Science.gov

Sample records for circulation simulations applications

  1. Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations

    NASA Technical Reports Server (NTRS)

    Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske

    2003-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the

  2. The Circulation Pattern in Simulated Contact Binaries

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Frank, J.; Tohline, J. E.

    2006-06-01

    We present a three-dimensional hydrodynamical simulation of an initially symmetric (equal mass) binary where both components are marginally in contact. The simulation evolves the binary through approximately 150 orbital periods and within the first 20 orbits, a global velocity field is established that carries material between both components. In the equatorial plane, the flow is along a figure eight pattern with streams of material sliding past one another in the neighborhood of the inner Lagrange point. For our chosen equation of state, mass transfer is ultimately unstable in this binary though the growth time is long compared to the orbital period. We are therefore able to observe that the circulation pattern, once established, is quite close to steady state. We explore the role that similar steady state flows may play in real contact systems.

  3. Application of a Coupled Multiscale Atmospheric-Land Surface Model to Simulate the Snow Circulation in a Mountain Basin

    NASA Astrophysics Data System (ADS)

    Herrera, E.; Pomeroy, J.; Pietroniro, A.

    2009-05-01

    Snow cover spatial variability and snowmelt runoff are greatly influenced by the snow advected due to the wind- flow in the atmospheric boundary layer. Typically this has been accomplished by considering the snow as a subgrid scale problem in the atmospheric models. However, this subgrid scale approach can not be sufficient to explain the snow dynamics. Therefore a multiscale strategy where the hydrological, climatological, meteorological and physiographic conditions of a basin are related should improve the understanding of snow dynamics. This methodology was developed coupling the Global Environmental Multiscale Limited Area Model (GEM-LAM) with the Cold Regions Hydrological Model (CRHM). The GEM-LAM was used on a one-way nesting configuration to simulate the atmospheric-land fields at 100m of resolution with the Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil scheme. The CRHM is used as a snow transport model at the hydrometeorological stations located in the basin. The case of study is the 4th November 2007 at Marmot Creek (50° 57' N, 115° 10' W), Alberta, Canada. This strategy has proved to be a physics based procedure to describe the snow dynamics without interpolation methods.

  4. Numerical simulation of the world ocean circulation

    NASA Technical Reports Server (NTRS)

    Takano, K.; Mintz, Y.; Han, Y. J.

    1973-01-01

    A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.

  5. Anthropogenic forcing on the Hadley circulation in CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Tao, Lijun; Hu, Yongyun; Liu, Jiping

    2016-05-01

    Poleward expansion of the Hadley circulation has been an important topic in climate change studies in the past few years, and one of the critically important issues is how it is related to anthropogenic forcings. Using simulations from the coupled model intercomparison projection phase 5 (CMIP5), we study influences of anthropogenic forcings on the width and strength of the Hadley circulation. It is found that significant poleward expansion of the Hadley circulation can be reproduced in CMIP5 historical all-forcing simulations although the magnitude of trends is much weaker than observations. Simulations with individual forcings demonstrate that among three major types of anthropogenic forcings, increasing greenhouse gases (GHGs) and stratospheric ozone depletion all cause poleward expansion of the Hadley circulation, whereas anthropogenic aerosols do not have significant influences on the Hadley circulation. Increasing GHGs cause significant poleward expansion in both hemispheres, with the largest widening of the northern cell in boreal autumn. Stratospheric ozone depletion forces significant poleward expansion of the Hadley circulation for the southern cell in austral spring and summer and for the northern cell in boreal spring. In CMIP5 projection simulations for the twenty-first century, the magnitude of poleward expansion of the Hadley circulation increases with GHG forcing. On the other hand, ozone recovery competes with increasing GHGs in determining the width of the Hadley circulation, especially in austral summer. In both historical and projection simulations, the strength of the Hadley circulation shows significant weakening in winter in both hemispheres.

  6. Thermohaline circulation and its box models simulation

    NASA Astrophysics Data System (ADS)

    Bazyura, Kateryna; Polonsky, Alexander; Sannikov, Viktor

    2014-05-01

    Ocean Thermochaline circulation (THC) is the part of large-scale World Ocean circulation and one of the main climate system components. It is generated by global meridional density gradients, which are controlled by surface heat and freshwater fluxes. THC regulates climate variability on different timescales (from decades to thousands years) [Stocker (2000), Clark (2002)]. Study of paleoclimatic evidences of abrupt and dramatic changes in ocean-atmosphere system in the past (such as, Dansgaard-Oeschger and Heinrich events or Younger Dryas, see e.g., [Rahmstorf (2002), Alley & Clark(1999)]) shows that these events are connected with THC regimes. At different times during last 120,000 years, three THC modes have prevailed in the Atlantic. They can be labeled as stadial, interstadial and Heinrich modes or as cold, warm and off mode. THC collapse (or thermohaline catastrophe) can be one of the consequences of global warming (including modern anthropogenic climate changes occurring at the moment). The ideas underlying different box-model studies, possibility of thermochaline catastrophe in present and past are discussed in this presentation. Response of generalized four box model of North Atlantic thermohaline circulation [developing the model of Griffies & Tzippermann (1995)] on periodic, stochastic and linear forcing is studied in details. To estimate climatic parameters of the box model we used monthly salinity and temperature data of ECMWF operational Ocean Reanalysis System 3 (ORA-S3) and data from atmospheric NCEP/NCAR reanalysis on precipitation, and heat fluxes for 1959-2011. Mean values, amplitude of seasonal cycle, amplitudes and periods of typical interdecadal oscillations, white noise level, linear trend coefficients and their significance level were estimated for every hydrophysical parameter. In response to intense freshwater or heat forcing, THC regime can change resulting in thermohaline catastrophe. We analyze relevant thresholds of external forcing in

  7. Strengthening of the Walker circulation under globalwarming in an aqua-planet general circulation model simulation

    NASA Astrophysics Data System (ADS)

    Li, Tim; Zhang, Lei; Murakami, Hiroyuki

    2015-11-01

    Most climate models project a weakening of theWalker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase, which leads to a decrease in ascending motion. Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator, we find that the Walker circulation is strengthened under a uniform 2-K SST warming, even though the global mean rainfall-moisture relationship remains the same. Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere. As a result, a "double-cell" circulation change pattern with a clockwise (anti-clockwise) circulation anomaly in the upper (lower) troposphere forms, and the upper tropospheric circulation change dominates. The mechanism for the formation of the "double cell" circulation pattern is attributed to a larger (smaller) rate of increase of diabatic heating than static stability in the upper (lower) troposphere. The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument.

  8. Relations between winter precipitation and atmospheric circulation simulated by the Geophysical Fluid Dynamics Laboratory general circulation model

    USGS Publications Warehouse

    McCabe, G.J., Jr.; Dettinger, M.D.

    1995-01-01

    General circulation model (GCM) simulations of atmospheric circulation are more reliable than GCM simulations of temperature and precipitation. In this study, temporal correlations between 700 hPa height anomalies simulated winter precipitation at eight locations in the conterminous United States are compared with corresponding correlations in observations. The objectives are to 1) characterize the relations between atmospheric circulation and winter precipitation simulated by the GFDL, GCM for selected locations in the conterminous USA, ii) determine whether these relations are similar to those found in observations of the actual climate system, and iii) determine if GFDL-simulated precipitation is forced by the same circulation patterns as in the real atmosphere. -from Authors

  9. Simulations of the Amazon basin circulation with a regional model

    SciTech Connect

    Horel, J.D.; Pechmann, J.B.; Hahmann, A.N.; Geisler, J.E. )

    1994-01-01

    Numerical simulations of the atmospheric circulation over tropical South America are performed with a regional model developed at the Pennsylvania State University and the National Center for Atmospheric Research and commonly referred to as the MM4. The authors focus on a 5-day period beginning at 1200 UTC 27 February 1990. The observed circulation is evaluated in terms of initialized analysis of standard meterological variables from the National Meteorological Center, outgoing longwave radiation from polar orbiting satellites, and surface observations. The NMC analysis are also used to specify the initial conditions, as well as provide the lateral boundary conditions, for the 5-day simulations. The impacts on the simulated circulation of major changes to the standard MM4 are assessed. When an improved treatment of radiative processes is included, excessive rainfall develops over then Andes Mountains and over the Amazon Basin. The excessive rainfall is concentrated in gridpoint' storms that are not climated when the surface physical parameterizations are improved. Modifications to the treatment of the vertical transport of moisture are required to diminish the excessive rainfall. Even with these and other changes included in the model, the simulated basin-averaged rainfall continues to exhibit unrealistic features. The improved, thought still imperfect, model simulations are used to diagnose the temporal and spatial evolution of the circulation with an emphasis on equatorial-subtropical interactions.

  10. Numerical simulation of the circulation of the atmosphere of Titan

    NASA Technical Reports Server (NTRS)

    Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.

    1992-01-01

    A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.

  11. Numerical simulation and prediction of coastal ocean circulation

    SciTech Connect

    Chen, P.

    1992-01-01

    Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account for non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.

  12. Simulating effects of highway embankments on estuarine circulation

    USGS Publications Warehouse

    Lee, Jonathan K.; Schaffranek, Raymond W.; Baltzer, Robert A.

    1994-01-01

    A two-dimensional depth-averaged, finite-difference, numerical model was used to simulate tidal circulation and mass transport in the Port Royal Sound. South Carolina, estuarine system. The purpose of the study was to demonstrate the utility of the Surface-Water. Integrated. Flow and Transport model (SWIFT2D) for evaluating changes in circulation patterns and mass transport caused by highway-crossing embankments. A model of subregion of Port Royal Sound including the highway crossings and having a grid size of 61 m (200ft) was derived from a 183-m (600-ft) model of the entire Port Royal Sound estuarine system. The 183-m model was used to compute boundary-value data for the 61-m submodel, which was then used to simulate flow conditions with and without the highway embankments in place. The numerical simulations show that, with the highway embankment in place, mass transport between the Broad River and Battery Creek is reduced and mass transport between the Beaufort River and Battery Creek is increased. The net result is that mass transport into and out of upper Battery Creek is reduced. The presence of the embankments also alters circulation patterns within Battery Creek.

  13. Simulations of Tropical Circulation and Winter Precipitation Over North India: an Application of a Tropical Band Version of Regional Climate Model (RegT-Band)

    NASA Astrophysics Data System (ADS)

    Tiwari, P. R.; Kar, S. C.; Mohanty, U. C.; Dey, S.; Kumari, S.; Sinha, P.; Raju, P. V. S.; Shekhar, M. S.

    2016-02-01

    In the present study, simulations have been carried out to study the relationship between winter-time precipitations and the large-scale global forcing (ENSO) using the tropical band version of Regional Climate Model (RegT-Band) for 5 El Niño and 4 La Niña years. The RegT-Band model is integrated with the observed sea-surface temperature and lateral boundary conditions from National Center for Environmental Prediction (NCEP)-Department of Energy (DOE) reanalysis 2 (NCEP-DOE2). The model domain extends from 50°S to 50°N and covers the entire tropics at a grid spacing of 45 km, i.e., it includes lateral boundary forcing only at the southern and northern boundaries. The performance evaluation of the model in capturing the large-scale fields followed by ENSO response with winter-time precipitation has been carried out by using model simulations against NCEP-DOE2 and Global Precipitation Climatology Project (GPCP) precipitation data. The analysis suggests that the model is able to reproduce the upper airfields and large-scale precipitation during winter time, although the model has some systematic biases compared to the observations. A comparison of model-simulated precipitation with observed precipitation at 17 station locations has been carried out. It is noticed that the RegT-Band model simulations are able to bring out the observed features reasonably well. Therefore, this preliminary study indicates that the tropical band version of the regional climate model can be effectively used for the better understanding of the large-scale global forcing.

  14. Numerical Simulation of Regional Circulation in the Monterey Bay Region

    NASA Technical Reports Server (NTRS)

    Tseng, Y. H.; Dietrich, D. E.; Ferziger, J. H.

    2003-01-01

    The objective of this study is to produce a high-resolution numerical model of Mon- terey Bay area in which the dynamics are determined by the complex geometry of the coastline, steep bathymetry, and the in uence of the water masses that constitute the CCS. Our goal is to simulate the regional-scale ocean response with realistic dynamics (annual cycle), forcing, and domain. In particular, we focus on non-hydrostatic e ects (by comparing the results of hydrostatic and non-hydrostatic models) and the role of complex geometry, i.e. the bay and submarine canyon, on the nearshore circulation. To the best of our knowledge, the current study is the rst to simulate the regional circulation in the vicinity of Monterey Bay using a non-hydrostatic model. Section 2 introduces the high resolution Monterey Bay area regional model (MBARM). Section 3 provides the results and veri cation with mooring and satellite data. Section 4 compares the results of hydrostatic and non-hydrostatic models.

  15. The Agulhas circulation simulated by the global OGCM FESOM.

    NASA Astrophysics Data System (ADS)

    Sein, Dmitry; Wang, Qiang; Sidorenko, Dmitry; Harig, Sven; Durgadoo, Jonathan; Biastoch, Arne

    2015-04-01

    The Agulhas Current system, comprising of various components, is of relevance for global and regional climate on all timescales. Work undertaken in this area over the last few years have highlighted that this region is sensitive to changes of the global overturning circulation. In particular, an increase in the amount of the Indian Ocean waters entering the Atlantic has been attributed to the changes in the wind pattern in the Southern Hemisphere. Such intrusion of additional heat and salt into the Atlantic may potentially impact the stability of the meridional overturning circulation and the heat transport into the North Atlantic. We identify critical questions of both global and regional importance and aim to address them using a numerical modelling approach. The models employed are a next generation finite-element model (FESOM) developed in AWI and a state-of-the-art nested model (INALT01) developed in GEOMAR. Both models have approximately 8 km resolution in the Agulhas region. In addition the global FESOM resolution is adjusted to the sea surface height (SSH) variance obtained from the satellite observations (AVISO), i.e. the higher is the SSH variance, the higher is the FESOM resolution, varying from 6 to 100 km. The results obtained by FESOM are validated against observations, as well as against INATL01. We investigate the FESOM ability to simulate the Agulhas system, the influence of the locally eddy-permitting resolution on the general Atlantic Ocean circulation, in particular Atlantic Meridional Overturning, and the interaction of the Agulhas system with Antarctic Circumpolar Current.

  16. Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model. I - The zonal-mean circulation

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.; Pollack, J. B.; Barnes, J. R.; Zurek, R. W.; Leovy, C. B.; Murphy, J. R.; Lee, H.; Schaeffer, J.

    1993-02-01

    The characteristics of the zonal-mean circulation and how it responds to seasonal variations and dust loading are described. This circulation is the main momentum-containing component of the general circulation, and it plays a dominant role in the budgets of heat and momentum. It is shown that in many ways the zonal-mean circulation on Mars, at least as simulated by the model, is similar to that on earth, having Hadley and Ferrel cells and high-altitude jet streams. However, the Martian systems tend to be deeper, more intense, and much more variable with season. Furthermore, the radiative effects of suspended dust particles, even in small amounts, have a major influence on the general circulation.

  17. Dynamic modeling for simulation and control of a circulating fluidized-bed combustor

    SciTech Connect

    Muir, J.R.; Brereton, C.; Grace, J.R.; Lim, C.J.

    1997-05-01

    A dynamic model has been developed to predict the transient behavior of the temperature, the heat removal rate by the in-bed heat exchanger, and the flue-gas oxygen concentration for a circulating fluidized-bed (CFB) combustor. The model was incorporated into a control simulator to reproduce the combustion process within the overall program. The simulator predicts the behavior of the combustor under manual or automatic control to allow testing of control strategies. The model is validated by comparison with step-response tests carried out on a pilot CFB combustor. Discrepancies are attributable to unmodeled disturbances. Further validation, necessary to ensure the applicability of the simulator to control development, is provided by comparing control models identified experimentally using the pilot CFB to those obtained by simulation. Favorable comparison suggests that the dynamic model is suitable for use in control simulation.

  18. Comparison of Cenozoic atmospheric general circulation model simulations

    SciTech Connect

    Barron, E.J.

    1985-01-01

    Paleocene, Eocene, Miocene and present day (with polar ice) geography are specified as the lower boundary condition in a mean annual, energy balance ocean version of the Community Climate Model (CCM), a spectral General Circulation Model of the Atmosphere developed at the National Center for Atmospheric Research. This version of the CCM has a 4.5/sup 0/ latitudinal and 7.5/sup 0/ longitudinal resolution with 9 vertical levels and includes predictions for pressure, winds, temperature, evaporation, precipitation, cloud cover, snow cover and sea ice. The model simulations indicate little geographically-induced climates changes from the Paleocene to the Miocene, but substantial differences between the Miocene and the present simulations. The simulated climate differences between the Miocene and present day include: 1) cooler present temperatures (2/sup 0/C in tropics, 15-35 C in polar latitudes) with the exception of warmer subtropical desert conditions, 2) a generally weaker present hydrologic cycle, with greater subtropical aridity, 3) strengthened present day westerly jets with a slight poleward displacement, and 4) the largest regional climate changes associated with Antarctica. The results of the climate model sensitivity experiments have considerable implications for understanding how geography influences climate.

  19. Modeling and simulation of circulating tumor cells in flow

    NASA Astrophysics Data System (ADS)

    Lee, Angela Meeyoun

    In this thesis, we mathematically model and computationally simulate several aspects associated with the dynamics of circulating tumor cells in the bloodstream. We focus on physical processes that initiate cancer metastasis, such as intravasation and the subsequent diffusion of thrombin by the expression of tissue factor (TF) on the surface of the circulating tumor cells that are of epithelial origin. In Part I, we develop a low-dimensional parametric deformation model of a cancer cell under shear flow. The surface deformation of MDA-MB-213 cells is imaged using DIC microscopy imaging techniques until the cell releases into the flow. We post-process the time sequence of images using an Active Shape Model (ASM) to obtain the principal components of deformation, which are then used as parameters in an empirical constitutive equation to model the cell deformations as a function of the fluid normal and shear forces imparted. The cell surface is modeled as a 2D Gaussian interface with three active parameters: height, x-width, and y-width. Fluid forces are calculated on the cell surface by discretizing the surface with regularized Stokeslets, and the flow is driven by a stochastically fluctuating pressure gradient. The Stokeslet strengths are obtained so that viscous boundary conditions are enforced on the surface of the cell and the surrounding plate. We show that the low-dimensional model is able to capture the principal deformations of the cell reasonably well and argue that Active Shape Models can be exploited further as a useful tool to bridge the gap between experiments, models, and numerical simulations in this biological setting. In Part II, we describe a mathematical and computational model for diffusion-limited procoagulant circulating tumor cells (CTCs) in flow. We first build a model based on an exact formulation of Green's function solutions for domains with a blood vessel wall and for closed domains. Time-dependent gradient trackers are used to highlight

  20. Self-biased circulators for high power applications

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexander S.

    Self-biased circulators exploit the properties of high anisotropy magnetic field in hexagonal ferrites, thus allowing operation without biasing magnets and a significant size and weight reduction. Although first self-biased circulators were demonstrated more than 20 years ago, all the prototypes constructed so far are unsuitable for practical applications. An attempt to design a self-biased circulator from scratch was made. Novel exceptionally low dielectric loss and high heat conductivity ceramic materials were developed and innovative substrate synthesis techniques were employed. Low temperature cofiring of green body ferrite compacts and dielectric ceramic slurries were mastered, resulting in solid composite substrates. Original device design was developed. Key features (including wide coupling angles, wide microstriplines, thick substrate, and absence of impedance transformers) enable low insertion loss, broadband operation, high power handling, and compact size. Fabrication and testing of Ka band Y-junction self-biased circulator are reported herein. Furthermore, design approach and fabrication techniques developed here can be readily applied for the construction of X-band self-biased circulators, provided that suitable ferrite materials are available. Low temperature cofiring of ferrite and dielectric materials is especially beneficial for various RF and high-frequency applications. Multiple devices can be readily fabricated on a single wafer using conventional lithographic techniques, resulting in true microwave monolithic integrated circuit.

  1. VCSEL Applications and Simulation

    NASA Technical Reports Server (NTRS)

    Cheung, Samson; Goorjian, Peter; Ning, Cun-Zheng; Li, Jian-Zhong

    2000-01-01

    This viewgraph presentation gives an overview of Vertical Cavity Surface Emitting Laser (VCSEL) simulation and its applications. Details are given on the optical interconnection in information technology of VCSEL, the formulation of the simulation, its numeric algorithm, and the computational results.

  2. Sensitivity simulations of superparameterised convection in a general circulation model

    NASA Astrophysics Data System (ADS)

    Rybka, Harald; Tost, Holger

    2015-04-01

    Cloud Resolving Models (CRMs) covering a horizontal grid spacing from a few hundred meters up to a few kilometers have been used to explicitly resolve small-scale and mesoscale processes. Special attention has been paid to realistically represent cloud dynamics and cloud microphysics involving cloud droplets, ice crystals, graupel and aerosols. The entire variety of physical processes on the small-scale interacts with the larger-scale circulation and has to be parameterised on the coarse grid of a general circulation model (GCM). Since more than a decade an approach to connect these two types of models which act on different scales has been developed to resolve cloud processes and their interactions with the large-scale flow. The concept is to use an ensemble of CRM grid cells in a 2D or 3D configuration in each grid cell of the GCM to explicitly represent small-scale processes avoiding the use of convection and large-scale cloud parameterisations which are a major source for uncertainties regarding clouds. The idea is commonly known as superparameterisation or cloud-resolving convection parameterisation. This study presents different simulations of an adapted Earth System Model (ESM) connected to a CRM which acts as a superparameterisation. Simulations have been performed with the ECHAM/MESSy atmospheric chemistry (EMAC) model comparing conventional GCM runs (including convection and large-scale cloud parameterisations) with the improved superparameterised EMAC (SP-EMAC) modeling one year with prescribed sea surface temperatures and sea ice content. The sensitivity of atmospheric temperature, precipiation patterns, cloud amount and types is observed changing the embedded CRM represenation (orientation, width, no. of CRM cells, 2D vs. 3D). Additionally, we also evaluate the radiation balance with the new model configuration, and systematically analyse the impact of tunable parameters on the radiation budget and hydrological cycle. Furthermore, the subgrid

  3. An interactive computer simulator of the circulation for knowledge acquisition in cardio-anesthesia.

    PubMed

    Popp, H J; Schecke, T; Rau, G; Käsmacher, H; Kalff, G

    1991-01-01

    Knowledge-based decision support systems for use in cardio-anesthesia can provide online support to the anesthesiologist by generating intelligent alarms. However, the acquisition and validation of a consistent knowledge base for this application bears problems related to the transfer of clinical experiences into a rule system. An interactive simulator of the human circulation is presented that supports the process of knowledge acquisition and testing. The simulator can be controlled in realtime by an anesthesiologist during the simulation run thus providing a basis for interdisciplinary discussion of routine as well as critical situations. The output data can be transferred to a knowledge-based system for test purposes. The simulator is currently being used for the development of the Anesthesia Expert Assist System AES-2. With regard to the special application a model of the heart-function was integrated which enables the simulation of heart insufficiency. Simulation runs under various conditions are presented and discussed. The simulator was implemented on an ATARI ST personal computer. PMID:1779177

  4. Hospitable archean climates simulated by a general circulation model.

    PubMed

    Wolf, E T; Toon, O B

    2013-07-01

    Evidence from ancient sediments indicates that liquid water and primitive life were present during the Archean despite the faint young Sun. To date, studies of Archean climate typically utilize simplified one-dimensional models that ignore clouds and ice. Here, we use an atmospheric general circulation model coupled to a mixed-layer ocean model to simulate the climate circa 2.8 billion years ago when the Sun was 20% dimmer than it is today. Surface properties are assumed to be equal to those of the present day, while ocean heat transport varies as a function of sea ice extent. Present climate is duplicated with 0.06 bar of CO2 or alternatively with 0.02 bar of CO2 and 0.001 bar of CH4. Hot Archean climates, as implied by some isotopic reconstructions of ancient marine cherts, are unattainable even in our warmest simulation having 0.2 bar of CO2 and 0.001 bar of CH4. However, cooler climates with significant polar ice, but still dominated by open ocean, can be maintained with modest greenhouse gas amounts, posing no contradiction with CO2 constraints deduced from paleosols or with practical limitations on CH4 due to the formation of optically thick organic hazes. Our results indicate that a weak version of the faint young Sun paradox, requiring only that some portion of the planet's surface maintain liquid water, may be resolved with moderate greenhouse gas inventories. Thus, hospitable late Archean climates are easily obtained in our climate model. PMID:23808659

  5. Simulations of the Amazon Basin circulation using the Pennsylvania State University/National Center for Atmospheric Research mesoscale model

    SciTech Connect

    Hahmann, A.N.

    1992-01-01

    A regional model has been used to investigate dynamical processes that control the circulation over the Amazon Basin. The application of a regional model to the Amazon Basin is unique and the method in which the model output is diagnosed is distinct. Two synoptic cases describe the ability of the regional model to simulate the circulation over the Amazon Basin. The first case, 15-17 April 1990, represents an example of the dominant circulation over the basin during the summer. The second case study occurs 27 February-1 March 1990. At the onset of this period, a vigorous trough is located in the subtropical westerlies of the Southern Hemisphere, which promotes advection of drier air by the low-level southerly flow into the southern part of the Basin. There is limited agreement between the observed circulation and the model simulations for the case studies. The model appears to simulate a number of dynamical processes known to take place. The timing of individual rain bands and their locations differ significantly from those observed. The sensitivity of the model simulation to the size of the grid spacing and the domain reveal that the regional circulation is most economically simulated with a nested domain and 60 km grid spacing. Larger grid spacings lead to excessive rainfall totals near the Andes Mountains and circulations that are unrealistic. Restricted domains (Amazon Basin only) produce excessive precipitation along the horizontal boundaries. Model simulations using several different combinations of convective and explicit precipitation parameterizations are performed. Experiments using the explicit moisture scheme without a cumulus parameterization scheme show the development of grid point instabilities. These instabilities result from interaction processes among latent heat release, large-scale moisture convergence, and surface pressure. When the Kuo-Anthes cumulus parameterization is included, grid point instabilities are substantially reduced.

  6. Aspects of Numerical Simulation of Circulation Control Airfoils

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Rumsey, C. L.; Anders, S. G.

    2005-01-01

    The mass-averaged compressible Navier-Stokes equations are solved for circulation control airfoils. Numerical solutions are computed with a multigrid method that uses an implicit approximate factorization smoother. The effects of flow conditions (e.g., free-stream Mach number, angle of attack, momentum coefficient) and mesh on the prediction of circulation control airfoil flows are considered. In addition, the impact of turbulence modeling, including curvature effects and modifications to reduce eddy viscosity levels in the wall jet (i.e., Coanda flow), is discussed. Computed pressure distributions are compared with available experimental data.

  7. Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model

    NASA Astrophysics Data System (ADS)

    Shan, Shiliang; Sheng, Jinyu; Thompson, Keith Richard; Greenberg, David Alexander

    2011-07-01

    Halifax Harbour is located on the Atlantic coast of Nova Scotia, Canada. It is one of the world's largest, ice-free natural harbours and of great economic importance to the region. A good understanding of the physical processes controlling tides, flooding, transport and dispersion, and hydrographic variability is required for pollution control and sustainable development of the Harbour. For the first time, a multi-nested, finite difference coastal ocean circulation model is used to reconstruct the three-dimensional circulation and hydrography of the Harbour and its variability on timescales of hours to months for 2006. The model is driven by tides, wind and sea level pressure, air-sea fluxes of heat, and terrestrial buoyancy fluxes associated with river and sewage discharge. The predictive skill of the model is assessed by comparing the model simulations with independent observations of sea level from coastal tide gauges and currents from moored instruments. The simulated hydrography is also compared against a new monthly climatology created from all available temperature and salinity observations made in the Harbour over the last century. It is shown that the model can reproduce accurately the main features of the observed tides and storm surge, seasonal mean circulation and hydrography, and wind driven variations. The model is next used to examine the main physical processes controlling the circulation and hydrography of the Harbour. It is shown that non-linear interaction between tidal currents and complex topography occurs over the Narrows. The overall circulation can be characterized as a two-layer estuarine circulation with seaward flow in the thin upper layer and landward flow in the broad lower layer. An important component of this estuarine circulation is a relatively strong, vertically sheared jet situated over a narrow sill connecting the inner Harbour to the deep and relatively quiescent Bedford Basin. Local wind driven variability is strongest in

  8. Circulation simulator method for evaluating bank note and optical feature durability

    NASA Astrophysics Data System (ADS)

    Bartz, William J.; Crane, Timothy T.

    2006-02-01

    Effective long-term authentication of optical security features on bank notes requires a sound substrate that can withstand the rigors of circulation. Crane & Co. has developed a test method that simulates the deterioration observed in actual circulated bank notes: soiling, creasing, tearing, edge tatteredness and limpness. The method relies on the physical degradation of note specimens that are weighted on each corner and tumbled in a medium of glass beads, metal discs and synthetic soil. Durability is judged by how well a note retains its initial optical and physical properties after being subjected to the conditions of the Circulation Simulator. Much of our early research was directed at improving the paper substrate, and evaluating surface treatments that resist soiling since excessive soiling is often the primary reason bank notes are removed from circulation. Recent work has examined the correlation between Circulation Simulator results and the properties of actual bank notes culled from circulation. We also are using the Circulation Simulator method to qualitatively evaluate the potential durability and effectiveness of optical security features such as electrotypes, watermarks, windowed threads, foils and inks. This paper provides a description of the testing and analysis methods.

  9. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    NASA Astrophysics Data System (ADS)

    Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.

    2013-04-01

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation

  10. Role of a cumulus parameterization scheme in simulating atmospheric circulation and rainfall in the nine-layer Goddard Laboratory for Atmospheres General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Chao, Winston C.; Walker, G. K.

    1992-01-01

    The influence of a cumulus convection scheme on the simulated atmospheric circulation and hydrologic cycle is investigated by means of a coarse version of the GCM. Two sets of integrations, each containing an ensemble of three summer simulations, were produced. The ensemble sets of control and experiment simulations are compared and differentially analyzed to determine the influence of a cumulus convection scheme on the simulated circulation and hydrologic cycle. The results show that cumulus parameterization has a very significant influence on the simulation circulation and precipitation. The upper-level condensation heating over the ITCZ is much smaller for the experiment simulations as compared to the control simulations; correspondingly, the Hadley and Walker cells for the control simulations are also weaker and are accompanied by a weaker Ferrel cell in the Southern Hemisphere. Overall, the difference fields show that experiment simulations (without cumulus convection) produce a cooler and less energetic atmosphere.

  11. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    NASA Technical Reports Server (NTRS)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  12. Numerical simulation of losses along a natural circulation helium loop

    NASA Astrophysics Data System (ADS)

    Knížat, Branislav; Urban, František; Mlkvik, Marek; RidzoÅ, František; Olšiak, Róbert

    2016-06-01

    A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly in the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.

  13. Postural reactions of circulation and its regulation during simulated weightlessness

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Valyev, V. A.; Kirillov, M. V.; Gornago, V. A.

    The extention and intensification of space exploration the influence of weightlessness on human organism and the formation of a new level of adaptation. The studies of blood circulation is very important because of freguent occurance of cardiovascular disorders in the middle age sudjects. In connection with extention and intensification of space exploration the influence of weightlessness on human organism and the formation of a new level of adaptation mechanisms acguires a special significance (5, 9, 10). The data obtained in recently undertaken model experiments (1, 5, 10), and also during space flights (5, 9) indicate that weightlessness in many ways affects various physiological systems of organism, and first of all cardiovascular system with the development of reflex, humoral and metabolic reactions. It also indicates, that the changes in functioning of cardiovascular system brings about the discruption of its regular responses, which is foremost expressed in decreased antigravitational response, which manifests itself in lowered orthostatic stability (2, 4, 6). It is worth mentioning, that the changes during previous investigations of haemodynamics were mainly carried out with the subjects under forty, therefore agerelated specific features of blood circulation system response are described in a few articles (5, 8). The studies of the kind are especially important because of frequent occurence of cardiovascular disorders such as heart and brain vessels atherosclerosis, hypertension in the middle age, which can to a great extent complicate and affect the "acute" period of adaptation to weightlessness and readaptation process.

  14. Application of thermospheric general circulation models for space weather operations

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T.; Minter, C.; Codrescu, M.

    Solar irradiance is the dominant source of heat, ionization, and dissociation of the thermosphere, and to a large extent drives the global dynamics, and controls the neutral composition and density structure. Neutral composition is important for space weather applications because of its impact on ionospheric loss rates, and neutral density is critical for satellite drag prediction. The future for thermospheric general circulation models for space weather operations lies in their use as state propagators in data assimilation techniques. The physical models can match empirical models in accuracy provided accurate drivers are available, but their true value comes when combined with data in an optimal way. Two such applications have recently been developed. The first utilizes a Kalman filter to combine space-based observation of airglow with physical model predictions to produce global maps of neutral composition. The output of the filter will be used within the GAIM (Global Assimilation of Ionospheric Measurement) model developed under a parallel effort. The second filter uses satellite tracking and remote sensing data for specification of neutral density. Both applications rely on accurate estimates of the solar EUV and magnetospheric drivers.

  15. Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Lit, Q. H.; Zhang, Y. G.; Meng, A. H.

    The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.

  16. Simulation and optimization of airlift external circulation membrane bioreactor using computational fluid dynamics.

    PubMed

    Qing, Zhang; Rongle, Xu; Xiang, Zheng; Yaobo, Fan

    2014-01-01

    The airlift external circulation membrane bioreactor (AEC-MBR) is a new MBR consisting of a separated aeration tank and membrane tank with circulating pipes fixed between the two tanks. The circulating pipe is called a H circulating pipe (HCP) because of its shape. With the complex configuration, it was difficult but necessary to master the AEC-MBR's hydraulic characteristics. In this paper, simulation and optimization of the AEC-MBR was performed using computational fluid dynamics. The distance from diffusers to membrane modules, i.e. the height of gas-liquid mixing zone (h(m)), and its effect on velocity distribution at membrane surfaces were studied. Additionally, the role of HCP and the effect of HCP's diameter on circulation were simulated and analyzed. The results showed that non-uniformity of cross-flow velocity existed in the flat-plate membrane modules, and the problem could be alleviated by increasing hm to an optimum range (h(m)/B ≥ 0.55; B is total static depth). Also, the low velocity in the boundary layer on the membrane surface was another reason for membrane fouling. The results also suggested that HCP was necessary and it had an optimum diameter to make circulation effective in the AEC-MBR. PMID:24804658

  17. Large eddy simulation using the general circulation model ICON

    NASA Astrophysics Data System (ADS)

    Dipankar, Anurag; Stevens, Bjorn; Heinze, Rieke; Moseley, Christopher; Zängl, Günther; Giorgetta, Marco; Brdar, Slavko

    2015-09-01

    ICON (ICOsahedral Nonhydrostatic) is a unified modeling system for global numerical weather prediction (NWP) and climate studies. Validation of its dynamical core against a test suite for numerical weather forecasting has been recently published by Zängl et al. (2014). In the present work, an extension of ICON is presented that enables it to perform as a large eddy simulation (LES) model. The details of the implementation of the LES turbulence scheme in ICON are explained and test cases are performed to validate it against two standard LES models. Despite the limitations that ICON inherits from being a unified modeling system, it performs well in capturing the mean flow characteristics and the turbulent statistics of two simulated flow configurations—one being a dry convective boundary layer and the other a cumulus-topped planetary boundary layer.

  18. Numerical Simulations of a Circulating Fluidized Bed with a Square Cross-Section

    SciTech Connect

    Li, Tingwen

    2011-01-01

    In this study, both 2D and 3D numerical simulations of a well-documented circulating fluidized bed with a square cross-section were conducted. With some assumptions, a series of 2D simulations was first carried out to study the influence of grid resolution, initial flow field, and boundary condition on the flow hydrodynamics. It was found that 2D simulations under-predicted the solids inventory even with the finest grid (10-particle-diameter grid size). On the other hand, a 3D simulation with relatively coarse grid was found in better agreement with the experimental data. Differences between 2D and 3D simulations were briefly discussed.

  19. Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction

    SciTech Connect

    Phillips, T J; Potter, G L; Williamson, D L; Cederwall, R T; Boyle, J S; Fiorino, M; Hnilo, J J; Olson, J G; Xie, S; Yio, J J

    2004-05-06

    To significantly improve the simulation of climate by general circulation models (GCMs), systematic errors in representations of relevant processes must first be identified, and then reduced. This endeavor demands that the GCM parameterizations of unresolved processes, in particular, should be tested over a wide range of time scales, not just in climate simulations. Thus, a numerical weather prediction (NWP) methodology for evaluating model parameterizations and gaining insights into their behavior may prove useful, provided that suitable adaptations are made for implementation in climate GCMs. This method entails the generation of short-range weather forecasts by a realistically initialized climate GCM, and the application of six-hourly NWP analyses and observations of parameterized variables to evaluate these forecasts. The behavior of the parameterizations in such a weather-forecasting framework can provide insights on how these schemes might be improved, and modified parameterizations then can be tested in the same framework. In order to further this method for evaluating and analyzing parameterizations in climate GCMs, the U.S. Department of Energy is funding a joint venture of its Climate Change Prediction Program (CCPP) and Atmospheric Radiation Measurement (ARM) Program: the CCPP-ARM Parameterization Testbed (CAPT). This article elaborates the scientific rationale for CAPT, discusses technical aspects of its methodology, and presents examples of its implementation in a representative climate GCM.

  20. Simulation of the Atlantic meridional overturning circulation at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Oka, A.; Hasumi, H.; Abe-Ouchi, A.

    2008-12-01

    The ocean circulation in the Atlantic deep ocean is characterized by thermohaline circulation driven by deep convection in northern high latitudes. The heat transport associated with this circulation is comparable to that by atmosphere and has a great role in the present climate. The Atlantic meridional overturning circulation (AMOC) is believed to change in past and future climate changes. Coupled model simulations suggest that the AMOC becomes weak in the future global warming climate. Geological evidence such as carbon isotope ratio indicates that the AMOC was weaker and shallower than the present at the Last Glacial Maximum (LGM). As for global warming climate, almost all model results reach consensus that the Atlantic deep circulation weakens in global warming climate. On the other hand, there is wide discrepancy in simulation of the Atlantic deep circulation at the LGM. Weber et al. (2007) report results of Paleoclimate Modeling Intercomparison Project where half of models reproduce the weakening of the Atlantic deep circulation but the other half simulates the strengthening. The reason for this disagreement between models has not been clarified yet, and investigation on the mechanism of weakening of the Atlantic deep circulation at the LGM is one of the most important topics in the paleoclimate studies. In this study, by using results of a coupled climate model (MIROC), we focus on role of changes in the sea surface heat and freshwater fluxes and investigate their role in controlling the AMOC at the LGM. In order to individually evaluate role of heat and freshwater fluxes, we conduct additional ocean general circulation model simulations under the sea surface heat/freshwater flux conditions obtained from the present and LGM simulations by MIROC. The results suggest that the freshwater flux changes contribute to weakening of the AMOC at the LGM, whereas the heat flux changes make the AMOC at the LGM stronger than the present. In the presentation, we are

  1. Simulation of West African monsoon circulation in four atmospheric general circulation models forced by prescribed sea surface temperature

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Philippon, Nathalie; Fontaine, Bernard

    2004-12-01

    The mean evolution of the West African monsoon (WAM) circulation and its interannual variability have been studied using an ensemble of 21 simulations (common period 1961-1994) performed with four different atmospheric general circulation models (AGCMs) (European Center/Hamburg (ECHAM) 3, ECHAM 4, Action de Recherche Petite Echelle Grande Echelle (ARPEGE), and Goddard Institute for Space Studies (GISS)) and forced by the same observed sea surface temperature (SST) data set. The results have been compared with European Centre for Medium-Range Weather Forecasts reanalyses (ERA-40). The climatological means of WAM winds for the AGCMs are similar to the ERA-40 ones. However, the AGCMs tend to underestimate the southern wind component at low levels around 10°N compared to the ERA-40. The simulated Tropical Easterly Jet (TEJ) is usually shifted northward and also too weak for ECHAM 3 and ECHAM 4 compared to ERA-40. The interannual variability of an atmospheric WAM index (WAMI) is quite successfully reproduced (the correlations between the mean ensemble of each AGCM and ERA-40 time series over 1961-1994 range between 0.51 and 0.64). In particular, the four AGCMs reproduce quite well the mean teleconnection structure with El Niño-Southern Oscillation, i.e., a strong (weak) monsoon during La Niña (El Niño) events, even if the largest absolute correlations between WAMI and SST in the eastern and central equatorial Pacific are weaker than in ERA-40. On a yearly basis, WAMI is more predictable and skillful during the cold ENSO years than during the warm ENSO ones. The unskillful warm ENSO events are associated with a significant cooling over the equatorial Atlantic and Western Pacific Ocean and a significant warming in the tropical Indian Ocean.

  2. Ensemble simulations of the magnetic field induced by global ocean circulation: Estimating the uncertainty

    NASA Astrophysics Data System (ADS)

    Irrgang, Christopher; Saynisch, Jan; Thomas, Maik

    2016-03-01

    The modeling of the ocean global circulation induced magnetic field is affected by various uncertainties that originate from errors in the input data and from the model itself. The amount of aggregated uncertainties and their effect on the modeling of electromagnetic induction in the ocean is unknown. For many applications, however, the knowledge of uncertainties in the modeling is essential. To investigate the uncertainty in the modeling of motional induction at the sea surface, simulation experiments are performed on the basis of different error scenarios and error covariance matrices. For these error scenarios, ensembles of an ocean general circulation model and an electromagnetic induction model are generated. This ensemble-based approach allows to estimate both the spatial distribution and temporal variation of the uncertainty in the ocean-induced magnetic field. The largest uncertainty in the ocean-induced magnetic field occurs in the area of the Antarctic Circumpolar Current. Local maxima reach values of up to 0.7 nT. The estimated global annual mean uncertainty in the ocean-induced magnetic field ranges from 0.1 to 0.4 nT. The relative amount of uncertainty reaches up to 30% of the signal strength with largest values in regions in the northern hemisphere. The major source of uncertainty is found to be introduced by wind stress from the atmospheric forcing of the ocean model. In addition, the temporal evolution of the uncertainty in the induced magnetic field shows distinct seasonal variations. Specific regions are identified which are robust with respect to the introduced uncertainties.

  3. Numerical simulation of Black Sea circulation and pollution propagation in coastal waters of the Great Sochi

    NASA Astrophysics Data System (ADS)

    Fomin, Vladimir; Gusev, Anatoly; Diansky, Nikolay

    2014-05-01

    The numerical modelling of the Black Sea (BS) is performed by using INMOM (Institute of Numerical Mathematics Ocean Model). The model is based on the primitive equations in spherical s-coordinate system with free surface boundary condition. The numerical algorithm is based on the method of multicomponent splitting and has a flexible modular structure. The splitting with respect to physical processes and spatial coordinate is used. A computational method is proposed of the polluting substances (PS) transport in the BS region adjacent to the Great Sochi. It is based on INMOM application for the BS in two versions: M1 and M2. In the M1 INMOM has a uniform spatial resolution ~4 km, while M2 has non-uniform one with refinement to 50 m in the BS region near Great Sochi coast. The M2 is used only during the periods of PS transport computation for which the initial hydrothermodynamic conditions are taken from M1. Both versions reveal complexity of the BS circulation nature, however, M2 more adequately reproduces eddy circulation due to higher horizontal resolution in its eastern part. Hence, a suggestion is made that BS eddy structure simulation requires model resolution ~1.5 km, and the major factor of quasistationary Batumi anti-cyclonic gyre formation is the topographical features in this part of the sea. A computation of PS distribution from the rivers Sochi, Host and Mzymta and from 18 pipes of deep-water sewage production was performed for the high-water period from 01.04.2007 to 30.04.2007. It is shown that the significant contribution to PS distribution from these punctual sources is made by whirlwind mesoscale formations generating complicated 3-dimensional PS distribution.

  4. A simulation of the winter and summer circulations with the NMC Global Spectral Model

    NASA Technical Reports Server (NTRS)

    Kinter, J. L., III; Shukla, J.; Marx, L.; Schneider, E. K.

    1988-01-01

    The medium range forecast model of the NMC has been integrated to produce winter and summer simulations. It is found that the model climatology is similar to that of the observed atmosphere as well as climatologies of other general circulation models. The stationary and transient features of the model circulation are described, including both tropical and extratropical regions. The model hydrological cycle, radiative balance, and surface heat budget are discussed. Comparison with observations shows that the model is colder than that observed in the troposphere and cools in the lower stratosphere in the tropics and near the poles in both simulations. It is suggested that the upper branch of the Hadley cell is poorly simulated in the integrated model. The simulations are in reasonable agreement with the observations in sea level pressure, the structure of the tropospheric zonal jets, and the winter hemispheric stationary waves.

  5. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  6. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    SciTech Connect

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-02-10

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  7. Variable-resolution frameworks for the simulation of tropical cyclones in global atmospheric general circulation models

    NASA Astrophysics Data System (ADS)

    Zarzycki, Colin

    The ability of atmospheric General Circulation Models (GCMs) to resolve tropical cyclones in the climate system has traditionally been difficult. The challenges include adequately capturing storms which are small in size relative to model grids and the fact that key thermodynamic processes require a significant level of parameterization. At traditional GCM grid spacings of 50-300 km tropical cyclones are severely under-resolved, if not completely unresolved. This thesis explores a variable-resolution global model approach that allows for high spatial resolutions in areas of interest, such as low-latitude ocean basins where tropical cyclogenesis occurs. Such GCM designs with multi-resolution meshes serve to bridge the gap between globally-uniform grids and limited area models and have the potential to become a future tool for regional climate assessments. A statically-nested, variable-resolution option has recently been introduced into the Department of Energy/National Center for Atmospheric Research (DoE/NCAR) Community Atmosphere Model's (CAM) Spectral Element (SE) dynamical core. Using an idealized tropical cyclone test, variable-resolution meshes are shown to significantly lessen computational requirements in regional GCM studies. Furthermore, the tropical cyclone simulations are free of spurious numerical errors at the resolution interfaces. Utilizing aquaplanet simulations as an intermediate test between idealized simulations and fully-coupled climate model runs, climate statistics within refined patches are shown to be well-matched to globally-uniform simulations of the same grid spacing. Facets of the CAM version 4 (CAM4) subgrid physical parameterizations are likely too scale sensitive for variable-resolution applications, but the newer CAM5 package is vastly improved in performance at multiple grid spacings. Multi-decadal simulations following 'Atmospheric Model Intercomparison Project' protocols have been conducted with variable-resolution grids. Climate

  8. Application of Improved Radiation Modeling to General Circulation Models

    SciTech Connect

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  9. Modeling and simulation of liquid-solid circulating fluidized bed ion exchange system for continuous protein recovery.

    PubMed

    Mazumder, Jahirul; Zhu, Jingxu; Bassi, Amarjeet S; Ray, Ajay K

    2009-09-01

    Liquid-solid circulating fluidized bed (LSCFB) is an integrated two-column (downcomer and riser) system which can accommodate two separate processes (adsorption and desorption) in the same unit with continuous circulation of the solid particles between the two columns. In this study, a mathematical model based on the assumption of homogeneous fluidization was developed considering hydrodynamics, adsorption-desorption kinetics and liquid-solid mass transfer. The simulation results showed good agreement with the available experimental results for continuous protein recovery. A parametric sensitivity study was performed to better understand the influence of different operating parameters on the BSA adsorption and desorption capacity of the system. The model developed can easily be extended to other applications of LSCFB. PMID:19466748

  10. Numerical simulation of the general circulation of the atmosphere of Titan.

    PubMed

    Hourdin, F; Talagrand, O; Sadourny, R; Courtin, R; Gautier, D; McKay, C P

    1995-10-01

    The atmospheric circulation of Titan is investigated with a general circulation model. The representation of the large-scale dynamics is based on a grid point model developed and used at Laboratoire de Météorologie Dynamique for climate studies. The code also includes an accurate representation of radiative heating and cooling by molecular gases and haze as well as a parametrization of the vertical turbulent mixing of momentum and potential temperature. Long-term simulations of the atmospheric circulation are presented. Starting from a state of rest, the model spontaneously produces a strong superrotation with prograde equatorial winds (i.e., in the same sense as the assumed rotation of the solid body) increasing from the surface to reach 100 m sec-1 near the 1-mbar pressure level. Those equatorial winds are in very good agreement with some indirect observations, especially those of the 1989 occultation of Star 28-Sgr by Titan. On the other hand, the model simulates latitudinal temperature contrasts in the stratosphere that are significantly weaker than those observed by Voyager 1 which, we suggest, may be partly due to the nonrepresentation of the spatial and temporal variations of the abundances of molecular species and haze. We present diagnostics of the simulated atmospheric circulation underlying the importance of the seasonal cycle and a tentative explanation for the creation and maintenance of the atmospheric superrotation based on a careful angular momentum budget. PMID:11538593

  11. Numerical Study on an Autonomous Decentralized Model-Based Simulation of Resources Circulation Systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Tamaki, Hisashi; Murao, Hajime; Kitamura, Shinzo

    In this paper, a methodology for modeling and controlling of resources circulation systems is studied. We propose a model structure by introducing two kinds of sub-models: a physical model and an information model. The physical model is used for simulating the flow of materials, products and also money, while the information model is used for representing flow of information and decision-making on production, consumption, recycling/reuse, discard, etc. Moreover, we introduce an additional top-level component, a supervisor, who observes the global behavior of the system and controls it indirectly. Based on the proposed approach, we implement a prototype of simulation model including producers, consumers and recyclers. Through some computer simulations based on the model, it is shown that the model has price adjustment function and its global behavior is very complicated. Then, we examine influences of the informational as well as the physical indirect control on the resources circulation.

  12. Large-Eddy Simulation of Mesoscale Circulations Forced by Inhomogeneous Urban Heat Island

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Wang, Xueyuan; Peng, Zhen

    2014-04-01

    The large-eddy simulation mode of the Weather Research and Forecasting model is employed to simulate the planetary boundary-layer characteristics and mesoscale circulations forced by an ideal urban heat island (UHI). In our simulations, the horizontal heterogeneity of the UHI intensity distribution in urban areas is considered and idealized as a cosine function. Results indicate that the UHI heating rate and the UHI intensity heterogeneity affect directly the spatial distribution of the wind field; a stronger UHI intensity produces a maximum horizontal wind speed closer to the urban centre. The strong advection of warm air from the urban area to the rural area in the upper part of the planetary boundary-layer causes a more stable atmospheric stratification over both the urban and rural areas. The mesoscale sensible heat flux caused by the UHI circulation increases with UHI intensity but vanishes when the background wind speed is sufficiently high 3.0.

  13. The Early Jurassic climate: General circulation model simulations and the paleoclimate record

    SciTech Connect

    Chandler, M.A.

    1992-01-01

    This thesis presents the results of several general circulation model simulations of the Early Jurassic climate. The general circulation model employed was developed at the Goddard Institute for Space Studies while most paleoclimate data were provided by the Paleographic Atlas Project of the University of Chicago. The first chapter presents an Early Jurassic base simulation, which uses detailed reconstructions of paleogeography, vegetation, and sea surface temperature as boundary condition data sets. The resulting climatology reveals an Earth 5.2[degrees]C warmer, globally, than at present and a latitudinal temperature gradient dominated by high-latitude warming (+20[degrees]C) and little tropical change (+1[degrees]C). Comparisons show a good correlation between simulated results and paleoclimate data. Sensitivity experiments are used to investigate any model-data mismatches. Chapters two and three discuss two important aspects of Early Jurassic climate, continental aridity and global warming. Chapter two focuses on the hydrological capabilities of the general circulation model. The general circulation model's hydrologic diagnostics are evaluated, using the distribution of modern deserts and Early Jurassic paleoclimate data as validating constraints. A new method, based on general circulation model diagnostics and empirical formulae, is proposed for evaluating moisture balance. Chapter three investigates the cause of past global warming, concentrating on the role of increased ocean heat transport. Early Jurassic simulations show that increased ocean heat transports may have been a major factor in past climates. Increased ocean heat transports create latitudinal temperature gradients that closely approximate paleoclimate data and solve the problem of tropical overheating that results from elevated atmospheric carbon dioxide. Increased carbon dioxide cannot duplicate the Jurassic climate without also including increased ocean heat transports.

  14. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhu, Jianguo; Ouyang, Ziqu; Lu, Qinggang

    2013-06-01

    High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed was presented. The down-fired combustor, taken as the calculation domain, has the diameter of 220 mm and the height of 3000 mm. 2 cases with air staging combustion are simulated. Compared the simulation results with experimental data, there is a good agreement. It is found that the combustion model and NOx formation model are applicable to simulate the pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. The results show that there is a uniform temperature profile along the axis of the down-fired combustor. The NOx emissions are lower than those of ordinary pulverized coal combustion, and the NOx emissions are 390 mg/m3 and 352 mg/m3 in Case 1 and Case 2, respectively. At the range of 300-600 mm below the nozzle, the NO concentration decreases, mainly resulting from some homogeneous reactions and heterogeneous reaction. NO concentration has a little increase at the position of 800 mm below the nozzle as the tertiary air supplied to the combustor at the position of 600 mm below the nozzle.

  15. Reproduction of links between circulation types and precipitation in Central Europe in regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Plavcová, Eva; Kyselý, Jan; Štěpánek, Petr

    2014-05-01

    The study evaluates relationships between large-scale atmospheric circulation (represented by circulation indices and circulation types derived from gridded mean sea level pressure) and daily precipitation amounts over three regions in the Czech Republic (Central Europe) with different precipitation regimes. We examine how ENSEMBLES regional climate model (RCM) simulations driven by re-analysis reproduce the observed links and capture differences in the links between the regions (lowlands vs. highlands) and seasons. We study the links of circulation to (i) mean precipitation over the regions, (ii) probability of wet days, and (iii) probability of extreme daily precipitation (exceeding threshold defined by a high quantile of precipitation distribution in a given season). Relatively strong links between atmospheric circulation and the precipitation characteristics are found in the observed data. The links are generally more pronounced for highland than lowland regions. More wet days and higher precipitation amounts are found for cyclonic and stronger flows, and for westerly and north-easterly flows. The RCMs are generally able to capture basic features of the links; nevertheless, they have difficulties to reproduce some more specific features and differences in the links between the regions. The results also suggest that good performance in some precipitation characteristics may be due to compensating errors rather than model's perfection. Reference: Plavcová E., Kyselý J., Štěpánek P., 2014: Links between circulation types and precipitation in Central Europe in the observed data and regional climate model simulations. International Journal of Climatology, doi 10.1002/joc.3882.

  16. General circulation model simulations of winter and summer sea-level pressures over North America

    USGS Publications Warehouse

    McCabe, G.J., Jr.; Legates, D.R.

    1992-01-01

    In this paper, observed sea-level pressures were used to evaluate winter and summer sea-level pressures over North America simulated by the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation models. The objective of the study is to determine how similar the spatial and temporal distributions of GCM-simulated daily sea-level pressures over North America are to observed distributions. Overall, both models are better at reproducing observed within-season variance of winter and summer sea-level pressures than they are at simulating the magnitude of mean winter and summer sea-level pressures. -from Authors

  17. Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.

    2014-03-01

    A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.

  18. Simulation of the great plains low-level jet and associated clouds by general circulation models

    SciTech Connect

    Ghan, S.J.; Bian, X.; Corsetti, L.

    1996-07-01

    The low-level jet frequently observed in the Great Plains of the United States forms preferentially at night and apparently influences the timing of the thunderstorms in the region. The authors have found that both the European Centre for Medium-Range Weather Forecasts general circulation model and the National Center for Atmospheric Research Community Climate Model simulate the low-level jet rather well, although the spatial distribution of the jet frequency simulated by the two GCM`s differ considerably. Sensitivity experiments have demonstrated that the simulated low-level jet is surprisingly robust, with similar simulations at much coarser horizontal and vertical resolutions. However, both GCM`s fail to simulate the observed relationship between clouds and the low-level jet. The pronounced nocturnal maximum in thunderstorm frequency associated with the low-level jet is not simulated well by either GCM, with only weak evidence of a nocturnal maximum in the Great Plains. 36 refs., 20 figs.

  19. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part 1: African Wave Circulation

    NASA Technical Reports Server (NTRS)

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2014-01-01

    The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.

  20. Application of long-circulating liposomes to cancer photodynamic therapy.

    PubMed

    Oku, N; Saito, N; Namba, Y; Tsukada, H; Dolphin, D; Okada, S

    1997-06-01

    Photodynamic therapy (PDT) as a cancer treatment is notable for its quite low side effects in comparison with those of chemotherapy and radiotherapy. However, the accumulation of porphyrin derivatives used in PDT into tumor tissues is rather low. Since long-circulating liposomes are known to accumulate passively into tumor tissues, we liposomalized a porphyrin derivative, benzoporphyrin derivative monoacid ring A (BPD-MA), and used these liposomes to investigate the usefulness of PDT for tumor-bearing mice. BPD-MA was liposomalized into glucuronate-modified liposomes, which are known to be long-circulating. These liposomes were injected i.v. into Balb/c mice bearing Meth A sarcoma, and tumor regression and survival time were monitored after irradiation with laser light. Tumor regression and complete curing of tumor (80% cure rate by the treatment with 6 mg/kg BPD-MA) were observed when long circulating liposomalized BPD-MA was injected and laser-irradiated. In contrast, only a 20% cure rate was obtained when the animals were treated with BPD-MA solution or BPD-MA entrapped in conventional liposomes. These results suggest that a long-circulating liposomal formulation of photo-sensitive agents is useful for PDT. PMID:9212988

  1. Numerical simulation on casing modification of a boiler water circulation pump

    NASA Astrophysics Data System (ADS)

    Li, Y. Z.; Fan, Y. Z.; Liu, S. H.; Wu, Y. L.; Zuo, Z. G.

    2012-11-01

    In this paper, hydraulic performance comparisons are made by numerical simulation method on boiler water circulation pump with casings of different shapes. The existing pump adopts a semispherical casing and a garlic-shaped casing. Results show that in the garlic-shaped casing noticeable swirling vortex can be found in the top region of the discharge nozzle, and semispherical casing has better performance in hydraulic efficiency and head.

  2. Recent results from the GISS model of the global atmosphere. [circulation simulation for weather forecasting

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1975-01-01

    Large numerical atmospheric circulation models are in increasingly widespread use both for operational weather forecasting and for meteorological research. The results presented here are from a model developed at the Goddard Institute for Space Studies (GISS) and described in detail by Somerville et al. (1974). This model is representative of a class of models, recently surveyed by the Global Atmospheric Research Program (1974), designed to simulate the time-dependent, three-dimensional, large-scale dynamics of the earth's atmosphere.

  3. Simulation of 18O in precipitation by the regional circulation model REMOiso

    NASA Astrophysics Data System (ADS)

    Sturm, Kristof; Hoffmann, Georg; Langmann, Bärbel; Stichler, Willibald

    2005-11-01

    The first results of a regional circulation model REMOiso fitted with water isotope diagnostics are compared with various isotope series from central Europe. A 2 year case study is conducted from March 1997 to February 1999 centred over Europe, analysing daily and monthly measurements. Isotope signals over Europe are dominated by the typical isotopic effects such as temperature, continental and altitude effects, both on annual and seasonal scales. These well-known isotopic effects are successfully reproduced by REMOiso, using two different boundary data sets. In a first simulation, the European Centre for Medium-range Weather Forecasts (ECMWF) analyses serve as boundary conditions, where water isotopes were parameterized by a simple temperature dependence. In a second simulation, boundary conditions both for climatic and isotopic variables are taken from the ECHAMiso general circulation model output. The comparison of both simulations shows a very high sensitivity of the simulated 18O signal to boundary conditions. The ECMWF-nested simulation shows an average offset of -4.5 in mean 18O values and exaggerated seasonal amplitude. The ECHAM-nested simulation represents correctly the observed mean 18O values, although with a dampened seasonality. REMOiso's isotope module is further validated against daily 18O measurements at selected stations (Nordeney, Arkona and Hohenpeissenberg) situated in Germany. Copyright

  4. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    USGS Publications Warehouse

    McKenna, J.E., Jr.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  5. Processes and Mechanisms in Simulations of the Mid-holocene African Summer Monsoon Circulation

    NASA Astrophysics Data System (ADS)

    Tomas, R. A.; Otto-Bliesner, B.

    2006-12-01

    Proxy reconstructions indicate that the Sahel and Sahara regions were considerably wetter during the early and middle Holocene (about 12 to 5 thousand years ago) than they are presently. Kutzbach (1981) and Kutzbach and Otto-Bliesner (1982) tested whether changes in the Earth's orbital parameters could have caused these climatic changes seen in the observed records. Using a low-resolution general circulation model and orbital parameters that describe conditions 9000 years ago, they found that the increased solar radiation during the summer months caused an intensified monsoon circulation over the African-Eurasian land mass. During the past 25 years, as general circulation models and coupled climate models have evolved, these experiments have been repeated, these results have been reconfirmed and our understanding of what parts of the climate system are important for the anomalous monsoon circulation has been refined. Yet, questions remain about the details of the processes and mechanisms that are important for producing the anomalous monsoon in climate model simulations and there are still some significant discrepancies between simulations and proxy records. We examine simulations of the African summer monsoon made using the latest version of the Community Climate System Model (CCSM3) developed at the National Center for Atmospheric Research (NCAR) forced with orbital parameters and greenhouse gas concentrations appropriate for 6 ka and pre-industrial periods following the protocols established by the Paleoclimate Modeling Intercomparison Project II (PMIP-2). Results from three sets of experiments are presented. In the first, we test to determine to what extent the SST's simulated by CCSM3 influence the anomalous monsoon circulation using a stand alone atmospheric model forced with 6ka orbital parameters but prescribed SST's taken from CCSM3 simulations of the 6ka and pre-industrial periods. In the second, we explore a more fundamental question regarding what

  6. Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models

    SciTech Connect

    Gleckler, P.J.; Randall, D.A.; Boer, G.

    1994-03-01

    This paper reports on energy fluxes across the surface of the ocean as simulated by fifteen atmospheric general circulation models in which ocean surface temperatures and sea-ice boundaries are prescribed. The oceanic meridional energy transport that would be required to balance these surface fluxes is computed, and is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean energy transport can be affected by the errors in simulated cloud-radiation interactions.

  7. Fine-grid simulations of gas-solids flow in a circulating fluidized bed

    SciTech Connect

    Benyahia, S.

    2012-01-01

    This research note demonstrates that more accurate predictions of a two-fluid model for the riser section of a circulating fluidized bed are obtained as the grid size is equally refined along all the directions of the gas-particle flow. However, two-fluid simulations of large-scale fluidized beds with such a fine mesh are currently computationally prohibitive. Alternatively,subgrid models can significantly reduce the simulation time of multiphase flow by using coarse mesh, whereas maintaining a high level of accuracy.

  8. Stationary eddies in the Mars general circulation as simulated by the NASA-Ames GCM

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Pollack, J. B.; Haberle, Robert M.

    1993-01-01

    Quasistationary eddies are prominent in a large set of simulations of the Mars general circulation performed with the NASA-Ames GCM. Various spacecraft observations have at least hinted at the existence of such eddies in the Mars atmosphere. The GCM stationary eddies appear to be forced primarily by the large Mars topography, and (to a much lesser degree) by spatial variations in the surface albedo and thermal inertia. The stationary eddy circulations exhibit largest amplitudes at high altitudes (above 30-40 km) in the winter extratropical regions. In these regions they are of planetary scale, characterized largely by zonal wavenumbers 1 and 2. Southern Hemisphere winter appears to be dominated by a very strong wave 1 pattern, with both waves 1 and 2 being prominent in the Northern Hemisphere winter regime. This difference seems to be basically understandable in terms of differences in the topography in the two hemispheres. The stationary eddies in the northern winter extratropics are found to increase in amplitude with dust loading. This behavior appears to be at least partly associated with changes in the structure of the zonal-mean flow that favor a greater response to wave 1 topographic forcing. There are also strong stationary eddy circulations in the tropics and in the summer hemisphere. The eddies in the summer subtropics and extratropics arc substantially stronger in southern summer than in northern summer. The summer hemisphere stationary circulations are relatively shallow and are characterized by smaller zonal scales than those in the winter extratropics.

  9. Computer simulation of the cooling effect due to circulation in four geothermal well models

    SciTech Connect

    Duda, L.E.

    1984-11-01

    Computer calculations of wellbore transient temperatures, using the geothermal wellbore thermal simulator code GEOTEMP2, were made on four well models. The well models studied were from the Baca geothermal area, the East Mesa geothermal area, and a shallow and a deep well from the Salton Sea geothermal area. Calculations for one day of water circulation followed by one day of shut-in at flow rates of 100, 250, 500, and 1000 gpm were made to investigate the cooling effects produced by the circulation. Additional calculations were made using the Baca and Salton Sea well models. In the former, the effect on the cooling due to different soil thermal conductivity values and different circulating fluids (a high viscosity mud and air) were investigated. In the latter, the number of casings in the wellbore and the diameter of the tubing were notified. Plots of the calculated temperatures as a function of circulation and shut-in time and depth are given for each case.

  10. Importance of a control state for simulating the Atlantic meridional overturning circulation at the LGM

    NASA Astrophysics Data System (ADS)

    Oka, A.; Abe-Ouchi, A.; Hasumi, H.

    2009-04-01

    The ocean circulation in the Atlantic deep ocean is characterized by thermohaline circulation driven by deep convection in northern high latitudes. The heat transport associated with this circulation is comparable to that by atmosphere and has a great role in the present climate. The Atlantic meridional overturning circulation (AMOC) is believed to change in past and future climate changes. Coupled model simulations suggest that the AMOC becomes weak in the future global warming climate. Geological evidence such as carbon isotope ratio indicates that the AMOC was weaker and shallower than the present at the Last Glacial Maximum (LGM). As for global warming climate, almost all model results reach consensus that the AMOC weakens in global warming climate. On the other hand, there is wide discrepancy in simulation of the AMOC at the LGM. Weber et al. (2007) report results of Paleoclimate Modeling Intercomparison Project where half of models reproduce the weakening of the AMOC but the other half simulates the strengthening. The reason for this disagreement between models has not been clarified yet, and investigation on the mechanism of weakening of the AMOC at the LGM is one of the most important topics in the paleoclimate studies. In this study, by using results of our coupled climate model (MIROC), we focus on role of changes in the sea surface heat and freshwater fluxes and investigate their role in controlling the AMOC at the LGM. In order to individually evaluate role of heat and freshwater fluxes, we conduct additional ocean general circulation model simulations under the sea surface heat/freshwater flux conditions obtained from the present and LGM simulations by MIROC. The results suggest that the freshwater flux changes contribute to weakening of the AMOC at the LGM, whereas the heat flux changes make the AMOC at the LGM stronger than the present. We found that reproducibility of the control state significantly affects response of the AMOC to heat and

  11. Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Jones, Greg; Lin, John C.

    2011-01-01

    Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

  12. Prediction of circulation control performance characteristics for Super STOL and STOL applications

    NASA Astrophysics Data System (ADS)

    Naqvi, Messam Abbas

    by the model. The same optimal configurations were then subjected to Super STOL cruise conditions to perform a trade off analysis between Takeoff and Cruise Performance. Supercritical airfoils modified for circulation control were also thoroughly analyzed for Takeoff and Cruise performance and may constitute a viable option for Super STOL & STOL Designs. The prediction capability produced by this research effort can be integrated with the current conceptual aircraft modeling & simulation framework. The prediction tool is applicable within the selected ranges of each variable, but methodology and formulation scheme adopted can be applied to any other design space exploration.

  13. The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Toigo, Anthony D.; Richardson, Mark I.; Newman, Claire E.; Talaat, Elsayed R.; Waugh, Darryn W.; McConnochie, Timothy H.

    2013-05-01

    Limb-scanning observations with the Mars Climate Sounder and Thermal Emission Spectrometer (TES) have identified discrete layers of enhanced dust opacity well above the boundary layer and a mean vertical structure of dust opacity very different from the expectation of well-mixed dust in the lowest 1-2 scale heights. To assess the impact of this vertical dust opacity profile on atmospheric properties, we developed a TES limb-scan observation-based three-dimensional and time-evolving dust climatology for use in forcing general circulation models (GCMs). We use this to force the MarsWRF GCM and compare with simulations that use a well-mixed (Conrath-ν) vertical dust profile and Mars Climate Database version 4 (MCD) horizontal distribution dust opacity forcing function. We find that simulated temperatures using the TES-derived forcing yield a 1.18 standard deviation closer match to TES temperature retrievals than a MarsWRF simulation using MCD forcing. The climatological forcing yields significant changes to many large-scale features of the simulated atmosphere. Notably the high-latitude westerly jet speeds are 10-20 m/s higher, polar warming collar temperatures are 20-30 K warmer near northern winter solstice and tilted more strongly poleward, the middle and lower atmospheric meridional circulations are partially decoupled, the migrating diurnal tide exhibits destructive interference and is weakened by 50% outside of equinox, and the southern hemisphere wave number 1 stationary wave is strengthened by up to 4 K (45%). We find the vertical dust distribution is an important factor for Martian lower and middle atmospheric thermal structure and circulation that cannot be neglected in analysis and simulation of the Martian atmosphere.

  14. Overview of CFD Validation Experiments for Circulation Control Applications at NASA

    NASA Technical Reports Server (NTRS)

    Jones, G. S.; Lin, J. C.; Allan, B. G.; Milholen, W. E.; Rumsey, C. L.; Swanson, R. C.

    2008-01-01

    Circulation control is a viable active flow control approach that can be used to meet the NASA Subsonic Fixed Wing project s Cruise Efficient Short Take Off and Landing goals. Currently, circulation control systems are primarily designed using empirical methods. However, large uncertainty in our ability to predict circulation control performance has led to the development of advanced CFD methods. This paper provides an overview of a systematic approach to developing CFD tools for basic and advanced circulation control applications. This four-step approach includes "Unit", "Benchmar", "Subsystem", and "Complete System" experiments. The paper emphasizes the ongoing and planned 2-D and 3-D physics orientated experiments with corresponding CFD efforts. Sample data are used to highlight the challenges involved in conducting circulation control computations and experiments.

  15. Numerical Simulations and Tracer Studies as a Tool to Support Water Circulation Modeling in Breeding Reservoirs

    NASA Astrophysics Data System (ADS)

    Zima, Piotr

    2014-12-01

    The article presents a proposal of a method for computer-aided design and analysis of breeding reservoirs in zoos and aquariums. The method applied involves the use of computer simulations of water circulation in breeding pools. A mathematical model of a pool was developed, and a tracer study was carried out. A simplified model of two-dimensional flow in the form of a biharmonic equation for the stream function (converted into components of the velocity vector) was adopted to describe the flow field. This equation, supplemented by appropriate boundary conditions, was solved numerically by the finite difference method. Next, a tracer migration equation was solved, which was a two-dimensional advection-dispersion equation describing the unsteady transport of a non-active, permanent solute. In order to obtain a proper solution, a tracer study (with rhodamine WT as a tracer) was conducted in situ. The results of these measurements were compared with numerical solutions obtained. The results of numerical simulations made it possible to reconstruct water circulation in the breading pool and to identify still water zones, where water circulation was impeded.

  16. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System

    PubMed Central

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal

  17. Multiscale dynamical analysis of a high-resolution numerical model simulation of the Solomon Sea circulation

    NASA Astrophysics Data System (ADS)

    Djath, Bughsin'; Verron, Jacques; Melet, Angelique; Gourdeau, Lionel; Barnier, Bernard; Molines, Jean-Marc

    2014-09-01

    A high 1/36° resolution numerical model is used to study the ocean circulation in the Solomon Sea. An evaluation of the model with (the few) available observation shows that the 1/36° resolution model realistically simulates the Solomon Sea circulations. The model notably reproduces the high levels of mesoscale eddy activity observed in the Solomon Sea. With regard to previous simulations at 1/12° resolution, the average eddy kinetic energy levels are increased by up to ˜30-40% in the present 1/36° simulation, and the enhancement extends at depth. At the surface, the eddy kinetic energy level is maximum in March-April-May and is minimum in December-January-February. The high subsurface variability is related to the variability of the western boundary current (New Guinea Coastal Undercurrent). Moreover, the emergence of submesoscales is clearly apparent in the present simulations. A spectral analysis is conducted in order to evidence and characterize the modeled submesoscale dynamics and to provide a spectral view of scales interactions. The corresponding spectral slopes show a strong consistency with the Surface Quasi-Geostrophic turbulence theory.

  18. A comparison between general circulation model simulations using two sea surface temperature datasets for January 1979

    NASA Technical Reports Server (NTRS)

    Ose, Tomoaki; Mechoso, Carlos; Halpern, David

    1994-01-01

    Simulations with the UCLA atmospheric general circulation model (AGCM) using two different global sea surface temperature (SST) datasets for January 1979 are compared. One of these datasets is based on Comprehensive Ocean-Atmosphere Data Set (COADS) (SSTs) at locations where there are ship reports, and climatology elsewhere; the other is derived from measurements by instruments onboard NOAA satellites. In the former dataset (COADS SST), data are concentrated along shipping routes in the Northern Hemisphere; in the latter dataset High Resolution Infrared Sounder (HIRS SST), data cover the global domain. Ensembles of five 30-day mean fields are obtained from integrations performed in the perpetual-January mode. The results are presented as anomalies, that is, departures of each ensemble mean from that produced in a control simulation with climatological SSTs. Large differences are found between the anomalies obtained using COADS and HIRS SSTs, even in the Northern Hemisphere where the datasets are most similar to each other. The internal variability of the circulation in the control simulation and the simulated atmospheric response to anomalous forcings appear to be linked in that the pattern of geopotential height anomalies obtained using COADS SSTs resembles the first empirical orthogonal function (EOF 1) in the control simulation. The corresponding pattern obtained using HIRS SSTs is substantially different and somewhat resembles EOF 2 in the sector from central North America to central Asia. To gain insight into the reasons for these results, three additional simulations are carried out with SST anomalies confined to regions where COADS SSTs are substantially warmer than HIRS SSTs. The regions correspond to warm pools in the northwest and northeast Pacific, and the northwest Atlantic. These warm pools tend to produce positive geopotential height anomalies in the northeastern part of the corresponding oceans. Both warm pools in the Pacific produce large

  19. A Solar Sailcraft Simulation Application

    ERIC Educational Resources Information Center

    Celeda, Tomáš

    2013-01-01

    An application was created to encourage students' practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation…

  20. CMIP5 simulated change in the intensity of the Hadley and Walker circulations from the perspective of velocity potential

    NASA Astrophysics Data System (ADS)

    Zhou, Botao; Shi, Ying; Xu, Ying

    2016-07-01

    Based on the simulations of 31 global models in CMIP5, the performance of the models in simulating the Hadley and Walker circulations is evaluated. In addition, their change in intensity by the end of the 21st century (2080-2099) under the RCP4.5 and RCP8.5 scenarios, relative to 1986-2005, is analyzed from the perspective of 200 hPa velocity potential. Validation shows good performance of the individual CMIP5 models and the multi-model ensemble mean (MME) in reproducing the meridional (zonal) structure and magnitude of Hadley (Walker) circulation. The MME can also capture the observed strengthening tendency of the winter Hadley circulation and weakening tendency of the Walker circulation. Such secular trends can be simulated by 39% and 74% of the models, respectively. The MME projection indicates that the winter Hadley circulation and the Walker circulation will weaken under both scenarios by the end of the 21st century. The weakening amplitude is larger under RCP8.5 than RCP4.5, due to stronger external forcing. The majority of the CMIP5 models show the same projection as the MME. However, for the summer Hadley circulation, the MME shows little change under RCP4.5 and large intermodel spread is apparent. Around half of the models project an increase, and the other half project a decrease. Under the RCP8.5 scenario, the MME and 65% of the models project a weakening of the summer southern Hadley circulation.

  1. Synoptic-climatological applicability of multiple circulation classifications

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Beck, Christoph; Cahynová, Monika

    2013-04-01

    The database of classifications of atmospheric circulation patterns, which was produced within the COST733 Action, consists in its version v2.0 of 423 different classifications for each of 12 domains over Europe. The classifications differ from each other in five characteristics: (i) the classification method used, (ii) the number of types, (iii) the classified variable, (iv) sequentiality (whether instantaneous circulation patterns or their 4-day sequences are classified), and (v) the seasonality of definition (whether classifications are defined for a whole year or separately for each season). The goal of the study is to evaluate how successful are the classifications in characterizing (stratifying) surface climate elements, viz., daily minimum and maximum temperature and precipitation. To this end, we employ several criteria: explained variance, pseudo-F statistic, and Kolmogorov-Smirnov statistic. Both station datasets (ECA&D) and reanalysis (ERA-40) are used. The classifications are ranked in each domain separately. This allows one to evaluate the effect the options (i) to (v) have on the quality of classifications in terms of the stratification of surface temperature and precipitation, to compare the performance among the criteria, and to assess the geographical dependence of the findings.

  2. A dynamic simulation model for power plants with atmospheric and pressurized circulating fluidized bed combustion -- Interactions of plant components and design studies

    SciTech Connect

    Glasmacher-Remberg, C.; Fett, F.N.

    1999-07-01

    Power plants with atmospheric or pressurized circulating fluidized bed combustion are complex technical systems. The operation characteristics of these power plants depend on the behavior of the single components and their interactions. The theoretical understanding of power plant processes of this kind as well as the design, the reliability and the practical operation can be enhanced by the application of mathematical models for the complete process. A dynamic simulation model for power plants with atmospheric circulating fluidized bed combustion (ACFBC) and pressurized circulating fluidized bed combustion (PCFBC) consisting of comprehensive submodels for the subsystems gas turbine, circulating fluidized bed combustor and water/steam cycle is presented. Apart from the investigation of the complete power plant, the simulation program enables the analysis of the three mentioned subsystems separately. Each subsystem is described by a set of unsteady-state differential and algebraic equations solved by an implicit Euler-method using a modified Newton-Raphson method. With the aid of the dynamic simulation program for a selected power plant, the effect of changes in plant operation will be examined for full and part load as well as the transient response of the system due to the carried out operation. Emphasis is laid on the characterization of the interactions between the subsystems. The dynamic simulation program can be used for design studies and it is investigated how changes of the plant design influence the operation characteristics of the example plant.

  3. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE PAGESBeta

    Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore » results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less

  4. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    SciTech Connect

    Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numerical results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.

  5. The Tropical Subseasonal Variability Simulated in the NASA GISS General Circulation Model

    NASA Technical Reports Server (NTRS)

    Kim, Daehyun; Sobel, Adam H.; DelGenio, Anthony D.; Chen, Yonghua; Camargo, Suzana J.; Yao, Mao-Sung; Kelley, Maxwell; Nazarenko, Larissa

    2012-01-01

    The tropical subseasonal variability simulated by the Goddard Institute for Space Studies general circulation model, Model E2, is examined. Several versions of Model E2 were developed with changes to the convective parameterization in order to improve the simulation of the Madden-Julian oscillation (MJO). When the convective scheme is modified to have a greater fractional entrainment rate, Model E2 is able to simulate MJO-like disturbances with proper spatial and temporal scales. Increasing the rate of rain reevaporation has additional positive impacts on the simulated MJO. The improvement in MJO simulation comes at the cost of increased biases in the mean state, consistent in structure and amplitude with those found in other GCMs when tuned to have a stronger MJO. By reinitializing a relatively poor-MJO version with restart files from a relatively better-MJO version, a series of 30-day integrations is constructed to examine the impacts of the parameterization changes on the organization of tropical convection. The poor-MJO version with smaller entrainment rate has a tendency to allow convection to be activated over a broader area and to reduce the contrast between dry and wet regimes so that tropical convection becomes less organized. Besides the MJO, the number of tropical-cyclone-like vortices simulated by the model is also affected by changes in the convection scheme. The model simulates a smaller number of such storms globally with a larger entrainment rate, while the number increases significantly with a greater rain reevaporation rate.

  6. Simulations of Flow Circulations and Atrazine Concentrations in a Midwest U.S. Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Xianggui; Gu, Roy R.; Guo, Chuling; Wang, Kui; Li, Shijie

    Atrazine is the most commonly used herbicide in the spring for pre-emergent weed control in the corn cropping area in the Midwestern United States. A frequent high level of herbicide concentrations in reservoirs is a great concern for public health and aquatic ecosystems. In this study, a two-dimensional hydrodynamics and toxic contaminant transport model was applied to Saylorville Reservoir, Iowa, USA. The model simulates physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. Model results were validated by measured temperatures and atrazine concentrations. Simulated flow velocities, water temperatures, and chemical concentrations demonstrated that the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the simulated fate and transport of atrazine showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A thorough understanding of the fate and transport of atrazine in the reservoir can assist in developing operation and pollution prevention strategies with respect to timing, amount, and depth of withdrawal. The responses of atrazine transport to various boundary conditions provide useful information in assessing environmental impact of alternative upstream watershed management practices on the quality of reservoir water.

  7. Large-eddy simulations of flow around a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Hahn, Seonghyeon; Shariff, Karim

    2008-11-01

    Circulation control, proposed in NASA's Cruise Efficient Short Take-off and Landing (CESTOL) concept, has the potential to increase air-traffic throughput and reduce the noise footprint. Circulation control obtains a substantial increase in lift coefficient by using a wall-jet that blows tangentially on a rounded (Coanda) surface deflected at the trailing edge. The flow has proven to be difficult to reliably predict using Reynolds-averaged models. We undertake large-eddy simulations to better understand underlying mechanisms and create a database for modelers. Simulations are patterned after Novak et al.'s (1987) experiment, which, despite its faults, is the best documented to date. A Reynolds number of 10̂6 and two cases with low and high blowing are considered using Stanford's unstructured solver CDP. The upper surface begins with laminar to turbulent transition following a region of weak shear stress. Then strong favorable pressure gradient as the jet slot is approached leads to a raised log-law. There exists a region over the Coanda surface where the mean flow development collapses very well in wall-jet similarity coordinates, indicating that a portion of the near-wall region maintains classical wall-jet characteristics. At the present time, the lower surface has delayed transition due to lack of tripping in the simulations and considerable discrepancies with the experiments for second-order statistics.

  8. Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model. II - Transient baroclinic eddies

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Pollack, J. B.; Haberle, R. M.; Leovy, C. B.; Zurek, R. W.; Lee, H.; Schaeffer, J.

    1993-02-01

    A large set of experiments performed with the NASA Ames Mars General Circulation Model is analyzed to determine the properties, structure, and dynamics of the simulated transient baroclinic eddies. There is strong transient baroclinic eddy activity in the extratropics of the Northern Hemisphere during the northern autumn, winter, and spring seasons. The eddy activity remains strong for very large dust loadings, though it shifts northward. The eastward propagating eddies are characterized by zonal wavenumbers of 1-4 and periods of about 2-10 days. The properties of the GCM baroclinic eddies in the northern extratropics are compared in detail with analogous properties inferred from Viking Lander meteorology observations.

  9. Role of Eurasian snow cover in wintertime circulation: Decadal simulations forced with satellite observations

    NASA Astrophysics Data System (ADS)

    Orsolini, Yvan J.; Kvamstø, Nils G.

    2009-10-01

    We investigate the impact of the Eurasian snow cover extent on the Northern Hemisphere winter circulation by performing a suite of ensemble simulations with the Météo-France "Arpege Climat" atmospheric general circulation model, spanning 2 decades (1979-2000). Observed snow cover derived from satellite infrared and visible imagery has been forced weekly into the model. Variability in autumn-early winter snow cover extent over eastern Eurasia is linked to circulation anomalies over the North Pacific that are influencing the North Atlantic sector in late winter through the development of the Aleutian-Icelandic Low Seesaw teleconnection. The forcing of realistic snow cover in the model augments potential predictability over eastern Eurasia and the North Pacific and improves the hindcast skill score of the Aleutian-Icelandic Low Seesaw teleconnection. Enhanced eastern Eurasia snow cover is associated with an anomalous upper-tropospheric wave train across Eurasia, anomalously high upward wave activity flux, and a displaced stratospheric polar vortex.

  10. Circulation induced by subglacial discharge in glacial fjords: Results from idealized numerical simulations

    NASA Astrophysics Data System (ADS)

    Salcedo-Castro, Julio; Bourgault, Daniel; deYoung, Brad

    2011-09-01

    The flow caused by the discharge of freshwater underneath a glacier into an idealized fjord is simulated with a 2D non-hydrostatic model. As the freshwater leaves horizontally the subglacial opening into a fjord of uniformly denser water it spreads along the bottom as a jet, until buoyancy forces it to rise. During the initial rising phase, the plume meanders into complex flow patterns while mixing with the surrounding fluid until it reaches the surface and then spreads horizontally as a surface seaward flowing plume of brackish water. The process induces an estuarine-like circulation. Once steady-state is reached, the flow consists of an almost undiluted buoyant plume rising straight along the face of the glacier that turns into a horizontal surface layer thickening as it flows seaward. Over the range of parameters examined, the estuarine circulation is dynamically unstable with gradient Richardson number at the sheared interface having values of <1/4. The surface velocity and dilution factors are strongly and non-linearly related to the Froude number. It is the buoyancy flux that primarily controls the resulting circulation with the momentum flux playing a secondary role.

  11. In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects

    PubMed Central

    Figliola, Richard S.; Giardini, Alessandro; Conover, Tim; Camp, Tiffany A.; Biglino, Giovanni; Chiulli, John; Hsia, Tain-Yen

    2010-01-01

    Despite the recent advances in computational modeling, experimental simulation of the circulation with congenital heart defect using mock flow circuits remains an important tool for device testing, and for detailing the probable flow consequences resulting from surgical and interventional corrections. Validated mock circuits can be applied to qualify the results from novel computational models. New mathematical tools, coupled with advanced clinical imaging methods, allow for improved assessment of experimental circuit performance relative to human function, as well as the potential for patient-specific adaptation. In this review, we address the development of three in vitro mock circuits specific for studies of congenital heart defects. Performance of an in vitro right heart circulation circuit through a series of verification and validation exercises is described, including correlations with animal studies, and quantifying the effects of circuit inertiance on test results. We present our experience in the design of mock circuits suitable for investigations of the characteristics of the Fontan circulation. We use one such mock circuit to evaluate the accuracy of Doppler predictions in the presence of aortic coarctation. PMID:21218147

  12. Application of Local Discretization Methods in the NASA Finite-Volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Yeh, Kao-San; Lin, Shian-Jiann; Rood, Richard B.

    2002-01-01

    We present the basic ideas of the dynamics system of the finite-volume General Circulation Model developed at NASA Goddard Space Flight Center for climate simulations and other applications in meteorology. The dynamics of this model is designed with emphases on conservative and monotonic transport, where the property of Lagrangian conservation is used to maintain the physical consistency of the computational fluid for long-term simulations. As the model benefits from the noise-free solutions of monotonic finite-volume transport schemes, the property of Lagrangian conservation also partly compensates the accuracy of transport for the diffusion effects due to the treatment of monotonicity. By faithfully maintaining the fundamental laws of physics during the computation, this model is able to achieve sufficient accuracy for the global consistency of climate processes. Because the computing algorithms are based on local memory, this model has the advantage of efficiency in parallel computation with distributed memory. Further research is yet desirable to reduce the diffusion effects of monotonic transport for better accuracy, and to mitigate the limitation due to fast-moving gravity waves for better efficiency.

  13. Simulation of hydrodynamics using large eddy simulation-second-order moment model in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu

    2013-07-01

    Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.

  14. Application of sonography for evaluation of posterior circulation disorders.

    PubMed

    Alpaidze, M; Janelidze, M

    2014-03-01

    Posterior circulation disorders (PCD) include a) vertebrobasilar insufficiency (VBI), which has a wide clinical manifestation such as vestibulocerebellar syndrome, cephalalgia, cochlear syndrome, vegetovascular dystonia, visual disturbances, "syndrome of vertebral artery compression" etc, b) vertebrobasilar TIA and c) stroke. All of them are caused by blood flow disturbances in vertebral (VA), basilar (BAS) and posterior cerebral arteries (PCA). Aim - evaluation of role of extracranial duplex-sonography (EDS), transcranial color-coded duplex-sonography (TCCD) and rotational functional tests (RFT) in PCD. 88 patients (age range 18-62y) with PCD and 20 healthy controls with relevant age range were examined using EDS, TCCD and RFT with measurement of vertebral arteries (VA) diameter, mean flow velocities (MFV) and pulsatility index (PI) in VA, basilar artery (BAS) and posterior cerebral arteries (PCA). For statistical analysis SPSS software (Version 11.5) was used. In 48 (54,5%) patients revealed unilateral narrowing (less than 2.5 mm in diameter) and deformation of vertebral artery associated with osteochondrosis or primary hypoplasia. In 11 (12,5%) patients revealed bilateral narrowing (less than 2.8 mm in diameter) and deformation of vertebral arteries. Ultrasound investigation showed a decrease of MFV (23 ± 1.4 cm/sec) in the intracranial length of vertebral artery and an increase of PI (3,2 ±0,3 p=0,002) in the extracranial segments (V1- V3). In 52 cases (59%) revealed decrease of MFV in BAS by 32.6 ± 4.7% and in 41 cases (46.5%) decrease of MFV in both PCA by 24.8 ± 5.2% (P<0.002). In 21 cases (23.8%) revealed concurrent development of vertebrogenic reflex vasoconstriction. In 18 patients (20.4%) exposed only deformation of vertebral arteries with local increase of MFV and normal values in intracranial segments. Rotational tests were positive in 42 (47.7%) patients and manifested high correlation with clinical data. EDS and TCCD are important tools for

  15. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  16. Decadal Variations of the Atlantic Meridional Overturning Circulation as simulated by the VIKING20 Model

    NASA Astrophysics Data System (ADS)

    Handmann, Patricia; Fischer, Jürgen; Visbeck, Martin; Behrens, Erik; Patara, Lavinia

    2015-04-01

    Time series of observed deep circulation transports and water mass properties in the subpolar North Atlantic are beginning to be long enough to investigate multiannual to decadal variability of the deep water. At the same time high resolution ocean circulation models (1/20° resolution VIKING20 model) can be used to compare observations with model simulation. The models also allow to diagnose the deep water circulation processes more completely and to relate local to basin scale signals. North Atlantic Deep Water (NADW) is a complex combination of water masses from different origins and pathways that meet at the exit of the Labrador Sea. The lower part of NADW is formed by water masses entering the subpolar basin over the Greenland-Scotland ridge. Iceland-Scotland Overflow Water (ISOW) from the eastern sills has the longest pathway and joins the densest deep water component from Denmark Strait (DSOW) after crossing the Mid-Atlantic-Ridge through Charlie-Gibbs Fracture Zone (CGFZ); together, they form the Lower NADW. The upper component of the NADW is composed of Labrador Sea Water (LSW), which is formed and modified through deep convection in the Labrador Sea. Using 60 year long time series of North Atlantic water masses and currents produced by the Viking20 model driven by observed monthly winds, a comparison of transport variability of observed and modeled data will be presented at three locations: Deep flow at the exit of the Labrador Sea at 53°N; upper layer transports between New Jersey and Bermuda (OLEANDER section) and between the southern tip of Greenland and Portugal (OVIDE section). Is the model reproducing the observed long-term behavior of the different components in phase and amplitude? Do the results permit identification of the processes leading to these variations in transport variability? Finally, is it possible to extend the observed variability pattern over the observed time span (15 years) to the total time range of the model simulations (60

  17. Dust Emissions, Transport, and Deposition Simulated with the NASA Finite-Volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Ginoux, Paul; Chin, Mian; Lin, S.-J.

    2003-01-01

    Mineral dust aerosols have radiative impacts on Earth's atmosphere, have been implicated in local and regional air quality issues, and have been identified as vectors for transporting disease pathogens and bringing mineral nutrients to terrestrial and oceanic ecosystems. We present for the first time dust simulations using online transport and meteorological analysis in the NASA Finite-Volume General Circulation Model (FVGCM). Our dust formulation follows the formulation in the offline Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport Model (GOCART) using a topographical source for dust emissions. We compare results of the FVGCM simulations with GOCART, as well as with in situ and remotely sensed observations. Additionally, we estimate budgets of dust emission and transport into various regions.

  18. Numerical Simulation of the tidal effects on estuarine circulation in the San Juan Bay

    NASA Astrophysics Data System (ADS)

    Garcia, Edgardo; Canals, Miguel; Capella, Jorge; Morell, Julio; Leonardi, Stefano; Caribbean Coastal Ocean Observing System Collaboration

    2012-11-01

    The regional oceanic modeling system ROMS has been implemented in San Juan Bay, Puerto Rico, to investigate quantitatively the mixing processes and as a forecast tool to support emergency planning and resource management in the area. The response of the San Juan Bay circulation to both river discharges and tidal forcing has been investigated. A hind-cast simulation is performed and compared with time series measurements and hidrographic data to validate the model. Sensitivity studies to turbulence mixing parameterization have been carried out under different forcing scenarios. A simulation without river outflow but forced with tidal constituents along the open boundaries is performed. Good agreement has been found with coastal observations with amplitudes gauges and modeled amplitudes constituents. A numerical experiment of the response of the Bay's circulation to river discharge only is performed and compared with the tide plus river forcing and tidal forcing only scenarios. Salinity distributions and vertical mixing are affected by the proximity to deep waters of the San Juan Bay Estuary, also the bulge region and plume structure in the entrance of San Juan Bay are highly affected by the bottom friction for the case with tide forcing.

  19. The cyclonic circulation in the Australian-Antarctic basin simulated by an eddy-resolving general circulation model

    NASA Astrophysics Data System (ADS)

    Aoki, Shigeru; Sasai, Yoshikazu; Sasaki, Hideharu; Mitsudera, Humio; Williams, Guy D.

    2010-06-01

    Flow structure in the Australian-Antarctic basin is investigated using an eddy-resolving general ocean circulation model and validated with iceberg and middepth float trajectories. A cyclonic circulation system between the Antarctic Circumpolar Current and Antarctic Slope Current consists of a large-scale gyre in the west (80-110° E) and a series of eddies in the east (120-150° E). The western gyre has an annual mean westward transport of 22 Sv in the southern limb. Extending west through the Princess Elizabeth Trough, 5 Sv of the gyre recirculates off Prydz Bay and joins the western boundary current off the Kerguelen Plateau. Iceberg trajectories from QuickScat and ERS-1/2 support this recirculation and the overall structure of the Antarctic Slope Current against isobath in the model. Argo float trajectories also reveal a consistent structure of the deep westward slope current. This study indicates the presence of a large cyclonic circulation in this basin, which is comparable to the Weddell and Ross gyres.

  20. Single and two-phase natural circulation in Westinghouse pressurized water reactor simulators: Phenomena, analysis and scaling

    SciTech Connect

    Schultz, R.R.; Chapman, J.C.; Kukita, Y.; Motley, F.E.; Stumpf, H.; Chen, Y.S.; Tasaka, K.

    1987-01-01

    Natural circulation data obtained in the 1/48 scale W four loop PWR simulator - the Large Scale Test Facility (LSTF) are discussed and summarized. Core cooling modes, the primary fluid state, the primary loop mass flow and localized natural circulation phenomena occurring in the steam generator are presented. TRAC-PF1 LSTF model (using both a 1 U-tube and a 3 U-tube steam generator model) analyses of the LSTF natural circulation data including the SG recirculation patterns are presented and compared to the data. The LSTF data are then compared to similar natural circulation data obtained in the Primarkreislaufe (PKL) and the Semiscale facilities. Based on the 1/48 to 1/1705 scaling range which exists between the facilities, the implications of these data towrard natural circulation behavior in commercial plants are briefly discussed.

  1. Simulation of the equatorially asymmetric mode of the Hadley circulation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Li, Jianping; Zhu, Jianlei; Li, Fei; Sun, Cheng

    2015-08-01

    The tropical Hadley circulation (HC) plays an important role in influencing the climate in the tropics and extra-tropics. The realism of the climatological characteristics, spatial structure, and temporal evolution of the long-term variation of the principal mode of the annual mean HC (i.e., the equatorially asymmetric mode, EAM) was examined in model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The results showed that all the models are moderately successful in capturing the HC's climatological features, including the spatial pattern, meridional extent, and intensity, but not the spatial or temporal variation of the EAM. The possible reasons for the poor simulation of the long-term variability of the EAM were explored. None of the models can successfully capture the differences in the warming rate between the tropical Southern Hemisphere (SH) and Northern Hemisphere (NH), which is considered to be an important driver for the variation of the AM. Most of the models produce a faster warming in the NH than in the SH, which is the reverse of the observed trend. This leads to a reversed trend in the meridional gradient between the SH and NH, and contributes to the poor simulation of EAM variability. Thus, this aspect of the models should be improved to provide better simulations of the variability of the HC. This study suggests a possible reason for the poor simulation of the HC, which may be helpful for improving the skill of the CMIP5 models in the future.

  2. Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations.

    PubMed

    Kitsios, V; Frederiksen, J S; Zidikheri, M J

    2014-06-28

    Parametrizations of the subgrid eddy-eddy and eddy-meanfield interactions are developed for the simulation of baroclinic ocean circulations representative of an idealized Antarctic Circumpolar Current. Benchmark simulations are generated using a spectral spherical harmonic quasi-geostrophic model with maximum truncation wavenumber of T=504, which is equivalent to a resolution of 0.24° globally. A stochastic parametrization is used for the eddy-eddy interactions, and a linear deterministic parametrization for the eddy-meanfield interactions. The parametrization coefficients are determined from the statistics of benchmark simulations truncated back to the large eddy simulation (LES) truncation wavenumber, TRsimulations. PMID:24842029

  3. Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations

    PubMed Central

    Kitsios, V.; Frederiksen, J. S.; Zidikheri, M. J.

    2014-01-01

    Parametrizations of the subgrid eddy–eddy and eddy–meanfield interactions are developed for the simulation of baroclinic ocean circulations representative of an idealized Antarctic Circumpolar Current. Benchmark simulations are generated using a spectral spherical harmonic quasi-geostrophic model with maximum truncation wavenumber of T=504, which is equivalent to a resolution of 0.24° globally. A stochastic parametrization is used for the eddy–eddy interactions, and a linear deterministic parametrization for the eddy–meanfield interactions. The parametrization coefficients are determined from the statistics of benchmark simulations truncated back to the large eddy simulation (LES) truncation wavenumber, TRsimulations. PMID:24842029

  4. Inter-annual variability of the Mediterranean thermohaline circulation in Med-CORDEX simulations

    NASA Astrophysics Data System (ADS)

    Vittoria Struglia, Maria; Adani, Mario; Carillo, Adriana; Pisacane, Giovanna; Sannino, Gianmaria; Beuvier, Jonathan; Lovato, Tomas; Sevault, Florence; Vervatis, Vassilios

    2016-04-01

    Recent atmospheric reanalysis products, such as ERA40 and ERA-interim, and their regional dynamical downscaling prompted the HyMeX/Med-CORDEX community to perform hind-cast simulations of the Mediterranean Sea, giving the opportunity to evaluate the response of different ocean models to a realistic inter-annual atmospheric forcing. Ocean numerical modeling studies have been steadily improving over the last decade through hind-cast processing, and are complementary to observations in studying the relative importance of the mechanisms playing a role in ocean variability, either external forcing or internal ocean variability. This work presents a review and an inter-comparison of the most recent hind-cast simulations of the Mediterranean Sea Circulation, produced in the framework of the Med-CORDEX initiative, at resolutions spanning from 1/8° to 1/16°. The richness of the simulations available for this study is exploited to address the effects of increasing resolution, both of models and forcing, the initialization procedure, and the prescription of the atmospheric boundary conditions, which are particularly relevant in order to model a realistic THC, in the perspective of fully coupled regional ocean-atmosphere models. The mean circulation is well reproduced by all the simulations. However, it can be observed that the horizontal resolution of both atmospheric forcing and ocean model plays a fundamental role in the reproduction of some specific features of both sub-basins and important differences can be observed among low and high resolution atmosphere forcing. We analyze the mean circulation on both the long-term and decadal time scale, and the represented inter-annual variability of intermediate and deep water mass formation processes in both the Eastern and Western sub-basins, finding that models agree with observations in correspondence of specific events, such as the 1992-1993 Eastern Mediterranean Transient, and the 2005-2006 event in the Gulf of Lion. Long

  5. Research through simulation. [simulators and research applications at Langley

    NASA Technical Reports Server (NTRS)

    Copeland, J. L. (Compiler)

    1982-01-01

    The design of the computer operating system at Langley Research Center allows for concurrent support of time-critical simulations and background analytical computing on the same machine. Signal path interconnections between computing hardware and flight simulation hardware is provided to allow up to six simulation programs to be in operation at one time. Capabilities and research applications are discussed for the: (1) differential maneuvering simulator; (2) visual motion simulator; (3) terminal configured vehicle simulator; (4) general aviation aircraft simulator; (5) general purpose fixed based simulator; (6) transport simulator; (7) digital fly by wire simulator; (8) general purpose fighter simulator; and (9) the roll-up cockpit. The visual landing display system and graphics display system are described and their simulator support applications are listed.

  6. Use of an extracorporeal circulation perfusion simulator: evaluation of its accuracy and repeatability.

    PubMed

    Tokumine, Asako; Momose, Naoki; Tomizawa, Yasuko

    2013-12-01

    Medical simulators have mainly been used as educational tools. They have been used to train technicians and to educate potential users about safety. We combined software for hybrid-type extracorporeal circulation simulation (ECCSIM) with a CPB-Workshop console. We evaluated the performance of ECCSIM, including its accuracy and repeatability, during simulated ECC. We performed a detailed evaluation of the synchronization of the software with the console and the function of the built-in valves. An S-III heart–lung machine was used for the open circuit. It included a venous reservoir, an oxygenator (RX-25), and an arterial filter. The tubes for venous drainage and the arterial line were connected directly to the ports of the console. The ECCSIM recorded the liquid level of the reservoir continuously. The valve in the console controlled the pressure load of the arterial line. The software made any adjustments necessary to both arterial pressure load and the venous drainage flow volume. No external flowmeters were necessary during simulation. We found the CPB-Workshop to be convenient, reliable, and sufficiently exact. It can be used to validate procedures by monitoring the controls and responses by using a combination of qualitative measures. PMID:24022821

  7. Simulation study of autoregulation responses of peripheral circulation to systemic pulsatility

    PubMed Central

    Aletti, Federico; Lanzarone, Ettore; Costantino, Maria Laura; Baselli, Giuseppe

    2009-01-01

    Background This simulation study investigated potential modulations of total peripheral resistance (TPR), due to distributed peripheral vascular activity, by means of a lumped model of the arterial tree and a non linear model of microcirculation, inclusive of local controls of blood flow and tissue-capillary fluid exchange. Results Numerical simulations of circulation were carried out to compute TPR under different conditions of blood flow pulsatility, and to extract the pressure-flow characteristics of the cardiovascular system. Simulations showed that TPR seen by the large arteries was increased in absence of pulsatility, while it decreased with an augmented harmonic content. This is a typically non linear effect due to the contribution of active, non linear autoregulation of the peripheral microvascular beds, which also generated a nonlinear relationship between arterial blood pressure and cardiac output. Conclusion This simulation study, though focused on a simple effect attaining TPR modulation due to pulsatility, suggests that non-linear autoregulation mechanisms cannot be overlooked while studying the integrated behavior of the global cardiovascular system, including the arterial tree and the peripheral vascular bed. PMID:19630959

  8. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation.

    PubMed

    Qureshi, M Umar; Vaughan, Gareth D A; Sainsbury, Christopher; Johnson, Martin; Peskin, Charles S; Olufsen, Mette S; Hill, N A

    2014-10-01

    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281-1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of 'large' arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the 'smaller' arteries and veins of radii ≥ 50 μm. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung. PMID:24610385

  9. Venus atmosphere simulated by a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    Sugimoto, Norihiko

    2016-07-01

    An atmospheric general circulation model (AGCM) for Venus on the basis of AFES (AGCM For the Earth Simulator) have been developed (e.g., Sugimoto et al., 2014a) and a very high-resolution simulation is performed. The highest resolution of the model is T319L120; 960 times 480 horizontal grids (grid intervals are about 40 km) with 120 vertical layers (layer intervals are about 1 km). In the model, the atmosphere is dry and forced by the solar heating with the diurnal and semi-diurnal components. The infrared radiative process is simplified by adopting Newtonian cooling approximation. The temperature is relaxed to a prescribed horizontally uniform temperature distribution, in which a layer with almost neutral static stability observed in the Venus atmosphere presents. A fast zonal wind in a solid-body rotation is given as the initial state. Starting from this idealized superrotation, the model atmosphere reaches a quasi-equilibrium state within 1 Earth year and this state is stably maintained for more than 10 Earth years. The zonal-mean zonal flow with weak midlatitude jets has almost constant velocity of 120 m/s in latitudes between 45°S and 45°N at the cloud top levels, which agrees very well with observations. In the cloud layer, baroclinic waves develop continuously at midlatitudes and generate Rossby-type waves at the cloud top (Sugimoto et al., 2014b). At the polar region, warm polar vortex zonally surrounded by a cold latitude band (cold collar) is well reproduced (Ando et al., 2016). As for horizontal kinetic energy spectra, divergent component is broadly (k>10) larger than rotational component compared with that on Earth (Kashimura et al., in preparation). Finally, recent results for thermal tides and small-scale waves will be shown in the presentation. Sugimoto, N. et al. (2014a), Baroclinic modes in the Venus atmosphere simulated by GCM, Journal of Geophysical Research: Planets, Vol. 119, p1950-1968. Sugimoto, N. et al. (2014b), Waves in a Venus general

  10. Simulated strengthening of the Atlantic Meridional Overturning Circulation in response to abyssal ocean warming around Antarctica

    NASA Astrophysics Data System (ADS)

    Patara, L.; Boning, C. W.

    2013-12-01

    Studies of repeat hydrographic observations have revealed a conspicuous multi-decadal warming, and partly, freshening, of the frigid abyssal ocean waters originating from the fringes of the Antarctic continent. The warming and contraction of Antarctic Bottom Water (AABW) represents one of the most prominent signals of change in Earth's climate and accounts for a substantial fraction of the present global energy and sea level budgets. Here we present a set of ocean model experiments demonstrating that the ongoing loss of AABW also has important dynamical consequences for the large-scale meridional overturning circulation in the Atlantic Ocean. In conjunction with a slowdown of the bottom cell, we find that the upper cell of the Atlantic Meridional Overturning Circulation (AMOC) progressively strengthens in response to changes in density gradients in the deep South Atlantic. Changes in the AMOC are tightly connected to increased meridional heat transport and therefore have a strong influence on global and regional climate patterns in the North Atlantic. The simulations suggest that the AABW-induced strengthening of the AMOC is already extending into the North Atlantic, progressing at a rate of about 0.2 Sv per decade, implying that the process may need to be taken into account in projections of future North Atlantic climate.

  11. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels

    SciTech Connect

    Afsin Gungor

    2009-05-15

    Nitrogen oxides are a major environmental pollutant resulting from combustion. This paper presents a modeling study of pollutant NOx emission resulting from low-grade fuel combustion in a circulating fluidized bed. The simulation model accounts for the axial and radial distribution of NOx emission in a circulating fluidized bed (CFB). The model results are compared with and validated against experimental data both for small-size and industrial-size CFBs that use different types of low-grade fuels given in the literature. The present study proves that CFB combustion demonstrated by both experimental data and model predictions produces low and acceptable levels of NOx emissions resulting from the combustion of low-grade fuels. Developed model can also investigate the effects of different operational parameters on overall NOx emission. As a result of this investigation, both experimental data and model predictions show that NOx emission increases with the bed temperature but decreases with excess air if other parameters are kept unchanged. 37 refs., 5 figs., 5 tabs.

  12. Investigation of sludge re-circulating clarifiers design and optimization through numerical simulation.

    PubMed

    Davari, S; Lichayee, M J

    2003-01-01

    In steam thermal power plants (TPP) with open re-circulating wet cooling towers, elimination of water hardness and suspended solids (SS) is performed in clarifiers. Most of these clarifiers are of high efficiency sludge re-circulating type (SRC) with capacity between 500-1,500 m3/hr. Improper design and/or mal-operation of clarifiers in TPPs results in working conditions below design capacity or production of soft water with improper quality (hardness and S.S.). This causes accumulation of deposits in heat exchangers, condenser tubes, cooling and service water pipes and boiler tubes as well as increasing the ionic load of water at the demineralizing system inlet. It also increases the amount of chemical consumptions and produces more liquid and solid waste. In this regard, a software program for optimal design and simulation of SRCs has been developed. Then design parameters of existing SRCs in four TPPs in Iran were used as inputs to developed software program and resulting technical specifications were compared with existing ones. In some cases improper design was the main cause of poor outlet water quality. In order to achieve proper efficiency, further investigations were made to obtain control parameters as well as design parameters for both mal-designed and/or mal-operated SRCs. PMID:14753549

  13. Available energy of symmetric circulations with application to the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Codoban, Sorin

    We present a theory of available energy for symmetric circulations of a rotating, stratified fluid. The theory is a generalization of the classical theory of available potential energy (APE), in that it accounts for both the momentum and the thermal constraints on the circulation. The generalization relies on the Hamiltonian structure of the conservative dynamics, although (as with classical APE) it still defines the energetics in a non-conservative framework. The energy budget is derived for the circulation transverse to a given balanced reference flow. For a simple example, it is shown that by including momentum constraints, the available energy of the transverse circulation to a symmetrically stable flow is zero, while the energetics of a mechanically driven symmetric circulation properly reflect its causality. The theory is then applied in the context of the primitive equations in spherical coordinates, to diagnose the available energy of the residual mean meridional circulation of the middle atmosphere. Both simulated fields from the Canadian Middle Atmosphere Model and the ERA-40 re-analysis data are used for diagnostic comparison. With the non-resting reference state constructed using the radiative equilibrium temperature the available energy diagnostic robustly identifies the circulation as being thermally damped and mechanically forced, in both the stratosphere and mesosphere, which agrees with its causality. The boundary flux term and the thermal forcing are both negative, with the mechanical forcing, due to deposition of momentum by the waves breaking in-situ, being identified as the driving agent; this agrees with the gyroscopic pumping mechanism as the driving process of the middle atmosphere meridional circulation. In contrast, with the resting (Lorenz-like) reference state the thermal forcing is seen as driving the circulation in the stratosphere (along with the boundary flux), with mechanical forcing being identified as a damping. In the mesosphere

  14. Incorporating circulation statistics in bias correction of GCM ensembles: hydrological application for the Rhine basin

    NASA Astrophysics Data System (ADS)

    Photiadou, Christiana; van den Hurk, Bart; van Delden, Aarnout; Weerts, Albrecht

    2016-01-01

    An adapted statistical bias correction method is introduced to incorporate circulation-dependence of the model precipitation bias, and its influence on estimated discharges for the Rhine basin is analyzed for a historical period. The bias correction method is tailored to time scales relevant to flooding events in the basin. Large-scale circulation patterns (CPs) are obtained through Maximum Covariance Analysis using reanalysis sea level pressure and high-resolution precipitation observations. A bias correction using these CPs is applied to winter and summer separately, acknowledging the seasonal variability of the circulation regimes in North Europe and their correlation with regional precipitation rates over the Rhine basin. Two different climate model ensemble outputs are explored: ESSENCE and CMIP5. The results of the CP-method are then compared to observations and uncorrected model outputs. Results from a simple bias correction based on a delta factor (NoCP-method) are also used for comparison. For both summer and winter, the CP-method offers a statistically significant improvement of precipitation statistics for subsets of data dominated by particular circulation regimes, demonstrating the circulation-dependence of the precipitation bias. Uncorrected, CP and NoCP corrected model outputs were used as forcing to a hydrological model to simulate river discharges. The CP-method leads to a larger improvement in simulated discharge in the Alpine area in winter than in summer due to a stronger dependence of Rhine precipitation on atmospheric circulation in winter. However, the NoCP-method, in comparison to the CP-method, improves the discharge estimations over the entire Rhine basin.

  15. Large eddy simulation model for wind-driven sea circulation in coastal areas

    NASA Astrophysics Data System (ADS)

    Petronio, A.; Roman, F.; Nasello, C.; Armenio, V.

    2013-12-01

    In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier-Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of

  16. Simulating Titan's methane cycle with the TitanWRF General Circulation Model

    NASA Astrophysics Data System (ADS)

    Newman, Claire E.; Richardson, Mark I.; Lian, Yuan; Lee, Christopher

    2016-03-01

    Observations provide increasing evidence of a methane hydrological cycle on Titan. Earth-based and Cassini-based monitoring has produced data on the seasonal variation in cloud activity and location, with clouds being observed at increasingly low latitudes as Titan moved out of southern summer. Lakes are observed at high latitudes, with far larger lakes and greater areal coverage in the northern hemisphere, where some shorelines extend down as far as 50°N. Rainfall at some point in the past is suggested by the pattern of flow features on the surface at the Huygens landing site, while recent rainfall is suggested by surface change. As with the water cycle on Earth, the methane cycle on Titan is both impacted by tropospheric dynamics and likely able to impact this circulation via feedbacks. Here we use the 3D TitanWRF General Circulation Model (GCM) to simulate Titan's methane cycle. In this initial work we use a simple large-scale condensation scheme with latent heat feedbacks and a finite surface reservoir of methane, and focus on large-scale dynamical interactions between the atmospheric circulation and methane, and how these impact seasonal changes and the long term (steady state) behavior of the methane cycle. We note five major conclusions: (1) Condensation and precipitation in the model is sporadic in nature, with interannual variability in its timing and location, but tends to occur in association with both (a) frequent strong polar upwelling during spring and summer in each hemisphere, and (b) the Inter-Tropical Convergence Zone (ITCZ), a region of increased convergence and upwelling due to the seasonally shifting Hadley cells. (2) An active tropospheric methane cycle affects the stratospheric circulation, slightly weakening the stratospheric superrotation produced. (3) Latent heating feedback strongly influences surface and near-surface temperatures, narrowing the latitudinal range of the ITCZ, and changing the distribution - and generally weakening the

  17. Application of Circulation Control Technology to Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Sankar, L. N.; Englar, R. J.; Munro, Scott E.; Li, Yi; Gaeta, R. J.

    2003-01-01

    This report is a summary of the work performed by Georgia Tech Research Institute (GTRI) under NASA Langley Grant NAG-1-2146, which was awarded as a part of NASA's Breakthrough Innovative Technologies (BIT) initiative. This was a three-year program, with a one-year no-cost extension. Each year's study has been an integrated effort consisting of computational fluid dynamics, experimental aerodynamics, and detailed noise and flow measurements. Year I effort examined the feasibility of reducing airframe noise by replacing the conventional wing systems with a Circulation Control Wing (CCW), where steady blowing was used through the trailing edge of the wing over a Coanda surface. It was shown that the wing lift increases with CCW blowing and indeed for the same lift, a CCW wing was shown to produce less noise. Year 2 effort dealt with a similar study on the role of pulsed blowing on airframe noise. The main objective of this portion of the study was to assess whether pulse blowing from the trailing edge of a CCW resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in farfield noise of up to 5 dB is measured when pulse flow is compared with steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. The computational analysis showed that for a given time-averaged mass flow rate, pulsed jets give a higher value of C(sub l) and a higher L/D than equivalent steady jets. This benefit is attributable to higher instantaneous jet velocities, and higher instantaneous C(sub mu) values for the pulsed jet. Pulsed jet benefits increase at higher

  18. Simulating Titan’s tropospheric circulation with the Portable University Model of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Grieger, B.; Segschneider, J.; Keller, H. U.; Rodin, A. V.; Lunkeit, F.; Kirk, E.; Fraedrich, K.

    2004-01-01

    The Portable University Model of the Atmosphere (PUMA) is a general circulation model of intermediate complexity. In the model setup used herein, the dynamics is driven by restoration to a prescribed temperature field. Given an observed three-dimensional field of restoration temperatures, the feedback of aerosol distribution to the radiation scheme and hence to the dynamics is excluded from calculations. PUMA is adapted to Titan conditions and used to carry out a series of experiments with temperature fields based on radio occultation and infrared spectroscopy measurements taken by Voyager 1 in 1980. The resultant winds are prograde with maximum wind speeds of about 14 m/s in the troposphere. This simulation demonstrates capabilities of a restricted complexity model and provides a contribution to the prediction of the descent trajectory of the Huygens lander in January 2005.

  19. Natural circulation in a VVER reactor geometry: Experiments with the PACTEL facility and Cathare simulations

    SciTech Connect

    Raussi, P.; Kainulainen, S.; Kouhia, J.

    1995-09-01

    There are some 40 reactors based on the VVER design in use. Database available for computer code assessment for VVER reactors is rather limited. Experiments were conducted to study natural circulation behaviour in the PACTEL facility, a medium-scale integral test loop patterned after VVER pressurized water reactors. Flow behaviour over a range of coolant inventories was studied with a small-break experiment. In the small-break experiments, flow stagnation and system repressurization were observed when the water level in the upper plenum fell below the entrances to the hot legs. The cause was attributed to the hot leg loop seals, which are a unique feature of the VVER geometry. At low primary inventories, core cooling was achieved through the boiler-condenser mode. The experiment was simulated using French thermalhydraulic system code CATHARE.

  20. Simulation Study of Effects of Solar Irradiance and Sea Surface Temperature on Monsoons and Global Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Mehta, V.; Lau, W. K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A recent version of the GEOS 2 GCM was used to isolate the roles of the annual cycles of solar irradiation and/or sea-surface temperatures (SSTs) on the simulated circulation and rainfall. Four 4-year long integrations were generated with the GCM. The first integration, called Control Case, used daily-interpolated SSTs from a 30 year monthly SST climatology that was obtained from the analyzed SST-data, while the solar irradiation at the top of the atmosphere was calculated normally at hourly intervals. The next two cases prescribed the SSTs or the incoming solar irradiance at the top of the atmosphere at their annual mean values, respectively while everything else was kept the same as in the Control Case. In this way the influence of the annual cycles of both external forcings was isolated.

  1. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    PubMed

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  2. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS)

    PubMed Central

    Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September–May) and mixing (June–August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore—offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  3. Martian atmospheric gravity waves simulated by a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul

    2016-07-01

    Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.

  4. Commercial application of rainfall simulation

    NASA Astrophysics Data System (ADS)

    Loch, Rob J.

    2010-05-01

    Landloch Pty Ltd is a commercial consulting firm, providing advice on a range of land management issues to the mining and construction industries in Australia. As part of the company's day-to-day operations, rainfall simulation is used to assess material erodibility and to investigate a range of site attributes. (Landloch does carry out research projects, though such are not its core business.) When treated as an everyday working tool, several aspects of rainfall simulation practice are distinctively modified. Firstly, the equipment used is regularly maintained, and regularly upgraded with a primary focus on ease, safety, and efficiency of use and on reliability of function. As well, trained and experienced technical support is considered essential. Landloch's chief technician has over 10 years experience in running rainfall simulators at locations across Australia and in Africa and the Pacific. Secondly, the specific experimental conditions established for each set of rainfall simulator runs are carefully considered to ensure that they accurately represent the field conditions to which the data will be subsequently applied. Considerations here include: • wetting and drying cycles to ensure material consolidation and/or cementation if appropriate; • careful attention to water quality if dealing with clay soils or with amendments such as gypsum; • strong focus on ensuring that the erosion processes considered are those of greatest importance to the field situation of concern; and • detailed description of both material and plot properties, to increase the potential for data to be applicable to a wider range of projects and investigations. Other important company procedures include: • For each project, the scientist or engineer responsible for analysing and reporting rainfall simulator data is present during the running of all field plots, as it is essential that they be aware of any specific conditions that may have developed when the plots were subjected

  5. An Active Flow Circulation Controlled Flap Concept for General Aviation Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Viken, Sally A.; Washburn, Anthony E.; Jenkins, Luther N.; Cagle, C. Mark

    2002-01-01

    A recent focus on revolutionary aerodynamic concepts has highlighted the technology needs of general aviation and personal aircraft. New and stringent restrictions on these types of aircraft have placed high demands on aerodynamic performance, noise, and environmental issues. Improved high lift performance of these aircraft can lead to slower takeoff and landing speeds that can be related to reduced noise and crash survivability issues. Circulation Control technologies have been around for 65 years, yet have been avoided due to trade offs of mass flow, pitching moment, perceived noise etc. The need to improve the circulation control technology for general aviation and personal air-vehicle applications is the focus of this paper. This report will describe the development of a 2-D General Aviation Circulation Control (GACC) wing concept that utilizes a pulsed pneumatic flap.

  6. New Insights about Meridional Circulation Dynamics from 3D MHD Global Simulations of Solar Convection and Dynamo Action

    NASA Astrophysics Data System (ADS)

    Passos, D.; Charbonneau, P.; Miesch, M. S.

    2016-04-01

    The solar meridional circulation is a "slow", large scale flow that transports magnetic field and plasma throughout the convection zone in the (r,θ) plane and plays a crucial role in controlling the magnetic cycle solutions presented by flux transport dynamo models. Observations indicate that this flow speed varies in anti-phase with the solar cycle at the solar surface. A possible explanation for the source of this variation is based on the fact that inflows into active regions alter the global surface pattern of the meridional circulation. In this work we examine the meridional circulation profile that emerges from a 3D global simulation of the solar convection zone, and its associated dynamics. We find that at the bottom of the convection zone, in the region where the toroidal magnetic field accumulates, the meridional circulation is highly modulated through the action of a magnetic torques and thus provides evidence for a new mechanism to explain the observed cyclic variations.

  7. Numerical Studies on an Active Flow Circulation Controlled Flap Concept for Aeronautical Applications

    NASA Astrophysics Data System (ADS)

    Zacharos, Athanasios; Kontis, Konstantinos

    Four different circulation controlled airfoils have been numerically simulated. The baseline airfoil was a 17% thick supercritical airfoil. Different blowing rates have been examined by adjusting the slot height and blowing velocity. A number of turbulence models were employed, these were: Spalart-Allmaras, standard κ ɛ, realizable κ ɛ, SST κ ω and Reynolds stress model. The results from the numerical simulations were compared with experimental data at zero angle of attack. The solutions indicated that at momentum coefficients, Cμ=0.1 or greater, all isotropic turbulence models failed to capture the physics of the circulation control problem. The Reynolds stress model captured successfully the physics at Cμ=0.1. At greater values of momentum coefficient, the Reynolds stress model also failed to predict the experimentally measured lift coefficients because the jet remained attached to the surface of the airfoil. The Spalart-Allmaras model consistently predicted the right trend for lift variation with Cμ in all cases tested.

  8. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    NASA Astrophysics Data System (ADS)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  9. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    EPA Science Inventory

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...

  10. Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model

    SciTech Connect

    Harzallah, A.; Sadourny, R.

    1995-03-01

    The variability of atmospheric flow is analyzed by separating it into an internal part due to atmospheric dynamics only and an external (or forced) part due to the variability of sea surface temperature forcing. The two modes of variability are identified by performing an ensemble of seven independent long-term simulations of the atmospheric response to observed SST (1970-1988) with the LMD atmospheric general circulation model. The forced variability is defined from the analysis of the ensemble mean and the internal variability from the analysis of deviations from the ensemble mean. Emphasis is put on interannual variability of sea level pressure and 500-hPa geopotential height for the Northern Hemisphere winter. In view of the large systematic errors related to the relatively small number of realizations, unbiased variance estimators have been developed. Although statistical significance is not reached in some extratropical regions, large significant extratropical responses are found at the North Pacific-Alaska sector for SLP and over western Canada and the Aleutians for 500-hPa geopotential height. The influence of SST variations on internal variability is also examined by using a 7-year simulation using the climatological SST seasonal cycle. It is found that interannual SST changes strongly influence the geographical distribution of internal variability; in particular, it tends to increase it over oceans. EOF decompositions, showing that the model realistically simulates the leading observed variability modes. The geographical structure of internal variability patterns is found to be similar to that of total variability, although similar modes tend to evolve rather differently in time. The zonally symmetric seesaw dominates the internal variability for both observed and climatologically prescribed SST. 46 refs., 15 figs., 3 tabs.

  11. Future applications of simulators in process control

    SciTech Connect

    Ruppel, F.; Wysor, W.

    1997-03-21

    Future applications of simulators in process control will see activities with high return on investment in areas such as concurrent engineering, hardware-in-the-loop controller testing, process fault detection, and Internet-retrievable simulation models and tools. These applications are based on advancing technology in the field of simulation technology. In this paper, the advancing technology will be reviewed, and projections to future uses of simulators in process control will be made.

  12. Baroclinic internal wave energy distribution in the Baltic Sea derived from 45 years of circulation simulations

    NASA Astrophysics Data System (ADS)

    Rybin, Artem; Soomere, Tarmo; Kurkina, Oxana; Kurkin, Andrey; Rouvinskaya, Ekaterina; Markus Meier, H. E.

    2016-04-01

    Internal waves and internal tides are an essential component of the functioning of stratified shelf seas. They carry substantial amounts of energy through the water masses, drive key hydrophysical processes such as mixing and overturning and support the functioning of marine ecosystem in many ways. Their particular impact becomes evident near and at the bottom where they often create substantial loads to engineering structures and exert a wide range of impacts on the bottom sediments and evolution of the seabed. We analyse several properties of spatio-temporal distributions of energy of relatively long-period large-scale internal wave motions in the Baltic Sea. The analysis is based on numerically simulated pycnocline variations that are extracted from the hydrographic data calculated by the Rossby Centre Ocean circulation model (RCO) for the entire Baltic Sea for 1961-2005. This model has a horizontal resolution of 2 nautical miles and uses 41 vertical layers with a thickness between 3 m close to the surface and 12 m in 250 m depth. The model is forced with atmospheric data derived from the ERA-40 re-analysis using a regional atmosphere model with a horizontal resolution of 25 km. It also accounts for river inflow and water exchange through the Danish Straits. See (Meier, H.E.M., Höglund, A., 2013. Studying the Baltic Sea circulation with Eulerian tracers, in Soomere, T., Quak, E., eds., Preventive Methods for Coastal Protection, Springer, Cham, Heidelberg, 101-130) for a detailed description of the model and its forcing. The resolution of the model output used in this study (once in 6 hours) is sufficient for estimates of spectral amplitudes of the displacements of isopycnal surfaces with a typical period of 2-12 days. We provide the analysis of kinetic and potential energy of motions with these periods. The resulting maps of the maxima of energy and spatial distributions of near-bottom velocities have been evaluated for the entire simulation interval of 45

  13. An analysis of the synoptic and climatological applicability of circulation type classifications for Ireland

    NASA Astrophysics Data System (ADS)

    Broderick, Ciaran; Fealy, Rowan

    2013-04-01

    Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for

  14. Simulation of Indian Monsoon Variability in the Medieval Warm Period using ECHAM5 General Circulation Model

    NASA Astrophysics Data System (ADS)

    Polanski, Stefan; Fallah, Bijan; Prasad, Sushma; Cubasch, Ulrich

    2013-04-01

    Within the framework of the DFG research group HIMPAC, the general circulation model ECHAM5 has been used to simulate the Indian monsoon and its variability during the Medieval Warm Period (MWP; 900-1100 AD) and for recent climate (REC; 1800-2000 AD). The focus is on the analysis of internal and external drivers leading to extreme rainfall events over India from interannual to multidecadal time scale. An evaluation of spatio-temporal monsoon patterns with present-day observation data is in agreement with other state-of-the-art monsoon modeling studies. The simulated monsoon intensity on multidecadal time scale is weakened (enhanced) in summer (winter) due to colder (warmer) SSTs in the Indian Ocean. Variations in solar insolation are the main drivers for these SST anomalies, verified by very high temporal correlations between Total Solar Irradiance and All-India-Monsoon-Rainfall in summer monsoon months (-0.95). The external solar forcing is coupled and overlain by internal climate modes of the Ocean (ENSO and IOD) with asynchronous intensities and lengths of periods. In addition, the model simulations have been compared with a relative moisture index derived from paleoclimatic reconstructions based on various proxies and archives in India (Anoop et al., 2012 (under revision); Bhattacharya et al., 2007; Chauhan et al., 2000; Denniston et al., 2000; Ely et al., 1999; Kar et al., 2002; Ponton et al., 2012; Prasad et al., 2012 (under revision)). In this context, the reconstructed climate of the well-dated Lonar record in Central India has been highlighted and evaluated the first time (Anoop et al., 2012 (under revision); Prasad et al., 2012 (under revision)). Particularly with regard to the long continuously chronology of the last 11000 years, the Lonar site gives a unique possibility for a comparison of long-term climate time series. The simulated relative annual rainfall anomalies ("MWP" minus "REC") are in agreement with the reconstructed moisture index. The dry

  15. A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.

    2000-01-01

    The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.

  16. Mechanisms for decadal scale variability in a simulated Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Medhaug, I.; Langehaug, H. R.; Eldevik, T.; Furevik, T.; Bentsen, M.

    2012-07-01

    Variability in the Atlantic Meridional Overturning Circulation (AMOC) has been analysed using a 600-year pre-industrial control simulation with the Bergen Climate Model. The typical AMOC variability has amplitudes of 1 Sverdrup (1 Sv = 106 m3 s-1) and time scales of 40-70 years. The model is reproducing the observed dense water formation regions and has very realistic ocean transports and water mass distributions. The dense water produced in the Labrador Sea (1/3) and in the Nordic Seas, including the water entrained into the dense overflows across the Greenland-Scotland Ridge (GSR; 2/3), are the sources of North Atlantic Deep Water (NADW) forming the lower limb of the AMOC's northern overturning. The variability in the Labrador Sea and the Nordic Seas convection is driven by decadal scale air-sea fluxes in the convective region that can be related to opposite phases of the North Atlantic Oscillation. The Labrador Sea convection is directly linked to the variability in AMOC. Linkages between convection and water mass transformation in the Nordic Seas are more indirect. The Scandinavian Pattern, the third mode of atmospheric variability in the North Atlantic, is a driver of the ocean's poleward heat transport (PHT), the overall constraint on northern water mass transformation. Increased PHT is both associated with an increased water mass exchange across the GSR, and a stronger AMOC.

  17. General circulation model simulations of recent cooling in the east-central United States

    NASA Astrophysics Data System (ADS)

    Robinson, Walter A.; Reudy, Reto; Hansen, James E.

    2002-12-01

    In ensembles of retrospective general circulation model (GCM) simulations, surface temperatures in the east-central United States cool between 1951 and 1997. This cooling, which is broadly consistent with observed surface temperatures, is present in GCM experiments driven by observed time varying sea-surface temperatures (SSTs) in the tropical Pacific, whether or not increasing greenhouse gases and other time varying climate forcings are included. Here we focus on ensembles with fixed radiative forcing and with observed varying SST in different regions. In these experiments the trend and variability in east-central U.S. surface temperatures are tied to tropical Pacific SSTs. Warm tropical Pacific SSTs cool U.S. temperatures by diminishing solar heating through an increase in cloud cover. These associations are embedded within a year-round response to warm tropical Pacific SST that features tropospheric warming throughout the tropics and regions of tropospheric cooling in midlatitudes. Precipitable water vapor over the Gulf of Mexico and the Caribbean and the tropospheric thermal gradient across the Gulf Coast of the United States increase when the tropical Pacific is warm. In observations, recent warming in the tropical Pacific is also associated with increased precipitable water over the southeast United States. The observed cooling in the east-central United States, relative to the rest of the globe, is accompanied by increased cloud cover, though year-to-year variations in cloud cover, U.S. surface temperatures, and tropical Pacific SST are less tightly coupled in observations than in the GCM.

  18. Inertance estimation in a lumped-parameter hydraulic simulator of human circulation.

    PubMed

    Lanzarone, Ettore; Ruggeri, Fabrizio

    2013-06-01

    Pulsatile mock loop systems are largely used to investigate the cardiovascular system in vitro. They consist of a pump, which replicates the heart, coupled with a lumped-parameter hydraulic afterload, which simulates vasculature. An accurate dimensioning of components is required for a reliable mimicking of the physiopathological behavior of the system. However, it is not possible to create a component for the afterload inertance, and inertance contributions are present in the entire circuit. Hence, in the literature, inertance is neglected or qualitatively evaluated. In this paper, we propose two quantitative methods (Maximum-likelihood estimation (MLE) and Bayesian estimation) for estimating afterload inertance based on observed pressure and flow waveforms. These methods are also applied to a real mock loop system. Results show that the system has an inertance comparable with the literature reference value of the entire systemic circulation, and that the expected variations over inlet average flow and pulse frequency are in general confirmed. Comparing the methods, the Bayesian approach results in higher and more stable estimations than the classical MLE. PMID:23699724

  19. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Nishino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-12-01

    Large-eddy simulations are performed of a turbulent Coanda jet separating from a rounded trailing edge of a simplified circulation control airfoil model. The freestream Reynolds number based on the airfoil chord is 0.49×106, the jet Reynolds number based on the jet slot height is 4470, and the ratio of the peak jet velocity to the freestream velocity is 3.96. Three different grid resolutions are used to show that their effect is very small on the mean surface pressure distribution, which agrees very well with experiments, as well as on the mean velocity profiles over the Coanda surface. It is observed that the Coanda jet becomes fully turbulent just downstream of the jet exit, accompanied by asymmetric alternating vortex shedding behind a thin (but blunt) jet blade splitting the jet and the external flow. A number of "backward-tilted" hairpin vortices (i.e., the head of each hairpin being located upstream of the legs) are observed around the outer edge of the jet over the Coanda surface. These hairpins create strong upwash between the legs and weak downwash around them, contributing to turbulent mixing of the high-momentum jet below the hairpins and the low-momentum external flow above them. The probability density distribution of velocity fluctuations is shown to be highly asymmetric in this region, consistent with the observation that the hairpin vortices create strong upwash and weak downwash. Turbulent structures inside the jet, its spreading rate, and self-similarity are also discussed.

  20. Acute effects of a large bolide impact simulated by a global atmospheric circulation model

    NASA Technical Reports Server (NTRS)

    Thompson, Starley L.; Crutzen, P. J.

    1988-01-01

    The goal is to use a global three-dimensional atmospheric circulation model developed for studies of atmospheric effects of nuclear war to examine the time evolution of atmospheric effects from a large bolide impact. The model allows for dust and NOx injection, atmospheric transport by winds, removal by precipitation, radiative transfer effects, stratospheric ozone chemistry, and nitric acid formation and deposition on a simulated Earth having realistic geography. Researchers assume a modest 2 km-diameter impactor of the type that could have formed the 32 km-diameter impact structure found near Manson, Iowa and dated at roughly 66 Ma. Such an impact would have created on the order of 5 x 10 to the 10th power metric tons of atmospheric dust (about 0.01 g cm(-2) if spread globally) and 1 x 10 to the 37th power molecules of NO, or two orders of magnitude more stratospheric NO than might be produced in a large nuclear war. Researchers ignore potential injections of CO2 and wildfire smoke, and assume the direct heating of the atmosphere by impact ejecta on a regional scale is not large compared to absorption of solar energy by dust. Researchers assume an impact site at 45 N in the interior of present day North America.

  1. Impacts of soil moisture content on simulated mesoscale circulations during the summer over eastern Spain

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Caselles, V.; Estrela, M. J.

    2015-10-01

    The Regional Atmospheric Modeling System (RAMS) version 6.0 has been used to investigate the impact and influence of initial soil moisture distributions on mesoscale circulations. To do this, two different events have been selected from the 2011 summer season: one at the beginning of the season (June) and the other one at the end of the season (August). For each of these mesoscale frameworks a total of five distinct simulations were performed varying the initial soil moisture content: a control run and four additional sensitivity tests. The control run, corresponding to a low soil moisture content, is the one used within the real-time weather forecasting system implemented in the Valencia Region. In the corresponding sensitivity simulations this low value has been progressively increased in different steps until the original soil moisture content doubled. It has been found that high soil moisture is associated with colder near-surface temperature, a moister relative humidity and a slightly lower near-surface wind speed, whereas a drier soil resulted in a dryer relative humidity, warmer temperature and a slight low-level wind. In general, the highest soil moisture contents are required to reproduce the near-surface daily cycles of temperature and relative humidity through higher values of latent heat flux and lower values of sensible heat flux. In this regard, moistening the soil improves the previous results obtained using the RAMS configuration used within the operational forecasting system. However, the wind speed is not quite sensitive to changes in the soil moisture content over flatter terrain. Finally, although a warming and dryer mixing layer is obtained with the lowest soil moisture content, the mixing layer height remains practically unchanged when using the distinct configurations over flat terrain. These differences are enhanced over more complex terrain.

  2. Investigation of wellbore cooling by circulation and fluid penetration into the formation using a wellbore thermal simulator computer code

    SciTech Connect

    Duda, L.E.

    1987-01-01

    The high temperatures of geothermal wells present severe problems for drilling, logging, and developing these reservoirs. Cooling the wellbore is perhaps the most common method to solve these problems. However, it is usually not clear what may be the most effective wellbore cooling mechanism for a given well. In this paper, wellbore cooling by the use of circulation or by fluid injection into the surrounding rock is investigated using a wellbore thermal simulator computer code. Short circulation times offer no prolonged cooling of the wellbore, but long circulation times (greater than ten or twenty days) greatly reduce the warming rate after shut-in. The dependence of the warming rate on the penetration distance of cooler temperatures into the rock formation (as by fluid injection) is investigated. Penetration distances of greater than 0.6 m appear to offer a substantial reduction in the warming rate. Several plots are shown which demonstrate these effects.

  3. Response of the Tropical Atmospheric Circulation to Glacial Boundary Conditions Simulated by an Ensemble of Coupled Climate Models

    NASA Astrophysics Data System (ADS)

    di Nezio, P. N.; Clement, A. C.; Vecchi, G. A.

    2009-12-01

    The response of the tropical atmospheric circulation to Last Glacial Maximum (LGM) boundary conditions is analyzed using an ensemble of coordinated climate model experiments performed for the Paleoclimate Modelling Intercomparison Project Phase II. The multi-model changes in the surface circulation of the Tropical Pacific are dominated by cross-equatorial winds flowing from the Northern hemisphere (NH) to the Southern hemisphere (SH) along with a strengthening of the easterlies over the equatorial Pacific. The anomalous cross-equatorial winds have been typically associated with an anomalous Hadley cell with the ascending branch in the SH and the descending branch in the NH compensating changes in atmospheric heat transport. However, in this ensemble of coupled General Circulation Models (GCMs) the changes in the tropical circulation result from different forcing in each hemisphere. In the NH hemisphere the changes are dominated by the topography of the ice sheets, while in the SH the changes result from cooling due to decreased CO2. The changes in circulation due to the topography of the icesheets are diagnosed using a steady s-coordinate primitive equation model linearized about a zonally symmetric basic state that solves for the eddy component of the circulation. The solutions from this model for each GCM indicate that differences in the simulation of the mean climate result in differences in the response to LGM topography. The multi-model atmospheric response in the NH is analogous to the expansion of the Aleutian low during boreal winter in the present climate, when the NH subtropical high is squeezed southeastward by an expanded Aleutian low. In the SH the models simulate an eastward expansion of the South Pacific Convergence Zone and contraction of the eastern Pacific dry zone consistent with reduced subsidence associated with a slowing down of the SH Hadley cell. This eastward shift in the mean climatology results in weakened trade winds. In addition to the

  4. Synoptic-climatological applicability of classifications of circulation patterns from the COST733 collection

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Cahynová, Monika

    2010-05-01

    The synoptic-climatological applicability of a classification of circulation patterns is defined as its ability to stratify surface climate elements. We analyze a large number of classifications of circulation patterns that have been produced and collected within the COST733 Action "Harmonization and Applications of Weather Types Classifications for European Regions" for 12 European domains as to their ability to stratify temperature and precipitation across Europe. The degree of stratification is quantified by conducting the Kolmogorov-Smirnov test between the distribution conditioned by a particular circulation type and the unconditional distribution. As the climate data, station series from the ECA&D database and gridded dataset produced in the ENSEMBLES project have been used. The results are sensitive to the number of classes (classifications with a lower number of classes tending to yield a better stratification) and depend on season. Although the overall ‘best' method (or a group of optimum methods) cannot be identified, methods with generally a better and worse performance can be determined. The participation of the Czech Republic in the COST733 Action is supported by the Ministry of Education, Youth, and Sports of the Czech Republic under contract OC115. Support from the Grant Agency of the Czech Academy of Sciences, project A300420805, is also acknowledged.

  5. Application of data to piloted simulators

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.

    1987-01-01

    The application of a further developed analytical model and JAWS data to a piloted simulator is addressed. The Ames simulator provides a facility for the development of piloting procedures, and for the selection of training scenarios. The system is operational with the new wind shear models and comprehensive data output. The use of these models with the simulator is dicussed in detail.

  6. Effects of Solar Particle Event-Like Proton Radiation and/or Simulated Microgravity on Circulating Mouse Blood Cells

    PubMed Central

    Romero-Weaver, Ana L.; Lin, Liyong; Carabe-Fernandez, Alejandro; Kennedy, Ann R.

    2014-01-01

    Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints. PMID:25360441

  7. Effects of Solar Particle Event-Like Proton Radiation and/or Simulated Microgravity on Circulating Mouse Blood Cells.

    PubMed

    Romero-Weaver, Ana L; Lin, Liyong; Carabe-Fernandez, Alejandro; Kennedy, Ann R

    2014-08-01

    Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints. PMID:25360441

  8. Application of Molded Interconnect Device technology to the realization of a self-biased circulator

    NASA Astrophysics Data System (ADS)

    Laur, Vincent; Mattei, Jean-Luc; Vérissimo, Grégory; Queffelec, Patrick; Lebourgeois, Richard; Ganne, Jean-Pierre

    2016-04-01

    This paper describes the first electromagnetic characterization of a self-biased circulator in molded interconnect device (MID) technology. The circulator was designed using a 3D full-wave commercial simulator. It consists of microstrip access lines connected to a Y-junction in Substrate Integrated Waveguide (SIW) technology. Unlike classical technologies, the SIW Y-junction was not fabricated using metallic vias but by a Laser Direct Structuring (LDS) technique. A molded Cyclo-Olefin Polymer (COP) was used as a substrate and 3D metallized. The microwave properties of LDS-compatible COP are not well known so we investigated them through the use of cavity-perturbation and rectangular waveguide characterization methods. The device was then machined to insert a pre-oriented strontium hexaferrite puck doped with cobalt and lanthanum (Sr0,7La0,3Fe11,7Co0,3O19). The characteristics of the MID circulator were assessed between 28 and 32 GHz. Without magnets, insertion losses of 3.32 dB were measured at 30.7 GHz. At the same frequency, an isolation level of 13.89 dB and return losses of 19.89 dB were observed. These measurements demonstrate for the first time the high potential of MID technology for the realization of low-cost non-reciprocal devices.

  9. WHTSubmersible: a simulator for estimating transient circulation temperature in offshore wells with the semi-submersible platform

    NASA Astrophysics Data System (ADS)

    Song, Xun-cheng; Liu, Yong-wang; Guan, Zhi-chuan

    2015-10-01

    Offshore wellbore temperature field is significant to drilling fluids program, equipment selection, evaluations on potential risks caused by casing thermal stress, etc. This paper mainly describes the theoretical basis, module structure and field verification of the simulator WHTSubmersible. This computer program is a useful tool for estimating transient temperature distribution of circulating drilling fluid on semi-submersible platform. WHTSubmersible is based on a mathematical model which is developed to consider radial and axial two-dimensional heat exchange of the inner drill pipe, the annulus, the drill pipe wall, the sea water and the formation in the process of drilling fluid circulation. The solution of the discrete equations is based on finite volume method with an implicit scheme. This scheme serves to demonstrate the numerical solution procedure. Besides, the simulator also considers the heating generated by drilling fluid circulation friction, drill bit penetrating rocks, friction between the drill column and the borehole wall, and the temperature effect on thermal physical properties and rheology of the drilling fluid. These measures ensure more accurate results. The simulator has been programmed as a dynamic link library using Visual C++, the routine interface is simple, which can be connected with other computer programs conveniently. The simulator is validated with an actual well temperature filed developed on a semi-submersible platform in South China, and the error is less than 5 %.

  10. Observed and simulated variability of the Atlantic meridional overturning circulation and the deep western boundary current

    NASA Astrophysics Data System (ADS)

    Mielke, Charlotte; Frajka-Williams, Eleanor; Gary, Stefan; Shimizu, Kenji; Toole, John; Baehr, Johanna

    2014-05-01

    Despite the importance of Atlantic meridional overturnig circulation (AMOC) for the climate of Africa, America and Europe, continuous AMOC observations are at present restricted to two latitudes, and are available for less than ten years. We therefore investigate whether the AMOC's variability can be inferred from measurements of the deep western boundary current (DWBC), which are already available at several locations. To that end, we jointly analyze the available 26°N RAPID and the 41°N Argo-based AMOC estimates with RAPID and line W (40°N) DWBC estimates. We also compare them to a 60-year simulation with a high-resolution NCEP-forced ocean model. The DWBC and its layers are defined dynamically in the model based on a comparison of temperature-versus-salinity data in model and observations and the time-dependent velocity field. On the timescales where observations are available, the model is able to reproduce the variability of the DWBC and its individual layers at both locations. Our preliminary analysis of the observational data and model results suggests that different mechanisms dominate the DWBC's variability at different timescales. On sub-seasonal to seasonal timescales, the DWBC is mostly barotropic, and its variability is linked to local processes. Thus, the DWBC has a well-defined seasonal cycle which is opposite to the seasonal cycle of the non-Ekman component of the AMOC seasonal cycle. On interannual timescales, there is no obvious relation between AMOC and DWBC. However, on decadal timescales, our analysis indicates covariability between AMOC and DWBC. We conclude that although caution should be exercised on interannual timescales, the DWBC might be used as a proxy for long-term AMOC trends and possibly modulations of the AMOC's seasonal cycle.

  11. Simulation of three-dimensional circulation and hydrography over the Grand Banks of Newfoundland

    NASA Astrophysics Data System (ADS)

    Han, Guoqi; Ma, Zhimin; deYoung, Brad; Foreman, Mike; Chen, Nancy

    There are few ocean models that both adequately resolve the cross-shelf structure of the Labrador Current and have been sufficiently evaluated against in situ observations at tidal, synoptic and seasonal scales. We present a three-dimensional, high-resolution, prognostic, nonlinear circulation model for the Newfoundland offshore based on the finite volume coastal ocean model (FVCOM). The FVCOM uses unstructured grid in the horizontal and thus allows efficient and effective use of grid resolution to resolve coastal- and shelf-scale features. The model results are evaluated against current meter measurements, vessel-mounted acoustic Doppler current profiler (ADCP) data, and tide-gauge observations. The FVCOM climatological monthly-mean currents over the shelf and slope show good agreement with observations and substantial improvement over those from an earlier finite-element model. The simulated tidal elevations agree well (4 cm of the root-sum-square absolute error for the total tidal height) with observations, and show improvement over previous tidal models over the Labrador Shelf. The hindcasts for the spring to fall of 1999 show reasonable skill in reproducing temperature, salinity and currents. At station 27 the observed temperature and salinity have seasonal ranges of 14 °C and 1.5 psu near the surface from April to November; while the root-mean-square (RMS) differences are 2.1 °C and 0.3 psu between the model and observations. On the Flemish Cap transect the observed temperature and salinity range from -1.5 to 13.1 °C and from 31.3 to 34.9 psu on July 17-20, 1999; while the RMS differences are 1.0 °C and 0.2 psu. The model-observation velocity difference ratio is 0.53 on this transect on July 17-18, 1999.

  12. a Mesoscale Planetary Boundary Layer Numerical Model for Simulations of Topographically Induced Circulations.

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Yuang Albert

    1990-01-01

    A mesoscale planetary boundary layer (PBL) numerical model is developed to investigate airflow over complex topography. The model physics includes PBL turbulent transfer, atmospheric longwave and shortwave radiation, diurnal energy budgets over ground, cloud microphysics and subgrid cumulus parameterization. The model utilizes a new fourth order Crowley advection scheme which preserves phase and amplitude much better than other Crowley schemes. Turbulence closures using the turbulent kinetic energy (TKE) and dissipation (varepsilon ) equations are investigated with the level 2.5 scheme of Mellor and Yamada (1982) to better determine eddy diffusivities. One-dimensional (1-D) model results show that the PBL flows under various stability conditions are not significantly sensitive to the modified Blackadar's and Kolmogorov's eddy mixing length formations, although the latter yields excessively large mixing lengths in the entrainment region of the upper PBL. With the same prognostic TKE equation, the model results show insensitivity of the 1-D flow to the details of diagnostic formulations in the closures and to eddy Prandtl numbers. A 2-D model is used to stimulate January 28 cold -air outbreak over the Gulf Stream region during the IOP -2 (Intensive Observation Period) of the 1986 Genesis of Atlantic Lows Experiment (GALE). The modeled 2-D circulation system is found to be sensitive to Prandtl number, in contrast to the 1-D model results. Prandtl number becomes increasingly important as the clouds begin to interact with the marine boundary layer (MBL). Using the E-varepsilon closure, the model predicts the observed MBL structure that includes a low level jet west of the Gulf Stream warm core and a constrained boundary layer height due to the middle-level stable layer. Two cases with 3-D idealized flow are also simulated for the same GALE IOP. For the easterly onshore ambient flow, a confluence zone appears near the coastline in response to the strong oceanic

  13. North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Lin, Hongyang; Chen, Han-ching; Thompson, Keith; Bentsen, Mats; Böning, Claus W.; Bozec, Alexandra; Cassou, Christophe; Chassignet, Eric; Chow, Chun Hoe; Danabasoglu, Gokhan; Danilov, Sergey; Farneti, Riccardo; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Ilicak, Mehmet; Jung, Thomas; Masina, Simona; Navarra, Antonio; Patara, Lavinia; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sui, Chung-Hsiung; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yeager, Steve G.

    2016-08-01

    We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger

  14. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  15. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  16. The Response of the South Asian Summer Monsoon Circulation to Intensified Irrigation in Global Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Puma, Michael J.; Cook, Benjamin I.

    2013-01-01

    Agricultural intensification in South Asia has resulted in the expansion and intensification of surface irrigation over the twentieth century. The resulting changes to the surface energy balance could affect the temperature contrasts between the South Asian land surface and the equatorial Indian Ocean, potentially altering the South Asian Summer Monsoon (SASM) circulation. Prior studies have noted apparent declines in the monsoon intensity over the twentieth century and have focused on how altered surface energy balances impact the SASM rainfall distribution. Here, we use the coupled Goddard Institute for Space Studies ModelE-R general circulation model to investigate the impact of intensifying irrigation on the large-scale SASM circulation over the twentieth century, including how the effect of irrigation compares to the impact of increasing greenhouse gas (GHG) forcing. We force our simulations with time-varying, historical estimates of irrigation, both alone and with twentieth century GHGs and other forcings. In the irrigation only experiment, irrigation rates correlate strongly with lower and upper level temperature contrasts between the Indian sub-continent and the Indian Ocean (Pearson's r = -0.66 and r = -0.46, respectively), important quantities that control the strength of the SASM circulation. When GHG forcing is included, these correlations strengthen: r = -0.72 and r = -0.47 for lower and upper level temperature contrasts, respectively. Under irrigated conditions, the mean SASM intensity in the model decreases only slightly and insignificantly. However, in the simulation with irrigation and GHG forcing, inter-annual variability of the SASM circulation decreases by *40 %, consistent with trends in the reanalysis products. This suggests that the inclusion of irrigation may be necessary to accurately simulate the historical trends and variability of the SASM system over the last 50 years. These findings suggest that intensifying irrigation, in concert with

  17. Observed and simulated inter-decadal changes in the structure of Southern Hemisphere large-scale circulation

    NASA Astrophysics Data System (ADS)

    Freitas, Ana C. V.; Frederiksen, Jorgen S.; Whelan, Jennifer; O'Kane, Terence J.; Ambrizzi, Tércio

    2015-12-01

    Several studies have identified that, in the mid-1970s to early 1980s, a major shift occurred in the structure of the large-scale circulation in both hemispheres. This work employs the CSIRO Mk3L general circulation model in ensemble simulations with observed sea surface temperatures (SSTs) and historical time-evolving carbon dioxide (CO2) concentrations to investigate the inter-decadal changes found observationally in the jet streams, temperature, Hadley circulation, mean sea level pressure and precipitation. First, the performance of the model in simulating these changes for the mean July climate fields of 1949-1968 and 1975-1994, in comparison with the corresponding observations (NCEP/NCAR Reanalysis I and the Twentieth Century Reanalysis V2), is investigated. We find that the model is quite skilful in reproducing the broad features of the important inter-decadal changes that occurred in the mid-1970s. The model simulations and the NCEP/NCAR and twentieth century reanalyses agree in the eastern hemisphere; whereas in the western hemisphere the reanalyses show differences, and the simulations combine aspects of these two datasets. The role of the direct radiative forcing due to CO2 in driving the inter-decadal changes is also examined. Results indicate that, in comparison with the indirect effect of CO2 carried by the changing SSTs, there is little additional impact of the direct radiative forcing due to CO2 on the changes in the latter period. However, our simulations with fixed CO2 concentration have shown clearly that the atmospheric simulations with historical time-evolving CO2 concentrations are more skilful in reproducing the inter-decadal changes. The sensitivity of the ensemble results to employing the same or different time evolving sea ice boundary conditions in the ensemble members is also studied. The contributions of internal and external variability are discussed.

  18. Simulated pre-industrial climate in Bergen Climate Model (version 2): model description and large-scale circulation features

    NASA Astrophysics Data System (ADS)

    Otterâ, O. H.; Bentsen, M.; Bethke, I.; Kvamstø, N. G.

    2009-11-01

    The Bergen Climate Model (BCM) is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  19. Simulated pre-industrial climate in Bergen Climate Model (version 2): model description and large-scale circulation features

    NASA Astrophysics Data System (ADS)

    Otterå, O. H.; Bentsen, M.; Bethke, I.; Kvamstø, N. G.

    2009-05-01

    The Bergen Climate Model (BCM) is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressures distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  20. The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Jean-Baptiste, P.; Risi, C.; Fourré, É.; Stenni, B.; Landais, A.

    2015-10-01

    The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north-south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes.

  1. Simulation of the Low-Level-Jet by general circulation models

    SciTech Connect

    Ghan, S.J.

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  2. Simulation of the mantle and crustal Helium isotope signature in the Mediterranean Sea using a high resolution regional circulation model

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Dutay, Jean-claude; Jean-baptiste, Philippe

    2015-04-01

    Helium isotopes (3He, 4He) are useful tracers for investigating the deep ocean circulation and for evaluating ocean general circulation models, because helium is a stable and conservative nuclide that does not take part in any chemical or biological processes. Helium in the ocean originates from three different sources: namely, (i) gas dissolution in equilibrium with atmospheric helium, (ii) helium-3 addition by radioactive decay of tritium (called tritiugenic helium), and (iii) injection of helium-3 and helium-4 by the submarine volcanic activity which occurs mainly at plate boundaries, and also addition of helium-4 from the crust and sedimentary cover by α-decay of uranium and thorium contained in various minerals (called terrigenic helium). Here we present the first simulation of the helium isotope distribution in the whole Mediterranean Sea, using a high resolution model (NEMO-MED12). The simulation was produced by building a simple source function for helium produced by submarine volcanic degassing in the main active areas of the Mediterranean, and by crustal degassing at sea bottom, based on previous estimates of the total flux of helium into the oceans. In addition to providing constraints on the degassing flux, our work provides information on the variability of the thermohaline circulation and the ventilation of the deep waters to constrain the degree to which the NEMO-MED12 can reproduce correctly the main hydrographic features of the Mediterranean Sea circulation. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.

  3. Simulations and Observations of Circulation in the Oregon Coastal Transition Zone during the 2002-2003 Downwelling Season

    NASA Astrophysics Data System (ADS)

    Springer, S. R.; Allen, J. S.; Samelson, R. M.; Kurapov, A. L.; Egbert, G. D.; Miller, R. N.; de Rada, S.

    2008-12-01

    In comparison with summertime, relatively little is known about the circulation off Oregon during wintertime. We conducted a hindcast simulation of the period from October 1, 2002 to May 1, 2003, which coincided with a major observational field program. A non-assimilating, one-way nested model obtained initial conditions and boundary conditions from a larger scale, assimilating California Current model, and it was forced by wind stress from a regional mesoscale model, rainfall and heat fluxes calculated from a coarse resolution atmospheric model, and observed coastal river flows. At the beginning of the period, an upwelling circulation established by predominantly southward winds during the previous summer is in place. Vigorous storms in December deepen, freshen, and cool the mixed layer in the simulation, consistent with measurements along the Newport hydrographic line (44.65° N). Sensitivity studies demonstrate the importance of both rainfall and coastal river freshwater input to upper ocean stratification. Predominantly northward wind stress near the coast establishes a downwelling circulation with onshore Ekman transport, which holds freshwater input by rivers near the coast. When the wind reverses to southward for several days in early February, offshore Ekman transport spreads this freshwater feature seaward in both model simulations and high resolution hydrographic observations. During the mid to late winter, wind stress switches between strongly downwelling-favorable and weakly upwelling-favorable intervals of approximately 10-14 day duration. Comparison with moored current meters on the outer and midshelf shows that the model reproduces the corresponding reversals of the depth-averaged alongshore currents. Coastal trapped wave energy originating to the south passes into the domain and contributes to the strength of the upwelling response on the central Oregon coast.

  4. Effect of simulated pulpal fluid circulation on intrapulpal temperature following irradiation with an Nd:YVO4 laser.

    PubMed

    Braun, Andreas; Kecsmar, Susann; Krause, Felix; Berthold, Michael; Frentzen, Matthias; Frankenberger, Roland; Schelle, Florian

    2015-05-01

    It is suggested that pulpal fluid circulation has an impact on pulp temperature increase during heat-generating dental treatment procedures. Thus, the aim of the study was to assess the effect of a simulated pulpal fluid circulation on temperature changes inside the pulp chamber following laser irradiation of the tooth surface. Twenty freshly extracted human multirooted teeth were included and cross-sectioned along the long axis exposing two root canals each. The pulp chamber and root canals were cleaned from remaining soft tissues to achieve access for a temperature sensor and two cannulas to allow fluid circulation. Cross sections were glued together, and the roots were encased with silicone impression material to ensure the position of the connected devices. Each tooth was irradiated by employing a neodymium-doped yttrium orthovanadate (Nd:YVO4) laser at 1,064 nm with a pulse duration of 9 ps and a repetition rate of 500 kHz. A commercially available scanning system (SCANcube 7, SCANLAB) deflected the beam by providing rectangular irradiated areas of 0.5 mm edge length. Measurements were performed with four different settings for fluid circulation: without any water and with water (23 °C) at a flow rate of 6, 3, and 0 ml/min. The primary outcome measure was the maximum temperature difference (ΔT) after laser irradiation. Highest temperature changes (median 3.6 K, range 0.5-7.1 K) could be observed without any fluid inside the pulp chamber. Water without circulation decreased ΔT values statistically significantly (median 1.4 K, range 0.2-4.9 K) (p < 0.05). Lowest temperature changes could be observed with a water flow rate of 6 ml/min (median 0.8 K, range 0.2-3.7 K) (p < 0.05). Pulpal fluid circulation has a cooling effect on temperature increase caused by laser irradiation of dental hard tissues. Studies on heat generation during dental treatment procedures should include this aspect to assess a potential thermal injury of pulp tissue. PMID:24578013

  5. Virtual environment application with partial gravity simulation

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Vanchau, Michael N.

    1994-01-01

    To support manned missions to the surface of Mars and missions requiring manipulation of payloads and locomotion in space, a training facility is required to simulate the conditions of both partial and microgravity. A partial gravity simulator (Pogo) which uses pneumatic suspension is being studied for use in virtual reality training. Pogo maintains a constant partial gravity simulation with a variation of simulated body force between 2.2 and 10 percent, depending on the type of locomotion inputs. this paper is based on the concept and application of a virtual environment system with Pogo including a head-mounted display and glove. The reality engine consists of a high end SGI workstation and PC's which drive Pogo's sensors and data acquisition hardware used for tracking and control. The tracking system is a hybrid of magnetic and optical trackers integrated for this application.

  6. Circulating tumor cells: advances in isolation and analysis, and challenges for clinical applications

    PubMed Central

    Harouaka, Ramdane; Kang, Zhigang; Zheng, Siyang; Cao, Liang

    2013-01-01

    Circulating tumor cells (CTCs) are rare cancer cells released from tumors into the bloodstream that are thought to have a key role in cancer metastasis. The presence of CTCs has been associated with worse prognosis in several major cancer types, including breast, prostate and colorectal cancer. There is considerable interest in CTC research and technologies for their potential use as cancer biomarkers that may enhance cancer diagnosis and prognosis, facilitate drug development, and improve the treatment of cancer patients. This review provides an update on recent progress in CTC isolation and molecular characterization technologies. Furthermore, the review covers significant advances and limitations in the clinical applications of CTC-based assays for cancer prognosis, response to anti-cancer therapies, and exploratory studies in biomarkers predictive of sensitivity and resistance to cancer therapies. PMID:24134902

  7. Practical applications of a versatile geothermal simulator

    SciTech Connect

    Nixon, J.F.

    1983-12-01

    Since 1976, the author has programmed, developed and applied a versatile twodimensional geothermal simulator for many interesting applications in cold regions engineering. This paper concentrates on applications to problems which have not been hitherto easily solved by other available geothermal models. Some of the important capabilities of the HAL simulator are: radial or cartesian coordinate options, convective ground water flow component, simple data entry, ability to specify internal pipes, or areas of specified temperature, monthly surface temperature and snow cover inputs as boundary conditions. The first application involves a steel pile, embedded in warm permafrost. A circular cryogenic storage tank is studied next, and the effectiveness of an insulation layer is illustrated. The convection option in the program is invoked when studying the effects of ground water flow around a series of vertical freeze pipes. Finally, the thermal degradation beneath an Arctic lake is studied, and the subsequent refreezing and growth of a pingo has been simulated.

  8. Practical applications of a versatile geothermal simulator

    SciTech Connect

    Nixon, J.F.; Halliwell, D.H.

    1982-01-01

    Since 1976, the senior author has programmed, developed and applied a versatile two-dimensional geothermal simulator for many interesting applications in cold regions engineering. This paper concentrates on applications to problems which have not been hitherto easily solved by other available geothermal models. Some of the important capabilities of the Hardy Associates (1978) Ltd. (HAL) simulator are radial or cartesian coordinate options, convective ground water flow component, simple data entry, ability to specify internal ''pipes'', or areas of specified temperature, monthly surface temperature and snow cover inputs. The first application involves a steel pile, embedded in warm permafrost. A circular cryogenic storage tank is studied next, and the effectiveness of an insulation layer is illustrated. The convection option in the program is invoked when studying the effects of ground water flow around a series of vertical freeze pipes. Finally, the thermal degradation beneath an Arctic lake is studied, and the subsequent re-freezing and growth of a pingo has been simulated.

  9. The Simulation of Stationary and Transient Geopotential-Height Eddies in January and July with a Spectral General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Malone, Robert C.; Pitcher, Eric J.; Blackmon, Maurice L.; Puri, Kamal; Bourke, William

    1984-04-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possesses a realistic distribution of continents and oceans and realistic, but smoothed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insulation were extended to 1200 days, of which the final 600 days were used for the results in this study.We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrasts exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons.In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering am used to display the wavelength and frequency characteristics of the eddies.

  10. Applications of Simulated Students: An Exploration.

    ERIC Educational Resources Information Center

    VanLehn, Kurt; And Others

    1994-01-01

    Explains the concept of a computerized simulated student as a model of human learning and explores three areas of application: for teachers, for students, and for instructional designers during formative evaluation. Technical limitations, existing prototype systems, and possible future systems are discussed for each area. (Contains 85 references.)…

  11. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications

    PubMed Central

    Rahmani, Sahar; Villa, Carlos H.; Dishman, Acacia F.; Grabowski, Marika E.; Pan, Daniel C.; Durmaz, Hakan; Misra, Asish C; Colón-Meléndez, Laura; Solomon, Michael J.; Muzykantov, Vladimir R.; Lahann, Joerg

    2016-01-01

    Background Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. Purpose Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. Methods EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I125 radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. Results and discussion Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. Conclusion EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site. PMID:26453170

  12. The use of a numerical model to simulate the cavo-pulmonary assistance in Fontan circulation: a preliminary verification.

    PubMed

    Di Molfetta, Arianna; Amodeo, Antonio; Fresiello, Libera; Filippelli, Sergio; Pilati, Mara; Iacobelli, Roberta; Adorisio, Rachele; Colella, Dionisio; Ferrari, Gianfranco

    2016-06-01

    The lack of an established experience on the use of VAD for the cavo-pulmonary assistance leads to the need of dedicated VADs development and animal experiments. A dedicated numerical model could support clinical and experimental strategies design and new VADs testing. The aim of this work is to perform a preliminary verification of a lumped parameter model of the cardiovascular system to simulate Fontan physiology and the effect of cavo-pulmonary assistance. Literature data of 4 pigs were used to simulate animals' baseline, and then the model was tested in simulating Fontan circulation and cavo-pulmonary-assisted condition comparing the simulation outcome (Sim) with measured literature data (Me). The results show that the numerical model can well reproduce experimental data in all three conditions (baseline, Fontan and assisted Fontan) [cardiac output (l/min): Me = 2.8 ± 1.7, Sim = 2.8 ± 1.8; ejection fraction (%): Me = 57 ± 17, Sim = 54 ± 17; arterial systemic pressure (mmHg): Me = 41.8 ± 18.6, Sim = 43.8 ± 18.1; pulmonary arterial pressure (mmHg): Me = 15.4 ± 8.9, Sim = 17.7 ± 9.9; caval pressure (mmHg): Me = 6.8 ± 4.1, Sim = 7 ± 4.6]. Systolic elastance, arterial systemic and arterial pulmonary resistances increase (10, 69, and 100 %) passing from the biventricular circulation to the Fontan physiology and then decrease (21, 39, and 50 %) once the VAD was implanted. The ventricular external work decreases (71 %) passing from the biventricular circulation to the Fontan physiology and it increases three times after the VAD implantation in parallel with the VAD power consumption. A numerical model could support clinicians in an innovative and challenging field as the use of VAD to assist the Fontan physiology and it could be helpful to personalize the VAD insertion on the base of ventricular systo-diastolic function, circulatory parameters and energetic variables. PMID:26545595

  13. Port-O-Sim Object Simulation Application

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J.

    2009-01-01

    Port-O-Sim is a software application that supports engineering modeling and simulation of launch-range systems and subsystems, as well as the vehicles that operate on them. It is flexible, distributed, object-oriented, and realtime. A scripting language is used to configure an array of simulation objects and link them together. The script is contained in a text file, but executed and controlled using a graphical user interface. A set of modules is defined, each with input variables, output variables, and settings. These engineering models can be either linked to each other or run as standalone. The settings can be modified during execution. Since 2001, this application has been used for pre-mission failure mode training for many Range Safety Scenarios. It contains range asset link analysis, develops look-angle data, supports sky-screen site selection, drives GPS (Global Positioning System) and IMU (Inertial Measurement Unit) simulators, and can support conceptual design efforts for multiple flight programs with its capacity for rapid six-degrees-of-freedom model development. Due to the assembly of various object types into one application, the application is applicable across a wide variety of launch range problem domains.

  14. Fluid Simulation in the Movies: Navier and Stokes Must Be Circulating in Their Graves

    NASA Astrophysics Data System (ADS)

    Tessendorf, Jerry

    2010-11-01

    Fluid simulations based on the Incompressible Navier-Stokes equations are commonplace computer graphics tools in the visual effects industry. These simulations mostly come from custom C++ code written by the visual effects companies. Their significant impact in films was recognized in 2008 with Academy Awards to four visual effects companies for their technical achievement. However artists are not fluid dynamicists, and fluid dynamics simulations are expensive to use in a deadline-driven production environment. As a result, the simulation algorithms are modified to limit the computational resources, adapt them to production workflow, and to respect the client's vision of the film plot. Eulerian solvers on fixed rectangular grids use a mix of momentum solvers, including Semi-Lagrangian, FLIP, and QUICK. Incompressibility is enforced with FFT, Conjugate Gradient, and Multigrid methods. For liquids, a levelset field tracks the free surface. Smooth Particle Hydrodynamics is also used, and is part of a hybrid Eulerian-SPH liquid simulator. Artists use all of them in a mix and match fashion to control the appearance of the simulation. Specially designed forces and boundary conditions control the flow. The simulation can be an input to artistically driven procedural particle simulations that enhance the flow with more detail and drama. Post-simulation processing increases the visual detail beyond the grid resolution. Ultimately, iterative simulation methods that fit naturally in the production workflow are extremely desirable but not yet successful. Results from some efforts for iterative methods are shown, and other approaches motivated by the history of production are proposed.

  15. Zonal wavenumber three traveling waves in the northern hemisphere of Mars simulated with a general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Richardson, Mark I.; Toigo, Anthony D.; Newman, Claire E.

    2013-04-01

    Observations suggest a strong correlation between curvilinear shaped traveling dust storms (observed in wide angle camera images) and eastward traveling zonal wave number m = 3 waves (observed in thermal data) in the northern mid and high latitudes during the fall and winter. Using the MarsWRF General Circulation Model, we have investigated the seasonality, structure and dynamics of the simulated m = 3 traveling waves and tested the hypothesis that traveling dust storms may enhance m = 3 traveling waves under certain conditions. Our standard simulation using a prescribed "MGS dust scenario" can capture the observed major wave modes and strong near surface temperature variations before and after the northern winter solstice. The same seasonal pattern is also shown by the simulated near surface meridional wind, but not by the normalized surface pressure. The simulated eastward traveling 1.4 < T < 10 sol m = 3 waves are confined near the surface in terms of the temperature perturbation, EP flux and eddy available potential energy, and they extend higher in terms of the eddy winds and eddy kinetic energy. The signature of the simulated m = 3 traveling waves is stronger in the near surface meridional wind than in the near surface temperature field. Compared with the standard simulation, our test simulations show that the prescribed m = 3 traveling dust blobs can enhance the simulated m = 3 traveling waves during the pre- and post-solstice periods when traveling dust storms are frequently observed in images, and that they have negligible effect during the northern winter solstice period when traveling dust storms are absent. The enhancement is even greater in our simulation when dust is concentrated closer to the surface. Our simulations also suggest that dust within the 45-75°N band is most effective at enhancing the simulated m = 3 traveling waves. There are multiple factors influencing the strength of the simulated m = 3 traveling waves. Among those, our study

  16. Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model

    NASA Astrophysics Data System (ADS)

    González-Galindo, F.; López-Valverde, M. A.; Forget, F.; García-Comas, M.; Millour, E.; Montabone, L.

    2015-11-01

    Using a ground-to-exosphere general circulation model for Mars we have simulated the variability of the dayside temperatures at the exobase during eight Martian years (MY, from MY24 to MY31, approximately from 1998 to 2013), taking into account the observed day-to-day solar and dust load variability. We show that the simulated temperatures are in good agreement with the exospheric temperatures derived from Precise Orbit Determination of Mars Global Surveyor. We then study the effects of the solar variability and of two planetary-encircling dust storms on the simulated temperatures. The seasonal effect produced by the large eccentricity of the Martian orbit translates in an aphelion-to-perihelion temperature contrast in every simulated year. However, the magnitude of this seasonal temperature variation is strongly affected by the solar conditions, ranging from 50 K for years corresponding to solar minimum conditions to almost 140 K during the last solar maximum. The 27 day solar rotation cycle is observed on the simulated temperatures at the exobase, with average amplitude of the temperature oscillation of 2.6 K but with a significant interannual variability. These two results highlight the importance of taking into account the solar variability when simulating the Martian upper atmosphere and likely have important implications concerning the atmospheric escape rate. We also show that the global dust storms in MY25 and MY28 have a significant effect on the simulated temperatures. In general, they increase the exospheric temperatures over the low latitude and midlatitude regions and decrease them in the polar regions.

  17. 3D Simulations of the Early Mars Climate with a General Circulation Model

    NASA Technical Reports Server (NTRS)

    Forget, F.; Haberle, R. M.; Montmessin, F.; Cha, S.; Marcq, E.; Schaeffer, J.; Wanherdrick, Y.

    2003-01-01

    The environmental conditions that existed on Mars during the Noachian period are subject to debate in the community. In any case, there are compelling evidence that these conditions were different than what they became later in the amazonian and possibly the Hesperian periods. Indeed, most of the old cratered terrains are disected by valley networks (thought to have been carved by flowing liquid water), whereas younger surface are almost devoid of such valleys. In addition, there are evidence that the erosion rate was much higher during the early noachian than later. Flowing water is surprising on early Mars because the solar luminosity was significantly lower than today. Even with the thick atmosphere (up to several bars).To improve our understanding of the early Mars Climate, we have developed a 3D general circulation model similar to the one used on current Earth or Mars to study the details of the climate today. Our first objective is to answer the following questions : how is the Martian climate modified if 1) the surface pressure is increased up to several bars (our baseline: 2 bars) and 2) if the sun luminosity is decreased by 25 account the heat possibly released by impacts during short periods, although it may have played a role .For this purpose, we have coupled the Martian General Circulation model developed at LMD with a sophisticated correlated k distribution model developped at NASA Ames Research Center. It is a narrow band model which computes the radiative transfer at both solar and thermal wavelengths (from 0.3 to 250 microns).

  18. Experiments in monthly mean simulation of the atmosphere with a coarse-mesh general circulation model

    NASA Technical Reports Server (NTRS)

    Lutz, R. J.; Spar, J.

    1978-01-01

    The Hansen atmospheric model was used to compute five monthly forecasts (October 1976 through February 1977). The comparison is based on an energetics analysis, meridional and vertical profiles, error statistics, and prognostic and observed mean maps. The monthly mean model simulations suffer from several defects. There is, in general, no skill in the simulation of the monthly mean sea-level pressure field, and only marginal skill is indicated for the 850 mb temperatures and 500 mb heights. The coarse-mesh model appears to generate a less satisfactory monthly mean simulation than the finer mesh GISS model.

  19. Numerical simulation of the seasonal and interannual variability of the tropical Atlantic Ocean circulation during the 1980s

    SciTech Connect

    Huang, Bohua.

    1992-01-01

    A nine-year (1980-88) surface wind stress data set over the tropical Atlantic ocean is constructed based on the European Centre for Medium Range Weather Forecasts (ECMWF) twice-daily wind analysis. Its quality is checked against an independent data set by Servain et al. (1985) based on ship observations. A comprehensive analysis of these two data sets shows a strong seasonal cycle of the wind stress over the equatorial Atlantic ocean. Interannually, the stress field is dominated by a seesaw between the northeast and southeast trade winds, with anomalously strong (weak) southeast (northeast) trade winds during 1980-83 and a reversed pattern during 1984-88. Two nine-year simulations of the tropical Atlantic ocean circulation are performed with a general circulation model, one forced by the twice-daily, and the second by monthly averaged ECMWF surface wind stresses. Comparisons with available observations show that the seasonal ocean circulation and interannual signals of the sea surface temperature (SST), i.e., the dipole oscillation and abnormal warmings, are that the seasonal cycle of the subtropical and tropical Atlantic has an in-phase relationship with the seasonal change of the surface wind stress and the interannual SST dipole oscillation is generally in balance with the seesaw pattern of the trade wind systems although wave processes are important during the transition of phase. In 1984, the transition of the SST dipole from north-warm/south-cold to its opposite occurred during an equatorial warming event. This warming event was initiated by the relaxation of equatorial easterly wind, which stimulated heat transfer first eastward along the equator, then to the southern ocean and caused a deepening of the thermocline in the Gulf of Guinea and the southern ocean. Another warming event occurred in 1987-88, which restored the disappearing north cold/warm dipole.

  20. Simulation of the effects of proposed tide gates on circulation, flushing, and water quality in residential canals, Cape Coral Florida

    USGS Publications Warehouse

    Goodwin, Carl R.

    1991-01-01

    Decades of dredging and filling of Florida's low-lying coastal wetlands have produced thousands of miles of residential tidal canals and adjacent waterfront property. Typically, these canals are poorly flushed, and over time, accumulated organic-rich bottom materials, contribute to an increasingly severe degraded water quality. One-dimensional hydrodynamic and constituent-transport models were applied to two dead-end canal systems to determine the effects of canal system interconnection using tide gates on water circulation and constituent flushing. The model simulates existing and possible future circulation and flushing conditions in about 29 miles of the approximately 130 miles of tidally influenced canals in Cape Coral, located on the central west coast of peninsular Florida. Model results indicate that tidal water-level differences between the two canal systems can be converted to kinetic energy, in the form of increased water circulation, but the use of one-way tide gate interconnections. Computations show that construction of from one to four tide gates will cause replacement of a volume of water equivalent to the total volume of canals in both systems in 15 to 9 days, respectively. Because some canals flush faster than others, 47 and 21 percent of the original canal water will remain in both systems 50 days after start of operation of one and four tide gates, respectively. Some of the effects that such increased flushing are expected to have include reduced density stratification and associated dissolved-oxygen depletion in canal bottom waters, increased localized reaeration, and more efficient discharge of stormwater runoff entering the canals.

  1. Mars' Thermal Structure From The Lower To Middle Atmosphere: NASA Ames Mars General Circulation Simulations

    NASA Astrophysics Data System (ADS)

    Brecht, A. S.; Hollingsworth, J. L.; Kahre, M. A.

    2014-07-01

    The NASA Ames Mars General Ciculation Model (MGCM) has been extended to incorporate the middle atmosphere (~80 km to ~120 km). The extended MGCM simulated thermal structure will be compared to MRO-MCS and MEx-SPICAM observations.

  2. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed.

  3. Application of remote sensing to study nearshore circulation. [and the continental shelf

    NASA Technical Reports Server (NTRS)

    Zeigler, J.; Lobecker, R.; Stauble, D.; Welch, C.; Haas, L.; Fang, C. S.

    1974-01-01

    The research to use remote sensing techniques for studying the continental shelf is reported. The studies reported include: (1) nearshore circulation in the vincinity of a natural tidal inlet; (2) identification of indicators of biological activity; (3) remote navigation system for tracking free drifting buoys; (4) experimental design of an estuaring tidal circulation; and (5) Skylab support work.

  4. A new geometrical approach to Eulerian transport: an application to the ocean circulation; final report

    NASA Technical Reports Server (NTRS)

    McWilliams, J. C.; Chao, Y.

    2003-01-01

    The main objective of this work is to investigate the transport processes in the large-scale ocean circulations using the new transport theory. We focus on the mid-latitude ocean circulation, especially the Gulf Stream, because it is recognized as a most energetic ocean current and plays a crucial role in maintaining the earth's climate system.

  5. A Third Note on Ageing in a Library Circulation Model: Applications to Future Use and Relegation.

    ERIC Educational Resources Information Center

    Burrell, Quentin L.

    1987-01-01

    Describes a circulation model for academic research libraries which uses the mixed Poisson model, incorporating ageing of library materials, to predict future use of monographs and to suggest weeding procedures based on frequency of circulation. Longitudinal studies are examined and statistical details are appended. (Author/LRW)

  6. Ensemble climate simulations using a fully coupled ocean-troposphere-stratosphere general circulation model.

    PubMed

    Huebener, H; Cubasch, U; Langematz, U; Spangehl, T; Niehörster, F; Fast, I; Kunze, M

    2007-08-15

    Long-term transient simulations are carried out in an initial condition ensemble mode using a global coupled climate model which includes comprehensive ocean and stratosphere components. This model, which is run for the years 1860-2100, allows the investigation of the troposphere-stratosphere interactions and the importance of representing the middle atmosphere in climate-change simulations. The model simulates the present-day climate (1961-2000) realistically in the troposphere, stratosphere and ocean. The enhanced stratospheric resolution leads to the simulation of sudden stratospheric warmings; however, their frequency is underestimated by a factor of 2 with respect to observations.In projections of the future climate using the Intergovernmental Panel on Climate Change special report on emissions scenarios A2, an increased tropospheric wave forcing counteracts the radiative cooling in the middle atmosphere caused by the enhanced greenhouse gas concentration. This leads to a more dynamically active, warmer stratosphere compared with present-day simulations, and to the doubling of the number of stratospheric warmings. The associated changes in the mean zonal wind patterns lead to a southward displacement of the Northern Hemisphere storm track in the climate-change signal. PMID:17569652

  7. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study.

    PubMed

    Grinberg, L; Cheever, E; Anor, T; Madsen, J R; Karniadakis, G E

    2011-01-01

    We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model. PMID:20661645

  8. Multidecadal Variability Simulated With an Atmospheric General Circulation Model Forced With Observed Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Grosfeld, K.; Rimbu, N.; Lohmann, G.; Lunkeit, F.

    2002-12-01

    We investigate the response of an atmospheric general circulation model to observed sea surface temperature for the instrumental period 1856-2000. The model used is the {nderline P}ortable {nderline U}niversity {nderline M}odel of the {nderline A}tmosphere (PUMA) developed at the University of Hamburg for long-term climate studies. When the model is forced with global sea surface temperatures (SSTs) the model interdecadal variability is dominated by the Atlantic Interdecadal Mode (AIM) and its associated teleconnection patterns. The modeled interdecadal variability sea surface patterns are in good agreement with analysis of observational time series in an ensemble mode integration. Positive SST anomalies and a sea level pressure (SLP) dipole pattern dominate the North Atlantic while a strong positive anomaly in SLP is characteristic for the North Pacific Ocean. Although the observational database is short, investigations of the typical AIM patterns before and after the climate shift in the 1970's suggest an oscillatory multidecadal mode rather than a singular event for that period. Additional experiments with ''Atlantic only'' forcing depict strong sensitivities of the relative roles of Atlantic and Pacific SST data initiating variability at multidecadal time scales. Our results have implications for climate predictability on long time scales from observed SST data.

  9. Numerical Simulations of the Steady and Unsteady Aerodynamic Characteristics of a Circulation Control Wing Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.

    2003-01-01

    The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.

  10. Comparison of spectral surface albedos and their impact on the general circulation model simulated surface climate

    NASA Astrophysics Data System (ADS)

    Roesch, A.; Wild, M.; Pinker, R.; Ohmura, A.

    2002-07-01

    This study investigates the impact of spectrally resolved surface albedo on the total surface albedo. The neglect of albedo variation within the shortwave spectrum may lead to substantial errors as the atmospheric water greatly influences the spectral distribution of the incoming radiation. It is shown that ignoring the spectral dependence of the surface albedo will affect the predicted climate. The study reveals substantial changes in the climate over northern Africa when modifying the surface albedo of the Sahara deserts. Detailed information is given how the European Center/Hamburg General Circulation Model (ECHAM4) can be extended to include surface boundary conditions for both the visible and near-infrared incoming radiation. This comprises global climatologies for both the visible and near-infrared albedo for snow-free conditions, as well as the corresponding albedo values over snow, land-/sea ice and over snow covered forests. Comparisons between several available surface albedo climatologies and a newly compiled albedo data set show substantial scatter in estimated albedos. The largest albedo differences are found in snow covered forest regions as well as in arid and semi-arid terrains.

  11. El Nino-southern oscillation simulated in an MRI atmosphere-ocean coupled general circulation model

    SciTech Connect

    Nagai, T.; Tokioka, T.; Endoh, M.; Kitamura, Y. )

    1992-11-01

    A coupled atmosphere-ocean general circulation model (GCM) was time integrated for 30 years to study interannual variability in the tropics. The atmospheric component is a global GCM with 5 levels in the vertical and 4[degrees]latitude X 5[degrees] longitude grids in the horizontal including standard physical processes (e.g., interactive clouds). The oceanic component is a GCM for the Pacific with 19 levels in the vertical and 1[degrees]x 2.5[degrees] grids in the horizontal including seasonal varying solar radiation as forcing. The model succeeded in reproducing interannual variations that resemble the El Nino-Southern Oscillation (ENSO) with realistic seasonal variations in the atmospheric and oceanic fields. The model ENSO cycle has a time scale of approximately 5 years and the model El Nino (warm) events are locked roughly in phase to the seasonal cycle. The cold events, however, are less evident in comparison with the El Nino events. The time scale of the model ENSO cycle is determined by propagation time of signals from the central-eastern Pacific to the western Pacific and back to the eastern Pacific. Seasonal timing is also important in the ENSO time scale: wind anomalies in the central-eastern Pacific occur in summer and the atmosphere ocean coupling in the western Pacific operates efficiently in the first half of the year.

  12. Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Irrgang, C.; Saynisch, J.; Thomas, M.

    2016-01-01

    Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.

  13. Application of linear logic to simulation

    NASA Astrophysics Data System (ADS)

    Clarke, Thomas L.

    1998-08-01

    Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.

  14. Interannual Variability of Martian Global Dust Storms: Simulations with a Low-Order Model of the General Circulation

    NASA Technical Reports Server (NTRS)

    Pankine, A. A.; Ingersoll, Andrew P.

    2002-01-01

    We present simulations of the interannual variability of martian global dust storms (GDSs) with a simplified low-order model (LOM) of the general circulation. The simplified model allows one to conduct computationally fast long-term simulations of the martian climate system. The LOM is constructed by Galerkin projection of a 2D (zonally averaged) general circulation model (GCM) onto a truncated set of basis functions. The resulting LOM consists of 12 coupled nonlinear ordinary differential equations describing atmospheric dynamics and dust transport within the Hadley cell. The forcing of the model is described by simplified physics based on Newtonian cooling and Rayleigh friction. The atmosphere and surface are coupled: atmospheric heating depends on the dustiness of the atmosphere, and the surface dust source depends on the strength of the atmospheric winds. Parameters of the model are tuned to fit the output of the NASA AMES GCM and the fit is generally very good. Interannual variability of GDSs is possible in the IBM, but only when stochastic forcing is added to the model. The stochastic forcing could be provided by transient weather systems or some surface process such as redistribution of the sand particles in storm generating zones on the surface. The results are sensitive to the value of the saltation threshold, which hints at a possible feedback between saltation threshold and dust storm activity. According to this hypothesis, erodable material builds up its a result of a local process, whose effect is to lower the saltation threshold until a GDS occurs. The saltation threshold adjusts its value so that dust storms are barely able to occur.

  15. A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes

    SciTech Connect

    Cariolle, D.; Lasserre-Bigorry, A.; Royer, J.F. ); Geleyn, J.F. )

    1990-02-20

    Ozone is treated as an interactive variable calculated by means of a continuity equation which takes account of advection and photochemical production and loss. The ozone concentration is also used to compute the heating and cooling rates due to the absorption of solar ultraviolet radiation, and the infrared emission in the stratosphere. The daytime ozone decrease due to the perturbed chlorine chemistry found at high southern latitudes is introduced as an extra loss in the ozone continuity equation. Results of the perturbed simulation show a very good agreement with the ozone measurements made during spring 1987. The simulation also shows the development of a high-latitude anomalous circulation, with a warming of the upper stratosphere resulting mainly from dynamical heating. In addition, a substantial ozone decrease is found at mid-latitudes in a thin stratospheric layer located between the 390 and the 470 K {theta} surfaces. A significant residual ozone decrease is found at the end of the model integration, 7 months after the final warming and the vortex breakdown. If there is a significant residual ozone decrease in the atmosphere, the ozone trends predicted by photochemical models which do not take into account the high-latitude perturbed chemistry are clearly inadequate. Finally, it is concluded that further model simulations at higher horizontal resolution, possibly with a better representation of the heterogeneous chemistry, will be needed to evaluate with more confidence the magnitude of the mid-latitudinal ozone depletion induced by the ozone hole formation.

  16. Inter-comparison of the mean circulation in the Coral and Solomon Sea simulated by high resolution ocean models

    NASA Astrophysics Data System (ADS)

    Maes, C.; Durand, F.; Gasparin, F.; Melet, A.; Ganachaud, A.

    2010-12-01

    Of primary importance to the properties of water masses transported by the northern limb of the South Pacific subtropical gyre toward the equatorial band, the transfer within the Coral and, ultimately, the Solomon Sea is perturbed by the labyrinthine topography of the region. It results in highly energetic currents and complex pathways through the Vanuatu Archipelago and New Caledonia, at the entrance of the Coral Sea, and through the Solomon Sea once the flow has bifurcated northward along the coasts of Australia and of the Louisiade Archipelago of Papua New Guinea. In the Coral Sea, the existence of the North Vanuatu Jet and North Caledonian Jet is now well established but their variations as well as their detailed characteristics, including for instance their vertical extension, remain largely unknown. In this study, recourse to ocean simulations is made in order to highlight the representation of such complex circulation of the south western Pacific Ocean and to analyze the long term variability and physical mechanism implied in the jet dynamics. A brief overview of recent observations collected through the comprehensive observational SPICE program (CLIVAR/WCRP) will first be presented in order to set the context. Then, 6 different state-of-the-art numerical experiments with high horizontal resolution, ranging from 1/10 to 1/12 degree, and realistic topography regionally focused on the Coral and Solomon Sea or extracted from global experiments, are analyzed. Here, we will consider OGCMs forced by realistic and observed atmospheric fields but each model has its own strategy in terms of diffusion, topography representation and boundaries condition when appropriate. The focus is set primarily on the annual mean circulation of the upper ocean layers (above the 1000-m depth) and on the water mass transports simulated in the vicinity of the various topographic obstacles. The results will underline that most of high resolution numerical models have reached a high

  17. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Tost, H.; Pozzer, A.; Brühl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M. G.; Sander, R.; Steil, B.; Stiller, G.; Tanarhte, M.; Taraborrelli, D.; van Aardenne, J.; Lelieveld, J.

    2006-11-01

    The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998-2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the

  18. Communication Simulations for Power System Applications

    SciTech Connect

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

    2013-05-29

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

  19. Numerical simulation of local atmospheric circulations in the pre-Alpine area between Lake Garda and Verona

    NASA Astrophysics Data System (ADS)

    Laiti, L.; Serafin, S.; Zardi, D.

    2010-09-01

    The pre-Alpine area between Lake Garda and Verona displays a very complex and heterogeneous territory, allowing the development of several interacting systems of thermally driven local winds, the major being the lake/land breeze system on the coasts of Lake Garda and the up/down-valley wind system between the plain and the river Adige Valley. In order to investigate the local wind patterns, a series of nested numerical simulations with a horizontal resolution of 500 m were carried out using the ARPS 5.2.9 model (Xue et al. 2000, 2001), considering a fair weather day suitable for a clear development of the expected circulations (15th July 2003). The simulated wind speed and direction, pressure, temperature and water vapour mixing ratio were compared to synoptic scale meteorological charts, to vertical profiles from radiosoundings taken at the major sounding stations of the alpine region and to local scale measurements performed at the surface station of Dolcè (at the inlet of the Adige Valley). Numerical results at all scales were found to be in very good agreement with the available sets of meteorological observations. The analysis of the diurnal evolution of the 3D fields of temperature, moisture content, wind and turbulent kinetic energy allowed the identification of a very shallow and clearly defined breeze front of cold and humid air moving from off-shore towards the Lake Garda coast, from the late morning (10:00 LST) until the evening (20:00 LST). The diurnal up-valley breeze was also well reproduced: the valley atmosphere displays a thick mixed layer dominated by shallow turbulent convection between 11:00 LST and 21:00 LST. Lateral slope winds were also recognized, as they created cross-valley convective cells. While no clear evidence of a nocturnal land breeze was found in the simulations, the nocturnal down-valley wind in the Adige Valley was clearly reproduced. Finally, a scalar transport equation was added to the ARPS model in order to simulate transport

  20. Developing emulators of a general circulation model for applications in Earth system modelling

    NASA Astrophysics Data System (ADS)

    Tran, Giang; Oliver, Kevin; Sobester, Andras; Toal, David; Holden, Philip; Marsh, Robert; Challenor, Peter; Edwards, Neil

    2015-04-01

    To study climate change on multi-millennial timescales, efficient models with simplified and parameterized processes are required. This is particularly important if observations are to be used effectively constrain models, an endeavour which demands large numbers of simulations. Unfortunately, the reduction in explicitly modelled processes can lead to underestimation of responses in the system that are essential to the understanding of palaeoclimate. To address this, we intend to replace a simple component of an efficient model with a statistical model (an emulator) of a more comprehensive one. Efficient construction of such an emulator is achieved by exploiting the relationship among different levels of the climate model hierarchy. Using a multi-level emulation technique, outputs from an atmospheric general circulation model (GCM), called PLASIM, are efficiently emulated by utilising the extra information gained from the computationally cheap atmosphere of an efficient model called GENIE-1. Even though the two atmospheric models chosen have large structural differences, useful links between them are identified and Gaussian process emulators of PLASIM 2-D surface air temperature and precipitation fields are successfully constructed. The result shows that the multi-level emulators of PLASIM's output fields can be built using only one third the amount of expensive data required by the normal single-level technique. The constructed emulators are shown to capture 95.4% and 80.3% of the variance in surface air temperature and precipitation, respectively, across a validation ensemble. GCM emulators constructed using the proposed method can potentially replace the current simple component of the efficient model, resulting in a higher fidelity version of the model without a significant increase in computational cost.

  1. Earth radiation budget and cloudiness simulations with a general circulation model

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN; Randall, David A.; Corsetti, Thomas G.; Dazlich, Donald A.

    1989-01-01

    A GCM with new parameterizations of solar and terrestrial radiation, parameterized cloud optical properties, and a simple representation of the cloud liquid water feedback is used with several observational data sets to analyze the effects of cloudiness on the earth's radiation budget. The January and July results from the model are in reasonable agreement with data from Nimbus-7. It is found that the simulated cloudiness overpredicts subtropical and midlatitude cloudiness. The simulated atmospheric cloud radiative forcing is examined. The clear-sky radiation fields obtained by two methods of Cess and Potter (1987) are compared. Also, a numerical experiment was performed to determine the effects of the water vapor continuum on the model results.

  2. A review of existing gas-cooled reactor circulators with application of the lessons learned to the new production reactor circulators

    SciTech Connect

    White, L.S.

    1990-07-01

    This report presents the results of a study of the lessons learned during the design, testing, and operation of gas-cooled reactor coolant circulators. The intent of this study is to identify failure modes and problem areas of the existing circulators so this information can be incorporated into the design of the circulators for the New Production Reactor (NPR)-Modular High-Temperature Gas Cooled Reactor (MHTGR). The information for this study was obtained primarily from open literature and includes data on high-pressure, high-temperature helium test loop circulators as well as the existing gas cooled reactors worldwide. This investigation indicates that trouble free circulator performance can only be expected when the design program includes a comprehensive prototypical test program, with the results of this test program factored into the final circulator design. 43 refs., 7 tabs.

  3. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  4. Integral Circulation Experiment: Thermal-hydraulic simulator of a heavy liquid metal reactor

    NASA Astrophysics Data System (ADS)

    Tarantino, M.; Agostini, P.; Benamati, G.; Coccoluto, G.; Gaggini, P.; Labanti, V.; Venturi, G.; Class, A.; Liftin, K.; Forgione, N.; Moreau, V.

    2011-08-01

    In the frame of the IP-EUROTRANS (6th Framework Program EU), domain DEMETRA, ENEA was involved in the Work Package 4.5 " Large Scale Integral Test", devoted to characterize a relevant portion of a sub-critical ADS reactor block (core, internals, heat exchanger, cladding for fuel elements) in steady state, transient and accidental conditions. More in details ENEA assumed the commitment to perform an integral experiment aiming to reproduce the primary flow path of the " European Transmutation Demonstrator (ETD)" pool-type nuclear reactor, cooled by Lead Bismuth Eutectics (LBE). This experimental activity, called " Integral Circulation Experiment (ICE)", has been implemented merging the efforts of several research institutes, among which, besides ENEA, FZK, CRS4 and University of Pisa, allowing to design an appropriate test section to be installed in the CIRCE facility. The goal of the experiments is therefore to demonstrate the technological feasibility of a heavy liquid metal (HLM) nuclear system pool-type in a relevant scale (1 MW), investigating the related thermal-hydraulic behaviour (heat source and heat exchanger coupling, primary system and downcomer coupling, gas trapping into the main stream, thermal stratification in the pool, forced and mixed convection in rod bundle) under both steady state and transient conditions. Moreover the preliminary as well as the planned experiments aims to address performance and reliability tests of some prototypical components, such as heat source, heat exchanger, chemistry control system. The paper reports a detailed description of the experiment, the design performed for the test section and its main components as well as the preliminary experimental results carried out in the first experimental campaign run on the CIRCE pool, which consists of a full power steady state test. The preliminary experimental results carried out have demonstrate the proper design of the test section trough the experiment goals as well as the HLM

  5. Numerical simulation of 137Cs and (239,240)Pu concentrations by an ocean general circulation model.

    PubMed

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi

    2003-01-01

    We simulated the spatial distributions and the temporal variations of 137Cs and (239,240)Pu concentrations in the ocean by using the ocean general circulation model which was developed by National Center of Atmospheric Research. These nuclides are introduced into seawaters from global fallout due to atmospheric nuclear weapons tests. The distribution of radioactive deposition on the world ocean is estimated from global precipitation data and observed values of annual deposition of radionuclides at the Meteorological Research Institute in Japan and several observed points in New Zealand. Radionuclides from global fallout have been transported by advection, diffusion and scavenging, and this concentration reduces by radioactive decay in the ocean. We verified the results of the model calculations by comparing simulated values of 137Cs and (239,240)Pu in seawater with the observed values included in the Historical Artificial Radionuclides in the HAM database, which has been constructed by the Meteorological Research Institute. The vertical distributions of the calculated 137Cs concentrations were in good agreement and are in good agreement with the observed profiles in the 1960s up to 250 m, in the 1970s up to 500 m, in the 1980s up to 750 m and in the 1990s up to 750 m. However, the calculated 137Cs concentrations were underestimated compared with the observed 137Cs at the deeper layer. This may suggest other transport processes of 137Cs to deep waters. The horizontal distributions of 137Cs concentrations in surface water could be simulated. A numerical tracer release experiment was performed to explain the horizontal distribution pattern. A maximum (239,240)Pu concentration layer occurs at an intermediate depth for both observed and calculated values, which is formed by particle scavenging. The horizontal distributions of the calculated (239,240)Pu concentrations in surface water could be simulated by considering the scavenging effect. PMID:12860090

  6. A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations

    NASA Astrophysics Data System (ADS)

    Johnson, Fiona; Sharma, Ashish

    2012-01-01

    Climate change impact assessments of water resources systems require simulations of precipitation and evaporation that exhibit distributional and persistence attributes similar to the historical record. Specifically, there is a need to ensure general circulation model (GCM) simulations of rainfall for the current climate exhibit low-frequency variability that is consistent with observed data. Inability to represent low-frequency variability in precipitation and flow leads to biased estimates of the security offered by water resources systems in a warmer climate. This paper presents a method to postprocess GCM precipitation simulations by imparting correct distributional and persistence attributes, resulting in sequences that are representative of observed records across a range of time scales. The proposed approach is named nesting bias correction (NBC), the rationale being to correct distributional and persistence bias from fine to progressively longer time scales. In the results presented here, distributional attributes have been represented by order 1 and 2 moments with persistence represented by lag 1 autocorrelation coefficients at monthly and annual time scales. The NBC method was applied to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mk3.5 and MIROC 3.2 hires rainfall simulations for Australia. It was found that the nesting method worked well to correct means, standard deviations, and lag 1 autocorrelations when the biases in the raw GCM outputs were not too large. While the bias correction improves the representation of distributional and persistence attributes at the time scales considered, there is room for representation of longer-term persistence by extending to time scales longer than a year.

  7. Simulations of the mesoscale circulation of the Greenland-Iceland-Norwegian Seas

    NASA Technical Reports Server (NTRS)

    Heburn, George W.; Johnson, Clifford D.

    1995-01-01

    The Greenland, Iceland, and Norwegian Seas provide the only link between the North Atlantic and the Arctic Oceans. This is a very dynamic region, rich in mesoscale variability. A two-layer, hydrodynamic version of the Navy layered ocean model is used to simulate the mesoscale frontal features and associated current systems. The model is wind-driven using monthly mean wind stresses and inflow/outflow mass flux from the Arctic and North Atlantic Oceans. The current transports from the model results compare favorably with transport measurements from a number of observational experiments.

  8. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Wang, Chunzai

    2013-10-01

    In this paper, simulated variability of the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC) and their relationship has been investigated. For the first time, climate models of the Coupled Model Intercomparison Project phase 5 (CMIP5) provided to the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5) in historical simulations have been used for this purpose. The models show the most energetic variability on the multidecadal timescale band both with respect to the AMO and AMOC, but with a large model spread in both amplitude and frequency. The relationship between the AMO and AMOC in most of the models resembles the delayed advective oscillation proposed for the AMOC on multidecadal timescales. A speed up (slow down) of the AMOC is in favor of generating a warm (cold) phase of the AMO by the anomalous northward (southward) heat transport in the upper ocean, which reversely leads to a weakening (strengthening) of the AMOC through changes in the meridional density gradient after a delayed time of ocean adjustment. This suggests that on multidecadal timescales the AMO and AMOC are related and interact with each other.

  9. Intercomparison of interannual variability of the global 200-hPa circulation for AMIP simulations

    SciTech Connect

    Boyle, J.S.

    1998-10-01

    The 200-hPa divergence and streamfunction from the 30 models of the Atmospheric Model Intercomparison Project (AMIP) are compared. The data used are in the form of monthly averages and are filtered to a spatial resolution of T10, although the actual spatial resolution of the models varies from R15 to T42. The tools of the analysis are principal components analysis (PCA) and common principal components (CPC). These analyses are carried out on the 120 months of data with the climatological annual cycle removed and in the case of the streamfunction with the zonal average also removed. The AMIP period (1979--88) encompasses two El Nino-Southern Oscillation (ENSO) events (1982--83 and 1986--87), and as could be expected the ENSO characteristic response has a prominent impact in the model simulations.

  10. Interannual tropical rainfall variability in general circulation model simulations associated with the atmospheric model intercomparison project

    SciTech Connect

    Sperber, K.R.; Palmer, T.N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979 - 88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations. A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany /National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall variability was also best reproduced. However, for all regions the skill was less than that of the ECMWF model. The relationships of the all-India and Sahel rainfall/SST teleconnections with horizontal resolution, convection scheme closure, and numerics have been evaluated. 64 refs., 13 figs., 3 tabs.

  11. GEOSSAV: a simulation tool for subsurface applications

    NASA Astrophysics Data System (ADS)

    Regli, Christian; Rosenthaler, Lukas; Huggenberger, Peter

    2004-04-01

    Geostatistical Environment fOr Subsurface Simulation And Visualization (GEOSSAV) is a tool for the integration of hard and soft data into stochastic simulation and visualization of distributions of geological structures and hydrogeological properties in the subsurface. GEOSSAV, as an interface to selected geostatistical modules (bicalib, gamv, vargplt, and sisim) from the Geostatistical Software LIBrary, GSLIB (GSLIB: Geostatistical Software Library and User's Guide, 2nd Edition, Oxford University Press, Oxford, 1998, 369pp), can be used for data analysis, variogram computation of regularly or irregularly spaced data, and sequential indicator simulation of subsurface heterogeneities. Sequential indicator simulation, based on various kriging techniques (simple, ordinary, and Bayesian), is suitable for the simulation of continuous variables such as hydraulic conductivity of an aquifer or chemical concentrations at a contaminated site, and categorical variables which indicate the presence or absence of a particular lithofacies. The software integration platform and development environment of GEOSSAV is Tool command language (Tcl) with its graphical user interface, Toolkit (Tk), and a number of Tcl/Tk extensions. The standard Open Graphics Library application programming interface is used for rendering three-dimensional (3D) data distributions and for slicing perpendicular to the main coordinate axis. Export options for finite-difference groundwater models allow either files that characterize single model layers (which are saved in ASCII matrix format) or files that characterize the complete 3D flow model setup for MODFLOW-based groundwater simulation systems (which are saved in block-centered flow package files (User's documentation for MODFLOW-96, an update to the US Geological Survey modular finite-difference ground-water flow model, Geological Survey Open-File Report 96-485, Reston, VA, 1996, 56pp)). GEOSSAV can be used whenever stochastic solutions are preferred

  12. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Tost, H.; Pozzer, A.; Brühl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M. G.; Sander, R.; Steil, B.; Stiller, G.; Tanarhte, M.; Taraborrelli, D.; van Aardenne, J.; Lelieveld, J.

    2006-07-01

    The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998-2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request.

  13. Multiyear Simulations of the Martian Water Cycle with the Ames General Circulation Model

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Schaeffer, J. R.; Nelli, S. M.; Murphy, J. R.

    2003-01-01

    Mars atmosphere is carbon dioxide dominated with non-negligible amounts of water vapor and suspended dust particles. The atmospheric dust plays an important role in the heating and cooling of the planet through absorption and emission of radiation. Small dust particles can potentially be carried to great altitudes and affect the temperatures there. Water vapor condensing onto the dust grains can affect the radiative properties of both, as well as their vertical extent. The condensation of water onto a dust grain will change the grain s fall speed and diminish the possibility of dust obtaining high altitudes. In this capacity, water becomes a controlling agent with regard to the vertical distribution of dust. Similarly, the atmosphere s water vapor holding capacity is affected by the amount of dust in the atmosphere. Dust is an excellent green house catalyst; it raises the temperature of the atmosphere, and thus, its water vapor holding capacity. There is, therefore, a potentially significant interplay between the Martian dust and water cycles. Previous research done using global, 3-D computer modeling to better understand the Martian atmosphere treat the dust and the water cycles as two separate and independent processes. The existing Ames numerical model will be employed to simulate the relationship between the Martian dust and water cycles by actually coupling the two cycles. Water will condense onto the dust, allowing the particle's radiative characteristics, fall speeds, and as a result, their vertical distribution to change. Data obtained from the Viking, Mars Pathfinder, and especially the Mars Global Surveyor missions will be used to determine the accuracy of the model results.

  14. Simulation of optimal arctic routes using a numerical sea ice model based on an ice-coupled ocean circulation method

    NASA Astrophysics Data System (ADS)

    Nam, Jong-Ho; Park, Inha; Lee, Ho Jin; Kwon, Mi Ok; Choi, Kyungsik; Seo, Young-Kyo

    2013-06-01

    Ever since the Arctic region has opened its mysterious passage to mankind, continuous attempts to take advantage of its fastest route across the region has been made. The Arctic region is still covered by thick ice and thus finding a feasible navigating route is essential for an economical voyage. To find the optimal route, it is necessary to establish an efficient transit model that enables us to simulate every possible route in advance. In this work, an enhanced algorithm to determine the optimal route in the Arctic region is introduced. A transit model based on the simulated sea ice and environmental data numerically modeled in the Arctic is developed. By integrating the simulated data into a transit model, further applications such as route simulation, cost estimation or hindcast can be easily performed. An interactive simulation system that determines the optimal Arctic route using the transit model is developed. The simulation of optimal routes is carried out and the validity of the results is discussed.

  15. Thermoresponsive release of viable microfiltrated Circulating Tumor Cells (CTCs) for precision medicine applications.

    PubMed

    Ao, Zheng; Parasido, Erika; Rawal, Siddarth; Williams, Anthony; Schlegel, Richard; Liu, Stephen; Albanese, Chris; Cote, Richard J; Agarwal, Ashutosh; Datar, Ram H

    2015-11-21

    Stimulus responsive release of Circulating Tumor Cells (CTCs), with high recovery rates from their capture platform, is highly desirable for off-chip analyses. Here, we present a temperature responsive polymer coating method to achieve both release as well as culture of viable CTCs captured from patient blood samples. PMID:26426331

  16. The application of Seasat-1 radar altimetry to continental shelf circulation modeling

    NASA Technical Reports Server (NTRS)

    Cornillon, P.; Reed, M.; Spaulding, M.; Swanson, C.

    1980-01-01

    Seasat-1 radar altimetry data have been used to verify a continental shelf circulation model subjected to tidal forcing on the open boundary. The model makes use of the semi-implicit mode of time integration, removing the surface gravity wave time step restriction. Both the altimetry and the model predictions are compared with empirically determined tidal fluctuations and generally good agreement is obtained.

  17. Application of LANDSAT TM images to assess circulation and dispersion in coastal lagoons

    NASA Technical Reports Server (NTRS)

    Kjerfve, B.; Jensen, J. R.; Magill, K. E.

    1986-01-01

    The main objectives are formulated around a four pronged work approach, consisting of tasks related to: image processing and analysis of LANDSAT thematic mapping; numerical modeling of circulation and dispersion; hydrographic and spectral radiation field sampling/ground truth data collection; and special efforts to focus the investigation on turbid coastal/estuarine fronts.

  18. Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification.

    PubMed

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer. PMID:24324552

  19. Application of Satellite Altimetry to Ocean Circulation Studies: 1987-1994

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.; Cheney, R. E.

    1994-01-01

    Altimetric measurement of the height of the sea surface from space provides global observation of the world's oceans. The last eight years have witnessed a rapid growth in the use of altimetry data from the study of the ocean circulations, thanks to the multiyear data from the Geosat Mission.

  20. Properties of Tangential and Cyclic Polygons: An Application of Circulant Matrices

    ERIC Educational Resources Information Center

    Leung, Allen; Lopez-Real, Francis

    2003-01-01

    In this paper, the properties of tangential and cyclic polygons proposed by Lopez-Real are proved rigorously using the theory of circulant matrices. In particular, the concepts of slippable tangential polygons and conformable cyclic polygons are defined. It is shown that an n-sided tangential (or cyclic) polygon P[subscript n] with n even is…

  1. Importance of the Annual Cycles of SST and Solar Irradiance for Circulation and Rainfall: A Climate Model Simulation Study

    NASA Technical Reports Server (NTRS)

    Sud, Yogesh C.; Lau, William K. M.; Walker, G. K.; Mehta, V. M.

    2001-01-01

    Annual cycle of climate and precipitation is related to annual cycle of sunshine and sea-surface temperatures. Understanding its behavior is important for the welfare of humans worldwide. For example, failure of Asian monsoons can cause widespread famine and grave economic disaster in the subtropical regions. For centuries meteorologists have struggled to understand the importance of the summer sunshine and associated heating and the annual cycle of sea-surface temperatures (SSTs) on rainfall in the subtropics. Because the solar income is pretty steady from year to year, while SSTs depict large interannual variability as consequence of the variability of ocean dynamics, the influence of SSTs on the monsoons are better understood through observational and modeling studies whereas the relationship of annual rainfall to sunshine remains elusive. However, using NASA's state of the art climate model(s) that can generate realistic climate in a computer simulation, one can answer such questions. We asked the question: if there was no annual cycle of the sunshine (and its associated land-heating) or the SST and its associated influence on global circulation, what will happen to the annual cycle of monsoon rains? By comparing the simulation of a 4-year integration of a baseline Control case with two parallel anomaly experiments: 1) with annual mean solar and 2) with annual mean sea-surface temperatures, we were able to draw the following conclusions: (1) Tropical convergence zone and rainfall which moves with the Sun into the northern and southern hemispheres, specifically over the Indian, African, South American and Australian regions, is strongly modulated by the annual cycles of SSTs as well as solar forcings. The influence of the annual cycle of solar heating over land, however, is much stronger than the corresponding SST influence for almost all regions, particularly the subtropics; (2) The seasonal circulation patterns over the vast land-masses of the Northern

  2. The variability, structure and energy conversion of the northern hemisphere traveling waves simulated in a Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Toigo, Anthony D.

    2016-06-01

    Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.

  3. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean

    NASA Astrophysics Data System (ADS)

    Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.

    2014-10-01

    Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of “shallow melting” is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of “deep melting”, in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.

  4. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings, such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  5. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  6. Large eddy simulation applications in gas turbines.

    PubMed

    Menzies, Kevin

    2009-07-28

    The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle. PMID:19531505

  7. Simulation Code Development and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Zenghai

    2015-10-01

    Under the support of the U.S. DOE SciDAC program, SLAC has been developing a suite of 3D parallel finite-element codes aimed at high-accuracy, high-fidelity electromagnetic and beam physics simulations for the design and optimization of next-generation particle accelerators. Running on the latest supercomputers, these codes have made great strides in advancing the state of the art in applied math and computer science at the petascale that enable the integrated modeling of electromagnetics, self-consistent Particle-In-Cell (PIC) particle dynamics as well as thermal, mechanical, and multi-physics effects. This paper will present the latest development and application of ACE3P to a wide range of accelerator projects.

  8. Seasonal Simulations of the Planetary Boundary Layer and Boundary-Layer Stratocumulus Clouds with a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Randall, David A.; Abeles, James A.; Corsetti, Thomas G.

    1985-04-01

    The UCLA general circulation model (GCM) has been used to simulate the seasonally varying planetary boundary layer (PBL), as well as boundary-layer stratus and stratocumulus clouds. The PBL depth is a prognostic variable of the GCM, incorporated through the use of a vertical coordinate system in which the PBL is identified with the lowest model layer.Stratocumulus clouds are assumed to occur whenever the upper portion of the PBL becomes saturated, provided that the cloud-top entrainment instability does not occur. As indicated by Arakawa and Schubert, cumulus clouds are assumed to originate at the PBL top, and tend to make the PBL shallow by drawing on its mass.Results are presented from a three-year simulation, starting from a 31 December initial condition obtained from an earlier run with a different version of the model. The simulated seasonally varying climates of the boundary layer and free troposphere are realistic. The observed geographical and seasonal variations of stratocumulus cloudiness are fairly well simulated. The simulation of the stratocumulus clouds associated with wintertime cold-air outbreaks is particularly realistic. Examples are given of individual events. The positions of the subtropical marine stratocumulus regimes are realistically simulated, although their observed frequency of occurrence is seriously underpredicted. The observed summertime abundance of Arctic stratus clouds is also underpredicted.In the GCM results, the layer cloud instability appears to limit the extent of the marine subtropical stratocumulus regimes. The instability also frequently occurs in association with cumulus convection over land.Cumulus convection acts as a very significant sink of PBL mass throughout the tropics, and over the midlatitude continents in summer.Three experiments have been performed to investigate the sensitivity of the GCM results to aspects of the PBL and stratocumulus parameterizations. For all three experiments, the model was started from 1

  9. Large-Eddy Simulation of Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Sochacki, James S.

    1999-01-01

    This report summarizes work accomplished under a one-year NASA grant from NASA Langley Research Center (LaRC). The effort culminates three years of NASA-supported research under three consecutive one-year grants. The period of support was April 6, 1998, through April 5, 1999. By request, the grant period was extended at no-cost until October 6, 1999. Its predecessors have been directed toward adapting the numerical tool of large-eddy simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of subgrid-scale (SGS) models that incorporate time-domain filters.

  10. Characterization of Jupiter's Deep Circulation and Static Stability through Wide Channel Numerical Simulations of the Dynamics and Interactions of Southern Midlatitudes Vortices

    NASA Astrophysics Data System (ADS)

    Morales-Juberias, Raul; Dowling, T. E.

    2012-10-01

    Previous studies have shown that the observed features and dynamics of Jovian vortices are sensitive to the underlying environmental structure of Jupiter’s atmosphere, in particular to the vertical wind shear and the static stability, and that forward modeling techniques can be successfully used to eliminate a large range of possibilities in a self-consistent manner and hence constrain the atmospheric structure below the cloud regions (Youseff and Marcus 2003, Morales-Juberias et al. 2005). However, these studies have generally been done on a narrow latitude-band basis (˜15°). Here we present wide channel simulations (˜40°) of two major meteorological events observed in the southern atmosphere of Jupiter involving the interaction of the Great Red Spot (GRS) with other nearby vortices. Namely, the spots associated with the recirculation of the South Tropical Disturbance of 1979 (Smith et al. 1979) and the White Ovals (WOS) in 2000 when ovals BE and FA merged to form BA (Sanchez-Lavega et al. 2001). By studying these two events using wide channel simulations, not unlike the strategy used in terrestrial synoptic meteorology, we show that we can gain new insights into the patterns governing Jupiter's global circulations, drawing a coherent picture of the vertical structure of the atmosphere for the whole southern mid-latitudinal regions of Jupiter over time. In particular, we find that the model output best captures the dynamics of the individual vortices and the morphology of their interactions when the deformation length in this region is like that derived by Read et al. 2006 and the deep winds vary following a dependence like that derived by Dowling 1995 in which the westward jets remain constant with depth but the eastward jets increase with depth. Computational resources were provided by the New Mexico Computing Applications Center and NMT. This work was supported by PATM grants NNX08AE91G and NNX08AE64G.

  11. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    NASA Astrophysics Data System (ADS)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambda<2, blades operate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were

  12. Application of circulation classifications from the COST733 collection to the detection of solar and geomagnetic effects on tropospheric circulation over Europe in winter

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Cahynová, Monika; Kyselý, Jan

    2010-05-01

    Many studies of circulation classifications are biased by the fact that they are based on a single classification only; that is, their results are affected by the properties of a particular classification to an unknown extent. A large number of circulation classifications produced and collected in the COST733 database allows such a bias to be removed. As an example, we examine effects of solar activity variations on the frequency of circulation types, making use of more than sixty objective classifications for each of 12 domains, defined over Europe. To determine the solar effects, winter months (December to March) are divided into three classes according to the mean monthly solar activity, within which the frequencies of occurrence of circulation types are calculated. Circulation types coming from any classification with significant differences in frequency between high and low solar activity are identified. Current results generally confirm results of a previous study based on a single classification only (subjective Hess-Brezowsky) that (a) westerly types are more frequent under high than low solar activity; (b) northerly types are more frequent under low than high activity, and (iii) easterly and anticyclonic types are more frequent under low than moderate solar activity; the opposite holds for cyclonic types. The research is supported by the Ministry of Education, Youth, and Sports of the Czech Republic under contract OC115 and the Grant Agency of the Czech Academy of Sciences, project A300420805.

  13. Methods of sound simulation and applications in flight simulators

    NASA Technical Reports Server (NTRS)

    Gaertner, K. P.

    1980-01-01

    An overview of methods for electronically synthesizing sounds is presented. A given amount of hardware and computer capacity places an upper limit on the degree and fidelity of realism of sound simulation which is attainable. Good sound realism for aircraft simulators can be especially expensive because of the complexity of flight sounds and their changing patterns through time. Nevertheless, the flight simulator developed at the Research Institute for Human Engineering, West Germany, shows that it is possible to design an inexpensive sound simulator with the required acoustic properties using analog computer elements. The characteristics of the sub-sound elements produced by this sound simulator for take-off, cruise and approach are discussed.

  14. A new application of a finite element heat and mass transfer numerical modeling code (FEHM) to heat and fluid circulation in lava domes

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Stauffer, P. H.; Calder, E. S.

    2012-12-01

    those properties to dome material regions. Further modifications to the dome geometry and material properties were made to better simulate specific lava domes, including Santiaguito in Guatemala and Unzen in Japan. Preliminary results suggest that FEHM produces a reasonable simulation of fluid movement in a saturated, post-eruptive (cooling) lava dome, with recharge from meteoric water, over periods of years to decades. This model setup is applicable to the older lava domes at Santiaguito and the dome at Unzen. The simulations presented were restricted at this point to lower temperature materials (< 250°C) to avoid computationally more intensive phase change. A grid based on the geometry of the older Santiaguito lava domes has produced temperature gradients and fluid flow paths in a similar location to hot springs at the real dome complex.

  15. Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model.

    PubMed

    Putman, Nathan F; Verley, Philippe; Shay, Thomas J; Lohmann, Kenneth J

    2012-06-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, USA, undertake a transoceanic migration in which they gradually circle the Sargasso Sea before returning to the North American coast. Loggerheads possess a 'magnetic map' in which regional magnetic fields elicit changes in swimming direction along the migratory pathway. In some geographic areas, however, ocean currents move more rapidly than young turtles can swim. Thus, the degree to which turtles can control their migratory movements has remained unclear. In this study, the movements of young turtles were simulated within a high-resolution ocean circulation model using several different behavioral scenarios, including one in which turtles drifted passively and others in which turtles swam briefly in accordance with experimentally derived data on magnetic navigation. Results revealed that small amounts of oriented swimming in response to regional magnetic fields profoundly affected migratory routes and endpoints. Turtles that engaged in directed swimming for as little as 1-3 h per day were 43-187% more likely than passive drifters to reach the Azores, a productive foraging area frequented by Florida loggerheads. They were also more likely to remain within warm-water currents favorable for growth and survival, avoid areas on the perimeter of the migratory route where predation risk and thermal conditions pose threats, and successfully return to the open-sea migratory route if carried into coastal areas. These findings imply that even weakly swimming marine animals may be able to exert strong effects on their migratory trajectories and open-sea distributions through simple navigation responses and minimal swimming. PMID:22573765

  16. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations

    NASA Astrophysics Data System (ADS)

    Cariolle, D.; Teyssèdre, H.

    2007-01-01

    This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory works. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the resolution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small. The model also reproduces fairly well the polar ozone variability, with notably the formation of "ozone holes" in the southern hemisphere with amplitudes and seasonal evolutions that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone contents inside the polar vortex of the southern hemisphere over longer periods in spring time. It is concluded that for the study of climatic scenarios or the assimilation of ozone data, the present

  17. Streamflow changes in the Sierra Nevada, California, simulated using a statistically downscaled general circulation model scenario of climate change

    USGS Publications Warehouse

    Wilby, Robert L.; Dettinger, Michael D.

    2000-01-01

    Simulations of future climate using general circulation models (GCMs) suggest that rising concentrations of greenhouse gases may have significant consequences for the global climate. Of less certainty is the extent to which regional scale (i.e., sub-GCM grid) environmental processes will be affected. In this chapter, a range of downscaling techniques are critiqued. Then a relatively simple (yet robust) statistical downscaling technique and its use in the modelling of future runoff scenarios for three river basins in the Sierra Nevada, California, is described. This region was selected because GCM experiments driven by combined greenhouse-gas and sulphate-aerosol forcings consistently show major changes in the hydro-climate of the southwest United States by the end of the 21st century. The regression-based downscaling method was used to simulate daily rainfall and temperature series for streamflow modelling in three Californian river basins under current-and future-climate conditions. The downscaling involved just three predictor variables (specific humidity, zonal velocity component of airflow, and 500 hPa geopotential heights) supplied by the U.K. Meteorological Office couple ocean-atmosphere model (HadCM2) for the grid point nearest the target basins. When evaluated using independent data, the model showed reasonable skill at reproducing observed area-average precipitation, temperature, and concomitant streamflow variations. Overall, the downscaled data resulted in slight underestimates of mean annual streamflow due to underestimates of precipitation in spring and positive temperature biases in winter. Differences in the skill of simulated streamflows amongst the three basins were attributed to the smoothing effects of snowpack on streamflow responses to climate forcing. The Merced and American River basins drain the western, windward slope of the Sierra Nevada and are snowmelt dominated, whereas the Carson River drains the eastern, leeward slope and is a mix of

  18. Genetic data simulators and their applications: an overview

    PubMed Central

    Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Gillanders, Elizabeth; Feuer, Eric J.

    2016-01-01

    Computer simulations have played an indispensable role in the development and application of statistical models and methods for genetic studies across multiple disciplines. The need to simulate complex evolutionary scenarios and pseudo-datasets for various studies has fueled the development of dozens of computer programs with varying reliability, performance, and application areas. To help researchers compare and choose the most appropriate simulators for their studies, we have created the Genetic Simulation Resources (GSR) website, which allows authors of simulation software to register their applications and describe them with more than 160 defined attributes. This article summarizes the properties of 93 simulators currently registered at GSR and provides an overview of the development and applications of genetic simulators. Unlike other review articles that address technical issues or compare simulators for particular application areas, we focus on software development, maintenance, and features of simulators, often from a historical perspective. Publications that cite these simulators are used to summarize both the applications of genetic simulations and the utilization of simulators. PMID:25504286

  19. Genetic data simulators and their applications: an overview.

    PubMed

    Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E; Racine, Ben; Clarke, John; Gillanders, Elizabeth; Feuer, Eric J

    2015-01-01

    Computer simulations have played an indispensable role in the development and applications of statistical models and methods for genetic studies across multiple disciplines. The need to simulate complex evolutionary scenarios and pseudo-datasets for various studies has fueled the development of dozens of computer programs with varying reliability, performance, and application areas. To help researchers compare and choose the most appropriate simulators for their studies, we have created the genetic simulation resources (GSR) website, which allows authors of simulation software to register their applications and describe them with more than 160 defined attributes. This article summarizes the properties of 93 simulators currently registered at GSR and provides an overview of the development and applications of genetic simulators. Unlike other review articles that address technical issues or compare simulators for particular application areas, we focus on software development, maintenance, and features of simulators, often from a historical perspective. Publications that cite these simulators are used to summarize both the applications of genetic simulations and the utilization of simulators. PMID:25504286

  20. Narrowing of the Upwelling Branch of the Brewer-Dobson Circulation and Hadley Cell in Chemistry-Climate Model Simulations of the 21st Century

    NASA Technical Reports Server (NTRS)

    Li, Feng; Stolarski, Richard S.; Pawson, Steven; Newman, Paul A.; Waugh, Darryn

    2010-01-01

    Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley rising branch. Model results suggest that the narrowing of the Hadley cell ascent is also eddy-driven.

  1. Narrowing of the Upwelling Branch of the Brewer-Dobson Circulation and Hadley Cell in Chemistry-Climate Model Simulations of the 21st Century

    NASA Technical Reports Server (NTRS)

    Li, Feng; Stolarski, Richard S.; Pawson, Steven; Newman, Paul A.; Waugh, Darryn

    2010-01-01

    Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley cell's rising branch. Model results suggest that eddy forcing may also play a part in the narrowing of the rising branch of the Hadley cell.

  2. Simulation of short-term pressure regulation during the tilt test in a coupled 3D-0D closed-loop model of the circulation.

    PubMed

    Lau, Kevin D; Figueroa, C Alberto

    2015-08-01

    Short-term fluctuations in arterial pressures arising from normal physiological function are buffered by a negative feedback system known as the arterial baroreflex. Initiated by altered biomechanical stretch in the vessel wall, the baroreflex coordinates a systemic response that alters heart rate, cardiac contractility and peripheral vessel vasoconstriction. In this work, a coupled 3D-0D formulation for the short-term pressure regulation of the systemic circulation is presented. Including the baroreflex feedback mechanisms, a patient-specific model of the large arteries is subjected to a simulated head up tilt test. Comparative simulations with and without baroreflex control highlight the critical role that the baroreflex has in regulating variations in pressures within the systemic circulation. PMID:25567754

  3. Circulating pump for high-pressure and high-temperature applications

    NASA Astrophysics Data System (ADS)

    Peleties, Fotos; Martin Trusler, J. P.; Goodwin, Anthony R. H.; Maitland, Geoffrey C.

    2005-10-01

    A high-pressure high-temperature magnetic circulating pump is described. The design is based on the concept of contactless bidirectional pumping action. This pump can deliver a continuous flow at temperatures up to 175°C and pressures up to 2000bars. Wetted parts are fabricated from stainless steels, there are no elastomeric seals or lubricants required, and the pump can be physically mobile during operation. Tests with toluene at ambient temperature and pressure showed that volumetric flow rates of up to 320cm3 min-1 and pressure heads of up to 2.2bars could be achieved.

  4. Aerosol-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations

    NASA Astrophysics Data System (ADS)

    Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.

    2012-02-01

    We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the roles of different forcing agents as drivers of summer rainfall trends in the Australasian region. Our results suggest that anthropogenic aerosols have contributed to the observed multi-decadal rainfall increase over north-western Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we performed multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. We also compare a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). Simulated aerosol-induced rainfall trends over the Indo-Pacific region for austral summer and boreal summer show a distinct contrast. In boreal summer, there is a southward shift of equatorial rainfall, consistent with the idea that anthropogenic aerosols have suppressed Asian monsoonal rainfall, and caused a southward shift of the local Hadley circulation. In austral summer, the aerosol-induced response more closely resembles a westward shift and strengthening of the upward branch of the Walker circulation, rather than a coherent southward shift of regional tropical rainfall. Thus the mechanism by which anthropogenic aerosols may affect Australian summer rainfall is unclear. Focusing on summer rainfall trends over north-western Australia (NWA), we find that CSIRO-Mk3.6 simulates a strong rainfall decrease in RCP4.5, whereas simulated trends in HIST are weak and insignificant during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol

  5. Snowline instability in a general circulation model: application to Carboniferous glaciation

    SciTech Connect

    Crowley, T.J.; Yip, Kuor-Kier, J.; Baum, S.K.

    1994-11-01

    For over twenty years it has been known that energy balance models (EBMs) with snow-albedo feedback are characterized by unstable behavior in some areas of parameter space. This behaviour leads to rapid changes in snow area due to small changes in forcing, and has been termed the small ice cap instability (SICI). It has never been clarified whether this behaviour reflects a real feature of the climate system or a limitation in EBMs. In this study we demonstrate that evidence for similar unstable behavior can also be found in an atmospheric general circulation model (GCM), using a realistic set of boundary conditions for the Carboniferous (300 Ma), one of the most extensive periods of glaciation in Earth history. When solar luminosity is sequentially lowered to near values appropriate for the Carboniferous, there is a discontinuous increase in summer snow area. The instability occurs in approximately the same area of parameter space as one previously found in an EBM. Analysis of selected fields indicates that the circulation is primarily affected in the area of snow increase; far-field effects are minimal. There is good agreement between model-generated summer snowcover and one reconstruction of Carboniferous ice cover. Although more work is required on this topic, our results provide increased support for the possibility that the snowline instability represents a real feature of the climate system, and that it may help explain some cases of glacial inception and abrupt transitions in Earth history. 63 refs., 20 figs.

  6. Microcomputer-based automatic regulation of extracorporeal circulation: a trial for the application of fuzzy inference.

    PubMed

    Anbe, J; Tobi, T; Nakajima, H; Akasaka, T; Okinaga, K

    1992-10-01

    Since its establishment many researchers have been trying to automate the process of extracorporeal circulation (ECC). We developed a preliminary experimental model of an automatic regulatory system for ECC. The purpose of the system was to regulate basic hemodynamic parameters such as pump flow and withdrawal blood volume. It was divided into three main components: data sampling unit, central processing unit, and controlling unit. Based on this model we were able to achieve autoregulation of ECC using minimum configuration; however, the system lacked smoothness. This was partly because it was based on a "static" regulation system which used conditional statements having multiple parameters. In this study, we applied fuzzy logic to the former model to achieve more accurate and reliable regulation. We report experimental results for the new system and compare the data between clinical circulation in 13 infants (mean body weight, 13.32 +/- 5.99 kg) and experimental regulation in 7 mongrel dogs (mean body weight, 11.9 +/- 2.53 kg). The comparative study revealed no statistical difference between the two groups. This result suggests that the automatic regulation of ECC may be an alternative to manual operation by a professional perfusionist in the near future. PMID:10078307

  7. On the reduced lifetime of nitrous oxide due to climate change induced acceleration of the Brewer-Dobson circulation as simulated by the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Kracher, D.; Manzini, E.; Reick, C. H.; Schultz, M. G.; Stein, O.

    2014-12-01

    Greenhouse gas induced climate change will modify the physical conditions of the atmosphere. One of the projected changes is an acceleration of the Brewer-Dobson circulation in the stratosphere, as it has been shown in many model studies. This change in the stratospheric circulation consequently bears an effect on the transport and distribution of atmospheric components such as N2O. Since N2O is involved in ozone destruction, a modified distribution of N2O can be of importance for ozone chemistry. N2O is inert in the troposphere and decays only in the stratosphere. Thus, changes in the exchange between troposphere and stratosphere can also affect the stratospheric sink of N2O, and consequently its atmospheric lifetime. N2O is a potent greenhouse gas with a global warming potential of currently approximately 300 CO2-equivalents in a 100-year perspective. A faster decay in atmospheric N2O mixing ratios, i.e. a decreased atmospheric lifetime of N2O, will also reduce its global warming potential. In order to assess the impact of climate change on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O, we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean-atmosphere N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation. Increasing surface temperatures and CO2 concentrations in the stratosphere impact atmospheric circulation differently. Thus, we conduct a series of transient runs with the atmospheric model of MPI-ESM to isolate different factors governing a shift in atmospheric circulation. From those transient

  8. Application of control theory to dynamic systems simulation

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    The application of control theory is applied to dynamic systems simulation. Theory and methodology applicable to controlled ecological life support systems are considered. Spatial effects on system stability, design of control systems with uncertain parameters, and an interactive computing language (PARASOL-II) designed for dynamic system simulation, report quality graphics, data acquisition, and simple real time control are discussed.

  9. Application of simulation models for the optimization of business processes

    NASA Astrophysics Data System (ADS)

    Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří

    2016-06-01

    The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.

  10. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations

    NASA Astrophysics Data System (ADS)

    Cariolle, D.; Teyssèdre, H.

    2007-05-01

    This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2-D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory work. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the solution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results from the two versions show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small, of the order of 10%. The model also reproduces fairly well the polar ozone variability, notably the formation of "ozone holes" in the Southern Hemisphere with amplitudes and a seasonal evolution that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone content inside the polar vortex of the Southern Hemisphere over longer periods in spring time. It is concluded that for the study of climate scenarios or the assimilation of

  11. Dynamic Changes in Numbers and Properties of Circulating Tumor Cells and Their Potential Applications

    PubMed Central

    Tseng, Ju-Yu; Yang, Chih-Yung; Liang, Shu-Ching; Liu, Ren-Shyan; Jiang, Jeng-Kai; Lin, Chi-Hung

    2014-01-01

    Circulating tumor cells (CTCs) can be detected in the blood of different types of early or advanced cancer using immunology-based assays or nucleic acid methods. The detection and quantification of CTCs has significant clinical utility in the prognosis of metastatic breast, prostate, and colorectal cancers. CTCs are a heterogeneous population of cells and often different from those of their respective primary tumor. Understanding the biology of CTCs may provide useful predictive information for the selection of the most appropriate treatment. Therefore, CTC detection and characterization could become a valuable tool to refine prognosis and serve as a “real-time biopsy” and has the potential to guide precision cancer therapies, monitor cancer treatment, and investigate the process of metastasis. PMID:25521853

  12. Dynamic changes in numbers and properties of circulating tumor cells and their potential applications.

    PubMed

    Tseng, Ju-Yu; Yang, Chih-Yung; Liang, Shu-Ching; Liu, Ren-Shyan; Jiang, Jeng-Kai; Lin, Chi-Hung

    2014-01-01

    Circulating tumor cells (CTCs) can be detected in the blood of different types of early or advanced cancer using immunology-based assays or nucleic acid methods. The detection and quantification of CTCs has significant clinical utility in the prognosis of metastatic breast, prostate, and colorectal cancers. CTCs are a heterogeneous population of cells and often different from those of their respective primary tumor. Understanding the biology of CTCs may provide useful predictive information for the selection of the most appropriate treatment. Therefore, CTC detection and characterization could become a valuable tool to refine prognosis and serve as a "real-time biopsy" and has the potential to guide precision cancer therapies, monitor cancer treatment, and investigate the process of metastasis. PMID:25521853

  13. Diagnostic Applications and Methods to Isolate Circulating Tumor Cells (CTCs) from Blood

    NASA Astrophysics Data System (ADS)

    Tang, Cha-Mei

    2013-03-01

    Each year a million new cancer cases are diagnosed in the United States. Ninety percent of the deaths will be the result of metastasis, not from the primary tumor. Tissue biopsy is a universally accepted tool for cancer diagnosis and determination of treatment. The procedure varies, but is invasive, costly, and can be fatal, and for these reasons is seldom repeated after initial diagnosis. Monitoring of treatment response and for possible relapse is usually done by CT or MRI scan, both of which are expensive and require the tumor to change size perceptibly. Further, cancer can mutate or develop resistance to therapeutics and require modification of the treatment regimen. The initial tissue biopsy often cannot reflect the disease as it progresses, requiring new biopsy samples to determine a change of treatment. All carcinomas, about 80% of all cancer, shed tumor cells into the circulation, most often at the later stages when treatment is more critical. These circulating tumor cells (CTCs) are the cause of metastasis, and can be isolated from patient blood to serve as ``liquid biopsy''. These CTCs contain a valuable trove of information that help both patient and clinician understand disease status. In addition to counting the number of CTCs (known to be a prognostic indicator of survival), CTCs can provide biomarker information such as protein expressions and gene mutations, amplifications, and translocations. This information can be used to determine treatment. During treatment, the number of intact and apoptotic CTCs can be measured on a repeated basis to measure the patient's response to treatment and disease progression. Following treatment, liquid biopsy can be repeated at regular intervals to watch for relapse. Methods to isolate CTCs can be grouped into three categories: i) immunocapture based on surface markers of CTCs, ii) size exclusion based on CTC size, typically larger than blood cells, and iii) negative selection utilizing red blood cell lysis, white

  14. Simulation of centrifugal compressor transient performance for process plant applications

    SciTech Connect

    MacDougal, I.; Elder, R.L.

    1983-01-01

    The development of a theoretical model capable of simulating centrifugal compressor transient performance (including compressor surge) is detailed. Simulation results from a Fortran computer program are compared with measured compressor transient data. Good simulation of compressor transients between stable operating points, and compressor presurge flow oscillations has been obtained. General application criteria are presented for the geometric distribution of model elements within a compressor system. Model applications and future work are outlined.

  15. Impact of snow cover on inter-annual variability of the NH winter circulation in an ensemble GCM simulation forced by satellite observations

    NASA Astrophysics Data System (ADS)

    Orsolini, Y.; Kvamstø, N.

    2009-04-01

    The impact of land boundary conditions on predictability from the seasonal to decadal time-scale and on the forcing atmospheric teleconnections is now the focus of renewed attention. In order to investigate the impact of the terrestrial cryosphere on the northern hemisphere winter circulation, we have performed a suite of ensemble simulations with the Meteo-France ARPEGE Climat (V3) GCM, spanning two decades (1979-2000), to attribute circulation anomalies to changes in snow cover extent. Observed snow cover derived from satellite data has been retrieved from the NISDC, and nudged weekly into the GCM. Control simulations with prognostic snow variables have been also performed. Anomalous snow cover extend over Eastern Eurasia is linked with anomalous circulation over the northern Pacific, in particular over the Aleutian sector, and this impact also the North Atlantic in late winter. We find that nudging of realistic snow cover considerably improves the hindcast and the representation of the Aleutian-Icelandic Low Seesaw in the model. We discuss gains in potential predictability in winter, resulting from the snow nudging, and potential for seasonal to decadal predictions.

  16. Impact of snow cover on inter-annual variability of the NH winter circulation in an ensemble GCM simulation forced by satellite observations

    NASA Astrophysics Data System (ADS)

    Orsolini, Y.; Kvamsto, N.; Balsamo, G.

    2009-09-01

    The impact of land boundary conditions on predictability from the seasonal to decadal time-scale and on the forcing atmospheric teleconnections is now the focus of renewed attention. In order to investigate the impact of the terrestrial cryosphere on the northern hemisphere winter circulation, we have performed a suite of ensemble simulations with the Meteo-France ARPEGE Climat (V3) GCM, spanning two decades (1979-2000), to attribute circulation anomalies to changes in snow cover extent. Observed snow cover derived from satellite data has been retrieved from the NISDC, and nudged weekly into the GCM. Control simulations with prognostic snow variables have been also performed. Anomalous snow cover extend over Eastern Eurasia is linked with anomalous circulation over the northern Pacific, in particular over the Aleutian sector, and this impacts also the North Atlantic in late winter. We find that nudging of realistic snow cover considerably improves the hindcast and the representation of the Aleutian-Icelandic Low Seesaw in the model. We also discuss new coupled AOGCM ensemble forecasts aimed at better understanding the role of snow cover variability over Eurasia onto winter climate.

  17. An Open Simulation System Model for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1995-01-01

    A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.

  18. [Differential approach to the application of hyperventilation in acute period of severe brain injury in relation to cerebral circulation].

    PubMed

    Oshorov, A V; Kozlova, E A; Moldotashova, A K; Amcheslavskiĭ, V G; Potapov, A A

    2004-01-01

    Seventeen patients with severe brain injury (Glasgow-8 Coma Scale 3-8 scores) complicated by traumatic subarachnoidal hemorrhage and severe cerebral hemodynamic disorders (hyperemia, vasospasm) were examined. Hyperventilation was performed in different phases of cerebral circulation under multiparametrical monitoring (intracranial pressure, cerebral perfusion pressure, jugular oximetry, Doppler study using the carotid compression test). The use of hyperventilation to eliminate intracranial hypertension in victims with brain hyperemia was shown to make cerebral circulation consistent with brain tissue oxygen demands and to improve the autoregulatory reserve of cerebral vessels. The application of hyperventilation to eliminate intracranial hypertension in vasospasm leads to a temporary reduction in intracranial pressure, but simultaneously causes cerebral circulatory changes that do not correspond to cerebral oxygen demands, as well as lowered cerebral perfusion pressure, which increases a risk for ischemic brain tissue lesion. This requires a strict rationale for the use of hyperventilation and for multiparametrical monitoring of cerebral functions, which includes jugular oximetry, Doppler transcranial study, and measurement of intracranial pressure throughout the hyperventilation period in order to prevent secondary brain lesion. PMID:15326763

  19. Numerical simulations of a transverse indirect circulation and low-level jet in the exit region of an upper-level jet

    NASA Technical Reports Server (NTRS)

    Brill, K. F.; Uccellini, L. W.; Burkhart, R. P.; Warner, T. T.; Anthes, R. A.

    1985-01-01

    A numerical study was performed of a severe weather event (tornado) which occurred on May 10, 1973 in the Ohio region. The situation was modeled with a primitive equation mesoscale dynamic formulation. Account was taken of precipitation, the planetary boundary layer parameters as bulk quantities, the vertical pressure gradient, and lateral boundary conditions based on radiosonde data. Two 12-hr simulations, adiabatic and nondivergent, respectively, were analyzed for relationships between upper and lower level jets. In the adiabatic formulation, a transverse circulation with a low level jet formed at the exit region of the upper level jet. The nondivergent situation led to similar, but weaker, phenomena. Both forms suggest that indirect circulation in the exit zone of an upper level jet is strongly influenced by the initial structure of the jet.

  20. On simulation of transfer processes in the freeboard region of a steam-generator furnace with a circulating fluidized bed

    SciTech Connect

    B.B. Rokhman

    2006-01-15

    A semiempirical, stationary, two-zone model of transfer processes in the freeboard region of a reactor with a circulating boiling layer has been constructed. The features of the aerodynamics, heat and mass transfer, and combustion of anthracite culm in the core and near-wall ring region of a flow in a KFS-0.2 pilot plant have been investigated in detail.

  1. A Regional Model Simulation of the 1991 Severe Precipitation Event over the Yangtze-Huai River Valley. Part I: Precipitation and Circulation Statistics.

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chyung; Gong, Wei; Wei, Helin

    2000-01-01

    The summer Mei-yu event over eastern China, which is strongly influenced by large-scale circulation, is an important aspect of East Asian climate; for example, the Mei-yu frequently brings heavy precipitation to the Yangtze-Huai River valley (YHRV). Both observations and a regional model were used to study the Mei-yu front and its relation to large-scale circulation during the summer of 1991 when severe floods occurred over YHRV. This study has two parts: the first part, presented here, analyzes the association between heavy Mei-yu precipitation and relevant large-scale circulation, while the second part, documented by W. Gong and W.-C. Wang, examines the model biases associated with the treatment of lateral boundary conditions (the objective analyses and coupling schemes) used as the driving fields for the regional model.Observations indicate that the Mei-yu season in 1991 spans 18 May-14 July, making it the longest Mei-yu period during the last 40 yr. The heavy precipitation over YHRV is found to be intimately related to the western Pacific subtropical high, upper-tropospheric westerly jet at midlatitudes, and lower-tropospheric southwest wind and moisture flux. The regional model simulates reasonably well the regional mean surface air temperature and precipitation, in particular the precipitation evolution and its association with the large-scale circulation throughout the Mei-yu season. However, the model simulates smaller precipitation intensity, which is due partly to the colder and drier model atmosphere resulting from excessive low-level clouds and the simplified land surface process scheme used in the present study.

  2. The relation between AMOC, gyre circulation, and meridional heat transports in the North Atlantic in model simulations of the last millennium

    NASA Astrophysics Data System (ADS)

    Jungclaus, Johann; Moreno-Chamarro, Eduardo; Lohmann, Katja

    2016-04-01

    While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.

  3. Directional interstitial brachytherapy from simulation to application

    NASA Astrophysics Data System (ADS)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the

  4. Design strategies and applications of circulating cell-mediated drug delivery systems

    PubMed Central

    Kim, Gloria B.; Dong, Cheng; Yang, Jian

    2015-01-01

    Drug delivery systems, particularly nanomaterial-based drug delivery systems, possess a tremendous amount of potential to improve diagnostic and therapeutic effects of drugs. Controlled drug delivery targeted to a specific disease is designed to significantly improve the pharmaceutical effects of drugs and reduce their side effects. Unfortunately, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even with the development of numerous surface markers and targeting modalities. Thus, alternative drug and nanomedicine targeting approaches are desired. Circulating cells, such as erythrocytes, leukocytes, and stem cells, present innate disease sensing and homing properties. Hence, using living cells as drug delivery carriers has gained increasing interest in recent years. This review highlights the recent advances in the design of cell-mediated drug delivery systems and targeting mechanisms. The approaches of drug encapsulation/conjugation to cell-carriers, cell-mediated targeting mechanisms, and the methods of controlled drug release are elaborated here. Cell-based “live” targeting and delivery could be used to facilitate a more specific, robust, and smart payload distribution for the next-generation drug delivery systems. PMID:25984572

  5. [Application and prospect of circulating tumor cells detection in colorectal cancer].

    PubMed

    Chen, Qingmin; Tang, Qingchao; Chen, Yinggang; Wang, Xishan

    2016-06-01

    About 30%-50% of colorectal cancer patients would develop recurrence and metastasis. At present, there is still a lack of effective evaluation method for recurrence, metastasis and prognosis. In recent years, a great progress about circulating tumor cells (CTC) in diagnosis and treatment of colorectal cancer has been made. The most common CTC detection methods include immunocytochemistry, flow cytometry, PCR, immunomagnetic separation, optical fiber array scanning and CTC chip. Based on present studies, researchers reach the consensus that CTC is clinically valuable in the following aspects: detection of occult metastasis, monitor of disease progress and evaluation of response to treatment. With recent development of clinical specialization, multi-disciplinary treatment (MDT), gene detection and targeted therapy, individualized treatment may greatly improve overall survive and disease-free survival of colorectal cancer patients. However, the methods above depend on tumor tissues that are always impractical to obtain for late stage and non-surgery patients. Moreover, the size of specimen is always small, making gene expression and mutation detection difficult. CTC detection may solve such problems based on molecular biology with high plausibility and repeatability. Therefore, CTC detection can be used as a new diagnosis tool. It is believed that CTC detection will play an important role in early diagnosis, evaluating recurrence, metastasis, making individualized treatment and predicting prognosis. PMID:27353110

  6. Numerical simulation of circulation in Kara and Pechora Seas using the system of operational diagnosis and forecast of the marine dynamics

    NASA Astrophysics Data System (ADS)

    Diansky, Nikolay; Fomin, Vladimir; Kabatchenko, Ilya; Gusev, Anatoly

    2015-04-01

    The system of operational diagnosis and forecast (SODaF) is presented for hydrometeorological characteristics of Kara and Pechora Seas, which is implemented in the N.N.Zubov State Oceanography Institute (SOI). It includes the computation of atmospheric forcing using the WRF model, computation of currents, sea level, temperature, salinity and sea ice using the model INMOM, and computation of wind wave parameters using Russian Wind Wave Model (RWWM).The results of the verification are presented including simulated hydrometeocharacteristics obtained by SODaF for Kara and Pechora Seas. As well, the retrospective simulation was performed for thermohydrodynamical characteristics of these seas for the ice-free period of 2003-2012. The important features of circulation in Kara and Pechora Seas and the structure of water exchange between them in the ice-free period are shown. The use of non-hydrostatic atmospheric model WRF allows one to reproduce katabatic winds formed over the glaciers. In general, the direction and speed of katabatic winds are fairly permanent. In accordance with the nature of katabatic winds, they are intensified from warm to cold period that is well manifested in the wind map for August. The basis of the Kara Sea circulation is NewLand, Yamal and Ob-Yenisey currents, which are well reproduced with the INMOM. It is shown that the main contribution to the monthly mean circulation of Kara and Pechora seas is made by wind currents. In the western part of the Kara Sea between the mainland and the New Land in the fall the pronounced cyclonic circulation is formed that is typical for closed seas. The main components of the circulation are the NewLand and Yamal currents flowing respectively along the eastern coast of NewLand and the western coast of the Yamal Peninsula.It is caused by regional winds directed from the "cold" land to the "warm" sea. In summer,such a circulation is broken along the coast of the mainland, so that the Yamal flow is reduced. This

  7. Application of computer simulators in population genetics.

    PubMed

    Feng, Gao; Haipeng, Li

    2016-08-01

    The genomes of more and more organisms have been sequenced due to the advances in next-generation sequencing technologies. As a powerful tool, computer simulators play a critical role in studying the genome-wide DNA polymorphism pattern. Simulations can be performed both forwards-in-time and backwards-in-time, which complement each other and are suitable for meeting different needs, such as studying the effect of evolutionary dynamics, the estimation of parameters, and the validation of evolutionary hypotheses as well as new methods. In this review, we briefly introduced population genetics related theoretical framework and provided a detailed comparison of 32 simulators published over the last ten years. The future development of new simulators was also discussed. PMID:27531609

  8. Virtual ambulatory care. Computer simulation applications.

    PubMed

    Zilm, Frank; Culp, Kristyna; Dorney, Beverley

    2003-01-01

    Computer simulation modeling has evolved during the past twenty years into an effective tool for analyzing and planning ambulatory care facilities. This article explains the use of this tool in three case-study, ambulatory care settings--a GI lab, holding beds for a cardiac catheterization laboratory, and in emergency services. These examples also illustrate the use of three software packages currently available: MedModel, Simul8, and WITNESS. PMID:12545512

  9. Pebble bed pebble motion: Simulation and Application

    NASA Astrophysics Data System (ADS)

    Cogliati, Joshua J.

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This dissertation presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to

  10. Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity

    NASA Astrophysics Data System (ADS)

    Marotzke, Jochem; Giering, Ralf; Zhang, Kate Q.; Stammer, Detlef; Hill, Chris; Lee, Tong

    1999-12-01

    We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent-Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN-) line-by-line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The "kinematic sensitivity" to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east-west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.

  11. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    NASA Astrophysics Data System (ADS)

    Wang, S.; Moore, J. K.; Primeau, F. W.; Khatiwala, S.

    2011-11-01

    The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant) inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the ΔC* method, and two are based on reconstructions of the Green function for the surface-to-interior transport, the TTD method and the maximum entropy inversion method (KPH). The KPH method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1) to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the KPH method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the KPH method are generally valid on the global scale, but may introduce significant errors in Cant estimates on regional scales. The KPH method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  12. The Effect of a Hyperdynamic Circulation on Tissue Doppler Values: A Simulation in Young Adults during Exercise

    PubMed Central

    Royse, Colin F.; Ruizhi, Ni; Huynh, Andrew L.; Royse, Alistair G.

    2011-01-01

    Left ventricular tissue Doppler imaging (TDI) velocities are used to monitor systolic and diastolic function, but it is not known how these may change in a hyperdynamic circulation, as often occurs in anesthesia and critical care medicine. Twenty-six healthy young volunteers were recruited and left ventricular systolic and diastolic tissue Doppler velocities measured at rest, light exercise, strenuous exercise, and recovery (10 minutes after exercise). At rest, TDI velocities significantly decreased from base to apex (P < .001). Within basal, mid, and apical sections, systolic and diastolic peak velocities differed between segments (P < .05), except for systolic middle (P = .094) and late diastolic apical velocities (P = .257). Basal septal velocities differed from basal lateral, for systolic (P = .041) but not diastolic peak values. Inferobasal radial values differed from basal lateral values for both systolic and diastolic velocities (P < .05). Both systolic and diastolic TDI velocities increased significantly in all segments in a proportionate manner with a hyperdynamic circulation. PMID:21403890

  13. Comparison of TOPEX/Poseidon Sea Level Observations to Simulations by the Los Alamos Ocean General Circulation Mode

    NASA Technical Reports Server (NTRS)

    Fu, L.; Smith, R.

    1995-01-01

    The sea level observations from the TOPEX/Poseidon radar altimeter from October, 1992 to October, 1994 were used to study the circulation of the global oceans and their temporal changes. To provide a framework for interpreting the observations, the Parallel Ocean Program model of the Los Alamos National Laboratory was run for the same period of time for comparison. A report of that data is given.

  14. Evaluation of a dynamically downscaled atmospheric reanalyse in the prospect of forcing long term simulations of the ocean circulation in the Gulf of Lions

    NASA Astrophysics Data System (ADS)

    Langlais, C.; Barnier, B.; Molines, J. M.; Fraunié, P.; Jacob, D.; Kotlarski, S.

    The paper evaluates atmospheric reanalysis as possible forcing of model simulations of the ocean circulation inter-annual variability in the Gulf of Lions in the Western Mediterranean Sea between 1990 and 2000. The sensitivity of the coastal atmospheric patterns to the model resolution is investigated using the REMO regional climate model (18 km, 1 h), and the recent global atmospheric reanalysis ERA40 (125 km, 6 h). At scales from a few years to a few days, both atmospheric data sets exhibit a very similar weather, and agreement between REMO and ERA40 is especially good on the seasonal cycle and at the daily variability scale. At smaller scales, REMO reproduces more realistic spatio-temporal patterns in the ocean forcing: specific wind systems, particular atmospheric behaviour on the shelf, diurnal cycle, sea-breeze. Ocean twin experiments (1990-1993) clearly underline REMO skills to drive dominant oceanic processes in this microtidal area. Finer wind patterns induce a more realistic circulation and hydrology of the shelf water: unique shelf circulation, upwelling, temperature and salinity exchanges at the shelf break. The hourly sampling of REMO introduces a diurnal forcing which enhances the behaviour of the ocean mixed layer. In addition, the more numerous wind extremes modify the exchanges at the shelf break: favouring the export of dense shelf water, enhancing the mesoscale variability and the interactions of the along slope current with the bathymetry.

  15. Virtual reality applications in robotic simulations

    NASA Technical Reports Server (NTRS)

    Homan, David J.; Gott, Charles J.; Goza, S. Michael

    1994-01-01

    Virtual reality (VR) provides a means to practice integrated extravehicular activities (EVA)/remote manipulator system (RMS) operations in the on-orbit configuration with no discomfort or risk to crewmembers. VR afforded the STS-61 crew the luxury of practicing the integrated EVA/RMS operations in an on-orbit configuration prior to the actual flight. The VR simulation was developed by the Automation and Robotics Division's Telepresence/Virtual Reality Lab and Integrated Graphics, Operations, and Analysis Lab (IGOAL) at JSC. The RMS Part Task Trainer (PTT) was developed by the IGOAL for RMS training in 1988 as a fully functional, kinematic simulation of the shuttle RMS and served as the RMS portion of the integrated VR simulation. Because the EVA crewmember could get a realistic view of the shuttle and payload bay in the VR simulation, he/she could explore different positions and views to determine the best method for performing a specific task, thus greatly increasing the efficiency of use of the neutral buoyancy facilities.

  16. Lung Circulation.

    PubMed

    Suresh, Karthik; Shimoda, Larissa A

    2016-01-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. © 2016 American Physiological Society. Compr Physiol 6:897-943, 2016. PMID:27065170

  17. MADYMO crash victim simulations: A flight safety application

    NASA Astrophysics Data System (ADS)

    Wismans, J.; Griffioen, J. A.

    1988-12-01

    MADYMO is a computer program for two- or three-dimensional simulation of human body gross motions. The program was designed particularly for crash analyses. In the past years the program was applied and validated extensively for vehicle safety research. An application is described in the field of flight safety: the simulation of a space shuttle crew escape system.

  18. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    NASA Technical Reports Server (NTRS)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  19. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30-500 km)

    SciTech Connect

    Roble, R.G.; Ridley, E.C.

    1994-03-15

    A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the NCAR thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km. 31 refs., 3 figs.

  20. NASA's Large-Eddy Simulation Research for Jet Noise Applications

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2009-01-01

    Research into large-eddy simulation (LES) for application to jet noise is described. The LES efforts include in-house code development and application at NASA Glenn along with NASA Research Announcement sponsored work at Stanford University and Florida State University. Details of the computational methods used and sample results for jet flows are provided.

  1. Responses of the Tropical Pacific to Wind Forcing as Observed by Spaceborne Sensors and Simulated by an Ocean General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Tang, Qenqing; Atlas, Robert

    1996-01-01

    In this study, satellite observations, in situ measurements, and model simulations are combined to assess the oceanic response to surface wind forcing in the equatorial Pacific. The surface wind fields derived from observations by the spaceborne special sensor microwave imager (SSM/I) and from the operational products of the European Centre for Medium-Range Weather Forecasts (ECMWF) are compared. When SSM/I winds are used to force a primitive-equation ocean general circulation model (OGCM), they produce 3 C more surface cooling than ECMWF winds for the eastern equatorial Pacific during the cool phase of an El Nino-Southern Oscillation event. The stronger cooling by SSM/I winds is in good agreement with measurements at the moored buoys and observations by the advanced very high resolution radiometer, indicating that SSM/I winds are superior to ECMWF winds in forcing the tropical ocean. In comparison with measurements from buoys, tide gauges, and the Geosat altimeter, the OGCM simulates the temporal variations of temperature, steric, and sea level changes with reasonable realism when forced with the satellite winds. There are discrepancies between model simulations and observations that are common to both wind forcing fields, one of which is the simulation of zonal currents; they could be attributed to model deficiencies. By examining model simulations under two winds, vertical heat advection and uplifting of the thermocline are found to be the dominant factors in the anomalous cooling of the ocean mixed layer.

  2. Supporting the Development of Resilient Message Passing Applications using Simulation

    SciTech Connect

    Naughton, III, Thomas J; Engelmann, Christian; Vallee, Geoffroy R; Boehm, Swen

    2014-01-01

    An emerging aspect of high-performance computing (HPC) hardware/software co-design is investigating performance under failure. The work in this paper extends the Extreme-scale Simulator (xSim), which was designed for evaluating the performance of message passing interface (MPI) applications on future HPC architectures, with fault-tolerant MPI extensions proposed by the MPI Fault Tolerance Working Group. xSim permits running MPI applications with millions of concurrent MPI ranks, while observing application performance in a simulated extreme-scale system using a lightweight parallel discrete event simulation. The newly added features offer user-level failure mitigation (ULFM) extensions at the simulated MPI layer to support algorithm-based fault tolerance (ABFT). The presented solution permits investigating performance under failure and failure handling of ABFT solutions. The newly enhanced xSim is the very first performance tool that supports ULFM and ABFT.

  3. Application of the EPRI simulator qualification methodology to the Bugey simulator

    SciTech Connect

    Michel, B.; Le Coq, G. , 75 - Paris )

    1990-01-01

    The report describes application of the EPRI Simulator Qualification Methodology by EdF to the Bugey Simulator. The major objective of the study was to evaluate the methodology itself rather than to perform a complete qualification of the simulator. The key objectives were achieved. The major advantages and difficulties of using the methodology have been identified and discussed. 7 refs., 21 figs., 11 tabs.

  4. An overlooked problem in model simulations of the thermohaline circulation and heat transport in the Atlantic Ocean

    SciTech Connect

    Boening, C.W.; Holland, W.R.; Bryan, F.O.; Danabasoglu, G.; Mcwilliams, J.C. |

    1995-03-01

    Many models of the large-scale thermohaline circulation in the ocean exhibit strong zonally integrated upwelling in the midlatitude North Atlantic that significantly decreases the amount of deep water that is carried from the formation regions in the subpolar North Atlantic toward low latitudes and across the equator. In an analysis of results from the Community Modeling Effort using a suite of models with different horizontal resolution, wind and thermohaline forcing, and mixing parameters, it is shown that the upwelling is always concentrated in the western boundary layer between roughly 30 deg and 40 deg N. The vertical transport across 1000 m appears to be controlled by local dynamics and strongly depends on the horizontal resolution and mixing parameters of the model. It is suggested that in models with a realistic deep-water formation rate in the subpolar North Atlantic, the excessive upwelling can be considered as the prime reason for the typically too low meridional overturning rates and northward heat transports in the subtropical North Atlantic. A new isopycnal advection and mixing parameterization of tracer transports by mesoscale eddies yield substantial improvements in these integral measures of the circulation.

  5. Mock circulation simulation of extracorporeal membrane oxygenation support for systemic ventricular failure in an infant: the effect of atrial septostomy.

    PubMed

    Pantalos, George M; Sahetya, Sarina; Merkley, Tracy L; Horrell, Timothy; Austin, Erle H; Mascio, Christopher E

    2012-01-01

    Extracorporeal membrane oxygenation (ECMO) is often used to provide cardiopulmonary support for infants experiencing severe levels of cardiac or respiratory failure. In patients with two ventricles and no intra-atrial communication, ECMO is often complicated by limited venous return to the circuit and marked left atrial hypertension. This condition may be treated by performing an atrial septostomy to create an intentional atrial septal defect (ASD). A pediatric mock circulation with a conduit connecting the left and right atrium was used to examine the size of ASD that would relieve left atrial hypertension and restore acceptable hemodynamics in a 4 to 5 kg infant. After creation of left ventricular failure and subsequent institution of ECMO, the ASD was opened in a graded fashion while the resulting hemodynamic changes were recorded. An ASD equivalent to a 6.3 mm diameter hole decreased the left atrial pressure 30 mmHg to an acceptable level with a net left-to-right shunt of 393 ml/min. Further opening of the ASD resulted in additional hemodynamic improvement, but was eventually limited in further effect. This study demonstrates that a mock circulation can be used to investigate the size of an ASD necessary to effect sufficient clinical improvement in a two-ventricle infant on ECMO. PMID:22717588

  6. Impact of Enhanced Low-level Stratus on Simulated SSTs, Precipitation and the Circulation in the Tropical Atlantic Sector

    NASA Astrophysics Data System (ADS)

    Bader, J.; Eichhorn, A.

    2015-12-01

    Most coupled atmosphere-ocean general circulation models (AOGCMs) show a substantial warm bias in sea-surface temperatures (SSTs) in the eastern tropical Atlantic. The impact of enhanced low-level clouds on SST, precipitation and the circulation in the tropical Atlantic sector is tested. Therefore, we have conducted sensitivity experiments with the atmospheric model ECHAM6 and the coupled version of it (MPI-ESM1) in which we enhance the formation of low-level stratus at the inversion layer in the low troposphere. The impact of enhanced low-level clouds is compared to the standard version of the models. There is a direct cloud impact by reducing the incoming solar radiation at the surface. The reduced incoming solar radiation leads to a cooling of SSTs in the eastern tropical Atlantic in the coupled atmosphere-ocean model. This in turn causes not only locally rainfall reductions in oceanic precipitation but also a remote precipitation enhancement over north east Brazil. These precipitation changes are associated with changes in the equatorial wind-stress forcing. The impact of the wind stress changes on the equatorial zonal SST-gradient and the seasonal cycle is also analysed.

  7. Multigrid methods with applications to reservoir simulation

    SciTech Connect

    Xiao, Shengyou

    1994-05-01

    Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.

  8. Application of simulation techniques in supernova physics

    NASA Astrophysics Data System (ADS)

    Tsakstara, V.; Kosmas, T. S.

    2013-02-01

    In supernova (SN) physics, the responses of nuclear neutrino-detectors to SN neutrino-spectra, are studied by convoluting original theoretical cross sections with well known SN (anti)neutrino-energy distributions (such distributions are the two-parameter Fermi-Dirac and Power-Law distributions). Also, the interpretation of SN neutrino signals, created at various nuclear ν-detectors, is explored by applying simulation techniques in low-energy anti-neutrino spectra of boosted β-radioactive 6He ions (beta-beam neutrinos). In the present paper, we employ simulation techniques to analyze original SN anti-neutrino signals by using synthetic beta-beam spectra (defined as linear combinations of boosted beta-beam spectra of 6He). The quality of the fits, obtained by using the MERLIN optimization package, is in general good. From a nuclear theory point of view, the resulted nuclear responses reflect the effectiveness of some detector materials as SN neutrino detectors (COBRA, CUORE, ICARUS experiments).

  9. Applications of a general thermal/hydraulic simulation tool

    NASA Technical Reports Server (NTRS)

    Cullimore, B. A.

    1989-01-01

    The analytic techniques, sample applications, and development status of a general-purpose computer program called SINDA '85/FLUINT (for systems improved numerical differencing analyzer, 1985 version with fluid integrator), designed for simulating thermal structures and internal fluid systems, are described, with special attention given to the applications of the fluid system capabilities. The underlying assumptions, methodologies, and modeling capabilities of the system are discussed. Sample applications include component-level and system-level simulations. A system-level analysis of a cryogenic storage system is presented.

  10. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate

    NASA Astrophysics Data System (ADS)

    Kröner, Nico; Kotlarski, Sven; Fischer, Erich; Lüthi, Daniel; Zubler, Elias; Schär, Christoph

    2016-07-01

    Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer

  11. A GCM simulation study of the influence of Saharan evapotranspiration and surface-albedo anomalies on July circulation and rainfall

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Molod, A.

    1988-01-01

    The influence of surface albedo and evapotranspiration anomalies that could result from the hypothetical semiarid vegetation over North Africa on its July circulation and rainfall is examined using the Goddard Laboratory for Atmospheres GCM. It is shown that increased soil moisture and its dependent evapotranspiration produces a cooler and moister PBL over North Africa that is able to support enhanced moist convection and rainfall in Sahel and southern Sahara. It is found that lower surface albedo yields even higher moist static energy in the PBL and enhances the local moist convection and rainfall. Modifying the rain-evaporation parameterization in the model produces changes in the hydrological cycle and rainfall anomalies in distant regions. The effects of different falling rain parameterizations are discussed.

  12. A diabatic circulation two-dimensional model with photochemistry - Simulations of ozone and long-lived tracers with surface sources

    NASA Technical Reports Server (NTRS)

    Stordal, F.; Isaksen, I. S. A.; Horntveth, K.

    1985-01-01

    Numerous studies have been concerned with the possibility of a reduction of the stratospheric ozone layer. Such a reduction could lead to an enhanced penetration of ultraviolet (UV) radiation to the ground, and, as a result, to damage in the case of several biological processes. It is pointed out that the distributions of many trace gases, such as ozone, are governed in part by transport processes. The present investigation presents a two-dimensional photochemistry-transport model using the residual circulation. The global distribution of both ozone and components with ground sources computed in this model is in good agreement with the observations even though slow diffusion is adopted. The agreement is particularly good in the Northern Hemisphere. The results provide additional support for the idea that tracer transport in the stratosphere is mainly of advective nature.

  13. Simulation of the mantle and crustal helium isotope signature in the Mediterranean Sea using a high-resolution regional circulation model

    NASA Astrophysics Data System (ADS)

    Ayache, M.; Dutay, J.-C.; Jean-Baptiste, P.; Fourré, E.

    2015-12-01

    Helium isotopes (3He, 4He) are useful tracers for investigating the deep ocean circulation and for evaluating ocean general circulation models, because helium is a stable and conservative nuclide that does not take part in any chemical or biological process. Helium in the ocean originates from three different sources, namely, (i) gas dissolution in equilibrium with atmospheric helium, (ii) helium-3 addition by radioactive decay of tritium (called tritiugenic helium), and (iii) injection of terrigenic helium-3 and helium-4 by the submarine volcanic activity which occurs mainly at plate boundaries, and also addition of (mainly) helium-4 from the crust and sedimentary cover by α-decay of uranium and thorium contained in various minerals. We present the first simulation of the terrigenic helium isotope distribution in the whole Mediterranean Sea using a high-resolution model (NEMO-MED12). For this simulation we build a simple source function for terrigenic helium isotopes based on published estimates of terrestrial helium fluxes. We estimate a hydrothermal flux of 3.5 mol3 He yr-1 and a lower limit for the crustal flux at 1.6 × 10-7 4He mol m-2 yr-1. In addition to providing constraints on helium isotope degassing fluxes in the Mediterranean, our simulations provide information on the ventilation of the deep Mediterranean waters which is useful for assessing NEMO-MED12 performance. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.

  14. Simulation of the mantle and crustal helium isotope signature in the Mediterranean Sea using a high-resolution regional circulation model

    NASA Astrophysics Data System (ADS)

    Ayache, M.; Dutay, J.-C.; Jean-Baptiste, P.; Fourré, P. E.

    2015-08-01

    Helium isotopes (3He, 4He) are useful tracers for investigating the deep ocean circulation and for evaluating ocean general circulation models, because helium is a stable and conservative nuclide that does not take part in any chemical or biological process. Helium in the ocean originates from three different sources: namely, (i) gas dissolution in equilibrium with atmospheric helium, (ii) helium-3 addition by radioactive decay of tritium (called tritiugenic helium), and (iii) injection of terrigenic helium-3 and helium-4 by the submarine volcanic activity which occurs mainly at plate boundaries, and also addition of (mainly) helium-4 from the crust and sedimentary cover by α-decay of uranium and thorium contained in various minerals. We present the first simulation of the terrigenic helium isotope distribution in the whole Mediterranean Sea, using a high-resolution model (NEMO-MED12). For this simulation we build a simple source function for terrigenic helium isotopes based on published estimates of terrestrial helium fluxes. We estimate a hydrothermal flux of 3.5 mol 3He yr-1 and a lower limit for the crustal flux at 1.6 10-7 mol 4He mol m-2 yr-1. In addition to providing constraints on helium isotope degassing fluxes in the Mediterranean, our simulations provide information on the ventilation of the deep Mediterranean waters which are useful for assessing NEMO-MED12 performance. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.

  15. Clinical Applications of NanoVelcro Rare-Cell Assays for Detection and Characterization of Circulating Tumor Cells

    PubMed Central

    Chen, Jie-Fu; Zhu, Yazhen; Lu, Yi-Tsung; Hodara, Elisabeth; Hou, Shuang; Agopian, Vatche G.; Tomlinson, James S.; Posadas, Edwin M.; Tseng, Hsian-Rong

    2016-01-01

    Liquid biopsy of tumor through isolation of circulating tumor cells (CTCs) allows non-invasive, repetitive, and systemic sampling of disease. Although detecting and enumerating CTCs is of prognostic significance in metastatic cancer, it is conceivable that performing molecular and functional characterization on CTCs will reveal unprecedented insight into the pathogenic mechanisms driving lethal disease. Nanomaterial-embedded cancer diagnostic platforms, i.e., NanoVelcro CTC Assays represent a unique rare-cell sorting method that enables detection isolation, and characterization of CTCs in peripheral blood, providing an opportunity to noninvasively monitor disease progression in individual cancer patients. Over the past decade, a series of NanoVelcro CTC Assays has been demonstrated for exploring the full potential of CTCs as a clinical biomarker, including CTC enumeration, phenotyping, genotyping and expression profiling. In this review article, the authors will briefly introduce the development of three generations of NanoVelcro CTC Assays, and highlight the clinical applications of each generation for various types of solid cancers, including prostate cancer, pancreatic cancer, lung cancer, and melanoma. PMID:27375790

  16. Simulating influence of QBO phase on planetary waves during a stratospheric warming in a general circulation model of the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Koval, Andrey; Gavrilov, Nikolai; Pogoreltsev, Alexander; Savenkova, Elena

    2016-04-01

    One of the important factors of dynamical interactions between the lower and upper atmosphere is energy and momentum transfer by atmospheric internal gravity waves. For numerical modeling of the general circulation and thermal regime of the middle and upper atmosphere, it is important to take into account accelerations of the mean flow and heating rates produced by dissipating internal waves. The quasi-biennial oscillations (QBOs) of the zonal mean flow at lower latitudes at stratospheric heights can affect the propagation conditions of planetary waves. We perform numerical simulation of global atmospheric circulation for the initial conditions corresponding to the years with westerly and easterly QBO phases. We focus on the changes in amplitudes of stationary planetary waves (SPWs) and traveling normal atmospheric modes (NAMs) in the atmosphere during SSW events for the different QBO phases. For these experiments, we use the global circulation of the middle and upper atmosphere model (MUAM). There is theory of PW waveguide describing atmospheric regions where the background wind and temperature allow the wave propagation. There were introduced the refractive index for PWs and found that strongest planetary wave propagation is in areas of large positive values of this index. Another important PW characteristic is the Eliassen-Palm flux (EP-flux). These characteristics are considered as useful tools for visualizing the PW propagation conditions. Sudden stratospheric warming (SSW) event has significant influence on the formation of the weather anomalous and climate changes in the troposphere. Also, SSW event may affect the dynamical and energy processes in the upper atmosphere. The major SSW events imply significant temperature rises (up to 30 - 40 K) at altitudes 30 - 50 km accompanying with corresponding decreases, or reversals, of climatological eastward zonal winds in the stratosphere.

  17. Impact of Satellite Remote Sensing Data on Simulations of Coastal Circulation and Hypoxia on the Louisiana Continental Shelf

    EPA Science Inventory

    We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the ...

  18. Dynamic application of microprojection arrays to skin induces circulating protein extravasation for enhanced biomarker capture and detection.

    PubMed

    Coffey, Jacob W; Meliga, Stefano C; Corrie, Simon R; Kendall, Mark A F

    2016-04-01

    Surface modified microprojection arrays are a needle-free alternative to capture circulating biomarkers from the skin in vivo for diagnosis. The concentration and turnover of biomarkers in the interstitial fluid, however, may limit the amount of biomarker that can be accessed by microprojection arrays and ultimately their capture efficiency. Here we report that microprojection array insertion induces protein extravasation from blood vessels and increases the concentration of biomarkers in skin, which can synergistically improve biomarker capture. Regions of blood vessels in skin were identified in the upper dermis and subcutaneous tissue by multi-photon microscopy. Insertion of microprojection array designs with varying projection length (40-190 μm), density (5000-20,408 proj.cm(-2)) and array size (4-36 mm(2)) did not affect the degree of extravasation. Furthermore, the location of extravasated protein did not correlate with projection penetration to these highly vascularised regions, suggesting extravasation was not caused by direct puncture of blood vessels. Biomarker extravasation was also induced by dynamic application of flat control surfaces, and varied with the impact velocity, further supporting this conclusion. The extravasated protein distribution correlated well with regions of high mechanical stress generated during insertion, quantified by finite element models. Using this approach to induce extravasation prior to microprojection array-based biomarker capture, anti-influenza IgG was captured within a 2 min application time, demonstrating that extravasation can lead to rapid biomarker sampling and significantly improved microprojection array capture efficiency. These results have broad implications for the development of transdermal devices that deliver to and sample from the skin. PMID:26826791

  19. Mobile Applications and Multi-User Virtual Reality Simulations

    NASA Technical Reports Server (NTRS)

    Gordillo, Orlando Enrique

    2016-01-01

    This is my third internship with NASA and my second one at the Johnson Space Center. I work within the engineering directorate in ER7 (Software Robotics and Simulations Division) at a graphics lab called IGOAL. We are a very well-rounded lab because we have dedicated software developers and dedicated 3D artist, and when you combine the two, what you get is the ability to create many different things such as interactive simulations, 3D models, animations, and mobile applications.

  20. Geostatistical modeling of uncertainty, simulation, and proposed applications in GIScience

    NASA Astrophysics Data System (ADS)

    Doucette, Peter; Dolloff, John; Lenihan, Michael

    2015-05-01

    Geostatistical modeling of spatial uncertainty has its roots in the mining, water and oil reservoir exploration communities, and has great potential for broader applications as proposed in this paper. This paper describes the underlying statistical models and their use in both the estimation of quantities of interest and the Monte-Carlo simulation of their uncertainty or errors, including their variance or expected magnitude and their spatial correlations or inter-relationships. These quantities can include 2D or 3D terrain locations, feature vertex locations, or any specified attributes whose statistical properties vary spatially. The simulation of spatial uncertainty or errors is a practical and powerful tool for understanding the effects of error propagation in complex systems. This paper describes various simulation techniques and trades-off their generality with complexity and speed. One technique recently proposed by the authors, Fast Sequential Simulation, has the ability to simulate tens of millions of errors with specifiable variance and spatial correlations in a few seconds on a lap-top computer. This ability allows for the timely evaluation of resultant output errors or the performance of a "down-stream" module or application. It also allows for near-real time evaluation when such a simulation capability is built into the application itself.

  1. Computational Fluid Dynamic Simulations of Maternal Circulation: Wall Shear Stress in the Human Placenta and Its Biological Implications

    PubMed Central

    Lecarpentier, E.; Bhatt, M.; Bertin, G. I.; Deloison, B.; Salomon, L. J.; Deloron, P.; Fournier, T.; Barakat, A. I.; Tsatsaris, V.

    2016-01-01

    Introduction In the human placenta the maternal blood circulates in the intervillous space (IVS). The syncytiotrophoblast (STB) is in direct contact with maternal blood. The wall shear stress (WSS) exerted by the maternal blood flow on the STB has not been evaluated. Our objective was to determine the physiological WSS exerted on the surface of the STB during the third trimester of pregnancy. Material and Methods To gain insight into the shear stress levels that the STB is expected to experience in vivo, we have formulated three different computational models of varying levels of complexity that reflect different physical representations of the IVS. Computations of the flow fields in all models were performed using the CFD module of the finite element code COMSOL Multiphysics 4.4. The mean velocity of maternal blood in the IVS during the third trimester was measured in vivo with dynamic MRI (0.94±0.14 mm.s-1). To investigate if the in silico results are consistent with physiological observations, we studied the cytoadhesion of human parasitized (Plasmodium falciparum) erythrocytes to primary human STB cultures, in flow conditions with different WSS values. Results The WSS applied to the STB is highly heterogeneous in the IVS. The estimated average values are relatively low (0.5±0.2 to 2.3±1.1 dyn.cm-2). The increase of WSS from 0.15 to 5 dyn.cm-2 was associated with a significant decrease of infected erythrocyte cytoadhesion. No cytoadhesion of infected erythrocytes was observed above 5 dyn.cm-2 applied for one hour. Conclusion Our study provides for the first time a WSS estimation in the maternal placental circulation. In spite of high maternal blood flow rates, the average WSS applied at the surface of the chorionic villi is low (<5 dyn.cm-2). These results provide the basis for future physiologically-relevant in vitro studies of the biological effects of WSS on the STB. PMID:26815115

  2. Applications of TIERRAS for underground particle cascade simulations

    SciTech Connect

    Tueros, M. J.

    2010-11-24

    In this communication we present some example applications of TIERRAS, a software package for the simulation of High Energy particle cascades underground and underwater. The examples illustrate how this package can be used to study the phenomenology of particle cascades from Extended Air Showers propagated several meters underground, including the effect of the surface ''albedo'' particles that are generated when a cascade reaches ground level. These up-going particles can have a measurable effect on surface or shallow underground detectors. Finally, to show the package ability ro perform simulations of particle cascades in ice, an application for neutrino radio detection is briefly introduced.

  3. Application of software simulation to DBS transmission design and evaluation

    NASA Astrophysics Data System (ADS)

    White, Lawrence W.; Palmer, Larry C.; Chang, Peter Y.; Shenoy, Ajit

    The paper describes software simulation results in the following three areas related to DBS planning: multipath and overdeviation of the video signal, digital audio transmission, and phase-locked loop demodulation. The results obtained for multipath and overdeviation involved simulation to examine a dual-path phenomenon that can be encountered in DBS applications. Results are also presented on the insertion of high rate digital data directly into the horizontal blanking interval of the video scan line. The results of simulations with a phase-locked demodular determined the degree of threshold extension achieved for various test patterns, as compared to a conventional limiter/discriminator.

  4. Global circulation of the Earth's atmosphere at altitudes from 0 to 135 Km simulated with the ARM model. Consideration of the solar activity contribution

    NASA Astrophysics Data System (ADS)

    Krivolutsky, A. A.; Cherepanova, L. A.; Dement'eva, A. V.; Repnev, A. I.; Klyuchnikova, A. V.

    2015-11-01

    The results of simulations of the global circulation and temperature regime in the altitude range from the lower tropospheric layers to 135 km are presented. They were obtained with the Atmospheric Research Model (ARM), an advanced modification of a version of the Cologne Middle Atmosphere Model (COMMA). The ARM is characterized by higher spatial resolution and better parameterizations of the radiation sources and heat sinks. At the lower boundary of the model, wavy sources of perturbations, which are caused by internal gravity waves and planetary waves, are specified. The results of the modeling of the global temperature and wind fields for the mean solar activity level are presented, and their changes, which are caused by variations of the UV-radiation fluxes in the solar activity cycle and by solar proton flares, are also considered.

  5. CFD simulation and optimization of membrane scouring and nitrogen removal for an airlift external circulation membrane bioreactor.

    PubMed

    Yang, Min; Wei, Yuansong; Zheng, Xiang; Wang, Fang; Yuan, Xing; Liu, Jibao; Luo, Nan; Xu, Rongle; Yu, Dawei; Fan, Yaobo

    2016-11-01

    Cost-effective membrane fouling control and nitrogen removal performance are of great concern in airlift external circulation membrane bioreactors (AEC-MBRs). Computational fluid dynamics (CFD) model incorporating sub-models of bio-kinetics, oxygen transfer and sludge rheology was developed for the cost-effective optimization of a lab-scale AEC-MBR. The model was calibrated and validated by extensive measurements of water velocities and water quality parameters in the AEC-MBR. The validated results demonstrated that the optimized height of gas-liquid dispersion was at around 300mm. The shear stress on membrane surface was equalized and had an average value of 1.2Pa under an air flowrate of 1.0m(3)h(-1). The model further revealed that the high nitrogen removal efficiency (>90%) was achieved due to the high recirculation ratio driven by airlift force without destroying the oxygen deprivation and enrichment in the anoxic and oxic zone, respectively. PMID:27540633

  6. Modelling of hydrothermal fluid circulation in a heterogeneous medium: Application to the Rainbow Vent site (Mid-Atlantic-Ridge, 36°14N)

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mügler, C.; Jean-Baptiste, P.; Charlou, J. L.

    2012-04-01

    Hydrothermal activity at the axis of mid-ocean ridges is a key driver for energy and matter transfer from the interior of the Earth to the ocean floor. At mid-ocean ridges, seawater penetrates through the permeable young crust, warms at depth and exchanges chemicals with the surrounding rocks. This hot fluid focuses and flows upwards, then is expelled from the crust at hydrothermal vent sites in the form of black or white smokers completed by diffusive emissions. We developed a new numerical tool in the Cast3M software framework to model such hydrothermal circulations. Thermodynamic properties of one-phase pure water were calculated from the IAPWS formulation. This new numerical tool was validated on several test cases of convection in closed-top and open-top boxes. Simulations of hydrothermal circulation in a homogeneous-permeability porous medium also gave results in good agreement with already published simulations. We used this new numerical tool to construct a geometric and physical model configuration of the Rainbow Vent site at 36°14'N on the Mid-Atlantic Ridge. In this presentation, several configurations will be discussed, showing that high temperatures and high mass fluxes measured at the Rainbow site cannot be modelled with hydrothermal circulation in a homogeneous-permeability porous medium. We will show that these high values require the presence of a fault or a preferential pathway right below the venting site. We will propose and discuss a 2-D one-path model that allows us to simulate both high temperatures and high mass fluxes. This modelling of the hydrothermal circulation at the Rainbow site constitutes a first but necessary step to understand the origin of high concentrations of hydrogen issued from this ultramafic-hosted vent field.

  7. Ocean circulation and terrestrial runoff dynamics in the Mesoamerican region from spectral optimization of SeaWiFS data and a high resolution simulation

    NASA Astrophysics Data System (ADS)

    Chérubin, L. M.; Kuchinke, C. P.; Paris, C. B.

    2008-09-01

    The evolution in time and space of terrestrial runoff in waters of the Mesoamerican region was examined using remote sensing techniques combined with river discharge and numerical ocean circulation models. Ocean color SeaWiFS images were processed using a new Spectral Optimization Algorithm for atmospheric correction and ocean property retrieval in Case-2 waters. A total of 157 SeaWiFS images were collected between 1997 and 2006 and processed to produce Colored Detrital Material images of the Mesoamerican waters. Monthly terrestrial runoff load and river discharge computed with a land-elevation model were used as input to a numerical model, which simulated the transport of buoyant matter from terrestrial runoff. Based on land cover for years 2003-2004, modeling results showed that the river discharge seasonality was correlated with the image averaged CDM, and the simulated plume reproduces the spatial patterns and temporal evolution of the observed CDM plume. River discharge peaked in August and CDM peaked from September to January. The buoyant matter concentration was high from October to January, and was at its lowest from March to April. Between October and December the plume was transported out of the Mesoamerican waters by a cyclonic gyre located north of Honduras. Part of the runoff from Honduras was transported towards Chinchorro Banks and the Yucatan Channel, part re-circulated into the Gulf of Honduras, and part taken toward the outside of the Mesoamerican Barrier Reef System. This study shows that all the reefs of the MBRS, including the most offshore atolls of the region, are under the influence of terrestrial runoff on a seasonal basis, with maximum effect during October to January, and minimum from March to April. Furthermore, what is seen as a giant plume in satellite images is in fact composed of runoffs of different ages.

  8. The northern wintertime divergence extrema at 200 hPa and surface cyclones as simulated in the AMIP integration of the ECMWF general circulation model

    SciTech Connect

    Boyle, J.S.

    1994-11-01

    Divergence and convergence centers at 200 hPa and mean sea level pressure (MSLP) cyclones were located every 6 hr for a 10-yr general circulation model (GCM) simulation with the ECMWF (Cycle 36) for the boreal winters from 1980 to 1988. The simulation used the observed monthly mean sea surface temperature (SST) for the decade. Analysis of the frequency, location, and strength of these centers and cyclones gives insight into the dynamical response of the model to the varying SST. The results indicate that (1) the model produces reasonable climatologies of upper-level divergence and MSLP cyclones; (2) the model distribution of anomalies of divergence and convergence centers and MSLP cyclones is consistent with observations for the 1982-83 and 1986-87 El Nifio events; (3) the tropical Indian Ocean is the region of greatest divergence activity and interannual variability in the model; (4) the variability of the divergence centers is greater than that of the convergence centers; (5) strong divergence centers occur chiefly over the ocean in the midlatitudes but are more land-based in the tropics, except in the Indian Ocean; and (6) locations of divergence and convergence centers can be a useful tool for the intercomparison of global atmospheric simulations.

  9. Simulations of Hurricane Katrina (2005) with the 0.125 degree finite-volume General Circulation Model on the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Atlas, R.; Reale, O.; Lin, S.-J.; Chern, J.-D.; Chang, J.; Henze, C.

    2006-01-01

    Hurricane Katrina was the sixth most intense hurricane in the Atlantic. Katrina's forecast poses major challenges, the most important of which is its rapid intensification. Hurricane intensity forecast with General Circulation Models (GCMs) is difficult because of their coarse resolution. In this article, six 5-day simulations with the ultra-high resolution finite-volume GCM are conducted on the NASA Columbia supercomputer to show the effects of increased resolution on the intensity predictions of Katrina. It is found that the 0.125 degree runs give comparable tracks to the 0.25 degree, but provide better intensity forecasts, bringing the center pressure much closer to observations with differences of only plus or minus 12 hPa. In the runs initialized at 1200 UTC 25 AUG, the 0.125 degree simulates a more realistic intensification rate and better near-eye wind distributions. Moreover, the first global 0.125 degree simulation without convection parameterization (CP) produces even better intensity evolution and near-eye winds than the control run with CP.

  10. Simulation studies of the influence of sea-surface temperature anomalies on the Sahelian circulation and rainfall

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Semazzi, F. H. M.; Mehta, V.

    1988-01-01

    An investigation was conducted to find out if sea surface temperature (SST) - African rainfall relationships could be simulated in a global climate model (GCM). If indeed that were possible, researchers generated useful diagnostics that can enable them to understand the physical mechanisms which lead to rainfall fluctuations over Africa in response to sea surface temperature anomalies over global ocean.

  11. Comparison of simulated forest responses to biosolids application

    SciTech Connect

    Luxmoore, R.J.; Tharp, M.L.; Efroymson, R.A.

    1999-12-01

    Organic matter and N are added to humus pools of the LINKAGES simulator of forest growth and N cycling at a range of application rates to investigate long-term effects of biosolids (sewage sludge) on forest productivity. Two conifer plantations (Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii], loblolly pine [Pinus taeda L.]) and a northern hardwood forest located in contrasting climatic regions are investigated. Single applications of biosolids are given at 0.5, 10, 20, and 40 Mg/ha, and multiple applications are given on seven occasions at 3-yr intervals of rates of 5 and 10 Mg/ha. Highly significant increases in aboveground phytomass and net primary productivity of Douglas-fir plantations are obtained in a 100-yr simulation with increasing biosolids application rates. Results for loblolly pine from a 50-yr simulation produced about half the growth response of Douglas-fir. Long-term simulations of northern hardwoods showed modest growth responses and small increases in NPP with added biosolids. The phytomass of one overstory and three understory species in the hardwood forest changed in response to different biosolids applications and varying species sensitivity to N supply. Biosolids are a significant resource for enhancing forest productivity, particularly in conifer plantations. Estimates of N leaching losses from simulated forest sites combined with a literature review of leaching losses suggest that biosolids applications at 3-yr intervals with rates less than 8.5 Mg/ha (0.4 Mg N/ha) during active forest growth may pose little off-site contamination risk to ground water or surface waters.

  12. Business Financial Applications. Curriculum Guide. Simulations. Test Bank.

    ERIC Educational Resources Information Center

    Massey, Ray Nell; Patton, Jan

    This business financial applications document combines the curriculum guide, simulations, and the test bank for the 1-semester course. The guide provides students with an overview of the banking industry used for entry-level positions or advancement into an occupationally specific course. It begins with a course description, suggested scope and…

  13. SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.

    2007-01-01

    This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.

  14. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    1986-01-01

    Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…

  15. Real-time graphic simulation for space telerobotics applications

    NASA Technical Reports Server (NTRS)

    Baumann, E. W.

    1987-01-01

    Designing space-based telerobotic systems presents many problems unique to telerobotics and the space environment, but it also shares many common hardware and software design problems with Earth-based industrial robot applications. Such problems include manipulator design and placement, grapple-fixture design, and of course the development of effective and reliable control algorithms. Since first being applied to industrial robotics just a few years ago, interactive graphic simulation has proven to be a powerful tool for anticipating and solving problems in the design of Earth-based robotic systems and processes. Where similar problems are encountered in the design of space-based robotic mechanisms, the same graphic simulation tools may also be of assistance. The capabilities of PLACE, a commercially available interactive graphic system for the design and simulation of robotic systems and processes is described. A space-telerobotics application of the system is presented and discussed. Potential future enhancements are described.

  16. Research in lost circulation control for geothermal wells

    SciTech Connect

    Ortega, A.; Loeppke, G.E.; Givler, R.C.

    1987-01-01

    This paper reviews recent progress at Sandia National Laboratories in the area of lost circulation control for geothermal wells. The Lost Circulation Program has three major elements: (1) Detection and characterization of loss zones, (2) Development of new techniques and materials for control of loss zones, and (3) Integration of the first two items for wellsite application. Most of our work to date has been in the area of developing new techniques and materials. We report here on progress that has been made in the past two years in the development of new, pumpable cementitious muds, in situ mixing and placement of polyurethane foams, and fundamental analysis of and materials development for particulate lost circulation materials. Plans for work in the area of zone detection and characterization, including development of a transient, lost circulation hydraulics simulator and field zone characterization using an advanced wellbore televiewer, are discussed.

  17. Miniature Gas-Circulating Machine

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.; Valenzuela, Javier A.; Sixsmith, Herbert; Nutt, William E.

    1993-01-01

    Proposed gas-circulating machine consists essentially of centrifugal pump driven by induction motor. Noncontact bearings suppress wear and contamination. Used to circulate helium (or possibly hydrogen or another gas) in regeneration sorption-compressor refrigeration system aboard spacecraft. Also proves useful in terrestrial applications in which long life, reliability, and low contamination essential.

  18. Optical investigation of a sun simulator for concentrator PV applications.

    PubMed

    Rapp, Christoph; Straub, Volker; van Rooyen, De Wet; Thor, Wei Yi; Siefer, Gerald; Bett, Andreas W

    2015-09-21

    In photovoltaics (PV), sun simulators are used to reproduce outdoor conditions in a lab environment such as irradiance level, light uniformity and spectral distribution. Concentrator (C)PV applications additionally require the sun simulators to provide rays with an angular distribution similar to that of the sun rays. However, different factors in CPV sun simulator setups make it difficult to achieve the perfect sun like angular distribution. This is mainly caused by the unavailability of appropriate light sources. Therefore, we investigated in this work, to which deviations such a non-ideal light source can lead and which impact is expected at the measurement of a CPV module. For this, two ray tracing models are presented - one for the simulation of natural sunrays, another one for the simulation of sun simulator conditions. The models are validated based on measurements and subsequently used to simulate the impact on a typical CPV module with silicone-on-glass Fresnel lenses. Here, significant deviations to outdoor conditions are found. PMID:26406756

  19. Assessing the ability of isotope-enabled General Circulation Models to simulate the variability of Iceland water vapor isotopic composition

    NASA Astrophysics Data System (ADS)

    Erla Sveinbjornsdottir, Arny; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Ritter, Francois; Riser, Camilla; Messon-Delmotte, Valerie; Bonne, Jean Louis; Dahl-Jensen, Dorthe

    2014-05-01

    During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (Los Gatos Research analyzer) in a lighthouse on the Southwest coast of Iceland (63.83°N, 21.47°W). Despite initial significant problems with volcanic ash, high wind, and attack of sea gulls, the system has been continuously operational since the end of 2011 with limited down time. The system automatically performs calibration every 2 hours, which results in high accuracy and precision allowing for analysis of the second order parameter, d-excess, in the water vapor. We find a strong linear relationship between d-excess and local relative humidity (RH) when normalized to SST. The observed slope of approximately -45 o/oo/% is similar to theoretical predictions by Merlivat and Jouzel [1979] for smooth surface, but the calculated intercept is significant lower than predicted. Despite this good linear agreement with theoretical calculations, mismatches arise between the simulated seasonal cycle of water vapour isotopic composition using LMDZiso GCM nudged to large-scale winds from atmospheric analyses, and our data. The GCM is not able to capture seasonal variations in local RH, nor seasonal variations in d-excess. Based on daily data, the performance of LMDZiso to resolve day-to-day variability is measured based on the strength of the correlation coefficient between observations and model outputs. This correlation coefficient reaches ~0.8 for surface absolute humidity, but decreases to ~0.6 for δD and ~0.45 d-excess. Moreover, the magnitude of day-to-day humidity variations is also underestimated by LMDZiso, which can explain the underestimated magnitude of isotopic depletion. Finally, the simulated and observed d-excess vs. RH has similar slopes. We conclude that the under-estimation of d-excess variability may partly arise from the poor performance of the humidity simulations.

  20. Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets

    NASA Astrophysics Data System (ADS)

    He, Yan-Chun; Drange, Helge; Gao, Yongqi; Bentsen, Mats

    2016-04-01

    Global ocean hindcast simulations for the period 1871-2009 have been run with the ocean-sea ice component of the Norwegian Earth System Model (NorESM-O), forced by an adjusted version of the Twentieth Century Reanalysis version 2 data set (20CRv2 data set), as well as by the commonly used second version of atmospheric forcing data set for the Coordinated Ocean-ice Reference Experiments phase-II (CORE-II) for the period 1948-2007 (hereafter CORE.v2 data set). The simulated Atlantic Meridional Overturning Circulation (AMOC) in the 20CR and the CORE simulations have comparable variability as well as mean strength during the last three decades of the integration. The simulated AMOC undergoes, however, distinctly different evolutions during the period 1948-1970, with a sharply declining strength in CORE but a gradual increase in 20CR. Sensitivity experiments suggest that differences in the wind forcing between CORE and 20CR have major impact on the simulated AMOCs during this period. It is furthermore found that differences in the air temperature between the two data sets do contribute to the differences in AMOC, but to a much lesser degree than the wind. An additional factor for the diverging AMOC in the two decades following 1948 is the inevitable switching of atmospheric forcing fields in 1948 in the CORE.v2-based runs due to the cyclic spin-up procedure of the ocean model. The latter is a fundamental issue for any ocean hindcast simulation. The ocean initial state mainly influence the actual value but to a lesser degree also the temporal evolution (variability) of AMOC. It may take about two decades for the AMOC to adjust to a new atmospheric state during the spin-up, although a dynamically balanced ocean initial state tends to reduce the adjustment time and the magnitude of the deviation, implying that an ocean model run with atmospheric forcing fields extending back in time, like 20CRv2, can be used to extend the reliable duration of CORE-type of simulations.

  1. Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets

    NASA Astrophysics Data System (ADS)

    He, Yan-Chun; Drange, Helge; Gao, Yongqi; Bentsen, Mats

    2016-04-01

    Global ocean hindcast simulations for the period 1871--2009 have been run with the ocean-sea ice component of the Norwegian Earth System Model (NorESM-O), forced by an adjusted version of the Twentieth Century Reanalysis version 2 data set (20CRv2 data set), as well as by the commonly used second version of atmospheric forcing data set for the Coordinated Ocean-ice Reference Experiments phase-II (CORE-II) for the period 1948--2007 (hereafter CORE.v2 data set). The simulated Atlantic Meridional Overturning Circulation (AMOC) in the 20CR and the CORE simulations have comparable variability as well as mean strength during the last three decades of the integration. The simulated AMOC undergoes, however, distinctly different evolutions during the period 1948--1970, with a sharply declining strength in CORE but a gradual increase in 20CR. Sensitivity experiments suggest that differences in the wind forcing between CORE and 20CR have major impact on the simulated AMOCs during this period. It is furthermore found that differences in the air temperature between the two data sets do contribute to the differences in AMOC, but to a much lesser degree than the wind. An additional factor for the diverging AMOC in the two decades following 1948 is the inevitable switching of atmospheric forcing fields in 1948 in the CORE.v2-based runs due to the cyclic spin-up procedure of the ocean model. The latter is a fundamental issue for any ocean hindcast simulation. The ocean initial state mainly influence the actual value but to a lesser degree also the temporal evolution (variability) of AMOC. It may take about two decades for the AMOC to adjust to a new atmospheric state during the spin-up, although a dynamically balanced ocean initial state tends to reduce the adjustment time and the magnitude of the deviation, implying that an ocean model run with atmospheric forcing fields extending back in time, like 20CRv2, can be used to extend the reliable duration of CORE-type of simulations.

  2. Characterization of Jupiter's Deep Circulation and Static Stability through Wide Channel Numerical Simulations of the Dynamics and Interactions of Southern Midlatitudes Vortices

    NASA Astrophysics Data System (ADS)

    Morales-Juberias, Raul; Dowling, Timothy

    2012-10-01

    Previous studies have shown that the observed features and dynamics of Jovian vortices are sensitive to the underlying environmental structure of Jupiter's atmosphere, in particular to the vertical wind shear and the static stability, and that forward modeling techniques can be successfully used to eliminate a large range of possibilities in a self-consistent manner and hence constrain the atmospheric structure below the cloud regions (Youseff and Marcus 2003, Morales-Juberias et al. 2005). However, these studies have generally been done on a narrow latitude-band basis ( 15^o). Here we present wide channel simulations ( 40 ^o) of two major meteorological events observed in the southern atmosphere of Jupiter involving the interaction of the Great Red Spot (GRS) with other nearby vortices. By studying these two events using wide channel simulations, not unlike the strategy used in terrestrial synoptic meteorology, we show that we can gain new insights into the patterns governing Jupiter's global circulations, drawing a coherent picture of the vertical structure of the atmosphere for the whole southern mid-latitudinal regions of Jupiter over time.

  3. Numerical Simulation of Ferrofluid Flow for Subsurface Environmental Engineering Applications

    SciTech Connect

    Oldenburg, Curtis M.; Borglin, Sharon E.; Moridis, George J.

    1997-05-05

    Ferrofluids are suspensions of magnetic particles of diameter approximately 10 nm stabilized by surfactants in carrier liquids. The large magnetic susceptibility of ferrofluids allows the mobilization of ferrofluid through permeable rock and soil by the application of strong external magnetic fields. We have developed simulation capabilities for both miscible and immiscible conceptualizations of ferrofluid flow through porous media in response to magnetic forces arising from the magnetic field of a rectangular permanent magnet. The flow of ferrofluid is caused by the magnetization of the particles and their attraction toward a magnet, regardless of the orientation of the magnet. The steps involved in calculating the flow of ferrofluid are (1) calculation of the external magnetic field, (2) calculation of the gradient of the external magnetic field, (3) calculation of the magnetization of the ferrofluid, and (4) assembly of the magnetic body force term and addition of this term to the standard pressure gradient and gravity force terms. We compare numerical simulations to laboratory measurements of the magnetic field, fluid pressures, and the two-dimensional flow of ferrofluid to demonstrate the applicability of the methods coded in the numerical simulators. We present an example of the use of the simulator for a field-scale application of ferrofluids for barrier verification.

  4. Potential alteration of fjordal circulation due to a large floating structure—Numerical investigation with application to Hood Canal basin in Puget Sound

    SciTech Connect

    Khangaonkar, Tarang; Wang, Taiping

    2013-01-02

    Circulation in typical fjords is characterized by a shallow brackish layer at the surface over a deep long and narrow saltwater column. This surface layer is responsible for the outflow of water from the fjord, is easily disrupted by external forces, such as wind, and is influenced by freshwater inflow. In this paper, we postulate that the stability of fjordal circulation may also be vulnerable to impacts from anthropogenic alterations, such as floating structures, that could constrict the mixing and transport in the upper layers of the water column. The potential for alteration of circulation in Hood Canal, a silled-fjord located inside Puget Sound, Washington, has been examined. Using classical analytical treatments along the lines formulated by Hansen and Rattray [1965], Rattray [1967], Dyer [1973] and more recently, MacCready [2004], we develop a solution applicable to a range of estuary classifications varying from a partially mixed estuary regime to classical fjord conditions. Both estuary types exist in the Puget Sound system, and we compare our analytical solution with observed data. The analysis is based on an exponential variation of eddy viscosity with depth, and it has been extended further with modifications of the free surface boundary conditions to develop a solution representing the presence of a floating bridge at the estuary/fjord entrance. The model results show that tidally averaged mean circulation under the influence of such a constraint could reduce by as much as 30 to 50 percent. The overall water quality of fjords and narrow estuaries is dependent on net circulation and flushing. A potential decrease in residual flow or a corresponding increase in residence time of this magnitude merits further study.

  5. Beam simulation tools for GEANT4 (and neutrino source applications)

    SciTech Connect

    V.Daniel Elvira, Paul Lebrun and Panagiotis Spentzouris

    2002-12-03

    Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the High Energy Physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. Although there are many computer programs for beam physics simulations, Geant4 is ideal to model a beam going through material or a system with a beam line integrated to a complex detector. There are many examples in the current international High Energy Physics programs, such as studies related to a future Neutrino Factory, a Linear Collider, and a very Large Hadron Collider.

  6. Application of compressed sensing to the simulation of atomic systems

    PubMed Central

    Andrade, Xavier; Sanders, Jacob N.; Aspuru-Guzik, Alán

    2012-01-01

    Compressed sensing is a method that allows a significant reduction in the number of samples required for accurate measurements in many applications in experimental sciences and engineering. In this work, we show that compressed sensing can also be used to speed up numerical simulations. We apply compressed sensing to extract information from the real-time simulation of atomic and molecular systems, including electronic and nuclear dynamics. We find that, compared to the standard discrete Fourier transform approach, for the calculation of vibrational and optical spectra the total propagation time, and hence the computational cost, can be reduced by approximately a factor of five. PMID:22891294

  7. A haptic simulator to increase laparoscopic force application sensitivity.

    PubMed

    Long, Lindsay O; Singapogu, Ravikiran B; Arcese, Giovannina; Smith, Dane E; Burg, Timothy C; Pagano, Christopher C; Burg, Karen J L

    2013-01-01

    Laparoscopic surgery demands perceptual-motor skills that are fundamentally different from open surgery, and laparoscopists must be adept at perceiving tissue interaction at the surgical site and then applying precise amounts of forces through instruments without damaging tissues. A haptic simulator that emulates multiple salient laparoscopic tasks and renders differing degrees of forces was created. Two of the haptic skills tasks were evaluated in two studies to determine their ability to distinguish and then train laparoscopic force application sensitivity. Results suggested that the simulator has the capability of rendering salient force feedback information to which novices become increasingly more perceptually sensitive. PMID:23400169

  8. Applications of large eddy simulation methods to gyrokinetic turbulence

    SciTech Connect

    Bañón Navarro, A. Happel, T.; Teaca, B. [Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB; Max-Planck für Sonnensystemforschung, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau; Max-Planck Jenko, F. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching; Max-Planck Hammett, G. W. [Max-Planck Collaboration: ASDEX Upgrade Team

    2014-03-15

    The large eddy simulation (LES) approach—solving numerically the large scales of a turbulent system and accounting for the small-scale influence through a model—is applied to nonlinear gyrokinetic systems that are driven by a number of different microinstabilities. Comparisons between modeled, lower resolution, and higher resolution simulations are performed for an experimental measurable quantity, the electron density fluctuation spectrum. Moreover, the validation and applicability of LES is demonstrated through a series of diagnostics based on the free energetics of the system.

  9. Application of an internally circulating fluidized bed for windowed solar chemical reactor with direct irradiation of reacting particles - article no. 014504

    SciTech Connect

    Kodama, T.; Enomoto, S.I.; Hatamachi, T.; Gokon, N.

    2008-02-15

    Solar thermochemical processes require the development of a high-temperature solar reactor operating at 1000-1500{sup o}C, such as solar gasification of coal and the thermal reduction of metal oxides as part of a two-step water splitting cycle. Here, we propose to apply 'an internally circulating fluidized bed' for a windowed solar chemical reactor in which reacting particles are directly illuminated. The prototype reactor was constructed in a laboratory scale and demonstrated on CO{sub 2} gasification of coal coke using solar-simulated, concentrated visible light from a sun simulator as the energy source. About 12% of the maximum chemical storage efficiency was obtained by the solar-simulated gasification of the coke.

  10. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  11. Launch Site Computer Simulation and its Application to Processes

    NASA Technical Reports Server (NTRS)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  12. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  13. Kelvin waves and ozone Kelvin waves in the quasi-biennial oscillation and semiannual oscillation: A simulation by a high-resolution chemistry-coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Watanabe, Shingo; Takahashi, Masaaki

    2005-09-01

    Equatorial Kelvin waves and ozone Kelvin waves were simulated by a T63L250 chemistry-coupled general circulation model with a high vertical resolution (300 m). The model produces a realistic quasi-biennial oscillation (QBO) and a semiannual oscillation (SAO) in the equatorial stratosphere. The QBO has a period slightly longer than 2 years, and the SAO shows rapid reversals from westerly to easterly regimes and gradual descents of westerlies. Results for the zonal wave number 1 slow and fast Kelvin waves are discussed. Structure of the waves and phase relationships between temperature and ozone perturbations coincide well with satellite observations made by LIMS, CLAES, and MLS. They are generally in phase (antiphase) in the lower (upper) stratosphere as theoretically expected. The fast Kelvin waves in the temperature and ozone are dominant in the upper stratosphere because the slow Kelvin waves are effectively filtered by the QBO westerly. In this simulation, the fast Kelvin waves encounter their critical levels in the upper stratosphere when zonal asymmetry of the SAO westerly is enhanced by an intrusion of the extratropical planetary waves. In addition to the critical level filtering effect, modulations of wave properties by background winds are evident near easterly and westerly shears associated with the QBO and SAO. Enhancement of wave amplitude in the QBO westerly shear is well coincident with radiosonde observations. Increase/decrease of vertical wavelength in the QBO easterly/westerly is obvious in this simulation, which is consistent with the linear wave theory. Shortening of wave period due to the descending QBO westerly shear zone is demonstrated for the first time. Moreover, dominant periods during the QBO westerly phase are longer than those during the QBO easterly phase for both the slow and fast Kelvin waves.

  14. The mesoscale forcing of a midlatitude upper-tropospheric jet streak by a simulated convective system. 1: Mass circulation and ageostrophic processes

    NASA Technical Reports Server (NTRS)

    Wolf, Bart J.; Johnson, D. R.

    1995-01-01

    The mutual forcing of a midlatitude upper-tropospheric jet streak by organized mesoscale adiabatic and diabatic processes within a simulated convective system (SCS) is investigated. Using isentropic diagnostics, results from a three-dimensional numerical simulation of an SCS are examined to study the isallobaric flow field, modes of dominant ageostrophic motion, and stability changes in relation to the mutual interdependence of adiabatic processes and latent heat release. Isentropic analysis affords an explicit isolation of a component of isallobaric flow associated with diabatic processes within the SCS. Prior to convective development within the simulations, atmospheric destabilization occurs through adiabatic ageostrophic mass adjustment and low-level convergence in association with the preexisting synoptic-scale upper-tropospheric jet streak. The SCS develops in a baroclinic zone and quickly initiates a vigorous mass circulation. By the mature stage, a pronounced vertical couplet of low-level convergence and upper-level mass divergence is established, linked by intense midtropospoheric diabatic heating. Significant divergence persists aloft for several hours subsequent to SCS decay. The dominant role of ageostrophic motion within which the low-level mass convergence develops is the adiabatic isallobaric component, while the mass divergence aloft develops principally through the diabatic isallobaric component. Both compnents are intrinsically linked to the convectively forced vertical mass transport. The inertial diabatic ageostrophic component is largest near the level of maximum heating and is responsible for the development of inertial instability to the north of SCS, resulting in this quadrant being preferred for outflow. The inertial advective component, the dominant term that produces the new downstream wind maximum, rapidly develops north of the SCS and through mutual adjustment creates the baroclinic support for the new jet streak.

  15. Medical Applications of the Geant4 Simulation Toolkit

    NASA Astrophysics Data System (ADS)

    Perl, Joseph

    2008-03-01

    Geant4 is a toolkit for the simulation of the passage of particles through matter. While Geant4 was originally developed for High Energy Physics (HEP), applications now include Nuclear, Space and Medical Physics. Medical applications of Geant4 in North America and throughout the world have been increasing rapidly due to the overall growth of Monte Carlo use in Medical Physics and the unique qualities of Geant4 as an all-particle code able to handle complex geometry, motion and fields with the flexibility of modern programming and an open and free source code. Work has included characterizing beams and brachytherapy sources, treatment planning, retrospective studies, imaging and validation. This talk will provide an overview of these applications, with a focus on therapy, and will discuss how Geant4 has responded to the specific challenges of moving from HEP to Medical applications.

  16. Intercomparison of low-frequency variability of the global 200 hPa circulation for AMIP simulations

    SciTech Connect

    Boyle, J.S.

    1996-03-01

    In the Atmospheric Model Intercomparison Project (AMIP) a number of GCMs are integrated for a 10 year period, 1979-1988, all using the same monthly mean sea surface temperature (SST). This permits a useful intercomparison of the response of the models to the imposed SST. The variables used here for the intercomparison are the 200 hPa divergence and streamfunction. The data used are in the form of monthly averages and are filtered to a spatial resolution of T10, although the actual spatial resolution of the models varies from R15 to T42. The data are manipulated in this manner to concentrate on the low frequency, large scale response. The tools of the analysis are principal components analysis (PCA) and common principal components (CPC). These analyses are carried out on the 120 months of data with the seasonal cycle removed and in the case of the streamfunction with the zonal average also removed. The 1979-1988 period encompasses two El Nino/Southern Oscillation (ENSO) events (1982/83 and 1986/87), and as could be expected the ENSO characteristic response has a prominent impact in the model simulations.

  17. Applications of finite element simulation in orthopedic and trauma surgery.

    PubMed

    Herrera, Antonio; Ibarz, Elena; Cegoñino, José; Lobo-Escolar, Antonio; Puértolas, Sergio; López, Enrique; Mateo, Jesús; Gracia, Luis

    2012-04-18

    Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography (CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element (FE) simulation lets us know the biomechanical changes that take place after hip prostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints

  18. Magnetic Properties of a Highly Textured Barium Hexa-Ferrite Quasi-Single Crystal and Its Application in Low-Field Biased Circulators

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zeng, Yanwei; Su, Zhijuan; Geiler, Michael; Chen, Yajie; Harris, Vincent G.

    2016-06-01

    A highly textured M-type barium hexa-ferrite (BaM) quasi-single crystal was fabricated by a magnetic forming plus liquid participation sintering technique. Its grain orientation degree was determined to be 97.3% with the tile angle no more that 5°. The magnetization behavior from its angular magnetic hysteresis loops was very similar to that of a BaM single crystal. Moreover, the feasibility of practical utilization of the as-fabricated BaM quasi-single crystal in low-field biased circulators was certificated by a simulation method.

  19. Direct Simulation Monte Carlo: Recent Advances and Applications

    NASA Astrophysics Data System (ADS)

    Oran, E. S.; Oh, C. K.; Cybyk, B. Z.

    The principles of and procedures for implementing direct simulation Monte Carlo (DSMC) are described. Guidelines to inherent and external errors common in DSMC applications are provided. Three applications of DSMC to transitional and nonequilibrium flows are considered: rarefied atmospheric flows, growth of thin films, and microsystems. Selected new, potentially important advances in DSMC capabilities are described: Lagrangian DSMC, optimization on parallel computers, and hybrid algorithms for computations in mixed flow regimes. Finally, the limitations of current computer technology for using DSMC to compute low-speed, high-Knudsen-number flows are outlined as future challenges.

  20. Molecular dynamics simulations: Parameter evaluation, application and development

    NASA Astrophysics Data System (ADS)

    Zhou, Jin

    Molecular dynamics (MD) simulation is a theoretical technique for investigating the physical properties of a wide variety of molecules. This dissertation contains my studies on three important parts of the MD simulation: evaluation of parameters in empirical energy functions widely used in MD simulations, application of MD simulation on experimentally interested biological molecules and development of new methods for constraint dynamics simulations. All the work in this thesis made use of CHARMM as an MD simulation tool. The MD simulation uses empirical energy functions parameterized by a set of parameters. These parameters play an important role in the quality of the simulations. I evaluated nine parameter sets from Harvard University and Molecular Simulations, Inc. for protein simulations by the MD simulations of hydrated form of carboxy- myoglobin and interleukin-1/beta, which are rich in two typical protein structure motifs, helix and β sheet structures respectively. It is found that some sets are good at representing helical structure proteins while others are good at β sheet proteins. But all of them need improvement on representing motions at low temperature. Experimental evidence indicates that the 1A coiled-coil domains of the Intermediate Filament (IF) proteins consisting of coiled human keratins 1 and 10 (K1 and K10) are 'hot spots' for substitutional mutations. Some of these mutations are correlated to the human skin diseases-epidermolytic hyperkeratiosis (EH) and epidermolysis bullosa simplex (EBS). The MD simulation technique is used here for the first time to model and simulate these proteins to elucidate the molecular-level effects of these mutations. Lacking the experimental crystal structures, the initial structure of 1A domain of the wild type Intermediate Filament protein and its mutants were modeled from scratch to reproduce the well- known properties of the proteins of this kind followed by identical MD simulations. The important result is

  1. LLNL Ocean General Circulation Model

    Energy Science and Technology Software Center (ESTSC)

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  2. Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport.

    PubMed

    Paris, Claire B; Hénaff, Matthieu Le; Aman, Zachary M; Subramaniam, Ajit; Helgers, Judith; Wang, Dong-Ping; Kourafalou, Vassiliki H; Srinivasan, Ashwanth

    2012-12-18

    During the Deepwater Horizon incident, crude oil flowed into the Gulf of Mexico from 1522 m underwater. In an effort to prevent the oil from rising to the surface, synthetic dispersants were applied at the wellhead. However, uncertainties in the formation of oil droplets and difficulties in measuring their size in the water column, complicated further assessment of the potential effect of the dispersant on the subsea-to-surface oil partition. We adapted a coupled hydrodynamic and stochastic buoyant particle-tracking model to the transport and fate of hydrocarbon fractions and simulated the far-field transport of the oil from the intrusion depth. The evaluated model represented a baseline for numerical experiments where we varied the distributions of particle sizes and thus oil mass. The experiments allowed to quantify the relative effects of chemical dispersion, vertical currents, and inertial buoyancy motion on oil rise velocities. We present a plausible model scenario, where some oil is trapped at depth through shear emulsification due to the particular conditions of the Macondo blowout. Assuming effective mixing of the synthetic dispersants at the wellhead, the model indicates that the submerged oil mass is shifted deeper, decreasing only marginally the amount of oil surfacing. In this scenario, the oil rises slowly to the surface or stays immersed. This suggests that other mechanisms may have contributed to the rapid surfacing of oil-gas mixture observed initially. The study also reveals local topographic and hydrodynamic processes that influence the oil transport in eddies and multiple layers. This numerical approach provides novel insights on oil transport mechanisms from deep blowouts and on gauging the subsea use of synthetic dispersant in mitigating coastal damage. PMID:23167517

  3. Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Doerr, D. F.; Crandall, C. G.; Convertino, V. A.

    1996-01-01

    We tested the hypothesis that one bout of maximal exercise performed at the conclusion of prolonged simulated microgravity would improve blood pressure stability during an orthostatic challenge. Heart rate (HR), mean arterial blood pressure (MAP), norepinephrine (NE), epinephrine (E), arginine vasopressin (AVP), plasma renin activity (PRA), atrial natriuretic peptide (ANP), cardiac output (Q), forearm vascular resistance (FVR), and changes in leg volume were measured during lower body negative pressure (LBNP) to presyncope in seven subjects immediately prior to reambulation from 16 days of 6 degrees head-down tilt (HDT) under two experimental conditions: 1) after maximal supine cycle ergometry performed 24 h before returning to the upright posture (exercise) and 2) without exercise (control). After HDT, the reduction of LBNP tolerance time from pre-HDT levels was greater (P = 0.041) in the control condition (-2.0 +/- 0.2 min) compared with the exercise condition (-0.4 +/- 0.2 min). At presyncope after HDT, FVR and NE were higher (P < 0.05) after exercise compared with control, whereas MAP, HR, E, AVP, PRA, ANP, and leg volume were similar in both conditions. Plasma volume (PV) and carotid-cardiac baroreflex sensitivity were reduced after control HDT, but were restored by the exercise treatment. Maintenance of orthostatic tolerance by application of acute intense exercise after 16 days of simulated microgravity was associated with greater circulating levels of NE, vasoconstriction, Q, baroreflex sensitivity, and PV.

  4. Application of particle method to the casting process simulation

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Zulaida, Y. M.; Anzai, K.

    2012-07-01

    Casting processes involve many significant phenomena such as fluid flow, solidification, and deformation, and it is known that casting defects are strongly influenced by the phenomena. However the phenomena complexly interacts each other and it is difficult to observe them directly because the temperature of the melt and other apparatus components are quite high, and they are generally opaque; therefore, a computer simulation is expected to serve a lot of benefits to consider what happens in the processes. Recently, a particle method, which is one of fully Lagrangian methods, has attracted considerable attention. The particle methods based on Lagrangian methods involving no calculation lattice have been developed rapidly because of their applicability to multi-physics problems. In this study, we combined the fluid flow, heat transfer and solidification simulation programs, and tried to simulate various casting processes such as continuous casting, centrifugal casting and ingot making. As a result of continuous casting simulation, the powder flow could be calculated as well as the melt flow, and the subsequent shape of interface between the melt and the powder was calculated. In the centrifugal casting simulation, the mold was smoothly modeled along the shape of the real mold, and the fluid flow and the rotating mold are simulated directly. As a result, the flow of the melt dragged by the rotating mold was calculated well. The eccentric rotation and the influence of Coriolis force were also reproduced directly and naturally. For ingot making simulation, a shrinkage formation behavior was calculated and the shape of the shrinkage agreed well with the experimental result.

  5. Reweighted ensemble dynamics simulations: Theory, improvement, and application

    NASA Astrophysics Data System (ADS)

    Gong, Lin-Chen; Zhou, Xin; Ouyang, Zhong-Can

    2015-06-01

    Based on multiple parallel short molecular dynamics simulation trajectories, we designed the reweighted ensemble dynamics (RED) method to more efficiently sample complex (biopolymer) systems, and to explore their hierarchical metastable states. Here we further present an improvement to depress statistical errors of the RED and we discuss a few keys in practical application of the RED, provide schemes on selection of basis functions, and determination of the free parameter in the RED. We illustrate the application of the improvements in two toy models and in the solvated alanine dipeptide. The results show the RED enables us to capture the topology of multiple-state transition networks, to detect the diffusion-like dynamical behavior in an entropy-dominated system, and to identify solvent effects in the solvated peptides. The illustrations serve as general applications of the RED in more complex biopolymer systems. Project supported by the National Natural Science Foundation of China (Grant No. 11175250).

  6. Application of MINERVA Monte Carlo simulations to targeted radionuclide therapy.

    PubMed

    Descalle, Marie-Anne; Hartmann Siantar, Christine L; Dauffy, Lucile; Nigg, David W; Wemple, Charles A; Yuan, Aina; DeNardo, Gerald L

    2003-02-01

    Recent clinical results have demonstrated the promise of targeted radionuclide therapy for advanced cancer. As the success of this emerging form of radiation therapy grows, accurate treatment planning and radiation dose simulations are likely to become increasingly important. To address this need, we have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA system. The goal of the MINERVA dose calculation system is to provide 3-D Monte Carlo simulation-based dosimetry for radiation therapy, focusing on experimental and emerging applications. For molecular targeted radionuclide therapy applications, MINERVA calculates patient-specific radiation dose estimates using computed tomography to describe the patient anatomy, combined with a user-defined 3-D radiation source. This paper describes the validation of the 3-D Monte Carlo transport methods to be used in MINERVA for molecular targeted radionuclide dosimetry. It reports comparisons of MINERVA dose simulations with published absorbed fraction data for distributed, monoenergetic photon and electron sources, and for radioisotope photon emission. MINERVA simulations are generally within 2% of EGS4 results and 10% of MCNP results, but differ by up to 40% from the recommendations given in MIRD Pamphlets 3 and 8 for identical medium composition and density. For several representative source and target organs in the abdomen and thorax, specific absorbed fractions calculated with the MINERVA system are generally within 5% of those published in the revised MIRD Pamphlet 5 for 100 keV photons. However, results differ by up to 23% for the adrenal glands, the smallest of our target organs. Finally, we show examples of Monte Carlo simulations in a patient-like geometry for a source of uniform activity located in the kidney. PMID:12667310

  7. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD

    NASA Astrophysics Data System (ADS)

    Schmittner, Andreas; Oschlies, Andreas; Matthews, H. Damon; Galbraith, Eric D.

    2008-03-01

    A new model of global climate, ocean circulation, ecosystems, and biogeochemical cycling, including a fully coupled carbon cycle, is presented and evaluated. The model is consistent with multiple observational data sets from the past 50 years as well as with the observed warming of global surface air and sea temperatures during the last 150 years. It is applied to a simulation of the coming two millennia following a business-as-usual scenario of anthropogenic CO2 emissions (SRES A2 until year 2100 and subsequent linear decrease to zero until year 2300, corresponding to a total release of 5100 GtC). Atmospheric CO2 increases to a peak of more than 2000 ppmv near year 2300 (that is an airborne fraction of 72% of the emissions) followed by a gradual decline to ˜1700 ppmv at year 4000 (airborne fraction of 56%). Forty-four percent of the additional atmospheric CO2 at year 4000 is due to positive carbon cycle-climate feedbacks. Global surface air warms by ˜10°C, sea ice melts back to 10% of its current area, and the circulation of the abyssal ocean collapses. Subsurface oxygen concentrations decrease, tripling the volume of suboxic water and quadrupling the global water column denitrification. We estimate 60 ppb increase in atmospheric N2O concentrations owing to doubling of its oceanic production, leading to a weak positive feedback and contributing about 0.24°C warming at year 4000. Global ocean primary production almost doubles by year 4000. Planktonic biomass increases at high latitudes and in the subtropics whereas it decreases at midlatitudes and in the tropics. In our model, which does not account for possible direct impacts of acidification on ocean biology, production of calcium carbonate in the surface ocean doubles, further increasing surface ocean and atmospheric pCO2. This represents a new positive feedback mechanism and leads to a strengthening of the positive interaction between climate change and the carbon cycle on a multicentennial to millennial

  8. On subsonic compressible flows by a method of correspondence II : application of methods to studies of flow with circulation about a circular cylinder

    NASA Technical Reports Server (NTRS)

    GELBART ABE; Bartnoff, Shepard

    1947-01-01

    A general method for studying the flow of a compressible fluid around a closed body was discussed in Part I of this report. Here, application is made to the specific case in which the linearized equation of state is used. For a given incompressible flow around a specific profile, a corresponding compressible flow is found. The flow at infinity remains unchanged. Detailed studies are made of the flow with circulation around a unit circle, and velocity distributions are found for a wide range of Mach number and angle of attack. Comparisons are made with other methods.

  9. Ocean circulation

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew F.; Rahmstorf, Stefan

    The ocean moderates the Earth's climate due to its vast capacity to store and transport heat; the influence of the large-scale ocean circulation on changes in climate is considered in this chapter. The ocean experiences both buoyancy forcing (through heating/cooling and evaporation/precipitation) and wind forcing. Almost all ocean forcing occurs at the surface, but these changes are communicated throughout the entire depth of the ocean through the meridional overturning circulation (MOC). In a few localized regions, water become sufficiently dense to penetrate thousands of meters deep, where it spreads, providing a continuous source of deep dense water to the entire ocean. Dense water returns to the surface and thus closes the MOC, either through density modification due to diapycnal mixing or by upwelling along sloping isopycnals across the Southern Ocean. Determination of the relative contributions of these two processes in the MOC remains an active area of research. Observations obtained primarily from isotopic compositions in ocean sediments provide substantial evidence that the structure of the MOC has changed significantly in the past. Indeed, large and abrupt changes to the Earth's climate during the past 120,000 years can be linked to either a reorganization or a complete collapse of the MOC. Two of the more dramatic instances of abrupt change include Dansgaard-Oeschger events, abrupt warmings that could exceed 10°C over a period as short as a few decades, and Heinrich events, which are associated with massive freshwater fluxes due to rapid iceberg discharges into the North Atlantic. Numerical models of varying complexity that have captured these abrupt transitions all underscore that the MOC is a highly nonlinear system with feedback loops, multiple equilibria, and hysteresis effects. Prediction of future abrupt shifts in the MOC or "tipping points" remains uncertain. However, the inferred behavior of the MOC during glacial climates suggests that

  10. Clinical simulators: applications and implications for rural medical education.

    PubMed

    Ypinazar, V A; Margolis, S A

    2006-01-01

    Medical education has undergone significant changes globally. Calls for the revitalisation of centuries old pathways of learning have resulted in innovative medical curricula. Didactic modes of teaching which involved the learning of copious amounts of facts have given way to curricula that focus on the horizontal and vertical integration of basic and clinical sciences. Increasing concern for patient care and safety has led to a 'gap' between the needs of medical students to acquire necessary psychomotor skills and the safety and wellbeing of the patient. This has resulted in alternate teaching methods that include non-patient based training for the acquisition of clinical skills. The use of computerised, full-sized human simulators provides medical students with the necessary psychomotor and clinical reasoning skills in a realistic learning environment, while remaining risk free to patients. These clinical simulators are powerful learning tools that have applications at all levels of medical education across multiple disciplines, emphasising the multidisciplinary approach required in many medical situations. This article reviews the literature on medical simulation and provides the contextual basis for the establishment of a Clinical Simulation Learning Centre (CSLC) in a rural clinical school in Australia. The educational program, as well as the design, layout and equipment of the CSLC are described, as well as implications for rural practitioners. The CSLC has been a major capital investment in a relatively under-resourced part of regional Australia and has provided opportunities for ongoing education across a range of healthcare professionals in the community. PMID:16764503

  11. Framework Application for Core Edge Transport Simulation (FACETS)

    SciTech Connect

    Krasheninnikov, Sergei; Pigarov, Alexander

    2011-10-15

    The FACETS (Framework Application for Core-Edge Transport Simulations) project of Scientific Discovery through Advanced Computing (SciDAC) Program was aimed at providing a high-fidelity whole-tokamak modeling for the U.S. magnetic fusion energy program and ITER through coupling separate components for each of the core region, edge region, and wall, with realistic plasma particles and power sources and turbulent transport simulation. The project also aimed at developing advanced numerical algorithms, efficient implicit coupling methods, and software tools utilizing the leadership class computing facilities under Advanced Scientific Computing Research (ASCR). The FACETS project was conducted by a multi-discipline, multi-institutional teams, the Lead PI was J.R. Cary (Tech-X Corp.). In the FACETS project, the Applied Plasma Theory Group at the MAE Department of UCSD developed the Wall and Plasma-Surface Interaction (WALLPSI) module, performed its validation against experimental data, and integrated it into the developed framework. WALLPSI is a one-dimensional, coarse grained, reaction/advection/diffusion code applied to each material boundary cell in the common modeling domain for a tokamak. It incorporates an advanced model for plasma particle transport and retention in the solid matter of plasma facing components, simulation of plasma heat power load handling, calculation of erosion/deposition, and simulation of synergistic effects in strong plasma-wall coupling.

  12. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  13. Development of Simulators for Electrochemical Responses: Experimental and Pedagogical Applications

    SciTech Connect

    Feldberg, S W; Goldstein, C I; Rudolph, M

    1997-06-19

    The work carried out in this CRADA addressed the development of computational algorithms to simulate the response for commonly used electrochemical techniques. The goal was the incorporation of these algorithms into DigiSimR, a generalized simulator for cyclic voltammetry (CV). CV, a ubiquitously applied electroanalytical technique used by nonelectrochemists as well as electrochemists, is sometimes referred to as "electrochemical spectroscopy". The latest version, DigiSimR 2.1, is now being sold by the industrial partner, Bioanalytical Systems, Inc. The response of the electrochemical community to this latest program (as well as its predecessors, DigiSimR 2.0 and the DOS version; versions 2.0 and 2.1 are for Windows), has been uniformly positive and numerous publications are now appearing which feature its application.

  14. The role of dynamic simulation in pipeline field applications

    SciTech Connect

    Chiu, K.C.; Kakka, R.S.

    1998-12-31

    In gas transmission pipeline and oil/gas field applications, gas compression is a key operation. Knowledge of the behavior of a gas compression system during upset conditions is required to evaluate the proposed compressor anti-surge control system, gas relief safety system and any future expansion and modifications. Dynamic simulation is a good engineering tool for such analyses. In this paper, a gas compression system is modeled which consists of eight identical parallel export compressors cascaded to four identical parallel reinjection compressors. The results of dynamic simulation for various what if scenarios are presented., The peak pressure of each header and amount of relieved gas were evaluated for the gas relief safety system. The surge margin of each compressor and other pertinent variables were analyzed for the compressor anti-surge control system.

  15. New methods and astrophysical applications of adaptive mesh fluid simulations

    NASA Astrophysics Data System (ADS)

    Wang, Peng

    The formation of stars, galaxies and supermassive black holes are among the most interesting unsolved problems in astrophysics. Those problems are highly nonlinear and involve enormous dynamical ranges. Thus numerical simulations with spatial adaptivity are crucial in understanding those processes. In this thesis, we discuss the development and application of adaptive mesh refinement (AMR) multi-physics fluid codes to simulate those nonlinear structure formation problems. To simulate the formation of star clusters, we have developed an AMR magnetohydrodynamics (MHD) code, coupled with radiative cooling. We have also developed novel algorithms for sink particle creation, accretion, merging and outflows, all of which are coupled with the fluid algorithms using operator splitting. With this code, we have been able to perform the first AMR-MHD simulation of star cluster formation for several dynamical times, including sink particle and protostellar outflow feedbacks. The results demonstrated that protostellar outflows can drive supersonic turbulence in dense clumps and explain the observed slow and inefficient star formation. We also suggest that global collapse rate is the most important factor in controlling massive star accretion rate. In the topics of galaxy formation, we discuss the results of three projects. In the first project, using cosmological AMR hydrodynamics simulations, we found that isolated massive star still forms in cosmic string wakes even though the mega-parsec scale structure has been perturbed significantly by the cosmic strings. In the second project, we calculated the dynamical heating rate in galaxy formation. We found that by balancing our heating rate with the atomic cooling rate, it gives a critical halo mass which agrees with the result of numerical simulations. This demonstrates that the effect of dynamical heating should be put into semi-analytical works in the future. In the third project, using our AMR-MHD code coupled with radiative

  16. Numerical simulation of lava flows: Applications to the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.; Campbell, Bruce A.; Kousoum, Juliana; Lampkin, Derrick J.

    1993-01-01

    Lava flows are the visible expression of the extrusion of volcanic materials on a variety of planetary surfaces. A computer program described by Ishihara et al. appears to be well suited for application to different environments, and we have undertaken tests to evaluate their approach. Our results are somewhat mixed; the program does reproduce reasonable lava flow behavior in many situations, but we have encountered some conditions common to planetary environments for which the current program is inadequate. Here we present our initial efforts to identify the 'parameter space' for reasonable numerical simulations of lava flows.

  17. Numerical simulation of lava flows: Applications to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Zimbelman, James R.; Campbell, Bruce A.; Kousoum, Juliana; Lampkin, Derrick J.

    1993-03-01

    Lava flows are the visible expression of the extrusion of volcanic materials on a variety of planetary surfaces. A computer program described by Ishihara et al. appears to be well suited for application to different environments, and we have undertaken tests to evaluate their approach. Our results are somewhat mixed; the program does reproduce reasonable lava flow behavior in many situations, but we have encountered some conditions common to planetary environments for which the current program is inadequate. Here we present our initial efforts to identify the 'parameter space' for reasonable numerical simulations of lava flows.

  18. Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan

    NASA Astrophysics Data System (ADS)

    Goto, D.; Dai, T.; Satoh, M.; Tomita, H.; Uchida, J.; Misawa, S.; Inoue, T.; Tsuruta, H.; Ueda, K.; Ng, C. F. S.; Takami, A.; Sugimoto, N.; Shimizu, A.; Ohara, T.; Nakajima, T.

    2015-02-01

    An aerosol-coupled global nonhydrostatic model with a stretched-grid system has been developed. Circulations over the global and target domains are simulated with a single model, which includes fine meshes covering the target region to calculate meso-scale circulations. The stretched global model involves lower computational costs to simulate atmospheric aerosols with fine horizontal resolutions compared with a global uniform nonhydrostatic model, whereas it may require higher computational costs compared with the general regional models, because the stretched-grid system calculates inside and outside the target domain. As opposed to general regional models, the stretched-grid system requires neither a nesting technique nor lateral boundary conditions. In this study, we developed a new-type regional model for the simulation of aerosols over Japan, especially in the Kanto areas surrounding Tokyo, with a maximum horizontal resolution of approximately 10 km. This model usually reproduces temporal variations and their averages of the observed weather around Japan. This model generally reproduces monthly mean distributions of the observed sulfate and SO2 over East Asia, with high correlations (R > 0.6), but the underestimation of the simulated concentrations by 40% (sulfate) and 50% (SO2). Their underestimation of the simulated sulfate and SO2 concentrations over East Asia are strongly affected by their underestimation in China and possibly by the uncertainty of the simulated precipitation around Japan. In the Kanto area, this model succeeds in simulating the wind patterns and the diurnal transitions around the center of the Kanto area, although it is inadequate to simulate the wind patterns and the diurnal transitions at some sites located at the edge of the Kanto area and surrounded on three sides by mountains, e.g., Maebashi, mainly due to the insufficient horizontal resolution. This model also generally reproduces both diurnal and synoptic variations of the observed

  19. Extensive analysis of potentialities and limitations of a maximum cross-correlation technique for surface circulation by using realistic ocean model simulations

    NASA Astrophysics Data System (ADS)

    Doronzo, Bartolomeo; Taddei, Stefano; Brandini, Carlo; Fattorini, Maria

    2015-08-01

    As shown in the literature, ocean surface circulation can be estimated from sequential satellite imagery by using the maximum cross-correlation (MCC) technique. This approach is very promising since it offers the potential to acquire synoptic-scale coverage of the surface currents on a quasi-continuous temporal basis. However, MCC has also many limits due, for example, to cloud cover or the assumption that Sea Surface Temperature (SST) or other surface parameters from satellite imagery are considered as conservative passive tracers. Also, since MCC can detect only advective flows, it might not work properly in shallow water, where local heating and cooling, upwelling and other small-scale processes have a strong influence. Another limitation of the MCC technique is the impossibility of detecting currents moving along surface temperature fronts. The accuracy and reliability of MCC can be analysed by comparing the estimated velocities with those measured by in situ instrumentation, but the low number of experimental measurements does not allow a systematic statistical study of the potentials and limitations of the method. Instead, an extensive analysis of these features can be done by applying the MCC to synthetic imagery obtained from a realistic numerical ocean model that takes into account most physical phenomena. In this paper a multi-window (MW-) MCC technique is proposed, and its application to synthetic imagery obtained by a regional high-resolution implementation of the Regional Ocean Modeling System (ROMS) is discussed. An application of the MW-MCC algorithm to a real case and a comparison with experimental measurements are then shown.

  20. Tracers of diabatic changes in potential temperature and potential vorticity: Integral interpretation in terms of net heating and circulation and applications to model consistency across resolutions

    NASA Astrophysics Data System (ADS)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Diabatic processes in the atmosphere can be characterised by the changes they produce on potential temperature (θ) and potential vorticity (PV) following an air parcel. Diabatic tracers of θ and PV track the changes undergone by those two variables due to the action of diabatic processes in a Lagrangian frame by splitting θ and PV into components that are materially conserved and components that are diabatically generated. Since diabatic tracers are subject to advection by the three-dimensional wind field, they are useful tools for the investigation of the interaction of diabatic processes with the atmospheric flow and the impact of diabatic processes on the evolution of the atmosphere. In this contribution, we present a novel integral interpretation of diabatic tracers over suitably defined control volumes, which depend on the weather system under consideration. Using two contrasting extratropical cyclones as examples, it is shown that θ tracers can be used to assess and systematically compare the cross-isentropic mass transport around each cyclone, which is related to the amount and distribution of heat produced during each cyclone's development. PV tracers are related to circulation and area-average isentropic vorticity through the application of Stoke's theorem. Using the impermeability theorem for PV, which states there can be no PV flux across isentropic surfaces, it is also shown that cross-isentropic motion within the control volumes does not directly influence circulation. Instead, the influence of diabatic processes on the circulation crucially depends on the balance between the fluxes along isentropic surfaces of the materially-conserved and diabatically-generated PV components across the lateral boundaries of the control volumes. Finally, the application of the integral interpretation of diabatic tracers for the assessment of model consistency across different model resolutions is discussed.

  1. Application of cellular automata approach for cloud simulation and rendering

    SciTech Connect

    Christopher Immanuel, W.; Paul Mary Deborrah, S.; Samuel Selvaraj, R.

    2014-03-15

    Current techniques for creating clouds in games and other real time applications produce static, homogenous clouds. These clouds, while viable for real time applications, do not exhibit an organic feel that clouds in nature exhibit. These clouds, when viewed over a time period, were able to deform their initial shape and move in a more organic and dynamic way. With cloud shape technology we should be able in the future to extend to create even more cloud shapes in real time with more forces. Clouds are an essential part of any computer model of a landscape or an animation of an outdoor scene. A realistic animation of clouds is also important for creating scenes for flight simulators, movies, games, and other. Our goal was to create a realistic animation of clouds.

  2. AMOBA - ARINC 653 Simulator for Modular Based Space Applications

    NASA Astrophysics Data System (ADS)

    Pascoal, E.; Rufino, J.; Schoofs, T.; Windsor, J.

    2008-08-01

    The ARINC 653 standard has taken a leading role within the aeronautical industry in the development of safety-critical systems based upon the Integrated Modular Avionics (IMA) concept. The related cost savings in reduced integration, verification and validation effort has raised interest in the European space industry for developing a spacecraft IMA approach and for the definition of an ARINC 653-for-space software framework. As part of this process, it is necessary to establish an effective way to test and develop space applications without having access to the final IMA target platform. This paper describes the design and the architecture of a multi-platform and modular ARINC 653 simulator that emulates an execution environment for ARINC 653 space applications.

  3. Numerical Simulation of Fluidic Actuators for Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Vasta, Veer N.; Koklu, Mehti; Wygnanski, Israel L.; Fares, Ehab

    2012-01-01

    Active flow control technology is finding increasing use in aerospace applications to control flow separation and improve aerodynamic performance. In this paper we examine the characteristics of a class of fluidic actuators that are being considered for active flow control applications for a variety of practical problems. Based on recent experimental work, such actuators have been found to be more efficient for controlling flow separation in terms of mass flow requirements compared to constant blowing and suction or even synthetic jet actuators. The fluidic actuators produce spanwise oscillating jets, and therefore are also known as sweeping jets. The frequency and spanwise sweeping extent depend on the geometric parameters and mass flow rate entering the actuators through the inlet section. The flow physics associated with these actuators is quite complex and not fully understood at this time. The unsteady flow generated by such actuators is simulated using the lattice Boltzmann based solver PowerFLOW R . Computed mean and standard deviation of velocity profiles generated by a family of fluidic actuators in quiescent air are compared with experimental data. Simulated results replicate the experimentally observed trends with parametric variation of geometry and inflow conditions.

  4. Desktop Application Program to Simulate Cargo-Air-Drop Tests

    NASA Technical Reports Server (NTRS)

    Cuthbert, Peter

    2009-01-01

    The DSS Application is a computer program comprising a Windows version of the UNIX-based Decelerator System Simulation (DSS) coupled with an Excel front end. The DSS is an executable code that simulates the dynamics of airdropped cargo from first motion in an aircraft through landing. The bare DSS is difficult to use; the front end makes it easy to use. All inputs to the DSS, control of execution of the DSS, and postprocessing and plotting of outputs are handled in the front end. The front end is graphics-intensive. The Excel software provides the graphical elements without need for additional programming. Categories of input parameters are divided into separate tabbed windows. Pop-up comments describe each parameter. An error-checking software component evaluates combinations of parameters and alerts the user if an error results. Case files can be created from inputs, making it possible to build cases from previous ones. Simulation output is plotted in 16 charts displayed on a separate worksheet, enabling plotting of multiple DSS cases with flight-test data. Variables assigned to each plot can be changed. Selected input parameters can be edited from the plot sheet for quick sensitivity studies.

  5. International symposium on fuel rod simulators: development and application

    SciTech Connect

    McCulloch, R.W.

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  6. Simulating atmosphere flow for wind energy applications with WRF-LES

    SciTech Connect

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-01-14

    Forecasts of available wind energy resources at high spatial resolution enable users to site wind turbines in optimal locations, to forecast available resources for integration into power grids, to schedule maintenance on wind energy facilities, and to define design criteria for next-generation turbines. This array of research needs implies that an appropriate forecasting tool must be able to account for mesoscale processes like frontal passages, surface-atmosphere interactions inducing local-scale circulations, and the microscale effects of atmospheric stability such as breaking Kelvin-Helmholtz billows. This range of scales and processes demands a mesoscale model with large-eddy simulation (LES) capabilities which can also account for varying atmospheric stability. Numerical weather prediction models, such as the Weather and Research Forecasting model (WRF), excel at predicting synoptic and mesoscale phenomena. With grid spacings of less than 1 km (as is often required for wind energy applications), however, the limits of WRF's subfilter scale (SFS) turbulence parameterizations are exposed, and fundamental problems arise, associated with modeling the scales of motion between those which LES can represent and those for which large-scale PBL parameterizations apply. To address these issues, we have implemented significant modifications to the ARW core of the Weather Research and Forecasting model, including the Nonlinear Backscatter model with Anisotropy (NBA) SFS model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005).We are also modifying WRF's terrain-following coordinate system by implementing an immersed boundary method (IBM) approach to account for the effects of complex terrain. Companion papers presenting idealized simulations with NBA-RSFS-WRF (Mirocha et al.) and IBM-WRF (K. A. Lundquist et al.) are also presented. Observations of flow

  7. Predictive Gyrokinetic Transport Simulations and Application of Synthetic Diagnostics

    NASA Astrophysics Data System (ADS)

    Candy, J.

    2009-11-01

    In this work we make use of the gyrokinetic transport solver TGYRO [1] to predict kinetic plasma profiles consistent with energy and particle fluxes in the DIII-D tokamak. TGYRO uses direct nonlinear and neoclassical fluxes calculated by the GYRO and NEO codes, respectively, to solve for global, self-consistent temperature and density profiles via Newton iteration. Previous work has shown that gyrokinetic simulation results for DIII-D discharge 128913 match experimental data rather well in the plasma core, but with a discrepancy in both fluxes and fluctuation levels emerging closer to the edge (r/a > 0.8). The present work will expand on previous results by generating model predictions across the entire plasma core, rather than at isolated test radii. We show that TGYRO predicts temperature and density profiles in good agreement with experimental observations which simultaneously yield near-exact (to within experimental uncertainties) agreement with power balance calculations of the particle and energy fluxes for r/a <=0.8. Moreover, we use recently developed synthetic diagnostic algorithms [2] to show that TGYRO also predicts density and electron temperature fluctuation levels in close agreement with experimental measurements across the simulated plasma volume. 8pt [1] J. Candy, C. Holland, R.E. Waltz, M.R. Fahey, and E. Belli, ``Tokamak profile prediction using direct gyrokinetic and neoclassical simulation," Phys. Plasmas 16, 060704 (2009). [2] C. Holland, A.E. White, G.R. McKee, M.W. Shafer, J. Candy, R.E. Waltz, L. Schmitz, and G.R. Tynan, ``Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence," Phys. Plasmas 16, 052301 (2009).

  8. Framework Application for Core Edge Transport Simulation (FACETS)

    SciTech Connect

    Malony, Allen D; Shende, Sameer S; Huck, Kevin A; Mr. Alan Morris, and Mr. Wyatt Spear

    2012-03-14

    The goal of the FACETS project (Framework Application for Core-Edge Transport Simulations) was to provide a multiphysics, parallel framework application (FACETS) that will enable whole-device modeling for the U.S. fusion program, to provide the modeling infrastructure needed for ITER, the next step fusion confinement device. Through use of modern computational methods, including component technology and object oriented design, FACETS is able to switch from one model to another for a given aspect of the physics in a flexible manner. This enables use of simplified models for rapid turnaround or high-fidelity models that can take advantage of the largest supercomputer hardware. FACETS does so in a heterogeneous parallel context, where different parts of the application execute in parallel by utilizing task farming, domain decomposition, and/or pipelining as needed and applicable. ParaTools, Inc. was tasked with supporting the performance analysis and tuning of the FACETS components and framework in order to achieve the parallel scaling goals of the project. The TAU Performance System® was used for instrumentation, measurement, archiving, and profile / tracing analysis. ParaTools, Inc. also assisted in FACETS performance engineering efforts. Through the use of the TAU Performance System, ParaTools provided instrumentation, measurement, analysis and archival support for the FACETS project. Performance optimization of key components has yielded significant performance speedups. TAU was integrated into the FACETS build for both the full coupled application and the UEDGE component. The performance database provided archival storage of the performance regression testing data generated by the project, and helped to track improvements in the software development.

  9. [APPLICATION OF FLOW CYTOMETRY FOR THE ANALYSIS OF CIRCULATING HEMOCYTE POPULATIONS IN THE ASCIDIAN HALOCYNTHIA AURANTIUM (PALLAS, 1787)].

    PubMed

    Sukhachev, A N; Dyachkov, I S; Kudryavtsev, I V; Kumeiko, V V; Tsybulskiy, A V; Polevshchikov, A V

    2015-01-01

    This study addresses the potentialities of flow cytometry in analyzing the composition of circulating hemocyte populations in the ascidian Halocynthia aurantium (Pallas, 1787) both using monoclonal antibodies (mAbs) against some human leukocyte conservative adhesion molecules and without mAbs. Flow cytometry, based on the assessment of forward and side scattering revealed five hemocyte populations. From the wide panel of antibodies against human leukocyte adhesion molecules (CD15, CD29, CD34, CD54, CD62L, CD62P, CD90, CD94, CD117, CD 166), only two mAbs (against CD54, CD90) displayed cross-reactivity with the H. aurantium hemocyte surface antigens. Distribution patterns of these antigens across the hemocyte populations have been analyzed. PMID:26281224

  10. Significance of large-scale circulation in magnetic storm characteristics with application to AE-C neutral composition data

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Hedin, A. E.

    1977-01-01

    Theoretical analysis of a magnetic storm in February 1974 leads to the following conclusions: (1) Wind-induced diffusion leads to depletion of O and He and enhancements of Ar at high latitudes. (2) The same process increases O and He and decreases Ar at low latitudes. (3) There is substantial agreement between theory and neutral composition data from the AE-C closed source neutral mass spectrometer; the low-latitude enhancements of O and He, in magnitude comparable to or even larger than those of N2 and Ar, are observed, which is characteristic for the circulation mechanism. (4) To achieve agreement with the composition measurements, a heat input rate of 1.7 ergs/sq cm s is required above 120 km. (5) Changes in the neutral composition associated with the annual variations have significant effects on the magnetic storm dynamics.

  11. Application of digital holographic interferometry to pressure measurements of symmetric, supercritical and circulation-control airfoils in transonic flow fields

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.

    1987-01-01

    Six airfoil interferograms were evaluated using a semiautomatic image-processor system which digitizes, segments, and extracts the fringe coordinates along a polygonal line. The resulting fringe order function was converted into density and pressure distributions and a comparison was made with pressure transducer data at the same wind tunnel test conditions. Three airfoil shapes were used in the evaluation to test the capabilities of the image processor with a variety of flows. Symmetric, supercritical, and circulation-control airfoil interferograms provided fringe patterns with shocks, separated flows, and high-pressure regions for evaluation. Regions along the polygon line with very clear fringe patterns yielded results within 1% of transducer measurements, while poorer quality regions, particularly near the leading and trailing edges, yielded results that were not as good.

  12. On the combination of kinematics with flow visualization to compute total circulation - Application to vortex rings in a tube

    NASA Technical Reports Server (NTRS)

    Brasseur, J. G.; Chang, I.-D.

    1980-01-01

    To date the computation of the total circulation, or strength of a vortex has required detailed measurements of the velocity field within the vortex. In this paper a method is described in which the kinematics of the vortical flow field is exploited to calculate the strength of a vortex from relatively simple flow visualization measurements. There are several advantages in the technique, the most important being the newly acquired ability to calculate the transient changes in strength of a single vortex as it evolves. The method is applied to the study of vortex rings, although the development can be carried over directly to study vortex pairs, and it is expected that it can be generalized to other flows which contain regions of concentrated vorticity. The accuracy of the method as applied to vortex rings, assessed in part by comparing with the laser Doppler velocimeter (LDV) measurements of Sullivan et al., is shown to be excellent.

  13. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  14. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  15. Simulation of Laser Cooling and Trapping in Engineering Applications

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan

    2005-01-01

    An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint

  16. Continuously on-going hindcast simulations for impact applications

    NASA Astrophysics Data System (ADS)

    Anders, Ivonne; Geyer, Beate

    2016-04-01

    Observations for e.g. temperature, precipitation, radiation, or wind are often used as meteorological forcing for different impact models, like e.g. crop models, urban models, economic models and energy system models. To assess a climate signal, the time period covered by the observation is often too short, they have gaps in between, and are inhomogeneous over time, due to changes in the measurements itself or in the near surrounding. Thus output from global and regional climate models can close the gap and provide homogeneous and physically consistent time series of meteorological parameters. CORDEX evaluation runs performed for the IPCC-AR5 provide a good base for the regional scale. However, with respect to climate services, continuously on-going hindcast simulations are required for regularly updated applications. In this study two projects are presented where hindcast-simulations optimized for a region of interest are performed continuously. The hindcast simulation performed by HZG covering Europe includes the EURO-CORDEX domain with a wider extend to the north to cover the ice edge. The simulation under consideration of the coastDat-experiences is available for the period of 1979 - 2015, prolonged ongoing and fulfills the customer's needs with respect of output variables, levels, intervals and statistical measures. CoastDat - customers are dealing e.g. with naval architecture, renewable energies, offshore wind farming, shipping emissions, coastal flood risk and others. The evaluation of the hindcast is done for Europe by using the EVAL-tool of the CCLM community and by comparison with HYRAS - data for Germany and neighbouring countries. The Climate Research group at the national Austrian weather service, ZAMG, is focusing on high mountain regions and, especially on the Alps. The hindcast-simulation is forced by ERA-interim and optimized for the Alpine Region. One of the main tasks is to capture strong precipitation events which often occur during summer when

  17. Simulation of secondary fault shear displacements - method and application

    NASA Astrophysics Data System (ADS)

    Fälth, Billy; Hökmark, Harald; Lund, Björn; Mai, P. Martin; Munier, Raymond

    2014-05-01

    We present an earthquake simulation method to calculate dynamically and statically induced shear displacements on faults near a large earthquake. Our results are aimed at improved safety assessment of underground waste storage facilities, e.g. a nuclear waste repository. For our simulations, we use the distinct element code 3DEC. We benchmark 3DEC by running an earthquake simulation and then compare the displacement waveforms at a number of surface receivers with the corresponding results obtained from the COMPSYN code package. The benchmark test shows a good agreement in terms of both phase and amplitude. In our application to a potential earthquake near a storage facility, we use a model with a pre-defined earthquake fault plane (primary fault) surrounded by numerous smaller discontinuities (target fractures) representing faults in which shear movements may be induced by the earthquake. The primary fault and the target fractures are embedded in an elastic medium. Initial stresses are applied and the fault rupture mechanism is simulated through a programmed reduction of the primary fault shear strength, which is initiated at a pre-defined hypocenter. The rupture is propagated at a typical rupture propagation speed and arrested when it reaches the fault plane boundaries. The primary fault residual strength properties are uniform over the fault plane. The method allows for calculation of target fracture shear movements induced by static stress redistribution as well as by dynamic effects. We apply the earthquake simulation method in a model of the Forsmark nuclear waste repository site in Sweden with rock mass properties, in situ stresses and fault geometries according to the description of the site established by the Swedish Nuclear Fuel and Waste Management Co (SKB). The target fracture orientations are based on the Discrete Fracture Network model developed for the site. With parameter values set to provide reasonable upper bound estimates of target fracture

  18. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model

    PubMed Central

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-01-01

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients’ CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture. PMID:27609546

  19. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model.

    PubMed

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-01-01

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients' CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture. PMID:27609546

  20. Foam flooding reservoir simulation algorithm improvement and application

    NASA Astrophysics Data System (ADS)

    Wang, Yining; Wu, Xiaodong; Wang, Ruihe; Lai, Fengpeng; Zhang, Hanhan

    2014-05-01

    As one of the important enhanced oil recovery (EOR) technologies, Foam flooding is being used more and more widely in the oil field development. In order to describe and predict foam flooding, experts at domestic and abroad have established a number of mathematical models of foam flooding (mechanism, empirical and semi-empirical models). Empirical models require less data and apply conveniently, but the accuracy is not enough. The aggregate equilibrium model can describe foam generation, burst and coalescence by mechanism studying, but it is very difficult to accurately describe. The research considers the effects of critical water saturation, critical concentration of foaming agent and critical oil saturation on the sealing ability of foam and considers the effect of oil saturation on the resistance factor for obtaining the gas phase relative permeability and the results were amended by laboratory test, so the accuracy rate is higher. Through the reservoir development concepts simulation and field practical application, the calculation is more accurate and higher.

  1. Applications of a simulation model to decisions in mallard management

    USGS Publications Warehouse

    Cowardin, L.M.; Johnson, D.H.; Shaffer, T.L.; Sparling, D.W.

    1988-01-01

    A system comprising simulation models and data bases for habitat availability and nest success rates was used to predict results from a mallard (Anas platyrhynchos) management plan and to compare six management methods with a control. Individual treatments in the applications included land purchase for waterfowl production, wetland easement purchase, lease of uplands for waterfowl management, cropland retirement, use of no-till winter wheat, delayed cutting of alfalfa, installation of nest baskets, nesting island construction, and use of predator-resistant fencing.The simulations predicted that implementation of the management plan would increase recruits by 24%. Nest baskets were the most effective treatment, accounting for 20.4% of the recruits. No-till winter wheat was the second most effective, accounting for 5.9% of the recruits. Wetland loss due to drainage would cause an 11% loss of breeding population in 10 years.The models were modified to account for migrational homing. The modification indicated that migrational homing would enhance the effects of management. Nest success rates were critical contributions to individual management methods. The most effective treatments, such as nest baskets, had high success rates and affected a large portion of the breeding population.Economic analyses indicated that nest baskets would be the most economical of the three techniques tested. The applications indicated that the system is a useful tool to aid management decisions, but data are scarce for several important variables. Basic research will be required to adequately model the effect of migrational homing and density dependence on production. The comprehensive nature of predictions desired by managers will also require that production models like the one described here be extended to encompass the entire annual cycle of waterfowl.

  2. Multi-formalism modelling and simulation: application to cardiac modelling

    PubMed Central

    Defontaine, Antoine; Hernández, Alfredo; Carrault, Guy

    2004-01-01

    Cardiovascular modelling has been a major research subject for the last decades. Different cardiac models have been developed at a cellular level as well as at the whole organ level. Most of these models are defined by a comprehensive cellular modelling using continuous formalisms or by a tissue-level modelling often based on discrete formalisms. Nevertheless, both views still suffer from difficulties that reduce their clinical applications: the first approach requires heavy computational resources while the second one is not able to reproduce certain pathologies. This paper presents an original methodology trying to gather advantages from both approaches, by means of an hybrid model mixing discrete and continuous formalisms. This method has been applied to define a hybrid model of cardiac action potential propagation on a 2D grid of endocardial cells, combining cellular automata and a set of cells defined by the Beeler Reuter model. For simulations under physiologic and ischemic conditions, results show that the action potential propagation as well as electrogram reconstructions are consistent with clinical diagnosis. Finally, the interest of the proposed approach is discussed within the frame of cardiac modelling and simulation. PMID:15520534

  3. G-cueing microcontroller (a microprocessor application in simulators)

    NASA Technical Reports Server (NTRS)

    Horattas, C. G.

    1980-01-01

    A g cueing microcontroller is described which consists of a tandem pair of microprocessors, dedicated to the task of simulating pilot sensed cues caused by gravity effects. This task includes execution of a g cueing model which drives actuators that alter the configuration of the pilot's seat. The g cueing microcontroller receives acceleration commands from the aerodynamics model in the main computer and creates the stimuli that produce physical acceleration effects of the aircraft seat on the pilots anatomy. One of the two microprocessors is a fixed instruction processor that performs all control and interface functions. The other, a specially designed bipolar bit slice microprocessor, is a microprogrammable processor dedicated to all arithmetic operations. The two processors communicate with each other by a shared memory. The g cueing microcontroller contains its own dedicated I/O conversion modules for interface with the seat actuators and controls, and a DMA controller for interfacing with the simulation computer. Any application which can be microcoded within the available memory, the available real time and the available I/O channels, could be implemented in the same controller.

  4. Processing of Lunar Soil Simulant for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Sen, Subhayu; Ray, C. S.; Ramachandran, N.

    2005-01-01

    NASA's long-term vision for space exploration includes developing human habitats and conducting scientific investigations on planetary bodies, especially on Moon and Mars. Processing and utilization of planetary in-situ resources is recognized as an important element of this vision since it can minimize the level of up-mass that will have to be transported from earth to the planetary bodies. Within this scope and context, we have undertaken a general effort aimed primarily at extracting and refining metals, developing glass, glass-ceramic, or traditional ceramic type materials using lunar soil simulants. In this paper we will present preliminary results on our effort on simultaneous carbothermal reduction of oxides for elemental extraction and zone refining for obtaining high purity metals. In additions we will demonstrate the possibility of developing glass fibers as reinforcement agents for planetary habitat construction, glasses for fixing nuclear waste from potential nuclear power generators, and glasses for magnetic applications. The paper will also include initial thermal characterization of the glasses produced from lunar simulant. Compositional analysis of processed samples will be presented.

  5. Application of wildfire simulation models for risk analysis

    NASA Astrophysics Data System (ADS)

    Ager, A.; Finney, M.

    2009-04-01

    Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of fires and generate burn probability and intensity maps over large areas (10,000 - 2,000,000 ha). The MTT algorithm is parallelized for multi-threaded processing and is imbedded in a number of research and applied fire modeling applications. High performance computers (e.g., 32-way 64 bit SMP) are typically used for MTT simulations, although the algorithm is also implemented in the 32 bit desktop FlamMap3 program (www.fire.org). Extensive testing has shown that this algorithm can replicate large fire boundaries in the heterogeneous landscapes that typify much of the wildlands in the western U.S. In this paper, we describe the application of the MTT algorithm to understand spatial patterns of burn probability (BP), and to analyze wildfire risk to key human and ecological values. The work is focused on a federally-managed 2,000,000 ha landscape in the central interior region of Oregon State, USA. The fire-prone study area encompasses a wide array of topography and fuel types and a number of highly valued resources that are susceptible to fire. We quantitatively defined risk as the product of the probability of a fire and the resulting consequence. Burn probabilities at specific intensity classes were estimated for each 100 x 100 m pixel by simulating 100,000 wildfires under burn conditions that replicated recent severe wildfire events that occurred under conditions where fire suppression was generally ineffective (97th percentile, August weather). We repeated the simulation under milder weather (70th percentile, August weather) to replicate a "wildland fire use scenario" where suppression is minimized to

  6. Potential of space-borne GNSS reflectometry to constrain simulations of the ocean circulation. A case study for the South African current system

    NASA Astrophysics Data System (ADS)

    Saynisch, Jan; Semmling, Maximilian; Wickert, Jens; Thomas, Maik

    2015-11-01

    The Agulhas current system transports warm and salty water masses from the Indian Ocean into the Southern Ocean and into the Atlantic. The transports impact past, present, and future climate on local and global scales. The size and variability, however, of the respective transports are still much debated. In this study, an idealized model based twin experiment is used to study whether sea surface height (SSH) anomalies estimated from reflected signals of the Global Navigation Satellite System reflectometry (GNSS-R) can be used to determine the internal water mass properties and transports of the Agulhas region. A space-borne GNSS-R detector on the International Space Station (ISS) is assumed and simulated. The detector is able to observe daily SSH fields with a spatial resolution of 1-5∘. Depending on reflection geometry, the precision of a single SSH observation is estimated to reach 3 cm (20 cm) when the carrier phase (code delay) information of the reflected GNSS signal is used. The average precision over the Agulhas region is 7 cm (42 cm). The proposed GNSS-R measurements surpass the radar-based satellite altimetry missions in temporal and spatial resolution but are less precise. Using the estimated GNSS-R characteristics, measurements of SSH are generated by sampling a regional nested general circulation model of the South African oceans. The artificial observations are subsequently assimilated with a 4DVAR adjoint data assimilation method into the same ocean model but with a different initial state and forcing. The assimilated and the original, i.e., the sampled model state, are compared to systematically identify improvements and degradations in the model variables that arise due to the assimilation of GNSS-R based SSH observations. We show that SSH and the independent, i.e., not assimilated model variables velocity, temperature, and salinity improve by the assimilation of GNSS-R based SSH observations. After the assimilation of 90 days of SSH observations

  7. A modeling study of shelf circulation off northern California in the region of the Coastal Ocean Dynamics Experiment 2. Simulations and comparisons with observations

    NASA Astrophysics Data System (ADS)

    Gan, Jianping; Allen, J. S.

    2002-11-01

    This is the second part of a modeling study of wind-forced flow on the continental shelf off northern California in the region (37°-40°N) of the Coastal Ocean Dynamics Experiment (CODE). [2002] analyzed the shelf flow response to idealized wind stress forcing in a process-oriented study. The study here applies forcing from observed winds and heat flux for April-May 1982 and compares the model results with moored current and temperature measurements. The Princeton Ocean Model (POM) is used in a three-dimensional limited area domain with a high-resolution curvilinear grid (approximately 1 km horizontal spacing, 60 vertical levels) and realistic coastline and bottom topography. The objectives of the study are to simulate the response of the shelf circulation field to time-varying observed wind stress and heat flux, to compare model results with oceanographic observations to establish confidence in the model, and to subsequently analyze the model fields and the model dynamical balances to help understand the behavior of the observed flow. The model variables show overall good agreement with corresponding observations. Similar to the conclusions by [2002], it is found that the alongshore variability of upwelling is mainly controlled by the interaction of the wind-forced shelf flow with the coastline and bottom topography. Different dynamical regimes in the regions north and south of the coastal capes formed by Pt. Reyes and Pt. Arena and in the more uniform region between these capes are identified and investigated. The results demonstrate that the coastal capes play a dominant role in causing alongshore variability of the upwelling flow, including the setup of an alongshore pressure gradient that forces northward currents during relaxation of southward upwelling favorable winds. An analysis of the balance of terms in the equation for potential temperature indicates that across-shore temperature advection is the major contributor to the cooling of coastal water during

  8. Large-Eddy Simulation Code Developed for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2003-01-01

    A large-eddy simulation (LES) code was developed at the NASA Glenn Research Center to provide more accurate and detailed computational analyses of propulsion flow fields. The accuracy of current computational fluid dynamics (CFD) methods is limited primarily by their inability to properly account for the turbulent motion present in virtually all propulsion flows. Because the efficiency and performance of a propulsion system are highly dependent on the details of this turbulent motion, it is critical for CFD to accurately model it. The LES code promises to give new CFD simulations an advantage over older methods by directly computing the large turbulent eddies, to correctly predict their effect on a propulsion system. Turbulent motion is a random, unsteady process whose behavior is difficult to predict through computer simulations. Current methods are based on Reynolds-Averaged Navier- Stokes (RANS) analyses that rely on models to represent the effect of turbulence within a flow field. The quality of the results depends on the quality of the model and its applicability to the type of flow field being studied. LES promises to be more accurate because it drastically reduces the amount of modeling necessary. It is the logical step toward improving turbulent flow predictions. In LES, the large-scale dominant turbulent motion is computed directly, leaving only the less significant small turbulent scales to be modeled. As part of the prediction, the LES method generates detailed information on the turbulence itself, providing important information for other applications, such as aeroacoustics. The LES code developed at Glenn for propulsion flow fields is being used to both analyze propulsion system components and test improved LES algorithms (subgrid-scale models, filters, and numerical schemes). The code solves the compressible Favre-filtered Navier- Stokes equations using an explicit fourth-order accurate numerical scheme, it incorporates a compressible form of

  9. Detection of Circulating Tumor Cells by Fluorescent Immunohistochemistry in Patients with Esophageal Squamous Cell Carcinoma: Potential Clinical Applications.

    PubMed

    Li, Shu-Ping; Guan, Quan-Lin; Zhao, Da; Pei, Guang-Jun; Su, Hong-Xin; Du, Lan-Ning; He, Jin-Xiang; Liu, Zhao-Chen

    2016-01-01

    BACKGROUND Circulating tumor cells (CTCs) are tumor cells that leave the primary tumor site and enter the bloodstream, where they can spread to other organs; they are very important in the diagnosis, treatment, and prognosis of malignant tumors. However, few studies have investigated CTCs in esophageal squamous cell carcinoma (ESCC). The aim of this study was to investigate the CTCs in blood of ESCC patients and its potential relevance to clinicopathological features and prognosis. MATERIAL AND METHODS CTCs were acquired by a negative enrichment method that used magnetic activated cell sorting (MACSTM). Fluorescent immunohistochemistry (IHC) was used to identify the CTCs. Then, the positive CTC patients with ESCC were analyzed, after which the relationship between CTCs and clinicopathologic features was evaluated. RESULTS In the present study, 62 out of 140 (44.3%) patients with ESCC were positive for CTCs. The positive rate of CTCs was significantly related with stage of ESCC patients (P=0.013). However, there was no relationship between CTC status and age, sex, smoking tumor history, tumor location, differentiation of tumor, lymphatic invasion, or lymph venous invasion (P>0.05). Kaplan-Meier analysis showed that patients positive for CTCs had significantly shorter survival time than patients negative for CTCs. Multivariate analysis demonstrated that stage and CTC status were significant prognostic factors for patients with ESCC. CONCLUSIONS CTCs positivity is an independent prognostic biomarker that indicates a worse prognosis for patients with ESCC. PMID:27184872

  10. Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers.

    PubMed

    Katchman, Benjamin A; Smith, Joseph T; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O'Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S

    2016-01-01

    Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm(2). Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. PMID:27374875

  11. Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers

    PubMed Central

    Katchman, Benjamin A.; Smith, Joseph T.; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O’Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S.

    2016-01-01

    Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm2. Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. PMID:27374875

  12. Application of multiple IR projector technologies for AMCOM HWIL simulations

    NASA Astrophysics Data System (ADS)

    Beasley, D. Brett; Saylor, Daniel A.

    1999-07-01

    This paper describes the application of multiple IR projector technologies to hardware-in-the-loop (HWIL) simulations at the US Army Aviation and Missile Command's (AMCOM) Missile Research, Development, and Engineering Center (MRDEC). Several projectors utilizing a variety of emerging technologies are currently being successfully applied within the HWIL facilities of AMCOM's MRDEC. Projector technologies utilized at AMCOM include laser diode array projectors, Honeywell's bright resistive infrared thermal emitter arrays, an IR zoom projector with thermoscenes, and steerable point source projectors. Future plans include a new resistor array projector called the Multispectral Infrared Animation Generation Equipment, which is being manufactured by Santa Barbara Infrared. These projector technologies have been used to support multiple HWIL test entries of various seeker configurations. Seeker configurations tested include: two InSb 256 X 256 FPAs, an InSb 512 X 512 FPA, a PtSi 640 X 480 FPA, a PtSi 256 X 256 FPA, a HgCdTe 256 X 256 FPA, a scanning linear array, and an uncooled 320 X 240 microbolometer FPA. The application, capabilities, and performance of each technology are reviewed in the paper. Example imagery collected from each operational system is also presented.

  13. Testing simulation and structural models with applications to energy demand

    NASA Astrophysics Data System (ADS)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality

  14. Clustering, simulation, and neural networks in real-world applications

    NASA Astrophysics Data System (ADS)

    Padgett, Mary Lou; Josephson, Eleanor M.; White, C. R.; Duffield, Don W.

    1995-04-01

    Real-world applications of neural networks often involve simulation and clustering. Reduction of subjective decisions and increasing the potential for real-time automation of cluster evaluation is a target of the cluster check (CC) method suggested here. CC quantitatively assess the variation within a cluster, produces a `central' pattern for a cluster which is robust in the presence of wide variation and skewed data, and suggests a measure for the distance between clusters. Such a measure of the effectiveness of a segmentation scheme is helpful in many applications, including traditional analysis, neural systems, fuzzy systems and evolutionary systems. This work reports successful use of the CC and companion analytic procedures to measure the consistency of movement of neuroanatomical tracer down neural pathways associated with injection sites (tract tracing). Opposite injection sites produce distinctive L shaped accumulations of tracer in different locations. Consistency of pathways for particular injection sites varies from 0.10 to 0.20 out of a possible 0.80. The pathway rejected by the nonparametric statistics and subdivided by Kohonen's self organizing map (SOM) measures 0.20. These quantitative results are consistent with the expert qualitative inspection traditionally accepted in the study of neuronanatomy of the rat olfactory bulb and tubercle. This work suggests further application of the CC and companion techniques to fault detection, identification and recovery of systems for control of diabetes and systems for control of missiles. Use of managerial decisions in the supervisory portions of these systems may also be facilitated by the consistency measure and distance metric allowing reinforcement of consistent decisions and focus on areas needing reconsideration. Automation of such procedures may facilitate real-time, robust and fault-tolerant control by adding a capability for evaluation needed for automated reinforcement and/or selection in neural

  15. Bayesian uncertainty analysis for complex physical systems modelled by computer simulators with applications to tipping points

    NASA Astrophysics Data System (ADS)

    Caiado, C. C. S.; Goldstein, M.

    2015-09-01

    In this paper we present and illustrate basic Bayesian techniques for the uncertainty analysis of complex physical systems modelled by computer simulators. We focus on emulation and history matching and also discuss the treatment of observational errors and structural discrepancies in time series. We exemplify such methods using a four-box model for the termohaline circulation. We show how these methods may be applied to systems containing tipping points and how to treat possible discontinuities using multiple emulators.

  16. The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model

    NASA Astrophysics Data System (ADS)

    Newman, Claire E.; Richardson, Mark I.

    2015-09-01

    Observations of albedo on Mars suggest a largely invariant long-term mean surface dust distribution, but also reveal variations on shorter (seasonal to annual) timescales, particularly associated with major dust storms. We study the impact of finite surface dust availability on the dust cycle in the MarsWRF General Circulation Model (GCM), which uses radiatively active dust with parameterized 'dust devil' and wind stress dust lifting to enable the spontaneous production of dust storms, and tracks budgets of dust lifting, deposition, and total surface dust inventory. We seek a self-consistent, long-term 'steady state' dust cycle for present day Mars, consisting of (a) a surface dust distribution that varies from year to year but is constant longer-term and in balance with current dust redistribution processes, and (b) a fixed set of dust lifting parameters that continue to produce major storms for this distribution of surface dust. We relax the GCM's surface dust inventory toward this steady state using an iterative process, in which dust lifting rate parameters are increased as progressively more surface sites are exhausted of dust. Late in the equilibration process, the GCM exhibits quasi-steady state behavior in which few new surface grid points are exhausted during a 60 year period with constant dust lifting parameters. Complex regional-scale dust redistribution occurs on time-scales from less than seasonal to decadal, and the GCM generates regional to global dust storms with many realistic features. These include merging regional storms, cross-equatorial storms, and the timing and location of several storm types, though very early major storms and large amounts of late storm activity are not reproduced. Surface dust availability in key onset and growth source regions appears vital for 'early' major storms, with replenishment of these regions required before another large storm can occur, whereas 'late' major storms appear primarily dependent on atmospheric

  17. Application of SSM/I satellite data to a hurricane simulation

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Hua; Vandenberghe, Francois; Petty, W. Grant; Bresch, F. James

    2004-04-01

    The impact of Special Sensor Microwave/Imager (SSM/I) data on simulations of hurricane Danny is assessed. The assimilation of SSM/I data is found to increase the atmospheric moisture content over the Gulf of Mexico, strengthen the low-level cyclonic circulation, shorten the model spin-up time, and significantly improve the simulation of the storm's intensity. Two different approaches for assimilating SSM/I data, namely assimilating retrieved products and assimilating raw measurements, are further compared. The data-assimilation analyses from these two approaches give different moisture distributions in both the horizontal and vertical directions in the storm's vicinity, which may potentially affect the simulated storm's development; however, the simulated storm intensities are considered comparable for the Danny case. From sensitivity tests performed in this study, it is also found that the choice of the observational error variances could be potentially important to the model simulations.

  18. A class of the van Leer-type transport schemes and its application to the moisture transport in a general circulation model

    SciTech Connect

    Lin, Shian-Jiann; Chao, W.C.; Sud, Y.C.; Walker, G.K. )

    1994-07-01

    A generalized form of the second-order van Leer transport scheme is derived. Several constraints to the implied subgrid linear distribution are discussed. A very simple positive-definite scheme can be derived directly from the generalized form. A monotonic version of these scheme is applied to the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) for the moisture transport calculations, replacing the original fourth-order center-differencing scheme. Comparisons with the original scheme are made in idealized tests as well as in a summer climate simulation using the full GLA GCM. A distinct advantage of the monotonic transport scheme is its ability to transport sharp gradients without producing spurious oscillations and unphysical negative mixing ratio. Within the context of low-resolution climate simulations, the aforementioned characteristics are demonstrated to be very beneficial in regions where cumulus convection is active. The model-produced precipitation pattern using the new transport scheme is more coherently organized both in time and in space, and correlates better with observations. The side effect of the filling algorithm used in conjunction with the original scheme is also discussed, in the context of idealized tests. The major weakness of the proposed transport scheme with a local monotonic constraint is its substantial implicit diffusion at low resolution. Alternative constraints are discussed to counter this problem. 34 refs., 13 figs., 1 tab.

  19. A class of the van Leer-type transport schemes and its application to the moisture transport in a general circulation model

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Chao, Winston C.; Sud, Y. C.; Walker, G. K.

    1994-01-01

    A generalized form of the second-order van Leer transport scheme is derived. Several constraints to the implied subgrid linear distribution are discussed. A very simple positive-definite scheme can be derived directly from the generalized form. A monotonic version of the scheme is applied to the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) for the moisture transport calculations, replacing the original fourth-order center-differencing scheme. Comparisons with the original scheme are made in idealized tests as well as in a summer climate simulation using the full GLA GCM. A distinct advantage of the monotonic transport scheme is its ability to transport sharp gradients without producing spurious oscillations and unphysical negative mixing ratio. Within the context of low-resolution climate simulations, the aforementioned characteristics are demonstrated to be very beneficial in regions where cumulus convection is active. The model-produced precipitation pattern using the new transport scheme is more coherently organized both in time and in space, and correlates better with observations. The side effect of the filling algorithm used in conjunction with the original scheme is also discussed, in the context of idealized tests. The major weakness of the proposed transport scheme with a local monotonic constraint is its substantial implicit diffusion at low resolution. Alternative constraints are discussed to counter this problem.

  20. Storage Stability of Slightly Acidic Electrolyzed Water and Circulating Electrolyzed Water and Their Property Changes after Application.

    PubMed

    Xuan, Xiao-Ting; Wang, Meng-Meng; Ahn, Juhee; Ma, Yan-Na; Chen, Shi-Guo; Ye, Xing-Qian; Liu, Dong-Hong; Ding, Tian

    2016-03-01

    Slightly acidic electrolyzed water (SAEW) has been recognized as an effective bactericidal agent with free chlorine, but its limitations include its instability and its great dependence on equipment. Newly developed circulating electrolyzed water (CEW) with a higher available chlorine concentration (ACC) could successfully overcome these limitations. In this study, SAEW (ACC of 20 mg/L), CEW1 (ACC of 200 mg/L), and CEW2 (ACC of 20 mg/L) were evaluated for changes in properties (pH, oxidization reduction potential [ORP], and ACC) during storage in open or closed glass bottles under light or dark conditions at room temperature (approximately 20 °C) and after washing pork and lettuce. Additionally, the washed pork and lettuce were evaluated for total viable counts, pH and general appearance. The results showed that CEW1 with a higher ACC has better stability than SAEW with a lower ACC for the storage and washing experiments, and CEW still remained stable after dilution with distilled water. The property indices of EW were greatly affected for the pork-washing experiments compared with the lettuce-washing experiments, probably due to the existence of alkaline and organic materials on the surface of pork. Furthermore, EWs were more effective for inactivating microbes in lettuce than in pork, while there was no significant difference in tissue pH and the general appearance of pork and lettuce. These findings indicated that CEW with a higher ACC shows potential for reducing foodborne pathogens on pork and lettuce without effects on their physicochemical characteristics, and it can be applied in a diluted form. PMID:26869019

  1. Long-Circulating Heparin-Functionalized Magnetic Nanoparticles for Potential Application as a Protein Drug Delivery Platform

    PubMed Central

    Zhang, Jian; Shin, Meong Cheol; David, Allan E.; Zhou, Jie; Lee, Kyuri; He, Huining; Yang, Victor C.

    2013-01-01

    Starch-coated, PEGylated and heparin-functionalized iron oxide magnetic nanoparticles (DNPH) were successfully synthesized and characterized in detail. The PEGylation (20 kDa) process resulted in an average coating of 430 PEG molecules per nanoparticle. After that, heparin conjugation was carried out to attain the final DNPH platform with 35.4 μg of heparin/mg Fe. Commercially acquired heparin-coated magnetic nanoparticles were also PEGylated (HP) and characterized for comparison. Protamine was selected as a model protein to demonstrate the strong binding affinity and high loading content of DNPH for therapeutically relevant cationic proteins. DNPH showed a maximum loading of 22.9 μg protamine/mg Fe. In the pharmacokinetic study, DNPH displayed a long-circulating half-life of 9.37 h, 37.5-fold longer than that (0.15 h) of H P. This improved plasma stability enabled extended exposure of DNPH to the tumor lesions, as was visually confirmed in a flank 9L-glioma mouse model using magnetic resonance imaging (MRI). Quantitative analysis of the Fe content in excised tumor lesions further demonstrated the superior tumor targeting ability of DNPH, with up to 31.36 μg Fe/g tissue (13.07% injected dose (I.D.)/g tissue) and 7.5-fold improvement over that (4.27 μg Fe/g tissue; 1.78% I.D./g tissue) of HP. Overall, DNPH shed light of the potential to be used as a protein drug delivery platform. PMID:24024964

  2. Human Simulators as Teachers: A Guide to the Application of an Effective Simulation Strategy.

    ERIC Educational Resources Information Center

    Collart, Marie E.

    1979-01-01

    Introduces the concept of human simulators, identifies their educational advantages, and describes how the teacher can design and implement this simulation strategy. A model for the development of a human simulator is also presented. (RAO)

  3. A theoretical study of the application of jet flap circulation control for reduction of rotor vibratory forces

    NASA Technical Reports Server (NTRS)

    Piziali, R. A.; Trenka, A. R.

    1974-01-01

    The results of a study to investigate the theoretical potential of a jet-flap control system for reducing the vertical and horizontal non-cancelling helicopter rotor blade root shears are presented. A computer simulation describing the jet-flap control rotor system was developed to examine the reduction of each harmonic of the transmitted shears as a function of various rotor and jet parameters, rotor operating conditions and rotor configurations. The computer simulation of the air-loads included the influences of nonuniform inflow and blade elastic motions. (no hub motions were allowed.) The rotor trim and total rotor power (including jet compressor power) were also determined. It was found that all harmonics of the transmitted horizontal and vertical shears could be suppressed simultaneously using a single jet control.

  4. Medical simulation: Overview, and application to wound modelling and management

    PubMed Central

    Pai, Dinker R.; Singh, Simerjit

    2012-01-01

    Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a) overall increase in the number of medical students vis-à-vis the availability of patients; b) increasing awareness among patients of their rights and consequent increase in litigations and c) tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body) and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality) simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research. PMID:23162218

  5. Application of Circulating Tumor DNA as a Non-Invasive Tool for Monitoring the Progression of Colorectal Cancer

    PubMed Central

    Guan, Yanfang; Yang, Ling; Xia, Xuefeng; Cui, Liqiang; Yi, Xin; Lin, Guole

    2016-01-01

    Background Liquid biopsy has been proposed to be a promising noninvasive tool to obtain information on tumor progression. Through a clinical observation of a case series of 6 consecutive patients, we aim to determine the value of circulating tumor DNA (ctDNA) for monitoring the tumor burden during the treatment of colorectal cancer (CRC). Materials and Methods We used capture sequencing of 545 genes to identify somatic alternations in primary tumor tissues of the six CRC patients who underwent radical surgery and in 23 plasma samples collected at serial time points. We compared the mutation patterns and variant allele frequencies (VAFs) between the matched tissue and the plasma samples and evaluated the potential advantage of using ctDNA as a better tumor load indicator to detect disease relapse over carcinoembryonic antigen (CEA), cancer antigen (CA) 19–9 and imaging studies. Results We identified low-frequency mutations with a mean VAF of 0.88% (corresponding to a mean tumor burden of 0.20ng/mL) in the preoperative plasmas of four patients with locally advanced CRC and a subset of mutations shared by their primary tumors. The tumor loads appeared a sudden decrease upon surgery or other adjuvant treatments and then generally maintained at low levels (0.092ng/mL) until disease recurred. ctDNA increased by 13-fold when disease relapsed in one patient while the CEA and CA 19–9 levels remained normal. In this patient, all six somatic mutations identified in the preoperative plasma were detected in the recrudescent plasma again, with five mutations showing allele fraction increase. Conclusions We described a multi-time-point profile of ctDNA of CRC patients during the course of comprehensive treatment and observed a correlation of ctDNA level with the clinically evaluated tumor progression. This demonstrated a new strategy by analyzing the heterogeneous ctDNA to evaluate and monitor the tumor burden in the treatment and follow-up of CRC patients, with potentially

  6. Multiscale optical simulation settings: challenging applications handled with an iterative ray-tracing FDTD interface method.

    PubMed

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian

    2016-03-20

    We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure. PMID:27140556

  7. Application of simulation techniques for internal corrosion prediction

    SciTech Connect

    Palacios T, C.A.; Hernandez, Y.

    1997-08-01

    Characterization of corrosion in the oil and gas industry is becoming of increasing importance for safety reasons as well as for the preservation of production facilities; to prevent down time and damage to the environment. This article presents the methodology used by this company to characterize the corrosion behavior of the whole production facility, taking into consideration the hydrodynamic and thermodynamic conditions of the produced fluids (flow velocities, flow pattern, liquid holdup, pressure, temperature, etc.) as they flow from the reservoir through the surface installations (flowlines, gas/oil gathering and transmission lines, gas processing plants, artificial lift systems, etc.). The methodology uses Petroleum Engineering and Two-Phase modeling techniques to: (1) optimize the entire production system to obtain the most efficient objective flow rate taking into consideration the corrosive/erosive nature of the produced fluid and (2) characterize the corrosive nature of the produced fluid as it flows through the above mentioned installations. The modeling techniques were performed using commercially available simulators and CO{sub 2} corrosion rates were determined using well known published correlations. For H{sub 2}S corrosion, NACE MR0175 criteria is applied. The application of this methodology has allowed corrosion control strategies, protection and monitoring criteria, inhibitor optimization and increased the effectiveness of already existing corrosion control systems.

  8. Large eddy simulation modelling of combustion for propulsion applications.

    PubMed

    Fureby, C

    2009-07-28

    Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations. PMID:19531515

  9. Simulation of morphodinamic processes in small coastal systems: application to the Aljezur coastal stream (Portugal)

    NASA Astrophysics Data System (ADS)

    Guerreiro, Martha; Fortunato, André B.; Oliveira, Anabela; Bertin, Xavier; Bruneau, Nicolas; Rodrigues, Marta

    2010-05-01

    models ELCIRC and SWAN for making their source codes available and Guillaume Dodet for providing the time-series of wave spectra. The first author is grateful to Prof. João Dias for the orientation provided during this work. This research would not have been be possible without the participants in the field campaigns: R. Taborda, C. Andrade, C. Freitas, A.M. Silva, C. Antunes (Faculdade de Ciências de Lisboa), L. David, P. Freire, R. Capitão, C.J.E.M Fortes, L.S. Pedro, J. Vale, A. Nahon, D. Neves, C. Zózimo, L. Pinheiro (LNEC), A. Cravo, M. Rosa, C. Monteiro, S. Cardeira and C. Loureiro (Universidade do Algarve). The authors are grateful for all the effort and support. References Bertin, X., Oliveira, A. and Fortunato, A.B. 2009. Simulating morphodynamics with unstructured grids: description and validation of a modeling system for coastal applications, Ocean Modelling, 28/1-3: 75-87. Booij, N., Ris, R.C. and Holthuijsen, L.H., 1999. A third generation wave model for coastal regions; Part I: model description and validation. Journal of Geophysical Research, 104: 7649-7666. Dodet, G., Bertin, X. and Taborda, R. 2010. Wave climate variability in the North-East Atlantic Ocean over the last six decades, Ocean Modelling, 31: 120 - 131. Fortunato, A.B. and Oliveira, A. 2004. A modeling system for tidally driven long-term morphodynamics, Journal of Hydraulic Research, 42/4: 426-434. Zhang, Y.-L., Baptista, A.M. and Myers, E. P. 2004. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems: I. Formulation and skill assessment, Continental Shelf Research, 24/18: 2187-2214.

  10. Application of genetic algorithms to autopiloting in aerial combat simulation

    NASA Astrophysics Data System (ADS)

    Kim, Dai Hyun; Erwin, Daniel A.; Kostrzewski, Andrew A.; Kim, Jeongdal; Savant, Gajendra D.

    1998-10-01

    An autopilot algorithm that controls a fighter aircraft in simulated aerial combat is presented. A fitness function, whose arguments are the control settings of the simulated fighter, is continuously maximized by a fuzzied genetic algorithm. Results are presented for one-to-one combat simulated on a personal computer. Generalization to many-to-many combat is discussed.

  11. Development of a Numerical Method for Patient-Specific Cerebral Circulation Using 1D-0D Simulation of the Entire Cardiovascular System with SPECT Data.

    PubMed

    Zhang, Hao; Fujiwara, Naoya; Kobayashi, Masaharu; Yamada, Shigeki; Liang, Fuyou; Takagi, Shu; Oshima, Marie

    2016-08-01

    The detailed flow information in the circle of Willis (CoW) can facilitate a better understanding of disease progression, and provide useful references for disease treatment. We have been developing a one-dimensional-zero-dimensional (1D-0D) simulation method for the entire cardiovascular system to obtain hemodynamics information in the CoW. This paper presents a new method for applying 1D-0D simulation to an individual patient using patient-specific data. The key issue is how to adjust the deviation of physiological parameters, such as peripheral resistance, from literature data when patient-specific geometry is used. In order to overcome this problem, we utilized flow information from single photon emission computed tomography (SPECT) data. A numerical method was developed to optimize physiological parameters by adjusting peripheral cerebral resistance to minimize the difference between the resulting flow rate and the SPECT data in the efferent arteries of the CoW. The method was applied to three cases using different sets of patient-specific data in order to investigate the hemodynamics of the CoW. The resulting flow rates in the afferent arteries were compared to those of the phase-contrast magnetic resonance angiography (PC-MRA) data. Utilization of the SPECT data combined with the PC-MRA data showed a good agreement in flow rates in the afferent arteries of the CoW with those of PC-MRA data for all three cases. The results also demonstrated that application of SPECT data alone could provide the information on the ratios of flow distributions among arteries in the CoW. PMID:26721836

  12. Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel

    SciTech Connect

    Dr. Wei-Ping Pan; Dr. John T. Riley

    2005-10-10

    Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C

  13. Atmospheric turbulence simulation techniques with application to flight analysis

    NASA Technical Reports Server (NTRS)

    Wang, S. T.; Frost, W.

    1980-01-01

    Statistical modeling of atmospheric turbulence is discussed. The statistical properties of atmospheric turbulence, in particular the probability distribution, the spectra, and the coherence are reviewed. Different atmospheric turbulence simulation models are investigated, and appropriate statistical analyses are carried out to verify their validity. The models for simulation are incorporated into a computer model of aircraft flight dynamics. Statistical results of computer simulated landings for an aircraft having characteristics of a DC-8 are reported for the different turbulence simulation techniques. The significance of various degrees of sophistication in the turbulence simulation techniques on the landing performance of the aircraft is discussed.

  14. Interannual variability of the Adriatic Sea circulation

    NASA Astrophysics Data System (ADS)

    Beg Paklar, Gordana; Sepic, Jadranka; Grbec, Branka; Dzoic, Tomislav; Kovac, Zarko; Ivatek-Sahdan, Stjepan

    2016-04-01

    The Regional Ocean Modeling System (ROMS) was implemented in order to reproduce interannual variability of the Adriatic Sea circulation. Simulations and model result analysis were performed for a three-year period from 1st January 2011 to 31st December 2013. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and Mediterranean circulation imposed at the southern open boundary. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Model results were compared with available CTD and ADCP measurements and discussed in the light of the climatological circulation and thermohaline properties of the Adriatic Sea and its coastal areas. Interannual variability in the Adriatic circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the Otranto Strait. Basic features of the Adriatic circulation - basin-wide cyclonic circulation with several embedded smaller cyclonic gyres around main pits - are well reproduced by ROMS model. Modelled temperatures and salinities are within corresponding seasonal intervals, although measured profiles generally indicate stronger stratification than modelled ones. Summer circulation in 2011 with current reversal obtained along the eastern Adriatic coast was related to the sampling results of the early fish stages as well as to ARGO drifter movements. Simulated fields from the Adriatic scale model were used to prescribe the initial and open boundary conditions for the interannual simulation in the middle Adriatic coastal domain.

  15. Modeling ocean circulation

    SciTech Connect

    Semtner, A.J.

    1995-09-08

    Ocean numerical models have become quite realistic over the past several years as a result of improved methods, faster computers, and global data sets. Models now treat basin-scale to global domains while retaining the fine spatial scales that are important for modeling the transport of heat, salt, and other properties over vast distances. Simulations are reproducing observed satellite results on the energetics of strong currents and are properly showing diverse aspects of thermodynamic and dynamic ocean responses ranging from deep-water production of El Nino. Now models can represent not only currents but also the consequences for climate, biology, and geo-chemistry over time spans for months to decades. However, much remains to be understood from models about ocean circulation on longer time scales, including the evolution of the dominant water masses, the predictability of climate, and the ocean`s influence on global change. 34 refs., 6 figs.

  16. Potential application of artificial concepts to aerodynamic simulation

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.; Andrews, A.

    1984-01-01

    The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.

  17. Quantification of uncertainties for application in detonation simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Miao; Ma, Zhibo

    2016-06-01

    Numerical simulation has become an important means in designing detonation systems, and the quantification of its uncertainty is also necessary to reliability certification. As to quantifying the uncertainty, it is the most important to analyze how the uncertainties occur and develop, and how the simulations develop from benchmark models to new models. Based on the practical needs of engineering and the technology of verification & validation, a framework of QU(quantification of uncertainty) is brought forward in the case that simulation is used on detonation system for scientific prediction. An example is offered to describe the general idea of quantification of simulation uncertainties.

  18. APPLICATION GUIDE FOR HYDROLOGICAL SIMULATION PROGRAM - FORTRAN (HSPF)

    EPA Science Inventory

    The Hydrological Simulation Program - FORTRAN (HSPF) is a set of computer codes that can simulate the hydrologic and associated water quality processes on pervious and impervious land surfaces, in the soil profile, and in streams and well-mixed impoundments. This document describ...

  19. Prospective Educational Applications of Mental Simulation: A Meta-Review

    ERIC Educational Resources Information Center

    van Meer, Josephine P.; Theunissen, Nicolet C. M.

    2009-01-01

    This paper focuses on the potential of mental simulation (mentally rehearsing an action to enhance performance) as a useful contemporary educational method. By means of a meta-review, it is examined which conditions impede or facilitate the effectiveness of mental simulation (MS). A computer search was conducted using Ovid PsycINFO. Reviews,…

  20. Applications of formal simulation languages in the control and monitoring subsystems of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lacovara, R. C.

    1990-01-01

    The notions, benefits, and drawbacks of numeric simulation are introduced. Two formal simulation languages, Simpscript and Modsim are introduced. The capabilities of each are discussed briefly, and then the two programs are compared. The use of simulation in the process of design engineering for the Control and Monitoring System (CMS) for Space Station Freedom is discussed. The application of the formal simulation language to the CMS design is presented, and recommendations are made as to their use.

  1. Natural circulation reactor design safety analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Dong

    2001-07-01

    This thesis study covers both global performance and local phenomena analyses focusing on natural circulation reactor design safety. Four important topics are included: the global SBWR design safety assessment, important local phenomena investigation, steady and transient natural circulation process study, and two-phase instability analysis. The conceptual design of the SBWR-200 is introduced in this thesis and the global performance of a natural circulation reactor is then assessed using PUMA integral test data and RELAP5 simulations. A safety assessment methodology is developed to evaluate the PUMA integral test data extrapolation and code scalability. The RELAP5 code simulation capability in low-pressure low-flow conditions is also validated. The study shows that the code is capable of predicting the global accident scenario in natural circulation reactors with reasonable accuracy, while failing to reproduce some safety related local phenomena. The natural circulation process is investigated in detail using PUMA separate effect natural circulation tests. The natural circulation flow rate and heat transfer rate have been modeled analytically and numerically. The work indicates that two-phase natural circulation has enough capability to remove decay power. However, the flow instability observed in two-phase natural circulation cases seriously challenges the feasibility of natural circulation reactor design. The instability is classified as a type of density wave instability induced by flashing. A detailed stability study is performed focusing on flashing induced instability under natural circulation condition. Various flashing phenomena have been studied and a mechanistic flashing model has been proposed and improved using a relaxation method. The developed relaxation flashing model can be applied to general two-phase non-equilibrium phenomena.

  2. Simulation-based airway management training: application and looking forward.

    PubMed

    Yang, Dong; Wei, Yu-Kui; Xue, Fu-Shan; Deng, Xiao-Ming; Zhi, Juan

    2016-04-01

    Within the airway management field, simulation has been used as a tool of training for over 40 years. Simulation training offers a chance of active involvement for the trainees. It can effectively enhance and upgrade the knowledge and skills of the trainees in airway management, and subsequently decrease medical errors and improve patients' outcomes and safety through a variety of airway management training modalities, such as common airway skills, difficult airway management strategies, and crisis management skills. To perform simulation-based airway management training effectively, not only are task trainers and high-fidelity simulators required but also instructors with rich experience in airway management simulation training and optimal curriculum design are essential. PMID:26671260

  3. Development of the KOSMS management simulation training system and its application

    NASA Astrophysics Data System (ADS)

    Takatsu, Yoshiki

    The use of games which simulate actual corporate management has recently become more common and is now utilized in various ways for in-house corporate training courses. KOSMS (Kobe Steel Management Simulation System), a training system designed to help improve the management skills of senior management staff, is a unique management simulation training system in which the participants, using personal computers, must make decisions concerning a variety of management activities, in simulated competition with other corporations. This report outlines the KOSMS system, and describes the basic structure and detailed contents of the management simulation models, and actual application of the KOSMS management simulation training.

  4. Applications of granular-dynamics numerical simulations to asteroid surfaces

    NASA Astrophysics Data System (ADS)

    Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.

    2014-07-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters

  5. The effect of chronic peripheral nesfatin-1 application on blood pressure in normal and chronic restraint stressed rats: related with circulating level of blood pressure regulators.

    PubMed

    Ayada, Ceylan; Turgut, Günfer; Turgut, Sebahat; Güçlü, Zuhal

    2015-01-01

    Nesfatin is a peptide secreted by peripheral tissues, central and peripheral nervous system. It is involved in the regulation of homeostasis. Although the effects of nesfatin-1 on nutrition have been studied widely in the literature, the mechanisms of nesfatin-1 action and also relations with other physiological parameters are still not clarified well. We aimed to investigate the effect of peripheral chronic nesfatin-1 application on blood pressure regulation in normal and in rats exposed to restraint immobilization stress. In our study, three month-old male Wistar rats were used. Rats were divided into 4 groups as Control, Stress, Control+Nesfatin-1, Nesfatin-1+Stress. Angiotensinogen, angiotensin converting enzyme 2, angiotensin II, endothelin-1, endothelial nitric oxide synthase, aldosterone, cortisol, nesfatin-1 levels were determined in plasma samples by ELISA. Our results have shown that chronic peripheral nesfatin-1 administration increases blood pressure in normal and in rats exposed to chronic restraint stress. Effect of nesfatin-1 on circulating level of angiotensinogen, angiotensin converting enzyme 2, angiotensin II, endothelin-1, endothelial nitric oxide synthase, aldosterone and cortisol has been identified. We can conclude that elevated high blood pressure after chronic peripheral nesfatin-1 administration in rats exposed to chronic restraint stress may be related to decreased plasma level of endothelial nitric oxide synthase concentration. PMID:25504061

  6. Newly developed photon-cell interactive Monte Carlo (pciMC) simulation for non-invasive and continuous diagnosis of blood during extracorporeal circulation support

    NASA Astrophysics Data System (ADS)

    Sakota, Daisuke; Takatani, Setsuo

    2011-07-01

    We have sought for non-invasive diagnosis of blood during the extracorporeal circulation support. To achieve the goal, we have newly developed a photon-cell interactive Monte Carlo (pciMC) model for optical propagation through blood. The pciMC actually describes the interaction of photons with 3-dimentional biconcave RBCs. The scattering is described by micro-scopical RBC boundary condition based on geometric optics. By using pciMC, we modeled the RBCs inside the extracorporeal circuit will be oriented by the blood flow. The RBCs' orientation was defined as their long axis being directed to the center of the circulation tube. Simultaneously the RBCs were allowed to randomly rotate about the long axis direction. As a result, as flow rate increased, the orientation rate increased and converged to approximately 22% at 0.5 L/min flow rate and above. And finally, by using this model, the pciMC non-invasively and absolutely predicted Hct and hemoglobin with the accuracies of 0.84+/-0.82 [HCT%] and 0.42+/-0.28 [g/dL] respectively against measurements by a blood gas analyzer.

  7. Blood circulation under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Yazdovskiy, V. I.

    1975-01-01

    Biomedical data obtained on men and animals during weightlessness conditions establish instabilities in pulse rate and blood circulation that smooth out in proportion to adaptation to the weightless condition. The unusual slowness of recovery of pulse rate to initial values after space flight stress is attributed to biological simulation of hormonal shifts and discharge of humoral substances into the blood that prevent a rapid recovery of some biological indicators to initial values.

  8. Development of efficient molecular simulation techniques for engineering applications

    NASA Astrophysics Data System (ADS)

    Subramaniyan, Arun Karthi

    Engineering Molecular Mechanics (EMM) was developed as an alternative to conventional molecular simulation techniques to model high temperature (T > 0 K) phenomena. The EMM methodology was developed using thermal expansion and thermal energy as key thermal properties. Temperature dependent interatomic potentials were developed to account for thermal effects. Lennard-Jones and Morse potentials were used to build temperature dependent potentials. The validity and effectiveness of EMM simulations were demonstrated by simulating temperature dependent properties such as thermal expansion, elastic constants and thermal stress in copper and nickel. EMM simulations were significantly faster than molecular dynamics (MD) simulations for the same accuracy. A controversy regarding the definition of stress in an atomic system was resolved. Using theoretical arguments and numerical examples, the equivalence of virial stress and Cauchy stress was proved. It was shown that neglecting the velocity term in the definition of virial stress (as suggested by some researchers) can cause significant errors in MD simulations at high temperatures. The nanoscale instabilities during phase transformation in Ni-Al shape memory alloys were studied using MD and EMM simulations. The phase transformation temperatures predicted by MD simulations agreed well with experiments. Some limitations of the EMM methodology and the minimization algorithm were discussed. The possibility of nanoscale material design of Ni-Al shape memory alloys was investigated. It was found that the distribution of nickel and aluminum atoms in the alloy can affect the phase transformation characteristics significantly. A new design criterion based on thermal expansion mismatch was introduced. The predicted results using the new criterion matched well with the phase transformation temperature and strain calculated using MD simulations. The new one parameter design criterion was shown to be effective for designing Ni-Al shape

  9. TiO2 based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach

    NASA Astrophysics Data System (ADS)

    Dongale, T. D.; Patil, P. J.; Desai, N. K.; Chougule, P. P.; Kumbhar, S. M.; Waifalkar, P. P.; Patil, P. B.; Vhatkar, R. S.; Takale, M. V.; Gaikwad, P. K.; Kamat, R. K.

    2016-07-01

    We report simulation of nanostructured memristor device using piecewise linear and nonlinear window functions for RRAM and neuromorphic applications. The linear drift model of memristor has been exploited for the simulation purpose with the linear and non-linear window function as the mathematical and scripting basis. The results evidences that the piecewise linear window function can aptly simulate the memristor characteristics pertaining to RRAM application. However, the nonlinear window function could exhibit the nonlinear phenomenon in simulation only at the lower magnitude of control parameter. This has motivated us to propose a new nonlinear window function for emulating the simulation model of the memristor. Interestingly, the proposed window function is scalable up to f( x) = 1 and exhibits the nonlinear behavior at higher magnitude of control parameter. Moreover, the simulation results of proposed nonlinear window function are encouraging and reveals the smooth nonlinear change from LRS to HRS and vice versa and therefore useful for the neuromorphic applications.

  10. A novel simulator for mechanical ventilation in newborns: MEchatronic REspiratory System SImulator for Neonatal Applications.

    PubMed

    Baldoli, Ilaria; Cuttano, Armando; Scaramuzzo, Rosa T; Tognarelli, Selene; Ciantelli, Massimiliano; Cecchi, Francesca; Gentile, Marzia; Sigali, Emilio; Laschi, Cecilia; Ghirri, Paolo; Menciassi, Arianna; Dario, Paolo; Boldrini, Antonio

    2015-08-01

    Respiratory problems are among the main causes of mortality for preterm newborns with pulmonary diseases; mechanical ventilation provides standard care, but long-term complications are still largely reported. In this framework, continuous medical education is mandatory to correctly manage assistance devices. However, commercially available neonatal respiratory simulators are rarely suitable for representing anatomical and physiological conditions; a step toward high-fidelity simulation, therefore, is essential for nurses and neonatologists to acquire the practice needed without any risk. An innovative multi-compartmental infant respirator simulator based on a five-lobe model was developed to reproduce different physio-pathological conditions in infants and to simulate many different kinds of clinical scenarios. The work consisted of three phases: (1) a theoretical study and modeling phase, (2) a prototyping phase, and (3) testing of the simulation software during training courses. The neonatal pulmonary simulator produced allows the replication and evaluation of different mechanical ventilation modalities in infants suffering from many different kinds of respiratory physio-pathological conditions. In particular, the system provides variable compliances for each lobe in an independent manner and different resistance levels for the airway branches; moreover, it allows the trainer to simulate both autonomous and mechanically assisted respiratory cycles in newborns. The developed and tested simulator is a significant contribution to the field of medical simulation in neonatology, as it makes it possible to choose the best ventilation strategy and to perform fully aware management of ventilation parameters. PMID:26238790

  11. Applications of a Pharmacokinetic Simulation Program in Pharmacy Courses.

    ERIC Educational Resources Information Center

    Ingram, D.; And Others

    1979-01-01

    Presents a multicompartment model which illustrates aspects of drug absorption, distribution, and elimination in the human body for a course in pharmacokinetics. The course work consists of the interpretation of computer generated simulated data. (Author/CMV)

  12. Aggregate Building Simulator (ABS) Methodology Development, Application, and User Manual

    SciTech Connect

    Dirks, James A.; Gorrissen, Willy J.

    2011-11-30

    As the relationship between the national building stock and various global energy issues becomes a greater concern, it has been deemed necessary to develop a system of predicting the energy consumption of large groups of buildings. Ideally this system is to take advantage of the most advanced energy simulation software available, be able to execute runs quickly, and provide concise and useful results at a level of detail that meets the users needs without inundating them with data. The resulting methodology that was developed allows the user to quickly develop and execute energy simulations of many buildings simultaneously, taking advantage of parallel processing to greatly reduce total simulation times. The result of these simulations can then be rapidly condensed and presented in a useful and intuitive manner.

  13. Electromagnetic and Thermal Simulations of Human Neurons for SAR Applications

    PubMed Central

    Perez, Felipe; Millholland, Gilbert; Peddinti, Seshasai Vamsi Krishna; Thella, Ashok Kumar; Rizkalla, James; Salama, Paul; Rizkalla, Maher; Morisaki, Jorge; Rizkalla, Maher E.

    2016-01-01

    The impact of the electromagnetic waves (EM) on human neurons (HN) has been under investigation for decades, in efforts to understand the impact of cell phones (radiation) on human health, or radiation absorption by HN for medical diagnosis and treatment. Research issues including the wave frequency, power intensity, reflections and scattering, and penetration depths are of important considerations to be incorporated into the research study. In this study, computer simulation for the EM exposure to HN was studied for the purpose of determining the upper limits of the electric and magnetic field intensities, power consumption, reflections and transmissions, and the change in temperature resulting from the power absorption by human neurons. Both high frequency structural simulators (HFSS) from ANSYS software, and COMSOL multi-physics were used for the simulation of the EM transmissions and reflections, and the temperature profile within the cells, respectively. For the temperature profile estimation, the study considers an electrical source of 0.5 watt input power, 64 MHz. The EM simulation was looking into the uniformity of the fields within the sample cells. The size of the waveguide was set to be appropriate for a small animal model to be conducted in the future. The incident power was fully transmitted throughout the waveguide, and less than 1% reflections were observed from the simulation. The minimum reflected power near the sample under investigation was found to be with negligible reflected field strengths. The temperature profile resulting from the COMSOL simulation was found to be near 0.25 m°K, indicating no change in temperature on the neuro cells under the EM exposure. The paper details the simulation results for the EM response determined by HFSS, and temperature profile simulated by COMSOL. PMID:27617054

  14. Simulation of cyber attacks with applications in homeland defense training

    NASA Astrophysics Data System (ADS)

    Brown, Bill; Cutts, Andrew; McGrath, Dennis; Nicol, David M.; Smith, Timothy P.; Tofel, Brett

    2003-09-01

    We describe a tool to help exercise and train IT managers who make decisions about IP networks in the midst of cyber calamity. Our tool is interactive, centered around a network simulation. It includes various modes of communications one would use to make informed decisions. Our tool is capable of simulating networks with hundreds of components and dozens of players. Test indicate that it could support an exercise an order of magnitude larger and more complex.

  15. Application of Global Paleovegetation Data for Benchmarking Paleoclimate Simulations

    NASA Astrophysics Data System (ADS)

    Izumi, K.; Bartlein, P. J.

    2011-12-01

    Climate models provide an opportunity for testing hypotheses concerning the causes of past climatic variations, providing the consistent explanations of past climate changes, and simulating potential future climate changes. We compare paleovegetation syntheses from the Last Glacial Maximum (LGM) and Mid Holocene (MH) with simulations performed as part of the Paleoclimate Modelling Intercomparison Project (PMIP) 2 and 3 projects, with the aim of evaluating the ability of the simulations to reproduce the key regional and global patterns of climate recorded by the data. We apply two approaches using vegetation models in a data-model comparison framework: a forward-modeling approach that simulates vegetation using climate-model output, and an inverse-modeling approach that uses the vegetation data to infer the past values of the specific climate that controlled vegetation distributions. In the forward-modeling approach, we use the BIOME 4 equilibrium-biogeochemistry model and palaeovegetation data (e.g. BIOME 6000), which includes new regional pollen data sets from Australia, Southeast Asia, South America, and the Indian subcontinent, in order to evaluate the response of PMIP2 AOGCMs simulations of the LGM and MH. For the inverse approach, we use BIOME4 to iteratively estimate the potential paleoclimate consistent with based on the BIOME6000 data using a Monte Carlo Markov Chain algorithm. BIOME 4 employs mechanistic descriptions of the relationship of vegetation on climate and also allows the direct effects of carbon dioxide concentration to be considered. In addition to standard (i.e. map-comparison) approaches for comparing the simulated/observed vegetation and climate, we show some diagnostics based the mapping of observed and simulated biomes in climatic spaces. These diagnoses can provide information about the specific climatological explanations for the mismatches between the simulations and observations.

  16. Circulating glioma biomarkers

    PubMed Central

    Kros, Johan M.; Mustafa, Dana M.; Dekker, Lennard J.M.; Sillevis Smitt, Peter A.E.; Luider, Theo M.; Zheng, Ping-Pin

    2015-01-01

    Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers. PMID:25253418

  17. Application of GPU processing for Brownian particle simulation

    NASA Astrophysics Data System (ADS)

    Cheng, Way Lee; Sheharyar, Ali; Sadr, Reza; Bouhali, Othmane

    2015-01-01

    Reports on the anomalous thermal-fluid properties of nanofluids (dilute suspension of nano-particles in a base fluid) have been the subject of attention for 15 years. The underlying physics that govern nanofluid behavior, however, is not fully understood and is a subject of much dispute. The interactions between the suspended particles and the base fluid have been cited as a major contributor to the improvement in heat transfer reported in the literature. Numerical simulations are instrumental in studying the behavior of nanofluids. However, such simulations can be computationally intensive due to the small dimensions and complexity of these problems. In this study, a simplified computational approach for isothermal nanofluid simulations was applied, and simulations were conducted using both conventional CPU and parallel GPU implementations. The GPU implementations significantly improved the computational performance, in terms of the simulation time, by a factor of 1000-2500. The results of this investigation show that, as the computational load increases, the simulation efficiency approaches a constant. At a very high computational load, the amount of improvement may even decrease due to limited system memory.

  18. Survey of the literature applicable to two-phase natural circulation flows in the hot leg of a PWR: Final report

    SciTech Connect

    Valenzuela, J.A.; Crowley, C.J.; Wallis, G.B.

    1986-10-01

    This report reviews the two-phase flow literature relevant to the natural circulation flow in the hot leg of a pressurized water nuclear reactor during a small break loss of coolant accident. The phenomena of interest in two-phase naural circulation flows are numerous and complex. Three technical areas were identified for individual review in this report: gas-liquid flows in straight pipes; gas-liquid flows in bends; and two-phase natural circulation in reactor geometries. The literature has been surveyed, findings summarized, and suggestions have been made as to where the findings may influence thinking and model development for the reactor situation.

  19. Wind-driven circulation in Titan's seas

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2015-01-01

    Circulation in Titan's seas forced by wind is simulated by an ocean circulation model using surface wind data predicted by a global circulation model. Wind-driven circulation is insignificant throughout much of the annual cycle but becomes significant from late spring to late summer, when the wind stress becomes strong. The large-scale circulation in summer is predominantly southward near the sea surface and northward near the sea bottom. The sea surface current can get as fast as 5 cms-1 in some areas. Titan's rotation affects the vertical structure of sea currents in the form of an Ekman spiral if the wind is strong. The maximum wind setup at the shores is of the same order of magnitude as the tidal range. Wind stirring may reduce thermal stratification in summer but may be unable to destroy stratification of methane-rich liquids on top of ethane-rich liquids that can result from imbalances between evaporation and precipitation.

  20. Wind-driven circulation in Titan's seas

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2015-04-01

    Circulation in Titan's seas forced by wind is simulated by an ocean circulation model using surface wind data predicted by a global circulation model. Wind-driven circulation is insignificant throughout much of the annual cycle, but becomes significant from late spring to late summer, when the wind stress becomes strong. The large-scale circulation in summer is predominantly southward near the sea surface and northward near the sea bottom. The sea surface current can get as fast as 5 cms-1 in some areas. Titan's rotation affects the vertical structure of sea currents in the form of an Ekman spiral if the wind is strong. The maximum wind set-up at the shores is of the same order of magnitude as the tidal range. Wind stirring may reduce thermal stratification in summer, but may be unable to destroy stratification of methane-rich liquids on top of ethane-rich liquids that can result from imbalances between evaporation and precipitation.

  1. Emulation of dynamic simulators with application to hydrology

    NASA Astrophysics Data System (ADS)

    Machac, David; Reichert, Peter; Albert, Carlo

    2016-05-01

    Many simulation-intensive tasks in the applied sciences, such as sensitivity analysis, parameter inference or real time control, are hampered by slow simulators. Emulators provide the opportunity of speeding up simulations at the cost of introducing some inaccuracy. An emulator is a fast approximation to a simulator that interpolates between design input-output pairs of the simulator. Increasing the number of design data sets is a computationally demanding way of improving the accuracy of emulation. We investigate the complementary approach of increasing emulation accuracy by including knowledge about the mechanisms of the simulator into the formulation of the emulator. To approximately reproduce the output of dynamic simulators, we consider emulators that are based on a system of linear, ordinary or partial stochastic differential equations with a noise term formulated as a Gaussian process of the parameters to be emulated. This stochastic model is then conditioned to the design data so that it mimics the behavior of the nonlinear simulator as a function of the parameters. The drift terms of the linear model are designed to provide a simplified description of the simulator as a function of its key parameters so that the required corrections by the conditioned Gaussian process noise are as small as possible. The goal of this paper is to compare the gain in accuracy of these emulators by enlarging the design data set and by varying the degree of simplification of the linear model. We apply this framework to a simulator for the shallow water equations in a channel and compare emulation accuracy for emulators based on different spatial discretization levels of the channel and for a standard non-mechanistic emulator. Our results indicate that we have a large gain in accuracy already when using the simplest mechanistic description by a single linear reservoir to formulate the drift term of the linear model. Adding some more reservoirs does not lead to a significant

  2. Pebble-bed pebble motion: Simulation and Applications

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2011-11-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine

  3. Application of PHOTON simulation software on calibration of HPGe detectors

    NASA Astrophysics Data System (ADS)

    Nikolic, J.; Puzovic, J.; Todorovic, D.; Rajacic, M.

    2015-11-01

    One of the major difficulties in gamma spectrometry of voluminous environmental samples is the efficiency calibration of the detectors used for the measurement. The direct measurement of different calibration sources, containing isolated γ-ray emitters within the energy range of interest, and subsequent fitting to a parametric function, is the most accurate and at the same time most complicated and time consuming method of efficiency calibration. Many other methods are developed in time, some of them using Monte Carlo simulation. One of such methods is a dedicated and user-friendly program PHOTON, developed to simulate the passage of photons through different media with different geometries. This program was used for efficiency calibration of three HPGe detectors, readily used in Laboratory for Environment and Radiation Protection of the Institute for Nuclear Sciences Vinca, Belgrade, Serbia. The simulation produced the spectral response of the detectors for fixed energy and for different sample geometries and matrices. Thus obtained efficiencies were compared to the values obtained by the measurement of the secondary reference materials and to the results obtained by GEANT4 simulation, in order to establish whether the simulated values agree with the experimental ones. To further analyze the results, a realistic measurement of the materials provided by the IAEA within different interlaboratory proficiency tests, was performed. The activities obtained using simulated efficiencies were compared to the reference values provided by the organizer. A good agreement in the mid energy section of the spectrum was obtained, while for low energies the lack of some parameters in the simulation libraries proved to produce unacceptable discrepancies.

  4. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  5. Simulations of the HDO and H2O-18 atmospheric cycles using the NASA GISS general circulation model - Sensitivity experiments for present-day conditions

    NASA Technical Reports Server (NTRS)

    Jouzel, Jean; Koster, R. D.; Suozzo, R. J.; Russell, G. L.; White, J. W. C.

    1991-01-01

    Incorporating the full geochemical cycles of stable water isotopes (HDO and H2O-18) into an atmospheric general circulation model (GCM) allows an improved understanding of global delta-D and delta-O-18 distributions and might even allow an analysis of the GCM's hydrological cycle. A detailed sensitivity analysis using the NASA/Goddard Institute for Space Studies (GISS) model II GCM is presented that examines the nature of isotope modeling. The tests indicate that delta-D and delta-O-18 values in nonpolar regions are not strongly sensitive to details in the model precipitation parameterizations. This result, while implying that isotope modeling has limited potential use in the calibration of GCM convection schemes, also suggests that certain necessarily arbitrary aspects of these schemes are adequate for many isotope studies. Deuterium excess, a second-order variable, does show some sensitivity to precipitation parameterization and thus may be more useful for GCM calibration.

  6. Model for simulating rotational data for wind turbine applications

    NASA Astrophysics Data System (ADS)

    Powell, D. C.; Connell, J. R.

    1986-04-01

    This document describes a wind simulation model to be used in relation to wind turbine operations. The model is a computer code written in FORTRAN 77. The model simulates turbulence and mean wind effects as they are experienced at a rotating point on the blade of either a horizontal-axis wind turbine (HAWT) or a vertical-axis wind turbine (VAWT). The model is fast, requiring 15 to 120 seconds of VAX execution time to produce a simulation and related statistics. The model allows the user to set a number of wind parameters so that he may evaluate the uncertainty of model results as well as their typical values. When this capability is combined with short execution time, the user can quickly produce a number of simulations based on reasonable variation of input parameters and can use these simulations to obtain a range of wind turbine responses to the turbulence. This ability is important because some of the wind parameters that cannot be precisely evaluated should be prescribed over a range of values. This document is essentially a user's guide. Its features include theoretical derivations, samples of output, comparisons of measured and modeled results, a listing of the FORTRAN code, a glossary for the code, and the input and output of a sample run.

  7. DEVELOPMENTS AND APPLICATIONS OF CFD SIMULATIONS OF MICROMETEOROLOGY AND POLLUTION TRANSPORT IN SUPPORT OF AIR QUALITY MODELING

    EPA Science Inventory

    Development and application of computational fluid dynamics (CFD) simulations are being advanced through case studies for simulating air pollutant concentrations from sources within open fields and within complex urban building environments. CFD applications have been under deve...

  8. A comparison of general circulation models and their application to temperature change assessments in a high-latitude agricultural area in northeastern China

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Shi, Yandan; Hao, Fanghua; Jiao, Wei

    2016-07-01

    The two main focuses of this study are a comparison of the general circulation models (GCMs) from Phase 5 of the Coupled Model Inter-Comparison Project (CMIP5) and an assessment of the surface air temperature under multiple climate scenarios in a high middle latitude area of China. In the past 55 years temperatures in this area have shown an obvious upward trend (a rise of 1.50 °C), and another important change during this time period was a significant alteration in tillage practices that occurred in 1986. Using methods and tools such as average deviation, the Taylor figure and the space techniques rating (SS), time sequence related coefficient, and the M2 index, a comprehensive spatial-temporal assessment was performed based on the CMIP5 models. The simulations provided by the models had certain common features, but there were also significant differences. The three best models (CanCM4, INMCM4, and IPSL-CM5A-MR) have a common characteristic: the institutions where they were developed are located at latitudes that are similar to or higher than the latitude of the study area. Future climate changes were analyzed by simulating a representative concentration pathway 4.5/8.5 (RCP4.5/RCP8.5) of emission scenarios with a multi-model ensemble. The temperatures under the RCP4.5 and RCP8.5 scenarios have a certain upward trend, with increases of 2.24 and 5.44 °C, respectively. From a spatial perspective, the distributions of the temperature change trend showed a southwest to northeast step increase under both scenarios, but the warming trend in the area of each lattice point under the RCP4.5 scenario is much lower than that of the RCP8.5 scenario. There are no obvious changes in the spatial distribution of the accumulated intensity and frequency of the regional air temperature in the three periods (2016-2035, 2036-2065, and 2066-2095) under the two scenarios.

  9. A comparison of general circulation models and their application to temperature change assessments in a high-latitude agricultural area in northeastern China

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Shi, Yandan; Hao, Fanghua; Jiao, Wei

    2015-10-01

    The two main focuses of this study are a comparison of the general circulation models (GCMs) from Phase 5 of the Coupled Model Inter-Comparison Project (CMIP5) and an assessment of the surface air temperature under multiple climate scenarios in a high middle latitude area of China. In the past 55 years temperatures in this area have shown an obvious upward trend (a rise of 1.50 °C), and another important change during this time period was a significant alteration in tillage practices that occurred in 1986. Using methods and tools such as average deviation, the Taylor figure and the space techniques rating (SS), time sequence related coefficient, and the M2 index, a comprehensive spatial-temporal assessment was performed based on the CMIP5 models. The simulations provided by the models had certain common features, but there were also significant differences. The three best models (CanCM4, INMCM4, and IPSL-CM5A-MR) have a common characteristic: the institutions where they were developed are located at latitudes that are similar to or higher than the latitude of the study area. Future climate changes were analyzed by simulating a representative concentration pathway 4.5/8.5 (RCP4.5/RCP8.5) of emission scenarios with a multi-model ensemble. The temperatures under the RCP4.5 and RCP8.5 scenarios have a certain upward trend, with increases of 2.24 and 5.44 °C, respectively. From a spatial perspective, the distributions of the temperature change trend showed a southwest to northeast step increase under both scenarios, but the warming trend in the area of each lattice point under the RCP4.5 scenario is much lower than that of the RCP8.5 scenario. There are no obvious changes in the spatial distribution of the accumulated intensity and frequency of the regional air temperature in the three periods (2016-2035, 2036-2065, and 2066-2095) under the two scenarios.

  10. Blowing Circulation Control on a Seaplane Airfoil

    NASA Astrophysics Data System (ADS)

    Guo, B. D.; Liu, P. Q.; Qu, Q. L.

    2011-09-01

    RANS simulations are presented for blowing circulation control on a seaplane airfoil. Realizable k-epsilon turbulent model and pressure-based coupled algorithm with second-order discretization were adopted to simulate the compressible flow. Both clear and simple flap configuration were simulated with blowing momentum coefficient Cμ = 0, 0.15 and 0.30. The results show that blowing near the airfoil trailing edge could enhance the Coanda effect, delay the flow separation, and increase the lift coefficient dramatically. The blowing circulation control is promising to apply to taking off and landing of an amphibious aircraft or seaplane.

  11. Simulation of a Flywheel Electrical System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan V.

    2000-01-01

    A Flywheel Energy Storage Demonstration Project was initiated at the NASA Glenn Research Center as a possible replacement for the battery energy storage system on the International Space Station (ISS). While the hardware fabrication work was being performed at a university and contractor's facility, the related simulation activity was begun at Glenn. At the top level, Glenn researchers simulated the operation of the ISS primary electrical system (as described in another paper) with the Flywheel Energy Storage Unit (FESU) replacing one Battery Charge and Discharge Unit (BCDU). The FESU consists of a Permanent Magnet Synchronous Motor/Generator (PMSM), which is connected to the flywheel; the power electronics that connects the PMSM to the ISS direct-current bus; and the associated controller. The PMSM model is still under development, but this paper describes the rest of the FESU model-the simulation of the converter and the associated control system that regulates energy transfer to and from the flywheel.

  12. Iterative Schemes for Time Parallelization with Application to Reservoir Simulation

    SciTech Connect

    Garrido, I; Fladmark, G E; Espedal, M S; Lee, B

    2005-04-18

    Parallel methods are usually not applied to the time domain because of the inherit sequentialness of time evolution. But for many evolutionary problems, computer simulation can benefit substantially from time parallelization methods. In this paper, they present several such algorithms that actually exploit the sequential nature of time evolution through a predictor-corrector procedure. This sequentialness ensures convergence of a parallel predictor-corrector scheme within a fixed number of iterations. The performance of these novel algorithms, which are derived from the classical alternating Schwarz method, are illustrated through several numerical examples using the reservoir simulator Athena.

  13. Space Station gas-grain simulation facility - Application to exobiology

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Stoker, C. R.; Morris, J.; Conley, G.; Schwartz, D.

    1986-01-01

    The technical issues involved in performing experiments on the behavior and properties of aerosols in a microgravity environment provided by the Space Station are reviewed. The displacement of a particle resulting from g-jitter for ballistic, Knudsen, and Stokes flow regimes is examined in detail, and the radiation, acoustic, electrostatic, and electromagnetic mechanisms for the control of this motion are described. The simulation of organic haze production on Titan has been selected as an example experiment for detailed study. The purpose of this experiment was to simulate the photolysis of methane and the subsequent formation of the organic haze particles in the Titan upper atmosphere.

  14. Computer-aided design of stripline ferrite junction circulators

    NASA Technical Reports Server (NTRS)

    Uzdy, Z.

    1980-01-01

    A general design procedure is presented for stripline Y-junction circulators employing solid dielectric between ground planes. The resonator design and impedance matching are derived in a form suitable for computer evaluation. The procedure is applicable to cases where either the circulator bandwidth or the ground plane spacing is specified. An experimental S-band switching circulator design illustrates the technique.

  15. Parallel continuous simulated tempering and its applications in large-scale molecular simulations

    SciTech Connect

    Zang, Tianwu; Yu, Linglin; Zhang, Chong; Ma, Jianpeng

    2014-07-28

    In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys. 132, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2–3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent.

  16. Parallel continuous simulated tempering and its applications in large-scale molecular simulations

    PubMed Central

    Zang, Tianwu; Yu, Linglin; Zhang, Chong; Ma, Jianpeng

    2014-01-01

    In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys.141, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys.141, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2–3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent. PMID:25084887

  17. Parallel continuous simulated tempering and its applications in large-scale molecular simulations

    NASA Astrophysics Data System (ADS)

    Zang, Tianwu; Yu, Linglin; Zhang, Chong; Ma, Jianpeng

    2014-07-01

    In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys. 132, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2-3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent.

  18. Application of Simulated Annealing to Clustering Tuples in Databases.

    ERIC Educational Resources Information Center

    Bell, D. A.; And Others

    1990-01-01

    Investigates the value of applying principles derived from simulated annealing to clustering tuples in database design, and compares this technique with a graph-collapsing clustering method. It is concluded that, while the new method does give superior results, the expense involved in algorithm run time is prohibitive. (24 references) (CLB)

  19. GIS and crop simulation modelling applications in climate change research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The challenges that climate change presents humanity require an unprecedented ability to predict the responses of crops to environment and management. Geographic information systems (GIS) and crop simulation models are two powerful and highly complementary tools that are increasingly used for such p...

  20. Simulation of fumigant transport and volatilization from tarped broadcast applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the ability of the HYDRUS 2D/3D model to simulate chloropicrin and 1,3-dichloropropene fate, transport and volatilization. Three fields with similar soil conditions were broadcast fumigated under a totally impermeable film (TIF). One field was used to calibrate HYDRUS by adjusting fumig...

  1. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…

  2. DEVELOPMENT OF CFD SIMULATION APPLICATIONS FOR LOCAL-SCALE AREAS AND POTENTIAL INTERFACE WITH MESOSCALE MODELS

    EPA Science Inventory

    The presentation summarizes developments of ongoing applications of fine-scale (geometry specific) CFD simulations to urban areas within atmospheric boundary layers. Enabling technology today and challenges for the future are discussed. There is a challenging need to develop a ...

  3. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  4. Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.

    2008-12-01

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Application of the Experiential Learning Cycle in Learning from a Business Simulation Game

    ERIC Educational Resources Information Center

    Ahn, Jung-Hoon

    2008-01-01

    The purpose of this study was to investigate the effects of engaging students in Kolb's experiential learning cycle on facilitating students' simulation game performance and knowledge application skills in learning with a business simulation game. A sample was drawn from a population of business-major undergraduate students at the School of…

  6. Apparatus Circulates Sterilizing Gas

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Schwarz, Ray P.

    1991-01-01

    Apparatus circulates sterilizing gas containing ethylene oxide and chlorofluorocarbon through laboratory or medical equipment. Confines sterilizing gas, circulating it only through parts to be treated. Consists of two units. One delivers ethylene oxide/chlorofluorocarbon gas mixture and removes gas after treatment. Other warms, humidifies, and circulates gas through equipment to be treated. Process provides reliable sterilization with negligible residual toxicity from ethylene oxide. Particularly suitable for sterilization of interiors of bioreactors, heart/lung machines, dialyzers, or other equipment including complicated tubing.

  7. Conservation of circulation in magnetohydrodynamics

    PubMed

    Bekenstein; Oron

    2000-10-01

    We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices. PMID:11089118

  8. Development and application of an atmospheric turbulence model for use in flight simulators in flight simulators

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Joshi, D. S.

    1976-01-01

    The influence of simulated turbulence on aircraft handling qualities was investigated. Pilot opinion of the handling qualities of a light general aviation aircraft were evaluated in a motion-base simulator using a simulated turbulence environment. A realistic representation of turbulence disturbances is described in terms of rms intensity and scale length and their random variations with time. The time histories generated by the proposed turbulence models showed characteristics which appear to be more similar to real turbulence than the frequently-used Gaussian turbulence model. In addition, the proposed turbulence models can flexibly accommodate changes in atmospheric conditions and be easily implemented in flight simulator studies. Six turbulence time histories, including the conventional Gaussian model, were used in an IFR-tracking task. The realism of each of the turbulence models and the handling qualities of the simulated airplane were evaluated. Analysis of pilot opinions shows that at approximately the same rms intensities of turbulence, the handling quality ratings transit from the satisfactory level, for the simple Gaussian model, to an unacceptable level for more realistic and compositely structured turbulence models.

  9. Four port circulator

    NASA Astrophysics Data System (ADS)

    Oress, V. V.; Naumov, I. A.; Stolyarov, A. K.

    1981-12-01

    The circulator is a waveguide slotted bridge, at the center of which, along the axis of symmetry, is a set of toroidal ferrites arranged on a dielectric sleeve. As a result of this design, the overall dimensions of the circulator are reduced and the tuning of the circulator is simplified. An experimental model of a four port circulator was constructed in the 3-cm range of waves, with the direct losses of not over 1 dB and decouplings of not less than 19 dB in all the channels.

  10. Simulated antineutrino signatures of nuclear reactors for nonproliferation applications

    NASA Astrophysics Data System (ADS)

    Misner, Alex C.

    2008-10-01

    Antineutrino detectors could provide a valuable addition to current safeguards regimes. Antineutrinos are an attractive emission to monitor due to their low interaction cross-section that prevents them from being shielded and the dependence of their spectrum on the power level and isotopic content of a reactor core. While there are antineutrino detectors currently deployed at an operational reactor, such observations cannot predict the effect of the diversion of nuclear material on the antineutrino emissions. Utilizing simulation tools, one can predict the antineutrino signatures of such abnormal operations and other reactor types that have not been experimentally measured. This study simulates reactor cores with assembly-level resolution for both baseline and diversion cases in order to predict the properties of a detector for measuring the differences in the antineutrino signatures.

  11. Bounded multi-scale plasma simulation: Application to sheath problems

    SciTech Connect

    Parker, S.E. ); Friedman, A.; Ray. S.L. ); Birdsall, C.K. )

    1993-08-01

    In our previous paper we introduced the multi-scale method, a self-consistent plasma simulation technique that allowed particles to have independent timesteps. Here we apply the method to one-dimensional electrostatic bounded plasma problems and demonstrate a significant reduction in computing time. We describe a technique to allow for variable grid spacing and develop consistent boundary conditions for the direct implicit method. Also discussed are criteria for specifying timestep size as a function of position in phase space. Next, an analytically solvable sheath problem is presented, and a comparison to simulation results in made. Finally, we show results for an ion acoustic shock front propagating toward a conducting wall. 20 refs., 16 figs., 2 tabs.

  12. Simulating Quantile Models with Applications to Economics and Management

    NASA Astrophysics Data System (ADS)

    Machado, José A. F.

    2010-05-01

    The massive increase in the speed of computers over the past forty years changed the way that social scientists, applied economists and statisticians approach their trades and also the very nature of the problems that they could feasibly tackle. The new methods that use intensively computer power go by the names of "computer-intensive" or "simulation". My lecture will start with bird's eye view of the uses of simulation in Economics and Statistics. Then I will turn out to my own research on uses of computer- intensive methods. From a methodological point of view the question I address is how to infer marginal distributions having estimated a conditional quantile process, (Counterfactual Decomposition of Changes in Wage Distributions using Quantile Regression," Journal of Applied Econometrics 20, 2005). Illustrations will be provided of the use of the method to perform counterfactual analysis in several different areas of knowledge.

  13. Processing of Lunar Soil Simulant for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Sen, Subhayu; Ray, Chandra S.; Reddy, Ramana

    2005-01-01

    NASA's long-term vision for space exploration includes developing human habitats and conducting scientific investigations on planetary bodies, especially on Moon and Mars. To reduce the level of up-mass processing and utilization of planetary in-situ resources is recognized as an important element of this vision. Within this scope and context, we have undertaken a general effort aimed primarily at extracting and refining metals, developing glass, glass-ceramic, or traditional ceramic type materials using lunar soil simulants. In this paper we will present preliminary results on our effort on carbothermal reduction of oxides for elemental extraction and zone refining for obtaining high purity metals. In additions we will demonstrate the possibility of developing glasses from lunar soil simulant for fixing nuclear waste from potential nuclear power generators on planetary bodies. Compositional analysis, x-ray diffraction patterns and differential thermal analysis of processed samples will be presented.

  14. Applicability of Randomdec technique to flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Reed, R. E., Jr.; Cole, H. A., Jr.

    1975-01-01

    The feasibility of Randomdec analysis to detect certain changes in a flight simulator system is studied. Results show that (1) additional studies are needed to ensure effectiveness; (2) a trade-off exists between development complexity and level of malfunction to be detected; and (3) although the system generally limits the input signals to less than about 5 Hz, higher frequency components in the range of 9 Hz and its harmonics are possible.

  15. Preparation, applications, and digital simulation of carbon interdigitated array electrodes.

    PubMed

    Liu, Fei; Kolesov, Grigory; Parkinson, B A

    2014-08-01

    Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltammetry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10(-5) molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow. PMID:24998907

  16. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    NASA Technical Reports Server (NTRS)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  17. Preparation, Applications, and Digital Simulation of Carbon Interdigitated Array Electrodes

    SciTech Connect

    Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.

    2014-12-16

    Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltam-metry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10–5 molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science Office of Basic Energy Sciences.

  18. Applications for a fast Monte Carlo model for Lidar simulations

    NASA Astrophysics Data System (ADS)

    Buras, R.; Mayer, B.

    2009-04-01

    Lidars have the means to probe a multitude of components of the atmosphere with fairly exact spacial precision. However, in order to correctly retrieve atmospheric observables it is necessary to take into account geometrical effects as well as the contribution of multiply scattered photons. Thus retrieval algorithms need thorough validation by an exact model. In particular, physical or geometrical effects not taken into account by, or approximated in the retrieval algorithm must be proven to be unimportant, or correctly approximated. To this end I present a fast yet exact Lidar simulator based on the Monte Carlo method. The simulator is part of the Monte Carlo solver MYSTIC contained in the libRadtran software package. The Lidar simulator can be applied to several types of Lidars, such as HSRL (e.g. EarthCare), trace gas detectors (e.g. A-Scope), and wide angle Lidars (e.g. WAIL) for space- and air-borne Lidars as well as ground Lidars.

  19. Human Performance Modeling and Simulation for Launch Team Applications

    NASA Technical Reports Server (NTRS)

    Peaden, Cary J.; Payne, Stephen J.; Hoblitzell, Richard M., Jr.; Chandler, Faith T.; LaVine, Nils D.; Bagnall, Timothy M.

    2006-01-01

    This paper describes ongoing research into modeling and simulation of humans for launch team analysis, training, and evaluation. The initial research is sponsored by the National Aeronautics and Space Administration's (NASA)'s Office of Safety and Mission Assurance (OSMA) and NASA's Exploration Program and is focused on current and future launch team operations at Kennedy Space Center (KSC). The paper begins with a description of existing KSC launch team environments and procedures. It then describes the goals of new Simulation and Analysis of Launch Teams (SALT) research. The majority of this paper describes products from the SALT team's initial proof-of-concept effort. These products include a nominal case task analysis and a discrete event model and simulation of launch team performance during the final phase of a shuttle countdown; and a first proof-of-concept training demonstration of launch team communications in which the computer plays most roles, and the trainee plays a role of the trainee's choice. This paper then describes possible next steps for the research team and provides conclusions. This research is expected to have significant value to NASA's Exploration Program.

  20. Simulation of polymer crystallization: Application to specific homopolymers and copolymers

    SciTech Connect

    Goldbeck-Wood, G.; Barham, P.J.

    1995-12-01

    The growth of polymer single crystals has been simulated on the basis of a simple two-dimensional {open_quote}entropic barrier{close_quote} model. The chain is described by a sequence of growth units. Their additions and removals are determined by rate constants obeying detailed balance. The crystallization is then simulated by a kinetic Monte Carlo algorithm. A simulation of the lamellar thickness and growth rates of specific crystallizable homopolymers (polyethylene, isotactic polystyrene, isotactic polypropylene poly-hydroxybuterate and polypivalolactone) as well as the cocrystalization of copolymers like PHB/HV is presented. The model input parameters are calculated from surface free energies, bulk enthalpies, melting points and crystallographic repeat lengths. The only {open_quote}free{close_quote} parameter, the length of a model growth unit, is shown to be related to the lamellar crystal thickness at large undercooling. Good agreement with experimental evidence is found. An analysis of the unit lengths of the different polymers indicates a scaling with the chain persistence length in the melt.

  1. Nesting large-eddy simulations within mesoscale simulations for wind energy applications

    SciTech Connect

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-09-08

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.

  2. Development and application of a three-dimensional baroclinic model to the study of the seasonal circulation in the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Young, E. F.; Brown, J.; Aldridge, J. N.; Horsburgh, K. J.; Fernand, L.

    2004-01-01

    A three-dimensional density-resolving model based on the Princeton Ocean Model (POM) has been developed for the simulation of tide, wind and density-driven flows in a region of the northwest European shelf extending from the Celtic Sea to the Sea of the Hebrides. Predicted co-tidal charts of the region are in good agreement with published charts based on observed tidal elevations and from previous modelling studies. Comparisons of observed and predicted M 2 and S 2 tidal elevations and currents suggest that in general, this model is of comparable or greater accuracy than previous large area models of the region, and tidally generated mixing is of the correct magnitude to enable accurate simulations of the location of tidal mixing fronts. The ability of the model to predict observed temperatures in the region was assessed by comparison with a comprehensive seasonal hydrographic data set collected in the Irish Sea in 1995. The modelled seasonal cycle of thermal stratification at a site in the western Irish Sea was in good agreement with a time series of observed temperatures. A statistical evaluation of model accuracy using all available data showed mean and root mean square (RMS) errors in near-surface temperatures of 0.25°C and 0.72°C, and of 0.05°C and 0.44°C in near-bed temperatures. A consideration of the geographical and temporal distribution of errors showed that the largest errors were near the start of the simulation when the model was consistently too warm, suggesting an inadequate representation of the initial conditions. Model predictions for the Celtic Sea in summer 1998 also compared well with a comprehensive spatial survey, with mean and RMS errors in near-surface temperatures of -0.18°C and 0.70°C, and of -0.01°C and 0.74°C in near-bed temperatures. Errors are in part due to inaccuracies in the initial conditions and the neglect of salinity variations in the model, in particular freshwater inputs in the Bristol Channel. Using the modelled flow

  3. Enhancement of the southward return flow of the Atlantic Meridional Overturning Circulation by data assimilation and its influence in an assimilative ocean simulation forced by CORE-II atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Fujii, Yosuke; Tsujino, Hiroyuki; Toyoda, Takahiro; Nakano, Hideyuki

    2015-08-01

    This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10-15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.

  4. Application of dynamic Monte Carlo technique in proton beam radiotherapy using Geant4 simulation toolkit

    NASA Astrophysics Data System (ADS)

    Guan, Fada

    Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.

  5. On the relevance of tidal forcing in modelling the Mediterranean thermohaline circulation

    NASA Astrophysics Data System (ADS)

    Sannino, G.; Carillo, A.; Pisacane, G.; Naranjo, C.

    2015-05-01

    The four dominant constituents of the semi-diurnal and diurnal tides have been implemented in a regional eddy-resolving Mediterranean version of the Massachusetts Institute of Technology general circulation model to assess the role played by tides on the simulated Mediterranean thermohaline circulation. To this aim we have compared two 10-year hindcast simulations differing only for the inclusion/omission of tidal forcing. Following the recent recommendations suggested by Sannino et al. (2014) both simulations use the same model having a substantial increment of the horizontal resolution in the region of the Strait of Gibraltar. The results suggest that application of explicit tidal forcing in a Mediterranean model has non negligible effects on the simulated circulation in addition to the expected intensification of local mixing processes. The western basin exhibits an immediate response to the different characteristics of the inflowing AW observable in the modified deep water convection processes in the Gulf of Lion. The inclusion of tidal forcing also induces changes in the intermediate circulation of the Tyrrhenian Sea bringing to a better representation of local structures and a reinforcement of the global thermohaline cell. LIW dispersal paths in the eastern basin are also affected by tides.

  6. Prognostic Aspects of Sub-seasonal Rainfall Characteristics using the Outputs of General Circulation Model: An Application of Statistical Downscaling and Temporal Disaggregation

    NASA Astrophysics Data System (ADS)

    Singh, A.; Mohanty, U. C.; Ghosh, K.

    2015-12-01

    Most regions of India experience varied rainfall duration during the southwest monsoon, changes in which exhibit major impact not only agriculture, but also other sectors like hydrology, agriculture, food and fodder storage etc. In addition, changes in sub-seasonal rainfall characteristics highly impact the rice production. As part of the endeavor seasonal climate outlook, as well as information for weather within climate may be helpful for advance planning and risk management in agriculture. The General Circulation Model (GCM) provide an alternative t