Science.gov

Sample records for circulating bed combustion

  1. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  2. TECHNOLOGY OVERVIEW: CIRCULATING FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report summarizes the current technical status of circulating fluidized-bed combustion (CFBC). Companies that are involved in investigating this technology and/or developing commercial systems are discussed, along with system descriptions and available cost information. CFBC ...

  3. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    SciTech Connect

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  4. Characteristics of oily sludge combustion in circulating fluidized beds.

    PubMed

    Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo

    2009-10-15

    Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles. PMID:19482424

  5. Combustion model for staged circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Fang, Jianhua; Lu, Qinggang; Wang, Bo; Pan, Zhonggang; Wang, Dasan

    1997-03-01

    A mathematical model for atmospheric staged circulating fluidized bed combustion, which takes fluid dynamics, combustion, heat transfer, pollutants formation and retention, into account was developed in the Institute of Engineering Thermophysics (IET) recently. The model of gas solid flow at the bottom of the combustor was treated by the two-phase theory of fluidized bed and in the upper region as a core-annulus flow structure. The chemical species CO, CO2, H2, H2O, CH4, O2 and N2 were considered in the reaction process. The mathematical model consisted of sub-models of fluid namics, coal heterogeneous and gas homogeneous chemical reactions, heat transfer, particle fragmentation and attrition, mass and energy balance etc. The developed code was applied to simulate an operating staged circulating fluidized bed combustion boiler of early design and the results were in good agreement with the operating data. The main submodels and simulation results are given in this paper.

  6. Pressurized circulating fluidized-bed combustion for power generation

    SciTech Connect

    Weimer, R.F.

    1995-08-01

    Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

  7. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2006-07-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2006 through June 30, 2006. Substantial progress was made on the development and application of software for the effective operation and safe control of the Circulating Fluidized-Bed (CFB) Combustor, as well as for the display and logging of acquired data and operating parameters.

  8. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. PMID:18505001

  9. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler

    SciTech Connect

    Changfu You; Xuchang Xu

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

  10. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  11. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-01-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved. Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  12. Combustion characteristics of spent catalyst and paper sludge in an internally circulating fluidized-bed combustor.

    PubMed

    Roh, Seon Ah; Jung, Dae Sung; Kim, Sang Done; Guy, Christophe

    2005-09-01

    Combustion of spent vacuum residue hydrodesulfurization catalyst and incineration of paper sludge were carried out in thermo-gravimetric analyzer and an internally circulating fluidized-bed (ICFB) reactor. From the thermo-gravimetric analyzer-differential thermo-gravimetric curves, the pre-exponential factors and activation energies are determined at the divided temperature regions, and the thermo-gravimetric analysis patterns can be predicted by the kinetic equations. The effects of bed temperature, gas velocity in the draft tube and annulus, solid circulation rate, and waste feed rate on combustion efficiency of the wastes have been determined in an ICFB from the experiments and the model studies. The ICFB combustor exhibits uniform temperature distribution along the bed height with high combustion efficiency (>90%). The combustion efficiency increases with increasing reaction temperature, gas velocity in the annulus region, and solid circulation rate and decreases with increasing waste feed rate and gas velocity in the draft tube. The simulated data from the kinetic equation and the hydrodynamic models predict the experimental data reasonably well. PMID:16259422

  13. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  14. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-01-01

    The purpose of this report is to summarize the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' in this quarter (September-December of 2003). The main tasks in this quarter consisted of the following four parts. First, all documents for managing this project have been prepared and sent to the Office of Project Management at the US Department of Energy's (DOE's) National Energy Technology Laboratory (NETL). Second, plans for the renovation of space for a new combustion laboratory for the CFBC system has progressed smoothly. Third, considerable progress in the design of the CFBC system has been made. Finally, a lab-scale simulated fluidized-bed combustion facility has been set up in order to make some fundamental investigations of the co-firing of coal with waste materials in the next quarter. Proposed work for the next quarter has been outlined in this report.

  15. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    SciTech Connect

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  16. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  17. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  18. Abatement of N{sub 2}O emissions from circulating fluidized bed combustion through afterburning

    SciTech Connect

    Gustavsson, L.; Leckner, B.

    1995-04-01

    A method for the abatement of N{sub 2}O emission from fluidized bed combustion has been investigated. The method consists of burning a secondary fuel after the normal circulating fluidized bed combustor. Liquefied petroleum gas (LPG), fuel oil, pulverized coal, and wood, as well as sawdust, were used as the secondary fuel. Experiments showed that the N{sub 2}O emission can be reduced by 90% or more by this technique. The resulting N{sub 2}O emission was principally a function of the gas temperature achieved in the afterburner and independent of afterburning fuel, but the amount of air in the combustion gases from the primary combustion also influences the results. No negative effects on sulfur capture or on NO or CO emissions were recorded. In the experiments, the primary cyclone of the fluidized bed boiler was used for afterburning. If afterburning is implemented in a plant optimized for this purpose, an amount of secondary fuel corresponding to 10% of the total energy input should remove practically all N{sub 2}O. During the present experiments the secondary fuel consumption was greater than 10% of the total energy input due to various losses.

  19. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  20. Advanced atmospheric fluidized-bed combustion design: internally circulating AFBC. Final report

    SciTech Connect

    Keairns, D.L.; Altiner, H.K.; Hamm, J.R.; Ahmed, M.M.; Weeks, K.D.; Bachovchin, D.M.; Kececioglu, I.; Ulerich, N.H.; Yang, W.C.

    1983-01-01

    This report defines and characterizes an advanced, industrial, fluidized-bed combustion concept - the internally circulating AFBC - having superior performance and cost characteristics. The internally circulating AFBC incorporates four major innovative features (single fuel feed; jet-attrition-controlled sulfur removal; multiple air staging; and high-velocity, single vessel integral design using draft tube circulation) to achieve: high boiler thermal efficiency (approaching 90% through integral design, high combustion efficiency, and low sorbent consumption); fuel flexibility (single coal feed point, coal size up to nominal 2 in, flexible air distribution, capability of feeding and combusting gaseous and liquid fuels); high reliability (simplified fuel feed and solids handling); turndown flexibility (degree and ease of turndown achieved by integral segmented bed, staged air distribution); low sorbent requirements for high SO/sub 2/ control (Ca/S <2 for greater than 90% removal using jet-attrition-controlled sulfur removal); low NO/sub x/ emissions (0.1 lb/10/sup 6/ Btu through multiple stages of air injection and capability of maintaining high carbon content); compact design (single, shop-fabricated, rail-shippable units with capacity up to 150 x 10/sup 6/ Btu/hr for high-velocity operation); and low cost (simplified, integral function design with high efficiency). Westinghouse concludes that the internally circulating AFBC concept has great potential for industrial market acceptance because of its effective performance and high reliability at low steam generation costs. The concept merits further development to evolve its innovative features further and to determine its commercial design configuration and operating conditions.

  1. Experimental study on combustion characteristics and NOX emissions of pulverized anthracite preheated by circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhu, Jian-Guo; Lu, Qing-Gang

    2011-08-01

    A 30 kW bench-scale rig of pulverized anthracite combustion preheated by a circulating fluidized bed (CFB) was developed. The CFB riser has a diameter of 90 mm and a height of 1,500 mm. The down-fired combustion chamber (DFCC) has a diameter of 260 mm and a height of 3,000 mm. Combustion experiments were carried out using pulverized anthracite with 6.74% volatile content. This low volatile coal is difficult to ignite and burn out. Therefore, it requires longer burnout time and higher combustion temperature, which results in larger NOX emissions. In the current study, important factors that influence the combustion characteristics and NOX emissions were investigated such as excess air ratio, air ratio in the reducing zone, and fuel residence time in the reducing zone. Pulverized anthracite can be quickly preheated up to 800°C in CFB when the primary air is 24% of theoretical air for combustion, and the temperature profile is uniform in DFCC. The combustion efficiency is 94.2%, which is competitive with other anthracite combustion technologies. When the excess air ratio ranges from 1.26 to 1.67, the coal-N conversion ratio is less than 32% and the NOX emission concentration is less than 371 mg/m3 (@6% O2). When the air ratio in the reducing zone is 0.12, the NOX concentration is 221 mg/m3 (@6% O2), and the coal-N conversion ratio is 21%, which is much lower than that of other boilers.

  2. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    NASA Astrophysics Data System (ADS)

    Balicki, Adrian; Bartela, Łukasz

    2014-06-01

    Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of `zeroemission' technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  3. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  4. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan, Kunlei Liu; John T. Riley

    2004-07-30

    This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

  5. Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences

    SciTech Connect

    Mutanen, K.I.

    1995-11-01

    Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

  6. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Songgeng Li; John T. Riley

    2005-10-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2005 through September 30, 2005. The following tasks have been completed. First, the construction of the Circulating Fluidized-Bed (CFB) Combustor Building was completed. The experimental facilities have been moved into the CFB Combustor Building. Second, the fabrication and manufacture of the CFBC Facility is in the final stage and is expected to be completed before November 30, 2005. Third, the drop tube reactor has been remodeled and installed to meet the specific requirements for the investigation of the effects of flue gas composition on mercury oxidation. This study will start in the next quarter. Fourth, the effect of sulfur dioxide on molecular chlorine via the Deacon reaction was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  7. Alkali metals in circulating fluidized bed combustion of biomass and coal: measurements and chemical equilibrium analysis

    SciTech Connect

    Michal P. Glazer; Nafees A. Khan; Wiebren de Jong; Hartmut Spliethoff; Heiko Schuermann; Penelope Monkhouse

    2005-10-01

    Combustion and co-combustion experiments with four kinds of straw, specially selected for their different alkali, Cl, and Si contents, and Colombian black coal were carried out in a circulating fluidized bed (CFB) reactor at Delft University of Technology. The influence of operating conditions and fuel composition on the release of the alkali compounds to the gas phase was investigated. The amount of the total gas-phase sodium and potassium compounds in the flue gases was measured with excimer laser induced fluorescence (ELIF). The results show that the release of gaseous alkali species depends on fuel composition, in particular the K/Cl and K/Si ratios in the fuel. The fuels with high K and Cl values show higher concentrations of the gaseous alkalis. A synergetic effect of the co-combustion with coal was observed, which led to a strong decrease in gaseous alkali concentrations. Together with experiments, chemical equilibrium modeling was performed to help in interpreting the experimental data. The calculations confirmed that the equilibrium is very strongly influenced by the composition of the fuel blend. Moreover, the simulations provided more information on sequestering of alkali species. 22 refs., 5 figs., 4 tabs.

  8. Modified graphical autocatalytic set model of combustion process in circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Yusof, Nurul Syazwani; Bakar, Sumarni Abu; Ismail, Razidah

    2014-07-01

    Circulating Fluidized Bed Boiler (CFB) is a device for generating steam by burning fossil fuels in a furnace operating under a special hydrodynamic condition. Autocatalytic Set has provided a graphical model of chemical reactions that occurred during combustion process in CFB. Eight important chemical substances known as species were represented as nodes and catalytic relationships between nodes are represented by the edges in the graph. In this paper, the model is extended and modified by considering other relevant chemical reactions that also exist during the process. Catalytic relationship among the species in the model is discussed. The result reveals that the modified model is able to gives more explanation of the relationship among the species during the process at initial time t.

  9. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Shao, Ning-ning; Wang, Dong-min; Qin, Jun-feng; Huang, Tian-yong; Song, Wei; Lin, Mu-xi; Yuan, Jin-sha; Wang, Zhen

    2014-01-01

    In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabricated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

  10. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Songgeng Li

    2006-01-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  11. SUPERFUND TREATABILITY CLEARINGHOUSE: BDAT TREATABILITY DATA FOR SOILS, SLUDGES AND DEBRIS FROM THE CIRCULATING BED COMBUSTION (CBC) PROCESS

    EPA Science Inventory

    The two papers provide a general overview of the Ogden circulating bed combustion and summary data of both PCB laden soils for EPA-TSCA and a test on RCRA liquid organic wastes for the California Air Resources Board (CARB). This abstract will discuss the results of the PCB...

  12. Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel

    SciTech Connect

    Mastellone, M.L.; Arena, U. |

    1999-05-01

    Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.

  13. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  14. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    SciTech Connect

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  15. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-04-01

    The purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter January--March 2004. The following tasks have been completed. First, plans for the renovation of space for a new Combustion Laboratory for the CFBC Facility have progressed smoothly. Second, the design calculations, including the mass balances, energy balances, heat transfer, and strength calculations have been completed. Third, considerable modifications have been made on the draft design of the CFBC Facility based on discussions conducted during the project kick-off meeting held on January 13, 2004 at the National Energy Technology Laboratory (NETL). Comments received from various experts were also used to improve the design. Finally, the drawings of all assembly parts have been completed in order to develop specifications for the fabrication of individual parts. At the same time, the proposed work for the next quarter has been outlined in this report.

  16. Volatilization of the heavy metals during circulating fluidized bed combustion of forest residue

    SciTech Connect

    Lind, T.; Kauppinen, E.I.; Valmari, T.; Sfiris, G.; Nilsson, K.; Maenhaut, W.

    1999-02-01

    Increasing interest in using biomass for energy production has created a need to establish a method for its sustainable utilization. During combustion, the inorganic incombustible species in the biomass are converted into ash. The environmental impact on the heavy metals contained in the combustion product ash depends on the speciation of the heavy metals and the size distributions of the heavy metals in the ash. Therefore, the behavior of cadmium, lead, copper, and zinc was studied experimentally during circulating fluidized bed combustion (CFBC) of Swedish forest residue. The size distributions and concentrations of the heavy metals in the fly ash particles and in the gas phase were determined by low-pressure impacts and filters upstream of the convective back pass at 830 C. Downstream of the convective back pass at T = 150 C, the size distributions were determined. The fly ash from CFBC was found to contain two separate particle classes. Fine particles consisted mainly of KCl, and coarse particles contained as major elements Ca and Si. Major fraction of all the studied heavy metals were found in the coarse fly ash particles at location 1 at 830 C; 7--26% of Pb, 24--27% of Cu, 1--8% of Cd, and less than 1% of Zn were found in the gas phase. The gas-to-particle conversion route for Cd, Pb, and Cu was found by chemical surface reaction, probably with silicates. None of the studied heavy metals were enriched in the fine particles at the inlet of the electrostatic precipitator.

  17. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  18. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    PubMed

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. PMID:26278370

  19. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash.

    PubMed

    Chen, Chen; Li, Qin; Shen, Lifeng; Zhai, Jianping

    2012-06-01

    This paper presents a study on geopolymer bricks manufactured using bottom ash from circulating fluidized bed combustion (CFBC). The alkali activators used for synthesis were sodium silicate, sodium hydroxide, and potassium hydroxide and lithium hydroxide solutions. The study included the impact of alkali activator on compressive strength. The reaction products were analysed by XRD, FT-IR and SEM/EDS. The compressive strength of bricks was dependent on the modulus of the sodium silicate activator and the type and concentration of alkali activator. The highest compressive strength could be gained when the modulus was 1.5, and the value could reach 16.1 MPa (7 d after manufacture) and 21.9 MPa (28 d after manufacture). Under pure alkaline systems, the compressive strength was in the order of 10 M KOH > 10 M NaOH > 5 M LiOH > 5 M KOH > 5 M NaOH. Quartz was the only crystalline phase in the original bottom ash, and no new crystalline phase was found after the reaction. The main product of reaction was amorphous alkali aluminosilicate gel and a small amount of crystalline phase was also found by SEM. PMID:22856304

  20. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis.

    PubMed

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production. PMID:19853434

  1. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes.

    PubMed

    Xu, Hui; Li, Qin; Shen, Lifeng; Wang, Wei; Zhai, Jianping

    2010-03-15

    Circulating fluidized bed combustion (CFBC) bottom ashes (CBAs) are a class of calcined aluminosilicate wastes with a unique thermal history. While landfill disposal of hazardous element-containing CBAs poses serious challenge, these wastes have long been neglected as source materials for geopolymer production. In this paper, geopolymerization of ground CBAs was investigated. Reactivity of the CBAs was analyzed by respective dissolution of the ashes in 2, 5, and 10N NaOH and KOH solutions. Geopolymer pastes were prepared by activating the CBAs by a series of alkalis hydroxides and/or sodium silicate solutions. Samples were cured at 40 degrees C for 168 h, giving a highest compressive strength of 52.9 MPa. Of the optimal specimen, characterization was conducted by TG-DTA, SEM, XRD, as well as FTIR analyses, and thermal stability was determined in terms of compressive strength evolution via exposure to 800 or 1050 degrees C followed by three cooling regimes, i.e. cooling in air, cooling in the furnace, and immerging in water. The results show that CBAs could serve as favorable source materials for thermostable geopolymers, which hold a promise to replace ordinary Portland cement (OPC) and organic polymers in a variety of applications, especially where fire hazards are of great concern. PMID:19879690

  2. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis

    SciTech Connect

    Xu Hui; Li Qin; Shen Lifeng; Zhang Mengqun; Zhai Jianping

    2010-01-15

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  3. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhu, Jianguo; Ouyang, Ziqu; Lu, Qinggang

    2013-06-01

    High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed was presented. The down-fired combustor, taken as the calculation domain, has the diameter of 220 mm and the height of 3000 mm. 2 cases with air staging combustion are simulated. Compared the simulation results with experimental data, there is a good agreement. It is found that the combustion model and NOx formation model are applicable to simulate the pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. The results show that there is a uniform temperature profile along the axis of the down-fired combustor. The NOx emissions are lower than those of ordinary pulverized coal combustion, and the NOx emissions are 390 mg/m3 and 352 mg/m3 in Case 1 and Case 2, respectively. At the range of 300-600 mm below the nozzle, the NO concentration decreases, mainly resulting from some homogeneous reactions and heterogeneous reaction. NO concentration has a little increase at the position of 800 mm below the nozzle as the tertiary air supplied to the combustor at the position of 600 mm below the nozzle.

  4. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  5. Modeling of circulating fluised beds for post-combustion carbon capture

    SciTech Connect

    Lee, A.; Shadle, L.; Miller, D.

    2011-01-01

    A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.

  6. Design and construction of a circulating fluidized bed combustion facility for use in studying the thermal remediation of wastes

    NASA Astrophysics Data System (ADS)

    Rink, Karl K.; Kozinski, Janusz A.; Lighty, JoAnn S.; Lu, Quing

    1994-08-01

    Fluidized bed combustion systems have been widely applied in the combustion of solid fossil fuels, particularly by the power generation industry. Recently, attention has shifted from the conventional bubbling fluidized bed (BFB) to circulating fluidized bed (CFB) combustion systems. Inherent advantages of CFB combustion such as uniform temperatures, excellent mixing, high combustion efficiencies, and greater fuel flexibility have generated interest in the feasibility of CFB combustion systems applied to the thermal remediation of contaminated soils and sludges. Because it is often difficult to monitor and analyze the combustion phenomena that occurs within a full scale fluidized bed system, the need exists for smaller scale research facilities which permit detailed measurements of temperature, pressure, and chemical specie profiles. This article describes the design, construction, and operation of a pilot-scale fluidized bed facility developed to investigate the thermal remediation characteristics of contaminated soils and sludges. The refractory-lined reactor measures 8 m in height and has an external diameter of 0.6 m. The facility can be operated as a BFB or CFB using a variety of solid fuels including low calorific or high moisture content materials supplemented by natural gas introduced into the fluidized bed through auxiliary fuel injectors. Maximum firing rate of the fluidized bed is approximately 300 kW. Under normal operating conditions, internal wall temperatures are maintained between 1150 and 1350 K over superficial velocities ranging from 0.5 to 4 m/s. Contaminated material can be continuously fed into the fluidized bed or introduced as a single charge at three different locations. The facility is fully instrumented to allow time-resolved measurements of gaseous pollutant species, gas phase temperatures, and internal pressures. The facility has produced reproducible fluidization results which agree well with the work of other researchers. Minimum

  7. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.

    PubMed

    Shin, D; Jang, S; Hwang, J

    2005-01-01

    After performing a series of batch type experiments using a lab-scale combustor, consideration was given to the use of an internally cycloned circulating fluidized bed combustor (ICCFBC) for a paper mill sludge. Operation parameters including water content, feeding mass of the sludge, and secondary air injection ratio were varied to understand their effects on combustion performance, which was examined in terms of carbon conversion rate (CCR) and the emission rates of CO, C(x)H(y) and NO(x). The combustion of paper mill sludge in the ICCFBC was compared to the reaction mechanisms of a conventional solid fuel combustion, characterized by kinetics limited reaction zone, diffusion limited reaction zone, and transition zone. The results of the parametric study showed that a 35% water content and 60 g feeding mass generated the best condition for combustion. Meanwhile, areal mass burning rate, which is an important design and operation parameter at an industrial scale plant, was estimated by a conceptual equation. The areal mass burning rate corresponding to the best combustion condition was approximately 400 kg/hm(2) for 35% water content. The secondary air injection generating swirling flow enhanced the mixing between the gas phase components as well as the solid phase components, and improved the combustion efficiency by increasing the carbon conversion rate and reducing pollutant emissions. PMID:16009301

  8. Emission characteristics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed.

    PubMed

    Toraman, Oner Yusuf; Topal, Hüseyin; Bayat, Oktay; Atimtay, Aysel T

    2004-01-01

    In this study, a circulating fluidized bed (CFB) of 125 mm diameter and 1800mm height was used to find the combustion characteristics of sewage sludge (SS) produced in Turkey. Sludge + olive cake, and sludge + lignite coal mixtures were burned separately. Various sludge-to-lignite coal and sludge-to-olive cake ratios (5/95, 10/90, 15/85, 20/80) were tried. On-line concentrations of major components (O2, SO2, CO2, CO, NOx, CmHn) were measured in the flue gas, as well as temperature and pressure distributions along the bed. Combustion efficiencies of sludge + olive cake and sludge + lignite coal mixtures were calculated, and the optimum conditions for operating parameters were discussed. The results have shown that the combustion mainly takes place in the upper regions of the main column where the temperature reaches 900 degrees C. SS + Coal burn in the CFB with an efficiency of 95.14% to 96.18%, which is considered to be quite good. When burning sludge mixed with olive cake, appreciable amounts of CO and unburned hydrocarbons are formed and the combustion efficiency drops to 92.93%. CO and CmHn emissions are lower when lignite coal is mixed with various amounts of SS than the emissions when the coal is burned alone. As the %SS is increased in the fuel mixture, the SO2 emission decreases. NOx emissions are slightly higher. When burning sludge mixed with olive cake, SO2 and NOx emissions are slightly higher. CO and CmHn emissions decrease sharply when SS is mixed with 5%wt. olive cake. With increasing sludge ratio these emissions increase due to the unburned hydrocarbons. As a result of this study, it is believed that SS can be burned effectively in a CFBC together with other fuels, especially with olive cake (OC). OC will be a good additive fuel for the combustion of lower quality fuels. PMID:15137713

  9. Heavy metal behavior during circulating fluidized bed combustion of willow (Salix)

    SciTech Connect

    Lind, T.; Kauppinen, E.I.; Nilsson, K.; Sfiris, G.; Maenhaut, W.; Huggins, F.E.

    1999-07-01

    The behavior of the heavy metals Cd, Pb, Cu and Zn was studied experimentally at a 35 MW circulating fluidized bed boiler. The fuel was a Swedish willow (Salix) and quartz sand was used as an additional bed material. Almost no Cd was retained in the bottom ash, whereas Zn was clearly enriched in the bottom ash. 15--27% of Pb was in the gas phase downstream of the cyclone at T = 810 C, but less than 3% of Cd, Cu, or Zn. In the convective pass the gas phase Pb reacted with the coarse fly ash particles. Consequently, all the heavy metals were found entirely in the coarse fly ash particles downstream of the convective pass at T = 150 C. The heavy metals were not enriched in the fine fly ash particles. The coarse fly ash particles were large agglomerates consisting of up to thousands of submicron primary particles. These agglomerates were very effective in capturing volatile heavy metals into the coarse fly ash fraction hindering their condensation and subsequent enrichment in the fine particles.

  10. Circulating fluidized bed combustion product addition to acid soil: alfalfa (Medicago sativa L.) composition and environmental quality.

    PubMed

    Chen, Liming; Dick, Warren A; Kost, David

    2006-06-28

    To reduce S emissions, petroleum coke with a high concentration of S was combusted with limestone in a circulating fluidized bed (CFB) boiler. The combustion process creates a bed product that has potential for agricultural uses. This CFB product is often alkaline and enriched in S and other essential plant nutrients, but also contains high concentrations of Ni and V. Agricultural land application of CFB product is encouraged, but little information is available related to plant responses and environmental impacts. CFB product and agricultural lime (ag-lime) were applied at rates of 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) to an acidic soil (Wooster silt loam). The 2.0x LR application rate of CFB product was equivalent to 67.2 Mg ha(-1). Alfalfa yield was increased 4.6 times by CFB product and 3.8 times by ag-lime compared to untreated control. Application of CFB product increased the concentration of V in soil and alfalfa tissue, but not in soil water, and increased the concentration of Ni in soil and soil water, but not in alfalfa tissue. However, these concentrations did not reach levels that might cause environmental problems. PMID:16787025

  11. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1992-04-07

    This patent describes a method of incinerating a fuel containing difficult to remove tramp comprising wire. It comprises placing of a fluid bed within a downwardly and inwardly tapered centrally hollow air distributor disposed within a lower portion of a vessel; introducing fuel comprising combustible material and tramp comprising wire into the fluid bed; incinerating the combustible material in the fluid bed accommodating downward migration within the fluid bed of the wire without a central obstruction to such migration; in the course of performing the incinerating step, fluidizing the bed solely by introducing inwardly at several tiered locations directed air into the bed only around the tapered periphery along the lower portion of the vessel from a plurality of inwardly and downwardly parallel sites as causing the bed material and tramp to migrate downwardly and inwardly without central bed obstruction toward a discharge site.

  12. Advanced modeling of nitrogen oxide emissions in circulating fluidized bed combustors: Parametric study of coal combustion and nitrogen compound chemistries

    SciTech Connect

    Kilpinen, P.; Kallio, S.; Hupa, M.

    1999-07-01

    This paper describes work-in-progress aimed at developing an emission model for circulating fluidized bed combustors using detailed homogeneous and heterogeneous chemical kinetics. The main emphasis is on nitrogen oxides (NO{sub x}, N{sub 2}O) but also unburned gases (CO, C{sub x}H{sub y}) and sulfur dioxide (SO{sub 2}) will be investigated in the long run. The hydrodynamics is described by a 1.5-dimensional model where the riser is divided into three regions: a dense bubbling bed at the bottom, a vigorously mixed splash zone, and a transport zone. The two latter zones are horizontally split into a core region and an annular region. The solids circulation rate is calculated from the known solids inventory and the pressure and mass balances over the entire circulation loop. The solids are divided into classes according to size and type or particle. The model assumes instantaneous fuel devolatilization at the bottom and an even distribution of volatiles in the suspension phase of the dense bed. For addition of secondary air, a complete penetration and an instantaneous mixing with the combustor gases in the core region is assumed. The temperature distribution is assumed to be known, and no energy balance is solved. A comprehensive kinetic scheme of about 300 elementary gas-phase reactions is used to describe the homogeneous oxidation of the volatiles including both hydrocarbon and volatile-nitrogen components (NH{sub 3}, HCN). Heterogeneous char combustion to CO and CO{sub 2}, and char-nitrogen conversion to NO, N{sub 2}O, and N{sub 2} are described by a single particle model that includes 15 reaction steps given in the form of 6 net reaction paths. In the paper, the model is briefly described. A special emphasis is put on the evaluation of chemistry submodels. Modeling results on nitrogen oxides' formation are compared with measured concentration profiles in a 12 MW CFBC riser from literature. The importance of accurate chemistry description on predictions is

  13. A dynamic simulation model for power plants with atmospheric and pressurized circulating fluidized bed combustion -- Interactions of plant components and design studies

    SciTech Connect

    Glasmacher-Remberg, C.; Fett, F.N.

    1999-07-01

    Power plants with atmospheric or pressurized circulating fluidized bed combustion are complex technical systems. The operation characteristics of these power plants depend on the behavior of the single components and their interactions. The theoretical understanding of power plant processes of this kind as well as the design, the reliability and the practical operation can be enhanced by the application of mathematical models for the complete process. A dynamic simulation model for power plants with atmospheric circulating fluidized bed combustion (ACFBC) and pressurized circulating fluidized bed combustion (PCFBC) consisting of comprehensive submodels for the subsystems gas turbine, circulating fluidized bed combustor and water/steam cycle is presented. Apart from the investigation of the complete power plant, the simulation program enables the analysis of the three mentioned subsystems separately. Each subsystem is described by a set of unsteady-state differential and algebraic equations solved by an implicit Euler-method using a modified Newton-Raphson method. With the aid of the dynamic simulation program for a selected power plant, the effect of changes in plant operation will be examined for full and part load as well as the transient response of the system due to the carried out operation. Emphasis is laid on the characterization of the interactions between the subsystems. The dynamic simulation program can be used for design studies and it is investigated how changes of the plant design influence the operation characteristics of the example plant.

  14. Development of methane and nitrous oxide emission factors for the biomass fired circulating fluidized bed combustion power plant.

    PubMed

    Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan

    2012-01-01

    This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH(4)), Nitrous oxide (N(2)O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH(4) and N(2)O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH(4) and N(2)O exhausted from the CFB boiler. As a result, the emission factors of CH(4) and N(2)O are 1.4 kg/TJ (0.9-1.9 kg/TJ) and 4.0 kg/TJ (2.9-5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N(2)O emission, compared to the emission factor of the CFB boiler using fossil fuel. PMID:23365540

  15. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.

    PubMed

    Liu, Wenshi; Hou, Haobo; Zhang, Chuhao; Zhang, Dajie

    2009-05-01

    The objective of this study was to assess the feasibility of solidification of municipal solid waste incinerator (MSWI) fly ash with circulation fluidized bed combustion (CFBC) fly ash, which is unsuitable as a cement replacement due to its high amounts of carbon, lime and anhydrite. The solidification process was conducted on samples prepared from MSWI fly ash, binders (cement clinkers and CFBC fly ash were mixed at two replacement ratios) and water (water/solid weight ratio = 0.4), among which the MSWI fly ash replaced each binder at the ratio of 0, 20, 40, 60 and 80% by dry weight. The samples were subjected to compressive strength tests and Toxicity Characteristic Leaching Procedure and the results showed that all solidified MSWI fly ash can meet the landfill standard imposed by US EPA after 28 days of curing. Micro-analysis (X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectrophotometry) revealed that the main hydrate products were C-S-H gel and ettringite, which have a positive effect on heavy metals retention. Therefore, this method provides a possibility to achieve a cheap and effective solution for MSWI fly ash management and use for CFBC fly ash. PMID:19423575

  16. Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

    PubMed Central

    Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan

    2012-01-01

    This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4), Nitrous oxide (N2O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ) and 4.0 kg/TJ (2.9–5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel. PMID:23365540

  17. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  18. Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites

    NASA Astrophysics Data System (ADS)

    Yao, Nina; Zhang, Ping; Song, Lixian; Kang, Ming; Lu, Zhongyuan; Zheng, Rong

    2013-08-01

    The aim of this work was to test circulating fluidized bed combustion fly ashes (CFAs) for its potential to be utilized in polymer composites manufacturing to improve its toughness. CFAs was coated by stearic acid and used in the composite of polypropylene/ethylene vinyl acetate/high density polyethylene (PP/EVA/HDPE) by molding process method. The resulting coated and uncoated CFAs were fully characterized by particle size analyzer, contact angles, powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stearic acid coated onto the surface of CFAs particles in the physical and chemical ways, and the total clad ratio reached 2.05% by measuring TGA/DTA curve. The percentage of CFAs particles focused to a narrow range 2-4 μm and the median mean size was 3.2 μm more than uncoated CFAs. The properties of hydrophobic and dispersive of CFAs particles improved and original activity was reserved after stearic acid coating. The stearic acid was verified as a coupling agent by how much effect it had on the mechanical properties. It showed the elongation at break of PP/EVA/HDPE reinforced with 15 wt% coated CFAs (c-CFAs) was 80.20% and higher than that of the uncoated. The stearic acid treatment of CFAs is a very promising approach to improve the mechanical strength due to the incorporation of stearic acid on the CFAs surface, and hence, further enhances the potential for recycling CFAs as a suitable filler material in polymer composites.

  19. Heat transfer in circulating fluidized bed combustor

    SciTech Connect

    Bucak, O.; Dogan, O.M.; Uysal, B.Z.

    1999-07-01

    The importance of fluidized bed combustion in utilizing the energy of especially low quality coals is widely accepted. Among various fluidized bed combustion technologies, circulating fluidized beds are preferred as a result of the efforts to get higher combustion efficiencies. The aim of the present research was to investigate the applicability of this technology to Turkish lignites. To achieve this object a 6.5 m tall pilot circulating fluidized bed combustor with 155 mm diameter and all the auxiliary equipment were designed, constructed and tested using Seyitomer lignite of 0.9--2.38 mm in size. Heat transfer from the bed to the water cooling jackets was examined to recover the combustion energy. The inside heat transfer coefficient was determined to be around 121 W/m{sup 2} K for the suspension density of 20--55 kg/m{sup 3}. The agreement of the experimental findings with theoretical estimations was also checked. Furthermore, the thermal efficiency of the system for the heat recovered was found to be 63%.

  20. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  1. Evaluation of PCDD/Fs and metals emission from a circulating fluidized bed incinerator co-combusting sewage sludge with coal.

    PubMed

    Zhang, Gang; Hai, Jing; Cheng, Jiang; Cai, Zhiqi; Ren, Mingzhong; Zhang, Sukun; Zhang, Jieru

    2013-01-01

    The emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and heavy metals were evaluated during co-combustion of sewage sludge with coal from a circulating fluidized bed incinerator. The stack gas, slag and fly ash samples were sampled and analyzed. The gas-cleaning system consisted of electrostatic precipitators and a semi-dry scrubber. Results showed that the stack gas and fly ash exhibited mean dioxin levels of 9.4 pg I-TEQ/Nm3 and 11.65 pg I-TEQ/g, respectively, and showed great similarities in congener profiles. By contrast, the slag presented a mean dioxin level of 0.15 pg I-TEQ/g and a remarkable difference in congener profiles compared with those of the stack gas and fly ash. Co-combusting sewage sludge with coal was able to reduce PCDD/Fs emissions significantly in comparison with sewage sludge mono-combustion. The leaching levels of Hg, Pb, Cd, Ni, Cr, Cu, and As in the fly ash and slag were much lower than the limits of the environmental protection standard in China. These suggest that the co-combustion of sewage sludge and coal is an advisable treatment method from an environmental perspective. PMID:23586319

  2. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  3. Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel

    SciTech Connect

    Dr. Wei-Ping Pan; Dr. John T. Riley

    2005-10-10

    Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C

  4. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  5. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology.

    PubMed

    Koukouzas, Nikolaos; Ward, Colin R; Papanikolaou, Dimitra; Li, Zhongsheng; Ketikidis, Chrisovalantis

    2009-09-30

    The chemical and mineralogical composition of fly ash samples collected from laboratory scale circulating fluidised bed (CFB) combustion facility have been investigated. Three fly ashes were collected from the second cyclone in a 50 kW laboratory scale boiler, after the combustion of different solid fuels. Characterisation of the fly ash samples was conducted by means of X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Quantitative analysis of the crystalline (mineral) and amorphous phases in each ash sample was carried out using the Rietveld-based Siroquant system, with an added spike of ZnO to evaluate the amorphous content. SiO(2) is the dominant oxide in the fly ashes, with CaO, Al(2)O(3) and Fe(2)O(3) also present in significant proportions. XRD results show that all three fly ashes contain quartz, anhydrite, hematite, illite and amorphous phases. The minerals calcite, feldspar, lime and periclase are present in ashes derived from Polish coal and/or woodchips. Ash from FBC combustion of a Greek lignite contains abundant illite, whereas illite is present only in minor proportions in the other ash samples. PMID:19410365

  6. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1991-10-29

    This patent describes a vessel. It comprises a fluid bed for continuously incinerating fuel comprising tire segments and the like which comprise metallic wire tramp and for concurrently removing tramp and bed materials at a bottom effluent exit means of the vessel, the vessel further comprising static air distributor means at the periphery of the bed comprising a substantially centrally unobstructed relatively large central region in which the fluid bed and fuel only are disposed and through which bed material and tramp migrate without obstruction to and through the effluent exit means, downwardly and inwardly stepped lower vessel wall means and a plurality of peripherally located centrally directed vertically and horizontally offset spaced air influent means surrounding the central region and associated with the stepped lower vessel wall means by which the bed is supported and fluidized.

  7. Atmospheric fluidized bed combustion advanced concept system

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  8. Predictive models for circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1989-11-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. The purpose of these models is to help American industry, such as Combustion Engineering, design and scale-up CFB combustors that are capable of burning US Eastern high sulfur coals with low SO{sub x} and NO{sub x} emissions. In this report, presented as a technical paper, solids distributions and velocities were computed for a PYROFLOW circulating fluidized bed system. To illustrate the capability of the computer code an example of coal-pyrite separation is included, which was done earlier for a State of Illinois project. 24 refs., 20 figs., 2 tabs.

  9. Fluidized bed combustion of coal

    NASA Astrophysics Data System (ADS)

    Tatebayashi, J.; Okada, Y.; Yano, K.; Takada, T.; Handa, K.

    The effect of various parameters on combustion efficiency, desulfurization efficiency and NO emission in fluidized bed combustion of coal were investigated by using two test combustors whose sectional areas were 200 mm and 500 mm square. It has been revealed that by employing two-stage combustion and setting the primary air ratio, secondary air injection height and other parameters to optimum levels, NO emission can be greatly reduced while barely impairing combustion efficiency or desulfurization efficiency. Also, NO emission of less than 50 ppm and desulfurization efficiency of as high as 93% were achieved. These results have ensured good prospects for the development of a coal combustion boiler system which can satisfy the strictest environmental protection regulations, without installing special desulfurization and de-NO(X) facilities.

  10. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  11. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  12. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  13. Fluidized bed coal combustion reactor

    SciTech Connect

    Moynihan, P.I.; Young, D.L.

    1981-09-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor. Official Gazette of the U.S. Patent and Trademark Office

  14. SUPPORTIVE STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of studies supporting the development of atmospheric and pressurized fluidized-bed combustion (FBC) of coal. It includes laboratory and bench-scale studies to provide needed information on combustion optimization, regeneration process development, solid w...

  15. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  16. Internal circulating fluidized bed incineration system and design algorithm.

    PubMed

    Tian, W D; Wei, X L; Li, J; Sheng, H Z

    2001-04-01

    The internal circulating fluidized bed (ICFB) system is characterized with fast combustion, low emission, uniformity of bed temperature and controllability of combustion process. It is a kind of novel clean combustion system, especially for the low-grade fuels, such as municipal solid waste (MSW). The experimental systems of ICFB with and without combustion were designed and set up in this paper. A series of experiments were carried out for further understanding combustion process and characteristics of several design parameters for MSW. Based on the results, a design routine for the ICFB system was suggested for the calculation of energy balance, airflow rate, heat transfer rate, and geometry arrangement. A test system with ICFB combustor has been set up and the test results show that the design of the ICFB system is successful. PMID:11590739

  17. Refractory experience in circulating fluidized bed combustors, Task 7

    SciTech Connect

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  18. Flow and combustion characteristics of a 2-dimensional spouted bed

    NASA Astrophysics Data System (ADS)

    Sawyer, R. F.; Hart, J. R.; Ohtake, K.

    1982-03-01

    A two dimensional spouted bed laboratory combustor was designed and constructed with the objective of studying the interaction among the gas flow, particle flow, and combustion. The facility, designed for a maximum thermal power of 20 kW, has a quartz front wall providing full optical access to particle flows and combustion processes. The combustor was characterized in terms of pressure, temperature, gas velocity, and particle velocity profiles and operating limits. Initial studies employed premixed propane and air and a fixed bed height, bed material, injector slot width, and combustor geometry. As in previous investigations of axisymmetric spouted beds, the ratio of particle mass circulation rate to jet mass flow rate was observed to be about ten. Combustion increased this ratio by about 10%. A pulsating mode of operation was noted with a characteristic frequency of about 10 Hz, controlled by the interaction of the particle and gas flows.

  19. Pressurized fluidized-bed combustion

    SciTech Connect

    Not Available

    1980-10-01

    The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

  20. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  1. SUPPORT STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of working in support of development studies for atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali m...

  2. Review of fluidized bed combustion technology in the United States

    SciTech Connect

    Krishnan, R.P.; Daw, C.S.; Jones, J.E. Jr.

    1984-01-01

    The United States (US) initiated work in fluidized bed combustion (FBC) in the mid-1960s, with primary emphasis on industrial applications. With passage of the Clean Air Act in 1970, the environmental benefits of the technology soon attracted interest. This provided the impetus for expanded effort focused on the reduced NO/sub x/ emissions resulting from lower combustion temperature and SO/sub 2/ capture by means of chemical reaction with limestone or dolomite in the fluidized bed. The oil embargo in 1973 further stimulated interest in FBC technology. Several manufacturers presently offer atmospheric fluidized bed combustion (AFBC) and circulating fluidized bed combustion (CFBC) units for industrial application in the United States. However, FBC for electric power generation remains in the development and demonstration phase. The Tennessee Valley Authority (TVA) and Electric Power Research Institute (EPRI) are operating a 20-MW AFBC utility pilot plant and are proceeding with plans for a 160-MW(e) demonstration plant with other participants. Research has been under way on pressurized fluidized bed combustion (PFBC) at Grimethorpe in South Yorkshire, England, and within the United States at the Curtiss-Wright Pilot Plant, and at other smaller test facilities. An emerging turbocharged PFBC concept will likely stimulate more near-term interest in PFBC technology for both industrial and utility applications. The major US programs and test facilities are described; remaining technical uncertainties are discussed, and the future outlook for the technology is assessed.

  3. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  4. Control of a Circulating Fluidized Bed

    SciTech Connect

    Shim, Hoowang; Rickards, Gretchen; Famouri, Parviz; Turton, Richard; Sams, W. Neal; Koduro, Praveen; Patankar, Amol; Davari, Assad; Lawson, Larry; Boyle, Edward J.

    2001-11-06

    Two methods for optimally controlling the operation of a circulating fluidized bed are being investigated, neural network control and Kalman filter control. The neural network controls the solids circulation rate by adjusting the flow of move air in the non-mechanical valve. Presented is the method of training the neural network from data generated by the circulating fluidized bed (CFB), the results of a sensitivity study indicating that adjusting the move air can control solids flow, and the results of controlling solids circulation rate. The Kalman filter approach uses a dynamic model and a measurement model of the standpipe section of the CFB. Presented are results showing that a Kalman filter can successfully find the standpipe bed height.

  5. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FLUIDIZED BED COMBUSTION

    EPA Science Inventory

    The report documents the results of an assessment of fluidized bed combustors (FBCs) to minimize air emissions from municipal waste combustors (MWCs). Objectives of the assessment were to identify the population of existing and planned refuse fired FBC facilities in the U.S., exa...

  6. Pyrolysis reactor and fluidized bed combustion chamber

    DOEpatents

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  7. Atmospheric fluidized bed combustion advanced concept system. Final report

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  8. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  9. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.

    PubMed

    Varol, Murat; Atimtay, Aysel T

    2015-12-01

    This study aimed to investigate the effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. The tests included co-combustion of 50-50% by wt. mixtures of Bursa-Orhaneli lignite+olive cake and Denizli-Kale lignite+olive cake, with and without limestone addition. Ash samples were subjected to XRF, XRD and SEM/EDS analyses. While MgO was high in the bottom ash for Bursa-Orhaneli lignite and olive cake mixture, Al2O3 was high for Denizli-Kale lignite and olive cake mixture. Due to high Al2O3 content, Muscovite was the dominant phase in the bottom ash of Denizli Kale. CaO in the bottom ash has increased for both fuel mixtures due to limestone addition. K was in Arcanite phase in the co-combustion test of Bursa/Orhaneli lignite and olive cake, however, it mostly appeared in Potassium Calcium Sulfate phase with limestone addition. PMID:26407346

  10. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  11. Burning waste with FBC. [Fluidized Bed Combustion

    SciTech Connect

    Salaff, S.

    1991-11-01

    This article examines fluidized bed combustion as a method of choice for disposing for waste economically and within the bounds of rigid environmental standards. The topics discussed in the article include technology scaleup, wood and fossil wastes, municipal and hospital wastes, fuel flexibility, and a sidebar on the fluidized bed combustion technology. The waste fuels of major interest are various low grade liquid and solid residues from the coal, oil, forest products and automotive industries, as well as post-harvest biomass and municipal refuse.

  12. Recycle device for circulating fluidized bed boilers

    SciTech Connect

    Wang, Q.; Luo, Z.Y.; Li, X.T.; Cheng, F.; Ni, M.J.; Cen, K.

    1997-12-31

    Because the pressure at the outlet of a separator is lower than that at an inlet of a furnace, a recycle device is one of the most important components of circulating fluidized bed boilers for handling circulating ash. Although it has been extensively used in circulating fluidized bed boilers, its properties have not yet been well understood. Many experiments have been conducted for a kind of recycle device and the operational properties were obtained. The experimental results show that the structure of the recycle device and aeration conditions have a strong influence on the solid flow rate and operational stability of the recycle device. The authors will discuss the effect of the major parameters, such as opening and aeration air at different locations, on solids flow rate. The operational considerations will be given in this paper.

  13. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    SciTech Connect

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  14. Fluidized-bed combustion reduces atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Jonke, A. A.

    1972-01-01

    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  15. FBC: Gaining acceptance. [Fluidized Bed Combustion

    SciTech Connect

    Gawlicki, S.M.

    1991-04-01

    This article addresses the growing acceptance of fluidized bed combustion as a technology appropriate for use in dual-purpose power plants. The article reviews projects for cogeneration in California, a demonstration plant sponsored by the US Department of Energy in Ohio (this plant also incorporates combined cycle operation), and an electric power/greenhouse project in Pennsylvania.

  16. Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Lit, Q. H.; Zhang, Y. G.; Meng, A. H.

    The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.

  17. Cluster Dynamics in a Circulating Fluidized Bed

    SciTech Connect

    Guenther, C.P.; Breault, R.W.

    2006-11-01

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  18. Demonstration of an advanced circulation fludized bed coal combustor phase 1: Cold model study. Final report

    SciTech Connect

    Govind, R.

    1993-03-20

    It was found that there was a strong dependence of the density profile on the secondary air injection location and that there was a pronounced solid separation from the conveying gas, due to the swirl motion. Furthermore, the swirl motion generated strong internal circulation patterns and higher slip velocities than in the case of nonswirl motion as in an ordinary circulating fluidized bed. Radial solids flux profiles were measured at different axial locations. The general radial profile in a swirling circulating fluidized bed indicated an increased downward flow of solids near the bed walls, and strong variations in radial profiles along the axial height. For swirl numbers less than 0.9, which is typical for swirling circulating fluidized beds, there is no significant increase in erosion due to swirl motion inside the bed. Pending further investigation of swirl motion with combustion, at least from our cold model studies, no disadvantages due to the introduction of swirl motion were discovered.

  19. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  20. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  1. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  2. Transients in a circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  3. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  4. Predictive models of circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  5. Hydrodynamic aspects of a circulating fluidized bed with internals

    SciTech Connect

    Balasubramanian, N.; Srinivasakannan, C.

    1998-06-01

    An attempt is made to examine the influence of internals (baffles) in the riser of the circulating fluidized bed. Experiments are conducted in a circulating fluidized bed, having perforated plates with different free areas. It is noticed from the present work that a circulating fluidized bed having 45% free area gives uniform solids concentration and pressure drop along the length of the riser. In addition to the uniformity, the circulating fluidized bed with internals gives higher pressure drop (solids concentration) compared to a conventional circulating fluidized bed. For internals having 67.6% free area the pressure drop is higher at the lower portion of the riser compared to the upper portion, similar to a conventional circulating fluidized bed. For 30% free area plates the solids concentration varies axially within the stage and remains uniform from stage to stage.

  6. Analysis for radiative heat transfer in a circulating fluidized bed

    SciTech Connect

    Steward, F.R.; Couturier, M.F.; Poolpol, S.

    1995-12-31

    The radiative heat transfer from the particles within a circulating fluidized bed has been determined for a number of different assumptions. Based on temperature profiles measured in an operating circulating fluidized bed burning coal, a procedure for predicting the radiative transfer from the solid particles to a cold wall is recommended. The radiative transfer from the solid particles to a cold wall makes up approximately 50% of the total heat transfer to the wall in a circulating fluidized bed combustor.

  7. Two-dimensional model for circulating fluidized-bed reactors

    SciTech Connect

    Schoenfelder, H.; Kruse, M.; Werther, J.

    1996-07-01

    Circulating fluidized bed reactors are widely used for the combustion of coal in power stations as well as for the cracking of heavy oil in the petroleum industry. A two-dimensional reactor model for circulating fluidized beds (CFB) was studied based on the assumption that at every location within the riser, a descending dense phase and a rising lean phase coexist. Fluid mechanical variables may be calculated from one measured radial solids flux profile (upward and downward). The internal mass-transfer behavior is described on the basis of tracer gas experiments. The CFB reactor model was tested against data from ozone decomposition experiments in a CFB cold flow model (15.6-m height, 0.4-m ID) operated in the ranges 2.5--4.5 m/s and 9--45 kg/(m{sup 2}{center_dot}s) of superficial gas velocity and solids mass flux, respectively. Based on effective reaction rate constants determined from the ozone exit concentration, the model was used to predict the spatial reactant distribution within the reactor. Model predictions agreed well with measurements.

  8. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    SciTech Connect

    Not Available

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  9. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    SciTech Connect

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  10. Fluidized-bed calciner with combustion nozzle and shroud

    DOEpatents

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  11. Generation and reduction of nitrogen oxides in firing different kinds of fuel in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Munts, V. A.; Munts, Yu. G.; Baskakov, A. P.; Proshin, A. S.

    2013-11-01

    The processes through which nitrogen oxides are generated and reduced in the course of firing different kinds of fuel in a circulating fluidized bed are addressed. All experimental studies were carried by the authors on their own laboratory installations. To construct a model simulating the generation of nitrogen oxides, the fuel combustion process in a fluidized bed was subdivided into two stages: combustion of volatiles and combustion of coke residue. The processes through which nitrogen oxides are generated and reduced under the conditions of firing fuel with shortage of oxygen (which is one of efficient methods for reducing nitrogen oxide emissions in firing fuel in a fluidized bed) are considered.

  12. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  13. CHARACTERIZATION OF SOLID RESIDUES FROM FLUIDIZED-BED COMBUSTION UNITS

    EPA Science Inventory

    The report gives results of physical and chemical characterizations of samples of spent bed material and of flyash from three experimental atmospheric and pressurized fluidized-bed combustion (FBC) units. It also gives results of characterization of samples of bed material which ...

  14. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  15. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    PubMed

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected. PMID:22840499

  16. Methods of forming a fluidized bed of circulating particles

    SciTech Connect

    Marshall, Douglas W.

    2011-05-24

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  17. Heat transfer in pressurized circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1997-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds (CFBs) operated at almost atmospheric pressure depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. No influence of the superficial gas velocity adjusted is present. Consequently, the wall-to-suspension heat transfer coefficient in the form of the Nusselt number can be described by the Archimedes number of the gas-solid-system and the pressure drop number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. However, with pressurized CFBs an influence of the superficial gas velocity on the wall-to-suspension heat transfer can be observed. Normalizing the superficial gas velocity in the form of the particle Froude number, two cases for the heat transfer in pressurized CFBs can be detected: with small particle Froude numbers (smaller than four) the same flow behavior and consequently the same heat transfer correlation is valid as it is for CFBs operated at almost atmospheric conditions; and with high particle Froude numbers (for example higher than four) the flow behavior immediately near the heat exchanger surface (CFB wall) can change. Instead of curtains of solids falling down with almost atmospheric pressure swirls of gas and solids can occur in the vicinity of the CFB wall when the static pressure is increased. With the change of the flow pattern near the CFB wall, i.e., the heat exchanger surface, a change of the heat transfer coefficient takes place. For the same Archimedes number, i.e., the same gas-solid system, and the same pressure drop number, i.e., the same cross-sectional average solids concentration, the Nusselt number, i.e., the heat transfer coefficient, increases when the flow pattern near the CFB wall changes from the curtain-type flow to that of the swirl-type flow. From experimentally obtained data in a cold running CFB a very simple correlation was

  18. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.

    PubMed

    Yanguo Zhang; Qinghai Li; Aihong Meng; Changhe Chen

    2011-03-01

    This paper presents an experimental study of carbon monoxide (CO) formation and emissions in both grate drying bed incinerators and circulating fluidized bed (CFB) incinerators to simulate the two key parts of a combined grate and circulating fluidized bed (grate-CFB) incinerator in order to investigate pollutant emission control in municipal solid waste (MSW) combustion that occurs in a grate-CFB incinerator utilizing a patented technology. Polyvinyl chloride, polystyrene, kitchen waste, paper, textile, etc. were chosen to simulate the MSW. The effects of temperature, air staging, and moisture on the CO formation and emissions were analysed for both the grate drying bed combustion and the CFB combustion. In the grate drying bed, the low temperatures increased the carbon to CO conversion rate which also increased slightly with the moisture content. Industrial field tests in a commercial grate-CFB incinerator showed that the CO concentration at the grate drying bed exit was very high and decreased along furnace height. The carbon to CO conversion rates were 0-20% for the grate drying bed which exceeded the range of 0.8-16% measured in a grate drying bed exit of the commercial grate-CFB incinerator tests. In the commercial grate-CFB incinerator tests, at excess air ratios ranging from 1.5-2.0 or more, the CO emissions decreased to a low and stable level, whose corresponding carbon to CO conversion rates were far lower than 0-10%. The low CO emission is one of the factors enabling the polychlorinated dibenzodioxin/polychlorinated dibenzofuran emissions to satisfy the Chinese national regulations. PMID:20421246

  19. MONITORING STRATEGIES FOR FLUIDIZED BED COMBUSTION COAL PLANTS

    EPA Science Inventory

    Air and water monitoring strategies for commercial-size Fluidized Bed Combustion (FBC) coal plants are presented. This is one of five reports developing air and water monitoring strategies for advanced coal combustion (FBC), coal conversion (coal gasification and liquefaction), a...

  20. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels

    SciTech Connect

    Afsin Gungor

    2009-05-15

    Nitrogen oxides are a major environmental pollutant resulting from combustion. This paper presents a modeling study of pollutant NOx emission resulting from low-grade fuel combustion in a circulating fluidized bed. The simulation model accounts for the axial and radial distribution of NOx emission in a circulating fluidized bed (CFB). The model results are compared with and validated against experimental data both for small-size and industrial-size CFBs that use different types of low-grade fuels given in the literature. The present study proves that CFB combustion demonstrated by both experimental data and model predictions produces low and acceptable levels of NOx emissions resulting from the combustion of low-grade fuels. Developed model can also investigate the effects of different operational parameters on overall NOx emission. As a result of this investigation, both experimental data and model predictions show that NOx emission increases with the bed temperature but decreases with excess air if other parameters are kept unchanged. 37 refs., 5 figs., 5 tabs.

  1. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.

    PubMed

    Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti

    2002-01-01

    Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process. PMID:12099502

  2. Staged fluidized-bed combustion and filter system

    DOEpatents

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  3. The design of circulating fluid bed boilers for utility power generation

    SciTech Connect

    Maitland, J.; Skowyra, R.

    1997-12-31

    Fluid bed combustion technology has been utilized in a broad range of industries to produce steam and electricity. The advantages of circulating fluid bed technology, including the ability to use both conventional and waste fuels in an environmentally sound combustion process, have been the driving forces for the selection of CFB by numerous companies. An important trend in the market development for CFB has been increased interest in the scale-up of units to larger, utility size applications. The environmental and fuel flexibility features are also of strong interest for companies looking for 150--400 MW output. The worldwide private power industry has utilized fluidized bed combustion as one of its options for power development. ABB Combustion Engineering has been a leader in the design of these larger units. This paper will provide specific details on the design and operation of large scale fluidized bed for power generation, along with a review of the impact of different fuels on unit design. The authors will include their perspective on the future for advanced CFB designs also.

  4. Investigation on Agropellet Combustion in the Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Isemin, R. L.; Konayahin, V. V.; Kuzmin, S. N.; Zorin, A. T.; Mikhalev, A. V.

    Agricultural wastes (straw, sunflower or millet husk, etc.) are difficult to use as fuel because of low bulk density and relatively big ash content with a low melting point. It is possible to produce agropellets of agricultural wastes which are suggested to combust in a fluidized bed of pellets alone, their char particles and ash. The characteristics of the process of fluidization of agropellets are investigated at room temperature. The experiments on agropellet combustion in a fluidized bed are carried out in an experimental set-up. The results of the experiments have shown that in such a bed the pellets produced of straw and millet husk combust with the same rate as those of wood though the latter contain 8.76 - 19.4 times less ash. The duration of combustion of the same portion of straw pellets in a fluidized bed is 3.74 - 7.01 times less than the duration of combustion of cut straw in a fixed bed. Besides, the movement of agropellets prevents agglomeration and slagging of a boiler furnace.

  5. Kinetics of fluidized bed combustion of wood pellets

    SciTech Connect

    Leckner, B.; Hansson, K.M.; Tullin, C.; Borodulya, A.V.; Dikalenko, V.I.; Palchonok, G.I.

    1999-07-01

    Devolatilization and char combustion of a single wood pellet in a fluidized bed has been studied. The effect of operation parameters (bed temperature, bed particle size, oxygen concentration) and pellet characteristics has been investigated. A simplified analytical model of heat-transfer controlled pyrolysis has been developed to interpret the measured volatiles release time. The model predictions are in a good agreement with the experimental data, provided that the initial physical properties of the pellet are used. The model can be used to estimate the devolatilization times in other combustion systems. Kinetic parameters of char combustion are obtained, based on the measured burnout times and simple model considerations. The physical properties of wood pellets need further study.

  6. Direct combustion of olive cake using fluidized bed combustor

    SciTech Connect

    Khraisha, Y.H.; Hamdan, M.A.; Qalalweh, H.S.

    1999-05-01

    A fluidized bed combustor of 0.146 m diameter and 1 m length was fabricated from stainless steel to burn olive cake. Initially, and in order to obtain fluidization, the system was operated under cold conditions using a sand with particle size in the range of 500 to 710 microns. The continuous combustion experiments were carried out under controlled conditions, such that the effects of bed temperature, olive cake feed rate, fluidization velocity, and particle size on combustion efficiency and flue gas composition were investigated. It was found that the combustion efficiency decreases with the bed temperature, fluidization velocity, and the feed rate, while it increases with the particle size used. Further, the gas products analysis carried out using a gas chromatography analyzer have shown a nonmeasured amount of SO{sub 2}, and small amounts of CO. Finally, the temperature distribution along the bed indicated that the temperature throughout the bed is fairly uniform, demonstrating a good mixing of reactants, which is important for efficient combustion.

  7. Improvement of continuous solid circulation rate measurement in a cold flow circulating fluidized bed

    SciTech Connect

    Ludlow, J.C.; Monazam, E.R.; Shadle, L.J.

    2008-03-10

    A method is described to independently estimate the solids velocity and voidage in the moving bed portion of the NETL circulating fluidized bed (CFB). These quantities are used by a device that continuously measures the solids circulation rate. The device is based on the use of a rotating Spiral vane installed in the standpipe of a circulating fluid bed (CFB). Correlations were developed from transient experiments and steady state mass balance data to correct the solids velocity and solids fraction in the standpipe as a function of standpipe aeration rate. A set of statisticallydesigned experiments was used to establish the need for these corrections and to verify the accuracy of solid circulation rate measurements after correction. The differences between the original and corrected measurements were quantitatively compared.

  8. Operating experience of 75 t/h two stage circulating fluidized bed boiler

    SciTech Connect

    Tang, M.S.; Li, X.; Liu, D.C.

    1999-07-01

    Two 2-stage circulating fluidized bed combustion boilers have been put into operation in the Pacific Ocean Cogeneration Company for 3 years. After being put into operation these boilers had the following problems: Steam Capacity was less than the design value; Fly ash collecting efficiency of the two stage separators was lower, resulting in lower combustion efficiency and higher coal consumption; Refractory bricks of the furnace roof frequently fell off; and Bed temperature at the low part of the combustion chamber was higher than 1,050 C, resulting in lower de-SO{sub x} efficiency. In order to improve combustion efficiency, save fuel and prolong the duration of runs, the following technology improvements have been adopted: Replacing the second stage louver separator with two horizontal louver cyclone separators. This improved the fly ash collecting efficiency; and An additional membrane wall is placed at the furnace roof to support the refractory bricks, prevent refractory bricks from falling off, and prolong the duration of runs. After these improvements, the boiler can run stably at design conditions and the boiler efficiency reaches 80.1%, 5 percentage points higher than before; the bed temperature can be controlled in the range of 900{approximately}950 C; the refractory bricks of the furnace roof have not fallen off.

  9. SUPPORT STUDIES IN FLUIDIZED-BED COMBUSTION, 1978 ANNUAL REPORT

    EPA Science Inventory

    The report gives results of laboratory- and process-scale EPA studies supporting the national development of atmospheric and pressurized fluidized-bed combustion (PFBC) of coal. Program objectives are: (1) to develop basic information needed to optimize the use of limestone for S...

  10. Combustion of oil palm solid wastes in fluidized bed combustor

    SciTech Connect

    Shamsuddin, A.H.; Sopian, K.

    1995-12-31

    The palm oil industry of Malaysia is the largest in the world producing about 55% of the world production. The industry has approximately 270 mills throughout the country with processing sizes ranging from 10 tonnes/hour to 120 tonnes/hour. All mills produce solid wastes, about 50% of the fresh fruit bunches in terms of weight. The solid wastes produced are in the form of empty fruit bunches, fibers and shells. These wastes have high energy value, ranging from 14 to 18 MJ/kg. The industry is currently self-sufficient in terms of energy. Fibers and shell wastes are being used as boiler fuel to raise steam for electrical power production and process steam. However, the combustion technology currently being employed is obsolete with low efficiency and polluting. A fluidized bed combustor pilot plant is designed and constructed at Combustion Research Laboratory, Universiti Kebangsaan Malaysia. The combustor is made up of 600 mm {times} 900 mm rectangular bed filled with sand up to 400 mm height, static. A bank of heat transfer tubes is imbedded in the bed, designed to absorb 50% of heat released by the fuel in the bed. The remaining heat is transferred in tubes placed on the wall of the freeboard area. Experimental studies were carried out in the pilot plant using palm oil solid wastes. The combustion temperatures were maintained in the range 800--900 C. The performance of the combustor was evaluated in terms of combustion and boiler efficiencies and flue gas emissions monitored.

  11. Decontamination of combustion gases in fluidized bed incinerators

    DOEpatents

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  12. Fluidized bed combustion tested for Turkish oil shales

    SciTech Connect

    Not Available

    1986-09-01

    About 7.5 billion tons of lignite and 5 billion tons of oil shale deposits are potential energy sources and therefore potential air pollution sources for Turkey. The low calorific value, and high ash and sulfur contents of these fuels render fluidized bed combustion a promising method of utilization. A fluidized bed combustion system with a nominal capacity of 418,000 to 627,000 kilojoules per hour for producing hot water has been designed and constructed at Istanbul Technical University. This paper lists the important characteristics of the main Turkish lignite and oil shale reserves, and the specifications of the pilot-scale fluidized-bed combustor designed to burn these fuels.

  13. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  14. Multiple model identification of a cold flow circulating fluidized bed

    SciTech Connect

    Panday, Rupen; Famouri, P.; Woerner, B.D.; Turton, R.; •Ludlow, J.C.; Shadle, L.J.; Boyle, E.J.

    2008-05-13

    Solids circulation rate is an important parameter that is essential to the control and improved performance of a circulating fluidized bed system. The present work focuses on the identification of a cold flow circulating fluidized bed using a multiple model identification technique that considers the given set-up as a nonlinear dynamic system and predicts the solids circulation rate as a function of riser aeration, move air flow rate, and total riser pressure drop. The predictor model obtained from this technique is trained on glass beads data sets in which riser aeration and move air flow are varied randomly one at a time. The global linear state space model obtained from the N4SID algorithm is trained on the same data set and the prediction results of solids circulation rate from both these algorithms are tested against data obtained at operating conditions different from the training data. The comparison between the two methods shows that the prediction results obtained from the multiple model technique are better than those obtained from the global linear model. The number of local models is increased from two to five and two third order state space models are sufficient for the present sets of data.

  15. Bed inventory overturn in a circulating fluid bed riser with pant-leg structure

    SciTech Connect

    Jinjing Li; Wei Wang; Hairui Yang; Junfu Lv; Guangxi Yue

    2009-05-15

    The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure. 15 refs., 10 figs., 1 tab.

  16. Pulverized coal vs. circulating fluidized bed; An economic comparison

    SciTech Connect

    John, R.F. )

    1989-01-01

    As the power industry looks to the 1990s for expanded steam generation capacity, boiler owners will continue on their long-standing assignment to evaluate and select the best, lowest cost alternative to meet their energy needs. For coal-fired plants, this evaluation process includes pulverized coal-fired boilers (PC) and circulating fluidized bed boilers (CFB). The cost difference between these products is site specific and depends on several variables, including: boiler size, pressure, and temperature; operating variables, such as the costs for fuel, auxiliary power, SO{sub 2} reagent, and ash disposal; capital cost; and financial variables, such as evaluation period and interest rate. This paper provides a technical and economic comparison between a pulverized coal-fired boiler and circulating fluidized bed boiler.

  17. Detachment of multi species biofilm in circulating fluidized bed bioreactor.

    PubMed

    Patel, Ajay; Nakhla, George; Zhu, Jingxu

    2005-11-20

    In this study, the detachment rates of various microbial species from the aerobic and anoxic biofilms in a circulating fluidized bed bioreactor (CFBB) with two entirely separate aerobic and anoxic beds were investigated. Overall detachment rate coefficients for biomass, determined on the basis of volatile suspended solids (VSS), glucose and protein as well as for specific microbial groups, i.e., for nitrifiers, denitrifiers, and phosphorous accumulating organisms (PAOs), were established. Biomass detachment rates were found to increase with biomass attachment on carrier media in both beds. The detachment rate coefficients based on VSS were significantly affected by shear stress, whereas for protein, glucose and specific microbial groups, no significant effect of shear stress was observed. High detachment rates were observed for the more porous biofilm structure. The presence of nitrifiers in the anoxic biofilm and denitrifiers in the aerobic biofilm was established by the specific activity measurements. Detachment rates of PAOs in aerobic and anoxic biofilms were evaluated. PMID:16028296

  18. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  19. Regeneration of lime from sulfates for fluidized-bed combustion

    DOEpatents

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  20. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOEpatents

    Gall, Robert L.

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  1. Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  2. Pressurized Fluidized Bed Combustion Second-Generation System Research and Development

    SciTech Connect

    A. Robertson; D. Horazak; R. Newby; H. Goldstein

    2002-11-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

  3. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-04-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

  4. Research on carbon content in fly ash from circulating fluidized bed boilers

    SciTech Connect

    Xianbin Xiao; Hairui Yang; Hai Zhang; Junfu Lu; Guangxi Yue

    2005-08-01

    The carbon content in the fly ash from most Chinese circulating fluidized bed (CFB) boilers is much higher than expected, which directly influences the combustion efficiency. In the present paper, carbon burnout was investigated in both field tests and laboratory experiments. The effect of coal property, operation condition, gas-solid mixing, char deactivation, residence time, and cyclone performance are analyzed seriatim based on a large amount of experimental results. A coal index is proposed to describe the coal rank, having a strong effect on the char burnout. Bad gas-solid mixing in the furnace is another important reason of the higher carbon content in the fly ash. Some chars in the fly ash are deactivated during combustion of large coal particles and have very low carbon reactivity. Several suggestions are made about design, operation, and modification to reduce the carbon content in the fly ash. 14 refs., 14 figs., 1 tab.

  5. Task 3.8 - pressurized fluidized-bed combustion

    SciTech Connect

    1995-03-01

    The focus of this work on pressurized fluidized-bed combustion (PFBC) is the development of sorbents for in-bed alkali control. The goal is to generate fundamental process information for development of a second-generation PFBC. Immediate objectives focus on the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals. The studies reported here focus on emission control strategies applied in the bed. Data from shakedown testing, alkali sampling, sulfur sorbent performance tests, and refuse-derived fuel (RDF) and lignite combustion tests are presented in detail. Initial results from the characterization of alkali gettering indicate that in-bed getters can remove a significant amount of alkali from the bed. Using kaolin as a sorbent, sodium levels in the flue gas were reduced from 3.6 ppm to less than 0.22 ppm. Sulfur was also reduced by 60% using the kaolin sorbent. Preliminary sulfur sorbent testing, which was designed to develop a reliable technique to predice sorbent performance, indicate that although the total sulfur capture is significantly lower than that observed in a full-scale PFBC, the emission trends are similar. RDF and RDF-lignite fuels had combustion efficiencies exceeding 99.0% in all test cases. Sulfur dioxide emission was significantly lower for the RDF fuels than for lignite fuel alone. Nitrogen oxide emission was also lower for the RDF-based fuels than for the lignite fuel. Both emission gases were well below current regulatory limits. Carbon monoxide and hydrocarbon emissions appeared to be slightly higher for the fuels containing RDF, but were below 9 ppm for the worst case. Analysis of volatile organic compound emission does not indicate an emission problem for these fuels. Chromium appears to be the only RCRA metal that might present some disposal problem; however, processing of the RDF with the wet resource recovery method should reduce chromium levels. 2 refs., 13 figs., 15 tabs.

  6. Physicochemical characterizations of limestone for fluidized-bed coal combustion

    SciTech Connect

    Fuller, E.L. Jr.; Yoos, T.R. III; Walia, D.S.

    1981-05-01

    This study is an investigation of the physicochemical characteristics of three limestone samples, Quincy limestone (-20 + 60), Franklin limestone (-12 + 30), and Franklin limestone (-6 + 16), currently being tested at Oak Ridge National Laboratory for use in a fluidized-bed coal combustion unit. By correlating the chemistry, mineralogy, and surface area of these samples with empirical data obtained at Argonne National Laboratory, the sulfur capture ability and performance of these limestones can be loosely predicted. X-ray fluorescence and neutron activation analysis revealed a very high calcium content and very low concentrations of other elements in the three samples. X-ray diffraction patterns and petrographic examination of the limestone grains detected essentially no dolomite in the Quincy limestone or the fine Franklin limestone samples. The coarse Franklin limestone sample showed dolomite to be present in varying amounts up to maximum of 2.75%. Limited surface chemistry investigations of the samples were undertaken. Limestone and dolostone resources of the Tennessee Valley Authority region are widespread and abundant, and judged sufficient to meet industrial demand for many years. No problems are anticipated in securing limestone or dolostone supplies for a commercial fluidized-bed combustion plant in the Tennessee Valley Authority region. Transportation facilities and costs for limestone or dolostone will influence the siting of such a commercial fluidized-bed combustion plant. The most promising location in the Tennessee Valley Authority region at this time is Paducah, Kentucky.

  7. Dynamic modeling for simulation and control of a circulating fluidized-bed combustor

    SciTech Connect

    Muir, J.R.; Brereton, C.; Grace, J.R.; Lim, C.J.

    1997-05-01

    A dynamic model has been developed to predict the transient behavior of the temperature, the heat removal rate by the in-bed heat exchanger, and the flue-gas oxygen concentration for a circulating fluidized-bed (CFB) combustor. The model was incorporated into a control simulator to reproduce the combustion process within the overall program. The simulator predicts the behavior of the combustor under manual or automatic control to allow testing of control strategies. The model is validated by comparison with step-response tests carried out on a pilot CFB combustor. Discrepancies are attributable to unmodeled disturbances. Further validation, necessary to ensure the applicability of the simulator to control development, is provided by comparing control models identified experimentally using the pilot CFB to those obtained by simulation. Favorable comparison suggests that the dynamic model is suitable for use in control simulation.

  8. Colorado-Ute Nucla Station Circulating-Fluidized-Bed (CFB) demonstration

    SciTech Connect

    Not Available

    1991-09-01

    An integral part of the atmospheric fluidized-bed combustion (AFBC) development program at EPRI has been support for the demonstration of AFBC technology on a utility scale, including the Colorado-Ute Nucla 110-MW circulating-fluidized-bed (CFB) demonstration plant. The objective of this demonstration was to bridge the gap between industrial and utility CFB applications and to determine the operability and performance potential of CFB technology, Test Program Preparation, volume 1 of this report, describes the activities and resources required to successfully develop a detailed test program and presents the results of this preparation phase. Test Program Results, volume 2 of this report, will present the results of the test program and provide an assessment of CFB technology. 1 ref., 64 figs., 28 tabs.

  9. Technical advances and new opportunities for fluidized bed combustion

    SciTech Connect

    Alliston, M.G.; Kokko, A.; Martin, B.G.; Olofsson, J.

    1997-12-31

    This paper outlines opportunities for new circulating fluidized bed (CFB) boilers, technical considerations in selecting a fluidized bed boiler, and CFB boiler configuration types and sizes. New opportunities for CFBs include fuel opportunities from coke, mine mouth coals, and waste products, and boiler application opportunities in industrial cogeneration, repowering, and developing nations. Technical considerations discussed for boiler selection are fuel flexibility and environmental aspects. Three boiler configurations are briefly described: (1) water-cooled cyclone with water-cooled loopseal, (2) integral cylindrical cyclone and loopseal, and (3) Cylindrical multi-inlet cyclone. CFB scale-up is also briefly discussed. 3 refs., 3 figs.

  10. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    NASA Astrophysics Data System (ADS)

    Błaszczuk, Artur

    2015-09-01

    This paper focuses on assessment of the effect of flue gas recirculation (FGR) on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB) combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater) and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  11. Combustion of waste fuels in a fluidized-bed boiler

    SciTech Connect

    Zylkowski, J.; Ehrlich, S.

    1983-01-01

    This paper reports on a project whose objectives are to determine the impact of the waste fuels on Atmospheric Fluidized Bed Combustion (AFBC) operating procedures, boiler performance, and emissions and to assess the potential for fuel-specific operating problems. The low-grade waste fuels investigated are hogged railroad ties, shredded rubber tires, peat, refuse-derived fuel, and one or more agricultiral wastes. The Northern States Power (NSP) Company converted their French Island Unit No. 2 stoker-fired boiler to a fluidized-bed combustor designed to burn wood waste. NSP and EPRI are investigating cofiring other waste fuels with wood waste. Topics considered include fluidized-bed boiler conversion, fuel resources, economic justification, environmental considerations, the wood-handling system, an auxiliary fuel system, the air quality control system, ash handling and disposal, and the alternate fuels test program.

  12. Metallic species derived from fluidized bed coal combustion. [59 references

    SciTech Connect

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  13. Cold-Flow Circulating Fluidized-Bed Identification

    SciTech Connect

    Parviz Famouri

    2005-07-01

    In a variety of industrial applications, the use of a circulating fluidized bed (CFB) provides various advantages, such as reducing environmental pollution and increasing process efficiency. The application of circulating fluidized bed technology contributes to the improvement of gas-solid contact, reduction of the cross-sectional area with the use of higher superficial velocities, the use of the solids circulation rate as an additional control variable, and superior radial mixing, Grace et al. [1]. In order to improve raw material usage and utility consumption, optimization and control of CFB is very important, and an accurate, real time model is required to describe and quantify the process. Currently there is no accepted way to construct a reliable model for such a complex CFB system using traditional methods, especially at the pilot or industrial scale. Three major obstacles in characterizing the system are: 1) chaotic nature of the system; 2) non-linearity of the system, and 3) number of immeasurable unknowns internal to the system,[2]. Advanced control theories and methods have the ability to characterize the system, and can overcome all three of these obstacles. These methods will be discussed in this report.

  14. Use potential of ash from circulating pressurized fluidized bed combustors using low-sulfur subbituminous coal

    SciTech Connect

    Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Young, L.J.; Ashbaugh, M.B.; Wheeldon, J.

    1995-12-31

    The commercial introduction of pressurized fluidized bed combustion (PFBC) has spurred evaluation of ash management options for this technology. The unique operating characteristics of PFBC compared to atmospheric fluidized bed combustion (AFBC) units indicates that PFBC ash will exhibit unique chemical and physical characteristics, and hence, unique ash use opportunities. Western Research Institute (WRI) has initiated a study of the use properties of PFBC ashes involving both an assessment of the potential markets, as well as a technical feasibility study of specific use options. The market assessment is designed to address six applications including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) bricks and blocks, (5) synthetic aggregate, and (6) agricultural/soil amendment applications. Ashes from the Ahlstrom circulating PFBC pilot facility in Karhula, Finland, combusting western US low-sulfur subbituminous coal with limestone sorbent, were made available for the technical feasibility study. The technical feasibility study examined the use of PFBC ash in construction related applications, including its use as a supplemental cementing material in concrete, fills and embankments, soil stabilization, and synthetic aggregate production. In addition, testing was conducted to determine the technical feasibility of PFBC ash as a soil amendment for agriculture and reclamation applications.

  15. Wall-to-suspension heat transfer in circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1995-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. Experimental investigations of circulating fluidized beds of low dimensionless pressure gradients with different solid particles like bronze, glass and polystyrene at ambient temperatures showed no influence of the conductivity and the heat capacity of the solids on the heat transfer coefficient. Consequently the heat transfer coefficient in the form of the dimensionless Nusselt number can be described by the dimensionless numbers which characterize the gas-solid-flow near the wall. These numbers are the Archimedes number and the pressure drop-number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. With the aid of a model of segregated vertical gas-solid flow, the flow pattern in the wall region can be calculated and thus the wall heat transfer which depends only on heat conduction in the gas and on the convective heat transfer by the gas. With elevated suspension temperatures, radiation contributes additionally to the heat transfer. When the solids concentration is low, the effect of the radiation on the heat transfer is high. Increasing solids concentration results in a decrease of the radiation effect due to the wall being shielded from the radiation of the hot particles in the core region by the cold solids clusters moving down the wall. A simple correlation is presented for calculating the wall-to-suspension heat transfer in circulating fluidized beds.

  16. Phase shift method to estimate solids circulation rate in circulating fluidized beds

    SciTech Connect

    Ludlow, James Christopher; Panday, Rupen; Shadle, Lawrence J.

    2013-01-01

    While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in the return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.

  17. Prediction of conversion yield in circulating fluidised bed combustors using a two-dimensional population balance - article no. A76

    SciTech Connect

    Nicolella, C.; Pratola, F.

    2008-07-01

    In combustion applications of fluidised bed reactors, the solid particles are subject to heterogeneous gas-solid chemical reactions, abrasive attrition and other thermal and mechanical processes. The resulting changes in the overall solid phase significantly influence reactor performance. This paper illustrates a particle balance model which accommodates particle distributions dependent on both size and density as well as populations consisting of multiple solids. The proposed model is tested using literature data on coal conversion obtained in a pilot scale circulating fluidised bed combustor. Model simulations give a fair representation of experimental results for different coal ranks and in a range of operating conditions, including varying temperature of combustion, excess of oxygen and superficial gas velocity in the bed.

  18. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    SciTech Connect

    Not Available

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  19. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed

    SciTech Connect

    Karin Lundholm; Anders Nordin; Marcus Oehman; Dan Bostroem

    2005-12-01

    Fluidized bed combustion is an energy conversion technology that is very suitable for biomass combustion because of its fuel flexibility and low process temperatures. However, agglomeration of bed material may cause severe operating problems. To prevent or at least reduce this, peat has been suggested as an additive to the main fuels. Nevertheless, the characteristics of peat fuels vary and there is limited information of the effect of different peat fuels and of the mechanisms behind the agglomeration prevention. The objectives of the present work were therefore to: (I) quantify the potential positive effect by co-combustion peat with forest fuels in terms of initial agglomeration temperatures; (ii) determine the amount of peat fuel that is needed to significantly reduce the agglomeration tendencies; and, if possible, (iii) elucidate the governing mechanisms. The results showed that all peat fuels prevented agglomeration in the studied interval of 760-1020{sup o}C and even as little as 5% peat fuel was found to have significant effects. The results also indicated that the mechanism of the agglomeration prevention varies between different peat fuels. Possible mechanisms are the minerals in the peat fuel retain alkali, which then is either elutriated up from the bed or captured in the bed; calcium and other refractory elements increase the melting temperature and thereby counteract the melting of alkali; and sulfur reacts with alkali metals and the alkali sulfates is either elutriated up from the bed or prevents agglomeration by increased melting temperature and lowered viscosity. Results from elemental analysis of the coating on bed particles showed that all mixtures with peat fuel resulted in a decreased or unchanged fraction of potassium and an increased fraction of aluminum in the coatings. The results also indicated a complex relationship between the fuel inorganic contents and the agglomeration process. 21 refs., 6 figs., 5 tabs.

  20. Impact of the Circulating Fluidized Bed Riser on the Performance of a Loopseal Nonmechanical Valve

    SciTech Connect

    Monazam, E.R.; Shadle, L.J.; Mei, J.S.

    2007-03-14

    Most advanced coal-fuel power systems require the transfer and control of solids between two or more vessels. In many instances, the key to a successful process operation is how well the solids transfer and control system has been designed. This is particularly true in a transport gasifier and circulating fluidized bed (CFB) combustors, which are dependent upon the rapid and reliable circulation of solids to maintain a constant solids concentration in the CFB. Proper design and operation of solids returning systems are essential to the performance and operation of CFB combustion systems. An experimental investigation was conducted at the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (DOE) to study the flow and control of a light material (cork), which has a particle density of 189 kg/m3 and a mean diameter of 812 ím, through a nonmechanical valve, or loopseal, in a 0.3 m diameter CFB cold model. Fluidizing this material in ambient air approximates the same gas:solids density ratio as coal and coal char in a pressurized gasifier. The loopseal is composed of the lower section of the standpipe, an upward-flowing fluidized-bed section, and a downwardly angled overflow tube which is connected to the desired return point at the bottom of the riser. In the nonmechanical valve, both the standpipe and the fluidized-bed up-flow section of the loopseal were aerated and fluidized with air, respectively. The objective of this study was to investigate the effects of standpipe aeration, loopseal aeration, solids inventory, and superficial gas velocity through the riser on the flow rate of circulating solids. A correlation that predicts the solids flow rate as a function of these variables was developed. Comparison of the correlation with the experimental data is discussed. Pressure drop across the fluidized-bed up-flow section of the loopseal was found to increase slightly with the solid flow rates.

  1. Combustion of textile residues in a packed bed

    SciTech Connect

    Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.; Swithenbank, Jim

    2007-08-15

    Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materials at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)

  2. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2001-07-10

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  3. Factorial tests on process operating conditions and bed fines on the circulating fluid bed performance

    SciTech Connect

    Shadle, L.J.; Spenik, James; Sarra, Angela; Ontko, J.S.

    2004-07-21

    A cold-flow circulating fluid bed (CFB) was operated using coke breeze with a packed-bed standpipe over a range of riser and standpipe air flows. The bed materials were selected to simulate solids flow in a CFB gasifier (carbonizer) but are generally relevant to most CFB processes. CFB tests were conducted primarily in the transport mode with sufficient gas velocity to achieve a uniform axial riser pressure profiles over most of the riser height. The independent variables tested included the riser gas velocity, aeration at the base of the standpipe, and concentration of fines (average particle size). The solids inventory and riser outlet pressure were maintained constant. Factorial tests were conducted in randomized order and in duplicate to provide and an unbiased estimate of the error. Fines were tested as a blocked variable. The gas velocity, standpipe aeration, and relative amount of fine particles were all found to be significant factors affecting both the riser solids holdup and solids flux. The riser pressure drop and mass circulation increased at the higher level of fines contrary to some earlier reports in the literature. The riser pressure drop was fitted using the general linear model (GLM), which explained more than 98% of the variation within the data, while a GLM for the mass circulation rate explained over 90%. The uncertainty of process operating variables was characterized independently through a series of duplicated flow proving experiments.

  4. Design considerations and operating experience in firing refuse derived fuel in a circulating fluidized bed combustor

    SciTech Connect

    Piekos, S.J.; Matuny, M.

    1997-12-31

    The worldwide demand for cleaner, more efficient methods to dispose of municipal solid waste has stimulated interest in processing solid waste to produce refuse derived fuel (RDF) for use in circulating fluidized bed (CFB) boilers. The combination of waste processing and materials recovery systems and CFB boiler technology provides the greatest recovery of useful resources from trash and uses the cleanest combustion technology available today to generate power. Foster Wheeler Power Systems along with Foster Wheeler Energy Corporation and several other Foster Wheeler sister companies designed, built, and now operates a 1600 tons per day (TPD) (1450 metric tons) municipal waste-to-energy project located in Robbins, Illinois, a suburb of Chicago. This project incorporates waste processing systems to recover recyclable materials and produce RDF. It is the first project in the United States to use CFB boiler technology to combust RDF. This paper will provide an overview of the Robbins, Illinois waste-to-energy project and will examine the technical and environmental reasons for selecting RDF waste processing and CFB combustion technology. Additionally, this paper will present experience with handling and combusting RDF and review the special design features incorporated into the CFB boiler and waste processing system that make it work.

  5. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    NASA Astrophysics Data System (ADS)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  6. Element associations in ash from waste combustion in fluidized bed

    SciTech Connect

    Karlfeldt Fedje, K.; Rauch, S.; Cho, P.; Steenari, B.-M.

    2010-07-15

    The incineration of MSW in fluidized beds is a commonly applied waste management practice. The composition of the ashes produced in a fluidized bed boiler has important environmental implications as potentially toxic trace elements may be associated with ash particles and it is therefore essential to determine the mechanisms controlling the association of trace elements to ash particles, including the role of major element composition. The research presented here uses micro-analytical techniques to study the distribution of major and trace elements and determine the importance of affinity-based binding mechanisms in separate cyclone ash particles from MSW combustion. Particle size and the occurrence of Ca and Fe were found to be important factors for the binding of trace elements to ash particles, but the binding largely depends on random associations based on the presence of a particle when trace elements condensate in the flue gas.

  7. Linear system identification of a cold flow circulating fluidized bed

    SciTech Connect

    Panday, R; Woerner, B D; Ludlow, J C; Shadle, L J; Boyle, E J

    2009-02-01

    Knowledge of the solids circulation rate (SCR) is essential to the control and improved performance of a circulating fluidized bed system. In the present work, the noise model is derived using the prediction error method considering process and measurement noises acting on the cold flow circulating fluidized bed (CFCFB) with a cork particulate material. The outputs of the initial model are the total pressure drop across the riser, the pressure drop across the crossover, the pressure drop across the primary cyclone, the total pressure drop across the stand-pipe, the pressure drop across the loop seal, and the SCR. The stochastic estimate of SCR is determined from the noise model using the stochastic pressure drop estimates. The deterministic estimate is obtained through the inputs taken as move air flow, riser aeration, and loop seal fluidization air that are all independent variables of the given setup and under the control of the user. The theory has been developed to convert a complete blackbox model to a grey box model through the output-to-state transformation such that both the models of the CFCFB consists of all these output variables as the states of the system, and only pressure drops across the system as the output measurements. Thus, the final models do not include any fictitious terms and they are defined only in terms of physical parameters of the given system. Both components of SCR are separately analysed. The combined SCR response of both the noise model and deterministic model is compared with the validation data set of this state variable in terms of modelfit, and the results are shown.

  8. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2002-03-29

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800 F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  9. Erosivity of particles in circulating fluidized bed combustors

    SciTech Connect

    Levy, A.V.; Wang, B.Q.; Geng, G.Q. ); Mack, W. )

    1989-01-01

    The metal wastage of superheater tubes in the convection pass region of circulating fluidized bed combustors (CFBC) is a current problem. An investigation was carried out to determine what kinds of metal loss rates and mechanisms occurred when the various types of particles in CFBC's were used as the erodent in a laboratory blast nozzle tester. The laboratory tests were compared to in-service exposures. A loss mechanism was established that was based on metal losses and the observed microstructures of E-C surfaces. It was additionally determined that more angular and larger size particles have a greater level of erosivity and that the particles must be strong enough not to shatter upon impact in order to be erosive. Favorable comparisons between laboratory and in-service loss mechanisms are reported.

  10. Characterization of fuels for atmospheric fluidized bed combustion

    SciTech Connect

    Daw, C.S. ); Rowley, D.R.; Perna, M.A. . Research Center); Stallings, J.W. ); Divilio, R.J. )

    1990-01-01

    The Electric Power Research Institute (EPRI) has sponsored a fuels characterization program for the past several years with the intention of assisting utilities and boiler manufacturers in evaluating fuel quality impact on atmospheric fluidized bed combustion (AFBC) performance. The goal has been to provide an improved framework for making fuel switching decisions and consolidating operating experience. Results from this program include a set of bench-scale testing procedures, a fuel characterization data base, and a performance simulation model that links fuel characteristics to combustion performance. This paper reviews the major results of the fuels characterization program. The testing procedures, data base, and performance simulation models are briefly described and their application illustrated with examples. Performance predictions for the B W 1-ft{sup 2} bench-scale AFBC and the Tennessee Valley Authority (TVA) 20 MW(e) AFBC Pilot Plant are compared with actual test data. The relationship of coal rank to combustion is discussed. 11 refs., 12 figs., 5 tabs.

  11. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOEpatents

    Boyle, Michael J.

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  12. Fluidized bed combustion of solid organic wastes and low-grade coals: Research and modeling

    SciTech Connect

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Stanchits, L.K.

    1995-12-31

    Experimental studies were carried out to investigate devolatilization and combustion of single spherical particles of wood, hydrolytic lignin from ethanol production, leather processing sewage sludge, and low-grade Belarusian brown coals in a fluidized bed of sand. A two-phase model of fluidized bed combustion of biowaste is proposed. The model takes into account combustion of both volatiles and char in the bed as well as in the freeboard. Experimentally obtained characteristics of devolatilization and char combustion are used as parameters of the model proposed.

  13. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    SciTech Connect

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  14. Effect of ash content on the combustion process of simulated MSW in the fixed bed.

    PubMed

    Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M

    2016-02-01

    This paper experimentally and numerically investigates the effects of ash content on the combustion process of simulated Municipal Solid Waste (MSW). A fixed-bed experimental reactor was utilized to reveal the combustion characteristics. Temperature distributions, ignition front velocity, and the characteristics of gas species' release were measured and simulated during the combustion process. In the present work, the two-dimensional unsteady mathematical heterogeneous model was developed to simulate the combustion process in the bed, including the process rate model as well as NOx production model. The simulation results in the bed are accordant with the experimental results. The results show that as ash content increases, the lower burning rate of fuel results in char particles leaving the grate without being fully burned, causing a loss of combustible material in the MSW in a fixed bed and therefore reducing the combustion efficiency and increasing the burning time of the MSW. PMID:26476592

  15. Development of second-generation pressurized fluidized bed combustion process

    SciTech Connect

    Wolowodiuk, W.; Robertson, A.; Bonk, D.

    1995-12-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages-namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects-brief descriptions of these are also included.

  16. Cyclone performance estimates for pressurized fluidized-bed combustion

    SciTech Connect

    Henry, R.F.; Podolski, W.F.

    1981-07-01

    Hot pressurized flue gas from pressurized fluidized-bed combustion must be cleaned up prior to its expansion in a gas turbine as part of the combined-cycle electric power generation concept. The performance of conventional cyclones in experimental tests has been compared with theory, with reasonable agreement. Prediction of the performance of a larger cyclone system shows that three stages should provide the cleanup required on the basis of current estimates of turbine tolerance of particulate matter. Advances in hot gas cleanup - optimized cyclones, augmented cyclones, and alternative devices - should provide future improvement in cycle efficiencies and costs, but simple cyclones are planned for first-generation PFB/CC pilot and demonstration plants.

  17. METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS

    SciTech Connect

    M.A. Alvin

    2004-01-02

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

  18. Technical evaluation: pressurized fluidized-bed combustion technology

    SciTech Connect

    Miller, S A; Vogel, G J; Gehl, S M; Hanway, Jr, J E; Henry, R F; Parker, K M; Smyk, E B; Swift, W M; Podolski, W F

    1982-04-01

    The technology of pressurized fluidized-bed combustion, particularly in its application to a coal-burning combined-cycle plant, is evaluated by examining the technical status of advanced-concept plant components - boiler system (combustor, air-handling and air-injection equipment, and heat exchangers); solids handling, injection, and ejection system; hot-gas cleanup equipment; instrumentation/control system; and the gas turbine - along with materials of plant construction. Environmental performance as well as energy efficiency are examined, and economic considerations are reviewed briefly. The evaluation concludes with a broad survey of the principal related research and development programs in the United States and other countries, a foreview of the most likely technological developments, and a summary of unresolved technical issues and problems.

  19. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    SciTech Connect

    Mazac, V.; Novacek, A.; Volny, J.

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  20. Dynamic analysis of a circulating fluidized bed riser

    SciTech Connect

    Panday, Rupen; Shadle, Lawrence J.; Guenther, Chris

    2012-01-01

    A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solids fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.

  1. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    SciTech Connect

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  2. Simulation of fluidized bed combustors. I - Combustion efficiency and temperature profile. [for coal-fired gas turbines

    NASA Technical Reports Server (NTRS)

    Horio, M.; Wen, C. Y.

    1976-01-01

    A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.

  3. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of...

  4. A CFD model for biomass combustion in a packed bed furnace

    NASA Astrophysics Data System (ADS)

    Karim, Md. Rezwanul; Ovi, Ifat Rabbil Qudrat; Naser, Jamal

    2016-07-01

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO2 emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can't model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  5. Pneumatic jet-control valve for dual circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Jiang, Haibo; Dong, Pengfei; Zhu, Zhiping; Wang, Kun; Zhang, Yukui; Lu, Qinggang

    2015-11-01

    With the rapid development of circulating fluidized bed (CFB) technology in different fields, the disadvantages of conventional non-mechanical valves are becoming more apparent, and they are not suitable to be used in complex CFB systems. In this paper, a novel non-mechanical valve named the jet-control valve is presented which can avoid the fluidization of solid particles. The feasibility and performance characteristics of the new valve are investigated with a cold-model dual CFB. The results show that compared with the conventional non-mechanical valve, the jet-control valve can transfer solid particles steadily over a larger range, prevent artesian flow, and improve the leakage characteristics. The effects of the operating parameters and structural parameters on the minimum aeration velocity, solid flow rate, and maximum solid flow rate are studied. A two-valve model is proposed to explain the transport capacity of the valve for one jet pipe. A semi-theoretical expression is obtained based on the experimental data with a maximum deviation of 30% providing useful guide for scaling-up the design.

  6. Computer modeling of a CFB (circulating fluidized bed) gasifier

    SciTech Connect

    Gidaspow, D.; Ding, J.

    1990-06-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. This report presents an extension of our cold flow modeling of a CFB given in our first quarterly report of this project and published in Numerical Methods for Multiphase Flows'' edited by I. Celik, D. Hughes, C. T. Crowe and D. Lankford, FED-Vol.91, American Society of Mechanical Engineering, pp47--56 (1990). The title of the paper is Multiphase Navier-Stokes Equation Solver'' by D. Gidaspow, J. Ding and U.K. Jayaswal. To the two dimensional code described in the above paper we added the energy equations and the conservation of species equations to describe a synthesis gas from char producer. Under the simulation conditions the injected oxygen reacted near the inlet. The solid-gas mixing was sufficiently rapid that no undesirable hot spots were produced. This simulation illustrates the code's capability to model CFB reactors. 15 refs., 20 figs.

  7. Fluidized-bed combustion process evaluation and program support. Quarterly report, October-December 1979

    SciTech Connect

    Johnson, I.; Podolski, W.F.; Henry, R.F.; Hanway, J.E.; Griggs, K.E.; Carls, E.L.; Jonke, A.A.

    1980-01-01

    Argonne National Laboratory is undertaking several tasks primarily in support of the pressurized fluidized-bed combustion (PFBC) project management team at Morgantown Energy Technology Center (METC). The Experimental Program Director of the International Energy Agency pressurized fluidized-bed combustion project was selected. Work is under way to provide fluidized-bed combustion process evaluation and program support to METC, including development of a planning methodology for PFBC technology development, determination of the state of the art of instrumentation for FBC applications, and evaluation of the performance capability of cyclones for hot-gas cleaning in PFBC systems.

  8. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    PubMed

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. PMID:25263217

  9. LABORATORY FEASIBILITY STUDIES FOR THE FLUIDIZED-BED COMBUSTION OF SPENT POTLINING FROM ALUMINUM REDUCTION

    EPA Science Inventory

    The report gives results of a preliminary assessment of the technical feasibility and environmental acceptability of a fluidized-bed combustion (FBC) process for the disposal of spent potlining waste from the aluminum reduction process. Technical efforts included: (1) differentia...

  10. Fluidized-bed combustion process evaluation and program support. Quarterly report, January-March 1980

    SciTech Connect

    Johnson, I.; Podolski, W.F.; Swift, W.M.; Henry, R.F.; Hanway, J.E.; Griggs, K.E.; Herzenberg, C.; Helt, J.E.; Carls, E.L.

    1980-12-01

    Argonne National Laboratory is undertaking several tasks primarily in support of the pressurized fluidized-bed combustion project management team at Morgantown Energy Technology Center. Work is under way to provide fluidized-bed combustion process evaluation and program support to METC, determination of the state of the art of instrumentation for FBC applications, evaluation of the performance capability of cyclones for hot-gas cleaning in PFBC systems, and an initial assessment of methods for the measurement of sodium sulfate dew point.

  11. Speckle-correlation analysis of the microcapillary blood circulation in nail bed

    SciTech Connect

    Vilenskii, M A; Agafonov, D N; Zimnyakov, D A; Tuchin, Valerii V; Zdrazhevskii, R A

    2011-04-30

    We present the results of the experimental studies of the possibility of monitoring the blood microcirculation in human finger nail bed with application of speckle-correlation analysis, based on estimating the contrast of time-averaged dynamic speckles. The hemodynamics at normal blood circulation and under conditions of partially suppressed blood circulation is analysed. A microscopic analysis is performed to visualise the structural changes in capillaries that are caused by suppressing blood circulation. The problems and prospects of speckle-correlation monitoring of the nail bed microhemodynamics under laboratory and clinical conditions are discussed. (optical technologies in biophysics and medicine)

  12. Fluidized bed combustion of low-grade coal and wastes: Research and development

    SciTech Connect

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M.; Dobkin, S.M.; Telegin, E.M.

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  13. Effect of the size distribution of coal on fluidized-bed combustion

    SciTech Connect

    Hirama, T.; Hosoda, H.; Nishizaki, H.; Chiba, T.; Kobayashi, H.

    1984-07-01

    To study the effect of the particle-size distribution on its combustion characteristics, coal was burned in a 0.25 m-square fluidized-bed combustor with a 3-m freeboard. A higher fines content increased the loss of unburned coal by elutriation, but reduced the loss from overflow from the bed surface. The overall combustion efficiency varied only slightly with the size distribution; the efficiency of combustion within the bed was reduced, but more combustion took place in the freeboard, both for 9.5-25 mm particles, owing to segregation in the bed, and for <2 mm particles, owing to elutriation. NO/SUB/x emission for two-stage combustion with these two size ranges was considerably higher than for particles within the broader range <25 mm. Since segregation of coarse particles and elutriation of unburned finer particles increase NO/SUB/x emission and reduced the bed combustion efficiency, it is desirable to use coal with a broad particle-size distribution.

  14. Study on the flow in the pipelines of the support system of circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Meng, L.; Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhuang, X. H.

    2013-12-01

    In the support system of Circulating Fluidized Bed (Below referred to as CFB) of thermal power plant, the pipelines of primary wind are used for transporting the cold air to the boiler, which is important in controlling and combustion effect. The pipeline design will greatly affect the energy loss of the system, and accordingly affect the thermal power plant economic benefits and production environment. Three-dimensional numerical simulation is carried out for the pipeline internal flow field of a thermal power plant in this paper. Firstly three turbulence models were compared and the results showed that the SST k-ω model converged better and the energy losses predicted were closer to the experimental results. The influence of the pipeline design form on the flow characteristics are analysed, then the optimization designs of the pipeline are proposed according to the energy loss distribution of the flow field, in order to reduce energy loss and improve the efficiency of tunnel. The optimization plan turned out to be efficacious; about 36% of the pressure loss is reduced.

  15. A pilot-plant study for destruction of PCBs in contaminated soils using fluidized bed combustion technology.

    PubMed

    Desai, Dilip L; Anthony, Edward J; Wang, Jinsheng

    2007-08-01

    Destruction of polychlorinated biphenyls (PCBs) in contaminated soils and wastes using circulating fluidized bed combustion (CFBC) technology was studied using a pilot plant and simulated waste material. The results show that the technology is effective and particularly promising for treatment of PCB-containing materials like the toxic sludge from a large contaminated site. Destruction of the toxics in the gas phase appears to be very fast, and over 99.9999% destruction and removal efficiency can be achieved in the temperature range 875-880 degrees C. Heat transfer in the fluidized bed also appears adequate. Toxic residues in treated soil can be reduced to very low levels. Rate-controlling factors of the decontamination process are analyzed, and key issues for determination of the process conditions are discussed. PMID:16901621

  16. Numerical simulation of gas concentration and dioxin formation for MSW combustion in a fixed bed.

    PubMed

    Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M

    2015-07-01

    A numerical model was employed to simulate the combustion process in a fixed porous bed of municipal solid waste (MSW). Mass, momentum, energy and species conservation equations of the waste bed were set up to describe the incineration process. The rate of moisture evaporation, volatile matter devolatilization, char combustion, NOx production, and reduction and dioxin formation were calculated and established according to the local thermal conditions and waste property characteristics. Changes in the bed volume during incineration were calculated according to the reaction rate of the process. The simulation results were compared with experimental data, which shows that the incineration process of waste in the fixed bed was reasonably simulated. The simulation results of weight loss and solid temperature in the bed agree with the experimental data, which shows that the waste combustion rate is nearly constant in the middle of the incineration process, and that moisture evaporation takes up most of the time for the overall incineration experiment. The emission of gas species from the bed surface is also agreeably simulated, with O2, CO2, and CO concentrations in flue gas agreeing with the experimental data. The simulation results benefit the understanding of the combustion process in the waste bed as well as the design of incinerator grates. PMID:25897505

  17. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    SciTech Connect

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.

    1996-02-29

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  18. The Nucla Circulating Fluidized-Bed Demonstration Project: A U.S. DOE post-project assessment

    SciTech Connect

    1995-06-01

    This report is a post-project assessment of the Nucla Circulating Fluidized-Bed (CFB) Demonstration Project, the second project to be completed in the DOE Clean Coal Technology Program. Nucla was the first successful utility repowering project in the US, increasing the capacity of the original power station from 36 MW(e) to 110 MW(e) and extending its life by 30 years. In the CFB boiler, combustion and desulfurization both take place in the fluidized bed. Calcium in the sorbent captures sulfur dioxide and the relatively low combustion temperatures limit NOx formation. Hot cyclones separate the larger particles from the gas and recirculates them to the lower zones of the combustion chambers. This continuous circulation of coal char and sorbent particles is the novel feature of CFB technology. This demonstration project significantly advanced the environmental, operational, and economic potential of atmospheric CFB technology, precipitating a large number of orders for atmospheric CFB equipment. By 1994, more than 200 atmospheric CFB boilers have been constructed worldwide. Although at least six CFB units have been operated, the Nucla project`s CFB database continues to be an important and unique resource for the design of yet larger atmospheric CFB systems. The post-project assessment report is an independent DOE appraisal of the success a completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology as well as an analysis of the commercial market.

  19. INVESTIGATION OF FLUID BED COMBUSTION OF MUNICIPAL SOLID WASTE

    EPA Science Inventory

    An experimental study was undertaken to burn processed municipal solid waste in a fluid-bed combustor containing water-cooled tubes in the bed. The 300-hour test was performed without incident and terminated on schedule. The combustor and ducting were clean on inspection after th...

  20. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    SciTech Connect

    Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S.

    2006-06-15

    The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

  1. Understanding the behavior of Australian black coals in pressurized fluidized bed combustion

    SciTech Connect

    Stubington, J.F.; Wang, A.L.T.; Cui, Y.

    1999-07-01

    Ultimately, this study aims to predict the coal combustion efficiency in an industrial pressurized fluidized bed combustor (PFBC) for Australian black coals. This combustion efficiency depends predominantly upon the rate of elutriation of fine carbon particles, which is proportional to bed carbon loading in atmospheric experiments. The bed carbon loading is, in turn, dependent upon the rate of combustion of char particles within the PFBC. A novel batch-fed reactor has been designed, constructed and commissioned to enable separation and study of the mechanisms of coal devolatilization, char combustion and fine carbon particle elutriation in a PFBC and extraction of coal-specific parameters to describe these processes. The attrition and char combustion rates can only be determined experimentally and it is essential to match the environment around each coal particle, so that the results may be translated to the industrial scale. Therefore, the rig was designed for identical conditions of pressure, temperature, particle size and fluidizing velocity within the bed to those used industrially. The exhaust gas is analyzed continuously for oxygen, carbon dioxide, carbon monoxide and hydrocarbons as a function of time after coal injection, allowing separation and identification of the devolatilization and char combustion stages as well as measurement of the combustion rates. The elutriated carbon particles undergo minimal freeboard combustion and are collected in a cyclone and an in-line filter over any period of time during the experiment, for subsequent analysis. The sand bed containing the rig for collection and characterization of the partially burnt char particles. The rig is mostly computer-controlled and the design was subjected to a hazards analysis before construction. Results from the rig will be used in a mathematical model to predict the performance of the coals in industrial-scale PFBC.

  2. Co-combustion of textile residues with cardboard and waste wood in a packed bed

    SciTech Connect

    Ryu, Changkook; Phan, Anh N; Sharifi, Vida N; Swithenbank, Jim

    2007-11-15

    The combustible fraction of the municipal waste is mostly bio-derived. Energy recovery of the wastes that cannot be economically recycled is a key part of sustainable energy policy and waste management. Textile residues have high energy content. When burned alone in a packed bed system, however, their combustion efficiency is low due to the irregular propagation of the ignition front and the low burning rates. In order to achieve more efficient combustion of textile residues, a series of co-combustion tests were carried out for various mixture compositions and air flow rates in a packed bed combustor. The combustion performance of these materials was evaluated by using quantitative measures such as ignition rate, burning rate and equivalence ratio. Co-combustion of textile residues with cardboard for a textile fraction of up to 30% achieved satisfactorily high burning rate and low unburned carbon content in the bottom ash. The mixture was more resistant to convective cooling by air, which significantly expanded the range of air flow rate for combustion at high burning rates. In co-combustion with a material that has a very low ignition front speed such as waste wood, the propagation of the ignition front was governed by textile residues. Therefore, the co-combustion of textile residues can be better performed with a material having similar ignition front speeds, in which the two materials simultaneously burn at the ignition front. (author)

  3. Influence of wall roughness on the hydrodynamics in a circulating fluidized bed

    SciTech Connect

    Zhou, J.; Grace, J.R.; Brereton, C.H.M.; Lim, C.J.

    1996-04-01

    Many efforts have been made to explore the particle and gas behavior in circulating fluidized beds during the last decade. Glicksman et al. (1991) reported that protrusions as small as one particle diameter may cause a change in the voidage of a circulating fluidized bed. Since the walls of CFB combustors and other commercial CFB reactors can be quite rough, with roughness elements sometimes several times the mean particle diameter, the roughness could have a significant influence on the hydrodynamics, affecting mixing, gas-solid contacting, and heat and mass transfer in circulating fluidized-bed processes. It is therefore important to explore the influence of wall roughness on riser hydrodynamics. No other previous work has been reported on this topic. Here, the influence of wall roughness on CFB hydrodynamics is identified by comparing the experimental results from a riser with rough walls with those from the same riser having smooth surfaces.

  4. Standpipe models for diagnostics and control of a circulating fluidized bed

    SciTech Connect

    Ludlow, James C.; Panday, Rupen

    2013-01-01

    Two models for a Circulating Fluidized Bed (CFB) standpipe were formulated, implemented and validated to estimate critical CFB operational parameters. The first model continuously estimates standpipe bed height using incremental pressure measurements within the standpipe. The second model estimates variations in the void fraction along the standpipe using the Ergun equation in conjunction with the overall pressure drop across the bed, solids circulation rate and the standpipe aeration flows introduced at different locations of the pipe. The importance of different standpipe parameters obtained from these models is discussed in terms of successful operation of the overall CFB system. Finally, the applications of these models are shown in improving the solids circulation rate measurement and in calculating riser inventory.

  5. [Radiation transformation mechanism in a photocatalytic reactor of three-phase internal circulating fluidized bed].

    PubMed

    You, Hong; Luo, Wei-nan; Yao, Jie; Chen, Ping; Cai, Wei-min

    2005-01-01

    A novel three-phase internal circulating fluidized bed photocatalytic reactor was established and the radiation transformation in which was investigated. The experimental results indicate that with the interaction of gas and solid (gas flux > 0.3m3/h), the radiation transformation in the reactor along radial direction conforms to a definite exponential function, which agrees to formula Rose about the rules of light intensity distribution through evenly suspended particles. The value of radiation energy is affected by the initial light intensity, the concentration of photocatalyst and the thickness of liquid layer. The aerated gas amount only influence the state of the fluidized bed and has little effect on the distribution of light intensity along radical direction. Photocatalytic degradation of Rhodamine B indicate that the efficiency of three-phase internal circulating fluidized bed is much higher than slurry bed. The optimal catalyst concentration of this system is 10 - 12g/L. PMID:15859420

  6. [Structure and fluidization of an internally circulating fluidized bed for FGD process].

    PubMed

    Yang, Liuchun; Yang, Wenqi; Tong, Zhiquan

    2003-09-01

    A new internally circulating fluidized bed for FGD process was developed, and different types of top and bottom structures were employed in the experiment to find out the best fluidized bed structure. Fluidizing status, the axial distribution of solid hold-up and the fluid mechanics under cold conditions were investigated. The results indicate that the unit can realize internally circulating of a large number of solid particles which presents an core-annulus structure when the velocity of fluidizing gas was at the range of 2.5 to 5 m/s, and that the solid density in the bed is higher than that in traditional equal diameter fluidized bed, which provide the equipment with potential for application in FGD process. PMID:14719258

  7. Analysis of atmospheric fluidized bed combustion agglomerates. Final report

    SciTech Connect

    Perkins, D. III; Brekke, D.W.; Karner, F.R.

    1984-04-01

    Chemical and textural studies of AFBC agglomerates have revealed detailed information regarding the mechanisms of agglomeration. The formation of agglomerates in a silica sand bed can be described by a four step process: initial ash coatings of quartz grains; thickening of ash coatings and the formation of nodules; cementation of nodules to each other by a sulfated aluminosilicate matrix; and partial or complete melting of eutectic compositions to produce a sticky glass phase between grains and along fractures. Once agglomeration has begun, large scale solidification and restricted flow within the bed will lead to hot spots, wholesale melting and further agglomeration which ultimately forces a shutdown. Standard operating temperatures during normal AFBC runs come quite close to, or may actually exceed, the minimum temperatures for eutectic melting of the silicate phases in the coal and standard bed materials. The partially melted material may be expected to lead to the formation of dense, sticky areas within the bed, and the formation of hot spots which further exacerbate the problem. Ultimately, large scale bed agglomeration will result. Attempts to eliminate agglomeration by removal of sodium via an ion exchange process have yielded encouraging results. A second approach, used to raise melting temperatures within the bed, has been to use bed materials that may react with low-temperature minerals to produce high-temperature refractory phases such as mullite or other alkali and alkali-earth alumino-silicates.

  8. Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use

    SciTech Connect

    Bland, A.E.; Brown, T.H.

    1996-12-31

    Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

  9. Spectral analysis of CFB data: Predictive models of Circulating Fluidized Bed combustors

    SciTech Connect

    Gamwo, I.K.; Miller, A.; Gidaspow, D.

    1992-04-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Spectral analysis of CFB data obtained at Illinois Institute of Technology shows that the frequencies of pressure oscillations are less than 0.1 Hertz and that they increase with solids volume fraction to the usual value of one Hertz obtained in bubbling beds. These data are consistent with the kinetic theory interpretation of density wave propagation.

  10. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  11. Study of instrumentation needs for process control and safety in coal fluidized-bed combustion systems

    SciTech Connect

    Herzenberg, C.L.; Griggs, K.E.; Henry, R.F.; Podolski, W.F.

    1981-02-01

    A study was conducted to evaluate the current state of the art of instrumentation for planned and operating fluidized-bed combustion systems. This study is intended to identify instrumentation needs and serve as a data base for projects to develop this instrumentation. A considerable number of needs for measurements for which presently available instrumentation is not suitable were reported by respondents. The identified deficiencies are presented with the associated physical parameter ranges for FBC processes. New techniques and instrumentation under development, as well as some available alternative instruments, are discussed briefly. Also, newly instituted mechanisms for technical information exchange on instrumentation for fossil energy applications are identified. Development of instruments to meet the identified measurement deficiencies is recommended in order to ensure the feasibility of automatic control of large-scale fluidized-bed combustion systems, and to advance the state of the art of fluidized-bed combustion technology.

  12. Exploratory and basic fluidized-bed combustion studies. Quarterly report, January-March 1980

    SciTech Connect

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutants emissions, and other aspects of fluidized-bed combustion. This report presents information on: (1) the development of a limestone utilization predictive methodology, (2) studies of particle breakup and elutriation, (3) basic studies on limestone sulfation enhancement by hydration, (4) studies of the kinetics of the hydration process, and (5) an investigation of various hydration process concepts.

  13. Study on biomass circulation and gasification performance in a clapboard-type internal circulating fluidized bed gasifier.

    PubMed

    Zhou, Zhao-qiu; Ma, Long-long; Yin, Xiu-li; Wu, Chuang-zhi; Huang, Li-cheng; Wang, Chu

    2009-01-01

    We investigated the solid particle flow characteristics and biomass gasification in a clapboard-type internal circulating fluidized bed reactor. The effect of fluidization velocity on particle circulation rate and pressure distribution in the bed showed that fluidization velocities in the high and low velocity zones were the main operational parameters controlling particle circulation. The maximum internal circulation rates in the low velocity zone came almost within the range of velocities in the high velocity zone, when u(H)/u(mf)=2.2-2.4 for rice husk and u(H)/u(mf)=3.5-4.5 for quartz sand. In the gasification experiment, the air equivalence ratio (ER) was the main controlling parameter. Rice husk gasification gas had a maximum heating value of around 5000 kJ/m(3) when ER=0.22-0.26, and sawdust gasification gas reached around 6000-6500 kJ/m(3) when ER=0.175-0.24. The gasification efficiency of rice husk reached a maximum of 77% at ER=0.28, while the gasification efficiency of sawdust reached a maximum of 81% at ER=0.25. PMID:19393730

  14. A fixed granular-bed sorber for measurement and control of alkali vapors in PFBC (pressurized fluidized-bed combustion)

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1990-01-01

    Alkali vapors (Na and K) in the hot flue gas from the pressurized fluidized-bed combustion (PFBC) of coal could cause corrosion problems with the gas turbine blades. In a laboratory-scale PFBC test with Beulah lignite, a fixed granular bed of activated bauxite sorbent was used to demonstrate its capability for measuring and controlling alkali vapors in the PFBC flue gas. The Beulah lignite was combusted in a bed of Tymochtee dolomite at bed temperatures ranging from 850 to 875{degrees}C and a system pressure of 9.2 atm absolute. The time-averaged concentration of sodium vapor in the PFBC flue gas was determined from the analysis of two identical beds of activated bauxite and found to be 1.42 and 1.50 ppmW. The potassium vapor concentration was determined to be 0.10 ppmW. The sodium material balance showed that only 0.24% of the total sodium in the lignite was released as vapor species in the PFBC flue gas. This results in an average of 1.56 ppmW alkali vapors in the PFBC flue gas. This average is more than 1.5 orders of magnitude greater than the currently suggested alkali specification limit of 0.024 ppm for an industrial gas turbine. The adsorption data obtained with the activated bauxite beds were also analyzed mathematically by use of a LUB (length of unused bed)/equilibrium section concept. Analytical results showed that the length of the bed, L{sub o} in centimeters, relates to the break through time, {theta}{sub b} in hours, for the alkali vapor to break through the bed as follows: L{sub o} = 33.02 + 1.99 {theta}{sub b}. This formula provides useful information for the engineering design of fixed-bed activated bauxite sorbers for the measurement and control of alkali vapors in PFBC flue gas. 26 refs., 4 figs., 4 tabs.

  15. Pressurized fluidized-bed combustion part-load behavior. Volume I. Summary report

    SciTech Connect

    Roberts, A. G.; Pillai, K. K.; Raven, P.; Wood, P.

    1981-09-01

    Tests performed during 1980 to determine the part-load characteristics of a pressurized fluidized-bed combustor for a combined-cycle power plant and to examine its behavior during load changing are discussed. Part-load operation was achieved by varying the bed temperature by amounts between 200 to 300/sup 0/F and the bed depth from between 9 and 10 ft at rates varying between 0.2 ft/min and 0.5 ft/min. The performance at part-load steady-state conditions and during transient conditions is reported with information on combustion efficiency (99% at full-load with 9 ft bed depth and 1650/sup 0/F bed temperature; 95% with 4 ft depth and 1390/sup 0/F); sulfur retention (95/sup 0/ at full load to 80% at low bed depth and low bed temperature); sulfur emissions (no definitive results); NO/sub x/ emissions (tendency for increase as bed temperature was reduced); alkali emissions (no bed temperature effect detected); and heat transfer. It was demonstrated that load can be altered in a rapid and controlled manner by changing combinations of bed depth temperature and pressure. The most important practical change was the reduction in O/sub 2/ concentration which occurred when the bed height was increased at a rapid rate. The extra energy required to reheat the incoming bed material resulted (in the most extreme case) in a temporary drop in excess air from 65% to 12%. In a full-scale plant the loss of heat from the stored bed material would be much lower and the excess air trough when increasing load would not be as pronounced. Nevertheless, it seems prudent to design full-scale plant for a full load excess air of not less than about 50% when using bed depth as a load control parameter.

  16. Sludge incineration tests on circulating fluidised bed furnace.

    PubMed

    Lotito, V; Mininni, G; Di Pinto, A C; Spinosa, L

    2001-01-01

    Results of sludge incineration tests on a demonstrative fluidised bed furnace are reported and discussed. They show that particulate, heavy metals and acidic compounds in the emissions can be easily controlled both when sludge is spiked with chlorinated hydrocarbons up to a chlorine concentration in the feed of 5%, and when the afterburner is switched off. As for organic micropollutants, polynuclear aromatic hydrocarbons (PAH) were much lower than the Italian limits of 10 microg/m3 (no limits are at present considered in the European Directives). Dioxins (PCDDs) and furans (PCDFs) in some tests exceeded the limit of 0.1 ng/m3 (TE) but the concentrations in the fly ashes were much lower, thus evidencing a possible presence of contaminants in gas phase. PAHs and PCDD/PCDFs were not depending on the afterburning operation, the presence of organic chlorine in the feed sludge and the copper addition to sewage sludge. PMID:11548013

  17. PARTICLE FLOW, MIXING, AND CHEMICAL REACTION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A mixing model has been developed to simulate the particle residence time distribution (RTD) in a circulating fluidized bed absorber (CFBA). Also, a gas/solid reaction model for sulfur dioxide (SO2) removal by lime has been developed. For the reaction model that considers RTD dis...

  18. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  19. Three dimensional dynamic simulation for bubbling pressurized fluidized bed combustion furnace

    SciTech Connect

    Itami, Teturo; Yoshioka, Susumu; Katori, Takanori; Oki, Katsuya; Sakata, Taro

    1995-12-31

    A mathematical model for the simulation of the pressurized fluidized bed combustion (PFBC) furnaces has been developed to predict three-dimensional distribution of fuel, oxygen and bed temperatures. In this model fuel particles in the bed have been considered as moving diffusively. Three different values of dispersion coefficients of fuel particles, two lateral and one axial coefficients, have been measured using the temperature profile obtained in the scale-down cold model. The model was designed according to the similarity rule, and features a tube-bundle arrangement in the bed. Some of the fuel particles on the bed surface are assumed in the model to be blown out from the bed, and are regarded as unburnt fuel. The ratio of such unburnt fuel particles to the fuel particles concentrated on the bed surface has been estimated using combustion efficiency data obtained in the pilot plant. These dispersion coefficients and the ratio of the unburnt fuel have been used in the proposed simulation model. For the design of the large scale PFBC plants, the present simulation model has been utilized. The number and the location of the fuel feed points have been optimized by taking uniformity of combustion as the design criteria. The criterion for estimating favorable features of combustion has been chosen as minimizing the quantity of unburnt fuel that would move in the freeboard and the high temperature gas line. This paper presents the description and the verification of the proposed model and its application to the furnace design of the large scale PFBC plant.

  20. Hydrodynamics Studies in a Liquid Solid Circulating Fluidized Bed of Varying Liquid Viscosity

    NASA Astrophysics Data System (ADS)

    Nirmala, G. S.; Muruganandam, L.

    2013-09-01

    To design an industrial liquid solid circulating fluidized bed system properly, it is important that the hydrodynamics be studied first. So far investigations have been carried out in a liquid solid circulating fluidized bed (LSCFB) with tap water as the liquid phase. There is still limited understanding on how particles are circulated in LSCFB with viscous fluids. The aim of our work was to characterize the hydrodynamics in a LSCFB with varying viscosity. Experiments were conducted in a fluidized bed riser of 0.1 m diameter by 2.4 m height with different viscous liquids, to study its effects of operating parameters namely; primary velocity, secondary velocity, total velocity, on the hydrodynamics characteristics of the LSCFB in terms of solid holdup, solid circulation rate and particle velocity. Experiments were conducted using water and glycerol at different concentration. The solid particle resin of 0.5 mm diameter was used for the experiment. The results indicate that the solid hold up in the riser is axially uniform for viscous liquids and increases with increase in auxiliary velocity. The average solid holdup found to decrease with increase in total velocity and increases with increase in liquid viscosity as the critical transitional velocity decreases with the increase in viscosity. The solid circulation rate is found to increase with increase in total velocity and auxiliary velocity, and also increases with increasing viscosity.

  1. INFLUENCE OF BED-REGION STOICHIOMETRY ON NITRIC OXIDE FORMATION IN FIXED-BED COAL COMBUSTION

    EPA Science Inventory

    The article describes the use of a 15.3 x 25.4 cm thick bed reactor with refractory walls to investigate the influence of bed-region (first-stage) stoichiometry on fuel nitrogen evolution and reaction in coal-fired mass-burning stokers. The combustor operated in a batch mode prov...

  2. Calculations of the time-averaged local heat transfer coefficients in circulating fluidized bed

    SciTech Connect

    Dai, T.H.; Qian, R.Z.; Ai, Y.F.

    1999-04-01

    The great potential to burn a wide variety of fuels and the reduced emission of pollutant gases mainly SO{sub x} and NO{sub x} have inspired the investigators to conduct research at a brisk pace all around the world on circulating fluidized bed (CFB) technology. An accurate understanding of heat transfer to bed walls is required for proper design of CFB boilers. To develop an optimum economic design of the boiler, it is also necessary to know how the heat transfer coefficient depends on different design and operating parameters. It is impossible to do the experiments under all operating conditions. Thus, the mathematical model prediction is a valuable method instead. Based on the cluster renewal theory of heat transfer in circulating fluidized beds, a mathematical model for predicting the time-averaged local bed-to-wall heat transfer coefficients is developed. The effects of the axial distribution of the bed density on the time-average local heat transfer coefficients are taken into account via dividing the bed into a series of sections along its height. The assumptions are made about the formation and falling process of clusters on the wall. The model predictions are in an acceptable agreement with the published data.

  3. EVALUATION OF TRACE ELEMENT RELEASE FROM FLUIDIZED-BED COMBUSTION SYSTEMS

    EPA Science Inventory

    The report gives results of an investigation of four trace elements: lead, beryllium, mercury, and fluorine. The chemical fate of minor and trace elements is important in assessing the environmental impact of the fluidized-bed combustion (FBC) process and, for certain elements, i...

  4. CERAMIC FILTER TESTS AT THE EPA/EXXON PFBC (PRESSURIZED FLUIDIZED BED COAL COMBUSTION) MINIPLANT

    EPA Science Inventory

    The paper describes the performance of the Acurex ceramic bag filter operating at temperatures up to 880C and pressures up to 930 kPa on particulate-laden flue gas from a pressurized fluidized-bed coal combustion (PFBC) unit on a slipstream of gas taken after the second stage cyc...

  5. PARTICULATE EMISSIONS AND CONTROL IN FLUIDIZED-BED COMBUSTION: MODELING AND PARAMETRIC PERFORMANCE

    EPA Science Inventory

    The report discusses a model, developed to describe the physical characteristics of the particulates emitted from fluidized-bed combustion (FBC) systems and to evaluate data on FBC particulate control systems. The model, which describes the particulate emissions profile from FBC,...

  6. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF COAL-FIRED FLUIDIZED-BED COMBUSTION SYSTEMS

    EPA Science Inventory

    The report evaluates potential pollutants which could be generated in coal-fired fluidized-bed combustion (FBC) processes. The primary emphasis is on organic compounds, trace elements, inorganic compounds (other than SO2 and Nox), and particulates. Using available bench scale or ...

  7. UTILITY BOILER DESIGN/COST COMPARISON: FLUIDIZED-BED COMBUSTION VS. FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of a conceptual design, performance, and cost comparison of utility scale (750-925 MWe) coal-burning power plants employing three alternative technologies: conventional boiler with a stack gas scrubber (CWS), atmospheric-pressure fluidized-bed combustion ...

  8. ENVIRONMENTAL ASSESSMENT OF THE FLUIDIZED-BED COMBUSTION OF COAL: METHODOLOGY AND INITIAL RESULTS

    EPA Science Inventory

    The paper discusses a program being conducted by the U.S. Environmental Protection Agency (EPA), aimed at complete environmental assessment (EA) of the fluidized-bed combustion (FBC) of coal. It reviews the EA methodology being developed by EPA: identification of current technolo...

  9. Materials performance in coal-fired fluidized-bed combustion environments

    SciTech Connect

    Natesan, K.

    1993-07-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed for the generation of electricity and process heat has been in progress for a number of years. This paper addresses some of the key components in these systems, materials requirements/performance, and areas where additional effort is needed to improve the viability of these concepts for electric power generation.

  10. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC)

    SciTech Connect

    Dr. Seong W. Lee

    1998-10-01

    The objective of this project is to predict the heat transfer and combustion performance in newly-designed fluidized bed combustor (FBC) and to provide the design guide lines and innovative concept for small-scale boiler and furnace. The major accomplishments are summarized.

  11. PILOT-SCALE ASSESSMENT OF CONVENTIONAL PARTICULATE CONTROL TECHNOLOGY FOR PRESSURIZED FLUIDIZED-BED COMBUSTION EMISSIONS

    EPA Science Inventory

    The report gives results of an evaluation of electrostatic precipitator (ESP) and fabric filter particulate control technology for the EPA/Exxon pressurized fluidized-bed combustion (PFBC) Miniplant in Linden, NJ. EPA's mobile ESP and fabric filter pilot facilities were slipstrea...

  12. QUALITY ASSURANCE OF FLUIDIZED-BED COMBUSTION (FBC) H2SO4 MEASUREMENTS

    EPA Science Inventory

    The report gives results of a study to: evaluate existing data on H2SO4 measurements from fluidized-bed combustion (FBC) processes; determine the true value of the H2SO4 concentration which might have been obtained had the control condensation (Goksoyr/Ross) procedure been used; ...

  13. Wood Combustion Behaviour in a Fixed Bed Combustor

    NASA Astrophysics Data System (ADS)

    Tokit, Ernie Mat; Aziz, Azhar Abdul; Ghazali, Normah Mohd

    2010-06-01

    Waste wood is used as feedstock for Universiti Teknologi Malaysia's newly-developed two-stage incinerator system. The research goals are to optimize the operation of the thermal system to the primary chamber, to improve its combustion efficiency and to minimize its pollutants formation. The combustion process is evaluated with the variation of fuel's moisture content. For optimum operating condition, where the gasification efficiency is 95.53%, the moisture content of the fuel is best set at 17%; giving outlet operating temperature of 550°C and exhaust gas concentrations with 1213 ppm of CO, 6% of CO2 and 14% of O2 respectively. In line to the experimental work, a computational fluid dynamics software, Fluent is used to simulate the performance of the primary chamber. Here the predicted optimum gasification efficiency stands at 95.49% with CO, CO2 and O2 concentrations as 1301 ppm, 6.5% and 13.5% respectively.

  14. Capture of toxic metals by vaious sorbents during fluidized bed coal combustion

    SciTech Connect

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1995-12-31

    This study investigated the potential of employing suitable sorbents to capture trace metallic substances during fluidized bed coal combustion. The objectives of the study were to demonstrate the capture process, identify effective sorbents, and characterize the capture efficiency. Experiments were carried out in a 25.4 mm (1 ``) quartz fluidized bed coal combustor enclosed in an electric furnace. In an experiment, a coal sample from the DOE Coal Sample Bank or the Illinois Basin Coal Sample Bank was burned in the bed with a sorbent under various combustion conditions and the amount of metal capture by the sorbent was determined. The metals involved in the study were arsenic, cadmium, lead, mercury and selenium, and the sorbents tested included bauxite, zeolite and lime. The combustion conditions examined included bed temperature, particle size, fluidization velocity (percent excess air), and sorbent bed height. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through performing chemical equilibrium analyses based on the minimization of system free energy.

  15. Mathematical modelling of particle mixing effect on the combustion of municipal solid wastes in a packed-bed furnace.

    PubMed

    Yang, Yao Bin; Swithenbank, Jim

    2008-01-01

    Packed bed combustion is still the most common way to burn municipal solid wastes. In this paper, a dispersion model for particle mixing, mainly caused by the movement of the grate in a moving-burning bed, has been proposed and transport equations for the continuity, momentum, species, and energy conservation are described. Particle-mixing coefficients obtained from model tests range from 2.0x10(-6) to 3.0x10(-5)m2/s. A numerical solution is sought to simulate the combustion behaviour of a full-scale 12-tonne-per-h waste incineration furnace at different levels of bed mixing. It is found that an increase in mixing causes a slight delay in the bed ignition but greatly enhances the combustion processes during the main combustion period in the bed. A medium-level mixing produces a combustion profile that is positioned more at the central part of the combustion chamber, and any leftover combustible gases (mainly CO) enter directly into the most intensive turbulence area created by the opposing secondary-air jets and thus are consumed quickly. Generally, the specific arrangement of the impinging secondary-air jets dumps most of the non-uniformity in temperature and CO into the gas flow coming from the bed-top, while medium-level mixing results in the lowest CO emission at the furnace exit and the highest combustion efficiency in the bed. PMID:17697769

  16. Update of the Black Dog atmospheric fluidized bed combustion project

    SciTech Connect

    Osthus, D.; Larva, J.; Rens, D. )

    1988-01-01

    Northern States Power Co. converted its Black Dog Unit 2, a pulverized coal-fired 100 MW unit that was built in 1954, to an atmospheric fluidized bed (bubbling bed) configuration, in order to commercially demonstrate AFBC technology as a cost-effective way to reduce SO2 emissions. As part of the AFBC conversion, the unit was upgraded to 130 MW capacity. Unit 2 burns Western coal, is equipped with electrostatic precipitators, and cycles on and off line daily. The innovative nature of this project contributed to a protracted encountered. These problems are discussed. Many of the problems have been solved, and the unit is now meeting most of the goals set for the project.

  17. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  18. Effects of fluidized bed combustion residue on pecan seedling growth and nutrient content. [Carya illinoensis

    SciTech Connect

    Edwards, J.H.; White, A.W. Jr.; Bennett, O.L.

    1985-01-01

    Fluidized bed combustion residue from a calcitic limestone source (FBCRC), a by-product of scrubbing SO/sub 2/ from fossil fuel fired boilers using the FBC technique was evaluated as a source of calcium for pecan (Carya illinoensis (Wang.) K. Koch) seedlings. Fluidized bed combustion residue produced following injection of calcitic limestone into the combustion chamber was more effective in neutralizing soil acidity and increasing extractable soil Ca levels than agricultural calcitic limestone. The Ca concentration in the pecan leaves was increased linearly by Ca rates for both 12- and 24-week growth periods, but stem and petiole Ca concentration was increased linearly for the second 12-week growth period. Macronutrient concentrations were affected by Ca rates for both 12- and 24-week growth periods, but no effect was observed with Ca source. The primary difference was between the control and all other Ca rates.

  19. Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1982-01-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  20. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume V. Appendix: stability and instability in fluidized-bed combustion

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the fifth of the seven volumes series of our Phase II Final Report. The material developed in this volume has not been incorporated into the system model. It will be used as a precursor of a transient model to be developed in the next phase of our model work. There have been various fluidized combustor models of differing complexity and scope published in the literature. Most of these models have identified and predicted - often in satisfactory agreement with results from pilot units - the key steady state combustor characteristics such as the mass of carbon in the bed (carbon loading), the combustion efficiency, the sulfur retention by the solid sorbent and the pollutant (mainly NO/sub x/) emissions. These models, however, cannot be in most instances successfully used to study the extinction and ignition characteristics of the combustor because they are isothermal in structure in the sense that the bed temperature is not an output variable but rather an input one and must be a priori specified. In order to remedy these inadequacies of the previous models, we here present a comprehensive account of the formulation and some typical results of a new nonisothermal model which has been developed in order to study, among other things, the ignition and extinction characteristics of the AFBC units. This model is able to predict the temperature patterns in the bed, the carbon loading, the combustion efficiency and the O/sub 2/ and CO concentration profiles in the combustor for the different design or operational characteristics.

  1. Prediction of Solids Circulation Rate of Cork Particles in an Ambient-Pressure Pilot-Scale Circulating Fluidized Bed

    SciTech Connect

    Huang, Yue; Turton, Richard; Famouri, Parviz; Boyle, Edward J.

    2009-01-07

    Circulating fluidized beds (CFB) are currently used in many industrial processes for noncatalytic and catalytic because its effective control is the key to smooth operation of a CFB system. This paper presents a method for solids flow metering from pressure drop measurements in the standpipe dense phase. A model based on the Ergun equation is developed to predict the solids flow rate and voidage in the dense phase of the standpipe. The profile of the solids flow rate under unsteady state is also presented. With the use of this method, the dynamic response time at different locations along the standpipe of a pilot-scale fluidized bed operating at ambient conditions with 812 mu m cork particles is estimated successfully. Through the use of a pressure balance analysis, solids flow models for the standpipe, riser, and other sections of the flow loop are combined to give an integrated CFB model.

  2. Mathematical model for the continuous combustion of char particles in a fluidized bed

    SciTech Connect

    Saxena, S.C.; Rehmat, A.

    1980-12-01

    Recently, we have developed the direct oxidation model for the combustion of a batch of char in a fluidized bed. This analysis is extended for the continuous combustion of char, and a system of general equations has been derived to relate the feed rate of char to the amount of char particles present in the fluidized bed and in the overflow stream. The size distribution of char particles and their number in the bed are also predicted. The analysis indicates that the amount of carbon present in the bed is independent of the feed particle size at fixed values of the char feed rate and fluidizing-gas velocity although the number of char bed particles depends upon the feed particle size. Further, the carbon content of the bed and the number of char particles in the bed are found to depend heavily on the char feed rate and the fluidizing-gas velocity. A discrete cut method is described whereby the particle size distribution and the number of particles present in the bed are calculated. The method provides a simplified trial-and-error procedure for those cases in which the rate of change in particle size is a complex nonintegrable function of the particle size. The discrete cut method is found to yield results which are in good agreement with the exact solutions of the integrals defining the number of particles and their size distribution. The model provides a simple base for the scale-up and design work related to fluidized-bed coal combustors.

  3. The pilot scale testing of a circulating fluid bed fine particulate and mercury control device

    SciTech Connect

    Helfritch, D.J.; Feldman, P.L.

    1998-07-01

    US utilities are faced with new economic challenges to remain competitive in light of deregulation initiatives and increased competition. In addition, environmental pressures are forcing many of these utilities to be prepared to reduce the air emissions such as NO{sub x}, SO{sub x}, fine particulates and mercury from coal-burning plants. The proposed PM{sub 2.5} regulations will demand improved fine particle control from existing equipment, and potential mercury vapor regulations would impose the installation of new control equipment. The device described here employs a circulating fluid bed in order to achieve a high particle density, which promotes the agglomeration of particles. The fine particles entering the system are formed into larger agglomerates, which are then more readily captured by a conventional electrostatic precipitator. Activated carbon cab be injected into the circulating bed for the adsorption of mercury vapor. High residence time, due to the recirculation, allows very effective utilization of the carbon. The fluid bed device was operated for a three-month period on a slipstream of gas exiting a coal-fired boiler at PSE and G's Mercer Generating Station. The results showed that fine particles and mercury vapor can be significantly reduced by passage through a fluidized bed of fly ash and activated carbon. The addition of lime to the fluid bed resulted in effective capture of SO{sub 2} and HCI. These results and the effects of various parameters on capture efficiencies are presented.

  4. Characterization of a fluidized-bed combustion ash to determine potential for environmental impact. Final report

    SciTech Connect

    Hassett, D.J.; Henderson, A.K.; Pflughoeft-Hassett, D.F.; Mann, M.D.; Eylands, K.E.

    1997-10-01

    A 440-megawatt, circulating fluidized-bed combustion (CFBC), lignite-fired power plant is planned for construction in Choctaw County north of Ackerman, Mississippi. This power plant will utilize Mississippi lignite from the first lignite mine in that state. Malcolm Pirnie, Inc., is working with the power plant developer in the current planning and permitting efforts for this proposed construction project. In order to accommodate Mississippi state regulatory agencies and meet appropriate permit requirements, Malcolm Pirnie needed to provide an indication of the characteristics of the by-products anticipated to be produced at the proposed plant. Since the Mississippi lignite is from a newly tapped mine and the CFBC technology is relatively new, Malcolm Pirnie contacted with the Energy and Environmental Research Center (EERC) to develop and perform a test plan for the production and characterization of ash similar to ash that will be eventually produced at the proposed power plant. The work performed at the EERC included two primary phases: production of by-products in a bench-scale CFBC unit using lignite provided by Malcolm Pirnie with test conditions delineated by Malcolm Pirnie to represent expected operating conditions for the full-scale plant; and an extensive characterization of the by-products produced, focusing on Mississippi regulatory requirements for leachability, with the understanding that return of the by-product to the mine site was an anticipated by-product management plan. The overall focus of this project was the environmental assessment of the by-product expected to be produced at the proposed power plant. Emphasis was placed on the leachability of potentially problematic trace elements in the by-products. The leaching research documented in this report was performed to determine trends of leachability of trace elements under leaching conditions appropriate for evaluating land disposal in monofills, such as returning the by-products to the mine

  5. Fine-grid simulations of gas-solids flow in a circulating fluidized bed

    SciTech Connect

    Benyahia, S.

    2012-01-01

    This research note demonstrates that more accurate predictions of a two-fluid model for the riser section of a circulating fluidized bed are obtained as the grid size is equally refined along all the directions of the gas-particle flow. However, two-fluid simulations of large-scale fluidized beds with such a fine mesh are currently computationally prohibitive. Alternatively,subgrid models can significantly reduce the simulation time of multiphase flow by using coarse mesh, whereas maintaining a high level of accuracy.

  6. Can Chemical Looping Combustion Use CFB Technology?

    SciTech Connect

    Gamwo, I.K.

    2006-11-01

    Circulating Fluidized Bed (CFB) technology has demonstrated an unparalleled ability to achieve low SO2 and NOx emissions for coal-fired power plants without CO2 capture. Chemical Looping combustion (CLC) is a novel fuel combustion technology which appears as a leading candidate in terms of competitiveness for CO2 removal from flue gas. This presentaion deals with the adaptation of circulating fluidized bed technology to Chemical looping combustion

  7. A study on methane and nitrous oxide emissions characteristics from anthracite circulating fluidized bed power plant in Korea.

    PubMed

    Lee, Seehyung; Kim, Jinsu; Lee, Jeongwoo; Jeon, Eui-Chan

    2012-01-01

    In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea's emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH₄) and nitrous oxide (N₂O) in the exhaust gases from circulating fluidized bed plant. The findings showed the concentration of CH₄ and N₂O in the flue gas to be 1.85 and 3.25 ppm, respectively, and emission factors were 0.486 and 2.198 kg/TJ, respectively. The CH₄ emission factor in this paper was 52% lower than default emission factor presented by the IPCC. The N₂O emission factor was estimated to be 46% higher than default emission factor presented by the IPCC. This discrepancy can be attributable to the different methods and conditions of combustion because the default emission factors suggested by IPCC take only fuel characteristics into consideration without combustion technologies. Therefore, Korea needs to facilitate research on a legion of fuel and energy consumption facilities to develop country-specific emission factors so that the nation can have a competitive edge in the international climate change convention in the years to come. PMID:22666126

  8. A Study on Methane and Nitrous Oxide Emissions Characteristics from Anthracite Circulating Fluidized Bed Power Plant in Korea

    PubMed Central

    Lee, Seehyung; Kim, Jinsu; Lee, Jeongwoo; Jeon, Eui-Chan

    2012-01-01

    In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea's emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH4) and nitrous oxide (N2O) in the exhaust gases from circulating fluidized bed plant. The findings showed the concentration of CH4 and N2O in the flue gas to be 1.85 and 3.25 ppm, respectively, and emission factors were 0.486 and 2.198 kg/TJ, respectively. The CH4 emission factor in this paper was 52% lower than default emission factor presented by the IPCC. The N2O emission factor was estimated to be 46% higher than default emission factor presented by the IPCC. This discrepancy can be attributable to the different methods and conditions of combustion because the default emission factors suggested by IPCC take only fuel characteristics into consideration without combustion technologies. Therefore, Korea needs to facilitate research on a legion of fuel and energy consumption facilities to develop country-specific emission factors so that the nation can have a competitive edge in the international climate change convention in the years to come. PMID:22666126

  9. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-01

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. PMID:26897573

  10. Technology evaluation for a waste-fuel-based circulating fluidized-bed project

    SciTech Connect

    Kavidass, S.

    1994-12-31

    A comparative technology evaluation is made of competing technologies - pulverized coal (PC), stoker-fired and circulating fluidized-bed boilers - for firing high-ash waste coal. Operating experience from Ukraine and India indicates that PC-fired boilers burning high-ash waste coal can be repowered with circulating fluidized-bed (CFB) technology. This has been necessary due to poor boiler availability, equipment deterioration, ash content variation in the fuel, and increasingly stringent emissions regulations. Due to these considerations, CFB technology was selected for Ebensburg Power Company`s high-ash waste coal project. The 55 MW B&W CFB boiler at Ebensburg Power, Pennsylvania, USA has successfully fired high-ash waste coal since May 1991. Operating experience of the Ebensburg CFB boiler, including availability, maintenance, and emissions is discussed.

  11. Evaluations of wall shear stress in the standpipe of a circulating fluidized bed

    SciTech Connect

    Monazam, E.R.; Shadle, L.J.

    2008-05-13

    Shear stress was obtained in the standpipe of a Circulating Fluidized Bed (CFB) for a light cork particles under a variety of flow conditions. The shear stress data were estimated using incremental gas phase pressure drop readings, and an estimate of the bed height to predict the hydrostatic pressure drop [(dp/dy) = ρs (1-ε) g+4τsw/D]. In addition, we have also obtained data on aeration rate in the standpipe, particle circulation rate and riser gas flow rate. Analysis of the results using a one-dimensional momentum equation reveal that the observed forced per unit area may be attributed to wall friction. The resulting shear stress demonstrates that as the aeration air in the standpipe was increased the shear at the wall was decreased. An attempt was made to model solids friction factor as a function of particle velocity and it was compared to the other literature correlations.

  12. Sampling and instrumentation for fluidized-bed combustion. Annual report, October 1978-September 1979

    SciTech Connect

    Johnson, I.; Podolski, W.F.; Myles, K.M.

    1980-09-01

    In the first section of this report, background information is presented on instrumentation for fluidized-bed combustion, i.e., for process control, scientific investigation, and safety in planned and operating fluidized-bed combustion systems. The objective of this study is to update and extend the fluidized-bed portion of a preceding report, A Study of the State-of-the-Art of Instrumentation for Process Control and Safety in Large-Scale Coal Gasification, Liquefaction, and Fluidized-Bed Combustion Systems, ANL-76-4. The second section of this report describes two prototype mass flow rate instruments installed on the solids feed lines of an existing ANL fluidized-bed combustor. The Fossil Instrumentation Group at ANL designed, fabricated, and installed these instruments in cooperation with Chemical Engineering Division personnel - one on the coal feedline and one on the coal/limestone feedline. Each instrument consisted of a capacitive sensor spoolpiece and an associated preamplifier and signal conditioning. One channel of each instrument provides three outputs. One delivers a density signal while two others deliver two signals for measuring velocity by cross-correlation. Operation was verified by using laboratory signal analyzers to process the signals. The third section of this report summarizes the results of a Spectron Development Laboratory subcontract from ANL to investigate analytical techniques suitable for monitoring the concentration of gaseous alkali compounds in the hot gas stream from a fluidized-bed combustor. It was concluded from the study that the concept of using the Na/sub 2/SO/sub 4/ dew point to detect the onset of hot corrosion conditions is the most attractive of the techniques evaluated.

  13. Meat and bone meal as secondary fuel in fluidized bed combustion

    SciTech Connect

    L. Fryda; K. Panopoulos; P. Vourliotis; E. Kakaras; E. Pavlidou

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containing bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.

  14. Method of removing sulfur emissions from a fluidized-bed combustion process

    DOEpatents

    Vogel, Gerhard John; Jonke, Albert A.; Snyder, Robert B.

    1978-01-01

    Alkali metal or alkaline earth metal oxides are impregnated within refractory support material such as alumina and introduced into a fluidized-bed process for the combustion of coal. Sulfur dioxide produced during combustion reacts with the metal oxide to form metal sulfates within the porous support material. The support material is removed from the process and the metal sulfate regenerated to metal oxide by chemical reduction. Suitable pore sizes are originally developed within the support material by heat-treating to accommodate both the sulfation and regeneration while still maintaining good particle strength.

  15. Industrial application of fluidized-bed combustion, Anthracite Culm Combustion Program, A/E Technical Management Services. Final report

    SciTech Connect

    Not Available

    1981-01-01

    The Energy Research and Development Administration (now DOE) initiated the $80,000,000 Fluidized Bed Combustion Programs in 1976 and contracts were awarded to five participants. Subsequently, in 1977 there were three additional contracts awarded for the Anthracite Culm Program. The objectives were to determine which applications were most feasible, and to design, build and operate demonstration plants with capacities of 25 to 100 million Btu per hour output burning high sulfur coals and other fuels to obtain sufficient data to enable industry to scale up to larger plant sized installations. Contributions of each of the participants are discussed. Relative merits of each design approach is covered. Specific areas such as fuel feed systems, grid plate design, ignition systems, fly ash reinjection systems, particulate clean up and control systems are discussed. Remaining areas of concern are errosion, combustion efficiency and reliability.

  16. Research of integral parameters for furnaces of a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Gil, Andrey V.; Gil, Alexandra Y.

    2015-01-01

    Modern society poses several energy problems. Improving the efficiency and reliability of power equipment and reduce the impact on the environment. The paper presents the promising technology of superheated steam using different coals. The model of the furnace with a circulating fluidized bed and numerical simulation results of gas dynamic processes using application FIRE 3D. The analysis of aerodynamics and the distribution of the dispersed phase adjustment of the furnace.

  17. Analysis of gas/particles flow in the riser of a circulating fluidized bed

    SciTech Connect

    Arastoopour, H.; Benyahia, S.

    1999-07-01

    Computational fluid dynamics (CFD) packages (CFX and Fluent) governing equations were modified using kinetic theory for cohesive and non-cohesive particles of different sizes, and used to simulate 2-dimensional and 3-dimensional transient gas/particle flow behavior using FCC particles in the riser section of a circulating fluidized bed. The calculated solid flux velocity and pressure drop agreed reasonably well with the experimental data obtained using laser doppler anemometer and large-scale experiments.

  18. Devolatilization and ash comminution of two different sewage sludges under fluidized bed combustion conditions

    SciTech Connect

    Solimene, R.; Urciuolo, M.; Cammarota, A.; Chirone, R.; Salatino, P.; Damonte, G.; Donati, C.; Puglisi, G.

    2010-04-15

    Two different wet sewage sludges have been characterized under fluidized bed combustion conditions with reference to their devolatilization behavior and ash comminution with the aid of different and complementary experimental protocols. Analysis of the devolatilization process allowed to determine the size of fuel particle able to achieve effective lateral spreading of the volatile matter across the cross-section of medium-scale combustors. Primary fragmentation and primary ash particle characterization pointed out the formation of a significant amount of relatively large fragments. The mechanical properties of these fragments have been characterized by means of elutriation/abrasion tests using both quartz and sludge ash beds. (author)

  19. Influence factors on the flue gas desulfurization in the circulating fluidized bed reactor

    SciTech Connect

    Gao, J.; Tang, D.; Liu, H.; Suzuki, Yoshizo; Kito, Nobo

    1997-12-31

    This paper describes a dry SO{sub 2} removal method -- the absorbent (Ca(OH){sub 2}) was injected into the Circulating Fluidized Bed (CFB) reactor at the coolside of the duct to abate SO{sub 2} in the flue gas -- with the potential to significantly enhance desulfurization performance over that of existing dry/semi-dry Flue Gas Desulfurization (FGD) technology such as Spray Drying. A patent for coolside Flue Gas Desulfurization in the Circulating Fluidized Bed reactor (CFB-FGD) was approved by the China Patent Bureau in September of 1995 and the additional laboratory experiment was carried out in an electrically heated bench scale quartz circulating fluidized bed reactor of 2350mm in height and 23mm in diameter in January, 1996. The influences of steam, ratio of calcium and sulfur, reactor temperature, and absorbent utilization efficiency were invested. The results show that: (1) Water steam plays a key role in the reaction of Ca(OH){sub 2} and SO{sub 2} in the CFB reactor; (2) There is a positive effect of Ca/S on SO{sub 2} removal efficiency; (3) The temperature is an another key factor for SO{sub 2} removal efficiency for the CFB-FGD process; (4) The absorbent can be enhanced in the CFB reactor; (5) The CFB reactor is better than the dry/semi-dry FDG technology. SO{sub 2} removal efficiency can be as high as 84.8%.

  20. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1996-06-01

    Experiments were conducted in a 1-in. quartz fluidized bed combustor enclosed in an electric furnace. Coal samples were burned in the bed with a sorbent under specific combustion conditions and the amount of metal capture by the sorbent determined. Three different cao samples from the Illinois Basin Coal Sample Bank were tested. Metals involved were Cd, Pb, and Cr; the sorbents included bauxite, zeolite, and lime. Potential metal-sorbent reactions were identified. Results indicated that metal capture by sorbent can be as high as 96%, depending on the metal species and sorbent. All 3 sorbents were capable of capturing Pb, zeolite and lime were able to capture Cr, and bauxite was the only sorbent capable of capturing Cd. Thermodynamic equilibrium calculations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}, CdAl{sub 2}O{sub 4}, and CdSiO{sub 3} solids under the combustion conditions.

  1. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect

    Ho, T.C.; Ghebremeskel, A.; Wang, K.S.; Hopper, J.R.

    1997-07-01

    This study investigated the potential of employing suitable sorbents to capture toxic trace metallic substances during fluidized bed coal combustion. Metal capture experiments were carried out in a 25.4 mm (1 inch) quartz fluidized bed combustor enclosed in an electric furnace. The metals involved were cadmium, lead, chromium, arsenic and selenium, and the sorbents tested included bauxite, zeolite and lime. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through chemical equilibrium calculations based on the minimization of system free energy. The observed experimental results indicated that metal capture by sorbents can be as high as 88% depending on the metal species and sorbent involved. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions.

  2. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  3. Capture of alkali during pressurized fluidized-bed combustion using in-bed sorbents

    SciTech Connect

    Mann, M.D.; Ludlow, D.K.

    1997-12-31

    The primary focus of this research was the removal of alkali from PFBC flue gases to a level specified by turbine manufactures. The target level was less than 24 ppbw. Several of the aluminosilicate minerals have the potential to capture alkalis, especially sodium and potassium, under conditions typical of fluid-bed operation. Other goals of this work were to investigate the potential for simultaneously removing SO{sub 2} and Cl from the PFBC gas stream. The initial work focused primarily on one class of sorbents, sodalites, with the goal of determining whether sodalites can be used as an in-bed sorbent to simultaneously remove alkali and sulfur. Thermo gravimetric analysis (TGA) was used to study the mechanism of alkali capture using sodalite. Further testing was performed on a 7.6 cm (3-in.)-diameter pressurized fluid-bed reactor (PFBR). Early results indicated that simultaneous removal of alkali and sulfur and/or chlorine was not practical under the conditions for commercial PFBC operations. Therefore, the focus of the latter part of this work was on sorbents that have been shown to capture alkali in other systems. The effectiveness of bauxite and kaolinite to reduce vapor-phase alkali concentrations was determined. In addition to studying the gettering capability of the sorbent, the impact of the getter on operational performance was evaluated. This evaluation included examining potential agglomeration of bed particles, deposition on heat-transfer surfaces, and the bridging and blinding of ceramic candle filters. The focus of this paper is on the work performed on the PFBR.

  4. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    SciTech Connect

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  5. Pulsed atmospheric fluidized bed combustion. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  6. Design and performance of a fluidized-bed incinerator for TRU combustible wastes

    SciTech Connect

    Meile, L.J.; Meyer, F.G.

    1982-01-01

    Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

  7. Fundamental Combustion Characteristics of Sewage Sludge in Fluidized Bed Incinerator with Turbocharger

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Suzuki, Yoshizo; Nagasawa, Hidekazu; Yamamoto, Takafumi; Koseki, Takami; Hirose, Hitoshi; Ochi, Shuichi

    An epoch-making incineration plant, which is equipped with a pressurized fluidized-bed combustor coupled to a turbocharger, for the recovery of the energy contained in sewage sludge is proposed. This plant has three main advantages. (1) A pressure vessel is unnecessary because the maximum operating pressure is 0.3 MPa (absolute pressure). The material cost for plant construction can be reduced. (2) CO2 emissions originating from power generation can be decreased because the FDF (Forced Draft Fan) and the IDF (Induced Draft Fan) are omitted. (3) Steam in the flue gas becomes a working fluid of the turbocharger, so that in addition to the combustion air, the surplus air is also generable. Therefore, this proposed plant will not only save energy but also the generate energy. The objective of this study is to elucidate the fundamental combustion characteristics of the sewage sludge using a lab-scale pressurized fluidized bed combustor (PFBC). The tested fuels are de-watered sludge and sawdust. The temperature distribution in the furnace and N2O emissions in the flue gas are experimentally clarified. As the results, for sludge only combustion, the temperature in the sand bed decreases by drying and pyrolysis, and the pyrolysis gas burns in the freeboard so that the temperature rises. On the other hand, the residual char of sawdust after pyrolysis burns stably in the sand bed for the co-firing of sludge and sawdust. Thus the temperature of the co-firing is considerably higher than that of the sludge only combustion. N2O emissions decreases with increasing freeboard temperature, and are controlled by the temperature for all experimental conditions. These data can be utilize to operation the demonstration plant.

  8. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    SciTech Connect

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  9. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed

    PubMed Central

    2013-01-01

    Background The process of thermal decomposition of dichloromethane (DCM) and chlorobenzene (MCB) during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%. PMID:23289764

  10. Hydration of spent limestone and dolomite to enhance sulfation in fluidized-bed combustion

    SciTech Connect

    Shearer, J.A.; Smith, G.W.; Moulton, D.S.; Turner, C.B.; Myles, K.M.; Johnson, I.

    1980-01-01

    The utilization of CaO in fluidized bed combustion can be markedly increased to reduce the cost and environmental impact of quarrying and disposing of large quantities of solid waste. A new method of treatment of spent bed material to reactivate its SO/sub 2/ capturing ability has been found. Partially sulfated spent overflow material from a fluidized-bed combustor is treated with water and then reintroduced to the combustor as renewed feed that further reacts with SO/sub 2/. This material has sufficient physical integrity, due to the outer layer of CaSO/sub 4/, and high reactivity to make it suitable as a sorbent feedstock. The work reported here details observations on a number of limestones and dolomites reacted in laboratory furnaces under simulated combustion conditions as well as verification of the effectiveness of the method in a 15-cm-ID process development unit scale atmospheric fluidized-bed coal combustor. Initial kinetic studies have also been made on the hydration reaction of partially sulfated limestone. A proposed mechanism of interaction is discussed to explain the enhanced reactivity. Changes in total porosity and pore size distribution in the partially sulfated material due to Ca(OH)/sub 2/ formation and its dehydration serve to open up the particle interior and its residual CaO to further reaction with SO/sub 2/. Almost complete utilization of the available CaO can be achieved by successive applications of this promising new technique.

  11. Atmospheric fluidized bed combustion (AFBC) plants: an operations and maintenance study

    SciTech Connect

    Jack A. Fuller; Harvie Beavers; Robert Bessette

    2006-06-15

    The authors analyzed data from a fluidized bed boiler survey distributed during the spring of 2003 to develop appropriate AFBC (Atmospheric Fluidized Bed Combustion) performance benchmarks. The survey was sent to members of CIBO (Council of Industrial Boiler Owners), who sponsored the survey, as well as to other firms who had an operating AFBC boiler on-site. There were three primary purposes for the collection and analysis of the data contained in this fluidized bed boiler survey: (1) To develop AFBC benchmarks on technical, cost, revenue, and environmental issues; (2) to inform AFBC owners and operators of contemporary concerns and issues in the industry; (3) to improve decision making in the industry with respect to current and future plant start-ups and ongoing operations.

  12. Modeling of NOx emissions from fluidized bed combustion of high volatile lignites

    SciTech Connect

    Afacan, O.; Gogebakan, Y.; Selcuk, N.

    2007-01-15

    A comprehensive model, previously developed and tested for prediction of behavior of continuous fluidized bed combustors is extended to incorporate NOx formation and reduction reactions and applied to the simulation of Middle East Technical University (METU) 0.3 MW Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) burning lignites with high Volatile Matter/Fixed Carbon (VM/FC) ratios in their own ashes. Favorable comparisons are obtained between the predicted and measured temperatures and concentrations of gaseous species along the combustor. Results show that determination of partitioning of coal nitrogen into char-N and volatile-N, char combustion rate, and amount of volatile nitrogen released along the combustor are found to be the most important parameters that affect NO formation and reduction in bubbling fluidized bed combustors.

  13. Simultaneous carbon and nitrogen removal in anoxic-aerobic circulating fluidized bed biological reactor (CFBBR).

    PubMed

    Cui, Y; Nakhla, G; Zhu, J; Patel, A

    2004-06-01

    Biological nutrient removal (BNR) in municipal wastewater treatment to remove carbonaceous substrates and nutrients, has recently become increasingly popular worldwide due to increasingly stringent regulations. Biological fluidized bed (BFB) technology, which could be potentially used for BNR, can provide some advantages such as high efficiency and a compact structure. This work shows the results of simultaneous elimination of organic carbon and nitrogen using a circulating fluidized bed biological reactor (CFBBR, which has been developed recently for chemical engineering processes. The CFBBR has two fluidized beds, running as anoxic and aerobic processes to accomplish simultaneous nitrification and denitrification, with continuous liquid recirculation through the anoxic bed and the aerobic bed. Soluble COD concentrations in the effluent ranging from 4 to 20 mg l(-1) were obtained at varying COD loading rates; ammonia nitrogen removal efficiencies averaged in excess of 99% at a minimum total hydraulic retention time (HRT) of 2.0 hours over a temperature range of 25 degrees C to 28 degrees C. Effluent nitrate nitrogen concentration of less than 5 mg l(-1) was achieved by increasing effluent recycle rate. No nitrite accumulation was observed either in the anoxic bed or in the aerobic bed. The system was able to treat grit chamber effluent wastewater at a HRT of 2.0 hours while achieving average effluent BOD, COD, NH3-N, TKN, nitrates, total phosphate, TSS and VSS concentrations of 10 mg l(-1), 18 mg l(-1), 1.3 mg l(-1), 1.5 mg l(-1), 7 mg l(-1), 2.0 mg l(-1), 10 mg l(-1) and 8 mg l(-1) respectively. The CFBBR appears to be not only an excellent alternative for conventional activated sludge type BNR technologies but also capable of processing much higher loadings that are suitable for industrial applications. PMID:15369290

  14. Cleaning and Heat Transfer in Heat Exchanger with Circulating Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Kang, Ho Keun; Ahn, Soo Whan; Choi, Jong Woong; Lee, Byung Chang

    2010-06-01

    Fluidized bed type heat exchangers are known to increase the heat transfer and prevent the fouling. For proper design of circulating fluidized bed heat exchanger it is important to know the effect of design and operating parameters on the bed to the wall heat transfer coefficient. The present experimental and numerical study was conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass (3 mmF), aluminum (2˜3 mmF), steel (2˜2.5 mmF), copper (2.5 mmF) and sand (2˜4 mmF) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behaviour might be attributed to the parameters such as surface roughness or particle heat capacity. Fouling examination using 25,500 ppm of ferric oxide (Fe2O3) revealed that the tube inside wall is cleaned by a mild and continuous scouring action of fluidized solid particles. The fluidized solid particles not only keep the surface clean, but they also break up the boundary layer improving the heat transfer coefficient even at low fluid velocities.

  15. A low emission technology -- low cost coal water mixture fired fluidized bed combustion

    SciTech Connect

    Jianhua Yan; Xuguang Jiang; Yong Chi

    1995-12-31

    In this paper, low cost coal water mixture (CWM) FBC technology is described. Low cost CWM may be coal washery sludge or the mixture of water and coal crashed easily. This technology is featured by agglomerate combustion of low cost MM. Experimental results in 0.5MW FBC test rig are reported. lie effects of bed temperate excess air, staged combustion on combustion and emission performance has been studied. The comparison combustion tests by using dry coal and CWM we made ha 0.5MW FBC test rig. Also coal washery sludge of different origins are also tested in the test rig. Based on the test rig comments a demonstration AFBC boiler with capacity of 35 T/H steam for utility application (6 MW) is designed. The design features will be presented in this paper Both the operation experience of test rig and demonstration unit show the developed low cost CWM FBC technology is of high combustion efficiency and low emission. This technology is being commercialized and applied in China in top priority by Chinese government.

  16. Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions.

    PubMed

    Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Gulyurtlu, Ibrahim; Mendes, Benilde

    2011-01-01

    Two combustion tests were performed in a fluidized bed combustor of a thermo-electric power plant: (1) combustion of coal; (2) co-combustion of coal (68.7% w/w), sewage sludge (9.2% w/w) and meat and bone meal (MBM) (22.1% w/w). Three samples of ashes (bottom, circulating and fly ashes) were collected in each combustion test. The ashes were submitted to the following assays: (a) evaluation of the leaching behaviour; (b) stabilization/solidification of fly ashes and evaluation of the leaching behaviour of the stabilized/solidified (s/s) materials; (c) production of concrete from bottom and circulating ashes. The eluates of all materials were submitted to chemical and ecotoxicological characterizations. The crude ashes have shown similar chemical and ecotoxicological properties. The s/s materials have presented compressive strengths between 25 and 40 MPa, low emission levels of metals through leaching and were classified as non-hazardous materials. The formulations of concrete have presented compressive strengths between 12 and 24 MPa. According to the Dutch Building Materials Decree, some concrete formulations can be used in both scenarios of limited moistening and without insulation, and with permanent moistening and with insulation. PMID:21605964

  17. Simultaneous carbon, nitrogen and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor.

    PubMed

    Patel, Ajay; Zhu, Jesse; Nakhla, George

    2006-11-01

    In this study, the performance of the circulating fluidized bed bioreactor (CFBB) with anoxic and aerobic beds and employing lava rock as a carrier media for the simultaneous removal of carbon, nitrogen and phosphorus from municipal wastewater at an empty bed contact time (EBCT) of 0.82 h was discussed. The CFBB was operated without and with bioparticles' recirculation between the anoxic and aerobic bed for 260 and 110 d respectively. Without particles' recirculation, the CFBB was able to achieve carbon (C), total nitrogen (N) and phosphorous (P) removal efficiencies of 94%, 80% and 65% respectively, whereas with bioparticles' recirculation, 91%, 78% and 85% removals of C, N and P were achieved. The CFBB was operated at long sludge retention time (SRT) of 45-50 d, and achieved a sludge yield of 0.12-0.135 g VSS g COD(-1). A dynamic stress study of the CFBB was carried out at varying feed flow rates and influent ammonia concentrations to determine response to shock loadings. The CFBB responded favourably in terms of TSS and COD removal to quadrupling of the feed flow rate. However, nitrification was more sensitive to hydraulic shock loadings than to doubling of influent nitrogen loading. PMID:16762392

  18. Exploratory and basic fluidized-bed combustion studies. Quarterly report, April-June 1980. [Limestone and dolomite; USA

    SciTech Connect

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports the development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particles and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutant emissions, and other aspects of fluidized-bed coal combustion. This report presents information on: (1) the development of a sorbent utilization prediction methodology, (2) studies of factors which affect limestone breakup and elutriation, (3) basic studies of limestone sulfation under combustion conditions, and (4) studies of the kinetics of the hydration of spent limestone.

  19. A New Dry Flue Gas Desulfurization Process-Underfeed Circulating Spouted Bed

    NASA Astrophysics Data System (ADS)

    Tao, M.; Jin, B. S.; Yang, Y. P.

    Applying an underfeed system, the underfeed circulating spouted bed was designed as a desulfurization reactor. The main objective of the technology is to improve the mixing effect and distribution uniformity of solid particles, and therefore to advance the desulfurization efficiency and calcium utility. In this article, a series of experimental studies were conducted to investigate the fluidization behavior of the solid-gas two-phase flow in the riser. The results show that the technology can distinctly improve the distribution of gas velocity and particle flux on sections compared with the facefeed style. Analysis of pressure fluctuation signals indicates that the operation parameters have significant influence on the flow field in the reaction bed. The existence of injecting flow near the underfeed nozzle has an evident effect on strengthening the particle mixing.

  20. [Intermediate experiment and mechanism analysis of flue gas desulfurization technology by circulating fluidized bed].

    PubMed

    Zhao, Xudong; Wu, Shaohua; Ma, Chunyuan; Qin, Yukun

    2002-03-01

    A new Circulating Fluidized Bed was designed for intermediate experiment of flue gas desulphurization, in which the flue gas flow rate was 3500 m3/h. By using it, the basic experiments were carried out to study the influence of Ca/S and supersaturated temperature on desulphurization efficiency and the effect of the recycling solid particle in the sulfur removal column on desulphurization performance. The results showed when Ca/S = 1.2, the desulphurization efficiency was increased by 15% through the recycle of solid particle; the gas velocity inside the bed could be designed higher. The mechanism analysis were also studied and the method to increase effective resident time was introduced. PMID:12048805

  1. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  2. Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed

    SciTech Connect

    Guenther, C.; Breault, R.W.

    2007-04-30

    A common hydrodynamic feature in heavily loaded circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating conditions spanning three different flow regimes were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  3. Numerical Simulations of a Circulating Fluidized Bed with a Square Cross-Section

    SciTech Connect

    Li, Tingwen

    2011-01-01

    In this study, both 2D and 3D numerical simulations of a well-documented circulating fluidized bed with a square cross-section were conducted. With some assumptions, a series of 2D simulations was first carried out to study the influence of grid resolution, initial flow field, and boundary condition on the flow hydrodynamics. It was found that 2D simulations under-predicted the solids inventory even with the finest grid (10-particle-diameter grid size). On the other hand, a 3D simulation with relatively coarse grid was found in better agreement with the experimental data. Differences between 2D and 3D simulations were briefly discussed.

  4. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2015-02-24

    The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.

  5. Investigation of Heat Transfer and Combustion in the Advanced Fluidized Bed Combustion.

    SciTech Connect

    Lee, S.W.

    1997-10-01

    This technical report summarizes the research conducted and progress achieved during the period from July 1, 1997 to September 30, 1997. In order to conduct the numerical modeling/simulation on the advanced swirling fluidized bed combustor (hot model), the basic governing equations are formulated based upon the continuity and momentum equations, and energy equations in the cylindrical coordinates. The chemical reaction and radiation heat transfer were considered in this modeling/simulation work. The chemical reaction and the diffusion due to concentration gradients and thermal effects are also included in the modeling for simulation. The flow system was configured in 3-D cylindrical coordinates with the uniform mesh grids. The calculation grid was set of orthogonal lines arranged in the cylindrical coordinates which includes three different directions: tangential direction (I), radial direction (i), and vertical direction (k). There are a total of 24192 grids in the system configuration including 14 slices of the tangential direction (I), 24 slices of the radial direction (j), and 72 slices of the vertical direction. Numerical simulation on the advanced swirling fluidized bed combustor is being conducted using computational fluid dynamics (CFD) code, Fluent. This code is loaded onto the supercomputer, CRAY J916 system of Morgan State University. Numerical modeling/simulation will be continued to determine the hot flow patterns, velocity profiles, static pressure profiles, and temperature profiles in the advanced swirling fluidized combustor.

  6. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  7. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  8. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  9. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers. PMID:19854038

  10. Gaseous emissions from sewage sludge combustion in a moving bed combustor.

    PubMed

    Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J

    2015-12-01

    Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions

  11. Residues characterisation from the fluidised bed combustion of East London's solid recovered fuel.

    PubMed

    Balampanis, D E; Pollard, S J T; Simms, N; Longhurst, P; Coulon, F; Villa, R

    2010-07-01

    Waste thermal treatment in Europe is moving towards the utilisation of the combustible output of mechanical, biological treatment (MBT) plants. The standardisation of solid recovered fuels (SRF) is expected to support this trend and increase the amount of the generated combustion residues. In this work, the residues and especially the fly ashes from the fluidised bed combustion (FBC) of East London's NCV 3, Cl 2, and Hg 1 class SRF, are characterised. The following toxicity indicators have been studied: leachable chlorine, organochlorides expressed as pentachlorobenzene and hexachlorobenzene, and the heavy metals Cu, Cr, Cd, Zn, Ni, and Pb. Furthermore the mineralogical pattern of the ashes has been studied by means of XRD and SEM-EDS. The results suggest that these SRF derived ashes have significantly lower quantities of Cu, Cd, Pb, Zn, leachable Cl, and organochlorides when compared to other literature values from traditional waste thermal treatment applications. This fact highlights the importance of modern separation technologies employed in MBT plants for the removal of components rich in metals and chlorine from the combustible output fraction of SRF resulting to less hazardous residues. PMID:20231082

  12. Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels

    SciTech Connect

    Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R.

    2008-12-15

    The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

  13. West Virginia Geological Survey's role in siting fluidized bed combustion facilities

    USGS Publications Warehouse

    Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.

    1989-01-01

    A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.

  14. Exploratory and basic fluidized-bed combustion studies. Quarterly report, October-December 1979

    SciTech Connect

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-11-01

    These laboratory- and process-development-scale studies support the Fossil Energy development program for atmospheric and pressurized fluidized-bed combustion. The objective of the current program is to investigate methods for improving the utilization of limestone for SO/sub 2/ emission control in FBCs and to develop a method for predicting the performance in AFBC's and PFBC's of limestones from different sources. This report presents results from (1) an investigation of the use of water treatment of spent partially sulfated limestone to enhance its SO/sub 2/ capture capacity, (2) studies of the kinetics of the hydration of spent limestone, and (3) studies of the attrition and elutriation of limestones in fluidized beds. Results of studies of the particle-removal efficiency of the TAN-JET cyclone are also reported.

  15. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  16. Development of a topping combustor for advanced concept pressurized fluidized-bed combustion systems

    SciTech Connect

    Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

    1995-11-01

    A project team consisting of Foster Wheeler Development Corporation, Westinghouse Electric Corporation, Gilbert/Commonwealth and the Institute of Gas Technology, are developing a Second Generation Pressurized Fluidized Bed System. Foster Wheeler is developing a carbonizer (a partial gasifier) and a pressurized fluidized bed combustor. Both these units operate at a nominal 1600{degrees}F (870{degrees}C) for optimal sulfur capture. Since this temperature is well below the current combustion turbine combustor outlet operating temperature of 2350{degrees}F (1290{degrees}C), to reach commercialization, a topping combustor and hot gas cleanup (HGCU) equipment must be developed. Westinghouse`s efforts are focused on the development of the high temperature gas cleanup equipment and the topping combustor. This paper concentrates on the design and test of the topping combustor, which must use a low heating value syngas from the carbonizer at approximately 1600{degrees}F and 150 to 210 psi.

  17. Treatment of chromic tannery wastes using coal ashes from fluidized bed combustion of coal

    SciTech Connect

    Bulewicz, E.M.; Kozak, A.; Kowalski, Z.

    1997-10-01

    A new method of treatment for chromic tannery wastes containing chrome and large amounts organic substances has been investigated. It has been found that the addition of certain types of coal ash from fluid bed combustion technologies, at a suitable temperature and pH, results in effective removal of Cr(III) compounds present in the wastes. The wastes could then be subjected to further processing in conventional biological treatment units. The method is very simple, cheap, and effective and could be used for chromic tannery wastes of different compositions.

  18. Manual for applying fluidized-bed-combustion residue to agricultural lands. Research report

    SciTech Connect

    Stout, W.L.; Hern, J.L.; Korcak, R.F.; Carlson, C.W.

    1988-08-01

    Atmospheric fluidized-bed combustion (AFBC) is a process that reduces sulfur emissions from coal-fired electric-generating plants. The residue from the process is a mixture of alkaline oxides, calcium sulfate, and coal ash constituent. Since 1976, USDA/ARS has investigated the potential agriculture use of the residue. The investigations comprised an extensive series of laboratory, greenhouse, field plot, and animal-feeding experiments. The best and safest use of AFBC residue in agriculture was as a substitute for agricultural lime. The report contains guidelines for appling AFBC residue to agricultural lands.

  19. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  20. Predictive models of circulating fluidized bed combustors. 12th technical progress report

    SciTech Connect

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  1. Pulsed atmospheric fluidized bed combustion. Technical progress report, July 1991--September 1991

    SciTech Connect

    Not Available

    1991-10-01

    The major accomplishments during this reporting period include completion of Task 1 and progression into Phase II, Task 2 design activities. A brief laboratory-scale test was conducted during this reporting period to confirm heat transfer coefficients for various sections of the Pulsed Atmospheric Fluidized bed Combustion (PAFBC) system. The heat transfer coefficient was determined to be approximately 50 Btu/hr ft{sup 2} {degrees}F inside the eductor and tailpipe of the pulse combustor as thin the fluidized bed. well as for the surfaces immersed within the fluidized bed. Communications with potential host sites for the Phase III field demonstration activities continued during this reporting period. These discussions along with discussions with environmental regulatory personnel in the State of Maryland indicate that the throughput of the field demonstration facility should be increased to greater than 36 million Btu/hr. An 8 in. {times} 8 in. fluidized bed unit would be too small to satisfy this requirement; its projected firing rate is only 33 million Btu/hr. Major effort during this reporting period was devoted to assessing the reasonableness of increasing the size of the field test facility from a technical and cost standpoint.

  2. Filtration of dust in a circulating granular bed filter with conical louver plates (CGBF-CLPs).

    PubMed

    Bai, Jing-Cheng; Wu, Shu-Yii; Lee, An-Sheng; Chu, Chen-Yeon

    2007-04-01

    A novel circulating granular bed filter with conical louver plates (CGBF-CLPs) was designed to remove dust particulates from the flue gas stream of a coal power plant. The purpose of this investigation was to evaluate the performance of the CGBF-CLPs. Dust collection efficiency and pressure drop data were analyzed to determine better operating conditions. The effect of solid mass flow rate, collector particle size and dust/collector particles separator types on the dust collection efficiency and pressure drop in the CGBF-CLPs were investigated in this study. The solid mass flow rate (B) varied from 15.59+/-0.44 to 20.36+/-0.68 g s(-1) and the initial average collector particle sizes were 1500 and 795 microm, respectively. Two types of separators, a cyclone and an inertial one, for separating the dust and collector particles were used in the CGBF-CLPs system. An Air Personal Sampler (SKC PCXR8) was used to determine the inlet and outlet dust concentrations. A differential pressure transmitter and data acquisition system were used to measure the pressure drop. Experimental results showed that the highest dust collection efficiency was 99.59% when the solid mass flow rate was 17.08+/-0.48 g s(-1) and the initial average collector particle size was 795 microm with the cyclone type separator. The results showed that the attrition fines of the original collector particles returning to the granular bed filter (GBF) reduced bed voidage. This phenomenon significantly increased the dust collection efficiency in the CGBF-CLPs. As a consequence, a bigger bed voidage creates a lower dust collection efficiency in the GBF. PMID:16996207

  3. Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion.

    PubMed

    Bahillo, A; Armesto, L; Cabanillas, A; Otero, J

    2004-01-01

    Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Footwear is the sector that consumes the major part of leather (60%). Logically, this industry is producing the largest quantity of leather wastes. The objective of this work was to demonstrate the technical feasibility of fluidized bed technology to recover the energy from burning footwear leather wastes. Considering the characteristics of leather waste, especially the heating value (12.5-21 MJ/kg), it can be considered a fairly good fuel. Moreover, leather waste has suitable characteristics for combustion, e.g., high volatile matter (76.5%) and low ash content (5.2%). Two factors deserve special attention: N3O and NOx emissions as a consequence of its unusual high nitrogen content (14.1%) and the chromium speciation because chromium is the main element of ash (3.2%) due to its use in leather tanning. A series of experiments has been carried out in a 0.1 MWt bubbling fluidized bed pilot plant. The combustion efficiency, flue gas composition and chromium speciation were investigated. Despite having high nitrogen content, a low conversion rate of fuel-N to NOx and N2O was attained. Chromium was concentrated in the solid streams and it was consistently found as Cr(III+); no presence of Cr(VI+) was detected. PMID:15504671

  4. Identification of barriers to the use of atmospheric fluidized bed combustion in Kentucky

    SciTech Connect

    Not Available

    1990-08-01

    Both Kentucky and the USDOE are committed to development and commercialization of Fluidized Bed Combustion. Kentucky has committed $10 million to, and is a full partner in, the utility-scale 160 MW Atmospheric Fluidized Bed Combustion (AFBC) Demonstration Plant at the Tennessee Valley Authority's Shawnee Steam Plant in Paducah, Kentucky. Kentucky purchased and operates an AFBC pilot plant and conducts tests on alternative coal types, limestone types, boiler-tube corrosion/erosion and other research. The Kentucky General Assembly established a tax credit for the use of AFBC installations. It provides a five year exemption from sales tax, corporate tax, and other taxes for facilities installing AFBC in Kentucky. Despite government and industry commitment to AFBC, despite is potential advantages, and despite its commercial use in several parts of the United States, there is only one industrial facility burning coal using AFBC in Kentucky. This facility uses two units, each rated 60,000 pound per hour AFBC units. One of the driving forces behind the decision to use AFBC at this facility was USDOE funding. Two boilers out of the approximately 800 industrial boilers in the state cannot be considered impressive penetration of the technology. This project was designed to investigate why there is little use of AFBC in Kentucky and to recommend measures to facilitate or encourage its use. 11 figs.

  5. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    SciTech Connect

    N /A

    2000-06-30

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality, traffic

  6. Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    SciTech Connect

    N /A

    1999-08-27

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, which occupies a 400-acre industrial site along the north shore of the St. Johns River about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. JEA has indicated that construction may begin without DOE funding prior to the completion of the NEPA process in February 2000 and would continue until December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared funding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues

  7. The role of thermally induced fractures in the calcination and sulfation behavior of sorbents in fluidized bed combustion

    SciTech Connect

    Liu, Y.; Morrison, J.L.; Scaroni, A.W.

    1995-12-31

    In atmospheric pressure, circulating fluidized bed combustors, sorbents are used to minimize SO{sub 2} emissions. It is generally accepted that CaO, formed by decomposition of CaCO{sub 3}, reacts with SO{sub 2} and O{sub 2}: CaCO{sub 3} {yields} CaO + CO{sub 2} and CaO + SO{sub 2} + 1/2 O{sub 2} {yields} CaSO{sub 4} rather than direct sulfation of CaCO{sub 3}: CaCO{sub 3} + SO{sub 2} + 1/2 O{sub 2} {yields} CaSO{sub 4} + CO{sub 2}. Therefore, the physical structure of a calcine, e.g. pore size distribution, accessible surface area, plays an important role in subsequent sulfation behavior. While the use of sorbents to capture SO{sub 2} from combustion gases has been in practice for decades, experimental evaluation is still necessary for selecting a sorbent for a specific application. Naturally occurring sorbents, composed of individual grains of carbonate crystallites, vary greatly in their chemical composition and physical structure. The variation in sorbent properties is often reflected in calcination and sulfation behavior. The present work involved studying the effect of particle size and grain size on the sulfation behavior of six sorbents. The samples covered a wide range of chemical compositions (limestone to dolostone), physical strengths (low to high) and grain structures (fine to coarse-grained).

  8. Fluidized bed combustion of pelletized biomass and waste-derived fuels

    SciTech Connect

    Chirone, R.; Scala, F.; Solimene, R.; Salatino, P.; Urciuolo, M.

    2008-10-15

    The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away from the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size

  9. Development of methods to predict agglomeration and deposition in fluidized-bed combustion systems (FBCS). Topical report

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.; Allan, S.E.

    1996-02-01

    The successful design and operation of advanced combustion systems require the ability to control and mitigate ash-related problems. The major ash-related problems are slag flow control, slag attack on the refractory, ash deposition on heat-transfer surfaces, corrosion and erosion of equipment materials, and emissions control. These problems are the result of physical and chemical interactions of the fuels, bed materials, and system components. The interactions that take place and ultimately control ash behavior in fluidized-bed combustion (FBC) systems are controlled by the abundance and association of the inorganic components in coal and by the system conditions. Because of the complexity of the materials and processes involved, the design and operations engineer often lacks the information needed to predict ash behavior and reduce ash-related problems. The deposition of ashes from the fluidized bed combustion of lignite and petroleum coke is described in this paper.

  10. Spectral analysis of CFB data: Predictive models of Circulating Fluidized Bed combustors. 11th technical progress report

    SciTech Connect

    Gamwo, I.K.; Miller, A.; Gidaspow, D.

    1992-04-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Spectral analysis of CFB data obtained at Illinois Institute of Technology shows that the frequencies of pressure oscillations are less than 0.1 Hertz and that they increase with solids volume fraction to the usual value of one Hertz obtained in bubbling beds. These data are consistent with the kinetic theory interpretation of density wave propagation.

  11. A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization

    SciTech Connect

    Mazza, G.; Falcoz, Q.; Gauthier, D.; Flamant, G.

    2009-11-15

    This study aims to develop a particulate model combining solid waste particle combustion and heavy metal vaporization from burning particles during MSW incineration in a fluidized bed. The original approach for this model combines an asymptotic combustion model for the carbonaceous solid combustion and a shrinking core model to describe the heavy metal vaporization. A parametric study is presented. The global metal vaporization process is strongly influenced by temperature. Internal mass transfer controls the metal vaporization rate at low temperatures. At high temperatures, the chemical reactions associated with particle combustion control the metal vaporization rate. A comparison between the simulation results and experimental data obtained with a laboratory-scale fluid bed incinerator and Cd-spiked particles shows that the heavy metal vaporization is correctly predicted by the model. The predictions are better at higher temperatures because of the temperature gradient inside the particle. Future development of the model will take this into account. (author)

  12. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    SciTech Connect

    Mastral, A.M.; Callen, M.S.; Garcia, T.

    1999-09-15

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves.

  13. The distribution of heavy metals during fluidized bed combustion of sludge (FBSC).

    PubMed

    Van de Velden, M; Dewil, R; Baeyens, J; Josson, L; Lanssens, P

    2008-02-28

    During combustion of wastewater treatment sludge, the inorganic constituents are converted into ash which contains the major fraction of the heavy metals present. The behaviour of heavy metals in combustion processes has been studied extensively for mostly coal combustion and waste incineration. For biomass and sludge, literature data are scarce and mostly limited to laboratory experiments. The present paper assesses the partitioning of eight heavy metals (Hg, As, Cd, Cu, Pb, Cr, Ni and Zn) in the different residues from a large-scale fluidized bed sludge combustor of 4.4 m i.d. The origin of the sludge is mostly from treating urban wastewaters (>90%), although some mixed sludge (urban+industrial, <10%) is also burnt. The different residues (bottom ash, fly ash, filter cake, scrubber effluent and stack emissions) were sampled and analysed during 33 weeks, spread over a period of 1 year. The mass balance of relevant heavy metals closes for 96.5%, inaccuracies being related to the unsteadiness of the process, the accuracy of the mass flow data monitored at the plant, and on collecting representative samples. It is also shown that all heavy metals under scrutiny, except Hg, are concentrated in the fly ash as collected in the electrostatic precipitator. PMID:17601665

  14. Particle-metal interactions during combustion of pulp and paper biomass in a fluidized bed combustor

    SciTech Connect

    Eldabbagh, F.; Ramesh, A.; Kozinski, J.A.; Hawari, J.; Hutny, W.

    2005-08-01

    We compare interactions between metals and solid particles during the classic fluidized bed combustion (FBC) and a new low-high-low temperature (LHL) combustion of selected biomass. The biomass was a mixture of bark and pine wood residues typically used by a paper mill as a source of energy. Experiments, conducted on a pilot scale, reveal a clear pattern of surface predominance of light metals (Ca, Na, K) and core predominance of heavy metals (Cd, Cr) within the LHL-generated particles. No such behavior was induced by the FBC. Metal migration is linked to the evolution of inorganic particles. A composite picture of the metal rearrangements in the particles was obtained by a combination of independent analytical techniques including electron probe microanalysis, field emission scanning electron microscopy, inductively coupled plasma spectrometry, and X-ray diffractometry. It is suggested that the combination of (1) the high-temperature region in the LHL and (2) changes in the surface free energy of the particles is the driving force for the metal-particle behavior. Important practical implications of the observed phenomena are proposed, including removal of hazardous submicron particulate and reduction in fouling/slagging during biomass combustion. These findings may contribute to redesigning of currently operating FBC units to generate nonhazardous, nonleachable, reusable particles where heavy metals are immobilized while environmental and technological problems reduced.

  15. Distribution of polycyclic aromatic hydrocarbons in fly ash during coal and residual char combustion in a pressurized fluidized bed

    SciTech Connect

    Hongcang Zhou; Baosheng Jin; Rui Xiao; Zhaoping Zhong; Yaji Huang

    2009-04-15

    To investigate the distribution of polycyclic aromatic hydrocarbons (PAHs) in fly ash, the combustion of coal and residual char was performed in a pressurized spouted fluidized bed. After Soxhlet extraction and Kuderna-Danish (K-D) concentration, the contents of 16 PAHs recommended by the United States Environmental Protection Agency (U.S. EPA) in coal, residual char, and fly ash were analyzed by a high-performance liquid chromatography (HPLC) coupled with fluorescence and diode array detection. The experimental results show that the combustion efficiency is lower and the carbon content in fly ash is higher during coal pressurized combustion, compared to the residual char pressurized combustion at the pressure of 0.3 MPa. Under the same pressure, the PAH amounts in fly ash produced from residual char combustion are lower than that in fly ash produced from coal combustion. The total PAHs in fly ash produced from coal and residual char combustion are dominated by three- and four-ring PAHs. The amounts of PAHs in fly ash produced from residual char combustion increase and then decrease with the increase of pressure in a fluidized bed. 21 refs., 1 fig., 4 tabs.

  16. Development of topping combustor for advanced concept pressurized fluidized-bed combustion

    SciTech Connect

    Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

    1994-10-01

    The objective of this program is to develop a topping combustor to operate in a Second-Generation Pressurized Fluidized Bed (PFBC) Combined Cycle power generation system. The combustor must be able to: lightoff with a high heating value fuel and compressor discharge air to heat the fluidized bed(s) and provide power for PFBC and carbonizer off-line; operate with 1,600 F oxygen depleted air from the PFBC and high heating value fuel to handle carbonizer off-line conditions; ramp up to 100% carbonizer syngas firing (normal operation) by firing a blend of decreasing high heating value fuel and increasing low heating value syngas; utilize the vitiated air, at temperatures up to 1,600 F for as much cooling of the metal combustor as possible, thus minimizing the compressor bypass air needed for combustor cooling; provide an acceptance exit temperature pattern at the desired burner outlet temperature (BOT); minimize the conversion of fuel bound nitrogen (FBN) present in the syngas to NO{sub x}; and have acceptably high combustion efficiency, and low emissions of carbon monoxide, UHC, etc. This paper reports the results of tests of a 14 inch diameter topping combustor with a modified fuel-rich zone conducted in June 1993, design of an 18 inch diameter topping combustor to be tested in June 1994 and afterwards, and results of a 50% scale cold flow model which has been built and tested.

  17. Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator.

    PubMed

    Duan, Feng; Chyang, Chiensong; Chin, Yucheng; Tso, Jim

    2013-02-01

    Rice husk with high volatile content was burned in a pilot scale vortexing fluidized bed incinerator. The fluidized bed incinerator was constructed of 6 mm stainless steel with 0.45 m in diameter and 5 m in height. The emission characteristics of CO, NO, and SO2 were studied. The effects of operating parameters, such as primary air flow rate, secondary air flow rate, and excess air ratio on the pollutant emissions were also investigated. The results show that a large proportion of combustion occurs at the bed surface and the freeboard zone. The SO2 concentration in the flue gas decreases with increasing excess air ratio, while the NOx concentration shows reverse trend. The flow rate of secondary air has a significant impact on the CO emission. For a fixed primary air flowrate, CO emission decreases with the secondary air flowrate. For a fixed excess air ratio, CO emission decreases with the ratio of secondary to primary air flow. The minimum CO emission of 72 ppm is attained at the operating condition of 40% excess air ratio and 0.6 partition air ratio. The NOx and SO2 concentrations in the flue gas at this condition are 159 and 36 ppm, which conform to the EPA regulation of Taiwan. PMID:23596954

  18. Influence of membrane walls on particle dynamics in a circulating fluidized bed

    SciTech Connect

    Zhou, J.; Grace, J.R.; Brereton, C.M.H.; Lim, C.J.

    1996-12-01

    Membrane walls composed of vertical tubes connected by fins are commonly employed as heat-transfer surfaces to remove heat from circulating-fluidized bed (CFB) combustors. Despite the importance of the membrane wall geometry to CFB combustors, little research has been carried out with respect to the influence of the membrane wall geometry on the flow and voidage in CFB risers. To understand the heat-transfer mechanism and erosion near the membrane wall, a better picture of local flow structure is needed. In this study, simulated membrane walls were installed in an experimental cold model CFB riser to investigate their influence on local hydrodynamics. Both voidage and particle velocity near the tubes were measured using separate fiber optic probes. Experimental results are compared with corresponding results for the same riser with smooth flat walls.

  19. Effects of steam parameters on the size and configuration of circulating fluidized bed boilers

    SciTech Connect

    Lafanechere, L.; Jestin, L.; Basu, P.

    1995-12-31

    A first analysis on the effect of steam parameters on the size and configuration of Circulating Fluidized Bed (CFB) boilers is presented. Resulting data, first in published literature, would designers and users to appreciate the influence of steam parameters on the overall design of CFB boilers. Unlike conventional Pulverized Coal (PC) boilers, CFB boilers do not have a data base of the impact of steam parameters on the furnace size. The present works fill this gap in design knowledge. The analysis used an Expert system to investigate effect of different steam cycles ranging from small capacity, low pressure boilers without reheat to large capacity, high pressure reheat boilers. On the basis of this study a general guide for the design of CFB boilers for different steam cycle specifications is developed.

  20. Occurrence of polycyclic aromatic hydrocarbons in dust emitted from circulating fluidized bed boilers.

    PubMed

    Kozielska, B; Konieczyńiski, J

    2008-11-01

    Occurrence of polycyclic aromatic hydrocarbons (PAHs) in granulometric fractions of dust emitted from a hard coal fired circulating fluidized bed (CFB) boiler was investigated. The dust was sampled with the use of a Mark III impactor. In each fraction of dust, by using gas chromatography (GC), 16 selected PAHs and total PAHs were determined and the toxic equivalent B(a)P (TE B(a)P) was computed. The results, recalculated for the standard granulometric fractions, are presented as concentrations and content of the determined PAHs in dust. Distributions of PAHs and their profiles in the granulometric dust fractions were studied also. The PAHs in dust emitted from the CFB boiler were compared with those emitted from mechanical grate boilers; a distinctly lower content of PAHs was found in dust emitted from the former. PMID:18975852

  1. Continuous protein recovery from whey using liquid-solid circulating fluidized bed ion-exchange extraction.

    PubMed

    Lan, Qingdao; Bassi, Amarjeet; Zhu, Jing-Xu Jesse; Margaritis, Argyrios

    2002-04-20

    A liquid-solid circulating fluidized bed (LSCFB) continuous ion-exchange extraction system has been investigated for total protein recovery from whey solutions under various operating conditions. The effectiveness of a dynamic seal was evaluated between the riser and the downcomer, and the best conditions for the establishment of this seal were established. Start-up studies indicated that the system is robust and stable. Under optimal conditions, a productivity of 8.2 g of total protein removed per hour per kilogram of resin was achieved with a protein removal efficiency of 78.4%. However, higher overall protein recovery of up to 90% was also achieved under other conditions, with lower protein concentration in the effluent and a lower overall productivity. PMID:11870606

  2. An approach for modeling thermal destruction of hazardous wastes in circulating fluidized bed incinerator.

    PubMed

    Patil, M P; Sonolikar, R L

    2008-10-01

    This paper presents a detailed computational fluid dynamics (CFD) based approach for modeling thermal destruction of hazardous wastes in a circulating fluidized bed (CFB) incinerator. The model is based on Eular - Lagrangian approach in which gas phase (continuous phase) is treated in a Eularian reference frame, whereas the waste particulate (dispersed phase) is treated in a Lagrangian reference frame. The reaction chemistry hasbeen modeled through a mixture fraction/ PDF approach. The conservation equations for mass, momentum, energy, mixture fraction and other closure equations have been solved using a general purpose CFD code FLUENT4.5. Afinite volume method on a structured grid has been used for solution of governing equations. The model provides detailed information on the hydrodynamics (gas velocity, particulate trajectories), gas composition (CO, CO2, O2) and temperature inside the riser. The model also allows different operating scenarios to be examined in an efficient manner. PMID:19697764

  3. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    SciTech Connect

    Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish; Trujillo, Steven Mathew

    2006-08-01

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  4. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE PAGESBeta

    Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore » results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less

  5. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    SciTech Connect

    Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numerical results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.

  6. Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit

    SciTech Connect

    Mei, J.S.; Shadle, L.J.; Yue, P.C.; Monazam, E.R.

    2007-01-01

    Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 μm and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid mass flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser due to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. [1] for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.

  7. Emissions from the combustion of eucalypt and pine chips in a fluidized bed reactor.

    PubMed

    Vicente, E D; Tarelho, L A C; Teixeira, E R; Duarte, M; Nunes, T; Colombi, C; Gianelle, V; da Rocha, G O; Sanchez de la Campa, A; Alves, C A

    2016-04-01

    Interest in renewable energy sources has increased in recent years due to environmental concerns about global warming and air pollution, reduced costs and improved efficiency of technologies. Under the European Union (EU) energy directive, biomass is a suitable renewable source. The aim of this study was to experimentally quantify and characterize the emission of particulate matter (PM2.5) resulting from the combustion of two biomass fuels (chipped residual biomass from pine and eucalypt), in a pilot-scale bubbling fluidized bed (BFB) combustor under distinct operating conditions. The variables evaluated were the stoichiometry and, in the case of eucalypt, the leaching of the fuel. The CO and PM2.5 emission factors were lower when the stoichiometry used in the experiments was higher (0.33±0.1 g CO/kg and 16.8±1.0 mg PM2.5/kg, dry gases). The treatment of the fuel by leaching before its combustion has shown to promote higher PM2.5 emissions (55.2±2.5 mg/kg, as burned). Organic and elemental carbon represented 3.1 to 30 wt.% of the particle mass, while carbonate (CO3(2-)) accounted for between 2.3 and 8.5 wt.%. The particulate mass was mainly composed of inorganic matter (71% to 86% of the PM2.5 mass). Compared to residential stoves, BFB combustion generated very high mass fractions of inorganic elements. Chloride was the water soluble ion in higher concentration in the PM2.5 emitted by the combustion of eucalypt, while calcium was the dominant water soluble ion in the case of pine. PMID:27090717

  8. Evaluation of the behavior of Colombian coals during the combustion in fixed bed

    SciTech Connect

    Giraldo, M.; Chejne, F.; Hill, A.

    2000-07-01

    The improvements in the technological processes that have coal as energy source must be based on the knowledge of physical and chemical properties of coal and in the knowledge of its evolution during the combustion process. These characteristics are involved in the coal behavior. Moreover, the coal porosity has an important relevance on the reaction rate and in diverse physical and chemical properties, and therefore, is a key parameter in the usefulness of coal. This project includes studies about Colombian coal combustion and its kinetic behavior. The coal was characterized and classified by particle size,and origin. In this research project, the physical and chemical properties of coal that affect its applicability in different kinds of technological processes have been studied as well as the characteristics that could be related to pollutant generation. The study considers the following issues: the types and level of criteria pollutant precursor compounds such as sulfur and nitrogen in coal, the influence of particle size and porosity in the generation of pollutant species, the participation of pollutant species in the combustion process, and basic properties such as heat capacity, and heat effects related to the conversion of coal during heating test. Coal from Antioquia, Valle del Cauca and Cundinamarca Regions were used. These coals are used domestically by the industrial and power sector. Particle sizes of 4, 2.5 and 1 cm were used from each one of these coals. The combustion tests were done in a fixed bed pilot furnace. The amount of air used was controlled during the experiment. In addition, air and gas flow, concentration and temperatures were registered. This paper presents a description of: characteristics of each test, composition of generated gases, and the influence of the particle size and coal origin in the pollutant emissions, also includes the results of test done in different samples took along each test.

  9. [Pathomorphology of the lungs and microcirculatory bed of the lesser circulation in chronic experimental allergic alveolitis].

    PubMed

    Orekhov, O O; Kirillov, Iu A

    1985-01-01

    Granulomatous lung lesions were produced in rats by 5 intravenous or intratracheal injections of the killed BCG suspension as an antigen. On the basis of immunocomplex and cell-mediated immunopathological reactions this condition may be considered as a chronic allergic form of alveolitis. Granulomas were formed along the arteries when the antigen was administered intravenously and along the bronchi after its intratracheal administration. In both cases there were single granulomas in the alveolar septa interstitium. The microcirculatory bed was studied in semithin sections and morphometrically in thick sections after impregnation with an Indian ink and 5% gelatin. The alveolar septa capillaries in control rats were shown to form a network the parameters ow which rather correspond to the "sheet-blow" model (Fung and Sobin, 1969). In chronic allergic alveolitis, a reduction of the capillary network develops at the zone of granulomatous inflammation while in the relatively normal zone a network type of the microcirculatory bed is preformed into the main one with the formation of predominant routes of circulation that provide the blood filling of the heart cavities. PMID:4074142

  10. Impact of worm predation on pseudo-steady-state of the circulating fluidized bed biofilm reactor.

    PubMed

    Li, Ming; Nakhla, George; Zhu, Jesse

    2013-01-01

    This paper studies integrated simultaneous carbon and nitrogen removal as well as worm predation, in a circulating fluidized bed biofilm reactor (CFBBR) operated with an anoxic-aerobic bioparticle recirculation. A lab-scale CFBBR with a 8.5-liter reaction zone comprising 2L anoxic and 6.5L aerobic compartments was designed to evaluate the aquatic Oligochaete worm effect. Long-term (200 days) performance showed that stable and high-rate chemical oxygen demand (COD) with sodium acetate as the carbon source and total nitrogen (NH(4)Cl as nitrogen source) conversions were achieved simultaneously, with low sludge production of 0.082 g VSS (volatile suspended solids) g COD(-1) at pseudo-steady-state. Worm predation, which causes considerable sludge reduction of the bioparticle process, was studied. The results proved that the worm predation has a significant impact on the pseudo-steady-state performance of the CFBBR, decreasing biomass yield, decreasing oxygen concentration and increasing expanded bed height. PMID:23201510

  11. Comparative modeling of biological nutrient removal from landfill leachate using a circulating fluidized bed bioreactor (CFBBR).

    PubMed

    Eldyasti, Ahmed; Andalib, Mehran; Hafez, Hisham; Nakhla, George; Zhu, Jesse

    2011-03-15

    Steady state operational data from a pilot scale circulating fluidized bed bioreactor (CFBBR) during biological treatment of landfill leachate, at empty bed contact times (EBCTs) of 0.49, and 0.41 d and volumetric nutrients loading rates of 2.2-2.6 kg COD/(m(3)d), 0.7-0.8 kg N/(m(3)d), and 0.014-0.016 kg P/(m(3)d), was used to calibrate and compare developed process models in BioWin(®) and AQUIFAS(®). BioWin(®) and AQUIFAS(®) were both capable of predicting most of the performance parameters such as effluent TKN, NH(4)-N, NO(3)-N, TP, PO(4)-P, TSS, and VSS with an average percentage error (APE) of 0-20%. BioWin(®) underpredicted the effluent BOD and SBOD values for various runs by 80% while AQUIFAS(®) predicted effluent BOD and SBOD with an APE of 50%. Although both calibrated models, confirmed the advantages of the CFBBR technology in treating the leachate of high volumetric loading and low biomass yields due to the long solid retention time (SRT), both BioWin(®) and AQUIFAS(®) predicted the total biomass and SRT of CFBBR based on active biomass only, whereas in the CFBBR runs both active as well as inactive biomass accumulated. PMID:21255923

  12. Biological nutrient removal from leachate using a pilot liquid-solid circulating fluidized bed bioreactor (LSCFB).

    PubMed

    Eldyasti, Ahmed; Chowdhury, Nabin; Nakhla, George; Zhu, Jesse

    2010-09-15

    Biological treatment of landfill leachate is a concern due to toxicity, high ammonia, low biodegradable organic matter concentrations, and low carbon-to-nitrogen ratio. To study the reliability and commercial viability of leachate treatment using an integrated liquid-solid circulating fluidized bed bioreactor (LSCFB), a pilot-scale LSCFB was established at the Adelaide Pollution Control Plant, London, Ontario, Canada. Anoxic and aerobic columns were used to optimize carbon and nutrient removal capability from leachate using 600 microm lava rock with a total porosity of 61%, at empty bed contact times (EBCTs) of 0.55, 0.49, and 0.41 d. The LSCFB achieved COD, nitrogen, and phosphorus removal efficiencies of 85%, 80%, and 70%, respectively at a low carbon-to-nitrogen ratio of 3:1 and nutrients loading rates of 2.15 kg COD/(m(3) d), 0.70 kg N/(m(3) d), and 0.014 kg P/(m(3) d), as compared with 60-77% COD and 70-79% nitrogen removal efficiencies achieved by upflow anaerobic sludge blanket (UASB) and moving bed bioreactor (MBBR), respectively. The LSCFB effluent characterized by

  13. Flow behaviors in a high-flux circulating fluidized bed - article no. A79

    SciTech Connect

    Wang, X.F.; Jin, B.S.; Zhong, W.Q.; Zhang, M.Y.; Huang, Y.J.; Duan, F.

    2008-07-01

    A high-flux circulating fluidized bed coal gasifier cold model which consists of a vertical riser (0.06m-I.D. x 5m-high), two downcomers (0.04m-I.D. x 3.5m-high and 0.1m-I.D. x 3m-high), an inertial separator, a cyclone and two solid feeding devices were established. Geldart group B particles with mean diameters of 140 {mu} m and densities of 2700 kg/m{sup 3} were used as bed materials. Flow behaviors were investigated with the solid mass flux ranges from 108 to 395 kg/m{sup 2} and the superficial gas velocity ranges from 7.6 to 10.2 m/s. The pressure drop, apparent solids holdups, average slip velocity and solids-to-air mass flow ratio under different operating conditions were obtained. The results showed that the riser total pressure drop increased sharply with bed height in the low elevation but slowly in the high elevation, since the solids holdup was higher in the low region than that in the high region. The solids holdup increased with the increasing of solids mass flux while it decreased with increasing superficial gas velocity. A dense suspension upflow flow (DSU) structure was found only existing in the low elevation while the rest upper region was still in the dilute phase, and the length of DSU flow structure increased with solids mass flux. The average slip velocity was found to be the strong function of apparent solids holdup; increasing apparent solids holdup leads to the increase of slip velocity. The riser total pressure drop and apparent solids holdup increase with the solids-to-air mass flow ratio.

  14. Does carbon monoxide burn inside a fluidized bed; A new model for the combustion of coal char particles in fluidized beds

    SciTech Connect

    Hayhurst, A.N. )

    1991-05-01

    Beds of silica sand were fluidized by mixtures of C{sub 3}H{sub 8}, CH{sub 4}, or CO with air. Staring from cold the way such a bed behaved before it reached a steady state was observed visually. In addition, high-speed cine films were taken, as well as measurements of the loudness of the noise emitted. These beds behave in a way indicating that such hot gas mixtures at up to 1000{degrees}C do not burn in the interstices between the sand particles. Instead, combustion occurs either above the bed or in the ascending bubbles. Measurements of the diameter (d{sub ig}) of a bubble made immediately prior to ignition confirmed that the ignition temperature (T{sub ig}) of the bubble varies with d{sub ig} {proportional to} exp (E{sub ig}/RT{sub ig}), so that larger bubbles ignite at lower temperatures. It proved possible to generate combustion of these gas mixtures in the particulate phase by adding Pt-coated catalyst pellets. This leads to a new model for the burning of char particles in a fluidized bed. In the model, char is first oxidized to CO with the reaction C{sub s} + 1/20{sup b} {yields} CO occurring mainly inside the pores of each particle. The resulting CO burns either above the bed or in bubbles rising up the bed, but not in the particulate phase. Considerable uncertainties exist as to the correct values of Nusselt and Sherwood numbers, as well as of, e.g., the intrinsic rate constant for the initial production of CO. However, the model is capable of predicting the temperatures observed for char particles burning in fluidized beds. This paper addresses some of the problems of O{sub 2} diffusing inside the pores of a char particle and then reacting to give CO.

  15. On simulation of transfer processes in the freeboard region of a steam-generator furnace with a circulating fluidized bed

    SciTech Connect

    B.B. Rokhman

    2006-01-15

    A semiempirical, stationary, two-zone model of transfer processes in the freeboard region of a reactor with a circulating boiling layer has been constructed. The features of the aerodynamics, heat and mass transfer, and combustion of anthracite culm in the core and near-wall ring region of a flow in a KFS-0.2 pilot plant have been investigated in detail.

  16. Heat exchanger support apparatus in a fluidized bed

    DOEpatents

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  17. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    PubMed

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal. PMID:25402169

  18. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report

    SciTech Connect

    Lee, Seong W.

    1996-11-01

    Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

  19. Assessment of sorbent reactivation by water hydration for fluidized bed combustion application

    SciTech Connect

    Fabio Montagnaro; Piero Salatino; Fabrizio Scala; Yinghai Wu; Edward J. Anthony; Lufei Jia

    2006-06-15

    Disposal of fluidized bed combustion (FBC) solid residues currently represents one of the major issues in FBC design and operation, and contributes significantly to its operating cost. This issue has triggered research activities on the enhancement of sorbent utilization for in situ sulfur removal. The present study addresses the effectiveness of the reactivation by liquid water hydration of FB spent sorbents. Two materials are considered in the study, namely the bottom ash from the operation of a full-scale utility FB boiler and the raw commercial limestone used in the same boiler. Hydration-reactivation tests were carried out at temperatures of 40{sup o}C and 80{sup o}C and for curing times ranging from 15 minutes to 2d, depending on the sample. The influence of hydration conditions on the enhancement of sulfur utilization has been assessed. A combination of methods has been used to characterize the properties of liquid water-hydrated materials

  20. Fluidized-bed combustion process evaluation and program support. Annual report, October 1979-September 1980

    SciTech Connect

    Johnson, I.; Podolski, W.F.; Swift, W.M.; Carls, E.L.; Helt, J.E.; Henry, R.F.; Herzenberg, C.L.; Hanway, J.E.; Griggs, K.E.

    1981-03-01

    The purpose of this program is to support the pressurized fluidized-bed combustion project management team at Morgantown Energy Technology Center by providing a core group of experienced personnel (1) to prepare (a) program interaction plans suitable for recommending program needs and (b) recommendations for the DOE-PFBC development program, (2) to analyze data and designs for two large pilot-scale PFBC programs (i.e., Curtiss-Wright and IEA Grimethorpe), and (3) to participate in design/review for the large PFBC programs. Results are reported on a development methodology for the commercialization of PFBC technology, a FBC instrumentation state-of-the-art review, the development of a sodium sulfate dew point measurement instrument, and the evaluation of cyclones for hot gas cleanup.

  1. Land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Dick, W.A.; Wolfe, W.

    1993-06-01

    Dry alkaline flue gas desulfurization by-products (dry lime and limestone FGD scrubber ashes) including the American Electric Power (AEP) Tidd PFBC bed and cyclone ash, are being evaluated for beneficial uses via land application for agriculture, mine reclamation, and soil stabilization in a 5 year study that began December, 1990. A 1989 Battelle Memorial Institute report had recommended that the highest priority in stimulating reuse of FGD by-products was the sponsoring of in-field research of coal combustion products generated from high sulfur midwestern coals to (a) better understand and quantify the leach rate, fate and transport of sulfates and trace metals and (b) demonstrate the level of protection necessary to build public acceptance of land-based reuses.

  2. 10 CFR 503.10 - Use of fluidized bed combustion not feasible-general requirement for permanent exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Use of fluidized bed combustion not feasible-general requirement for permanent exemptions. 503.10 Section 503.10 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE... any supplement thereto required by OFE must include the following evidence: (1) If use of a method...

  3. Fuel-Nitrogen Evolution During Fluidized Bed Oxy-Coal Combustion

    NASA Astrophysics Data System (ADS)

    Sanchez, Astrid; Mondragon, Fanor; Eddings, Eric G.

    FTIR, thermo-gravimetric analysis techniques and molecular modelling were employed to study the effect of CO2 on fuel-nitrogen evolution under oxy-combustion conditions. The main objective is to compare NOx emissions at several molar fractions of O2 using Ar or CO2 as balance gas in a fluidized bed reactor. A char with about 16% N content was prepared by pyrolysis of polyacrylonitrile. This sample facilitated NOx evolution experiments due to the abundance of nitrogen complexes, and aided the identification and quantification of several N species by means ofFTIR. Results indicate that the presence of CO2 enhances NO2 formation. A complementary study was carried out by molecular modelling of the experimental reactions using the Gaussian 03 package. Different heterogeneous and homogeneous interactions between CO2 and char N-species were simulated. The results thus obtained show that the presence of CO2 during combustion can facilitate NCO formation which is a very reactive intermediate species that can be readily oxidized in the gaseous phase.

  4. Combustion tests of a turbine simulator burning low Btu fuel from a fixed bed gasifier

    SciTech Connect

    Cook, C.S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Najewicz, D.J.; Samuels, M.S.

    1993-11-01

    One of the most efficient and environmentally compatible coal fueled power generation technologies is the integrated gasification combined cycle (IGCC) concept. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) measurement of NO{sub x}, CO, and particulate emissions; and (3) characterization of particulates in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle. In a related project, a reduced scale rich-quench-lean (RQL) gas turbine combustor has been designed, constructed, and fired with simulated low Btu fuel. The overall objective of this project is to develop an RQL combustor with lower conversion of fuel bound nitrogen (FBN) to NO{sub x} than a conventional combustor.

  5. Fabric filter testing at the TVA Atmospheric Fluidized-bed Combustion (AFBC) Pilot Plant

    SciTech Connect

    Cushing, K.M.; Bush, P.V.; Snyder, T.R.

    1988-05-01

    Experience with fluidized bed combustion (FBC) units on a research and industrial scale has indicated that FBC power plants could be a viable alternative to pulverized-coal power plants with wet limestone scrubbers or spray dryers. To provide design confidence and the flexibility to evaluate process improvements, the Tennessee Valley Authority constructed a 20-MW(e) AFBC (bubbling bed) Pilot Plant. Subseqently, EPRI and Southern Research Institute entered into a program to monitor the performance of the fabric filter at the pilot plant. The objective of the program was to determine if unique characteristics of AFBC operation or emissions would require special design criteria or operating procedures in the application of fabric filtration to utility-size AFBC boilers. With reverse-gas cleaning the fabric filter experienced high tubesheet pressure drop while operating at low filtering air-to-cloth values and with low residual dustcake areal densities compared to fabric filters downstream from pulverized-coal boilers. This implied that the AFBC fly ash had properties distinct from those of pulverized-coal fly ash. Implementaion of reverse-gas cleaning with sonic assistance resulted in lower operating pressure drops at higher filtering air-to-cloth values, although slightly higher than comparable data from baghouses filtering pulverized-coal fly ash. Fly ash analyses showed that the AFBC ash particles are generally smaller, more irregualr in shape, and the dustcakes are lighter and more porous than those formed from pulverized-coal fly ashes. 8 refs., 18 figs., 7 tabs.

  6. Atmospheric fluidized bed combustion for small scale market sectors. Final report

    SciTech Connect

    Ashworth, R.A.; Plessinger, D.A.; Sommer, T.M.; Keener, H.M.; Webner, R.L.

    1997-03-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. In the Proof-of-Concept Phase, a 2.2 x 10{sup 6} Btu/hr unit was installed and successfully operated at Cedar Lane Farms (CLF), a commercial nursery in Ohio. The heat from the fluidized bed was used to heat hot water which was recirculated through greenhouses for cool weather heating. The system was designed to be fully automated with minimal operator attention required. The AFBC system installed at CLF was an improved design that incorporated flyash/sorbent reinjection and an underbed feed system to improve limestone utilization. With these additions it was possible to lower the Ca/S ratio from {approximately} 3.0 to 2.0, and still maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning the same high sulfur Ohio coal tested at OARDC.

  7. Characteristics of high quality sorbent for fluidized bed combustion and problems of maintaining uniform reactivity

    SciTech Connect

    Bain, R.J. . Dept. of Geology)

    1993-03-01

    Fluidized bed combustion of coal is considered one of the more promising clean coal technologies for the future. While much research has gone into the design and operation of FBC units, there is little concern for what characterizes a high quality sorbent and the source of such a sorbent. Carbonate rocks, limestone and dolomite, have been tested extensively as sorbents and primarily two rock characteristics appear to significantly control reactivity: composition and texture. Calcium carbonate is more reactive than magnesium carbonate where all other rock characteristics are the same. In considering texture, highest reactivity is measured for carbonate rocks which consist of homogeneous, euhedral crystals ranging in size from .05 to .2 mm and which possess uniform intercrystalline porosity. The most reactive material possesses both high calcium content, uniform microcrystalline texture and intercrystalline porosity, however, such material is not very abundant in nature and is not locally available to midcontinent facilities. Sucrosic dolomite, which possesses uniform microcrystalline texture and intercrystalline porosity has high rank reactivity. While this rock is quite common, it occurs as beds, generally less than twenty feet thick, interlayered with less reactive dolomite types. Therefore, without selective quarrying methods, production of sorbent with uniformly high reactivity will be impossible.

  8. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 1: Performance of pebble bed gasifier for coal and wastes)

    SciTech Connect

    Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro; Tsuji, Kiyoshi; Yoshikawa, Kunio; Kiga, Takashi; Tamamushi, Fumihiro; Makino, Kenji; Oonish, Hiroshi

    1998-07-01

    A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that high density alumna is a good candidate for pebble material.

  9. Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed. Annual report, 1990

    SciTech Connect

    Gautam, M.; Johnson, E.

    1991-01-01

    A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The ``fringe-model`` laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  10. Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed

    SciTech Connect

    Gautam, M.; Johnson, E.

    1991-01-01

    A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The fringe-model'' laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  11. Dynamical tests on fiber optic data taken from the riser section of a circulating fluidized bed

    SciTech Connect

    Taylor, E.M.; Guenther, C.P.; Breault, R.W.

    2007-11-01

    Dynamical tests have been applied to fiber optic data taken from a cold-flow circulating fluidized bed to characterize flow conditions, identify three time and/or length scales (macro, meso, and micro), and understand the contribution these scales have on the raw data. The characteristic variable analyzed is the raw voltage signal obtained from a fiber-optic probe taken at various axial and radial positions under different loading conditions so that different flow regimes could be attained. These experiments were carried out with the bed material of 812 μm cork particles. The characterization was accomplished through analysis of the distribution of the signal through the third and fourth moments of skewness and excess kurtosis. A generalization of the autocorrelation function known as the average mutual information function was analyzed by examining the function’s first minimum, identifying the point at which successive elements are no longer correlated. Further characterization was accomplished through the correlation dimension, a measure of the complexity of the attractor. Lastly, the amount of disorder of the system is described by a Kolmogorov-type entropy estimate. All six aforementioned tests were also implemented on ten levels of detail coefficients resulting from a discrete wavelet transformation of the same signal as used above. Through this analysis it is possible to identify and describe micro (particle level), meso (clustering or turbulence level), and macro (physical or dimensional level) length scales even though some literature considers these scales inseparable [6]. This investigation also used detail wavelet coefficients in conjunction with ANOVA analysis to show which scales have the most impact on the raw signal resulting from local hydrodynamic conditions.

  12. Solids circulation around a jet in a fluidized bed gasifier. Final technical report, September 1, 1978-September 30, 1980

    SciTech Connect

    Gidaspow, D.; Ettehadieh, B.; Lin, C.; Goyal, A.; Lyczkowski, R.W.

    1980-01-01

    The object of this investigation was to develop an experimentally verified hydrodynamic model to predict solids circulation around a jet in a fluidized bed gasifier. Hydrodynamic models of fluidization use the principles of conservation of mass, momentum and energy. To account for unequal velocities of solid and fluid phases, separate phase momentum balances are developed. Other fluid bed models used in the scale-up of gasifiers do not employ the principles of conservation of momentum. Therefore, these models cannot predict fluid and particle motion. In such models solids mixing is described by means of empirical transfer coefficients. A two dimensional unsteady state computer code was developed to give gas and solid velocities, void fractions and pressure in a fluid bed with a jet. The growth, propagation and collapse of bubbles was calculated. Time-averaged void fractions were calculated that showed an agreement with void fractions measured with a gamma ray densitometer. Calculated gas and solid velocities in the jet appeared to be reasonable. Pressure and void oscillations also appear to be reasonable. A simple analytical formula for the rate of solids circulation was developed from the equations of change. It agrees with Westinghouse fluidization data in a bed with a draft tube. One dimensional hydrodynamic models were applied to modeling of entrained-flow coal gasification reactors and compared with data. Further development of the hydrodynamic models should make the scale-up and simulation of fluidized bed reactors a reality.

  13. Particle descending velocity near the wall of a rolling circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhao, Tong; Takei, Masahiro; Murata, Hiroyuki; Liu, Kai

    2014-04-01

    As part of the study to develop compact and efficient marine exhaust gas treatment system with circulating fluidized bed (CFB), effects of the swing motion of a ship on gas-solid flow in the CFB was investigated. The heat transfer efficiency of the CFB is closely related with the particle flow near the wall of riser. As a trial to evaluate the particle flow near the wall of riser quantitatively, descending velocity of particles at upright and swing condition was measured by a particle image velocimetry (PIV) system. Particle motion near the wall of riser was recorded through an observation window by a high speed camera. The recorded images were processed to evaluate the local descending velocity of particles under different swing amplitude and period. As results, the swing motion affects the down-flow of particles, namely, descending particle flow along the wall of riser. The time-averaged descending velocity near the wall of riser is remarkably decreased by the motion. Effect of the swing period on the particle descending velocity is really small. But as the swing amplitude increases, the descending velocity of particle decreased significantly.

  14. Release of sulfur and chlorine during cofiring RDF and coal in an internally circulating fluidized bed

    SciTech Connect

    Xiaolin Wei; Yang Wang; Dianfu Liu; Hongzhi Sheng; Wendong Tian; Yunhan Xiao

    2009-03-15

    An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO{sub 2}, HCl, and SO{sub 2} were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration of SO{sub 2} is relatively low because alkaline metal in the fuel ash can absorb SO{sub 2}. The concentration of CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfurization ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur. 35 refs., 18 figs., 2 tabs.

  15. Materials problems in fluidized bed combustion systems. Appendix 4: evaluation of boiler alloy specimens at General Electric Company. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of post-test evaluations of certain boiler alloy specimens from corrosion tests conducted in the fluidized-bed combustion system at the Coal Research Establishment, Stoke Orchard, England are presented. Two tests, each of 1000 hours duration were conducted. Alloys included were Inconel 601, Inconel 617, Inconel 671, Hastelloy X, Haynes Alloy 188, and GE-2541 alloy. Specimen temperatures ranged from 649/sup 0/C (1200/sup 0/F) to 899/sup 0/C (1650/sup 0/F). Calcium sulfate deposits occurred on all specimens, regardless of whether they were situated in the combustion bed or in the free-board above it. In general, corrosion attack as measured by the thickness of affected metal below the deposit/scale, was greater in specimens located in the bed than in similar specimens tested at the same temperature above the bed. A dramatic example of this is the 160 to 225 microns average attack in specimens of Inconel 671 tested at 899/sup 0/C (1650/sup 0/F) in the bed compared to 18 microns in a specimen tested at the same temperature above the bed. In most instances the differences were much smaller, and in a few cases no difference was apparent. Inconel 601 showed greater attack at 760/sup 0/C (1400/sup 0/F) in the bed than at 843/sup 0/C (1550/sup 0/F). To a lesser extent, Inconel 617 specimens showed the same general trend. Hastelloy X and Haynes Alloy 188 specimens exhibited moderate attack (10 to 50 microns) at the temperatures at which they were tested. Specimens of the iron-chrome-aluminum-yttrium alloy, GE-2541, showed the least attack at 899/sup 0/C (1650/sup 0/F) of these alloys, both for specimens tested in and above the combustion bed. Inconel 671 specimens which were situated in the combustion bed showed very severe localized attack (pits) while many other areas of the same specimens exhibited no greater attack than specimens of other alloys.

  16. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed.

    PubMed

    Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M

    2015-05-01

    In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW. PMID:25746177

  17. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  18. Coal slurry solids/coal fluidized bed combustion by-product mixtures as plant growth media

    USGS Publications Warehouse

    Darmody, R.G.; Green, W.P.; Dreher, G.B.

    1998-01-01

    Fine-textured, pyritic waste produced by coal cleaning is stored in slurry settling ponds that eventually require reclamation. Conventionally, reclamation involves covering the dewatered coal slurry solids (CSS) with 1.3 m of soil to allow plant growth and prevent acid generation by pyrite oxidation. This study was conducted to determine the feasiblity of a less costly reclamation approach that would eliminate the soil cover and allow direct seeding of plants into amended CSS materials. Potential acidity of the CSS would be neutralized by additions of fluidized-bed combustion by-product (FBCB), an alkaline by-product of coal combustion. The experiment involved two sources of CSS and FBCB materials from Illinois. Birdsfoot trefoil (Lotus corniculatus L.), tall fescue (Festuca arundinacea Schreb.), and sweet clover (Melilotus officinalis (L.) Lam.) were seeded in the greenhouse into pots containing mixtures of the materials. CSS-1 had a high CaCO3:FeS2 ratio and needed no FBCB added to compensate for its potential acidity. CSS-2 was mixed with the FBCB materials to neutralize potential acidity (labeled Mix A and B). Initial pH was 5.6, 8.8, and 9.2 for the CSS-1, Mix A, and Mix B materials, respectively. At the end of the 70-day experiment, pH was 5.9 for all mixtures. Tall fescue and sweet clover grew well in all the treatments, but birdsfoot trefoil had poor emergence and survival. Elevated tissue levels of B, Cd, and Se were found in some plants. Salinity, low moisture holding capacity, and potentially phytotoxic B may limit the efficacy of this reclamation method.

  19. Evaluation of alternative steam generator designs for Atmospheric Fluidized-Bed Combustion plants: Final report. [AFBC

    SciTech Connect

    Dunlop, W.

    1987-07-01

    The Atmospheric Fluidized Bed Combustion development program at the 20 MW pilot plant at TVA's Shawnee Station is addressing several design issues related to the scale-up requirements for utility application. These include use of overbed vs. underbed feed systems for coal, limestone, and recycled solids, load following and control design for reliable operation, and economies of scale. After initial screening of several alternate configurations, conceptual designs of AFBC mechanical overbed and underbed feed power plants in 1 x 200 MW and 2 x 500 MW sizes were prepared. These designs were assessed for efficiency, performance, resource requirements, capital cost and levelized busbar costs and compared to conventional pulverized coal units of similar size. The findings are that relative to the AFBC underbed feed plants, the AFBC overbed feed plant is about $70/kW less expensive at the 200 MW size, and $20/kW more expensive at the 2 x 500 MW size. Also, the capital costs of AFBC units range from $20/kW to $130/kW less than conventional PCF units and the potential exists for further reductions in AFBC capital costs as AFBC technology improves. Levelized busbar costs are essentially the same for both types and sizes of the AFBC units and for the conventional PCF units. Only one coal, Illinois number6 - a high sulfur bituminous coal - was initially evaluated. Subsequently, five additional coals - bituminous, subbituminous and lignite - and plant locations were evaluated. Current testing of less expensive coals is expected to confirm the fuel flexibility of the AFBC units which may result in corresponding reductions in levelized busbar costs. Utility industry confidence in AFBC has recently been expressed by the planned design and construction of fluidized bed units in 100 MW to 160 MW sizes for Colorado Ute Electric Association, Northern States Power Co. and TVA. 5 refs., 38 figs., 54 tabs.

  20. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    PubMed

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge. PMID:15655996

  1. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    SciTech Connect

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of these tests are presented in the paper.

  2. Low temperature SO{sub 2} removal with solid sorbents in a circulating fluidized bed absorber. Final report

    SciTech Connect

    Lee, S.K.; Keener, T.C.

    1994-10-10

    A novel flue gas desulfurization technology has been developed at the University of Cincinnati incorporating a circulating fluidized bed absorber (CFBA) reactor with dry sorbent. The main features of CFBA are high sorbent/gas mixing ratios, excellent heat and mass transfer characteristics, and the ability to recycle partially utilized sorbent. Subsequently, higher SO{sub 2} removal efficiencies with higher overall sorbent utilization can be realized compared with other dry sorbent injection scrubber systems.

  3. The compact circulating fluidized bed boiler with a finned tube impact separator and a uniflow square cyclone

    SciTech Connect

    Li Xiaodong; Chi Yong; Yan Jianhua; Jiang Xuguang; Yang Jialin; Huang Guoquan; Ni Mingjiang; Cen Kefa

    1999-07-01

    Institute for Thermal Power Engineering, Zhejiang University has introduced a circulating fluidized bed boiler with two stage compact separation. A finned tube impact separator is located at the outlet of the furnace and a uniflow square cyclone is adopted behind the superheater. The flow characteristics of the finned tube separator are measured using a three dimensional particles dynamics analyzer. The measurements show that the reflux flow existing near the front of a finned tube has a very important effect on particle separation. The shape of a uniflow square cyclone is different with a conventional uniflow cyclone and can be laid conveniently in the flue duct of the boiler. A lot of experimental studies have been done focusing on the above separators' performances. The experimental results show that separation efficiency of the uniflow square cyclone can be up to 99% for particles with mean size 0.167 mm and its pressure drop is lower than 1,000 Pa. To change the shape of the cyclone's exhaust pipe is very effective. Based on the results, the optimization design of the separators is reported. The finned tube impact separator has been successfully applied in several circulating fluidized bed boilers. Institute for Thermal Power Engineering, Zhejiang University has designed a compact circulating fluidized bed boiler with the finned tube impact separator and a uniflow square cyclone, and the boilers capacity is 65 t/h (12 MWe).

  4. Land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Wolfe, W.

    1993-09-01

    Dry alkaline flue gas desulfurization by-products (dry lime and limestone FGD scrubber ashes) including the American Electric Power (AEP) Tidd PFBC bed and cyclone ash, are being evaluated for beneficial uses via land application for agriculture, mine reclamation, and soil stabilization in a 5 year study that began December, 1990. A 1989 Battelle Memorial Institute report had recommended that the highest priority in stimulating reuse of FGD by-products was the sponsoring of in-field research of coal combustion products generated from high sulfur midwestern coals to (a) better understand and quantify the leach rate, fate and transport of sulfates and trace metals and (b) demonstrate the level of protection necessary to build public acceptance of land-based reuses (1). The specific objectives of the demonstration project are as follows: To characterize the material generated from dry FGD processes; to demonstrate the utilization of dry FGD by-products as an soil amendment material on agricultural lands and on abandoned and active surface coal mines in Ohio; to demonstrate the use of dry FGD by-product as an engineering material for soil stabilization; to determine the quantities of dry FGD material than can be utilized in each of these applications; to determine the environmental and economic impact of utilizing the material.

  5. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste. Environmental Assessment

    SciTech Connect

    Not Available

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations.

  6. Development of a high-temperature erosion monitor for FBC (fluidized bed combustion) heat exchanger tubes

    SciTech Connect

    Reimann, K.J.

    1990-05-01

    Metal wastage in tubing of heat exchangers used in fluidized bed combustion (FBC) could affect plant operation and threaten the successful development of FBC technology. Monitoring of such wastage during operation would be very beneficial. The development of a high-temperature erosion monitor was undertaken as part of a larger program to understand and ameliorate wastage processes. Two sensor principles, i.e., electromagnetic acoustic and piezoelectric transducers based on time-of-flight measurements, were evaluated. Spatial restrictions and high-energy requirements of electromagnetic acoustic transducers favored piezoelectric transducers as a prototype. Requirements for good coupling between sensor and tubing led to the exploration of two methods for accomplishing this task: pressure coupling and brazing. Initial disappointments with brazing led to the construction of a pressure-coupled transducer that was tested successfully to temperatures of up to 500{degree}C. A brazing method to bond the lithium niobate crystal to stainless steel was finally perfected, but will require additional work for brazing to ferritic steel. The prototype pressure-coupled transducer also needs more development to compensate for the expansion of components and oxidation of coupling surfaces. 3 refs., 15 figs., 1 tab.

  7. Availability of trace elements in solid waste from fluidized bed combustion of coal

    SciTech Connect

    Rope, S.K.; Jornitz, R.S.; Suhre, D.T.

    1987-12-01

    This report presents data on the inorganic constituents (major and trace elements) of coal and solid waste from a coal-fired facility on the Idaho National Engineering Laboratory (INEL) which uses the fluidized bed combustion process. Three factors were used to assess the potential environmental impacts of elements in coal waste: (1) the concentrations relative to those measured previously in surrounding soils of the INEL (the enrichment ratio); (2) the availability of elements from waste relative to soils; and (3) toxicity or essentiality to biota. Considering both enrichment and availability, Al, B, Be, Ca, Cr, Na, Mo, Se, Sr, and Ti are most likely to be affected in the local environment due to fly ash deposition and/or resuspension of FBC waste. Only B, Cr, Mo, and Se are likely to be of concern in terms of toxicity. The high concentrations of Cr and B in FBC waste are expected to be toxic to plants. Concentrations of Se and Mo present in FBC waste have been shown to produce levels in plants which can be toxic to herbivorous animals. 14 refs, 1 fig., 4 tabs.

  8. Technology assessment for an atmospheric fluidized-bed combustion demonstration plant

    SciTech Connect

    Siman-Tov, M; Jones, Jr, J E

    1980-01-01

    This study assesses the atmospheric fluidized-bed combustion (AFBC) technology with respect to design, construction, and operation of a demonstration power plant in the range of 150 to 250 MW(e) capacity and identifies the most critical research and development needs for the plant project. The general conclusion of these studies is that AFBC is feasible for large power plants and that it has a generally good potential for providing an economically and environmentally acceptable alternative to conventional coal-fired power plants. Several areas of technical uncertainty must, however, be resolved in order to ensure success of an AFBC demonstration plant project. Much of the existing data base for AFBC comes from small-scale test units, and much of it is still inconclusive. A number of operational and design problems exist that do not yet have conclusive answers. A focused research and development program aimed at the early resolution of these problems should be carried out to ensure successful construction and operation of the proposed AFBC demonstration plant and early commercialization of the technology. A large flexible feeding test facility designed to investigate the feeding problems and possibilities should be constructed. A materials-test facility is also needed for testing, evaluating and selecting materials, as well as demonstrating their long-term compatibility. An intermediate-size pilot plant with sufficient flexibility to test alternate solutions to the above-mentioned problems will considerably strengthen the demonstration program.

  9. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    SciTech Connect

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  10. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    SciTech Connect

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  11. Analysis of the acceleration region in a circulating fluidized bed riser operating above fast fluidization velocities

    SciTech Connect

    Monazam, E.R.; Shadle, L.J.

    2008-11-05

    In commercial circulating fluidized bed (CFB) processes the acceleration zone greatly contributes to solids mixing, gas and solids dispersion, and particle residence times. A new analysis was developed to describe the relative gas-solids concentration in the acceleration region of a transport system with air as the fluidizing agent for Geldart-type B particles. A theoretical expression was derived from a drag relationship and momentum and continuity equations to describe the evolution of the gas-solids profile along the axial direction. The acceleration zone was characterized using nondimensional analysis of the continuum equations (balances of masses and momenta) that described multiphase flows. In addition to acceleration length, the boundary condition for the solids fraction at the bottom of the riser and the fully developed regions were measured using an industrial scale CFB of 0.3 m diameter and 15 m tall. The operating factors affecting the flow development in the acceleration region were determined for three materials of various sizes and densities in core annular and dilute regimes of the riser. Performance data were taken from statistically designed experiments over a wide range of Fr (0.5-39), Re (8-600), Ar (29-3600), load ratio (0.2-28), riser to particle diameter ratio (375-5000), and gas to solids density ratio (138-1381). In this one-dimensional system of equations, velocities and solid fractions were assumed to be constant over any cross section. The model and engineering correlations were compared with literature expressions to assess their validity and range of applicability. These expressions can be used as tools for simulation and design of a CFB riser and can also be easily coupled to a kinetics model for process simulation.

  12. EXPERIMENTAL/ENGINEERING SUPPORT FOR ENVIRONMENTAL PROTECTION AGENCIES FLUIDIZED-BED COMBUSTION (FBC) PROGRAM: FINAL REPORT. VOLUME I. SULFUR OXIDE CONTROL

    EPA Science Inventory

    The report gives results of an investigation of the desulfurization performance and attrition behavior of limestone and dolomite sorbents for atmospheric and pressurized fluidized-bed combustion (FBC) systems used with coal. It gives results of experimental thermogravimetric anal...

  13. Influence of simulated MSW sizes on the combustion process in a fixed bed: CFD and experimental approaches.

    PubMed

    Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M

    2016-03-01

    This work presents the effect of the simulated sizes of Municipal Solid Waste (MSW) on the combustion process in a fixed bed experimentally and numerically. The effect of temperature, gas emissions, flame front velocity and process rate are discussed for three different sizes of MSW: 10, 30, and 50 mm. The study found that for the operating conditions of the current model, when the diameter of particles is decreased, the bulk density of the material is increased, resulting in a decrease of convective heat transfer as well as combustion speed. As the diameter size of the material particles increase, the height of the post-combustion zone is increased, while the temperature in a high temperature area is decreased, due to the decrease in the material's bulk density and the excessive increase in porosity. Results also show that the average emission concentration of CO and CO2 decreases gradually with an increase in the particle diameter size. PMID:26750870

  14. Technical study on the possibilities of oil shale combustion in a fluidized bed furnace including cost estimates for a plant to be built

    NASA Astrophysics Data System (ADS)

    Kuehl, M.; Steller, P.

    1982-06-01

    The possibilities of oil shale combustion in a fluidized bed furnace were studied and the costs for a power plant were estimated. An overall concept of oil shale combustion in a fluidized bed furnace is drafted and the final plant size is established, allowing a scaling up of 200 t/hr steam. The concept was technically revised, resulting in a cost estimate of about 15% accuracy.

  15. Chemical composition of leachate of dairy manure mixed with fluidized bed combustion residue

    SciTech Connect

    Elrashidi, M.A.; Baligar, V.C.; Korcak, R.F.; Persaud, N.; Ritchey, K.D.

    1999-08-01

    This study was initiated to investigate the hypothesis that using fluidized bed combustion (FBC) residue to stabilize a dairy feedlot surface (DFS) could enhance element attenuation and minimize the environmental impact on water quality. The laboratory leaching experiment included FBC, dairy manure (DM), and DM/FBC treatments. The leaching process consisted of 10 weekly additions of distilled water, each of 460 mL. Using FBC with DM decreased the concentration of most elements (e.g., P, N, K, Ca, Al, Si, Fe, Mn, Cu, Zn, Pb, Cd, Co, Cr, Ni, As, and Se) in the leachate. A decrease ranging from 5.6 to 100% was obtained. The presence of high concentration of dissolved organic matter (DOM) is believed to enhance element attenuation by FBC minerals. Several mechanisms involved in this process are proposed: (1) formation of insoluble metal-organic complexes; (2) sorption of soluble organic and inorganic species on mineral surfaces; and (3) precipitation of soluble inorganic species. These mechanisms are discussed in relation to each of the measured elements. On the other hand, using FBC with DM appeared to increase the concentration of B, S, and Mg in the leachate. Reactions of DOM with FBC minerals to form soluble organic complexes were suggested to explain B and S increases. The increase in leached Mg could be attributed to the presence of SO{sub 4}{sup 2{minus}}. Their results provide evidence that using FBC to stabilize DFS has the advantage of immobilizing a large portion of most elements present in DM leachate.

  16. Emissions from biomass combustion in a fluidized bed combustor and gas cleanup system

    SciTech Connect

    Burton, B.; Lighty, J.S.; Inkley, D.; Eddings, E.; Overacker, D.; Davis, K.; Lee, C.; Sarofim, A.

    1999-07-01

    The University of Utah Department of Chemical and Fuels Engineering and Reaction Engineering International have designed and tested a fluidized bed for resource recovery in a Mars or lunar space station for feed streams consisting of inedible plant biomass and solid human waste. In conjunction with the combustor, the system has an extensive flue gas clean-up system to meet Spacecraft Maximum Allowable Concentrations (SMACs). This paper discusses the selection of a rich low-temperature combustion mode that minimizes the ash fusion problems with the high potassium feed and which generates sufficient unburned carbon monoxide to enable the reduction of NO. The components of the gas clean-up stream include: particle removal; HCl removal; NO{sub x} reduction; hydrocarbon and carbon monoxide destruction; sulfur capture; and a final gas polishing unit. Major developmental efforts were required to develop systems for trouble-free waste feeding and NO{sub x} reduction. The combustor is operated at temperatures below 700 C since the ash component of the hydroponically grown inedible biomass has a very low melting point. Low temperature operation results in high levels of CO and unburned hydrocarbons, which can be used as reducing agents for NO{sub x} in the downstream catalytic unit. This is more desirable than using ammonia, which is hazardous, and an expendable reagent that must be stored in sufficient quantity for the duration of a mission. The paper will discuss the results of an innovative catalyst system to reduce NO{sub x}, hydrocarbons, and CO. One important feature of this totally regenerative system is the potential reuse of potassium and sulfur captured in the ash for the hydroponic plant solution.

  17. MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE

    SciTech Connect

    A.E. Bland; T.H. Brown

    1997-04-01

    Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of value in

  18. Flow regime study of a light material in an industrial scale cold flow circulating fluidized bed

    SciTech Connect

    Mei, J.S.; Monazam, E.R.; Shadle, L.J.

    2006-06-15

    A series of experiments was conducted in the 0.3 meter diameter circulating fluidized bed test facility at the National Energy Technology Laboratory (NETL) of the U. S. Department of Energy. The particle used in this study was a coarse, light material, cork, which has a particle density of 189 kg/m{sup 3} and a mean diameter of 812 {mu}m. Fluidizing this material in ambient air approximates the same gas-solids density ratio as coal and coal char in a pressurized gasifier. The purpose of this study is twofold. First, this study is to provide a better understanding on the fundamentals of flow regimes and their transitions. The second purpose of this study is to generate reliable data to validate the mathematical models, which are currently under development at NETL. This paper presents and discusses the data, which covered operating flow regime from dilute phase, fast fluidization, and to dense phase transport by varying the solid flux, G{sub s}. at a constant gas velocity, U{sub g}. Data are presented by mapping the flow regime for coarse cork particles in a {Delta}P/{Delta} L-G{sub s}-U{sub g} plot. A stable operation can be obtained at a fixed riser gas velocity higher than the transport velocity e.g., at U{sub g} = 3.2 m/s, even though the riser is operated within the fast fluidization flow regime. Depending upon the solids influx, the riser can also be operated at dilute phase or dense phase flow regimes. Experimental data were compared to empirical correlations in published literature for flow regime boundaries as well as solids, fractions in the upper dilute and the lower dense regions for fast fluidization flow regime. Comparisons of measured data with these empirical correlations show rather poor agreements. These discrepancies, however, are not surprising since the correlations for these transitions were derived from experimental data of comparative heavier materials such as sands, FCC, iron ore etc.

  19. Experimental study on the reuse of spent rapidly hydrated sorbent for circulating fluidized bed flue gas desulfurization.

    PubMed

    Li, Yuan; Zheng, Kai; You, Changfu

    2011-11-01

    Rapidly hydrated sorbent, prepared by rapidly hydrating adhesive carrier particles and lime, is a highly effective sorbent for moderate temperature circulating fluidized bed flue gas desulfurization (CFB-FGD) process. The residence time of fine calcium-containing particles in CFB reactors increases by adhering on the surface of larger adhesive carrier particles, which contributes to higher sorbent calcium conversion ratio. The circulation ash of CFB boilers (α-adhesive carrier particles) and the spent sorbent (β and γ-adhesive carrier particles) were used as adhesive carrier particles for producing the rapidly hydrated sorbent. Particle physical characteristic analysis, abrasion characteristics in fluidized bed and desulfurization characteristics in TGA and CFB-FGD systems were investigated for various types of rapidly hydrated sorbent (α, β, and γ-sorbent). The adhesion ability of γ-sorbent was 50.1% higher than that of α-sorbent. The abrasion ratio of β and γ-sorbent was 16.7% lower than that of α-sorbent. The desulfurization abilities of the three sorbent in TGA were almost same. The desulfurization efficiency in the CFB-FGD system was up to 95% at the bed temperature of 750 °C for the β-sorbent. PMID:21928832

  20. APFBC repowering could help meet Kyoto Protocol CO{sub 2} reduction goals[Advanced Pressurized Fluidized Bed Combustion

    SciTech Connect

    Weinstein, R.E.; Tonnemacher, G.C.

    1999-07-01

    The Clinton Administration signed the 1997 Kyoto Protocol agreement that would limit US greenhouse gas emissions, of which carbon dioxide (CO{sub 2}) is the most significant. While the Kyoto Protocol has not yet been submitted to the Senate for ratification, in the past, there have been few proposed environmental actions that had continued and wide-spread attention of the press and environmental activists that did not eventually lead to regulation. Since the Kyoto Protocol might lead to future regulation, its implications need investigation by the power industry. Limiting CO{sub 2} emissions affects the ability of the US to generate reliable, low cost electricity, and has tremendous potential impact on electric generating companies with a significant investment in coal-fired generation, and on their customers. This paper explores the implications of reducing coal plant CO{sub 2} by various amounts. The amount of reduction for the US that is proposed in the Kyoto Protocol is huge. The Kyoto Protocol would commit the US to reduce its CO{sub 2} emissions to 7% below 1990 levels. Since 1990, there has been significant growth in US population and the US economy driving carbon emissions 34% higher by year 2010. That means CO{sub 2} would have to be reduced by 30.9%, which is extremely difficult to accomplish. The paper tells why. There are, however, coal-based technologies that should be available in time to make significant reductions in coal-plant CO{sub 2} emissions. Th paper focuses on one plant repowering method that can reduce CO{sub 2} per kWh by 25%, advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) technology, based on results from a recent APFBC repowering concept evaluation of the Carolina Power and Light Company's (CP and L) L.V. Sutton steam station. The replacement of the existing 50-year base of power generating units needed to meet proposed Kyoto Protocol CO{sub 2} reduction commitments would be a massive undertaking. It is

  1. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    SciTech Connect

    Sun, Rui; Ismail, Tamer M.; Ren, Xiaohan; Abd El-Salam, M.

    2015-05-15

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.

  2. Encapsulated multicellular spheroids of rat hepatocytes produce albumin and urea in a spouted bed circulating culture system.

    PubMed

    Takabatake, H; Koide, N; Tsuji, T

    1991-12-01

    Multicellular spheroids are spherical cell-aggregates that retain tridimensional architecture and tissue-specific functions. For use of multicellular spheroids of hepatocytes in a bioreactor for hybrid artificial liver support, we studied the effect of encapsulation and circulating culture on their integrity and tissue-specific functions. Multicellular spheroids of rat hepatocytes were encapsulated into microdroplets of calcium alginate gel and were used as a bioreactor in medium circulating in a spouted bed chamber. Approximately 10% of the hepatocytes of an adult rat were entrapped in a bioreactor chamber, connected to a gas exchanger and a medium reservoir. The total bed volume of the system was 250 ml. The pH and DO2 of the hormonally defined circulating medium was maintained constantly. Albumin and urea were produced in a linear fashion for 64 h at the rates of 0.02 micrograms/microgram cell protein/day and 0.15-0.2 ng/micrograms cell protein/day, respectively. Viability and structural stability of the spheroids were well preserved after the culture period. These results indicate that these encapsulated multicellular hepatocyte spheroids will provide a useful bioreactor for the continuous production of albumin, in vitro and also a prototype hybrid artificial liver support. PMID:1763969

  3. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  4. Effect of cofiring coal and biofuel with sewage sludge on alkali problems in a circulating fluidized bed boiler

    SciTech Connect

    K.O. Davidsson; L.-E. Aamand; A.-L. Elled; B. Leckner

    2007-12-15

    Cofiring experiments were performed in a 12 MW circulating fluidized bed boiler. The fuel combinations were biofuel (wood+straw), coal+biofuel, coal+sewage sludge+biofuel, and sewage sludge+biofuel. Limestone or chlorine (PVC) was added in separate experiments. Effects of feed composition on bed ash and fly ash were examined. The composition of flue gas was measured, including on-line measurement of alkali chlorides. Deposits were collected on a probe simulating a superheater tube. It was found that the fuel combination, as well as addition of limestone, has little effect on the alkali fraction in bed ash, while chlorine decreases the alkali fraction in bed ash. Sewage sludge practically eliminates alkali chlorides in flue gas and deposits. Addition of enough limestone to coal and sludge for elimination of the SO{sub 2} emission does not change the effect of chlorine. Chlorine addition increases the alkali chloride in flue gas, but no chlorine was found in the deposits with sewage sludge as a cofuel. Cofiring of coal and biofuel lowers the alkali chloride concentration in the flue gas to about a third compared with that of pure biofuel. This is not affected by addition of lime or chlorine. It is concluded that aluminum compounds in coal and sludge are more important than sulfur to reduce the level of KCl in flue gas and deposits. 24 refs., 8 figs., 7 tabs.

  5. Investigation of a dual-particle liquid-solid circulating fluidized bed bioreactor for extractive fermentation of lactic acid.

    PubMed

    Patel, Manoj; Bassi, Amarjeet S; Zhu, Jesse J-X; Gomaa, Hassan

    2008-01-01

    A dual-particle liquid-solid circulating fluidized bed (DP-LSCFB) bioreactor has been constructed and investigated for the simultaneous production and extraction of lactic acid using immobilized Lactobacillus bulgaricus and ion-exchange resins. The apparatus consisted of a downer fluidized bed, 13 cm I.D. and 4.75 m tall, and a riser fluidized bed, 3.8 cm I.D. and 5.15 m in height. The lactic acid production and removal was carried out in the downer, while the riser was used for the recovery of lactic acid. A continuously recirculating bed of ion-exchange resin was used for adsorption of the produced acid as well as for maintaining optimum pH for bioconversion, thus eliminating the need for costly and complex chemical control approach used in conventional techniques. Studies using lactic acid aqueous solution as feed and sodium hydroxide solution as regeneration stream showed 93% lactic acid removal from the downer and 46% recovery in the riser under the conditions investigated. Such results prove the functionality of using the newly developed bioreactor design for the continuous production and recovery of products of biotechnological significance. PMID:19194893

  6. Performance improvement of a converted fluid bed boiler (from traveling grate type) for agro waste combustion -- A case study

    SciTech Connect

    Sethumadhavan, R.; Karthikeyan, G.; Raviprakash, A.V.; Vasudevan, R.

    1997-12-31

    This paper investigates the operational difficulty encountered while operating a fluid bed boiler--which was earlier serving with a traveling grate for agrowaste combustion. This boiler, although operating on fluid bed technology principle, could not produce required combustion efficiency while burning any of the agrowastes such as rice husk, de-oiled bran, ground nut shell, etc. While carrying out the performance assessment study, it was found that, this inefficient combustion was mainly due to the improper operating parameters and partly due to incorrect furnace configuration. The drawbacks of the system have been attended to and set right incurring a very minor expenditure. This has led to an annual fuel saving of approximately US $40,000. The major results achieved are: (1) boiler thermal efficiency increased from 66--73%; (2) boiler was loaded uniformly and on-time operation has increased to 100% from earlier 60%; (3) boiler shut down time due to operational problems has come down from 35 hours per month to 15 hours per month; (4) very effective dust collection system was achieved resulting in reduced ID fan erosion; and (5) an annual saving of US $100,000 (both direct and indirect) was achieved.

  7. Energy and environmental research emphasizing low-rank coal -- Task 3.8, Pressurized fluidized-bed combustion

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.

    1995-03-01

    The goal of the PFBC activity is to generate fundamental process information that will further the development of an economical and environmentally acceptable second-generation PFBC. The immediate objectives focus on generic issues, including the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals in PFBC. A great deal of PFBC performance relates to the chemistry of the bed and the contact between gas and solids that occurs during combustion. These factors can be studied in a suitably designed bench-scale reactor. The present studies are focusing on the emission control strategies applied in the bed, rather than in hot-gas cleaning. Emission components include alkali and heavy metals in addition to SO{sub 2}, NO{sub x}, N{sub 2}O, and CO. The report presents: a description of the pressurized fluidized-bed reactor (PFBR); a description of the alkali sampling probe; shakedown testing of the bench-scale PFBR; results from alkali sampling; results from sulfur sorbent performance tests; and results from refuse-derived fuel and lignite combustion tests.

  8. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    PubMed

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming. PMID:19249155

  9. Processing of residues and municipal waste in circulating fluidized beds: Operating experience, design concepts and future developments

    SciTech Connect

    Plass, L.; Albrecht, J.; Loeffler, J.C.

    1997-12-31

    Based on experience on processing of unconventional fuels in commercial Circulating Fluidized Bed (CFB) gasifiers new plant concepts for thermal treatment of residues and municipal waste are presented. Particular emphasis is put on optimizing process efficiencies and environmental performance of the overall processes. The thermal treatment of waste is carried out in two steps: Gasification in a CFB-reactor is followed by a high temperature reactor for complete breakdown of gaseous condensable hydrocarbons and for slagging of dust entrained in the CFB product gas. Major details of the process alternatives are discussed in view of economical and ecological aspects.

  10. Modeling and simulation of liquid-solid circulating fluidized bed ion exchange system for continuous protein recovery.

    PubMed

    Mazumder, Jahirul; Zhu, Jingxu; Bassi, Amarjeet S; Ray, Ajay K

    2009-09-01

    Liquid-solid circulating fluidized bed (LSCFB) is an integrated two-column (downcomer and riser) system which can accommodate two separate processes (adsorption and desorption) in the same unit with continuous circulation of the solid particles between the two columns. In this study, a mathematical model based on the assumption of homogeneous fluidization was developed considering hydrodynamics, adsorption-desorption kinetics and liquid-solid mass transfer. The simulation results showed good agreement with the available experimental results for continuous protein recovery. A parametric sensitivity study was performed to better understand the influence of different operating parameters on the BSA adsorption and desorption capacity of the system. The model developed can easily be extended to other applications of LSCFB. PMID:19466748

  11. Acidic soil amendment with a magnesium-containing fluidized bed combustion by-product

    SciTech Connect

    Stehouwer, R.C.; Dick, W.A.; Sutton, P.

    1999-02-01

    Removal of SO{sub 2} from the emissions of coal-fired boilers produces by-products that often consist of CaSO{sub 4}, residual alkalinity, and coal ash. These by-products could be beneficial to acidic soils because of their alkalinity and the ability of gypsum (CaSO{sub 4}{center{underscore}dot}2H{sub 2}O) to reduce Al toxicity in acidic subsoils. A 3-yr field experiment was conducted to determine the liming efficacy of a fluidized bed combustion boiler by-product (FBC) that contained 129 g Mg kg{sup {minus}1} as CaMg(CO{sub 3}){sub 2} and MgO and its effects on surface and subsurface soil chemistry. The FBC was mixed in the surface 10 cm of two acidic soils (Wooster silt loam, an Oxyaquic Fragiudalf, and Coshocton silt loam, an Aquultic Hapludalf) at rates of 0, 0.5, 1, and 2 times each soil's lime requirement (LR). Soils were sampled in 10-cm increments to depths ranging from 20 to 110 cm, and corn (Zea mays L.) and alfalfa (Medicago sativa L.) were grown. Application of Mg-FBC increased alfalfa yields in all six site-years, whereas it had no effect on corn grain yield in five site-years and decreased grain yield in one site-year. Plant tissue concentrations of Mg, S, and Mo were increased by Mg-FBC, while most trace elements were either unaffected or decreased. Application of Mg-FBC at one or two times LR increased surface soil pH to near 7 within 1 wk. Although surface soil pH remained near 7 for 2 yr, there was minimal effect on subjacent soil pH. Application of Mg-FBC increased surface soil concentrations of Ca, Mg, and S, which promoted downward movement of Mg and SO{sub 4}. This had different effects on subsoil chemistry in the two soils: in the high-Ca-status Wooster subsoil, exchangeable Ca was decreased and exchangeable Al was increased, whereas in the high-Al-status Coshocton subsoil, exchangeable Al was decreased and exchangeable Mg was increased. The Mg-FBC was an effective liming material and, because of the presence of both Mg and SO{sub 4}, may be

  12. Experimental investigation of wood combustion in a fixed bed with hot air

    SciTech Connect

    Markovic, Miladin Bramer, Eddy A.; Brem, Gerrit

    2014-01-15

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of

  13. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume III. Model predictions and results

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the third of a seven volume series of our Phase II Final Report. This volume deals with parametric studies carried out using the FBC model. A comparison with available pilot plant data is included where such data are available. This volume in essence documents model performance; describing predictions on bubble growth, combustion characteristics, sulfur capture, heat transfer and related parameters. The model has approximately forty input variables which are at the disposal of the user. The user has the option to change a few or all of these input variables. In the parametric studies reported here, a large number of input variables whose variation is less critical to the predicted results, were maintained constant at the default values. On the other hand, those parameters whose selection is very important in design and operation of the FBC's were varied in suitable operating regions. The chief among such parameters are: bed temperature, coal feed size distribution (2 parameters), average bed-sorbent size, calcium to sulfur molar ratio, superficial velocity, excess air fraction, and bed weight (or bed height). The computations for obtaining the parametric relationships are based upon selection of a geometrical design for the combustor. Bed cross-section is 6' x 6', bed height is 4', and the freeboard height is 16'. The heat transfer tubes have 2'' OD, a pitch of 10'', and are located on an equilateral triangle pattern. The air distributor is a perforated plate with 0.1'' diameter holes on a rectangular grid with 0.75'' center-to-center spacing.

  14. Dispersion and co-combustion studies for disposal of agro-industrial effluents in bubbling fluidized bed

    SciTech Connect

    Miccio, F.

    1997-12-31

    The present work was developed in the frame of a collaboration between CNR/Istituto Ricerche Combustione, University of Parma and ENEA. It was aimed at exploiting and recovering the thermal energy from liquid effluents and solid wastes derived from typical Italian manufacturing of agro-industrial companies. This paper focuses on an organic sludge that is obtained as a residue during steam concentration of waste water from alcohol production in distilleries. This sludge has a very low calorific value and cannot be directly used in a combustion process. The first objective was to turn the sludge into a coal/waste/water mixture, easy to prepare and to burn on site in a bubbling fluidized combustor. To do so, some preliminary runs were carried out on a significant experimental scale by employing the 2100 kW{sub t} FBC-370 pre-pilot facility and by feeding underbed a South African coal/dry residue/water mixture with a maximum particle size of 1 mm. Very satisfactory values of co-combustion efficiency (i.e., larger than 98%), were attained as a function of the dispersing air velocity. It was proven that the mechanism of combustion passes through the formation of carbon-sand aggregates and tiny carbon deposits on bed sand particles. Another outcome was that pumping the mixture directly into the bed without any atomization is feasible and favorable from the point of view of co-combustion efficiency. Therefore, a second objective was to investigate aggregate formation as a result of mixture injection into the hot bed. This has been pursued through a review of the fundamental aspects underlying the behavior of a liquid issuing from an orifice. Two simple approaches, one based on Scheele and Meister`s (1968) results and the other one based on a balance of force moments, were followed. These two approaches provided two different equations to predict the diameter of a drop that detaches from the injection nozzle. Furthermore, aggregate formation was investigated through the set

  15. Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor.

    PubMed

    Qian, F P; Chyang, C S; Huang, K S; Tso, Jim

    2011-01-01

    The combustion of biomass of various nitrogen contents and its NO emission were investigated experimentally in this study. All the experiments were conducted in an I.D. 0.45 m pilot-scale vortexing fluidized bed combustor (VFBC). Rice husk, corn, and soybean were used as feeding materials. Urea was added into the feeding materials for the purpose of adjusting nitrogen content. The effects of various operating parameters on NO emission, such as bed temperature, excess air ratio, and flow rate of secondary air, were investigated. The effects of nitrogen content of fuels on NO emissions were also investigated by using the mixtures of rice husk/soybean, rice husk/urea, corn/soybean, and corn/urea in various weight ratios. The NO concentrations at various positions in the combustor were sampled and recorded. The experimental results show that most nitric oxide is formed at just above the bed surface. Temperature and excess air ratio are the major operating parameters for NO emission. For biomass with high nitrogen content, NO emission decreases with excess air, and increases with bed temperature. Compared with char-N, volatile-N is the more dominant reactant source for NO emission. PMID:20800476

  16. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOEpatents

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  17. 10,000 hours commercial operating experience with advanced-design, reflux circulating fluid bed scrubbing employing slaked lime reagent

    SciTech Connect

    Graf, R.E.; Huckriede, B.W.

    1995-06-01

    Details are presented of design, operating and maintenance experience with a commercial installation in Germany of a circulating fluid bed scrubber of advanced design (Reflux Circulating Fluid Bed Scrubber utilizing slaked lime slurry) retrofitted to a pulverized coal fired, 220 t/h, steam generating boiler, including problems encountered, corrections made and resulting technical improvements achieved. This state-of-the-art process design technology is described to highlight newly demonstrated innovative features that include cost effective means for minimizing amount of purchase of hydrated lime, at the same time substantially decreasing reagent cost. Other key details included are system effectiveness in achieving very high lime-utilization (free lime concentration in the residue below 1 %); means for by-product (residue) utilization; very high operational availability since initial startup in May 1993; SO{sub 2} removal efficiency up to 97 %; and optimization of process economics through efforts for simplification of system operation and maintenance; and attractiveness in cost-effectively meeting diverse environmental pollution control objectives in varied, worldwide, FGD applications.

  18. Pulsed atmospheric fluidized bed combustion. Technical progress report, April 1992--June 1992

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  19. Studies of Alkali Sorption Kinetics for Pressurized Fluidized Bed Combustion by High Pressure Mass Spectrometry

    SciTech Connect

    Wolf, K.J.; Willenborg, W.; Fricke, C.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    This work describes the first approach to use High Pressure Mass Spectrometry (HPMS) for the quantification and analysis of alkali species in a gas stream downstream a sorbent bed of different tested alumosilicates.

  20. Modeling of combustion of low grade lignites in fluidized beds with heat extraction

    SciTech Connect

    Mancuhan, E.; Oezyl, E.

    1999-07-01

    A computerized model was developed for any low rank coal with a known particle size distribution and mass fraction. When the coal is fed into the bed, the volatile matter is assumed to be released instantaneously and a new particle size distribution is achieved within the bed. The effect of elutriation and chemical reactions are also taken into account. The model developed investigates the effect of excess air on elutriation, particle size distribution of the semi-coke, and the mass fraction values within the bed at steady state conditions. The excess air ranged from 1 to 1.48. The model also takes into account the effect of coal type on the bed temperature. As is already known, temperature may vary significantly from type to type in the low quality coal range, much more than in the high quality coal types. The results of the model simulation studies are compared with a limited amount of experimental work available for Turkish lignites. The agreement between the model prediction and the experimental data is reasonably good. Closer to the distributor plate, the bed temperature prediction of the model is low, but agreement improves as the active bed surface is reached. The results obtained from the model are presented for feed air temperatures of 300, 400, and 500 K for Seyitoemer lignite. If 60% of the desired heat is extracted from the active bed, the optimum results can be obtained. Under optimum conditions, 70% of the volatile matter is burned within the active bed and the remainder of the freeboard.

  1. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume II. Detailed description of the model

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the second of a seven volume series of our Phase II Final Report. This volume deals with detailed descriptions of the structure of each program member (subroutines and functions), the interrelation between the members of a submodel, and the interrelation between the various submodels as such. The systems model for fluidized bed combustors (FBC-II) consists of a systematic combination of the following interrelated areas: fluid mechanics and bubble growth, char combustion and associated kinetics for particle burnout, sulfur capture, NO/sub x/ formation and reduction, freeboard reactions, and heat transfer. Program outline is shown in Figure 1.1. Input variables (supplied by the user are inspected to check that they lie inside the allowed range of values and are input to the various routines as needed. The necessary physical and fluid mechanical properties are calculated and utilized in estimating char combustion and sulfur capture in the bed and the freeboard. NO/sub x/ and CO emissions are estimated by taking into account all relevant chemical reactions. A material and energy balance is made over the bed. Figure 1.1 shows a block diagram of the systems program. In this diagram, the overall structure of the FBC program is illustrated in terms of the various submodels that together constitute the systems program. A more detailed outline of the systems program is shown in Figure 1.2. In this figure, all important subroutine members of the FBC program are shown, and their linkage to each other, as well as to the main program is indicated. A description of the exact sequence in which these various routines are called at time of program execution is provided in Chapter 8 under the executive routine MAIN.

  2. High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report

    SciTech Connect

    Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

    1981-04-01

    An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup

  3. Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, March 1--May 31, 1995

    SciTech Connect

    Paul, B.C.; Esling, S.; Pisani, F.; Wells, T.

    1995-12-31

    Fluidized Bed Combustion of coal eliminates most emissions of S and N oxides but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements may make the technology uneconomic. Fluidized Bed residues are cementlike and when mixed with soil, produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that the residues can be mixed with soils by regular construction equipment and used in place of clays as liner material. The demonstration cap will cover an area of 7 acres and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. Materials needed to place the wells and lysimeters have been obtained. A contractor will build and deliver a mobile foam generator and spray to the field to demonstrate fugitive dust control from FBC fly ash (dust problem is one key barrier to more widespread use of FBC ash).

  4. Experimental investigation of wood combustion in a fixed bed with hot air.

    PubMed

    Markovic, Miladin; Bramer, Eddy A; Brem, Gerrit

    2014-01-01

    Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T>220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion

  5. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus

    PubMed Central

    2014-01-01

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and

  6. Particle-size optimization for SO{sub 2} capture by limestone in a circulating fluidized bed

    SciTech Connect

    Saastamoinen, J.J.

    2007-10-15

    Sulfur capture by limestone particles in a circulating fluidized bed is studied by modeling. Small particles are reactive but they have a short residence time depending on the separation efficiency of the cyclone. With large particles, the residence time is longer, but the rate and degree of sulfur capture are lower. Then the large particles removed in the bottom ash flow may have reached a lesser degree of conversion (from CaO to CaSO{sub 4}), especially if the rate of attrition is low. The optimum particle size or particle-size distribution to minimize the limestone feed rate to achieve a given efficiency of sulfur capture is discussed. A methodology to calculate the optimum size is presented.

  7. Alumina calcination with the advanced circulating fluid bed technology: A design with increased efficiency combined with operating flexibility

    SciTech Connect

    Schmidt, H.W.; Stockhausen, W.; Silberberg, A.N.

    1996-10-01

    The Circulating Fluid Bed (CFB) technology has now been applied to alumina calcination for a quarter of a century. The combined capacity of the 32 units installed is greater than 10 million metric tons per year. The paper highlights the consistency of the product quality which is based upon the operating experience of the last decade and improvements to the calcination system which also provides lower heat consumption. The principal modifications are incorporated in the preheating and cooling sections of the plant. These design modifications have also reduced capital cost. Overall the plant retains its proven features of high flexibility, unique temperature control, high availability, reliable performance, and low maintenance cost. The design is applicable to single train units up to a capacity of 3,000 MTPD (alumina).

  8. Pulsed atmospheric fluidized bed combustion. Quarterly report, July 1--September 30, 1995

    SciTech Connect

    1995-12-31

    The report summarizes progress in design, fabrication, and construction activities. Progress on the fluid bed combustor, piping, fuel feeding system, ash system, and the control and instrumentation design is described. The report lists the construction activities completed during this quarter which included bed tubes installation, fan inlet flow measuring duct, bag filter, silencers for roots blowers, electric power cabling connections, light distributor panel and transformer installation inside the control panel, steam/water recirculation piping, fine coal receiving vent filter, and partial painting of ash silo and boiler.

  9. Flow Regime Study in a Circulating Fluidized Bed Riser with an Abrupt Exit: [1] High Density Suspension

    SciTech Connect

    Mei, J.S.; Lee, G.T.; Seachman, S.M.; Ludlow, J.C.; Shadle, L.J.

    2008-05-13

    Flow regime study was conducted in a 0.3 m diameter, 15.5 m tall circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U. S. Department of Energy. A statistical designed test series was conducted including four (4) operating set points and a duplicated center point (therefore a total of 6 operating set points). Glass beads of mean diameter 200 μm and particle density of 2,430 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 5.6 to 7.6 m/s and solid mass flux from a low of 86 to a high of 303 kg/m2-s. Results of the apparent solids fraction profile as well as the radial particle velocity profile were analyzed in order to identify the presence of Dense Suspension Upflow (DSU) conditions. DSU regime was found to exist at the bottom of the riser, while the middle section of the riser was still exhibiting core-annular flow structure. Due to the abrupt geometry of the exit, the DSU regime was also found at the top of the riser. In addition the effects of the azimuthal angle, riser gas velocity, and mass solids flux on the particle velocity were investigated and are discussed in this paper.

  10. Soy protein recovery in a solvent-free process using continuous liquid-solid circulating fluidized bed ion exchanger.

    PubMed

    Prince, Andrew; Bassi, Amarjeet S; Haas, Christine; Zhu, Jesse X; Dawe, Jennifer

    2012-01-01

    Soy protein concentrates and soy protein isolates act as ingredients in bakery, meat and dairy products, baby formulas, starting materials for spun textured vegetable products, and other nutritional supplements. In this study, the effectiveness of a liquid-solid circulating fluidized bed (LSCFB) ion exchanger is demonstrated for the recovery of soluble soy proteins from full fat and defatted soy flour. Under steady-state operating conditions, about 50% of the proteins could be recovered from the feed streams entering the ion exchanger. The LSCFB was shown to be a promising system for the recovery of soy protein from both defatted and full fat soy flour solutions. As the ion exchange process captures dissolved proteins, the system may offer a less damaging form of processing compared with the acid precipitation process where soy protein aggregates form and functionality is affected. In addition, the LSCFB allows simultaneous adsorption and desorption of the proteins allowing for a continuous operation. No prefiltration of feed containing suspended particles is required as well, because fluidization is used in place of packed bed technology to improve on current ion exchange processes. PMID:22002948

  11. High rate biological nutrient removal from high strength wastewater using anaerobic-circulating fluidized bed bioreactor (A-CFBBR).

    PubMed

    Andalib, Mehran; Nakhla, George; Zhu, Jesse

    2012-08-01

    Biological nutrient removal (BNR) from high strength wastewater was investigated using a newly developed integrated anaerobic fluidized bed (AF) with circulating fluidized bed bioreactor henceforth called A-CFBBR. The A-CFBBR showed 99.7%COD removal, 84% nitrogen removal, with a very low sludge yield of 0.017 g VSS/g COD while treating a synthetic wastewater containing 10,700 mg COD/L and 250 mg NH(3)-N/L over a period of 6 months. The system was operated at an organic loading rate (OLR) of 35 kg COD/m(3)(AF) d and nitrogen loading rate (NLR) of 1.1 kg N/m(3)(CFBBR) d at a hydraulic retention time (HRT) of less than 12 h in the A-CFBBR. Microbial communities analysis using DGGE confirmed the presence of both AOBs and NOBs in the riser and downer. Pseudomonas putida and Pseudomonas fluorescence were the dominant denitrifiers present in the downer. Methanogenic activity was accomplished by a microbial mixture of archaea and bacteria in the anaerobic column. PMID:22717573

  12. APPLICATION OF ADVANCED TECHNOLOGY FOR NOX CONTROL: ALTERNATE FUELS AND FLUIDIZED-BED COAL COMBUSTION

    EPA Science Inventory

    The paper discusses the effect of alternate fuels and fluidized coal combustion in controlling the emission of nitrogen oxides (NOx). The current trend in energy use in the U.S. is toward greater use of coal and coal derived fuels, and on ensuring that these fuels are produced an...

  13. Effects of the updated national emission regulation in China on circulating fluidized bed boilers and the solutions to meet them.

    PubMed

    Li, Jingji; Yang, Hairui; Wu, Yuxin; Lv, Junfu; Yue, Guangxi

    2013-06-18

    The advantage of circulating fluidized bed (CFB) boilers in China is their ability to utilize low rank coal with low cost emission control. However, the new National Emission Regulation (NER) issued in early 2012 brings much more stringent challenges on the CFB industries, which also causes much attention from other countries. Based on the principle of a CFB boiler and previous operating experience, it is possible for the CFB boilers to meet the new NER and maintain the advantage of low cost emission control, while, more influences should be considered in their design and operation. To meet the requirement of the new NER, the fly ash collector should adopt a bag house or combination of electrostatic precipitator and bag filter to ensure dust emissions of less than 30 mg · Nm(-3). For SO2 emission control, the bed temperature should be strictly lower than 900 °C to maintain high reactivity and pores. The limestone particle size distribution should be ranged within a special scope to optimize the residence time and gas-solid reaction. At the same time, the injecting point should be optimized to ensure fast contact of lime with oxygen. In such conditions, the desulfurization efficiency could be increased more than 90%. For lower sulfur content fuels (<1.5%, referred value based on the heating value of standard coal of China), increasing Ca/S enough could decrease SO2 emissions lower than that of the new NER, 100 mg · Nm(-3). For fuels with sulfur content higher than 1.5%, some simplified systems for flue gas desulfurization, such as flash dryer absorber (FDA), are needed. And the NOx emissions of a CFB can be controlled to less than 100 mg · Nm(-3) without any equipment at a bed temperature lower than 900 °C for fuels with low volatiles content (<12%), while for fuels with high volatiles, selective non-catalytic reduction (SNCR) should be considered. Due to the unique temperature in CFB as well as the circulating ash, the efficiency of SNCR could reach as high as

  14. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass.

    PubMed

    Xie, Jian-jun; Yang, Xue-min; Zhang, Lei; Ding, Tong-li; Song, Wen-li; Lin, Wei-gang

    2007-01-01

    This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The influence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N20 were proposed. PMID:17913163

  15. Leaching behavior and possible resource recovery from air pollution control residues of fluidized bed combustion of municipal solid waste

    SciTech Connect

    Abbas, Z.; Andersson, B.A.; Steenari, B.M.

    1999-07-01

    Ash residues are generated at several points during combustion of municipal solid waste (MSW), i.e., in cyclones, electrostatic precipitators and fabric filters. Such residues are of a complex physical and chemical nature and are often enriched in soluble salts and heavy metals such as Pb, Cd and Zn. Fluidized bed combustion (FBC) of MSW is a relatively new technique and very little information is available about the leaching behavior of its residues. In this study, the total elemental composition, mineralogy and leaching behavior of cyclone and bag-house filter ashes from a bubbling fluidized bed (BFB) boiler fired with municipal solid waste have been investigated. In addition, the possibilities of recovery heavy metals from these ashes were studied. The long-term leaching behavior of the ash constituents was evaluated using a two-step batch leaching test known as the CEN-test, whereas short and medium term leaching behavior was evaluated using a Column test. The extraction of elements from cyclone and filter ashes with various acidic solutions was also investigated. The leaching behavior of acid washed ashes was evaluated using the CEN test. The cyclone ash was mainly composed of aluminosilicate minerals, whereas the filter ash consisted of chlorides and hydroxides of alkali and alkaline earth metals. The concentration of heavy metals such as Zn, Cu, Cd and Pb was higher in the filter ash than in the cyclone ash. The leached amounts of sulfates and Pb from the cyclone ash decreased with leaching test contact time, indicating the formation of secondary mineral phases. Large amounts of chlorides, sulfates, Ca, Cu and Pb were leached from the filter ash. Acid extraction removed large amounts ({gt}50%) of Zn, Pb and Cu from the filter ash and approximately 56% of the total amount of Zn present in the cyclone ash. An efficient removal of heavy metal species from these types of ashes can probably be achieved by application of a recycling or multi-step process.

  16. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    1999-01-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into four major sections. The first deals with the Hydraulic Injection component. This section of the report reports on progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase III (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  17. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    1999-07-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  18. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    1999-04-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  19. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    2000-04-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  20. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect

    Unknown

    2000-01-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  1. Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed

    SciTech Connect

    Scott Sinquefield; Xiaoyan Zeng, Alan Ball

    2010-03-02

    Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requires additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. “syngas”) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950°C), but was limited to pressures below

  2. Options and economics for fluidized bed combustion of pulp and paper mill sludge and residuals

    SciTech Connect

    Ferris, J.M.

    1995-12-31

    Although only the tip of the iceberg in terms of examples, these case studies provide some indication of the variety of successful sludge combustion projects which can be implemented. The variables we have discussed in this paper vary significantly with each case, yet each of these projects is economically and environmentally favorable to the mill. There is no easy formula for identifying all of the factors which will {open_quotes}make or break{close_quotes} a sludge combustion project. Sludge quality and quantity are certainly key variables, but the economics depend upon the combination of numerous other variables as well. As managers, consultants and suppliers in the pulp and paper industry, the first step to take is to recognize that the sludge and rejects that you typically think of as an economic and environmental liability may, in fact, be an energy asset which can be disposed of through combustion. The next step, although not quite as simple, is to identify and analyze the variables and define the economic impact.

  3. A model of coal particle drying in fluidized bed combustion reactor

    SciTech Connect

    Komatina, M.; Manovic, V.; Saljnikov, A.

    2007-02-15

    Experimental and theoretical investigation on drying of a single coal particle in fluidized bed combustor is presented. Coal particle drying was considered via the moist shrinking core mechanism. The results of the drying test runs of low-rank Serbian coals were used for experimental verification of the model. The temperature of the coal particle center was measured, assuming that drying was completed when the temperature equalled 100{sup o}C. The influence of different parameters (thermal conductivity and specific heat capacity of coal, fluidized bed temperature, moisture content and superheating of steam) on drying time and temperature profile within the coal particle was analyzed by a parametric analysis. The experimentally obtained results confirmed that the moist shrinking core mechanism can be applied for the mathematical description of a coal particle drying, while dependence between drying time and coal particle radius, a square law relationship, implicates heat transfer control of the process and confirms the validity of assumptions used in modeling.

  4. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    SciTech Connect

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  5. Pulsed atmospheric fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-05-01

    As reported in previous quarterly reports, the fabrication of the fluid bed vessel, hot cyclone, coal handling system components, and coal/limestone feed systems is underway. Procurement of long lead time items was initiated in October 1992, and.deliveries are being made on schedule. In this quarterly period the following design tasks were accomplished. Mass and energy balance review and optimization; system operation calibrations; piping pressure drop design calculations; and pipe sizing and layout drawings.

  6. An experimental study of the hydrodynamics and cluster formation in a circulating fluidized bed. Topical report, January 1, 1991--June 30, 1992

    SciTech Connect

    Gautam, M.; Jurewicz, J.; Heping, Y.; Clifton, K.

    1992-07-01

    This research program involves two major aspects. First, to evaluate techniques to effectively probe the polydisperse gas-solid flows and second, to apply these techniques to study the gas-solid flow structure and clusters in the riser of a circulating fluidized bed riser. Amongst the non-intrusive techniques a modified laser Doppler technique based on the fluorescence-emission concept has been adopted and the other techniques involve pitot-static pressure probes. A circulating fluidized bed (CFB) facility has been designed, built and is currently operational at West Virginia University. The design provides for maximum versatility in investigating the hydrodynamics of the CFB riser. Two stage cyclones are employed to capture the particles exhausted from the riser. Measurements of gas velocity distribution were carried out in the circulating fluidized bed riser. with particles having a mean diameter of 112 {mu}m and a density of 2305 kg/m{sup 3} and another set of particles with a mean diameter of 145 {mu}m and a density of 2245 kg/m{sup 3}. The experimental results showed that the local gas velocity varied with the radial position, elevation, solids circulation rate, superficial velocity and particle size. A general formula for gas velocity distribution in the circulating fluidized bed riser was obtained based on the particle circulation, superficial velocity and particle diameter. The pressure drops across the L-valve were also studied for different particle sizes, L-valve diameters and aeration. The solids flowrate was found to be a function of the L-valve geometry, operating parameters and solids properties. Pressure drop of L-valve increases with increasing solids diameter and decreasing diameter of the L-valve. Pressure drop across standpipe increases as the solids diameter and diameter of the standpipe decrease.

  7. Evaluation of biological nutrient removal from wastewater by Twin Circulating Fluidized Bed Bioreactor (TCFBBR) using a predictive fluidization model and AQUIFAS APP.

    PubMed

    Andalib, Mehran; Nakhla, George; Sen, Dipankar; Zhu, Jesse

    2011-02-01

    A two-phase and three-phase predictive fluidization model based on the characteristics of a system such as media type and size, flow rates, and reactor cross sectional area was proposed to calculate bed expansion, solid, liquid and gas hold up and specific surface area (SSA) of the biofilm particles. The model was subsequently linked to 1d AQUIFAS APP software (Aquaregen) to model biological nutrient removal in two phase (anoxic) and three phase (aerobic) fluidized bed bioreactors. The credibility of the proposed model for biological nutrient removal was investigated using the experimental data from a Twin Circulating Fluidized Bed Bioreactors (TCFBBR) treating synthetic and municipal wastewater. The SSA of bio-particles and volume of the expanded bed were simulated as a function of operational parameters. Two-sided t-tests demonstrated that simulated SCOD, NH(4)-N, NO(3)-N, TN, VSS and biomass yields agreed with the experimental values at the 95% confidence level. PMID:21075620

  8. Near-wall particle velocity and concentration measurements in circulating fluidized beds in relation to heat transfer

    SciTech Connect

    Zevenhoven, R.; Kohlmann, J.; Laukkanen, T.; Tuominen, M.; Blomster, A.M.

    1999-07-01

    With the final goal of deriving correlations for suspension-to-wall heat transfer coefficients for circulating fluidized bed (CFB) reactors, video recordings on near-wall particle concentrations and velocities were made. Experiments were done at facilities at Foster Wheeler Energy Oy, Karhula, Finland, in pilot scale low and high temperature ({approximately}800 C) CFB reactors with rectangular cross-sections. The low temperature measurements gave information on near-wall particle concentrations, velocities sizes and their probability distributions, given a certain gas velocity and vertical position. In addition, a major effort went to high temperature measurements in a CFB combustor, using a water-cooled probe. Measuring basically the same things as in the cold facility, the objective there was to discriminate the relative importance of particle convective heat transfer (apart from obtaining any information at all from the hot CFB). Results are presented in the form of probability distributions for near-wall particle velocities and particle size for both CFBs. It was found that in the cold CFB, particle convective heat transfer accounts for up to almost 20% of the heat transfer. Comparing the cold and hot CFB results it was found that the contact time decreases with temperature. It is suggested that due to a different near-wall boundary layer at higher temperatures (and velocities), the particles moving downwards along the wall are more susceptible to horizontal re-entrainment forces. Since wall coverage data wasn't available (yet), heat transfer coefficients could not be calculated for the hot CFB data. In both CFBs the size of objects that were tracked was roughly the same as the input bed material particle size, meaning that no agglomerated particles were detected.

  9. Load maximization of a liquid-solid circulating fluidized bed bioreactor for nitrogen removal from synthetic municipal wastewater.

    PubMed

    Chowdhury, Nabin; Nakhla, George; Zhu, Jesse

    2008-03-01

    A novel liquid-solid circulating fluidized bed bioreactor (LSCFB) configured with anoxic and aerobic columns and lava rock as the biofilm carrier was used to treat synthetic municipal wastewater. Four different empty bed contact times (EBCTs) of 0.82, 0.65, 0.55, and 0.44 h were examined to optimize nutrient removal capability of the system. The LSCFB demonstrated tertiary effluent quality organic and nitrogen removal efficiencies. Effluent characteristics of the LSCFB were soluble biological oxygen demand (SBOD)10 mg l(-1) and total nitrogen (TN)<10 mg l(-1) at organic loading rate (OLR) of 5.3 kg m(-3)d(-1) and nitrogen loading rate of 0.54 kg Nm(-3)d(-1). Remarkably low yields of 0.14, 0.17, 0.19, and 0.21 g VSS g(-1)COD were observed at OLR of 2.6, 3.2, 4.1 and 5.3 kg COD m(-3)d(-1), where increment of biomass growth and detachment rate were also experienced with increasing OLR. However the system demonstrated only 30% phosphorus removal, and mass balances along the anoxic and aerobic columns showed biological phosphorus removal in the system. Organic mass balance showed that approximately 40% of the influent COD was utilized in the anoxic column and the remaining COD was oxidized in the aerobic column. The system is very efficient in nitrification-denitrification, with more than 90% nitrification of ammonium and overall nitrogen removal in the LSCFB was 70+/-11% even at an EBCT of 0.44 h. PMID:18262217

  10. Characterization of fly ash from a circulating fluidized bed incinerator of municipal solid waste.

    PubMed

    Zhang, Lin; Su, Xiaowen; Zhang, Zhixuan; Liu, Siming; Xiao, Yuxin; Sun, Mingming; Su, Jixin

    2014-11-01

    Treatment and disposal of fly ash in China are becoming increasingly difficult, since its production has steadily risen and its features are uncertain. The excess pollutant components of fly ash are the key factor affecting its treatment and resource utilization. In this study, fly ash samples collected from a power plant with circulating fluidized incinerators of municipal solid waste (MSW) located in Shandong Province (eastern China) were studied. The results showed that there were no obvious seasonal differences in properties of fly ash. The content of total salt, Zn, and pH exceeded the national standards and low-ring polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (Fs) were the main organic components of fly ash for this power plant, which posed great threats to the surrounding environment. The amount of Zn of fly ash was higher than other heavy metals, which should be due to alkaline batteries of MSW. The leachate of fly ash had low concentrations of heavy metals and the main soluble components were sulfates and chlorides. The major mineral crystals of fly ash were SiO2, CaSO4, and Fe2O3. The main organic pollutants were low-ring PAHs, polychlorinated PCDDs, and low-chlorinated PCDFs, and concentrations were lower than the limiting values of the national regulations. Additionally, the distribution of PCDD/Fs had either a positive or a negative linear correlation with fly ash and flue gas, which was associated with the chlorinated degree of PCDD/Fs. The analysis was conducted to fully understand the properties of fly ash and to take appropriate methods for further comprehensive utilization. PMID:24969433

  11. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  12. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions

    SciTech Connect

    Montagnaro, Fabio; Salatino, Piero; Scala, Fabrizio

    2010-04-15

    The influence of temperature on attrition of two limestones during desulfurization in a fluidized bed reactor was investigated. Differences in the microstructure of the two limestones were reflected by a different thickness of the sulfate shell formed upon sulfation and by a different value of the ultimate calcium conversion degree. Particle attrition and fragmentation were fairly small under moderately bubbling fluidization conditions for both limestones. An increase of temperature from 850 C to 900 C led to an increase of the attrition rate, most likely because of a particle weakening effect caused by a faster CO{sub 2} evolution during calcination. This weakening effect, however, was not sufficiently strong to enhance particle fragmentation in the bed. The progress of sulfation, associated to the build-up of a hard sulfate shell around the particles, led in any case to a decrease of the extent of attrition. Sulfation at 900 C was less effective than at 850 C, and this was shown to be related to the porosimetric features of the different samples. (author)

  13. High temperature gas cleaning using honeycomb barrier filter on a coal-fired circulating fluidized bed combustor

    SciTech Connect

    Bishop, B.; Raskin, N.

    1996-12-31

    An efficient particulate hot gas cleaning equipment is a must for the successful commercialization of high efficiency pressurized coal-fired energy conversion systems. Many types of ceramic barrier filter systems are under development during the past decade. Significant progress has been made on the mechanical packaging of ceramic materials at high temperature (up to 900 C) environment. However, there is still considerable difficulty in operating the candle type filters at temperatures close to 900 C. CeraFilter Systems, Inc., and CeraMem Corporation are developing a new type of monolith honeycomb filters for high temperature and high pressure applications. The honeycomb filters have been tested downstream of a coal-fired atmospheric circulating fluidized bed combustor. Coal was fired with limestone as the SO{sub 2} control sorbent. Two test runs were conducted, each at 870 C and at a filtration velocity of 2.2--2.3 cm/s. The testing included both high speed and conventional data acquisition to monitor effects of the cleaning pulses and long term pressure drop characteristics. Dust loadings were measured before and after the filter by the Energy and Environmental Research Center (EERC) of Grand Forks, North Dakota. The dust capture efficiency of the Filter was very high and could easily meet the strict particulate emission level requirements and the allowable dust loading into a gas turbine stream.

  14. Investigation of gas–solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s‑1 to 3.0 m s‑1 with a step of 0.2 m s‑1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows.

  15. Novel dry-desulfurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed.

    PubMed

    Matsushima, Norihiko; Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi; Qi, Haiying; Xu, Xuchang

    2004-12-15

    A dry-desulfurization process using Ca(OH)2/fly ash sorbent and a circulating fluidized bed (CFB) was developed. Its aim was to achieve high SO2 removal efficiency without humidification and production of CaSO4 as the main byproduct. The CaSO4 produced could be used to treat alkalized soil. An 83% SO2 removal rate was demonstrated, and a byproduct with a high CaSO4 content was produced through baghouse ash. These results indicated that this process could remove SO2 in flue gas with a high efficiency under dry conditions and simultaneously produce soil amendment. It was shown that NO and NO2 enhanced the SO2 removal rate markedly and that NO2 increased the amount of CaSO4 in the final product more than NO. These results confirmed that the significant effects of NO and NO2 on the SO2 removal rate were due to chain reactions that occurred under favorable conditions. The amount of baghouse ash produced increased as the reaction progressed, indicating that discharge of unreacted Ca(OH)2 from the reactor was suppressed. Hence, unreacted Ca(OH)2 had a long residence time in the CFB, resulting in a high SO2 removal rate. It was also found that 350 degrees C is the optimum reaction temperature for dry desulfurization in the range tested (320-380 degrees C). PMID:15669351

  16. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste.

    PubMed

    Cao, Jing-Pei; Xiao, Xian-Bin; Zhang, Shou-Yu; Zhao, Xiao-Yan; Sato, Kazuyoshi; Ogawa, Yukiko; Wei, Xian-Yong; Takarada, Takayuki

    2011-01-01

    Fast pyrolyses of sewage sludge (SS), pig compost (PC), and wood chip (WC) were investigated in an internally circulating fluidized-bed to evaluate bio-oil production. The pyrolyses were performed at 500 °C and the bio-oil yields from SS, PC, and WC were 45.2%, 44.4%, and 39.7% (dried and ash-free basis), respectively. The bio-oils were analyzed with an elemental analyzer, Karl-Fischer moisture titrator, bomb calorimeter, Fourier transformation infrared spectrometer, gel permeation chromatograph, and gas chromatography/mass spectrometry. The results show that the bio-oil from SS is rich in aliphatic and organonitrogen species, while the bio-oil from PC exhibits higher caloric value due to its higher carbon content and lower oxygen content in comparison with that from SS. The bio-oils from SS and PC have similar chemical composition of organonitrogen species. Most of the compounds detected in the bio-oil from WC are organooxygen species. Because of its high oxygen content, low H/C ratio, and caloric value, the bio-oil from WC is unfeasible for use as fuel feedstock, but possible for use as chemical feedstock. PMID:20943376

  17. Pulsed atmospheric fluidized bed combustion. Technical progress report, April--June 1995

    SciTech Connect

    1995-07-31

    Design activities for this report period included: (1) Mechanical. Stress analysis calculations were performed on the steam/water pressure piping. Pipe support design and drawings were completed by Duke Fluor Daniel. The fluid bed distributor bubble cap design was revisited and changes made for ease of maintenance. (2) Electrical and Instrumentation. Control and instrumentation scheme proposed earlier, was based on independent single loop controllers. After careful review, it is decided to go for state of art distributed control system (DCS) which uses programmable logic controllers (PLC). In addition, coal/limestone pickup hopper fabrication was completed during this period and shipped to the site. The coal/limestone floating caps have been made at MTCI and ready for shipping. All major equipment installation was completed. The pulse combustor steam/water jacket and air plenum were installed. Construction of control room building was just completed.

  18. Disposal of Fluidized Bed Combustion Ash in an Underground Mine to Control Acid Mine Drainage and Subsidence

    SciTech Connect

    1998-08-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion (FBC) ash). Success will be measured in terms of technical feasibility of the approach (i.e. YO void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase Ill the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the spring of 1998 and monitored for following year. The second demonstration involves stowing 2000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during the winter of 1997. This document will report on progress made during Phase Ill. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase Ill tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase Ill (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  19. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume 1. Model evolution and development

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The Energy Laboratory of the Massachusetts Institute of Technology (M.I.T.), under Department of Energy (DOE) sponsorship, has been engaged in the development of a comprehensive mechanistic model of Fluidized Bed Combustors (FBC). The primary aims of this modeling effort are the generation and to the extent possible, validation of an analytical framework for the design and scale-up of fluidized bed combustors. In parallel with this modeling effort, M.I.T. also embarked upon the development of an FBC-Data Base Management System (FBC-DBMS) aimed at facilitating the coordination, interpretation and utilization of the experimental data that are or will become available from diverse sources, as well as in the identification of areas of large uncertainty or having a paucity of experimental results. The synergistic operation of the FBC-Model and FBC-Data Base promises to offer a powerful tool for the design and optimization of FBC's and represents the ultimate goal of the M.I.T. effort. The modeling effort was initially focused upon evaluation and application of state-of-the-art models. The initial system model was divided into five basic components: fluid dynamics, combustion, sulfur capture, heat transfer and emissions. Due to the technical complexity of modeling FBC operation and the initial primitive nature of models for these components, it was deemed necessary to be able to incorporate evolutionary improvements in understanding and correlating FBC phenomena: the M.I.T. system model is, therefore, modular in nature, i.e., each sub-model can be replaced by an updated or equivalent sub-model without necessitating reprogramming of the entire system model.

  20. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    SciTech Connect

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  1. [Retention of selenium volatility using lime in coal combustion].

    PubMed

    Zhang, J; Ren, D; Zhong, Q; Xu, F; Zhang, Y; Yin, J

    2001-05-01

    For understanding the volatility of selenium, the effect of the contents of exchangeable cations of coal on it, and the retention of selenium using CaO in coal combustion, the sequential chemistry extraction, the fixed bed and circulating fluidized bed (CFB) combustion, X-ray diffraction (XRD) and atomic fluorescence spectrometry (AFS) were undertaken. The results showed that the volatility of selenium was more than 97% in coal combustion at 815 degrees C, and the volatility of selenium was affected by the content of exchangeable cations of coal in low-middle temperature. It was identified that lime can restrain the volatility of selenium. In fixed bed combustion of coal, the retention rates of selenium volatility were between 11.6% and 50.7% using lime. In circulating fluidized bed combustion of coal, partitioning of selenium changed very much in ash of different size fraction between without lime and with lime. Comparing with combustion without lime, the content of selenium in ash from chimney was less than fourth times and that in leaching water from chimney decreased by two orders of magnitude using lime. Retention of selenium volatility using lime is so effective in coal combustion, especially in CFB combustion of coal. PMID:11507891

  2. Impact of the addition of chicken litter on mercury speciation and emissions from coal combustion in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Songgeng Li; Shuang Deng; Andy Wu; Wei-ping Pan

    2008-07-15

    Co-combustion of chicken litter with coal was performed in a laboratory-scale fluidized bed combustor to investigate the effect of chicken litter addition on the partitioning behavior of mercury. Gaseous total and elemental mercury concentrations in the flue gas were measured online, and ash was analyzed for particle-bound mercury along with other elemental and surface properties. The mercury mass balance was between 85 and 105%. The experimental results show that co-combustion of chicken litter decreases the amount of elemental and total mercury in the gas phase. Mercury content in fly ash increases with an increasing chicken litter share. 22 refs., 6 figs., 5 tabs.

  3. Symposium (International) on Combustion, 18th, 1980

    SciTech Connect

    Anon

    1980-08-01

    This conference proceedings contains 196 papers. 181 papers are indexed separately. Topics covered include: combustion generated pollution; propellant combustion; fluidized bed combustion; combustion of droplets and spray; premixed flame studies; fire studies; flame stabilization; coal flammability; chemical kinetics; turbulent combustion; soot; coal combustion; modeling of combustion processes; combustion diagnostics; detonations and explosions; ignition; internal combustion engines; combustion studies; and furnaces.

  4. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC)

    SciTech Connect

    Lee, S.W.

    1999-09-01

    This technical report summarizes the research conducted and progress achieved during the period from April 1, 1998 to June 30, 1998. The numerical simulation was continued to determine the concentration distribution of the gas species, heat flux and heat transfer coefficients in the hot combustor model. The different gas concentration profiles showed the gas mixing characteristics along the combustor height. The center zone of the combustor has a relatively high methane mass concentration. The injection of secondary air squeezes the uprising flue gas and methane that causes the fuel-lean zone near the secondary air nozzles. The carbon dioxide concentration increased with the increasing of the combustor height. The peak concentration of oxygen remains at the combustor wall because of the secondary injection. The heat flux on the wall of the upper chamber is much higher than that of the lower chamber. It is believed that the heat flux is affected by the designed strong swirl and secondary air injection. The heat transfer coefficient changes along the combustor height were also affected by the multiple secondary air injection. The numerical simulation results could verify the predictions of the experimental results. It is a quite similar trend of the heat transfer coefficient changes based on the combustion test results.

  5. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion.

    PubMed

    Pazos, M; Kirkelund, G M; Ottosen, L M

    2010-04-15

    Sewage sludge contains several potentially hazardous compounds such as heavy metals, PCBs, PAHs, etc. However, elements with high agricultural value (P, K or Ca) are also present. During the last years, the fluidized bed sludge combustor (FBSC) is considered an effective and novel alternative to treat sewage sludge. By its use, the high amount of sludge is reduced to a small quantity of ash and thermal destruction of toxic organic constituents is obtained. Conversely, heavy metals are retained in the ash. In this work the possibility for electrodialytic metal removal for sewage sludge ash from FBSC was studied. A detailed characterization of the sewage sludge ash was done initially, determining that, with the exception of Cd, the other heavy metals (Cr, Cu, Pb, Ni and Zn) were under the limiting levels of Danish legislation for the use of sewage sludge as fertilizer. After 14 days of electrodialytic treatment, the Cd concentration was reduced to values below the limiting concentration. In all experiments the concentrations of other metals were under limiting values of the Danish legislation. It can be concluded that the electrodialytic treatment is an adequate alternative to reduce the Cd concentration in FBSC ash prior to use as fertilizer. PMID:20034740

  6. Engineering systems analysis of pressurized fluidized-bed-combustion power systems

    SciTech Connect

    Graves, R.L.; Griffin, F.P.; Lackey, M.E.

    1982-04-01

    This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

  7. Developing technologies for high volume land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Wolfe, W.E.

    1995-12-31

    Dry alkaline flue gas desulfurization (FGD) by-products, including Tidd PFBC bed and cyclone ash are being evaluated for beneficial uses via land application for agriculture, mine spoil reclamation, soil stabilization, and road embankment construction in a 5 year, $4.4 million research program based in Ohio. The beneficial use for agriculture and mine reclamation as a soil amendment material is primarily due to its high acid neutralizing capacity and gypsum content. Concentrations of leachate RCRA heavy metals approached primary drinking water quality standards and are well within the criteria for classification as non-toxic fly ash according to Ohio EPA policy. Characterization tests of compressive strength, permeability, and compressibility indicate the by-products are practical materials for use in high volume engineered fills or embankments, base courses, and for soil reinforcement. Large field demonstrations of technical, economic, and environmental feasibility have been completed using Tidd PFBC ash: (1) to reclaim abandoned coal mineland spoil, (2) as an agricultural lime substitute, (3) in stabilized base construction for a cattle feedlot, and (4) for reconstruction of two state highway embankments. An important factor to understand the behavior of this Tidd PFBC residue is that dolomite was the sorbent.

  8. Evaluating R and D options under uncertainty. Volume 2. Atmospheric fluidized-bed combustion commercialization strategies. Final report

    SciTech Connect

    Borison, A.B.; Judd, B.R.; Morris, P.A.; Walters, E.C.

    1981-08-01

    This study developed and demonstrated a quantitative framework for analyzing commercialization decisions for emerging electrical power generation technologies. The framework addresses the general question of when to freeze a design for commercialization. The framework was developed to help evaluate the benefits of continuing the development of two different designs for atmospheric fluidized-bed combustion (AFBC) boilers. EPRI staff participated actively in specifying the scope of the analysis and in providing technical information on the two designs. The framework was demonstrated using this information, supplemented with probabilistic judgments by EPRI staff about possible outcomes from the pilot and demonstration stages of development. Based on the technical data and judgments supplied by EPRI staff, the analysis shows a net benefit for proceeding with the development of two designs. Extensive sensitivity analysis shows this result holds over a broad range of input data. The insight behind this result is the value of using a second design as a hedge against an unfavorable outcome with the first design. The degree to which other power generation technologies could serve as a hedge for a single AFBC design was not considered explicitly in the analysis.

  9. The importance of heterogeneous decomposition reactions for the emission levels of NO and N{sub 2}O during fluidized bed combustion of coal

    SciTech Connect

    Boavida, D.; Lobo, L.S.; Gulyurtlu, I.; Cabrita, I.

    1996-12-31

    In the present work, the effects of temperature and type of char on the heterogeneous reduction of both NO and N{sub 2}O on char surfaces were investigated using the TGA technique. The kinetic parameters for the decomposition of both NO and N{sub 2}O on the char surfaces was obtained and correlated with the previous results from the combustion of coals and of the same chars in a laboratorial fluidized bed combustor.

  10. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  11. Characterization of ashes from co-combustion of refuse-derived fuel with coal, wood and bark in a fluidized bed

    SciTech Connect

    Zevenhoven, R.; Skrifvars, B.J.; Hupa, M.

    1998-12-31

    The technical and environmental feasibility of co-combustion of a recovered fuel (RF) prepared from combustible waste fractions (separated at the source), together with coal, peat, wood or wood-waste in thermal power/electricity generation has been studied in several R and D projects within Finland. The current work focuses on eventual changes in ash characteristics during co-combustion of RF with coal, wood or bark, which could lead to bed agglomeration, slagging, fouling and even corrosion in the boiler. Ashes were produced in a 15 kW bubbling fluidized bed (BFB) combustion reactor, the fly ash captured by the cyclone was further analyzed by XRF. The sintering tendency behavior of these ashes was investigated using a test procedure developed at Aabo Akademi University. Earlier, a screening program involved ashes from RF (from a waste separation scheme in Finland) co-combustion with peat, wood and bark, in which ash pellets were thermally treated in air. This showed significant sintering below 600 C as well as above 800 C for RF/wood and RF/bark, but not for RF/peat. This seemed to correlate with alkali chloride and sulfate concentrations in the ashes. The current work addresses a Danish refuse-derived fuel (RDF), co-combusted with bark, coal, bark+coal, wood, and wood+coal (eight tests). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 C, significant changes in sintering are seen with pellets treated at 1,000 C. Ash from 100% RDF combustion does not sinter, 25% RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Furthermore, it appears that the presence of a 25% coal fraction (on energy basis) seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows that, in general, an increased level of

  12. Numerical Simulation of Physical and Chemical Processes in Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Baturin, D. A.; Gil, A. V.

    2015-10-01

    The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out for the bottom of the combustion chamber with the varying heights of volume filling. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian representation on a 2D model.

  13. Nitrite production in a partial denitrifying upflow sludge bed (USB) reactor equipped with gas automatic circulation (GAC).

    PubMed

    Cao, Shenbin; Li, Baikun; Du, Rui; Ren, Nanqi; Peng, Yongzhen

    2016-03-01

    Nitrite production in a partial denitrifying (NO3(-)-N→NO2(-)-N) upflow sludge bed (USB) reactor equipped with gas automatic circulation (GAC) was investigated at ambient temperature (28.8-14.1 °C). The nitrite production rate (NPR) increased with the nitrate loading rate (NLR). Average NPR of 6.63 kgN m(-3) d(-1) was obtained at 28.0 °C with the organic loading rate (OLR) and NLR of 25.38 KgCOD∙m(-3)∙d(-1) and 10.82 kgN m(-3) d(-1), respectively. However, serious sludge floatation was observed when the NLR increased to 13.18 kgN m(-3) d(-1), which might be attributed to sludge bulking at high NLR. The USB reactor recovered rapidly when seeded with the sludge discharged before the deteriorated period, and a stable NPR of ∼4.35 kgN m(-3) d(-1) was achieved at 14.1-15.7 °C in the following 100-day operation, during which the maximum nitrate-to-nitrite transformation ratio (NTR) of 81.4% was achieved at the GAC rate of 1.08 L h(-1). The application of GAC in the partial denitrifying USB reactor enhanced mass transfer, which effectively avoided the channel and dead space, and improved the nitrate transform to nitrite. Moreover, it was found that the GAC system played an important role in promoting the stability of the USB reactor by preventing the sludge floatation. The Illumina high-throughput sequencing analysis revealed that the genus of Thauera was dominate in the USB reactor (67.2-50.2%), which may be responsible for the high nitrite accumulation. Results in this study have an important application in treating nitrate wastewater with an economic and efficient way by combining with ANAMMOX process. PMID:26760483

  14. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-07-13

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

  15. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits

    2001-01-18

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, work focused on performing the design of the conceptual fluidized bed system and determining the system economics.

  16. Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds.

    PubMed

    Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu; Li, Rui; Jia, Jiqiang

    2013-01-01

    A circulating fluidized bed reactor was used for pyrolyzing sewage sludge with a high ash content to produce liquids rich in heterocyclic nitrogenated compounds. GC/MS and FTIR analyses showed that heterocyclic nitrogenated compounds and hydrocarbons made up 38.5-61.21% and 2.24-17.48% of the pyrolysis liquids, respectively. A fluidized gas velocity of 1.13 m/s, a sludge feed rate of 10.78 kg/h and a particle size of 1-2mm promoted heterocyclic nitrogenated compound production. Utilizing heterocyclic nitrogenated compounds as chemical feedstock could be a way for offsetting the cost of sewage sludge treatment. PMID:23131621

  17. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  18. A REDUCED ORDER MODEL OF TWO-PHASE FLOW, HEAT TRANSFER AND COMBUSTION IN CIRCULATING FLUIDIZED-BEDS

    SciTech Connect

    Paul Cizmas

    2002-12-01

    This report summarizes the objectives, tasks and accomplishments of the second year of this research project. The report presents the following program deliverables: (1) visualization tools for reconstructing simulated data; (2) algorithms for reducing the partial differential equations to ordinary differential equations; and (3) visualization tools for Galerkin ordinary differential equations.

  19. A REDUCED ORDER MODEL OF TWO-PHASE FLOW, HEAT TRANSFER AND COMBUSTION IN CIRCULATING FLUIDIZED-BEDS

    SciTech Connect

    Paul Cizmas; Antonio Palacios

    2001-12-01

    This report presents the research activity completed during the first year of the project. The report describes the tasks assigned for the reviewing period, the accomplishments and challenges of this period, as well as the results obtained so far. The next section briefly presents the research objectives of the first year of the project. The following sections describe how these tasks were accomplished. These sections also present a sample of the results obtained. There were no changes in the approach originally proposed to complete the research program.

  20. A REDUCED ORDER MODEL OF TWO-PHASE FLOW, HEAT TRANSFER AND COMBUSTION IN CIRCULATING FLUIDIZED-BEDS

    SciTech Connect

    Paul Cizmas

    2003-12-01

    The report summarizes the objectives, tasks and accomplishments of this research project. The report presents the following program deliverables: (1) database generation using MFIX code, (2) development and implementation of an algorithm to calculate the proper orthogonal decomposition (POD) basis functions, (3) visualization tools for reconstructing simulated data, (4) algorithms for reducing the partial differential equations to ordinary differential equations, (5) visualization tools for Galerkin ordinary differential equations, (6) verification and validation of the code by comparing POD and conventional solution results, and (7) development of POD strategy for best energy cut-off values.

  1. Integrated process for converting sulfur-containing fuels to low sulfur combustible gas

    SciTech Connect

    Moss, G.

    1981-03-10

    Sulfur-containing fuels are converted to substantially sulfurfree combustible gas in an integrated process involving part combustion in a dense phase fluidized conversion bed of particles comprising alkaline earth metal oxides. An oxygen-containing gas is passed into the base of the bed to maintain a relatively high fuel/air ratio. Sulfur is chemically fixed in the particles by reaction to form alkaline earth metal sulfide. Particles containing alkaline earth metal sulfide are circulated from one region of the conversion bed to one region of a dense phase fluidized regeneration bed operated at a higher temperature and fluidized by passing into the base thereof an oxygen-containing gas which exothermically regenerates chemically active alkaline earth metal oxide from the sulfide liberating gases which have a low oxygen content and a relatively high content of sulfur moieties (e.g. SO2). Hot particles are circulated from a second region of the regeneration bed to a second region of the conversion bed for use in fixing further quantities of sulfur from sulfur-containing fuel. Both beds contain a high molar proportion of unreacted alkaline earth metal oxide thereby imparting high sulfur-retaining capability to the conversion bed, and the beds interact cooperatively with each other at least in that particles entering the regeneration bed moderate temperatures therein and particles entering the conversion bed add heat thereto thereby reducing the fuel requirement for maintaining the conversion bed temperature.

  2. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  3. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)

    SciTech Connect

    John L. Marion; Nsakala ya Nsakala

    2003-11-09

    The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

  4. Voidage and pressure profile characteristics of sand-iron ore-coal-FCC single-particle systems in the riser of a pilot plant circulating fluidized bed

    SciTech Connect

    Das, M.; Meikap, B.C.; Saha, R.K.

    2008-06-15

    Hydrodynamic behaviors of single system of particles were investigated in a circulating fluidized bed (CFB) unit. Particles belonging to Geldart groups A and B like sand of various sizes (90, 300, 417, 522, 599, and 622 mu m), FCC catalyst (120 mu m), iron ore (166 and 140 {mu} m), and coal (335 and 168 {mu} m) were used to study the hydrodynamic characteristics. Superficial air velocity used in the present study ranged between 2.01 and 4.681 m/s and corresponding mass fluxes were 12.5-50 kg/(m{sup 2} s). A CFB needs the creation of some special hydrodynamic conditions, namely a certain combination of superficial gas velocity, solids circulation rate, particle diameter, density of particle, etc. which can give rise to a state wherein the solid particles are subjected to an upward velocity greater than the terminal or free fall velocity of the majority of the individual particles. The hydrodynamics of the bed was investigated in depth and theoretical analysis is presented to support the findings. Based on gas-solid momentum balance in the riser, a distinction between apparent and real voidage has been made. The effects of acceleration and friction on the real voidage have been estimated. Results indicated a 0.995 voidage for higher superficial gas velocity of 4.681. m/s.

  5. Analysis/control of in-bed tube erosion phenomena in the Fluidized Bed Combustion (FBC) System. Technical progress report No. 5

    SciTech Connect

    Lee, S.W.

    1994-01-01

    This technical report summarizes the research work performed and progress achieved during the period of October 1, 1993 to December 31, 1993. Measurement of particle-tube collision frequency was conducted by an electrostatic impact probe in the bench-scale FBC model. Two series of tests were conducted, in one test the probe traversed vertically along the bed axis. The other test conducted that the probe traversed from the center position to the quarter point of bed diagonal and the wall region. The specific weight loss at different tube circumferential was examined to understand the effect of superficial fluidizing velocity. The bottom section of the test tube was found to be more serious erosion than that of the top section. In order to study the effect of tube orientations on in-bed tube erosion, the sample tubes along with four different angles were used. The sample tubes were also placed horizontally and vertically at the center, and vertically near the wall to quantify the effect of the tube location.

  6. A Contribution to the Problem of Initiation of a Combustion Source in an Oil-Saturated Bed

    NASA Astrophysics Data System (ADS)

    Koznacheev, I. A.; Dobrego, K. V.

    2013-11-01

    The problem on in-situ self-ignition of an oil-saturated bed under the conditions of forced filtration of an oxygen-containing gas has been solved with analytical and numerical methods with account of the burnout of a deficient gas component. The influence of the burnout of this component and of convective removal of heat from the bed on the time of its self-ignition has been determined. Recommendations for the optimum regime of initiation of the self-ignition of the bed with account of variation of the blast flow rate and the oxygen content have been given.

  7. Analysis of cyclic combustion of the coal-water suspension

    NASA Astrophysics Data System (ADS)

    Kijo-Kleczkowska, Agnieszka

    2011-04-01

    Combustion technology of the coal-water suspension creates a number of new possibilities to organize the combustion process fulfilling contemporary requirements, e.g. in the environment protection. Therefore the in-depth analysis is necessary to examine the technical application of coal as a fuel in the form of suspension. The research undertakes the complex investigations of the continuous coal-water suspension as well as cyclic combustion. The cyclic nature of fuel combustion results from the movement of the loose material in the flow contour of the circulating fluidized bed (CFB): combustion chamber, cyclone and downcomer. The experimental results proved that the cyclic change of oxygen concentration around fuel, led to the vital change of both combustion mechanisms and combustion kinetics. The mathematical model of the process of fuel combustion has been presented. Its original concept is based on the allowance for cyclic changes of concentrations of oxygen around the fuel. It enables the prognosis for change of the surface and the centre temperatures as well as mass loss of the fuel during combustion in air, in the fluidized bed and during the cyclic combustion.

  8. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    SciTech Connect

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  9. Three-zonal engineering method of heat calculation for fluidized bed furnaces based on data on commercial investigations of heat generation distribution during biomass combustion

    NASA Astrophysics Data System (ADS)

    Litun, D. S.; Ryabov, G. A.

    2016-02-01

    A three-zonal method of heat calculation of furnaces for combustion of biomass and low-caloric fuel in the fluidized bed is described. The method is based on equations of thermal and material balances that account for heat generation by fuel in the zone, heat-and-mass transfer heat exchange between the furnace media and surfaces that bound the zone, and heat-and-mass transfer between furnace zones. The calculation procedure for heat generation by fuel in the fluidized bed (FB) using the heat generation portion by the fuel is proposed. Based on commercial investigations, the main factors that affect the average temperature in the FB and the portion of fuel heat that is released in the FB are determined. Results of commercial investigations showed that the airflow coefficient in the FB should be recognized as the main operation parameter that affects the average temperature in the FB and, consequently, heat generation in the FB. The gas flow rate in the FB can be marked out as the second factor that affects the consumption degree of oxidizer supplied in the FB. Commercial investigations revealed that mixing is affected by the gas flow rate in the FB and the bed material particle size, which may be changed during the boiler operation because of the agglomeration of particles of sand and ash. The calculation processing of commercial investigations on a KM-75-40M boiler of a CHP-3 of an Arkhangelsk Pulp and Paper Mill (APPM), which was carried out using the inverse problem procedure by means of a developed computer program, determined the range of the fuel heat release share in the FB, which was 0.26-0.45 at an excess air factor of 0.59-0.93 in the bed, and the heat release share in the maximum temperature zone in the total heat release in the superbed space. The heat release share in the bed is determined as an approximating function of the excess air factor in the bed and the fluidization number. The research results can be used during designing boilers with the

  10. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. Technical progress report No. 4, [July 1, 1993--September 30, 1993

    SciTech Connect

    Lee, Seong W.

    1993-11-01

    This technical report Summarizes the research work performed and progress achieved during the period of July 1, 1993 to September 30, 1993. Design and fabrication of the electrostatic impact probe were continued for measuring particle-tube collision frequency in the bench-scale FBC model. To verify the working principle of the electrostatic impact probe and to establish the reliability of probe readings, several readings were performed. The number of impact particles can be conveniently read from the frequency counter by the impact probe, which was reproducible and consistent data. The erosion measurement was conducted under different superficial fluidizing velocity in the bench-scale FBC model. Results of specific weight loss versus excess air velocity (air velocity above the minimum fluidization velocity) show the dominant effect of the fluidizing velocity on the tube erosion. The project has been progressing well. Measurement of the particle-tube collision frequency will be conducted under different tube location by the electrostatic impact probe. Instrumentation for the measurement of the in-bed tube erosion will be continued under various operating conditions. In addition to that, the relationship between the results of particle-tube collision frequency and the measurement of in-bed tube erosion will be predicted.

  11. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOEpatents

    Provol, Steve J.; Russell, David B.; Isaksson, Matti J.

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  12. Second-generation pressurized fluidized-bed combustion plant: Conceptual design and optimization of a second-generation PFB combustion plant. Phase 2, Annual report, October 1991--September 1992

    SciTech Connect

    Robertson, A.; Domeracki, W.; Newby, R.; Rehmat, A.; Horazak, D.

    1992-10-01

    After many years of experimental testing and development work, coal-fired pressurized fluidized bed (PFB) combustion combined-cycle power plants are moving toward reality. Under the US Department of Energy`s Clean Coal Technology Program, a 70-MWe PFB combustion retrofit, utilizing a 1525{degrees}F gas turbine inlet temperature, has been built and operated as a demonstration plant at the American Electric Power Company`s Tidd Plant in Brilliant, Ohio. As PFB combustion technology moves closer and closer to commercialization, interest is turning toward the development of an even more efficient and more cost-effective PFB combustion plant. The targeted goals of this ``second-generation`` plant are a 45-percent efficiency and a cost of electricity (COE) that is at least 20 percent lower than the COE of a conventional pulverized-coal (PC)-fired plant with stack gas scrubbing. In addition, plant emissions should be within New Source Performance Standards (NSPS) and the plant should have high availability, be able to burn different ranks of coal, and incorporate modular construction technologies. In response to this need, a team of companies led by Foster Wheeler Development Corporation (FWDC). The key components in the proposed second-generation plant are the carbonizer, CPFBC, ceramic cross-flow filter, and topping combustor. Unfortunately, none of these components has been operated at proposed plant operating conditions, and experimental tests must be conducted to explore/determine their performance throughout the proposed plant operating envelope. The major thrust of Phase 2 is to design, construct, test, and evaluate the performance of the key components of the proposed plant.

  13. Continuing development of regenerable sorbents for fluidized-bed combustion. Semiannual technical progress report No. 2, April 1-September 30, 1980

    SciTech Connect

    Kalfadelis, C D

    1980-01-01

    Our efforts were directed primarily to preparation for and/the initial operation of the laboratory-scale hot fluidized bed test system (LSHFB). The initial test sequence in the LSHFB system was performed with a fixed-bed of 100 grams of barium titanate synthetic sorbent. The sorbent bed was alternately sulfated and regenerated five times. Sulfation was accomplished at 900/sup 0/C, with a synthetic flue gas mixture comprising 10.1% CO/sub 2/, 4.95% O/sub 2/, 0.2435% SO/sub 2/ and 84.7% N/sub 2/. Regeneration was performed at 1025/sup 0/C with a gas containing 8.0% CO and 92.0% N/sub 2/. After an initial drop in sulfation performance after the first sulfation/regeneration cycle, performance held steady, or was shown to be improving, during the succeeding four cycles. Although the initial operation of this system proceeded relatively smoothly, the reactor was found to have been irreparably damaged by the end of the initial test sequence. A new reactor was subsequently designed, fabricated, and installed in the unit. Concurrently, sorbent pellet preparation by extrusion was investigated in the Catalyst Preparation Facility at the Baton Rouge Laboratory of Exxon Research and Engineering Company. Preparation of sorbent pellets for use in the LSHFB operation was continued on a laboratory-scale at Linden throughout the reporting period. Cost and time estimates were prepared for operation of the bench-scale fluidized bed coal combustion and regeneration facilities, including preparation of the requisite volumes of synthetic sorbent pellets needed for that program.

  14. Application of an internally circulating fluidized bed for windowed solar chemical reactor with direct irradiation of reacting particles - article no. 014504

    SciTech Connect

    Kodama, T.; Enomoto, S.I.; Hatamachi, T.; Gokon, N.

    2008-02-15

    Solar thermochemical processes require the development of a high-temperature solar reactor operating at 1000-1500{sup o}C, such as solar gasification of coal and the thermal reduction of metal oxides as part of a two-step water splitting cycle. Here, we propose to apply 'an internally circulating fluidized bed' for a windowed solar chemical reactor in which reacting particles are directly illuminated. The prototype reactor was constructed in a laboratory scale and demonstrated on CO{sub 2} gasification of coal coke using solar-simulated, concentrated visible light from a sun simulator as the energy source. About 12% of the maximum chemical storage efficiency was obtained by the solar-simulated gasification of the coke.

  15. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-10-14

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.

  16. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Curtis Jawdy

    2000-10-09

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

  17. An experimental study of the hydrodynamics and cluster formation in a circulating fluidized-bed riser. Semi-annual report, July 1, 1992--December 31, 1992

    SciTech Connect

    Gautam, M.; Jurewicz, J.T.; Johnson, E.K.; Heping, Y.

    1993-01-01

    A novel gas-solid flow measuring technique is being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The second objective, that of making detailed measurements of gas and solid phases in the rises of a cold CFB model to investigate the phenomena of clusters and streamers for different bed operating parameters is being accomplished in the current year. The differential pressure fluctuations were in order to study the solids cluster formation. Of the several factors which lead to differential pressure fluctuations, the solids cluster formation in CFB riser is by far the most important of all. Simultaneously, theoretical formulation of the two-phase flow in the CFB riser was initiated. The concept of entropy maximization is being applied to explain the hydrodynamics inside the riser. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  18. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-07-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

  19. Pilot-scale experience with biological nutrient removal and biomass yield reduction in a liquid-solid circulating fluidized bed bioreactor.

    PubMed

    Chowdhury, Nabin; Nakhla, George; Zhu, Jesse; Islam, Mohammad

    2010-01-01

    A pilot-scale liquid-solid circulating fluidized bed (LSCFB) bioreactor was developed at the Adelaide Pollution Control Plant, London, Ontario, Canada, to study its commercial viability for biological nutrient removal. Lava rock particles of 600 microm were used as a biomass carrier media. The LSCFB removed approximately 90% organic, 80% nitrogen, and 70% phosphorus at loading rates of 4.12 kg COD/m3 x d, 0.26 kg N/m3 x d, and 0.052 kg P/m3 x d, and an empty bed contact time of 1.5 hours. Effluent characterized by < 1.0 mg NH4-N/L, < 5.0 mg NO3-N/ L, < 1.0 mg PO4-P/L, < 10 mg TN/L, < 10 mg SBOD/L, and 10 to 15 mg volatile suspended solids (VSS)/L can easily meet the criteria for nonpotable reuse of treated wastewater. The system removed nutrients without using any chemicals, and the secondary clarifier removed suspended solids removal without chemicals. A significant reduction (approximately 75%) in biomass yield to 0.12 to 0.16 g VSS/g chemical oxygen demand (COD) was observed, primarily because of long biological solids retention time (SRT) of 20 to 39 days and a combination of anoxic and aerobic COD consumption. PMID:20942332

  20. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  1. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  2. Northern States Power Company (NSP) Black Dog generating plant - Unit 2 emission reduction, capacity increase and life extension through atmospheric fluidized bed combustion (AFBC) retrofit

    SciTech Connect

    Jenness, B.L.; Rosendahl, S.M.; Gamble, R.L.

    1985-08-01

    The authors report on progress to date of the atmospheric fluidized-bed combustion (AFBC) boiler retrofit at the Black Dog Unit 2 plant of the Northern States Power Company. Construction began in September 1984 after the completion of technical and economic feasibility studies, and initial operation is scheduled for the second quarter of 1986. The project features the largest AFBC boiler to date, a 40 MW capacity regain/upgrade, and 25-year extension of unit life, low leakage regenerative air preheater design, electrostatic precipitator performance improvement, alternate fuel co-firing capacity, and reduced emission on a per MW basis. The authors describe the management and engineering developments associated with the project. 12 figures, 4 tables.

  3. Identification of data gaps found during the development of a zero-order model for a fluidized-bed retort/combustion process

    SciTech Connect

    Ammer, J.R.

    1986-01-01

    This technical note (TN) reports on the development of a zero-order ASPEN (Advanced System for Process Engineering) model for the fluidized-bed retort/combustion of an eastern oil shale. The objective of the work described was to identify data needs and to create a structure for future, more definitive models. New Albany shale was the initial reference eastern shale at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC). A literature search on this shale was conducted to find the physical property data required for the ASPEN model. This TN discusses the types of missing or incomplete data, the process being modeled, and how process variables are affected by varying input parameters. The TN also presents recommendations for increasing the reliability of the simulation. 12 refs., 3 figs., 5 tabs.

  4. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. Technical progress report No. 12

    SciTech Connect

    Lee, S.W.

    1995-10-01

    This technical report summarizes the research work performed and progress achieved during the period of July 1, 1995 to October 30, 1995. The characteristics of resistant coatings were determined and related to metal wastage of in-bed tubes in FBC under various laboratory test conditions, The tests were conducted at high impact velocity, 30 m/s, and short exposure time (4 hours) to minimize oxidation of surrounding surface specimens. No oxidation layer founded on the worn surfaces of AISI 1018 carbon steel, The eroded surfaces and cross sections of coatings tested at high velocity were investigated, The surfaces of coating specimens were eroded through a combined mechanism of brittle and ductile modes, These mechanical properties of materials are strongly dependent on the composition and microstate of materials, rather than to their hardness, For high velocity testing, all of the coatings exhibited {open_quotes}brittle behavior{close_quotes}, i.e., the erosion rate at shallow angles was higher than at steep angles and maximum erosion rate at impact angle of 90{degrees}. Tests will be continued and compared with erosion test results for different thermal sprayed coatings.

  5. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. Technical progress report No. 3, [April 1, 1993--June 30, 1993

    SciTech Connect

    Lee, Seong W.

    1993-07-01

    This technical report summarizes the research work performed and progress achieved during the period of during the period of April 1, 1993 to June 30, 1993. The erosion test was conducted in the bench-scale FBC model along with the preparation of the test particles/tube specimens. The effect of the tube-to-distributor (T-to-D) clearance was discussed on the tube specific weight loss for low, medium, and high superficial velocities. Electrostatic impact probes for measuring the particle-surface collision frequency were designed to verify the some of the measurement and to identify the primary erosion points. The erosion models were briefly to understand the phenomena of in-bed erosion. The project has been progressing well. Instrumentation for the erosion-measuring will be continued: to measure the tube weight loss under different operating conditions. Development of the electrostatic probes will be continued and implemented for measuring the particle-tube collision frequency in the bench-scale FBC model.

  6. Anaerobic degradation of purified terephthalic acid wastewater using a novel, rapid mass-transfer circulating fluidized bed.

    PubMed

    Feng, Yangyang; Lu, Beibei; Jiang, Yu; Chen, Yinwen; Shen, Shubao

    2012-01-01

    The anaerobic treatability of purified terephthalic acid (PTA) wastewater in a novel, rapid mass-transfer fluidized bed reactor using brick particles as porous carrier materials was investigated. The reactor operation was stable after a short 34 day start-up period, with chemical oxygen demand (COD) removal efficiency between 65 and 75%, terephthalate (TA) removal efficiency between 60% and 70%, and system organic loading rate (OLR) increasing from 7.37 to 18.52 kg COD/m(3) d. The results demonstrate that the reactor is very efficient, and requires a low hydraulic retention time (HRT) of 8 h to remove both TA and COD from the high-concentration PTA wastewater. The system also has high resistance capacity to varied OLR. PMID:22592469

  7. System design study to reduce capital and operating costs and bench-scale testing of a circulating-bed AFB [atmospheric pressure fluidized bed] advanced concept: Phase 1, Design, cost estimate, and cost comparison for MWK circulating fluid bed combustor and oil-fired boilers: Final report

    SciTech Connect

    Sadhukhan, P.; Lin, Y.Y.; Hsiao, K.H.; Richards, S.R.; Wagner, C.; Settle, W.H.; Bryant, J.; Gorman, W.A.; Newlin, T.; Shires, P.J.; James, J.L.

    1986-06-01

    The Department of Energy (DOE) issued an RFP for a "System Design Study to Reduce Capital and Operating Cost and Bench Scale Testing of a Circulating-Bed AFB Advanced Concept." The design and cost study of a 150,000 pounds per hour steam boiler comprised Phase-I of the RFP. The objective was to produce a design with improved performance and reduced capital and operating costs compared with conventional atmospheric pressure fluidized bed (AFB) boilers. The final result was a significant reduction of capital cost - 36% below the lowest AFB plant cost. The steam cost was 24% below the corresponding cost for the AFB process. In June 1985, DOE issued a Change Order (C001) to the Phase-I study in order for MWK to design and estimate the cost for a scaled-down coal-fired (Illinois No. 6, 3% S) CFBC plant producing low pressure and low temperature steam (75,000lbs/hr, 200 psig, 387{degree}F), and to compare the costs -capital and steam costs -with those for a packaged high sulfur (3%) fuel oil-fired boiler, which is of the same capacity and requires SO{sub 2} removal. An additional objective was to estimate the cost for a No. 2 fuel oil-fired boiler that does not need any SO{sub 2} scrubber. An evaluation of the sensitivity of the steam cost to the oil-fired boiler capital cost and to fuel prices was also to be undertaken. The cost of steam produced by the No. 6 fuel oil boiler is 52% higher than the cost for CFBC, and the corresponding cost for the No. 2 fuel oil plant is 43% higher. Again, a large advantage for the CFBC comes from the low price of coal relative to that of oil. The large cost advantage of steam calculated for the MWK CFBC using coal as a fuel over the oil-fired boilers would remain even in the worst case scenario of a declining oil price accompanied by a steady coal price. 7 refs., 25 figs., 34 tabs.

  8. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, March 1--May 31, 1998

    SciTech Connect

    1998-09-01

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion, FBC, ash). Success will be measured in terms of technical feasibility of the approach, cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). Phase 1 of the project was completed in September 1995 and was concerned with the development of the grout and a series of predictive models. These models were verified through the Phase 2 field phase and will be further verified in the large scale field demonstration of Phase 3. The verification will allow the results to be packaged in such a way that the technology can be easily adapted to different site conditions. Phase 2 was successfully completed with 1,000 cubic yards of grout being injected into Anker Energy`s Fairfax mine. The grout flowed over 600 feet from a single injection borehole. The grout achieved a compressive strength of over 1,000 psi (twice the level that is needed to guarantee subsidence control). Phase 3 is to take 26 months and will be a full scale test at Anker`s eleven acre Longridge mine site.

  9. Characterisation of polycyclic aromatic hydrocarbons in flue gas and residues of a full scale fluidized bed combustor combusting non-hazardous industrial waste.

    PubMed

    Van Caneghem, J; Vandecasteele, C

    2014-11-01

    This paper studies the fate of PAHs in full scale incinerators by analysing the concentration of the 16 EPA-PAHs in both the input waste and all the outputs of a full scale Fluidized Bed Combustor (FBC). Of the analysed waste inputs i.e. Waste Water Treatment (WWT) sludge, Refuse Derived Fuel (RDF) and Automotive Shredder Residue (ASR), RDF and ASR were the main PAH sources, with phenanthrene, fluoranthene and pyrene being the most important PAHs. In the flue gas sampled at the stack, naphthalene was the only predominant PAH, indicating that the PAHs in FBC's combustion gas were newly formed and did not remain from the input waste. Of the other outputs, the boiler and fly ash contained no detectable levels of PAHs, whereas the flue gas cleaning residue contained only low concentrations of naphthalene, probably adsorbed from the flue gas. The PAH fingerprint of the bottom ash corresponded rather well to the PAH fingerprint of the RDF and ASR, indicating that the PAHs in this output, in contrast to the other outputs, were mainly remainders from the PAHs in the waste inputs. A PAH mass balance showed that the total PAH input/output ratio of the FBC ranged from about 100 to about 2600 depending on the waste input composition and the obtained combustion conditions. In all cases, the FBC was clearly a net PAH sink. PMID:25002370

  10. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC). Technical progress report No. 1, [October 1, 1993--December 31, 1993

    SciTech Connect

    Lee, S.W.

    1994-01-01

    This technical report summarizes the research work performed and progress achieved during the period of October 1, 1993 to December 31, 1993. The newly-concept of exploratory fluidized bed based on the integrating the advantages of fluidized bed combustion (FBC) and cyclonic combustor was designed to study the gas and particle flows and to develop control techniques for gas-particle flow in the FBC. The test chamber was made of transparent acrylic tube with 6in. I.D. to facilitate visual observation. Eight nozzles (s) were made at the freeboard in different levels to provide secondary air, which will generate strong swirling flow field. The progress of this project has been on schedule. Design and fabrication of the exploratory cold test model will be continued with an arrangement of the auxiliary system. After completion of the design/fabrication of the system, the system test will be conducted for the overall system. Instrumentations for the gas/particle flow will be arranged with the auxiliary system. The electrostatic impact probe and associated signal processing units will be designed and fabricated for measuring particle mass flux.

  11. Hydrodynamics and energy consumption studies in a three-phase liquid circulating three-phase fluid bed contactor

    SciTech Connect

    Rusumdar, Ahmad J; Abuthalib, A.; Mohan, Vaka Murali; Srinivasa Kumar, C.; Sujatha, V.; Rajendra Prasad, P.

    2009-07-15

    The hydrodynamics and energy consumption have been studied in a cold flow, bubbling and turbulent, pressurized gas-liquid-solid three-phase fluidized bed (0.15 m ID x 1 m height) with concurrent gas-liquid up flow is proposed with the intention of increasing the gas hold up. The hydrodynamic behaviour is described and characterised by some specific gas and liquid velocities. Particles are easily fluidized and can be uniformly distributed over the whole height of the column. The effect of parameters like liquid flow rate, gas flow rate, particle loading, particle size, and solid density on gas hold up and effect of gas flow rate, solid density and particle size on solid hold up, energy consumption and minimum fluidization velocity has been studied. At the elevated pressures a superior method for better prediction of minimum fluidization velocity and terminal settling velocities has been adopted. The results have been interpreted with Bernoulli's theorem and Richardson-Zaki equation. Based on the assumption of the gas and liquid as a pretend fluid, a simplification has been made to predict the particle terminal settling velocities. The Richardson-Zaki parameter n' was compared with Renzo's results. A correlation has been proposed with the experimental results for the three-phase fluidization. (author)

  12. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed

    SciTech Connect

    Helena Lopes, M.; Abelha, P.; Lapa, N.; Oliveira, J.S.; Cabrita, I.; Gulyurtlu, I

    2003-07-01

    Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.

  13. Measurement of Gas Velocities in the Presence of Solids in the Riser of a Cold Flow Circulating Fluidized Bed

    SciTech Connect

    Spenik, J.; Ludlow, J.C.; Compston, R.; Breault, R.W.

    2007-01-01

    The local gas velocity and the intensity of the gas turbulence in a gas/solid flow are a required measurement in validating the gas and solids flow structure predicted by computational fluid dynamic (CFD) models in fluid bed and transport reactors. The high concentration and velocities of solids, however, make the use of traditional gas velocity measurement devices such as pitot tubes, hot wire anemometers and other such devices difficult. A method of determining these velocities has been devised at the National Energy Technology Laboratory employing tracer gas. The technique developed measures the time average local axial velocity gas component of a gas/solid flow using an injected tracer gas which induces changes in the heat transfer characteristics of the gas mixture. A small amount of helium is injected upstream a known distance from a self-heated thermistor. The thermistor, protected from the solids by means of a filter, is exposed to gases that are continuously extracted from the flow. Changes in the convective heat transfer characteristics of the gas are indicated by voltage variations across a Wheatstone bridge. When pulsed injections of helium are introduced to the riser flow the change in convective heat transfer coefficient of the gas can be rapidly and accurately determined with this instrument. By knowing the separation distance between the helium injection point and the thermistor extraction location as well as the time delay between injection and detection, the gas velocity can easily be calculated. Variations in the measured gas velocities also allow the turbulence intensity of the gas to be estimated.

  14. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation.

    PubMed

    Jesús, A Gómez-De; Romano-Baez, F J; Leyva-Amezcua, L; Juárez-Ramírez, C; Ruiz-Ordaz, N; Galíndez-Mayer, J

    2009-01-30

    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A(D)/A(R) ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values epsilon(G), and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ( approximately 95%), and by the stoichiometric release of chloride ions from the halogenated compound ( approximately 80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions). PMID:18539387

  15. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect

    Marashdeh, Qussai

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  16. The combustion of large particles of char in bubbling fluidized beds: The dependence of Sherwood number and the rate of burning on particle diameter

    SciTech Connect

    Dennis, J.S.; Hayhurst, A.N.; Scott, S.A.

    2006-11-15

    burning char particle; the implication of this correlation is that a completely new picture emerges for the combustion of a char particle in a hot fluidized bed. (author)

  17. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect

    Abbasian, J.

    1996-03-01

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite, sulfided in the fluidized-bed reactor during last quarter, were analyzed. The extent of sulfidation in these samples was in the range of 20 to 50%, which represent carbonizer discharge material at different operating conditions. The high pressure thermogravimetric analyzer (BPTGA) unit has been modified and a new pressure control system was installed to eliminate pressure fluctuation during the sulfation tests.

  18. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, September 1--November 30, 1994

    SciTech Connect

    Abbasian, J.; Hill, A.; Wangerow, J.R.

    1994-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite were sulfided in the fluidized-bed reactor. These tests were conducted in both calcining and non-calcining operating conditions to produce partially-sulfided sorbents containing calcium oxide and calcium carbonate, respectively. These samples which represent the carbonizer discharge material, will be used as the feed material in the sulfation tests to be conducted in the HPTGA unit during the next quarter.

  19. Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion

    SciTech Connect

    DeLallo, M.R.; Zaharchuk, R.; Reuther, R.B.; Bonk, D.L.

    1996-09-01

    This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

  20. Circulating fluidized bed gasification of low rank coal: Influence of O2/C molar ratio on gasification performance and sulphur transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Haixia; Zhang, Yukui; Zhu, Zhiping; Lu, Qinggang

    2016-08-01

    To promote the utilization efficiency of coal resources, and to assist with the control of sulphur during gasification and/or downstream processes, it is essential to gain basic knowledge of sulphur transformation associated with gasification performance. In this research we investigated the influence of O2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal, and the sulphur transformation mechanism was also discussed. Experiments were performed in a circulating fluidized bed gasifier with O2/C molar ratio ranging from 0.39 to 0.78 mol/mol. The results showed that increasing the O2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65% to 91.92%, and increase sulphur release ratio from 29.66% to 63.11%. The increase of O2/C molar ratio favors the formation of H2S, and also favors the retained sulphur transforming to more stable forms. Due to the reducing conditions of coal gasification, H2S is the main form of the released sulphur, which could be formed by decomposition of pyrite and by secondary reactions. Bottom char shows lower sulphur content than fly ash, and mainly exist as sulphates. X-ray photoelectron spectroscopy (XPS) measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char, and the change is more obvious for bottom char. During CFB gasification process, bigger char particles circulate in the system and have longer residence time for further reaction, which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.