR higher than unity is achievable, for example, with a 10 m telescope and an observation time of 20 months at 10 GHz, if Np≥100 . We also find that, if frequency of observation and resolution of the beam is appropriately chosen, a SNR higher than unity is possible with Np≥10 and

  12. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    SciTech Connect

    Pérez, A. M.; Boria, V. E.

    2014-08-15

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE{sub 11} circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also been explored.

  13. A High-gain Circularly Polarized Ka-band Microstrip Reflectarray

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1996-01-01

    A half-meter, 32 GHz, circularly polarized microstrip reflectarray antenna has been developed. Excellent efficiency, good bandwidth, and low average sideglobe and cross-pol levels are achieved. It is believed that this is electrically the largest microstrip reflectarray (6924 elements) that has ever been developed, and it is the first time that circular polarization has been demonstrated using microstrip elements.

  14. Generation of circularly polarized attosecond pulses by intense ultrashort laser pulses from extended asymmetric molecular ions

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2011-08-01

    We present a method for generation of single circularly polarized attosecond pulses in extended asymmetric HHe2+ molecular ions. By employing an intense ultrashort circularly polarized laser pulse with intensity 4.0×1014 W/cm2, wavelength 400 nm, and duration 10 optical cycles, molecular high-order-harmonic generation (MHOHG) spectra with multiple plateaus exhibit characters of circular polarization. Using a classical laser-induced collision model, double collisions of continuum electrons first with neighboring ions and then second with parent ions are presented at a particular internuclear distance and confirmed from numerical solutions of a time-dependent Schrödinger equation. We analyze the MHOHG spectra with a Gabor time window and find that, due to the asymmetry of HHe2+, a single collision trajectory of continuum electrons with ions can produce circularly polarized harmonics, leading to single circularly polarized attosecond pulses for specific internuclear distances.

  15. Generation of circularly polarized attosecond pulses by intense ultrashort laser pulses from extended asymmetric molecular ions

    SciTech Connect

    Yuan, Kai-Jun; Bandrauk, Andre D.

    2011-08-15

    We present a method for generation of single circularly polarized attosecond pulses in extended asymmetric HHe{sup 2+} molecular ions. By employing an intense ultrashort circularly polarized laser pulse with intensity 4.0x10{sup 14} W/cm{sup 2}, wavelength 400 nm, and duration 10 optical cycles, molecular high-order-harmonic generation (MHOHG) spectra with multiple plateaus exhibit characters of circular polarization. Using a classical laser-induced collision model, double collisions of continuum electrons first with neighboring ions and then second with parent ions are presented at a particular internuclear distance and confirmed from numerical solutions of a time-dependent Schroedinger equation. We analyze the MHOHG spectra with a Gabor time window and find that, due to the asymmetry of HHe{sup 2+}, a single collision trajectory of continuum electrons with ions can produce circularly polarized harmonics, leading to single circularly polarized attosecond pulses for specific internuclear distances.

  16. Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-04-01

    We describe the generation of high-order elliptically and circularly polarized harmonic spectra in an aligned H+2 molecule ion by a combination of two-colour ultrashort intense laser fields from numerical solutions of the corresponding time-dependent Schrödinger equation (TDSE). In intense bichromatic circularly and linearly or circularly polarized laser pulses with intensity I0 and angular frequencies ω0 and 2ω0, it is found that maximum molecular high-order harmonic generation (MHOHG) energies are functions of the molecular internuclear distance. Based on a classical model of laser-induced electron collisions with neighbouring ions, the optimal values of the pulse relative carrier envelope phase phi, the molecular internuclear distance R and the angle thetav of molecular alignment to the laser polarization axis are obtained for efficiently producing MHOHG spectra with the maximum harmonic energy Ip + 13.5Up, where Ip is the ionization potential of the molecule and Up = I0/4meω20 is the ponderomotive energy of the continuum electron at intensity I0 and frequency ω0 of the laser pulse. The results have been confirmed from corresponding TDSE nonperturbative numerical simulations. The polarization property of the generated harmonics is also presented. The mechanism of MHOHG is further characterized with a Gabor time frequency analysis. It is confirmed that a single collision trajectory of the continuum electron with neighbouring ions dominates in the MHOHG processes. The high efficiency of the proposed MHOHG scheme provides a possible source for production of elliptically and/or circularly polarized attosecond extreme ultraviolet pulses. Circularly polarized attosecond pulses can also be generated by using intense ultrashort circularly polarized laser pulses in combination with static electric fields of comparable intensity for H+2 at equilibrium. A time frequency analysis also confirms the role of single recollisions as the dominant mechanism of the generation

  17. Design of a CPW-feed circularly polarized slot antenna with triangle embedded in half circular disc for UWB applications

    NASA Astrophysics Data System (ADS)

    Krishna, Ram; Kumar, Raj

    2013-01-01

    A compact (40 mm x 35 mm) coplanar waveguide (CPW) fed slot antenna for circular polarization is presented in this paper. The antenna is designed and fabricated for applications in the ultra-wideband domain of wireless communications where circular polarization is also required. The axial ratio (AR) bandwidth of the proposed antenna is 35.46% (5.8 GHz- 8.3 GHz), while the experimental impedance bandwidth is from 2.8 GHz - 8.6 GHz. The experimental results are very close to the simulated results. The antenna displays a stable radiation pattern and a moderately high gain of around 5 - 6 dB in the useful band.

  18. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths.

    PubMed

    van der Laan, J D; Scrymgeour, D A; Kemme, S A; Dereniak, E L

    2015-03-20

    We find for infrared wavelengths that there are broad ranges of particle sizes and refractive indices that represent fog and rain, where circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that, for specific scene parameters, circular polarization outperforms linear polarization in maintaining the illuminating polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Initially, researchers employed polarization-discriminating schemes, often using linearly polarized active illumination, to further distinguish target signals from the background noise. More recently, researchers have investigated circular polarization as a means to separate signal from noise even more. Specifically, we quantify both linearly and circularly polarized active illumination and show here that circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave and long-wave infrared, and large particle sizes of Sahara dust around the 4 μm wavelength. Conversely, we quantify where linear polarization persists better than circular polarization for some limited particle sizes of radiation fog in the long-wave infrared, small particle sizes of Sahara dust for wavelengths of 9-10.5 μm, and large particle sizes of Sahara dust through the 8-11 μm wavelength range in the long-wave infrared. PMID:25968509

  19. Electron energy spectrum in circularly polarized laser irradiated overdense plasma

    SciTech Connect

    Liu, C. S.; Tripathi, V. K.; Shao, Xi; Kumar, Pawan

    2014-10-15

    A circularly polarized laser normally impinged on an overdense plasma thin foil target is shown to accelerate the electrons in the skin layer towards the rear, converting the quiver energy into streaming energy exactly if one ignores the space charge field. The energy distribution of electrons is close to Maxwellian with an upper cutoff ε{sub max}=mc{sup 2}[(1+a{sub 0}{sup 2}){sup 1/2}−1], where a{sub 0}{sup 2}=(1+(2ω{sup 2}/ω{sub p}{sup 2})|a{sub in}|{sup 2}){sup 2}−1, |a{sub in}| is the normalized amplitude of the incident laser of frequency ω, and ω{sub p} is the plasma frequency. The energetic electrons create an electrostatic sheath at the rear and cause target normal sheath acceleration of protons. The energy gain by the accelerated ions is of the order of ε{sub max}.

  20. Spinning gold nanoparticles driven by circularly polarized light

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Chen, Ying-Syuan; Kuo, Mao-Kuen

    2016-05-01

    This study theoretically examines a spinning gold nanoparticle (GNP) driven by circularly polarized (CP) plane waves. The wavelength-dependent optical torques which were exerted on three different shapes of GNPs (spherical, prolate and oblate spheroids) were analyzed by utilizing Mie theory for the former and the multiple multipole method for the latter two, respectively. Numerical results show that both the absorbed and scattered photons contribute to optical torques in most cases. For the case that the CP wave is incident along the long axis of an oblate spheroid or the short axis of a prolate one, the scattering effect in optical torque is more pronounced than the absorption one. This phenomenon is significant especially when the wavelength of the CP wave is close to the longitudinal surface plasmon resonance band of the GNP. In contrast, when the CP wave is incident along the axes of revolution of these shapes of GNPs, the ratio of optical torque to absorption power is directly proportional to the wavelength. Moreover, this ratio is independent of the size and even the aspect ratio of GNPs. This result suggests that only the absorbed photons contribute to optical torques, but not the scattered ones, due to the conservation of angular momentum for cases of rotational symmetry.

  1. Palm Tree Detection Using Circular Autocorrelation of Polar Shape Matrix

    NASA Astrophysics Data System (ADS)

    Manandhar, A.; Hoegner, L.; Stilla, U.

    2016-06-01

    Palm trees play an important role as they are widely used in a variety of products including oil and bio-fuel. Increasing demand and growing cultivation have created a necessity in planned farming and the monitoring different aspects like inventory keeping, health, size etc. The large cultivation regions of palm trees motivate the use of remote sensing to produce such data. This study proposes an object detection methodology on the aerial images, using shape feature for detecting and counting palm trees, which can support an inventory. The study uses circular autocorrelation of the polar shape matrix representation of an image, as the shape feature, and the linear support vector machine to standardize and reduce dimensions of the feature. Finally, the study uses local maximum detection algorithm on the spatial distribution of standardized feature to detect palm trees. The method was applied to 8 images chosen from different tough scenarios and it performed on average with an accuracy of 84% and 76.1%, despite being subjected to different challenging conditions in the chosen test images.

  2. Single Circularly Polarized Attosecond Pulse Generation by Intense Few Cycle Elliptically Polarized Laser Pulses and Terahertz Fields from Molecular Media

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2013-01-01

    We present a method for producing a single circularly polarized attosecond pulse by an intense few cycle elliptically polarized laser pulse combined with a terahertz field from numerical solutions of the time-dependent Schrödinger equation for the molecular ion H2+. It is found that in the presence of a 62.5 THz (λ=4800nm) field at an intensity of ˜1014W/cm2, a single circularly polarized 114 as pulse can be generated by an elliptical polarized laser pulse at a wavelength of 400 nm with an ellipticity of ɛ=0.59. The efficiency of circular polarization attosecond pulse generation is interpreted based on a classical model of single electron recollision with the parent ion.

  3. Lunar Crater Interiors with High Circular Polarization Signatures

    NASA Astrophysics Data System (ADS)

    Weitz, C. M.; Campbell, B. A.; Morgan, G.

    2015-12-01

    We analyzed 12.6-cm Earth-based radar images of the Moon to search for older craters (pre-Copernican) that display high values of the circular polarization ratio (CPR) on their interior walls. These craters have highly eroded rims and ejecta, indicating that there must be a source exposed within the crater interior that is continuously creating a rougher surface. Of particular interest are craters between 10-25 km in diameter that occur in smooth plains in the highlands, where competent layers are not expected as they are for the mare. After identifying these high-CPR interiors in pre-Copernican craters, we studied LROC NAC and Kaguya TC images to search for possible albedo and layering on crater interior walls that might signal the presence of anomalous material. Our results indicate that high-CPR craters generally have boulder fields clustered around their upper interior walls. We divide the high-CPR craters into three types: (1) craters on the layered mare lava flows; (2) craters in the highlands that correlate to mapped locations of smooth plains; and (3) craters on the highlands that are not associated with smooth plains. Most of the high-CPR craters in the highlands are associated with Eratosthenian-period craters, and most of these are also on smooth plains, indicating that impact melt sheets are a likely source for the boulders exposed on their interior walls. Statistical analyses will be performed after incorporating multiple lunar datasets into GIS to quantify these preliminary interpretations. Figure 1. Example of high-CPR crater Zagut A located on smooth plains in the highlands. LROC images showing boulders on (a) northern crater interior wall and (b) southern crater interior wall. (c) Stronlgy enhanced values of CPR are observed for the interior of Zagut A.

  4. Circularly polarized laser emission induced in isotropic and achiral dye systems.

    PubMed

    Cerdán, Luis; García-Moreno, Sara; Costela, Angel; García-Moreno, Inmaculada; de la Moya, Santiago

    2016-01-01

    The production of efficient, tunable, and switchable circularly polarized laser emission would have far reaching implications in optical communications or biophotonics. In this work, it is demonstrated the direct generation of circularly polarized (CP) laser emission in achiral and isotropic dye laser systems without the use of extracavity polarizing elements, and without resorting to chiral dyes, chiral liquid crystal matrices, or interferometric methods. The origin of this ellipticity arises from the dynamic birefringence induced by the strong and polarized laser pumping and the subsequent orientation anisotropy of the excited molecular dipoles. A complete polarimetric characterization of the polarization state of conventional dye laser oscillators as a function of different experimental parameters is performed and it is shown that the generated light always possesses a certain level of circularity that changes in a distinctive way with pump energy and polarization. These results demonstrate that it is possible to generate and modulate CP laser light from efficient and photostable conventional laser dyes. PMID:27350073

  5. Circularly polarized laser emission induced in isotropic and achiral dye systems

    NASA Astrophysics Data System (ADS)

    Cerdán, Luis; García-Moreno, Sara; Costela, Angel; García-Moreno, Inmaculada; de La Moya, Santiago

    2016-06-01

    The production of efficient, tunable, and switchable circularly polarized laser emission would have far reaching implications in optical communications or biophotonics. In this work, it is demonstrated the direct generation of circularly polarized (CP) laser emission in achiral and isotropic dye laser systems without the use of extracavity polarizing elements, and without resorting to chiral dyes, chiral liquid crystal matrices, or interferometric methods. The origin of this ellipticity arises from the dynamic birefringence induced by the strong and polarized laser pumping and the subsequent orientation anisotropy of the excited molecular dipoles. A complete polarimetric characterization of the polarization state of conventional dye laser oscillators as a function of different experimental parameters is performed and it is shown that the generated light always possesses a certain level of circularity that changes in a distinctive way with pump energy and polarization. These results demonstrate that it is possible to generate and modulate CP laser light from efficient and photostable conventional laser dyes.

  6. Circularly polarized laser emission induced in isotropic and achiral dye systems

    PubMed Central

    Cerdán, Luis; García-Moreno, Sara; Costela, Angel; García-Moreno, Inmaculada; de la Moya, Santiago

    2016-01-01

    The production of efficient, tunable, and switchable circularly polarized laser emission would have far reaching implications in optical communications or biophotonics. In this work, it is demonstrated the direct generation of circularly polarized (CP) laser emission in achiral and isotropic dye laser systems without the use of extracavity polarizing elements, and without resorting to chiral dyes, chiral liquid crystal matrices, or interferometric methods. The origin of this ellipticity arises from the dynamic birefringence induced by the strong and polarized laser pumping and the subsequent orientation anisotropy of the excited molecular dipoles. A complete polarimetric characterization of the polarization state of conventional dye laser oscillators as a function of different experimental parameters is performed and it is shown that the generated light always possesses a certain level of circularity that changes in a distinctive way with pump energy and polarization. These results demonstrate that it is possible to generate and modulate CP laser light from efficient and photostable conventional laser dyes. PMID:27350073

  7. Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization

    NASA Technical Reports Server (NTRS)

    Greem. David; DuToit, Cornelis

    2013-01-01

    The goal of this work was to improve off-axis cross-polarization performance and ease of assembly of a circularly polarized microwave antenna element. To ease assembly, the initial design requirement of Hexweb support for the internal circuit part, as well as the radiating disks, was eliminated. There is a need for different plating techniques to improve soldering. It was also desirable to change the design to eliminate soldering as well as the need to use the Hexweb support. Thus, a technique was developed to build the feed without using solder, solving the lathing and soldering issue. Internal parts were strengthened by adding curvature to eliminate Hexweb support, and in the process, the new geometries of the internal parts opened the way for improving the off-axis cross-polarization performance as well. The radiating disks curvatures were increased for increased strength, but it was found that this also improved crosspolarization. Optimization of the curvatures leads to very low off-axis cross-polarization. The feed circuit was curved into a cylinder for improved strength, eliminating Hexweb support. An aperture coupling feed mechanism eliminated the need for feed pins to the disks, which would have required soldering. The aperture coupling technique also improves cross-polarization performance by effectively exciting the radiating disks very close to the antenna s central axis of symmetry. Because of the shape of the parts, it allowed for an all-aluminum design bolted together and assembled with no solder needed. The advantage of a solderless design is that the reliability is higher, with no single-point failure (solder), and no need for special plating techniques in order to solder the unit together. The shapes (curved or round) make for a more robust build without extra support materials, as well as improved offaxis cross-polarization.

  8. Schemes for generation of isolated attosecond pulses of pure circular polarization

    NASA Astrophysics Data System (ADS)

    Hernández-García, C.; Durfee, C. G.; Hickstein, D. D.; Popmintchev, T.; Meier, A.; Murnane, M. M.; Kapteyn, H. C.; Sola, I. J.; Jaron-Becker, A.; Becker, A.

    2016-04-01

    We propose and analyze two schemes capable of generating isolated attosecond pulses of pure circular polarization, based on results of numerical simulations. Both schemes utilize the generation of circularly polarized high-order-harmonics by crossing two circularly polarized counter-rotating pulses in a noncollinear geometry. Our results show that in this setup isolation of a single attosecond pulse can be achieved either by restricting the driver pulse duration to a few cycles or by temporally delaying the two crossed driver pulses. We further propose to compensate the temporal walk-off between the pulses across the focal spot and increasing the conversion efficiency by using angular spatial chirp to provide perfectly matched pulse fronts. The isolation of pure circularly polarized attosecond pulses, along with the opportunity to select their central energy and helicity in the noncollinear technique, opens new perspectives from which to study ultrafast dynamics in chiral systems and magnetic materials.

  9. Applications of circularly polarized radiation using synchrotron and other ordinary sources

    SciTech Connect

    Allen, F.; Bustamante, C.

    1985-01-01

    This volume has resulted from a meeting of people interested in all aspects of polarized radiation. A broad range of scientific disciplines was represented, including methods and applications of synchotron radiation, CIDS calculations on quartz at hard x-ray wavelengths, simulated synchotron radiation, measuring the Mueller matrix by a multimodulator scattering instrument, circular intensity differential scattering measurements of planar and focal conic orientations of cholesteric liquid crystals, high speed photoelastic modulation, and vibrational optical activity. The main emphasis was circular polarization.

  10. Circular dichroism measurements at an x-ray free-electron laser with polarization control.

    PubMed

    Hartmann, G; Lindahl, A O; Knie, A; Hartmann, N; Lutman, A A; MacArthur, J P; Shevchuk, I; Buck, J; Galler, A; Glownia, J M; Helml, W; Huang, Z; Kabachnik, N M; Kazansky, A K; Liu, J; Marinelli, A; Mazza, T; Nuhn, H-D; Walter, P; Viefhaus, J; Meyer, M; Moeller, S; Coffee, R N; Ilchen, M

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source. PMID:27587106

  11. All-dielectric circular polarizer with nearly unit transmission efficiency based on cascaded tensor Huygens surface.

    PubMed

    Jiang, Huan; Zhao, Wenyu; Jiang, Yongyuan

    2016-08-01

    In this paper, we demonstrate a high-efficiency and broadband circular polarizer based on cascaded tensor Huygens surface capable of operating in the near-infrared region. The high efficiency originates from the simultaneous excitation of the Mie-type electric and magnetic dipole resonances within an all-dielectric rotationally twisted strips array. Due to the symmetry breaking of the structure in the light propagation, one state of the circularly polarized light can pass through freely, while the other state is largely blocked. The maximum polarization transmission reaches 0.97 with a polarization suppression ratio of 911:1, which represents a major advance in the performance compared with previously reported circular polarizers. The proposed metamaterial possessing the merits of high efficiency and simple inclusions has potentials for applications in biological detector, optical communication and sensor. PMID:27505742

  12. L-shaped metasurface for both the linear and circular polarization conversions

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Li, Yan; Liu, Yi; Wang, Xinshun; Qu, Shiliang

    2015-06-01

    A new type of optical polarization converter based on the L-shaped gold nanoantenna array supercell has been presented, which is suitable for both circular and X/Y linear polarization conversion simultaneously. Both the amplitude and phase of transmitted cross-polarization light can be modulated precisely by changing the lengths and widths of the L-shaped nanoantenna units. For circular or X/Y linear polarization incident lights, the corresponding cross-polarized lights can be obtained in the transmitted lights, and the corresponding bending angles of the cross-polarized lights can be modulated by the structures and the incident angles according to the generalized Snell’s law. The multi-spectral characteristics have also been investigated, in which the operating bandwidth of the designed optical polarization converter is 450 nm (in the range of 750 ∼ 1200 nm).

  13. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface

    PubMed Central

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2015-01-01

    The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system miniaturization and integration. Here, we present the basic theory, simulated demonstration, and in-depth analysis of a high-performance broadband and invertible linear-to-circular (LTC) polarization converter composed of a single-layer gold nanorod array with a total thickness of ~λ/70 for the near-infrared regime. This setup can transform a circularly polarized wave into a linearly polarized one or a linearly polarized wave with a wavelength-dependent electric field polarization angle into a circularly polarized one in the transmission mode. The broadband and invertible LTC polarization conversion can be attributed to the tailoring of the light interference at the subwavelength scale via the induction of the anisotropic optical resonance mode. This ultrathin single-layer metasurface relaxes the high-precision requirements of the structure parameters in general metasurfaces while retaining the polarization conversion performance. Our findings open up intriguing possibilities towards the realization of novel integrated metasurface-based photonics devices for polarization manipulation, modulation, and phase retardation. PMID:26667360

  14. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface.

    PubMed

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2015-01-01

    The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system miniaturization and integration. Here, we present the basic theory, simulated demonstration, and in-depth analysis of a high-performance broadband and invertible linear-to-circular (LTC) polarization converter composed of a single-layer gold nanorod array with a total thickness of ~λ/70 for the near-infrared regime. This setup can transform a circularly polarized wave into a linearly polarized one or a linearly polarized wave with a wavelength-dependent electric field polarization angle into a circularly polarized one in the transmission mode. The broadband and invertible LTC polarization conversion can be attributed to the tailoring of the light interference at the subwavelength scale via the induction of the anisotropic optical resonance mode. This ultrathin single-layer metasurface relaxes the high-precision requirements of the structure parameters in general metasurfaces while retaining the polarization conversion performance. Our findings open up intriguing possibilities towards the realization of novel integrated metasurface-based photonics devices for polarization manipulation, modulation, and phase retardation. PMID:26667360

  15. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface

    NASA Astrophysics Data System (ADS)

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2015-12-01

    The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system miniaturization and integration. Here, we present the basic theory, simulated demonstration, and in-depth analysis of a high-performance broadband and invertible linear-to-circular (LTC) polarization converter composed of a single-layer gold nanorod array with a total thickness of ~λ/70 for the near-infrared regime. This setup can transform a circularly polarized wave into a linearly polarized one or a linearly polarized wave with a wavelength-dependent electric field polarization angle into a circularly polarized one in the transmission mode. The broadband and invertible LTC polarization conversion can be attributed to the tailoring of the light interference at the subwavelength scale via the induction of the anisotropic optical resonance mode. This ultrathin single-layer metasurface relaxes the high-precision requirements of the structure parameters in general metasurfaces while retaining the polarization conversion performance. Our findings open up intriguing possibilities towards the realization of novel integrated metasurface-based photonics devices for polarization manipulation, modulation, and phase retardation.

  16. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption.

    PubMed

    Kamiński, Maciej; Cukras, Janusz; Pecul, Magdalena; Rizzo, Antonio; Coriani, Sonia

    2015-07-15

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spin-forbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet-singlet transitions in chiral compounds. The protocol is based on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n → π* and n ← π* transitions, respectively, in several chiral enones and diketones. Basis set effects in the length and velocity gauge formulations have been explored, and the accuracy achieved when employing approximate (mean-field and effective nuclear charge) spin-orbit operators has been investigated. CPP is shown to be a sensitive probe of the triplet excited state structure. In many cases the sign of the spin-forbidden CD and CPP signals are opposite. For the β,γ-enones under investigation, where there are two minima on the lowest triplet excited state potential energy surface, each minimum exhibits a CPP signal of a different sign. PMID:26126575

  17. A switchable circular polarizer based on zenithal bistable liquid crystal gratings

    NASA Astrophysics Data System (ADS)

    Zografopoulos, Dimitrios C.; Isić, Goran; Kriezis, Emmanouil E.; Beccherelli, Romeo

    2016-05-01

    A switchable circular polarizer for infrared telecom wavelengths based on zenithal bistable liquid crystal gratings is designed and investigated by employing the finite-element method for the study of full-wave light propagation and a tensorial formulation for the liquid crystal orientation. The handedness of the output circular polarization can be selected by switching between the two stable states of the liquid-crystal grating. Analysis of the spectral dependence and the tolerance of the polarizer’s performance with respect to deviations from the optimized geometry reveals the robustness of its polarizing properties, which stems from the non-resonant nature of its operation.

  18. Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations.

    PubMed

    Wang, Xinke; Shi, Jing; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Zhang, Yan

    2016-04-01

    Linearly and circularly polarized terahertz (THz) vortex beams are generated by adopting a THz quarter wave plate and spiral phase plates with topological charges 1 and 2. Taking advantage of a THz digital holographic imaging system, longitudinal components of THz vortices with different polarizations and topological charges are coherently measured and systemically analyzed in a focusing condition. The application potential of circularly polarized THz vortex beams in microscopy is experimentally demonstrated and the transformation between the spin angular momentums and orbital angular momentums of THz waves is also checked. Modified Richards-Wolf vector diffraction integration equations are applied to successfully simulate experimental phenomena. PMID:27137010

  19. Demonstration of a Circularly Polarized Plasma-Based Soft-X-Ray Laser.

    PubMed

    Depresseux, A; Oliva, E; Gautier, J; Tissandier, F; Lambert, G; Vodungbo, B; Goddet, J-P; Tafzi, A; Nejdl, J; Kozlova, M; Maynard, G; Kim, H T; Phuoc, K Ta; Rousse, A; Zeitoun, P; Sebban, S

    2015-08-21

    We report the first experimental demonstration of a laser-driven circularly polarized soft-x-ray laser chain. It has been achieved by seeding a 32.8 nm Kr ix plasma amplifier with a high-order harmonic beam, which has been circularly polarized using a four-reflector polarizer. Our measurements testify that the amplified radiation maintains the initial polarization of the seed pulse in good agreement with our Maxwell-Bloch modeling. The resulting fully circular soft-x-ray laser beam exhibits a Gaussian profile and yields about 10^{10} photons per shot, fulfilling the requirements for laboratory-scale photon-demanding application experiments. PMID:26340189

  20. Circular-polarization-sensitive metamaterial based on triple-quantum-dot molecules.

    PubMed

    Kotetes, Panagiotis; Jin, Pei-Qing; Marthaler, Michael; Schön, Gerd

    2014-12-01

    We propose a new type of chiral metamaterial based on an ensemble of artificial molecules formed by three identical quantum dots in a triangular arrangement. A static magnetic field oriented perpendicular to the plane breaks mirror symmetry, rendering the molecules sensitive to the circular polarization of light. By varying the orientation and magnitude of the magnetic field one can control the polarization and frequency of the emission spectrum. We identify a threshold frequency Ω, above which we find strong birefringence. In addition, Kerr rotation and circular-polarized lasing action can be implemented. We investigate the single-molecule lasing properties for different energy-level arrangements and demonstrate the possibility of circular-polarization conversion. Finally, we analyze the effect of weak stray electric fields or deviations from the equilateral triangular geometry. PMID:25526146

  1. Circular-Polarization-Sensitive Metamaterial Based on Triple-Quantum-Dot Molecules

    NASA Astrophysics Data System (ADS)

    Kotetes, Panagiotis; Jin, Pei-Qing; Marthaler, Michael; Schön, Gerd

    2014-12-01

    We propose a new type of chiral metamaterial based on an ensemble of artificial molecules formed by three identical quantum dots in a triangular arrangement. A static magnetic field oriented perpendicular to the plane breaks mirror symmetry, rendering the molecules sensitive to the circular polarization of light. By varying the orientation and magnitude of the magnetic field one can control the polarization and frequency of the emission spectrum. We identify a threshold frequency Ω , above which we find strong birefringence. In addition, Kerr rotation and circular-polarized lasing action can be implemented. We investigate the single-molecule lasing properties for different energy-level arrangements and demonstrate the possibility of circular-polarization conversion. Finally, we analyze the effect of weak stray electric fields or deviations from the equilateral triangular geometry.

  2. Wide-angle, circularly polarized, omnidirectional-array antenna

    NASA Technical Reports Server (NTRS)

    Boyer, R. B.; Case, E. W.; Rosa, J.

    1971-01-01

    Modified conventional turnstile antenna features bifoliate pattern with relatively high gain and good circularity over solid area enclosed by the 0.26 and 1.31 radian angles of elevation. These antennas are intended for high altitude balloon use, their permissible weight is restricted to one pound.

  3. A high-power microwave circular polarizer and its application on phase shifter

    NASA Astrophysics Data System (ADS)

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  4. Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna

    NASA Astrophysics Data System (ADS)

    Huang, Yongjun; Yang, Li; Li, Jian; Wang, Yao; Wen, Guangjun

    2016-08-01

    In this letter, based on a corner-cut square metasurface, a planar polarization conversion structure is presented and the application for wide band low-profile circular polarization (CP) slot antenna is proposed. The mechanisms for achieving the CP state from a linearly polarized incident wave and for broadening the working bandwidth of conventional slot antenna are analyzed theoretically. The wide band low-profile CP slot antenna is achieved with numerical optimizations and parameter studies. Both simulations and measurements are performed to demonstrate the proposed antenna, and good agreements are obtained. Such results will open the path for polarization conversion metasurfaces used in the CP antenna area.

  5. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics

    NASA Astrophysics Data System (ADS)

    Kfir, Ofer; Grychtol, Patrik; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Popmintchev, Dimitar; Popmintchev, Tenio; Nembach, Hans; Shaw, Justin M.; Fleischer, Avner; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren

    2015-02-01

    Circularly-polarized extreme ultraviolet and X-ray radiation is useful for analysing the structural, electronic and magnetic properties of materials. To date, such radiation has only been available at large-scale X-ray facilities such as synchrotrons. Here, we demonstrate the first bright, phase-matched, extreme ultraviolet circularly-polarized high harmonics source. The harmonics are emitted when bi-chromatic counter-rotating circularly-polarized laser pulses field-ionize a gas in a hollow-core waveguide. We use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of Co. We show that phase-matching of circularly-polarized harmonics is unique and robust, producing a photon flux comparable to linearly polarized high harmonic sources. This work represents a critical advance towards the development of table-top systems for element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution.

  6. Four-wave mixing using polarization grating induced thermal grating in liquids exhibiting circular dichroism

    SciTech Connect

    Nunes, J.A.; Tong, W.G.; Chandler, D.W.; Rahn, L.A.

    1995-04-01

    A novel four-wave mixing technique for the detection of circular dichroism in optically active liquid samples is demonstrated. When two cross-polarized laser beams are crossed at a small angle in a circular dichroic liquid a weak thermal grating is produced with a phase depending on the sign of the circular dichroism. The authors show that the polarization of one of the beams can be modified to allow coherent interference with an intensity-grating induced thermal grating. A probe beam scattering from the composite grating results in a signal that reveals the sign and magnitude of the circular dichroism. The use of this technique to optimize the signal-to-noise ratio in the presence of scattered light and laser intensity noise is discussed.

  7. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation.

    PubMed

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W; Mani, Ramesh G

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679

  8. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    PubMed Central

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679

  9. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  10. Polarization Rotation and Circular Dichroism Near the Potassium D2 Lines

    NASA Astrophysics Data System (ADS)

    Conover, Charles; Thiha, Htet; Dahnke, Jennifer

    2010-03-01

    We have experimentally measured the Faraday rotation and the differential absorption of the two circular polarizations for light tuned near the D2 line in potassium (766.7 nm). In particular we have explored the vapor temperature and magnetic field dependence of the frequency of the zero crossings of the lineshapes from the circular analyzer and the balanced polarimeter used in the measurements. These signals are routinely used as frequency references for laser locking and we discuss the sensitivity to experimental parameters.

  11. Synthesis and Optical Control of Circular Polarization in monolayer Tungsten Disulfide

    NASA Astrophysics Data System (ADS)

    McCreary, Kathleen; Hanbicki, Aubrey; Jonker, Berend; Currie, Marc; Kioseoglou, George

    The unique electronic band structure in single layer WS2 provides the ability to selectively populate a desired valley by exciting with circularly polarized light. The valley population is reflected through the circular polarization of photoluminescence (PL). We investigate the circularly polarized PL in WS2 monolayers synthesized using chemical vapor deposition (CVD). The resulting polarization is strongly dependent on the sample preparation. As-grown CVD WS2 (still on the growth substrate) exhibits low polarized emission, regardless of laser excitation or laser power. Removing WS2 from the growth substrate and repositioning on the same substrate significantly impacts the optical properties. In transferred films, the excitonic state is optically controlled via high-powered laser exposure such that subsequent PL is solely from either the charged exciton state or the neutral exciton state. Neutral excitonic emission exhibits zero polarization whereas the trion polarization can exceed 25% at room temperature. The removal process may modify the strain, sample-to-substrate distance, and chemical doping in the WS2 monolayer, and work is underway to determine how these factors influence the valley populations. These results demonstrate a new method to control the excitonic state and PL polarization in monolayer WS2. . Supported by core programs at NRL and the NRL Nanoscience Institute, and by the Air Force Office of Scientific Research #AOARD 14IOA018-134141.

  12. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    PubMed

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE. PMID:12185675

  13. Germanium x-ray phase plates for the production of circularly polarized x-rays

    SciTech Connect

    Yahnke, C.J.; Srajer, G.; Haeffner, D.R.; Mills, D.M.; Assoufid, L.

    1993-10-01

    The authors have constructed an x-ray phase plate to produce both linearly and circularly polarized x-rays at discrete energies between 20 keV and 88 keV. The plate is a monolithic two-crystal design, constructed from germanium, which increases the resultant degree of circular polarization of the output beam. They have measured the degree of circular polarization at 65 keV to be 90% {+-} 4%, significantly better than that produced by silicon phase plates. This radiation was used to measure the magnetic Compton profile for Fe, which was found to be in good agreement with theory and previous work. The underlying x-ray optics and the characterization of the device between 62 keV and 93 keV at the Cornell High Energy Synchrotron Source are presented.

  14. Variation of linear and circular polarization persistence for changing field of view and collection area in a forward scattering environment

    NASA Astrophysics Data System (ADS)

    van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.; Kemme, Shanalyn A.; Dereniak, Eustace L.

    2016-05-01

    We present experimental and simulation results for a laboratory-based forward-scattering environment, where 1 μm diameter polystyrene spheres are suspended in water to model the optical scattering properties of fog. Circular polarization maintains its degree of polarization better than linear polarization as the optical thickness of the scattering environment increases. Both simulation and experiment quantify circular polarization's superior persistence, compared to that of linear polarization, and show that it is much less affected by variations in the field of view and collection area of the optical system. Our experimental environment's lateral extent was physically finite, causing a significant difference between measured and simulated degree of polarization values for incident linearly polarized light, but not for circularly polarized light. Through simulation we demonstrate that circular polarization is less susceptible to the finite environmental extent as well as the collection optic's limiting configuration.

  15. Circularly Polarized Persistent Room-Temperature Phosphorescence from Metal-Free Chiral Aromatics in Air.

    PubMed

    Hirata, Shuzo; Vacha, Martin

    2016-04-21

    Circularly polarized room-temperature phosphorescence (RTP) with persistent emission characteristics was observed from metal-free chiral binaphthyl structures. Enantiomers of the binaphthyl compounds doped into an amorphous hydroxylated steroid matrix produced blue fluorescence and yellow persistent RTP in air. The lifetime and quantum yield of the yellow persistent RTP were 0.67 s and 2.3%, respectively. The dissymmetry factors of circular dichroism (CD) in the first absorption band, circularly polarized fluorescence (CPF), and circularly polarized persistent RTP were |1.1 × 10(-3)|, |4.5 × 10(-4)|, and |2.3 × 10(-3)|, respectively. A comparison between the experimental data and calculations by time-dependent density functional theory for transient CD spectra confirmed that the binaphthyl conformations in the lowest singlet excited state (S1) and the lowest triplet state (T1) were different. The large difference in the dissymmetry factors for the CPF and the circularly polarized persistent RTP was likely caused by this conformational change between S1 and T1. PMID:27058743

  16. Circular polarization shows the nature of pulsar magnetosphere composition

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    2016-02-01

    It has been argued in previous papers that an ion-proton plasma is formed at the polar caps of neutron stars with positive polar-cap corotational charge density. The present paper does not offer a theory of the development of turbulence from the unstable Langmuir modes that grow in the outwards accelerated plasma, but attempts to describe in qualitative terms the factors relevant to the emission of polarized radiation at frequencies below 1-10 GHz. The work of Karastergiou & Johnston is of particular importance in this respect because it demonstrates in high-resolution measurements of the profiles of 17 pulsars that the relative phase retardation between the O- and E-modes of the plasma is no greater than of the order of π. Provided the source of the radiation is at low altitudes, as favoured by recent observations, this order of retardation is possible only for a plasma of baryonic-mass particles.

  17. Circular polarization in star-formation regions: implications for biomolecular homochirality.

    PubMed

    Bailey, J; Chrysostomou, A; Hough, J H; Gledhill, T M; McCall, A; Clark, S; Ménard, F; Tamura, M

    1998-07-31

    Strong infrared circular polarization resulting from dust scattering in reflection nebulae in the Orion OMC-1 star-formation region has been observed. Circular polarization at shorter wavelengths might have been important in inducing chiral asymmetry in interstellar organic molecules that could be subsequently delivered to the early Earth by comets, interplanetary dust particles, or meteors. This could account for the excess of L-amino acids found in the Murchison meteorite and could explain the origin of the homochirality of biological molecules. PMID:9714676

  18. Optical isolation of circularly polarized light with a spontaneous magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Prudêncio, Filipa R.; Silveirinha, Mário G.

    2016-04-01

    The optical isolation functionality is of key importance in many photonic systems. However, a robust optical isolation is rather challenging to obtain due to the weak nonreciprocal response of conventional materials. Here, we theoretically explore novel solutions to obtain one-way propagation of circularly polarized light using materials with a spontaneous nonreciprocal response combined with chiral metamaterials. Furthermore, we investigate the opportunity of using standard anisotropic nonreciprocal materials (e.g., ferrites or bismuth iron garnet) to obtain the optical isolation of circularly polarized light.

  19. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    SciTech Connect

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-18

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  20. Fabricating chiral polydiacetylene film by monolayer compression and circularly polarized ultra-violet light

    NASA Astrophysics Data System (ADS)

    Zou, Gang; Kohn, Hideki; Ohshima, Yuki; Manaka, Takaaki; Iwamoto, Mitsumasa

    2007-07-01

    We study polydiacetylene films that are pertinent to the problems of mirror symmetry breaking induced by the effects of compression and circularly polarized ultra-violet (UV) light. The subphase is only pure water. After polymerization, polymerized 10,12-tricosadiynoic acid (PTDA) LB films that deposited at the surface pressure of 20 mN m -1 showed obviously chiral properties, however, no obvious Cotton effect was obtained for PTDA LB films that deposited at the surface pressure of 10 mN m -1. In addition, TDA LB films could be polymerized to a designed chirality by using chiral circular polarized ultra-violet light (CPUL).

  1. Crosstalk cancellation on linearly and circularly polarized communications satellite links

    NASA Technical Reports Server (NTRS)

    Overstreet, W. P.; Bostian, C. W.

    1979-01-01

    The paper discusses the cancellation network approach for reducing crosstalk caused by depolarization on a dual-polarized communications satellite link. If the characteristics of rain depolarization are sufficiently well known, the cancellation network can be designed in a way that reduces system complexity, the most important parameter being the phase of the cross-polarized signal. Relevant theoretical calculations and experimental data are presented. The simplicity of the cancellation system proposed makes it ideal for use with small domestic or private earth terminals.

  2. Converter of laser beams with circular polarization to cylindrical vector beams based on anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Paranin, Vyacheslav D.; Karpeev, Sergey V.; Kazanskiy, Nikolay L.; Krasnov, Andrey P.

    2016-03-01

    The optical system for converting laser beams with circular polarization to cylindrical vector beams on the basis of anisotropic crystals has been developed. The experimental research of beam formation quality has been carried out on the both polarization and structural characteristics. The research showed differences in the formation of the azimuthal and radial polarizations for Gaussian modes and Bessel beams. The boundaries of changes of the optical system parameters to form different types of polarizations with different amplitude and phase distributions have been identified.

  3. Polarization properties of fiber lasers with twist-induced circular birefringence

    SciTech Connect

    Kim, Ho Young; Lee, El Hang Kim, Byoung Yoon

    1997-09-01

    We have experimentally observed and theoretically analyzed the polarization properties of fiber lasers with twist-induced birefringence. Twisting a fiber induces the circular birefringence of a fiber laser cavity, and this birefringence reduces the effects of intrinsic linear birefringence on the polarization properties of fiber lasers. The frequencies of their polarization eigenmodes coincide with each other gradually as the twist rate increases, and the directions of polarization eigenmodes deviate from the birefringence axis at a much larger twist rate than the magnitude of intrinsic linear birefringence. We describe the successful experimental results for Nd and Er fiber lasers. {copyright} 1997 Optical Society of America

  4. Linear and Circular polarization of CMB and cosmic 21cm radiation

    NASA Astrophysics Data System (ADS)

    De, Soma; Vachaspati, T.; Pogosian, L.; Tashiro, H.

    2014-01-01

    I will discuss the effect of galactic and primordial magnetic field on the linear polarization of CMB. Faraday Rotation (FR) of CMB polarization, as measured through mode-coupling correlations of E and B modes, can be a promising probe of a stochastic primordial magnetic field (PMF). We use existing estimates of the Milky Way rotation measure (RM) to forecast its detectability with upcoming and future CMB experiments. We find that a realistic future sub-orbital experiment, covering a patch of the sky near the galactic poles, can detect a scale-invariant PMF of 0.1 nano-Gauss at better than 95% confidence level. Next I'll discuss how the galactic magnetic field affects polarization of 21 cm. Unpolarized 21 cm radiation acquires a certain level of linear polarization during the EoR due to Thompson scattering. This linear polarization, if measured, could probe important information about the EoR. We show that a 99 % accuracy on galactic rotation measure (RM) data is necessary to recover the initial E-mode signal. I will conclude my talk by addressing the very interesting question of if CMB can be circularly polarized due to the secondary effects along the line of sight. As the CMB passes through galaxies and galaxy clusters, which could generate a circular polarization by the method of Faraday conversion (FC) (Pacholczyk, 1998, Cooray et al, 2002). Particularly explosions of first stars can induce circular polarization (due to Faraday conversion) and it has no strong local foreground. The unique frequency dependence of FC signal will allow one to eliminate other possible sources of circular polarization enabling to probe the first star explosions.

  5. Spin-polarized dark state free CPT state preparation with co-propagating left and right circularly polarized lasers.

    PubMed

    Zhang, Yi; Qu, Suping; Gu, Sihong

    2012-03-12

    We have developed and experimentally studied a coherent population trapping (CPT) state preparation scheme for atomic clock application with co-propagating left and right circularly polarized lasers. With realization of constructive interference and spin-polarized dark state free in CPT state preparation, we have obtained CPT resonance signal 3 times larger than that of the conventional scheme used in atomic clock. Polarization fluctuations and CPT signal sensitivity to laser power behaviors are both improved with the scheme. Our study reveals that it is a promising candidate for both normal-size and chip-scale CPT atomic clocks. PMID:22418521

  6. Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers

    SciTech Connect

    Mulder, Carlijn L.; Reusswig, Phil D.; Beyler, A. P.; Kim, Heekyung; Rotschild, Carmel; Baldo, Marc

    2010-04-26

    We describe Linearly Polarized Luminescent Solar Concentrators (LP-LSCs) to replace conventional, purely absorptive, linear polarizers in energy harvesting applications. As a proof of concept, we align 3-(2-Benzothiazolyl)-N,N-diethylumbelliferylamine (Coumarin 6) and 4-dicyanomethyl-6-dimethylaminostiryl-4H-pyran (DCM) dye molecules linearly in the plane of the substrate using a polymerizable liquid crystal host. We show that up to 38% of the photons polarized on the long axis of the dye molecules can be coupled to the edge of the device for an LP-LSC based on Coumarin 6 with an order parameter of 0.52.

  7. Non-adiabatic imprints on the electron wave packet in strong field ionization with circular polarization

    NASA Astrophysics Data System (ADS)

    Hofmann, C.; Zimmermann, T.; Zielinski, A.; Landsman, A. S.

    2016-04-01

    The validity of the adiabatic approximation in strong field ionization under typical experimental conditions has recently become a topic of great interest. Experimental results have been inconclusive, in part, due to the uncertainty in experimental calibration of intensity. Here we turn to the time-dependent Schrödinger equation, where all the laser parameters are known exactly. We find that the centre of the electron momentum distribution (typically used for calibration of elliptically and circularly polarized light) is sensitive to non-adiabatic effects, leading to intensity shifts in experimental data that can significantly affect the interpretation of results. On the other hand, the transverse momentum spread in the plane of polarization is relatively insensitive to such effects, even in the Keldysh parameter regime approaching γ ≈ 3. This suggests the transverse momentum spread in the plane of polarization as a good alternative to the usual calibration method, particularly for experimental investigation of non-adiabatic effects using circularly polarized light.

  8. Perfect dual-band circular polarizer based on twisted split-ring structure asymmetric chiral metamaterial.

    PubMed

    Cheng, Yongzhi; Gong, Rongzhou; Cheng, Zhengze; Nie, Yan

    2014-09-01

    A near-perfect dual-band circular polarizer based on bilayer twisted, single split-ring resonator structure asymmetric chiral metamaterial was proposed and investigated. The simple bilayer structure with a 90° twisted angle allows for equalizing the orthogonal components of the electric field at the output interface with a 90° phase difference for a y-polarized wave propagating along the backward (-z) direction. It is found that right- and left-hand circular polarization are realized in transmissions at 7.8 and 10.1 GHz, respectively. Experiments agree well with numerical simulations, which exhibit that the polarization extinction ratio is more than 30 dB at the resonant frequencies. Further, the simple design also can be operated at the terahertz range by scaling down the geometrical parameters of the unit cell. PMID:25321375

  9. Applications of circularly polarized photons at the ALS with a bend magnet source

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High {Tc} Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements.

  10. The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array

    NASA Technical Reports Server (NTRS)

    Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.

    1994-01-01

    The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were

  11. Linear and circular polarization in ultra-relativistic synchrotron sources - implications to GRB afterglows

    NASA Astrophysics Data System (ADS)

    Nava, Lara; Nakar, Ehud; Piran, Tsvi

    2016-01-01

    Polarization measurements from relativistic outflows are a valuable tool to probe the geometry of the emission region and the microphysics of the particle distribution. Indeed, the polarization level depends on (i) the local magnetic field orientation, (ii) the geometry of the emitting region with respect to the line of sight and (iii) the electron pitch angle distribution. Here we consider optically thin synchrotron emission and we extend the theory of circular polarization from a point source to an extended radially expanding relativistic jet. We present numerical estimates for both linear and circular polarization in such systems. We consider different configurations of the magnetic field, spherical and jetted outflows, isotropic and anisotropic pitch angle distributions, and outline the difficulty in obtaining the reported high level of circular polarization observed in the afterglow of Gamma Ray Burst (GRB) 121024A. We conclude that the origin of the observed polarization cannot be intrinsic to an optically thin synchrotron process, even when the electron pitch angle distribution is extremely anisotropic.

  12. Polarization and spectral characteristics of the two-photon luminescence from colloidal gold nanoparticles excited by tunable laser radiation

    SciTech Connect

    Yashunin, D. A. Korytin, A. I.; Stepanov, A. N.

    2015-12-15

    We have experimentally studied two-photon luminescence from a colloidal solution of spherical gold nanoparticles by tuning the wavelength of the exciting radiation. The measured polarization and spectral characteristics of the two-photon luminescence signal show that the observed nonlinear optical response is determined by the dimers present in the solution with a concentration of a few percent of total nanoparticle number.

  13. Attosecond-magnetic-field-pulse generation by intense few-cycle circularly polarized UV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2013-07-01

    Intense attosecond-magnetic-field pulses are predicted to be produced by intense few-cycle attosecond circularly polarized UV pulses. Numerical solutions of the time-dependent Schrödinger equation for H2+ are used to study the electronic dynamical process. Spinning attosecond circular electron wave packets are created on subnanometer molecular dimensions, thus generating attosecond magnetic fields of several tens of Teslas (105 G). Simulations show that the induced magnetic field is critically dependent on the pulse wavelength λ and pulse duration nτ (n is number of cycles) as predicted by a classical model. For ultrashort few-cycle circularly polarized attosecond pulses, molecular orientation influences the generation of the induced magnetic fields as a result of preferential ionization perpendicular to the molecular axis. The nonspherical asymmetry of molecules allows for efficient attosecond-magnetic-field-pulse generation.

  14. Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account.

  15. Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account. The time dependent part of the ponderomotive force is discussed.

  16. An improved upper limit to the CMB circular polarization at large angular scales

    NASA Astrophysics Data System (ADS)

    Mainini, R.; Minelli, D.; Gervasi, M.; Boella, G.; Sironi, G.; Baú, A.; Banfi, S.; Passerini, A.; De Lucia, A.; Cavaliere, F.

    2013-08-01

    Circular polarization of the Cosmic Microwave Background (CMB) offers the possibility of detecting rotations of the universe and magnetic fields in the primeval universe or in distant clusters of galaxies. We used the Milano Polarimeter (MIPOL) installed at the Testa Grigia Observatory, on the italian Alps, to improve the existing upper limits to the CMB circular polarization at large angular scales. We obtain 95% confidence level upper limits to the degree of the CMB circular polarization ranging between 5.0ṡ10-4 and 0.7ṡ10-4 at angular scales between 8° and 24°, improving by one order of magnitude preexisting upper limits at large angular scales. Our results are still far from the nK region where today expectations place the amplitude of the V Stokes parameter used to characterize circular polarization of the CMB but improve the preexisting limit at similar angular scales. Our observations offered also the opportunity of characterizing the atmospheric emission at 33 GHz at the Testa Grigia Observatory.

  17. CIRCULAR POLARIZATION OF PULSAR WIND NEBULAE AND THE COSMIC-RAY POSITRON EXCESS

    SciTech Connect

    Linden, Tim

    2015-02-01

    Recent observations by the PAMELA and AMS-02 telescopes have uncovered an anomalous rise in the positron fraction at energies above 10 GeV. One possible explanation for this excess is the production of primary electron/positron pairs through electromagnetic cascades in pulsar magnetospheres. This process results in a high multiplicity of electron/positron pairs within the wind-termination shock of pulsar wind nebulae (PWNe). A consequence of this scenario is that no circular polarization should be observed within PWNe, since the contributions from electrons and positrons exactly cancel. Here we note that current radio instruments are capable of setting meaningful limits on the circular polarization of synchrotron radiation in PWNe, which observationally test the model for pulsar production of the local positron excess. The observation of a PWN with detectable circular polarization would cast strong doubt on pulsar interpretations of the positron excess, while observations setting strong limits on the circular polarization of PWNe would lend credence to these models. Finally, we indicate which PWNe are likely to provide the best targets for observational tests of the AMS-02 excess.

  18. FETAL AND MATERNAL EFFECTS OF CONTINUAL EXPOSURE OF RATS TO 970-MHZ CIRCULARLY-POLARIZED MICROWAVES

    EPA Science Inventory

    Virtually continual exposure to 970-MHz microwaves in circularly-polarized waveguides was used to elicit fetal responses in Sprague-Dawley rats during gestation. wo hundred fifty rats were exposed to microwave radiation at whole-body averaged specific absorption rates (SAR) of 0....

  19. An improved upper limit to the CMB circular polarization at large angular scales

    SciTech Connect

    Mainini, R.; Minelli, D.; Gervasi, M.; Boella, G.; Sironi, G.; Baú, A.; Banfi, S.; Passerini, A.; Lucia, A. De; Cavaliere, F. E-mail: daniele.minelli@gmail.com E-mail: giuliano.boella@unimib.it E-mail: bau@mib.infn.it E-mail: andrea.passerini@mib.infn.it E-mail: francesco.cavaliere@fisica.unimi.it

    2013-08-01

    Circular polarization of the Cosmic Microwave Background (CMB) offers the possibility of detecting rotations of the universe and magnetic fields in the primeval universe or in distant clusters of galaxies. We used the Milano Polarimeter (MIPOL) installed at the Testa Grigia Observatory, on the italian Alps, to improve the existing upper limits to the CMB circular polarization at large angular scales. We obtain 95% confidence level upper limits to the degree of the CMB circular polarization ranging between 5.0⋅10{sup −4} and 0.7⋅10{sup −4} at angular scales between 8° and 24°, improving by one order of magnitude preexisting upper limits at large angular scales. Our results are still far from the nK region where today expectations place the amplitude of the V Stokes parameter used to characterize circular polarization of the CMB but improve the preexisting limit at similar angular scales. Our observations offered also the opportunity of characterizing the atmospheric emission at 33 GHz at the Testa Grigia Observatory.

  20. Back-feed type circularly polarized microstrip disk antennas by one-point feed

    NASA Astrophysics Data System (ADS)

    Haneishi, M.; Yoshida, S.; Oka, N.

    1980-06-01

    A new circularly polarized microstrip disk antenna which is fed from a point on the substrate bottom surface is proposed and its radiation characteristics, element mutual conductance and radiation efficiency near resonance points are analyzed. Further, an eight-element array consisting of this disk antenna as an element is introduced and its effectiveness is discussed.

  1. Characteristics of block-periodic phased-array antennas with circular polarization of the radiated field

    NASA Astrophysics Data System (ADS)

    Likhoded, Iu. V.; Mironnikov, A. S.

    1990-02-01

    The paper presents results of a numerical investigation of the directivity characteristics of a block-periodic waveguide phased-array antenna with circular polarization of the radiated field. The advantages of this array from the viewpoint of maximining the ellipticity coefficent of the radiated field in the scanning sector are pointed out.

  2. Hybrid perturbation scheme for wide beamwidth circularly polarized stacked patch microstrip antenna for satellite communication

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Shakawat

    Circularly polarized microstrip antennas are popular for satellite communications due to their circularly polarized orientation. They are used frequently in modern day satellite communication. In order to achieve wide angular coverage in satellite communication, a wide beamwidth is required from the antenna. Traditional single layer microstrip antenna inherently demonstrates low angular beamwidth of approximately 600 to 800and thereby lacks wide angular coverage when used for satellite communication. The objective of this thesis is to design a single-fed stacked microstrip antenna using different perturbation techniques in order to achieve a wide angular beamwidth. This thesis presents a new design for a circularly polarized antenna based on the hybrid perturbation scheme. First, a method of stacked patch-ring with negative perturbation was used to generate a significantly larger beamwidth of 1060. The axial ratio (AR) bandwidth obtained is also significantly larger compared to the case when square rings are used as parasitic and driven rings with a single feed. A simulated impedance bandwidth (S11< - 10 dB) of 16%, 3 dB AR bandwidth of 8% and a peak gain of 8.65 dBic are obtained from this design. Next, a new design of stacked hybrid antenna is presented, which uses hybrid perturbations to generate circular polarization radiation. An enhanced beamwidth of 1260 was obtained. The simulation results are confirmed by the measured results.

  3. Wave trains induced by circularly polarized electric fields in cardiac tissues.

    PubMed

    Feng, Xia; Gao, Xiang; Tang, Juan-Mei; Pan, Jun-Ting; Zhang, Hong

    2015-01-01

    Clinically, cardiac fibrillation caused by spiral and turbulent waves can be terminated by globally resetting electric activity in cardiac tissues with a single high-voltage electric shock, but it is usually associated with severe side effects. Presently, a promising alternative uses wave emission from heterogeneities induced by a sequence of low-voltage uniform electric field pulses. Nevertheless, this method can only emit waves locally near obstacles in turbulent waves and thereby requires multiple obstacles to globally synchronize myocardium and thus to terminate fibrillation. Here we propose a new approach using wave emission from heterogeneities induced by a low-voltage circularly polarized electric field (i.e., a rotating uniform electric field). We find that, this approach can generate circular wave trains near obstacles and they propagate outwardly. We study the characteristics of such circular wave trains and further find that, the higher-frequency circular wave trains can effectively suppress spiral turbulence. PMID:26302781

  4. Wave trains induced by circularly polarized electric fields in cardiac tissues

    PubMed Central

    Feng, Xia; Gao, Xiang; Tang, Juan-Mei; Pan, Jun-Ting; Zhang, Hong

    2015-01-01

    Clinically, cardiac fibrillation caused by spiral and turbulent waves can be terminated by globally resetting electric activity in cardiac tissues with a single high-voltage electric shock, but it is usually associated with severe side effects. Presently, a promising alternative uses wave emission from heterogeneities induced by a sequence of low-voltage uniform electric field pulses. Nevertheless, this method can only emit waves locally near obstacles in turbulent waves and thereby requires multiple obstacles to globally synchronize myocardium and thus to terminate fibrillation. Here we propose a new approach using wave emission from heterogeneities induced by a low-voltage circularly polarized electric field (i.e., a rotating uniform electric field). We find that, this approach can generate circular wave trains near obstacles and they propagate outwardly. We study the characteristics of such circular wave trains and further find that, the higher-frequency circular wave trains can effectively suppress spiral turbulence. PMID:26302781

  5. On the spin modulated circular polarization from the intermediate polars NY Lup and IGR J15094-6649

    NASA Astrophysics Data System (ADS)

    Potter, Stephen B.; Romero-Colmenero, Encarni; Kotze, Marissa; Zietsman, Ewald; Butters, O. W.; Pekeur, Nikki; Buckley, David A. H.

    2012-03-01

    We report on high-time-resolution, high-signal-to-noise ratio (S/N), photopolarimetry of the intermediate polars NY Lup and IGR J15094-6649. Our observations confirm the detection and colour dependence of circular polarization from NY Lup and additionally show a clear white dwarf, spin modulated signal. From our new high-S/N photometry, we have unambiguously detected wavelength-dependent spin and beat periods and harmonics thereof. IGR J15094-6649 is also discovered to have a particularly strong spin modulated circularly polarized signal. It appears double peaked through the I filter and single peaked through the B filter, consistent with cyclotron emission from a white dwarf with a relatively strong magnetic field. We discuss the implied accretion geometries in these two systems and any bearing this may have on the possible relationship with the connection between polars and soft X-ray-emitting intermediate polars. The relatively strong magnetic fields are also suggestive of them being polar progenitors.

  6. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    SciTech Connect

    Alharthi, S. S. Henning, I. D.; Adams, M. J.; Hurtado, A.; Korpijarvi, V.-M.; Guina, M.

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  7. Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-08-01

    We propose an approach to the generation of nondiffracting quasi-circularly polarized beams by a highly focusing azimuthally polarized beam using an amplitude modulated spiral phase hologram. Numerical verifications are implemented in the calculation of the electromagnetic fields and Poynting vector field near the focus based on the vector diffraction theory, and the polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the electric field, magnetic field, and Poynting vector field can simultaneously be uniform and nondiverging over a relatively long axial range of ~7.23λ. In the transverse plane, the ellipticity and azimuthal angle of the local polarization ellipse varies from point to point. No polarization singularity and phase singularity are found at the beam center, which makes the bright spot possible. PMID:21811334

  8. Unipolar assembly of zinc oxide rods manifesting polarity-driven collective luminescence

    PubMed Central

    Gautam, Ujjal K.; Imura, Masataka; Rout, Chandra Sekhar; Bando, Yoshio; Fang, Xiaosheng; Dierre, Benjamin; Sakharov, Leonid; Govindaraj, A.; Sekiguchi, Takashi; Golberg, Dmitri; Rao, C. N. R.

    2010-01-01

    Oriented assemblies of small crystals forming larger structures are common in nature and crucial for forthcoming technologies as they circumvent the difficulties of structural manipulation at microscopic scale. We have discovered two distinctive concentric assemblies of zinc oxide rods, wherein each rod has an intrinsically positive and a negative polar end induced by the noncentrosymmetric arrangement of Zn and O atoms. All the rods in a single assembly emanate out of a central core maintaining a single polar direction. Due to growth along the two polar surfaces with different atomic arrangements, these assemblies are distinct in their intrinsic properties and exhibit strong UV luminescence in the exterior of Zn-polar assemblies, unlike the O-polar assemblies. Although novel applications can be envisioned, these observations suggest that hierarchical organization with respect to internal asymmetry might be widespread in natural crystal assemblies. PMID:20643960

  9. Experimental Realization of Efficient, Room Temperature Single-Photon Sources with Definite Circular and Linear Polarizations

    NASA Astrophysics Data System (ADS)

    Boutsidis, Christos

    In this thesis I present experimental demonstrations of room-temperature, single-photon sources with definite linear and circular polarizations. Definite photon polarization increases the efficiency of quantum communication systems. In contrast with cryogenic-temperature single-photon sources based on epitaxial quantum dots requiring expensive MBE and nanofabrication, my method utilizes a mature liquid crystal technology, which I made consistent with single-emitter fluorescence microscopy. The structures I have prepared are planar-aligned cholesteric liquid crystals forming 1-D photonic bandgaps for circularly-polarized light, which were used to achieve definite circularly-polarized fluorescence of single emitters doped in this environment. I also used planar-aligned nematic liquid crystals to align single molecules with linear dipole moments and achieved definite linearly-polarized fluorescence. I used single nanocrystal quantum dots, single nanodiamond color-centers, rare-earth-doped nanocrystals, and single terrylene and DiIC18(3) dye molecules as emitters. For nanocrystal quantum dots I observed circular polarization dissymmetry factors as large as ge = --1.6. In addition, I observed circularly-polarized resonances in the fluorescence of emitters within a cholesteric microcavity, with cavity quality factors of up to Q ˜ 250. I also showed that the fluorescence of DiIC18(3) dye molecules in planar-aligned nematic cells exhibits definite linear polarization, with a degree of polarization of rho = --0.58 +/- 0.03. Distributed Bragg reflectors form another type of microcavity that can be used to realize a single-photon source. I characterized the fluorescence from nanocrystal quantum dots doped in the defect layers of such microcavites, both organic and inorganic. Finally, to demonstrate the single-photon properties of single-emitter-doped cholesteric and nematic liquid crystal structures and distributed Bragg reflector microcavities, I present observations of

  10. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam

    PubMed Central

    Tian, Nian; Fu, Ling; Gu, Min

    2015-01-01

    We extend the subtractive imaging method to label-free second harmonic generation (SHG) microscopy to enhance the spatial resolution and contrast. This method is based on the intensity difference between two images obtained with circularly polarized Gaussian and doughnut-shaped beams, respectively. By characterizing the intensity and polarization distributions of the two focused beams, we verify the feasibility of the subtractive imaging method in polarization dependent SHG microscopy. The resolution and contrast enhancement in different biological samples is demonstrated. This work will open a new avenue for the applications of SHG microscopy in biomedical research. PMID:26364733

  11. From Cartesian to polar: a new POLICRYPS geometry for realizing circular optical diffraction gratings.

    PubMed

    Alj, Domenico; Caputo, Roberto; Umeton, Cesare

    2014-11-01

    We report on the realization of a liquid crystal (LC)-based optical diffraction grating showing a polar symmetry of the director alignment. This has been obtained as a natural evolution of the POLICRYPS technique, which enables the realization of highly efficient, switchable, planar diffraction gratings. Performances exhibited in the Cartesian geometry are extended to the polar one by exploiting the spherical aberration produced by simple optical elements. This enables producing the required highly stable polar pattern that allows fabricating a circular optical diffraction grating. Results are promising for their possible application in fields in which a rotational structure of the optical beam is needed. PMID:25361314

  12. High-order-harmonic generation in benzene with linearly and circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Wardlow, Abigail; Dundas, Daniel

    2016-02-01

    High-order-harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density-functional theory while the ions move classically. The interaction with both linearly and circularly polarized infrared (λ =800 nm) laser pulses of duration of ten cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly polarized pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included, while our results for linearly polarized pulses are compared with both previous calculations and experiment. We find that even for the short-duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly polarized pulses are used, the response to circularly polarized pulses is almost comparable, in agreement with previous experimental results.

  13. Optical converters for circularly polarized VUV and soft-x-ray radiation (invited)(abstract)

    NASA Astrophysics Data System (ADS)

    Höchst, Hartmut

    1995-02-01

    During the last few years considerable effort was spent at various laboratories to evaluate the possibilities of optical devices to generate circularly polarized synchrotron radiation. These instruments convert linearly polarized radiation by utilizing the phase-shifting properties of multiple reflectors or multilayer transmission optics. In the VUV and soft-x-ray range, the figure of merit TP2, where P is the degree of circular polarization and T the optical transmission, of specially tailored reflection coatings or multilayer structures can be considerably higher than what can be achieved with conventional insertion devices such as the crossed field undulator. In addition to being considerably less expensive, the various optical designs have the great advantage of not being an integral part of the storage ring and, as such, completely transparent to the operation and other users of the storage ring. Various phase-shifter designs will be discussed in terms of their performance, e.g., optical throughput, degree of polarization, and capabilities to modulate between left and right circular light. Recent MCD experiments utilizing optical phase shifters not only demonstrate the proof of principle, but also provide strong evidence of the potential capabilities of ``optical insertion'' devices as an alternative tool to generate variably polarized synchrotron radiation.

  14. State-insensitive trapping of Rb atoms: Linearly versus circularly polarized light

    NASA Astrophysics Data System (ADS)

    Arora, Bindiya; Sahoo, B. K.

    2012-09-01

    We study the cancellation of differential ac Stark shifts in the 5s and 5p states of the rubidium atom using the linearly and circularly polarized lights by calculating their dynamic polarizabilities. Matrix elements were calculated using a relativistic coupled-cluster method at the single and double excitations and at the important valence triple excitation approximation including all possible nonlinear correlation terms. Some of the important matrix elements were further optimized using the experimental results available for the lifetimes and static polarizabilities of atomic states. “Magic wavelengths” are determined from the differential Stark shifts and results for the linearly polarized light are compared with the previously available results. The possible scope of facilitating state-insensitive optical trapping schemes using the magic wavelengths for circularly polarized light is discussed. Using the optimized matrix elements, the lifetimes of the 4d and 6s states of this atom are ameliorated.

  15. Strong pulsed excitations using circularly polarized fields for ultra-low field NMR

    NASA Astrophysics Data System (ADS)

    Shim, Jeong Hyun; Lee, Seong-Joo; Yu, Kwon-Kyu; Hwang, Seong-Min; Kim, Kiwoong

    2014-02-01

    A pulse, which is produced by a single coil and thereby has a linear polarization, cannot coherently drive nuclear spins if the pulse is stronger than the static field B0. The inaccuracy of the pulse, which arises from the failure of the rotating wave approximation, has been an obstacle in adopting multiple pulse techniques in ultra-low field NMR where B0 is less than a few μT. Here, we show that such a limitation can be overcome by applying pulses of circular polarization using two orthogonal coils. The sinusoidal nutation of the nuclear spins was experimentally obtained, which indicates that coherent and precise controls of the nuclear spins can be achieved with circularly polarized pulses. Additional demonstration of the Carl-Purcell-Meiboom-Gill sequence verifies the feasibility of adopting multiple pulse sequences to ultra-low field NMR studies.

  16. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    PubMed

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse. PMID:27127951

  17. Mirror magneto-optical trap using circularly polarized light-emitting optical fibers

    SciTech Connect

    Hyodo, Masaharu; Nakayama, Kazuyuki; Ohmukai, Ryuzo; Kurihara, Kazuyoshi; Watanabe, Masayoshi

    2006-05-20

    A fiber-optic mirror magneto-optical trap (mirror-MOT) that uses a pair of circularly polarized light-emitting optical fibers as an optical access is demonstrated. The fiber is fabricated so that a length of birefringence fiber, designed to be a quarter wave retarder at both wavelengths of 780 and852 nm, is attached directly onto a polarization-maintaining normal fiber. The polarization states of light emitted from the fibers are sufficiently circular for the operation of a mirror-MOT with 87Rb atoms. The mirror-MOT is able to capture approximately the same number of atoms obtainable with a conventional mirror-MOT. The technique makes it possible to fabricate a compact MOT apparatus by introducing the optical fibers directly into an ultrahigh-vacuum chamber.

  18. Photoelectron angular distributions in bichromatic atomic ionization induced by circularly polarized VUV femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Douguet, Nicolas; Grum-Grzhimailo, Alexei N.; Gryzlova, Elena V.; Staroselskaya, Ekaterina I.; Venzke, Joel; Bartschat, Klaus

    2016-03-01

    We investigate two-pathway interferences between nonresonant one-photon and resonant two-photon ionization of atomic hydrogen. In particular, we analyze in detail the photoionization mediated by the fundamental frequency and the second harmonic of a femtosecond VUV pulse when the fundamental is tuned near an intermediate atomic state. Following our recent study [Phys. Rev. A 91, 063418 (2015), 10.1103/PhysRevA.91.063418] of such effects with linearly polarized light, we analyze a similar situation with circularly polarized radiation. As a consequence of the richer structure in circularly polarized light, characterized by its right-handed or left-handed helicity, we present and discuss various important features associated with the photoelectron angular distribution.

  19. Phase control of six-wave mixing from circularly polarized light

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzhe; Liu, Zhe; Wang, Hang; Li, Shuoke; Zhang, Weitao; Yi, Wenhui; Zhang, Yanpeng

    2016-08-01

    We investigate the phase control of six-wave mixing (SWM) in atomic system with multi-Zeeman levels theoretically and experimentally. With the relative phase varying, the switch between bright and dark state can appear in probe transmission signal. Then we demonstrate the evolution of six-wave mixing generated in bright and dark states by scanning the frequency detuning of the dressing field at different polarized probe field. Meanwhile, by utilizing the strong dressing effect of circular polarized light, we observe pure dark state switched to pure bright state in terms of energy level splitting, and compare different phases under different detuning of circularly polarized light. Theoretical calculations are in well agreement with the experimental observations.

  20. Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces.

    PubMed

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2016-07-01

    The asymmetric transmission effect has attracted great interest due to its wide modern optical applications. In this Letter, we present the underlying theory, the design specifications, and the simulated demonstration of tunable dual-band asymmetric transmission for circularly polarized waves with a graphene planar chiral metasurface. The spectral position of the asymmetric peak is linearly dependent on the Fermi energy and can be controlled by changing the Fermi energy. The success of tunable dual-band asymmetric transmission can be attributed to the enantiomerically sensitive plasmonic excitations of the graphene metasurface. This work offers a further step in developing tunable asymmetric transmission of circularly polarized waves for applications in detectors and other polarization-sensitive electromagnetic devices. PMID:27367122

  1. Helicity sensitive enhancement of strong-field ionization in circularly polarized laser fields.

    PubMed

    Zhu, Xiaosong; Lan, Pengfei; Liu, Kunlong; Li, Yang; Liu, Xi; Zhang, Qingbin; Barth, Ingo; Lu, Peixiang

    2016-02-22

    We investigate the strong-field ionization from p± orbitals driven by circularly polarized laser fields by solving the two-dimensional time-dependent Schrödinger equation in polar coordinates with the Lagrange mesh technique. Enhancement of ionization is found in the deep multiphoton ionization regime when the helicity of the laser field is opposite to that of the p electron, while this enhancement is suppressed when the helicities are the same. It is found that the enhancement of ionization is attributed to the multiphoton resonant excitation. The helicity sensitivity of the resonant enhancement is related to the different excitation-ionization channels in left and right circularly polarized laser fields. PMID:26907068

  2. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation

    NASA Astrophysics Data System (ADS)

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-01

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  3. Rotating-frame perspective on high-order-harmonic generation of circularly polarized light

    NASA Astrophysics Data System (ADS)

    Reich, Daniel M.; Madsen, Lars Bojer

    2016-04-01

    We employ a rotating frame of reference to elucidate high-order-harmonic generation of circularly polarized light by bicircular driving fields. In particular, we show how the experimentally observed circular components of the high-order-harmonic spectrum can be directly related to the corresponding quantities in the rotating frame. Supported by numerical simulations of the time-dependent Schrödinger equation, we deduce an optimal strategy for maximizing the cutoff in the high-order-harmonic plateau while keeping the two circular components of the emitted light spectrally distinct. Moreover, we show how the rotating-frame picture can be more generally employed for elliptical drivers. Finally, we point out how circular and elliptical driving fields show a near-duality to static electric and magnetic fields in a rotating-frame description. This demonstrates how high-order-harmonic generation of circularly polarized light under static electromagnetic fields can be emulated in practice even at static field strengths beyond current experimental capabilities.

  4. Luminescence Dating of Martian Polar Deposits: Concepts and Preliminary Measurements Using Martian Soil Analogs

    NASA Astrophysics Data System (ADS)

    Lepper, K.; Kuhns, C. K.; McKeever, S. W. S.; Sears, D. W. G.

    2000-08-01

    Martian polar deposits have the potential to reveal a wealth of information about the evolution of Mars' climate and surface environment. However, as pointed out by Clifford et al. in the summary of the First International Conference on Mars Polar Science and Exploration, 'The single greatest obstacle to unlocking and interpreting the geologic and climatic record preserved at the [martian] poles is the need for absolute dating.' At that same conference Lepper and McKeever proposed development of luminescence dating as a remote in-situ technique for absolute dating of silicate mineral grains incorporated in polar deposits. Clifford et al. have also acknowledged that luminescence dating is more practical from cost, engineering, and logistical perspectives than other isotope-based methods proposed for in-situ dating on Mars. We report here the results of ongoing experiments with terrestrial analogs of martian surface materials to establish a broad fundamental knowledge base from which robust dating procedures for robotic missions may be developed. This broad knowledge base will also be critical in determining the engineering requirements of remote in-situ luminescence dating equipment intended for use on Mars. Additional information can be found in the original extended abstract.

  5. Incident Angle- and Polarization-Insensitive Metamaterial Absorber using Circular Sectors

    NASA Astrophysics Data System (ADS)

    Lee, Dongju; Hwang, Jung Gyu; Lim, Daecheon; Hara, Tadayoshi; Lim, Sungjoon

    2016-06-01

    In this paper, an incident angle- and polarization-insensitive metamaterial absorber is proposed for X-band applications. A unit cell of the proposed absorber has a square patch at the centre and four circular sectors are rotated around the square patch. The vertically and horizontally symmetric structure of the unit cell enables polarization-insensitivity. The circular sector of the unit cell enables an angle-insensitivity. The performances of the proposed absorber are demonstrated with a full-wave simulation and measurements. The angular sensitivity is studied at different inner angles of the circular sector. When the inner angle of the circular sector is 90°, the simulated absorptivity is higher than 90%, and the frequency variation is less than 0.96% for incident angles up to 70°. The measured absorptivity at 10.44 GHz is close to 100% for all the polarization angles under normal incidence. When the incident angles are varied from 0°– 60°, the measured absorptivity is maintained above 90% for both the transverse electric (TE) and the transverse magnetic (TM) modes.

  6. Incident Angle- and Polarization-Insensitive Metamaterial Absorber using Circular Sectors.

    PubMed

    Lee, Dongju; Hwang, Jung Gyu; Lim, Daecheon; Hara, Tadayoshi; Lim, Sungjoon

    2016-01-01

    In this paper, an incident angle- and polarization-insensitive metamaterial absorber is proposed for X-band applications. A unit cell of the proposed absorber has a square patch at the centre and four circular sectors are rotated around the square patch. The vertically and horizontally symmetric structure of the unit cell enables polarization-insensitivity. The circular sector of the unit cell enables an angle-insensitivity. The performances of the proposed absorber are demonstrated with a full-wave simulation and measurements. The angular sensitivity is studied at different inner angles of the circular sector. When the inner angle of the circular sector is 90°, the simulated absorptivity is higher than 90%, and the frequency variation is less than 0.96% for incident angles up to 70°. The measured absorptivity at 10.44 GHz is close to 100% for all the polarization angles under normal incidence. When the incident angles are varied from 0°- 60°, the measured absorptivity is maintained above 90% for both the transverse electric (TE) and the transverse magnetic (TM) modes. PMID:27257089

  7. Incident Angle- and Polarization-Insensitive Metamaterial Absorber using Circular Sectors

    PubMed Central

    Lee, Dongju; Hwang, Jung Gyu; Lim, Daecheon; Hara, Tadayoshi; Lim, Sungjoon

    2016-01-01

    In this paper, an incident angle- and polarization-insensitive metamaterial absorber is proposed for X-band applications. A unit cell of the proposed absorber has a square patch at the centre and four circular sectors are rotated around the square patch. The vertically and horizontally symmetric structure of the unit cell enables polarization-insensitivity. The circular sector of the unit cell enables an angle-insensitivity. The performances of the proposed absorber are demonstrated with a full-wave simulation and measurements. The angular sensitivity is studied at different inner angles of the circular sector. When the inner angle of the circular sector is 90°, the simulated absorptivity is higher than 90%, and the frequency variation is less than 0.96% for incident angles up to 70°. The measured absorptivity at 10.44 GHz is close to 100% for all the polarization angles under normal incidence. When the incident angles are varied from 0°– 60°, the measured absorptivity is maintained above 90% for both the transverse electric (TE) and the transverse magnetic (TM) modes. PMID:27257089

  8. Faint Luminescent Ring over Saturn’s Polar Hexagon

    NASA Astrophysics Data System (ADS)

    Adriani, Alberto; Moriconi, Maria Luisa; D’Aversa, Emiliano; Oliva, Fabrizio; Filacchione, Gianrico

    2015-07-01

    Springtime insolation is presently advancing across Saturn's north polar region. Early solar radiation scattered through the gaseous giant's atmosphere gives a unique opportunity to sound the atmospheric structure at its upper troposphere/lower stratosphere at high latitudes. Here, we report the detection of a tenuous bright structure in Saturn's northern polar cap corresponding to the hexagon equatorward boundary, observed by Cassini Visual and Infrared Mapping Spectrometer on 2013 June. The structure is spectrally characterized by an anomalously enhanced intensity in the 3610–3730 nm wavelength range and near 2500 nm, pertaining to relatively low opacity windows between strong methane absorption bands. Our first results suggest that a strong forward scattering by tropospheric clouds, higher in respect to the surrounding cloud deck, can be responsible for the enhanced intensity of the feature. This can be consistent with the atmospheric dynamics associated with the jet stream embedded in the polar hexagon. Further investigations at higher spectral resolution are needed to better assess the vertical distribution and microphysics of the clouds in this interesting region.

  9. Near-circularly polarized single attosecond pulse generation from nitrogen molecules in spatially inhomogeneous laser fields

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofan; Li, Yang; Zhu, Xiaosong; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2016-01-01

    The generation of an attosecond pulse in nitrogen molecules using spatially inhomogeneous laser fields is investigated by numerically solving the time-dependent Schrödinger equation. It is found that an isolated attosecond pulse with elliptical polarization can be generated using linearly polarized laser fields. By changing polarization direction with respect to the molecular axis, the ellipticity of the attosecond pulse can be easily controlled. At some specific angles, the intensities of the two mutually vertical harmonic components, parallel and perpendicular to the driving laser polarization direction, are comparable. Additionally, the relative phase between the two components is about π/2. As a result, it supports the generation of the isolated near-circularly polarized attosecond pulse with a duration of 155 as.

  10. Competition of circularly polarized laser modes in the modulation instability of hot magnetoplasma

    SciTech Connect

    Sepehri Javan, N.

    2013-01-15

    The present study is aimed to investigate the problem of modulation instability of an intense laser beam in the hot magnetized plasma. The propagation of intense circularly polarized laser beam along the external magnetic field is considered using a relativistic fluid model. The nonlinear equation describing the interaction of laser pulse with magnetized hot plasma is derived in the quasi-neutral approximation, which is valid for hot plasma. Nonlinear dispersion equation for hot plasma is obtained. For left- and right-hand polarizations, the growth rate of instability is achieved and the effect of temperature, external magnetic field, and kind of polarization on the growth rate is considered. It is observed that for the right-hand polarization, increase of magnetic field leads to the increasing of growth rate. Also for the left-hand polarization, increase of magnetic field inversely causes decrease of the growth rate.