Science.gov

Sample records for circumstellar habitable zones

  1. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    SciTech Connect

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  2. The habitable zone and extreme planetary orbits.

    PubMed

    Kane, Stephen R; Gelino, Dawn M

    2012-10-01

    The habitable zone for a given star describes the range of circumstellar distances from the star within which a planet could have liquid water on its surface, which depends upon the stellar properties. Here we describe the development of the habitable zone concept, its application to our own solar system, and its subsequent application to exoplanetary systems. We further apply this to planets in extreme eccentric orbits and show how they may still retain life-bearing properties depending upon the percentage of the total orbit which is spent within the habitable zone. Key Words: Extrasolar planets-Habitable zone-Astrobiology. PMID:23035897

  3. The Habitable Zone Gallery

    NASA Astrophysics Data System (ADS)

    Gelino, Dawn M.; Kane, S. R.

    2012-01-01

    The Habitable Zone Gallery (www.hzgallery.org) is a new service to the exoplanet community which provides Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table with information on the percentage of orbital phase spent within the HZ, planetary effective temperatures, and other basic planetary properties. In addition to the table, we also plot the period and eccentricity of the planets with respect to their time spent in the HZ. We provide a gallery of known systems which plot the orbits and the location of the HZ with respect to those orbits. Here we announce an upgrade to the service which includes improved planetary models, orbital movies, and various other features.

  4. The Habitable Zone Gallery

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.; Gelino, Dawn M.

    2012-04-01

    The Habitable Zone Gallery is a new service to the exoplanet community that provides habitable-zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table with information on the percentage of orbital phase spent within the HZ, planetary effective temperatures, and other basic planetary properties. In addition to the table, we also plot the period and eccentricity of the planets with respect to their time spent in the HZ. The service includes a gallery of known systems that plot the orbits and the location of the HZ with respect to those orbits. Also provided are animations that aid in orbit visualization and provide the changing effective temperature for those planets in eccentric orbits. Here, we describe the science motivation, the underlying calculations, and the structure of the World Wide Web site.

  5. Habitable zones and UV habitable zones around host stars

    NASA Astrophysics Data System (ADS)

    Guo, Jianpo; Zhang, Fenghui; Zhang, Xianfei; Han, Zhanwen

    2010-01-01

    Ultraviolet radiation is a double-edged sword to life. If it is too strong, the terrestrial biological systems will be damaged. And if it is too weak, the synthesis of many biochemical compounds cannot go along. We try to obtain the continuous ultraviolet habitable zones, and compare the ultraviolet habitable zones with the habitable zones of host stars. Using the boundary ultraviolet radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable zones of host stars with masses from 0.08 to 4.00 M ⊙. For the host stars with effective temperatures lower than 4,600 K, the ultraviolet habitable zones are closer than the habitable zones. For the host stars with effective temperatures higher than 7,137 K, the ultraviolet habitable zones are farther than the habitable zones. For a hot subdwarf as a host star, the distance of the ultraviolet habitable zone is about ten times more than that of the habitable zone, which is not suitable for the existence of life.

  6. Exomoon Conditions in Circumbinary Habitability Zones

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, J. I.; Clark, J.; Cuartas-Restrepo, P.

    2014-01-01

    Limits on the potential habitability of exomoons orbiting massive planets within circumbinary habitable zones are examined. Exomoons orbiting planets in the habitable zones of single stars and those orbiting circumbinary planets are subject to the, sometimes intense, tidal heating of the planet. So, exomoon orbits need to be sufficiently large and circular to avoid loss of water like Io. However, moons may be lost if their orbits are too large. We show that, in some cases, massive circumbinary planets have larger Hill radii than similar mass planets in single star habitable zones. The range of semimajor axes, beyond the habitable edge for moons is several times larger in some binaries as compared to single stars and is verified by numerical orbit experiments. We discuss implications of this result in the context of the binary habitability mechanism.

  7. Using a generalized version of the Titius-Bode relation to extrapolate the patterns seen in Kepler multi-exoplanet systems, and estimate the average number of planets in circumstellar habitable zones

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.

    2015-08-01

    The Titius-Bode (TB) relation’s successful prediction of the period of Uranus was the main motivation that led to the search for another planet between Mars and Jupiter. This search led to the discovery of the asteroid Ceres and the rest of the asteroid belt. The TB relation can also provide useful hints about the periods of as-yet-undetected planets around other stars. In Bovaird & Lineweaver (2013) [1], we used a generalized TB relation to analyze 68 multi-planet systems with four or more detected exoplanets. We found that the majority of exoplanet systems in our sample adhered to the TB relation to a greater extent than the Solar System does. Thus, the TB relation can make useful predictions about the existence of as-yet-undetected planets in Kepler multi-planet systems. These predictions are one way to correct for the main obstacle preventing us from estimating the number of Earth-like planets in the universe. That obstacle is the incomplete sampling of planets of Earth-mass and smaller [2-5]. In [6], we use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, 2±1 planets in the habitable zone of each star. We also estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15 per cent, ~3 times higher than the detection rate of our previous Titius-Bode-based predictions.References: [1] Bovaird, T. & Lineweaver, C.H (2013) MNRAS, 435, 1126-1138. [2] Dong S. & Zhu Z. (2013) ApJ, 778, 53 [3] Fressin F. et al. (2013) ApJ, 766, 81 [4] Petigura E. A. et al. (2013) PNAS, 110, 19273 [5] Silburt A. et al. (2014), ApJ (arXiv:1406.6048v2) [6] Bovaird, T., Lineweaver, C.H. & Jacobsen, S.K. (2015, in press) MNRAS, arXiv:14126230v3.

  8. Habitable zone lifetimes of exoplanets around main sequence stars.

    PubMed

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns. PMID:24047111

  9. Geophysical Limitations on the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Noack, L.; Van Hoolst, T.

    2015-10-01

    Planets are typically classified as potentially life-bearing planets (i.e. habitable planets) if they are rocky planets and if a liquid (e.g. water) could exist at the surface. The latter depends on several factors, like for example the amount of available solar energy, greenhouse effects in the atmosphere and an efficient CO2-cycle. However, the definition of the habitable zone should be updated to include possible geophy-sical constraints, that could potentially influence the CO2-cycle. Planets like Mars without plate tectonics and no or only limited volcanic events can only be considered to be habitable at the inner boundary of the habitable zone, since the greenhouse effect needed to ensure liquid surface water farther away from the sun is strongly reduced. We investigate how these geophysical processes depend on the mass and interior structure of terrestrial planets. We find that plate tectonics, if it occurs, always leads to sufficient volcanic outgassing and therefore greenhouse effect needed for the outer boundary of the habitable zone (several tens of bar CO2). One-plate planets, however, may suffer strong volcanic limitations if their mass and/or iron content exceeds a critical value, reducing their possible surface habitability.

  10. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago. PMID:21707386

  11. Habitable zones around main sequence stars

    NASA Technical Reports Server (NTRS)

    Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T.

    1993-01-01

    A mechanism for stabilizing climate on the earth and other earthlike planets is described, and the physical processes that define the inner and outer boundaries of the habitable zone (HZ) around the sun and main sequence stars are discussed. Physical constraints on the HZ obtained from Venus and Mars are taken into account. A 1D climate model is used to estimate the width of the HZ and the continuously habitable zone around the sun, and the analysis is extended to other main sequence stars. Whether other stars have planets and where such planets might be located with respect to the HZ is addressed. The implications of the findings for NASA's SETI project are considered.

  12. Cellular Automation of Galactic Habitable Zone

    NASA Astrophysics Data System (ADS)

    Vukotic, B.; Cirkovic, M. M.

    2010-09-01

    We present a preliminary results of our Galactic Habitable Zone (GHZ) 2D probabilistic cellular automata models. The relevant time-scales (emergence of life, it's diversification and evolution influenced with the global risk function) are modeled as the probability matrix elements and are chosen in accordance with the Copernican principle to be well-represented by the data inferred from the Earth's fossil record. With Fermi's paradox as a main boundary condition the resulting histories of astrobiological landscape are discussed.

  13. Dynamical influence of the secondary star on planets in the circumprimary habitable zone

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, Elke; Bazso, Akos; Funk, Barbara; Lammer, Helmut; Eggl, Siegfried

    2015-08-01

    From studies of circumstellar planetary motion in tight binary star systems like gamma Cephei or HD41004AB we know that secular perturbations can appear which could also influence planets moving in the circumprimary habitable zone. This depends certainly on the system architecture. To locate the area where the secular resonance causes high eccentricity motion or orbital escapes we use a semi-analytical approach which can easily be applied to circumstellar planetary systems where the giant planet orbits the primary star at larger distances than the habitable zone.In this presentation we will use the system HD41004AB - where we study the area around HD41004A inside the orbit of the detected gas giant -- to explain our method and compare the results to former numerical simulations of this region. The comparison of both studies showed a good agreement so that an application to all known tight binary star systems (up to 100 au separation of the two stars) was carried out. In case the secular resonance is located in the habitable zone we analyse the effect on the planetary motion in detail and discuss possible consequences taking into account former habitability studies of the Earth when moving in an eccentric orbit.

  14. Detection of Exomoons Inside the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Tusnski, Luis Ricardo M.; Valio, Adriana

    2014-04-01

    Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons around a planet. The moon orbit is considered to be circular and coplanar with the planetary orbit. The other physical and orbital parameters of the star, planet, and moon, can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The goal is to determine the criteria for detectability of moons using photometry with the CoRoT and Kepler telescopes taking into account the stellar activity.

  15. Radiative habitable zones in martian polar environments.

    PubMed

    Crdoba-Jabonero, Carmen; Zorzano, Mara-Paz; Selsis, Franck; Patel, Manish R; Cockell, Charles S

    2005-06-01

    The biologically damaging solar ultraviolet (UV) radiation (quantified by the DNA-weighted dose) reaches the martian surface in extremely high levels. Searching for potentially habitable UV-protected environments on Mars, we considered the polar ice caps that consist of a seasonally varying CO2 ice cover and a permanent H2O ice layer. It was found that, though the CO2 ice is insufficient by itself to screen the UV radiation, at approximately 1 m depth within the perennial H2O ice the DNA-weighted dose is reduced to terrestrial levels. This depth depends strongly on the optical properties of the H2O ice layers (for instance snow-like layers). The Earth-like DNA-weighted dose and Photosynthetically Active Radiation (PAR) requirements were used to define the upper and lower limits of the northern and southern polar Radiative Habitable Zone (RHZ) for which a temporal and spatial mapping was performed. Based on these studies we conclude that photosynthetic life might be possible within the ice layers of the polar regions. The thickness varies along each martian polar spring and summer between approximately 1.5 and 2.4 m for H2O ice-like layers, and a few centimeters for snow-like covers. These martian Earth-like radiative habitable environments may be primary targets for future martian astrobiological missions. Special attention should be paid to planetary protection, since the polar RHZ may also be subject to terrestrial contamination by probes. PMID:16044598

  16. A Population-based Habitable Zone Perspective

    NASA Astrophysics Data System (ADS)

    Zsom, Andras

    2015-11-01

    What can we tell about exoplanet habitability if currently only the stellar properties, planet radius, and the incoming stellar flux are known? A planet is in the habitable zone (HZ) if it harbors liquid water on its surface. The HZ is traditionally conceived as a sharp region around stars because it is calculated for one planet with specific properties. Such an approach is limiting because the planet’s atmospheric and geophysical properties, which influence the presence of liquid water on the surface, are currently unknown but expected to be diverse. A statistical HZ description is outlined that does not favor one planet type. Instead, the stellar and planet properties are treated as random variables, and a continuous range of planet scenarios is considered. Various probability density functions are assigned to each random variable, and a combination of Monte Carlo sampling and climate modeling is used to generate synthetic exoplanet populations with known surface climates. Then, the properties of the subpopulation bearing liquid water is analyzed. Given our current observational knowledge, the HZ takes the form of a weakly constrained but smooth probability function. The HZ has an inner edge, but a clear outer edge is not seen. Currently only optimistic upper limits can be derived for the potentially observable HZ occurrence rate. Finally, we illustrate through an example how future data on exoplanet atmospheres will help to narrow down the probability that an exoplanet harbors liquid water, and we identify the greatest observational challenge in the way of finding a habitable exoplanet.

  17. Galactic Habitable Zone and Astrobiological Complexity

    NASA Astrophysics Data System (ADS)

    Vukotic, B.

    2012-12-01

    This is a short thesis description and for the sake of brevity most things are left out. For more details, those interested are further directed to the thesis related papers in this article reference list. Thesis itself is available at the University of Belgrade library "Svetozar Markovic" (Serbian version only). In this thesis we study the astrobiological history of the Galactic habitable zone through the means of numerical modeling. First group of simulations are unidimensional (time-axis) toy models examine the influence of global regulation mechanisms (gamma-ray bursts and supernovae) on temporal evolution of Galactic astrobiological complexity. It is shown that under the assumption of global regulation classical anti SETI arguments can be undermined. Second group of simulations are more complex bidimensional probabilistic cellular automata models of the Galactic thin disk. They confirm the findings of the toy models and give some insights into the spatial clustering of astrobiological complexity. As a new emerging multidisciplinary science the basic concepts of astrobiology are poorly understood and although all the simulations present here do not include some basic physics (such as Galactic kinematics and dynamics), the input parameters are somewhat arbitrary and could use a future refinement (such as the boundaries of the Galactic habitable zone). This is the cause for low weight and high uncertainty in the output results of the simulations. However, the probabilistic cellular automata has shown as a highly adaptable modeling platform that can simulate various class of astrobiological models with great ease.

  18. Observations of Kepler Habitable Zone Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Welsh, W. F.; Orosz, J. A.

    2014-03-01

    Kepler has recently revealed nine transiting circumbinary planets (CBPs) and a few more candidates are currently being worked on. While few in number, the sample exhibits some interesting trends: i) The Kepler CBPs are not seen in the shortest-period binary systems. ii) The CBPs tend to orbit very close to their host stars. If the planets were much closer, they would experience instabilities due to dynamical interactions with the binary. Excluding the outer planets of the three-planet Kepler-47 system, 9 of 12 systems have semi-major axes within a factor of two of the critical minimum orbit for stability. This tendency to reside near the instability limit is an unsolved problem. iii) As a consequence of their close-in orbits and the spectral types of their host stars, a surprisingly large fraction, roughly ~25%, of the Kepler CBPs lie within the habitable zone. In my talk I will review the observations of Kepler CBPs and will share the latest candidate planet discoveries. I will discuss the highly variable insolation the planets receive due to the binary nature of their host stars, with emphasis on their locations within the habitable zone.

  19. A population-based Habitable Zone perspective

    NASA Astrophysics Data System (ADS)

    Zsom, Andras

    2015-08-01

    What can we tell about exoplanet habitability if currently only the stellar properties, planet radius, and the incoming stellar flux are known? The Habitable Zone (HZ) is the region around stars where planets can harbor liquid water on their surfaces. The HZ is traditionally conceived as a sharp region around the star because it is calculated for one planet with specific properties e.g., Earth-like or desert planets , or rocky planets with H2 atmospheres. Such planet-specific approach is limiting because the planets’ atmospheric and geophysical properties, which influence the surface climate and the presence of liquid water, are currently unknown but expected to be diverse.A statistical HZ description is outlined which does not select one specific planet type. Instead the atmospheric and surface properties of exoplanets are treated as random variables and a continuous range of planet scenarios are considered. Various probability density functions are assigned to each observationally unconstrained random variable, and a combination of Monte Carlo sampling and climate modeling is used to generate synthetic exoplanet populations with known surface climates. Then, the properties of the liquid water bearing subpopulation is analyzed.Given our current observational knowledge of small exoplanets, the HZ takes the form of a weakly-constrained but smooth probability function. The model shows that the HZ has an inner edge: it is unlikely that planets receiving two-three times more stellar radiation than Earth can harbor liquid water. But a clear outer edge is not seen: a planet that receives a fraction of Earth's stellar radiation (1-10%) can be habitable, if the greenhouse effect of the atmosphere is strong enough. The main benefit of the population-based approach is that it will be refined over time as new data on exoplanets and their atmospheres become available.

  20. A population-based Habitable Zone perspective

    NASA Astrophysics Data System (ADS)

    Zsom, Andras

    2015-08-01

    What can we tell about exoplanet habitability if currently only the stellar properties, planet radius, and the incoming stellar flux are known? The Habitable Zone (HZ) is the region around stars where planets can harbor liquid water on their surfaces. The HZ is traditionally conceived as a sharp region around the star because it is calculated for one planet with specific properties e.g., Earth-like or desert planets , or rocky planets with H2 atmospheres. Such planet-specific approach is limiting because the planets atmospheric and geophysical properties, which influence the surface climate and the presence of liquid water, are currently unknown but expected to be diverse.A statistical HZ description is outlined which does not select one specific planet type. Instead the atmospheric and surface properties of exoplanets are treated as random variables and a continuous range of planet scenarios are considered. Various probability density functions are assigned to each observationally unconstrained random variable, and a combination of Monte Carlo sampling and climate modeling is used to generate synthetic exoplanet populations with known surface climates. Then, the properties of the liquid water bearing subpopulation is analyzed.Given our current observational knowledge of small exoplanets, the HZ takes the form of a weakly-constrained but smooth probability function. The model shows that the HZ has an inner edge: it is unlikely that planets receiving two-three times more stellar radiation than Earth can harbor liquid water. But a clear outer edge is not seen: a planet that receives a fraction of Earth's stellar radiation (1-10%) can be habitable, if the greenhouse effect of the atmosphere is strong enough. The main benefit of the population-based approach is that it will be refined over time as new data on exoplanets and their atmospheres become available.

  1. HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE

    SciTech Connect

    Pierrehumbert, Raymond; Gaidos, Eric E-mail: gaidos@hawaii.edu

    2011-06-10

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that bars or tens of bars of primordial H{sub 2}-He mixtures can maintain surface temperatures above the freezing point of water well beyond the 'classical' habitable zone defined for CO{sub 2} greenhouse atmospheres. Using a one-dimensional radiative-convective model, we find that 40 bars of pure H{sub 2} on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H{sub 2}, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H{sub 2}-He are possible and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390Lb could have retained an H{sub 2}-He atmosphere and be habitable at {approx}2.6 AU from its host M star.

  2. Hydrogen Greenhouse Planets Beyond the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, Raymond; Gaidos, Eric

    2011-06-01

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that bars or tens of bars of primordial H2-He mixtures can maintain surface temperatures above the freezing point of water well beyond the "classical" habitable zone defined for CO2 greenhouse atmospheres. Using a one-dimensional radiative-convective model, we find that 40 bars of pure H2 on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H2, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H2-He are possible and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390Lb could have retained an H2-He atmosphere and be habitable at ~2.6 AU from its host M star.

  3. Habitable zone dependence on stellar parameter uncertainties

    SciTech Connect

    Kane, Stephen R.

    2014-02-20

    An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

  4. Tides, planetary companions, and habitability: habitability in the habitable zone of low-mass stars

    NASA Astrophysics Data System (ADS)

    Van Laerhoven, C.; Barnes, R.; Greenberg, R.

    2014-07-01

    Earth-scale planets in the classical habitable zone (HZ) are more likely to be habitable if they possess active geophysics. Without a constant internal energy source, planets cool as they age, eventually terminating tectonic activity. Planets orbiting low-mass stars can be very old, due to the longevity of such stars, so they may be rendered sterile to life in this way. However, the presence of an outer companion could generate enough tidal heat in the HZ planet to prevent such cooling. The range of mass and orbital parameters for the companion that give adequate long-term heating of the inner HZ planet, while avoiding very early total desiccation, is probably substantial. We locate the ideal location for the outer of a pair of planets, under the assumption that the inner planet has the same incident flux as Earth, orbiting example stars: a generic late M dwarf (Teff = 2670 K) and the M9V/L0 dwarf DEN1048. Thus discoveries of Earth-scale planets in the HZ zone of old small stars should be followed by searches for outer companion planets that might be essential for current habitability.

  5. Tectonics and the photosynthetic habitable zone (Invited)

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2009-12-01

    The traditional habitable zone lies between an inner stellar radius where the surface of the planet becomes too hot for liquid water carbon-based life and on outer radius, where the surface freezes. It is effectively the zone where photosynthesis is feasible. The concept extends to putative life on objects with liquid methane at the surface, like Titan. As a practical matter, photosynthesis leaves detectable biosignatures in the geological record; black shale on the Earth indicates that sulfide and probably FeO based photosynthesis existed by 3.8 Ga. The hard crustal rocks and the mantle sequester numerous photosynthetic biosignatures. Photosynthesis can produce detectable free oxygen with ozone in the atmosphere of extrasolar planets. In contrast, there is no outer limit for subsurface life in large silicate objects. Pre-photosynthetic niches are dependable but meager and not very detectable at great antiquity or great distance, with global productivity less than 1e-3 of the photosynthetic ones. Photosynthetic organisms have bountiful energy that modifies their surface environment and even tectonics. For example, metamorphic rocks formed at the expense of thick black shale are highly radioactive and hence self-fluxing. Active tectonics with volcanism and metamorphism prevents volatiles from being sequestered in the subsurface as on Mars. A heat-pipe object, like a larger Io, differs from the Earth in that the volatiles return to the deep interior distributed within massive volcanic deposits rather than concentrated in the shallow oceanic crust. One the Earth, the return of water to the surface by arc volcanoes controls its mantle abundance at the transition between behaving as a trace element and behaving as a major element that affects melting. The ocean accumulates the water that the mantle and crust do not take. The Earth has the right amount of water that erosion/deposition and tectonics both tend to maintain near sea level surfaces. The mantle contains carbon (dioxide) that platform carbonates and the deep continental lithosphere do not take. Weathering and formation of carbonates in the oceanic crust dynamically buffers atmospheric CO2 at habitable levels. N2 is an indirect greenhouse gas in that the total pressure increases the effect of CO2. Photosynthetic life affects the nitrogen cycle as NH4+ replaces K+ in subducted black shale. N2 hence correlates with Ar-40 in volcanic gases. The net effect is that atmospheric pressure and hence the greenhouse effect decrease with time. Continents are in part the result of biological weathering. Their presence allows life to directly affect continental albedo as with Daisy World and to indirectly affect albedo as high global temperatures lead to reflective deserts.

  6. Europa, tidally heated oceans, and habitable zones around giant planets

    NASA Technical Reports Server (NTRS)

    Reynolds, Ray T.; Mckay, Christopher P.; Kasting, James F.

    1987-01-01

    Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.

  7. The First Atmospheric Characterization of a Habitable-Zone Exoplanet

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Bean, Jacob; Charbonneau, David; Desert, Jean-Michel; Fortney, Jonathan; Irwin, Jonathan; Kreidberg, Laura; Line, Michael; Montet, Ben; Morley, Caroline

    2015-10-01

    Exoplanet surveys have recently revealed nearby planets orbiting within stellar habitable zones. This highly-anticipated breakthrough brings us one step closer in our quest to identify cosmic biosignatures, the indicators of extrasolar life. To achieve our goal, we must first study the atmospheres of these temperate worlds to measure their compositions and determine the prevalence of obscuring clouds. Using observations from the K2 mission, Co-I Montet recently announced the discovery of a 2.2 Earth-radii planet within the habitable zone of its relatively bright, nearby M dwarf parent star, K2-18. This temperate world is currently the best habitable-zone target for atmospheric characterization. Congruent with currently planned HST observations, we propose a Spitzer program to measure the transmission spectrum of the first habitable-zone exoplanet. Both telescopes are essential to revealing K2-18b's chemical composition. In a cloud-free, hydrogen-dominated atmosphere, the precision achieved by these measurements will be sufficient to detect methane, ammonia, and water vapor, which are the dominant C, N, and O bearing species at these temperatures. In turn, elemental abundance constraints from a primordial atmosphere can tell us about the composition of a protoplanetary disk in which Earth-like planets could have formed. Conversely, if the atmosphere contains thick clouds then the multi-wavelength observations from K2, HST, and Spitzer will constrain the clouds' properties. Because temperature plays a key role in the formation of clouds, their detection within the atmosphere of this habitable-zone exoplanet would be an important signpost that serves as a guide to future investigations of smaller, rocky exoplanets. As K2 continues discovering more habitable-zone planets, it is imperative that we perform spectral reconnaissance with Spitzer to determine their physical characteristics and begin understanding the prevalence of potentially-obscuring clouds prior to the launch of JWST.

  8. STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

    SciTech Connect

    Yang Jun; Abbot, Dorian S.; Cowan, Nicolas B.

    2013-07-10

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.

  9. Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Cowan, Nicolas B.; Abbot, Dorian S.

    2013-07-01

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.

  10. What Can the Habitable Zone Gallery Do For You?

    NASA Astrophysics Data System (ADS)

    Gelino, Dawn M.; Kane, Stephen

    2015-12-01

    The Habitable Zone Gallery (www.hzgallery.org) came online in August 2011 as a service to the exoplanet community that provides Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table, a plot with the period and eccentricity of each of the planets with respect to their time spent in the HZ, a gallery of known systems which plot the orbits and the location of the HZ with respect to those orbits, and orbital movies. Recently, we have added new features including: implementation of both conservative and optimistic HZs, more user-friendly table and movies, movies for circumbinary planets, and a count of planets whose orbits lie entirely within the system's HZ. Here we discuss various educational and scientific applications of the site such as target selection, exploring planets with eccentric or circumbinary orbits, and investigating habitability.

  11. Comparable Habitable Zones of Stars - Duration: 25 seconds.

    NASA Video Gallery

    The habitable zone is the distance from a star where one can have liquid water on the surface of a planet. If a planet is too close to its parent star, it will be too hot and water would have evapo...

  12. CANDIDATE PLANETS IN THE HABITABLE ZONES OF KEPLER STARS

    SciTech Connect

    Gaidos, Eric

    2013-06-20

    A key goal of the Kepler mission is the discovery of Earth-size transiting planets in ''habitable zones'' where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p{sub HZ} that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass, age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p{sub HZ}. Sixty-two planets have p{sub HZ} > 0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone ({eta}{sub Circled-Plus }) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.

  13. Europa, tidally heated oceans, and habitable zones around giant planets.

    PubMed

    Reynolds, R T; McKay, C P; Kasting, J F

    1987-01-01

    Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. In our own solar system, Europa, one of the Galilean satellites of Jupiter, could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of Aeons and in which life could perhaps evolve. We define a zone around a giant planet in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In our solar system, this radiatively-heated habitable zone contains the Earth. PMID:11538217

  14. THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS

    SciTech Connect

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2014-12-20

    We calculate the pre-main-sequence habitable zone (HZ) for stars of spectral classes F-M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important for understanding how planets become habitable. Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet-star separation for cool stars than is the case for the traditional main-sequence (MS) HZ. We use one-dimensional radiative-convective climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1-M8 stellar types. We also show that accreting planets that are later located in the traditional MS HZ orbiting stars cooler than a K5 (including the full range of M stars) receive stellar fluxes that exceed the runaway greenhouse threshold, and thus may lose substantial amounts of water initially delivered to them. We predict that M-star planets need to initially accrete more water than Earth did, or, alternatively, have additional water delivered later during the long pre-MS phase to remain habitable. Our findings are also consistent with recent claims that Venus lost its water during accretion.

  15. Probing the Compositions of Two Habitable Zone Super-Earths

    NASA Astrophysics Data System (ADS)

    Benneke, Bjorn; Knutson, Heather; Crossfield, Ian; Deck, Katherine; Greene, Tom; Rogers, Leslie; Vanderburg, Andrew; Barman, Travis; Morley, Caroline; Lothringer, Josh; Werner, Michael; Beichman, Charles

    2015-10-01

    The recent discovery of two super-Earths orbiting in the habitable zones of nearby M stars have provided us with an unprecedented new opportunity to characterize the properties of small and potentially habitable planets outside of the solar system. Here, we propose to probe their atmospheric compositions, search for escaping hydrogen, and obtain the first bulk mass and densities estimate of a habitable zone super-Earth. The proposed observations will complement our approved HST WFC3 observations of K2-18b (15-orbits, GO13665, PI Benneke) as well as the approved HST STIS/MAMA observations of K2-18b by PI Ehrenreich. These observations will determine whether or not these two planets have primarily rocky or volatile-rich compositions, and in the volatile-rich case would enable the first studies of atmospheric chemistry in this regime. Mass loss also plays a critical role in the evolution of hydrogen-rich atmospheres on small planets, and our obsevations will provide the first constraints on the stability of these atmospheres.

  16. Laminar Accretion in the Habitable Zone of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Stone, James M.

    2014-04-01

    Protoplanetary disks (PPDs) are widely believed to be turbulent as a result of the magnetorotational instability (MRI). We perform magnetohydrodynamical simulations of PPDs that for the first time, take into account both Ohmic resistivity and ambipolar diffusion in a self-consistent manner. We show that in the inner region of PPDs that corresponds the habitable zone, the MRI is completely suppressed due to the interplay between magnetic field and ambipolar diffusion. The gas in this region is laminar throughout the entire vertical extent of the disk. Instead of MRI-driven accretion, a strong magnetocentrifugal wind is launched that efficiently carries away disk angular momentum. A physical wind geometry requires the presence of a strong current layer that is offset from the disk midplane where horizontal magnetic fields flip. We show that the entire accretion flow proceeds through this strong current layer. The non-turbulent nature of the gas flow strongly favors the habitable zone as the site for planetesimal formation, and has important implications for their subsequent growth into terrestrial planets.

  17. Stellar Activity Mimics a Habitable-zone Planet around Kapteyn's Star

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Roy, Arpita; Mahadevan, Suvrath

    2015-06-01

    Kapteyns star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of these candidate planetsKapteyn b (P = 48 days)resides within the circumstellar habitable zone (HZ). Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyns star is photometrically very stable, a suite of spectral activity indices reveal a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of planet b, and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the HZ, but an artifact of stellar activity.

  18. Toward the minimum inner edge distance of the habitable zone

    SciTech Connect

    Zsom, Andras; Seager, Sara; De Wit, Julien; Stamenković, Vlada

    2013-12-01

    We explore the minimum distance from a host star where an exoplanet could potentially be habitable in order not to discard close-in rocky exoplanets for follow-up observations. We find that the inner edge of the Habitable Zone for hot desert worlds can be as close as 0.38 AU around a solar-like star, if the greenhouse effect is reduced (∼1% relative humidity) and the surface albedo is increased. We consider a wide range of atmospheric and planetary parameters such as the mixing ratios of greenhouse gases (water vapor and CO{sub 2}), surface albedo, pressure, and gravity. Intermediate surface pressure (∼1-10 bars) is necessary to limit water loss and to simultaneously sustain an active water cycle. We additionally find that the water loss timescale is influenced by the atmospheric CO{sub 2} level, because it indirectly influences the stratospheric water mixing ratio. If the CO{sub 2} mixing ratio of dry planets at the inner edge is smaller than 10{sup –4}, the water loss timescale is ∼1 billion years, which is considered here too short for life to evolve. We also show that the expected transmission spectra of hot desert worlds are similar to an Earth-like planet. Therefore, an instrument designed to identify biosignature gases in an Earth-like atmosphere can also identify similarly abundant gases in the atmospheres of dry planets. Our inner edge limit is closer to the host star than previous estimates. As a consequence, the occurrence rate of potentially habitable planets is larger than previously thought.

  19. Toward the Minimum Inner Edge Distance of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Zsom, Andras; Seager, Sara; de Wit, Julien; Stamenkovi?, Vlada

    2013-12-01

    We explore the minimum distance from a host star where an exoplanet could potentially be habitable in order not to discard close-in rocky exoplanets for follow-up observations. We find that the inner edge of the Habitable Zone for hot desert worlds can be as close as 0.38 AU around a solar-like star, if the greenhouse effect is reduced (~1% relative humidity) and the surface albedo is increased. We consider a wide range of atmospheric and planetary parameters such as the mixing ratios of greenhouse gases (water vapor and CO2), surface albedo, pressure, and gravity. Intermediate surface pressure (~1-10 bars) is necessary to limit water loss and to simultaneously sustain an active water cycle. We additionally find that the water loss timescale is influenced by the atmospheric CO2 level, because it indirectly influences the stratospheric water mixing ratio. If the CO2 mixing ratio of dry planets at the inner edge is smaller than 10-4, the water loss timescale is ~1 billion years, which is considered here too short for life to evolve. We also show that the expected transmission spectra of hot desert worlds are similar to an Earth-like planet. Therefore, an instrument designed to identify biosignature gases in an Earth-like atmosphere can also identify similarly abundant gases in the atmospheres of dry planets. Our inner edge limit is closer to the host star than previous estimates. As a consequence, the occurrence rate of potentially habitable planets is larger than previously thought.

  20. Accounting planetary habitability using non standard conditions. Impact on the definition of Habitable Zone

    NASA Astrophysics Data System (ADS)

    Simoncini, E.; Delgado-Bonal, A.; Martin-Torres, F. J.

    2012-12-01

    Although during the 1960s, atmospheric disequilibrium has been proposed as a sign of habitability of Earth and, in general, of a planet [1, 2], no calculation has been done until now. In order to provide a first evaluation of Earth's atmospheric disequilibrium, we have developed a new formulation to account for the thermodynamic conditions of a wide range of planetary atmospheres, from terrestrial planets to icy satellites, to hot exoplanets. Using this new formulation, we estimate the departure of different planetary atmospheres from their equilibrium conditions, computing the dissipation of free energy due to all chemical processes [3]. In particular, we focus on the effect of our proposed changes on O2/CO2 chemistry (comparing Io satellite atmosphere and Earth Mesosphere), N2 (Venus, Earth and Titan) and H2O stability on terrestrial planets and exoplanets. Our results have an impact in the definition of Habitable Zone by considering appropriate physical-chemical conditions of planetary atmospheres. References [1] J. E. Lovelock, A physical basis for life detection experiments. Nature, 207, 568-570 (1965). [2] J. E. Lovelock, Thermodynamics and the recognition of alien biospheres. Proc. R. Soc. Lond., B. 189, 167 - 181 (1975). [3] Simoncini E., Delgado-Bonal A., Martin-Torres F.J., Accounting thermodynamic conditions in chemical models of planetary atmospheres. Submitted to Astrophysical Journal.

  1. ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS

    SciTech Connect

    Wordsworth, Robin; Pierrehumbert, Raymond

    2014-04-20

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H{sub 2}O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N{sub 2}, Ar) is low. Hence the spectral features of O{sub 2} and O{sub 3} alone cannot be regarded as robust signs of extraterrestrial life.

  2. The first Earth-sized habitable zone exoplanets

    NASA Astrophysics Data System (ADS)

    Barclay, T.; Quintana, E.

    2014-03-01

    The goal of the Kepler mission is the discovery of Earth-sized planets orbiting within the habitable zone (HZ) of their host star. Most HZ planets found to date are gas giants, but a few such as Kepler-62f are potentially rocky despite being larger than Earth. Here we report on the progress being made to identify transiting planets in Kepler data that are truly Earth-sized and unambiguously terrestrial in nature. We consider the structure of the identified systems and deduce likely formation scenarios. We consider whether water delivery to these planets is probable or even possible. The discovery of the first Earth-like planets will be a milestone on the road toward the finding life outside our solar system.

  3. ON THE HABITABLE ZONES OF CIRCUMBINARY PLANETARY SYSTEMS

    SciTech Connect

    Kane, Stephen R.; Hinkel, Natalie R.

    2013-01-01

    The effect of the stellar flux on exoplanetary systems is becoming an increasingly important property as more planets are discovered in the habitable zone (HZ). The Kepler mission has recently uncovered circumbinary planets with relatively complex HZs due to the combined flux from the binary host stars. Here, we derive HZ boundaries for circumbinary systems and show their dependence on the stellar masses, separation, and time while accounting for binary orbital motion and the orbit of the planet. We include stability regimes for planetary orbits in binary systems with respect to the HZ. These methods are applied to several of the known circumbinary planetary systems such as Kepler-16, 34, 35, and 47. We also quantitatively show the circumstances under which single-star approximations break down for HZ calculations.

  4. Abiotic Oxygen-dominated Atmospheres on Terrestrial Habitable Zone Planets

    NASA Astrophysics Data System (ADS)

    Wordsworth, Robin; Pierrehumbert, Raymond

    2014-04-01

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H2O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N2, Ar) is low. Hence the spectral features of O2 and O3 alone cannot be regarded as robust signs of extraterrestrial life.

  5. The Catalog of Earth-Like Exoplanet Survey Targets (CELESTA): A Database of Habitable Zones Around Nearby Stars

    NASA Astrophysics Data System (ADS)

    Chandler, Colin Orion; McDonald, Iain; Kane, Stephen R.

    2016-03-01

    Locating planets in circumstellar habitable zones (HZs) is a priority for many exoplanet surveys. Space-based and ground-based surveys alike require robust toolsets to aid in target selection and mission planning. We present the Catalog of Earth-Like Exoplanet Survey Targets (CELESTA), a database of HZs around 37,000 nearby stars. We calculated stellar parameters, including effective temperatures, masses, and radii, and we quantified the orbital distances and periods corresponding to the circumstellar HZs. We gauged the accuracy of our predictions by contrasting CELESTA’s computed parameters to observational data. We ascertain a potential return on investment by computing the number of HZs probed for a given survey duration. A versatile framework for extending the functionality of CELESTA into the future enables ongoing comparisons to new observations, and recalculations when updates to HZ models, stellar temperatures, or parallax data become available. We expect to upgrade and expand CELESTA using data from the Gaia mission as the data become available.

  6. Assessing circumbinary habitable zones using latitudinal energy balance modelling

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan

    2014-01-01

    Previous attempts to describe circumbinary habitable zones (HZs) have been concerned with the spatial extent of the zone, calculated analytically according to the combined radiation field of both stars. By contrast to these `spatial HZs', we present a numerical analysis of the `orbital HZ', an HZ defined as a function of planet orbital elements. This orbital HZ is better equipped to handle (for example) eccentric planet orbits, and is more directly connected to the data returned by exoplanet observations. Producing an orbital HZ requires a large number of climate simulations to be run to investigate the parameter space - we achieve this using latitudinal energy balance models, which handle the insolation of the planet by both stars (including mutual eclipses), as well as the planetary atmosphere's ability to absorb, transfer and lose heat. We present orbital HZs for several known circumbinary planetary systems: Kepler-16, Kepler-34, Kepler-35, Kepler-47 and PH-1. Generally, the orbital HZs at zero eccentricity are consistent with spatial HZs derived by other authors, although we detect some signatures of variability that coincide with resonances between the binary and planet orbital periods. We confirm that Earth-like planets around Kepler-47 with Kepler-47c's orbital parameters could possess liquid water, despite current uncertainties regarding its eccentricity. Kepler-16b is found to be outside the HZ, as well as the other circumbinary planets investigated.

  7. Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.; Yang, J.; Cowan, N. B.

    2013-12-01

    The Habitable Zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope. Climates of tidally locked and non-tidally locked terrestrial planets. (a) global-mean surface temperature (K), (b) stratospheric H2O volume mixing ratio at the substellar point, (c) planetary albedo and (d) global-mean greenhouse effect (K). The upper horizontal axis is the corresponding semimajor axis between an M-star with 2.3% solar luminosity and the planet. 1:1 denotes a tidally locked state, and 2:1 and 6:1 denote 2 or 6 rotations per orbit, respectively. For "no cloud" cases, all clouds are set to zero. The stellar spectrum is for an M-star or a K-star. Results for HD85512b are represented by a pentagram. The gray area denotes the HZ around an M-star with an inner edge of ~1200 W/m2 and an outer edge of ~270 W/m2 (not shown), obtained in a 1D model without clouds (Kopparapu et al., 2013).

  8. Terrestrial, Habitable-zone Exoplanet Frequency from Kepler

    NASA Astrophysics Data System (ADS)

    Traub, Wesley A.

    2012-01-01

    Data from Kepler's first 136 days of operation are analyzed to determine the distribution of exoplanets with respect to radius, period, and host-star spectral type. The analysis is extrapolated to estimate the percentage of terrestrial, habitable-zone (HZ) exoplanets. The Kepler census is assumed to be complete for bright stars (magnitude <14.0) having transiting planets >0.5 Earth radius and periods <42 days. It is also assumed that the size distribution of planets is independent of orbital period and that there are no hidden biases in the data. Six significant statistical results are found: there is a paucity of small planet detections around faint target stars, probably an instrumental effect; the frequency of mid-size planet detections is independent of whether the host star is bright or faint; there are significantly fewer planets detected with periods <3 days, compared to longer periods, almost certainly an astrophysical effect; the frequency of all planets in the population with periods <42 days is 29%, broken down as terrestrials 9%, ice giants 18%, and gas giants 3%; the population has a planet frequency with respect to period which follows a power-law relation dN/dP ~ P ? - 1, with ? ~= 0.71 0.08; and an extrapolation to longer periods gives the frequency of terrestrial planets in the HZs of FGK stars as ?? ~= (34 14)%. Thus about one-third of FGK stars are predicted to have at least one terrestrial, HZ planet.

  9. Kepler Mission: Detecting Earth-sized Planets in Habitable Zones

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Kepler Mission, which is presently in Phase A, is being proposed for launch in 5 years for a 4-year mission to determine the frequency of Earth-sized or larger planets in habitable zones in our galaxy. Kepler will be placed in an Earth-trailing orbit to provide stable physical environments for the sensitive scientific instruments. The satellite is equipped with a photometric system with the precision of 10E-5, which should be sufficient for detecting the transits of Earth-sized or larger planets in front of dwarf stars similar to the Sun. Approximately 100,000 or more sun-like stars brighter than the 14th apparently magnitude will be monitored continuously for 4 years in a preselected region of the sky, which is about 100 square degrees in size. In addition, Kepler will have a participating scientist program that will enable research in intrinsic variable stars, interacting binaries including cataclysmic stars and X-ray binaries, and a large number of solar analogs in our galaxy. Several ten thousand additional stars may be investigated in the guest observer program open to the whole world.

  10. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES

    SciTech Connect

    Kopparapu, Ravi Kumar; Ramirez, Ramses; Kasting, James F.; Eymet, Vincent; Robinson, Tyler D.; Domagal-Goldman, Shawn; Meadows, Victoria; Mahadevan, Suvrath; Terrien, Ryan C.; Deshpande, Rohit

    2013-03-10

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO{sub 2} atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H{sub 2}O and CO{sub 2} absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T{sub eff} {approx}< 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on {eta}{sub Circled-Plus }, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.

  11. The Water Content of Exo-earths in the Habitable Zone around Low-mass Stars

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs Dirk; Ciesla, Fred; Pascucci, Ilaria; apai, Daniel

    2015-08-01

    Terrestrial planets in the habitable zones of low-mass M dwarf stars have become the focus of many astronomical studies: they are more easily accessible to detection and characterization than their counterparts around sunlike stars. The habitability of these planets, however, faces a number of challenges, including inefficient or negligible water delivery during accretion. To understand the water content of planets in and around the habitable zone, simulations of the final stages of planet formation are necessary.We present detailed accretion simulations of wet and dry planetary embryos around a range of stellar masses. We focus on different pathways of delivering water from beyond the snow line to terrestrial planets in the habitable zone. We explore the impact of using either asteroid-like or comet-like bodies, and the effects of a dispersion in snow line locations. We derive the probability distribution of water abundances for terrestrial sized planets in the habitable zone.While these models predict that the bulk of terrestrial planets in the habitable zones of M stars will be dry, a small fraction receives earth-like amounts of water. Given their larger numbers and higher planet occurrence rates, this population of water-enriched worlds in the habitable zone of M stars may equal that around sun-like stars in numbers.References:Ciesla, Mulders et al. 2015Mulders et al. ApJ subm.

  12. TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER

    SciTech Connect

    Traub, Wesley A.

    2012-01-20

    Data from Kepler's first 136 days of operation are analyzed to determine the distribution of exoplanets with respect to radius, period, and host-star spectral type. The analysis is extrapolated to estimate the percentage of terrestrial, habitable-zone (HZ) exoplanets. The Kepler census is assumed to be complete for bright stars (magnitude <14.0) having transiting planets >0.5 Earth radius and periods <42 days. It is also assumed that the size distribution of planets is independent of orbital period and that there are no hidden biases in the data. Six significant statistical results are found: there is a paucity of small planet detections around faint target stars, probably an instrumental effect; the frequency of mid-size planet detections is independent of whether the host star is bright or faint; there are significantly fewer planets detected with periods <3 days, compared to longer periods, almost certainly an astrophysical effect; the frequency of all planets in the population with periods <42 days is 29%, broken down as terrestrials 9%, ice giants 18%, and gas giants 3%; the population has a planet frequency with respect to period which follows a power-law relation dN/dP {approx} P{sup {beta}-1}, with {beta} {approx_equal} 0.71 {+-} 0.08; and an extrapolation to longer periods gives the frequency of terrestrial planets in the HZs of FGK stars as {eta}{sub Circled-Plus} {approx_equal} (34 {+-} 14)%. Thus about one-third of FGK stars are predicted to have at least one terrestrial, HZ planet.

  13. NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date - Duration: 2 minutes, 27 seconds.

    NASA Video Gallery

    NASA's Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the "habitable zone," the range of distance from a star where the surface temperature o...

  14. Astronomers Find First Earth-like Planet in Habitable Zone

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Astronomers have discovered the most Earth-like planet outside our Solar System to date, an exoplanet with a radius only 50% larger than the Earth and capable of having liquid water. Using the ESO 3.6-m telescope, a team of Swiss, French and Portuguese scientists discovered a super-Earth about 5 times the mass of the Earth that orbits a red dwarf, already known to harbour a Neptune-mass planet. The astronomers have also strong evidence for the presence of a third planet with a mass about 8 Earth masses. ESO PR Photo 22a/07 ESO PR Photo 22a/07 The Planetary System Around Gliese 581 This exoplanet - as astronomers call planets around a star other than the Sun - is the smallest ever found up to now [1] and it completes a full orbit in 13 days. It is 14 times closer to its star than the Earth is from the Sun. However, given that its host star, the red dwarf Gliese 581 [2], is smaller and colder than the Sun - and thus less luminous - the planet nevertheless lies in the habitable zone, the region around a star where water could be liquid! The planet's name is Gliese 581 c. "We have estimated that the mean temperature of this super-Earth lies between 0 and 40 degrees Celsius, and water would thus be liquid," explains Stphane Udry, from the Geneva Observatory (Switzerland) and lead-author of the paper reporting the result. "Moreover, its radius should be only 1.5 times the Earth's radius, and models predict that the planet should be either rocky - like our Earth - or fully covered with oceans," he adds. ESO PR Photo 22c/07 ESO PR Photo 22c/07 The star Gliese 581 "Liquid water is critical to life as we know it," avows Xavier Delfosse, a member of the team from Grenoble University (France). "Because of its temperature and relative proximity, this planet will most probably be a very important target of the future space missions dedicated to the search for extra-terrestrial life. On the treasure map of the Universe, one would be tempted to mark this planet with an X." The host star, Gliese 581, is among the 100 closest stars to us, located only 20.5 light-years away in the constellation Libra ("the Scales"). It has a mass of only one third the mass of the Sun. Such red dwarfs are intrinsically at least 50 times fainter than the Sun and are the most common stars in our Galaxy: among the 100 closest stars to the Sun, 80 belong to this class. "Red dwarfs are ideal targets for the search for low-mass planets where water could be liquid. Because such dwarfs emit less light, the habitable zone is much closer to them than it is around the Sun," emphasizes Xavier Bonfils, a co-worker from Lisbon University. Planets lying in this zone are then more easily detected with the radial-velocity method [3], the most successful in detecting exoplanets. ESO PR Photo 22d/07 ESO PR Photo 22d/07 Velocity Variations of Gl 581 Two years ago, the same team of astronomers already found a planet around Gliese 581 (see ESO 30/05). With a mass of 15 Earth-masses, i.e. similar to that of Neptune, it orbits its host star in 5.4 days. At the time, the astronomers had already seen hints of another planet. They therefore obtained a new set of measurements and found the new super-Earth, but also clear indications for another one, an 8 Earth-mass planet completing an orbit in 84 days. The planetary system surrounding Gliese 581 contains thus no fewer than 3 planets of 15 Earth masses or less, and as such is a quite remarkable system. The discovery was made thanks to HARPS (High Accuracy Radial Velocity for Planetary Searcher), perhaps the most precise spectrograph in the world. Located on the ESO 3.6-m telescope at La Silla, Chile, HARPS is able to measure velocities with a precision better than one metre per second (or 3.6 km/h)! HARPS is one of the most successful instruments for detecting exoplanets and holds already several recent records, including the discovery of another 'Trio of Neptunes' (ESO 18/06, see also ESO 22/04). ESO PR Video 22/07 ESO PR Video 22/07 Watch the video! The detected velocity

  15. Planetary Atmosphere Stability in the Habitable Zones of M-stars

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    2010-10-01

    The traditional habitable zone depends on conditions suitable for long term stability of liquid water on the surface of planets. It is suggested that the frequent intense stellar CME events could have led to so rapid erosion of planetary atmospheres that generally speaking there is essentially no habitable zones around Earth-mass planets around M-stars. However, fast atmosperic mass loss should put the planetary atmosphere in the hydrodynamic, in which the energy consumption by the outflow could have limited the atmospheric loss and make a CO2-dominant planetary atmosphere stable in the habitable zones of M-stars. In this work we will explore the atmosphere stability of broad range of habitable planets with different mass and atmospheric composition.

  16. VizieR Online Data Catalog: Habitable zone code (Valle+, 2014)

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2014-06-01

    A C computation code that provide in output the distance dm (i for which the duration of habitability is longest, the corresponding duration tm (in Gyr), the width W (in AU) of the zone for which the habitability lasts tm/2, the inner (Ri) and outer (Ro) boundaries of the 4Gyr continuously habitable zone. The code read the input file HZ-input.dat, containing in each row the mass of the host star (range: 0.70-1.10M?), its metallicity (either Z (range: 0.005-0.004) or [Fe/H]), the helium-to-metal enrichment ratio (range: 1-3, standard value = 2), the equilibrium temperature for habitable zone outer boundary computation (range: 169-203K) and the planet Bond Albedo (range: 0.0-1.0, Earth = 0.3). The output is printed on-screen. Compilation: just use your favorite C compiler: gcc hz.c -lm -o HZ (2 data files).

  17. Astrophysical, Geochemical, Geophysical and Biological Limits on Planet Habitability

    NASA Astrophysics Data System (ADS)

    Lineweaver, C.

    2014-03-01

    For life forms like us, the most important feature of the Earth is its habitability. Understanding habitability and using that knowledge to locate the nearest habitable planet may be crucial for our survival as a species. Over the past decade, expectations that the universe could be filled with habitable planets have been bolstered by the increasingly large overlap between terrestrial environments known to harbor life and the variety of environments on newly detected rocky exoplanets. The inhabited and uninhabited regions on Earth tell us that temperature and the presence of water are the main constraints that can be used in a habitability classification scheme for rocky planets. Our compilation and review of recent exoplanet detections suggests that the fraction of stars with planets is ~ 100%, and that the fraction with rocky planets may be comparably large. We review extensions to the circumstellar habitable zone including an abiogenesis habitable zone and the galactic habitable zone.

  18. The Habitability of Our Earth and Other Earths: Astrophysical, Geochemical, Geophysical, and Biological Limits on Planet Habitability

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.; Chopra, Aditya

    2012-05-01

    For life-forms like us, the most important feature of Earth is its habitability. Understanding habitability and using that knowledge to locate the nearest habitable planet may be crucial for our survival as a species. During the past decade, expectations that the universe could be filled with habitable planets have been bolstered by the increasingly large overlap between terrestrial environments known to harbor life and the variety of environments on newly detected rocky exoplanets. The inhabited and uninhabited regions on Earth tell us that temperature and the presence of water are the main constraints that can be used in a habitability classification scheme for rocky planets. Our compilation and review of recent exoplanet detections suggests that the fraction of stars with planets is 100%, and that the fraction with rocky planets may be comparably large. We review extensions to the circumstellar habitable zone (HZ), including an abiogenesis habitable zone and the galactic habitable zone.

  19. Moon Radius Limits for a Habitable Zone Kepler Transiting Planet Candidate

    NASA Astrophysics Data System (ADS)

    Lewis, K.

    2014-04-01

    In addition to planets being potentially habitable bodies, moons, both inside and beyond the habitable zones of their host star may also be suitable sites for life. One promising method to detect such habitable moons is the through the transit technique, in particular using the high quality, long baseline Kepler dataset. Planets in the habitable zone of Sun-like stars tend to have long orbital periods and thus exhibit few transits within the 3.5 year Kepler mission. In addition, candidate planets are more likely to be confirmed if they are in multiple systems where planetary perturbations may make moon detection through transit timing very challenging. As a result we focus on the direct detection moon technique first described by Sartoretti and Schneider (1999), which involves searching and fitting the extra dip due to a moon in each transit light curve directly. To test this method in the presence of realistic photometric noise, we developed a Kepler light curve simulator that generates noisy light curves corresponding to physically consistent planet-moon systems. Using this program we calculate sets of unique light curve realisations for a Kepler candidate (KOI3681.01) in the habitable zone of a Sun-like star, for a grid of physically realistic moon radii and semi-major axes, and process them using our detection code. This allows us to robustly place constraints on potentially habitable terrestrial moons thus demonstrating the power of this approach.

  20. A METHOD FOR COUPLING DYNAMICAL AND COLLISIONAL EVOLUTION OF DUST IN CIRCUMSTELLAR DISKS: THE EFFECT OF A DEAD ZONE

    SciTech Connect

    Charnoz, Sebastien; Taillifet, Esther

    2012-07-10

    Dust is a major component of protoplanetary and debris disks as it is the main observable signature of planetary formation. However, since dust dynamics are size-dependent (because of gas drag or radiation pressure) any attempt to understand the full dynamical evolution of circumstellar dusty disks that neglect the coupling of collisional evolution with dynamical evolution is thwarted because of the feedback between these two processes. Here, a new hybrid Lagrangian/Eulerian code is presented that overcomes some of these difficulties. The particles representing 'dust clouds' are tracked individually in a Lagrangian way. This system is then mapped on an Eulerian spatial grid, inside the cells of which the local collisional evolutions are computed. Finally, the system is remapped back in a collection of discrete Lagrangian particles, keeping their number constant. An application example of dust growth in a turbulent protoplanetary disk at 1 AU is presented. First, the growth of dust is considered in the absence of a dead zone and the vertical distribution of dust is self-consistently computed. It is found that the mass is rapidly dominated by particles about a fraction of a millimeter in size. Then the same case with an embedded dead zone is investigated and it is found that coagulation is much more efficient and produces, in a short timescale, 1-10 cm dust pebbles that dominate the mass. These pebbles may then be accumulated into embryo-sized objects inside large-scale turbulent structures as shown recently.

  1. A Method for Coupling Dynamical and Collisional Evolution of Dust in Circumstellar Disks: The Effect of a Dead Zone

    NASA Astrophysics Data System (ADS)

    Charnoz, Sbastien; Taillifet, Esther

    2012-07-01

    Dust is a major component of protoplanetary and debris disks as it is the main observable signature of planetary formation. However, since dust dynamics are size-dependent (because of gas drag or radiation pressure) any attempt to understand the full dynamical evolution of circumstellar dusty disks that neglect the coupling of collisional evolution with dynamical evolution is thwarted because of the feedback between these two processes. Here, a new hybrid Lagrangian/Eulerian code is presented that overcomes some of these difficulties. The particles representing "dust clouds" are tracked individually in a Lagrangian way. This system is then mapped on an Eulerian spatial grid, inside the cells of which the local collisional evolutions are computed. Finally, the system is remapped back in a collection of discrete Lagrangian particles, keeping their number constant. An application example of dust growth in a turbulent protoplanetary disk at 1 AU is presented. First, the growth of dust is considered in the absence of a dead zone and the vertical distribution of dust is self-consistently computed. It is found that the mass is rapidly dominated by particles about a fraction of a millimeter in size. Then the same case with an embedded dead zone is investigated and it is found that coagulation is much more efficient and produces, in a short timescale, 1-10 cm dust pebbles that dominate the mass. These pebbles may then be accumulated into embryo-sized objects inside large-scale turbulent structures as shown recently.

  2. EXPLORING THE HABITABLE ZONE FOR KEPLER PLANETARY CANDIDATES

    SciTech Connect

    Kaltenegger, L.; Sasselov, D.

    2011-08-01

    This Letter outlines a simple approach to evaluate habitability of terrestrial planets by assuming different types of planetary atmospheres and using corresponding model calculations. Our approach can be applied for current and future candidates provided by the Kepler mission and other searches. The resulting uncertainties and changes in the number of planetary candidates in the HZ for the Kepler 2011 February data release are discussed. To first order, the HZ depends on the effective stellar flux distribution in wavelength and time, the planet albedo, and greenhouse gas effects. We provide a simple set of parameters which can be used for evaluating future planet candidates from transit searches.

  3. INDICATION OF INSENSITIVITY OF PLANETARY WEATHERING BEHAVIOR AND HABITABLE ZONE TO SURFACE LAND FRACTION

    SciTech Connect

    Abbot, Dorian S.; Ciesla, Fred J.; Cowan, Nicolas B.

    2012-09-10

    It is likely that unambiguous habitable zone terrestrial planets of unknown water content will soon be discovered. Water content helps determine surface land fraction, which influences planetary weathering behavior. This is important because the silicate-weathering feedback determines the width of the habitable zone in space and time. Here a low-order model of weathering and climate, useful for gaining qualitative understanding, is developed to examine climate evolution for planets of various land-ocean fractions. It is pointed out that, if seafloor weathering does not depend directly on surface temperature, there can be no weathering-climate feedback on a waterworld. This would dramatically narrow the habitable zone of a waterworld. Results from our model indicate that weathering behavior does not depend strongly on land fraction for partially ocean-covered planets. This is powerful because it suggests that previous habitable zone theory is robust to changes in land fraction, as long as there is some land. Finally, a mechanism is proposed for a waterworld to prevent complete water loss during a moist greenhouse through rapid weathering of exposed continents. This process is named a 'waterworld self-arrest', and it implies that waterworlds can go through a moist greenhouse stage and end up as planets like Earth with partial ocean coverage. This work stresses the importance of surface and geologic effects, in addition to the usual incident stellar flux, for habitability.

  4. Accreting Planets in the Habitable Zones of M-Stars Are Too Hot to Retain Liquid Water

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.; Kopparapu, R. K.; Kasting, J. F.

    2014-12-01

    Previous studies1,2 have shown that young accreting planets in the habitable zones (HZ) of pre-main sequence M-stars face major dynamical hurdles in both the retention and acquisition of volatiles. High collision rates with other bodies, short planetary formation timescales, and inefficient radial mixing are among the major problems encountered. However, another equally-important concern is the high temperatures predicted within the circumstellar disk, greatly hindering volatile delivery. We use a 1-D radiative-convective climate model to demonstrate that the fluxes received by accreting planets orbiting late K-M stars exceed the runaway greenhouse threshold. Given that M-stars are disproportionately brighter in their pre main-sequence lifetimes as compared to Sun-like stars (i.e. G-class insolation), planets orbiting M-stars are especially susceptible to the runaway, with intensity and duration increasing for cooler M-stars. Thus, accreting planetesimals in the HZs of M-stars could be too hot to maintain liquid water on their surfaces. In contrast, accreting planets located at Earth's distance (or farther) from a pre-main sequence solar analogue (i.e. G2 spectral class) receive stellar fluxes well below that of the runaway point. Our results suggest that future missions and surveys can improve their prospects of finding alien life by targeting HZ planets orbiting Sun-like stars. Moreover, our findings support recent claims that Venus may have lost its water during accretion3. REFERENCES1. Lissauer, Jack J. "Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles." The Astrophysical Journal Letters 660.2 (2007): L149. 2. Raymond, Sean N., John Scalo, and Victoria S. Meadows. "A decreased probability of habitable planet formation around low-mass stars." The Astrophysical Journal 669.1 (2007): 606. 3. Hamano, Keiko, Yutaka Abe, and Hidenori Genda. "Emergence of two types of terrestrial planet on solidification of magma ocean." Nature 497.7451 (2013): 607-610.

  5. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs.

    PubMed

    Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ?1 M? solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars. PMID:25590532

  6. Observations of exoplanets in time-evolving habitable zones of pre-main-sequence M dwarfs

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    2015-09-01

    It is recently proposed that planets in the habitable zones (HZ) of pre-main-sequence (PMS) M dwarfs are good targets for the detection of habitable environments. In this note we show that future ground-based telescopes will be able to observe planets in time-evolving HZ of PMS M dwarfs with duration 10-100 Myrs. Based on X-ray measurements, there are >18 M0-M4 PMS stars within 10 pc, the characterization of potentially habitable exoplanets around which could provide highly valuable information regarding the evolution of habitable environments. There are tens of M dwarfs within 10 pc with X-ray to total luminosity ratios similar to that of the young Sun, the observations of potential planets around which could significantly improve our understanding of the physical states of early Solar System rocky planets.

  7. THERMAL ESCAPE FROM SUPER EARTH ATMOSPHERES IN THE HABITABLE ZONES OF M STARS

    SciTech Connect

    Tian Feng

    2009-09-20

    A fundamental question for exoplanet habitability is the long-term stability of the planet's atmosphere. We numerically solve a one-dimensional multi-component hydrodynamic thermosphere/ionosphere model to examine the thermal and chemical responses of the primary CO{sub 2} atmospheres of heavy super Earths (6-10 Earth masses) in the habitable zones of typical low-mass M stars to the enhanced soft X-ray and ultraviolet (XUV) fluxes associated with the prolonged high-activity levels of M stars. The results show that such atmospheres are stable against thermal escape, even for M stars XUV enhancements as large as 1000 compared to the present Earth. It is possible that the CO{sub 2}-dominant atmospheres of super Earths in the habitable zones of M stars could potentially contain modest amount of free oxygen as a result of more efficient atmosphere escape of carbon than oxygen instead of photosynthesis.

  8. TERRESTRIAL PLANET FORMATION AROUND THE CIRCUMBINARY HABITABLE ZONE: INWARD MIGRATION IN THE PLANETESIMAL SWARM

    SciTech Connect

    Gong Yanxiang; Zhou Jilin; Xie Jiwei E-mail: zhoujl@nju.edu.cn

    2013-01-20

    According to the core accretion theory, circumbinary embryos can form only beyond a critical semimajor axis (CSMA). However, due to the relatively high density of solid materials in the inner disk, a significant amount of small planetesimals must exist in the inner zone when embryos form outside this CSMA. Thus, embryo migration induced by the planetesimal swarm is possible after gas disk depletion. Through numerical simulations, we found that (1) the scattering-driven inward migration of embryos is robust and planets can form in the habitable zone if we adopt a mass distribution of an MMSN-like disk; (2) the total mass of the planetesimals in the inner region and continuous embryo-embryo scattering are two key factors that cause significant embryo migrations; and (3) the scattering-driven migration of embryos is a natural water-delivery mechanism. We propose that planet detections should focus on the close binary with its habitable zone near CSMA.

  9. TRANSIT SURVEYS FOR EARTHS IN THE HABITABLE ZONES OF WHITE DWARFS

    SciTech Connect

    Agol, Eric

    2011-04-20

    To date the search for habitable Earth-like planets has primarily focused on nuclear burning stars. I propose that this search should be expanded to cool white dwarf stars that have expended their nuclear fuel. I define the continuously habitable zone of white dwarfs and show that it extends from {approx}0.005 to 0.02 AU for white dwarfs with masses from 0.4 to 0.9 M{sub sun}, temperatures less than {approx}10{sup 4} K, and habitable durations of at least 3 Gyr. As they are similar in size to Earth, white dwarfs may be deeply eclipsed by terrestrial planets that orbit edge-on, which can easily be detected with ground-based telescopes. If planets can migrate inward or reform near white dwarfs, I show that a global robotic telescope network could carry out a transit survey of nearby white dwarfs placing interesting constraints on the presence of habitable Earths. If planets were detected, I show that the survey would favor detection of planets similar to Earth: similar size, temperature, and rotation period, and host star temperatures similar to the Sun. The Large Synoptic Survey Telescope could place even tighter constraints on the frequency of habitable Earths around white dwarfs. The confirmation and characterization of these planets might be carried out with large ground and space telescopes.

  10. ASTROPHYSICAL PARAMETERS AND HABITABLE ZONE OF THE EXOPLANET HOSTING STAR GJ 581

    SciTech Connect

    Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David R.; Boyajian, Tabetha S.; McAlister, Harold A.; Henry, Todd J.; Jao, Wei-Chun; Riedel, Adric R.; Van Belle, Gerard T.; Lopez-Morales, Mercedes; Subasavage, John P.; Schaefer, Gail; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Mazingue, Jude; Turner, Nils H.; Farrington, Chris; Goldfinger, P. J.; Ridgway, Stephen

    2011-03-10

    GJ 581 is an M dwarf host of a multiplanet system. We use long-baseline interferometric measurements from the CHARA Array, coupled with trigonometric parallax information, to directly determine its physical radius to be 0.299 {+-} 0.010 R{sub sun}. Literature photometry data are used to perform spectral energy distribution fitting in order to determine GJ 581's effective surface temperature T{sub EFF} = 3498 {+-} 56 K and its luminosity L = 0.01205 {+-} 0.00024 L{sub sun}. From these measurements, we recompute the location and extent of the system's habitable zone and conclude that two of the planets orbiting GJ 581, planets d and g, spend all or part of their orbit within or just on the edge of the habitable zone.

  11. Evolution of the habitable zone of low-mass stars. Detailed stellar models and analytical relationships for different masses and chemical compositions

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2014-07-01

    Context. The habitability of an exoplanet is assessed by determining the times at which its orbit lies in the circumstellar habitable zone (HZ). This zone evolves with time following the stellar luminosity variation, which means that the time spent in the HZ depends on the evolution of the host star. Aims: We study the temporal evolution of the HZ of low-mass stars - only due to stellar evolution - and evaluate the related uncertainties. These uncertainties are then compared with those due to the adoption of different climate models. Methods: We computed stellar evolutionary tracks from the pre-main sequence phase to the helium flash at the red-giant branch tip for stars with masses in the range [0.70-1.10] M?, metallicity Z in the range [0.005-0.04], and various initial helium contents. By adopting a reference scenario for the HZ computations, we evaluated several characteristics of the HZ, such as the distance from the host star at which the habitability is longest, the duration of this habitability, the width of the zone for which the habitability lasts one half of the maximum, and the boundaries of the continuously habitable zone (CHZ) for which the habitability lasts at least 4 Gyr. We developed analytical models, accurate to the percent level or lower, which allowed to obtain these characteristics in dependence on the mass and the chemical composition of the host star. Results: The metallicity of the host star plays a relevant role in determining the HZ. The importance of the initial helium content is evaluated here for the first time; it accounts for a variation of the CHZ boundaries as large as 30% and 10% in the inner and outer border. The computed analytical models allow the first systematic study of the variability of the CHZ boundaries that is caused by the uncertainty in the estimated values of mass and metallicity of the host star. An uncertainty range of about 30% in the inner boundary and 15% in the outer one were found. We also verified that these uncertainties are larger than that due to relying on recently revised climatic models, which leads to a CHZ boundary shift within 5% with respect to those of our reference scenario. We made an on-line tool available that provides both HZ characteristics and interpolated stellar tracks. On-line habitable zone calculator and track interpolator are available at http://astro.df.unipi.it/stellar-models/HZ/. The C code is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A133

  12. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    SciTech Connect

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-04-10

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  13. MOA-2011-BLG-293LB: First microlensing planet possibly in the habitable zone

    SciTech Connect

    Batista, V.; Gould, A.; Yee, J. C.; Gaudi, B. S.; Beaulieu, J.-P.; Bennett, D. P.; Fukui, A.; Sumi, T.; Udalski, A. E-mail: gould@astronomy.ohio-state.edu E-mail: beaulieu@iap.fr E-mail: afukui@oao.nao.ac.jp E-mail: udalski@astrouw.edu.pl

    2014-01-01

    We used Keck adaptive optics observations to identify the first planet discovered by microlensing to lie in or near the habitable zone, i.e., at projected separation r = 1.1 0.1 AU from its M{sub L} = 0.86 0.06 M {sub ?} host, being the highest microlensing mass definitely identified. The planet has a mass m{sub p} = 4.8 0.3 M {sub Jup}, and could in principle have habitable moons. This is also the first planet to be identified as being in the Galactic bulge with good confidence: D{sub L} = 7.72 0.44 kpc. The planet/host masses and distance were previously not known, but only estimated using Bayesian priors based on a Galactic model. These estimates had suggested that the planet might be a super-Jupiter orbiting an M dwarf, a very rare class of planets. We obtained high-resolution JHK images using Keck adaptive optics to detect the lens and so test this hypothesis. We clearly detect light from a G dwarf at the position of the event, and exclude all interpretations other than that this is the lens with high confidence (95%), using a new astrometric technique. The calibrated magnitude of the planet host star is H{sub L} = 19.16 0.13. We infer the following probabilities for the three possible orbital configurations of the gas giant planet: 53% to be in the habitable zone, 35% to be near the habitable zone, and 12% to be beyond the snow line, depending on the atmospherical conditions and the uncertainties on the semimajor axis.

  14. Atmospheres and Oceans of Rocky Planets In and Beyond the Habitable Zones of M dwarfs

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    2015-12-01

    he evolution of M dwarfs during their pre-main-sequence phase causes rocky planets in and beyond the habitable zones these stars to be in the runaway and moist greenhouse states. This scenario has been studied by three groups of researchers recently (Ramirez and Kaltenegger 2014, Tian and Ida 2015, Luger and Barnes 2015), and their consensus is that massive amount of water could have been lost during this time -- early evolution of M dwarfs could have changed the water contents of rocky planets around them, which could strongly influence the habitability of rocky planets around low mass stars. It has been proposed that dense oxygen dominant atmospheres (up to 2000 bars, Luger and Barnes 2015) because of rapid water loss. Is this true? If so, what's the condition for such atmospheres to exist and can they be maintained? On the other hand, what's the likelihood for sub-Neptunes to shrink into habitable planets under such environment? In general how is the habitability of planets around M dwarfs different from those around Sun-type stars? These are the questions we will attempt to address in this work.

  15. Selections from 2015: Earth-Sized Planet Found in Star's Habitable Zone

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Discovery and Validation of Kepler-452b: a 1.6 R Super Earth Exoplanet in the Habitable Zone of a G2 StarPublished July2015Main takeaway:A phase-folded light curve showing the transit of Kepler-452b. Its transit lasts 10.5 hours, and its period is 385 days. [Jenkins et al. 2015]A team led by Jon Jenkins (NASA Ames Research Center) announced the discovery and confirmation of Kepler-452b, an exoplanet only 60% larger than Earth and located in the habitable zone of its G2 star. This planet orbits its star at a distance of just over 1 AU, taking 385 days to complete an orbit. Kepler-452b also stands a good chance of being rocky, according to estimates.Why its interesting:Kepler-452b is the first near-Earth-sized planet to be found in the habitable zone of a Sun-like star making this the closest analog to the Earth-Sun system found in the Kepler dataset so far.About the history of the system (and the future of ours?):The authors estimate that the system is ~6 billion years old, and that Kepler-452b has been in the habitable zone of its star throughout its lifetime a substantially longer time than Earth has been around and habitable! Kepler-452bs host star, in addition to being 1.5 billion years older than the Sun, is roughly 10% larger. This system might therefore provide a glimpse of what Earths environment may be like in the future, as the Sun slowly expands on its way to becoming a red giant.CitationJon M. Jenkins et al 2015 AJ 150 56. doi:10.1088/0004-6256/150/2/56

  16. Selections from 2015: Earth-Sized Planet Found in Star's Habitable Zone

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Discovery and Validation of Kepler-452b: a 1.6 R Super Earth Exoplanet in the Habitable Zone of a G2 StarPublished July2015Main takeaway:A phase-folded light curve showing the transit of Kepler-452b. Its transit lasts 10.5 hours, and its period is 385 days. [Jenkins et al. 2015]A team led by Jon Jenkins (NASA Ames Research Center) announced the discovery and confirmation of Kepler-452b, an exoplanet only 60% larger than Earth and located in the habitable zone of its G2 star. This planet orbits its star at a distance of just over 1 AU, taking 385 days to complete an orbit. Kepler-452b also stands a good chance of being rocky, according to estimates.Why its interesting:Kepler-452b is the first near-Earth-sized planet to be found in the habitable zone of a Sun-like star making this the closest analog to the Earth-Sun system found in the Kepler dataset so far.About the history of the system (and the future of ours?):The authors estimate that the system is ~6 billion years old, and that Kepler-452b has been in the habitable zone of its star throughout its lifetime a substantially longer time than Earth has been around and habitable! Kepler-452bs host star, in addition to being 1.5 billion years older than the Sun, is roughly 10% larger. This system might therefore provide a glimpse of what Earths environment may be like in the future, as the Sun slowly expands on its way to becoming a red giant.CitationJon M. Jenkins et al 2015 AJ 150 56. doi:10.1088/0004-6256/150/2/56

  17. The galactic habitable zone of the Milky Way and M31 from chemical evolution models with gas radial flows

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Matteucci, F.; Sozzetti, A.

    2014-05-01

    The galactic habitable zone is defined as the region with sufficient abundance of heavy elements to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life, after surviving to close supernova explosion events. Galactic chemical evolution models can be useful for studying the galactic habitable zones in different systems. We apply detailed chemical evolution models including radial gas flows to study the galactic habitable zones in our Galaxy and M31. We compare the results to the relative galactic habitable zones found with `classical' (independent ring) models, where no gas inflows were included. For both the Milky Way and Andromeda, the main effect of the gas radial inflows is to enhance the number of stars hosting a habitable planet with respect to the `classical' model results, in the region of maximum probability for this occurrence, relative to the classical model results. These results are obtained by taking into account the supernova destruction processes. In particular, we find that in the Milky Way the maximum number of stars hosting habitable planets is at 8 kpc from the Galactic Centre, and the model with radial flows predicts a number which is 38 per cent larger than what was predicted by the classical model. For Andromeda we find that the maximum number of stars with habitable planets is at 16 kpc from the centre and that in the case of radial flows this number is larger by 10 per cent relative to the stars predicted by the classical model.

  18. THERMAL EVOLUTION AND LIFETIME OF INTRINSIC MAGNETIC FIELDS OF SUPER-EARTHS IN HABITABLE ZONES

    SciTech Connect

    Tachinami, C.; Ida, S.; Senshu, H.

    2011-01-10

    We have numerically studied the thermal evolution of different-mass terrestrial planets in habitable zones, focusing on the duration of dynamo activity to generate their intrinsic magnetic fields, which may be one of the key factors in habitability of the planets. In particular, we are concerned with super-Earths, observations of which are rapidly developing. We calculated the evolution of temperature distributions in the planetary interior using Vinet equations of state, the Arrhenius-type formula for mantle viscosity, and the astrophysical mixing-length theory for convective heat transfer modified for mantle convection. After calibrating the model with terrestrial planets in the solar system, we apply it for 0.1-10 M{sub +} rocky planets with a surface temperature of 300 K (in habitable zones) and Earth-like compositions. With the criterion of heat flux at the core-mantle boundary (CMB), the lifetime of the magnetic fields is evaluated from the calculated thermal evolution. We found that the lifetime slowly increases with planetary mass (M{sub p} ), independent of the initial temperature gap at the CMB ({Delta}T{sub CMB}), but beyond the critical value M{sub c,p} ({approx}O(1) M{sub +}) it abruptly declines from the mantle viscosity enhancement due to the pressure effect. We derived M{sub c,p} as a function of {Delta}T{sub CMB} and a rheological parameter (activation volume, V*). Thus, the magnetic field lifetime of super-Earths with M{sub p} >M{sub p,c} sensitively depends on {Delta}T{sub CMB}, which reflects planetary accretion, and V*, which has uncertainty at very high pressure. More advanced high-pressure experiments and first-principle simulation, as well as planetary accretion simulation, are needed to discuss the habitability of super-Earths.

  19. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    SciTech Connect

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara; Georgakarakos, Nikolaos E-mail: elke.pilat-lohinger@univie.ac.at

    2012-06-10

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  20. Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans

    NASA Technical Reports Server (NTRS)

    Way, M.J; Del Genio, A.D.; Kelley, M.; Aleinov, I.; Clune, T.

    2015-01-01

    The role of rotation in planetary atmospheres plays an important role in regulating atmospheric and oceanic heat flow, cloud formation and precipitation. Using the Goddard Institute for Space Studies (GISS) three dimension General Circulation Model (3D-GCM) we demonstrate how varying rotation rate and increasing the incident solar flux on a planet are related to each other and may allow the inner edge of the habitable zone to be much closer than many previous habitable zone studies have indicated. This is shown in particular for fully coupled ocean runs -- some of the first that have been utilized in this context. Results with a 100m mixed layer depth and our fully coupled ocean runs are compared with those of Yang et al. 2014, which demonstrates consistency across models. However, there are clear differences for rotations rates of 1-16x present earth day lengths between the mixed layer and fully couple ocean models, which points to the necessity of using fully coupled oceans whenever possible. The latter was recently demonstrated quite clearly by Hu & Yang 2014 in their aquaworld study with a fully coupled ocean when compared with similar mixed layer ocean studies and by Cullum et al. 2014. Atmospheric constituent amounts were also varied alongside adjustments to cloud parameterizations (results not shown here). While the latter have an effect on what a planet's global mean temperature is once the oceans reach equilibrium they do not qualitatively change the overall relationship between the globally averaged surface temperature and incident solar flux for rotation rates ranging from 1 to 256 times the present Earth day length. At the same time this study demonstrates that given the lack of knowledge about the atmospheric constituents and clouds on exoplanets there is still a large uncertainty as to where a planet will sit in a given star's habitable zone.

  1. Exomoon Habitability Constrained by Illumination and Tidal Heating

    PubMed Central

    2013-01-01

    Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge.” We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon. Key Words: Astrobiology—Extrasolar planets—Habitability—Habitable zone—Tides. Astrobiology 13, 18–46. PMID:23305357

  2. The Properties of Exomoons Around the Habitable Zone Planet, Kepler 22b

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher R.; Bokorney, Jake

    2015-01-01

    As part of a larger study to understand the formation, evolution, and stability of satellites around exoplanets, we have examined the Kepler 22 system. A single planet of mass 2 1026 kg, Kepler 22b orbits within the habitable zone (Kopparapu et al. 2013) at 0.85 AU. While Kepler 22b may be habitable, there also exists the possibility that any satellites of the planet may also be life sustaining.A series of N-body simulations were performed to examine the most probable configuration of moons orbiting Kepler 22b. Initially, a moonlet disk of 100 bodies (mdisk = 4.29 1022 kg) was randomly placed around Kepler 22b. The moonlet disk spanned 10 - 80% of Kepler 22b's Hill sphere (Kasting et al. 1993). Simulations were run for 500 kyrs, with the star, planet, and moonlets allowed to gravitationally evolve.The Kepler 22b system was able to retain three to four moons in 96% of the simulations. . The remaining simulations produced systems of two moons on highly eccentric orbits. It is unlikely that the two-moon configuration would remain stable for a significant amount of time. We present the properties of the stable satellites. We have run an additional set of simulations examining the rotational effects satellites will have on Kepler 22b, given the high likelihood that the planet possesses a system of moons. We were specifically investigating if the presence of moons reduces the precession of Kepler 22b, increasing the planet's habitability.

  3. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    PubMed

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own. PMID:26274865

  4. The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles

    2007-05-01

    Prerequisites for complex life are not uniformly distributed in our Galaxy. These prerequisites include: Enough heavy elements to form terrestrial planets, sufficient time for biological evolution and an environment free of life-extinguishing supernovae. We have modelled the evolution of the Milky Way to trace the distribution in space and time of these prerequisites. We identify the Galactic Habitable Zone (GHZ) as an annular region between 7 and 9 kiloparsecs from the galactic centre that widens with time and is composed of stars that formed between 8 and 4 billion years ago. This zone of habitability is small in the sense that it encompasses less than 10% of the stars ever formed in the Milky Way. We obtain an age distribution for the stars in the GHZ and thus an age distribution for the complex life that may inhabit our Galaxy. We find that 3/4 of the stars in the GHZ are older than the Earth and that their mean age is 1 Gyr older than the Earth. I will discuss ways in which the luminosity and spectrum of electromagnetic radiation can affect the molecular evolution that we believe led to biogenesis.

  5. GJ 832c: A Super-Earth in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Tuomi, Mikko; Butler, R. P.; Jones, H. R. A.; Anglada-Escud, Guillem; Horner, Jonathan; Tinney, C. G.; Marshall, J. P.; Carter, B. D.; Bailey, J.; Salter, G. S.; O'Toole, S. J.; Wright, D.; Crane, J. D.; Schectman, S. A.; Arriagada, P.; Thompson, I.; Minniti, D.; Jenkins, J. S.; Diaz, M.

    2014-08-01

    We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 0.03 days and minimum mass (m sin i) of 5.4 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 0.13) toward the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a "super-Venus," featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile.

  6. A 1.6 Earth Radius Planet in the Habitable Zone of a G2 Star

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon Michael; Twicken, Joseph; Batalha, Natalie; Caldwell, Douglas; Cochran, William; Endl, Michael; Latham, David; Esquerdo, Gibert; Seader, Shawn; Bieryla, Allyson; Petigura, Erik; Ciardi, David; Marcy, Geoffrey; Isaacson, Howard; Rowe, Jason; Torres, Guillermo; Huber, Daniel; Bryson, Stephen; Buchhave, Lars A.; Ramirez, Ivan; Wolfgang, Angie; Li, Jie; Campbell, Jennifer; Henze, Christopher; Borucki, William

    2015-08-01

    We report on the discovery and validation a transiting planet identified by a search through the four years of data collected by NASAs Kepler Mission. This possibly rocky 1.63-Re planet orbits its G2 host star every 384.843 days, one of the longest orbital periods for a terrestrial exoplanet to date. The likelihood that this planet has a rocky composition lies between 43% and 58%. The star has an effective temperature of 5757 85 K and a log g of 4.32 0.09. At a mean orbital separation of 1.046 AU, this small planet is within the habitable zone of its star, experiencing only 10% more flux than Earth receives from the Sun today. The star is slightly larger and older than the Sun, with a present radius of 1.11 Rsun and an estimated age of ~6 Gyr. Thus, this planet has always been in the habitable zone and will remain there for another 3 Gyr.

  7. Gj 832c: A super-Earth in the habitable zone

    SciTech Connect

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Marshall, J. P.; Bailey, J.; Salter, G. S.; Wright, D.; Tuomi, Mikko; Jones, H. R. A.; Butler, R. P.; Arriagada, P.; Anglada-Escudé, Guillem; Carter, B. D.; O'Toole, S. J.; Crane, J. D.; Schectman, S. A.; Thompson, I.; Minniti, D.; Jenkins, J. S.; Diaz, M.

    2014-08-20

    We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 ± 0.03 days and minimum mass (m sin i) of 5.4 ± 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 ± 0.13) toward the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a 'super-Venus', featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system.

  8. 55 CANCRI: STELLAR ASTROPHYSICAL PARAMETERS, A PLANET IN THE HABITABLE ZONE, AND IMPLICATIONS FOR THE RADIUS OF A TRANSITING SUPER-EARTH

    SciTech Connect

    Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David R.; Tabetha, S. Boyajian; McAlister, Harold A.; White, Russel; Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Farrington, Chris; Goldfinger, P. J.; Van Belle, Gerard T.; Raymond, Sean N.; Lopez-Morales, Mercedes; Ridgway, Stephen T.

    2011-10-10

    The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. The study presented here yields directly determined values for 55 Cnc's stellar astrophysical parameters based on improved interferometry: R = 0.943 {+-} 0.010 R{sub sun}, T{sub EFF} = 5196 {+-} 24 K. We use isochrone fitting to determine 55 Cnc's age to be 10.2 {+-} 2.5 Gyr, implying a stellar mass of 0.905 {+-} 0.015 M{sub sun}. Our analysis of the location and extent of the system's habitable zone (HZ; 0.67-1.32 AU) shows that planet f, with period {approx}260 days and Msin i = 0.155 M{sub Jupiter}, spends the majority of the duration of its elliptical orbit in the circumstellar HZ. Though planet f is too massive to harbor liquid water on any planetary surface, we elaborate on the potential of alternative low-mass objects in planet f's vicinity: a large moon and a low-mass planet on a dynamically stable orbit within the HZ. Finally, our direct value for 55 Cancri's stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e ({approx}2.05 {+-} 0.15 R{sub +}), which, depending on the planetary mass assumed, implies a bulk density of 0.76 {rho}{sub +} or 1.07 {rho}{sub +}.

  9. Extending Galactic Habitable Zone Modelling to Include the Emergence of Intelligent Life

    NASA Astrophysics Data System (ADS)

    Morrison, I. S.; Gowanlock, M. G.

    2014-03-01

    Previous studies of the Galactic Habitable Zone (GHZ) have been concerned with identifying those regions of the Galaxy that may favour the emergence of "complex life" - typically defined to be land-based life. A planet is deemed "habitable" if it meets a set of assumed criteria for supporting the emergence of such complex life. The notion of the GHZ, and the premise that sufficient chemical evolution is required for planet formation, was quantified by Gonzalez et al. (2001). This work was later broadened to include dangers to the formation and habitability of terrestrial planets by Lineweaver et al. (2004) and then studied using a Monte Carlo simulation on the resolution of individual stars in the previous work of Gowanlock et al. (2011). The model developed in the latter work considers the stellar number density distribution and formation history of the Galaxy, planet formation mechanisms and the hazards to planetary biospheres as a result of supernova sterilization events that take place in the vicinity of the planets. Based on timescales taken from the origin and evolution of complex life on Earth, the model suggests large numbers of potentially habitable planets exist in our Galaxy, with the greatest concentration likely being towards the inner Galaxy. In this work we extend the assessment of habitability to consider the potential for life to further evolve on habitable planets to the point of intelligence - which we term the propensity for the emergence of intelligent life. We assume the propensity is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the "resetting" effect of nearby supernovae. The model of Gowanlock et al. (2011) is used to produce a representative population of habitable planets by matching major observable properties of the Milky Way. Account is taken of the birth and death dates of each habitable planet and the timing of supernova events in each planet's vicinity. The times between supernovae provide opportunities for the development of intelligent life. We analyse these times to generate propensity metrics and examine the spatial and temporal variation of these metrics. We find that, even if long time durations are assumed to be required between sterilizations to allow for the emergence of intelligent life, the inner Galaxy provides the greatest number of opportunities, despite the high supernova rate in the region. Our approach avoids placing absolute probabilities on the emergence of complex or intelligent life, which can only be speculated upon given our current sample size of one. However, the approach allows meaningful conclusions to be drawn concerning the relative propensity for intelligent life developing in different regions and epochs of the Galaxy. In particular, it is intended that the results can be interpreted by the SETI community to provide guidance as to the regions of the Galaxy likely to present the best "percentage play" for new search programs.

  10. Exomoon habitability constrained by illumination and tidal heating.

    PubMed

    Heller, René; Barnes, Rory

    2013-01-01

    The detection of moons orbiting extrasolar planets ("exomoons") has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary "habitable edge." We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon. PMID:23305357

  11. Gliese 581d is the First Discovered Terrestrial-mass Exoplanet in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Wordsworth, Robin D.; Forget, François; Selsis, Franck; Millour, Ehouarn; Charnay, Benjamin; Madeleine, Jean-Baptiste

    2011-06-01

    It has been suggested that the recently discovered exoplanet GJ581d might be able to support liquid water due to its relatively low mass and orbital distance. However, GJ581d receives 35% less stellar energy than Mars and is probably locked in tidal resonance, with extremely low insolation at the poles and possibly a permanent night side. Under such conditions, it is unknown whether any habitable climate on the planet would be able to withstand global glaciation and/or atmospheric collapse. Here we present three-dimensional climate simulations which demonstrate that GJ581d will have a stable atmosphere and surface liquid water for a wide range of plausible cases, making it the first confirmed super-Earth (exoplanet of 2-10 Earth masses) in the habitable zone. We find that atmospheres with over 10 bar CO2 and varying amounts of background gas (e.g., N2) yield global mean temperatures above 0°C for both land and ocean-covered surfaces. Based on the emitted IR radiation calculated by the model, we propose observational tests that will allow these cases to be distinguished from other possible scenarios in the future.

  12. STABILITY ANALYSIS OF SINGLE-PLANET SYSTEMS AND THEIR HABITABLE ZONES

    SciTech Connect

    Kopparapu, Ravi Kumar; Barnes, Rory

    2010-06-20

    We study the dynamical stability of planetary systems consisting of one hypothetical terrestrial-mass planet (1 or 10 M{sub +}) and one massive planet (10 M{sub +}-10 M{sub jup}). We consider masses and orbits that cover the range of observed planetary system architectures (including non-zero initial eccentricities), determine the stability limit through N-body simulations, and compare it to the analytic Hill stability boundary. We show that for given masses and orbits of a two-planet system, a single parameter, which can be calculated analytically, describes the Lagrange stability boundary (no ejections or exchanges) but diverges significantly from the Hill stability boundary. However, we do find that the actual boundary is fractal, and therefore we also identify a second parameter which demarcates the transition from stable to unstable evolution. We show the portions of the habitable zones (HZs) of {rho} CrB, HD 164922, GJ 674, and HD 7924 that can support a terrestrial planet. These analyses clarify the stability boundaries in exoplanetary systems and demonstrate that, for most exoplanetary systems, numerical simulations of the stability of potentially habitable planets are only necessary over a narrow region of the parameter space. Finally, we also identify and provide a catalog of known systems that can host terrestrial planets in their HZs.

  13. GLIESE 581D IS THE FIRST DISCOVERED TERRESTRIAL-MASS EXOPLANET IN THE HABITABLE ZONE

    SciTech Connect

    Wordsworth, Robin D.; Forget, Francois; Millour, Ehouarn; Charnay, Benjamin; Madeleine, Jean-Baptiste; Selsis, Franck

    2011-06-01

    It has been suggested that the recently discovered exoplanet GJ581d might be able to support liquid water due to its relatively low mass and orbital distance. However, GJ581d receives 35% less stellar energy than Mars and is probably locked in tidal resonance, with extremely low insolation at the poles and possibly a permanent night side. Under such conditions, it is unknown whether any habitable climate on the planet would be able to withstand global glaciation and/or atmospheric collapse. Here we present three-dimensional climate simulations which demonstrate that GJ581d will have a stable atmosphere and surface liquid water for a wide range of plausible cases, making it the first confirmed super-Earth (exoplanet of 2-10 Earth masses) in the habitable zone. We find that atmospheres with over 10 bar CO{sub 2} and varying amounts of background gas (e.g., N{sub 2}) yield global mean temperatures above 0{sup 0}C for both land and ocean-covered surfaces. Based on the emitted IR radiation calculated by the model, we propose observational tests that will allow these cases to be distinguished from other possible scenarios in the future.

  14. The Properties of Exomoons Around the Habitable Zone Planets, Kepler 22b and HD160691b

    NASA Astrophysics Data System (ADS)

    Bokorney, Jake; Fuse, Christopher R.

    2016-01-01

    As part of a larger study to understand the formation, evolution, and stability of exoplanet satellites, we have examined the Kepler 22 and HD160691 systems. Habitable zone planets (Kopparapu et al. 2013) are found in each system, with Kepler 22b at 0.85 AU and HD160691b at 1.5 AU. While these planets may be habitable, systems of satellites also hold the potential of supporting life. A series of N-body simulations were performed to examine the most stable configuration of moons orbiting each planet. A moonlet disk was designed to span 10 - 80% of the planet's Hill sphere (Ksting et al. 1993). The 100 bodies (mdisk/mplanet = 2 10-4) within the disk were randomly placed around each planet. Simulations were run for 500 kyrs, with the star, planets, and moonlets allowed to gravitationally evolve. The Kepler 22b system was able to retain three to four moons in 96% of the simulations, while the HD160691b systems had a stable pair of moons in 73% of the simulations. The remaining simulations produced systems with moons on highly eccentric orbits.

  15. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    SciTech Connect

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  16. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form. PMID:24744370

  17. Radiative Convective Transfer Calculations for Effective Stellar Fluxes of Habitable and Life Supporting Zones

    NASA Astrophysics Data System (ADS)

    Ludwig, Wolfgang; Eggl, Siegfried; Neubauer, David; Leitner, Johannes; Firneis, Maria; Hitzenberger, Regina

    2014-05-01

    Recent fields of interest in exoplanetary research include studies of potentially habitable planets orbiting stars outside of our Solar System. Habitable Zones (HZs) are currently defined by calculating the inner and the outer limits of the mean distance between exoplanets and their central stars based on effective solar fluxes that allow for maintaining liquid water on the planet's surface. Kasting et al. (1993), Selsis et al. (2007), and recently Kopparapu et al. (2013) provided stellar flux limits for such scenarios. We compute effective solar fluxes for Earth-like planets using Earth-like and other atmospheric scenarios including atmospheres with high level and low level clouds. Furthermore we provide habitability limits for solvents other than water, i.e. limits for the so called Life Supporting Zone, introduced by Leitner et al. (2010). The Life Supporting Zone (LSZ) encompasses many habitable zones based on a variety of liquid solvents. Solvents like ammonia and sulfuric acid have been identified for instance by Leitner et al (2012) as possibly life supporting. Assuming planets on circular orbits, the extent of the individual HZ is then calculated via the following equation, d(i,o) = [L/Lsun*1/S(i,o)]**0.5 au, where L is the star's luminosity, and d(i,o) and S(i,o) are the distances to the central star for the inner and the outer edge and effective insolation for inner and the outer edge of the HZ, respectively. After generating S(i,o) values for a selection of solvents, we provide the means to determine LSZ boundaries for main sequence stars. Effective flux calculations are done using a one dimensional radiative convective model (Neubauer et al. 2011) based on a modified version of the open source radiative transfer software Streamer (Key and Schweiger, 1998). Modifications include convective adjustments, additional gases for absorption and the use of an offline cloud model, which allow us to observe the influence of clouds on effective stellar fluxes. Kasting, J.F., Whitmire, D.P., & Reynolds, R.T. 1993, Icar, 101, 108 Key JR, Schweiger AJ (1998) Geosci 24:443-451. Kopparapu, R.J., et al. 2013 ApJ 765, 131 Leitner, J. J., Schwarz, R., Firneis, M. G., Hitzenberger, R., and Neubauer, D., Astrobiology Science Conference 2010, 26-29 April 2010, League City, USA, 2010 Leitner, J.J., Schulze-Makuch, D., Firneis, M.G., Hitzenberger, R., Neubauer, D., 2012 Paleontology Journal 46 (9), 1091 Neubauer, D., Vrtala, A., Leitner, J.J., Firneis, M.G., Hitzenberger, R., 2011 Origins of Life and Evolution of Biospheres, 41, 545-552 Selsis, F., Kasting, J.F., Levrard, B., et al. 2007b, A&A, 476, 137

  18. Space telescope design to directly image the habitable zone of Alpha Centauri

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-09-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A and B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 1010 are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a highprecision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to ~2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  19. Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant?

    NASA Astrophysics Data System (ADS)

    Funk, B.; Pilat-Lohinger, E.; Eggl, S.

    2015-04-01

    Locating planets in Habitable Zones (HZs) around other stars is a growing field in contemporary astronomy. Since a large percentage of all G-M stars in the solar neighbourhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional habitable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host additional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885 A. HD 196885 B can be considered a slightly more promising target in the search for Earth-twins. Gliese 86 A turned out to be a very good candidate, assuming that the system's history has not been excessively violent. For HD 41004, we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system. A more detailed investigation shows that for some initial conditions stable planetary motion is possible in the HZ of HD 41004 A. In spite of the massive companion HD 41004 Bb, we found that HD 41004 B, too, could host additional habitable worlds.

  20. Atmospheric constraints for the CO2 partial pressure on terrestrial planets near the outer edge of the habitable zone

    NASA Astrophysics Data System (ADS)

    von Paris, P.; Grenfell, J. L.; Hedelt, P.; Rauer, H.; Selsis, F.; Stracke, B.

    2013-01-01

    Context. In recent years, several potentially habitable, probably terrestrial exoplanets and exoplanet candidates have been discovered. The amount of CO2 in their atmosphere is of great importance for surface conditions and habitability. In the absence of detailed information on the geochemistry of the planet, this amount could be considered as a free parameter. Aims: Up to now, CO2 partial pressures for terrestrial planets have been obtained assuming an available volatile reservoir and outgassing scenarios. This study aims at calculating the allowed maximum CO2 pressure at the surface of terrestrial exoplanets orbiting near the outer boundary of the habitable zone by coupling the radiative effects of the CO2 and its condensation at the surface. These constraints might limit the permitted amount of atmospheric CO2, independent of the planetary reservoir. Methods: A 1D radiative-convective cloud-free atmospheric model was used to calculate surface conditions for hypothetical terrestrial exoplanets. CO2 partial pressures are fixed according to surface temperature and vapor pressure curve. Considered scenarios cover a wide range of parameters, such as gravity, central star type and orbital distance, atmospheric N2 content and surface albedo. Results: Results show that for planets in the habitable zone around K-, G-, and F-type stars the allowed CO2 pressure is limited by the vapor pressure curve and not by the planetary reservoir. The maximum CO2 pressure lies below the CO2 vapor pressure at the critical point of pcrit = 73.8 bar. For M-type stars, due to the stellar spectrum being shifted to the near-IR, CO2 pressures above pcrit are possible for almost all scenarios considered across the habitable zone. This implies that determining CO2 partial pressures for terrestrial planets by using only geological models is probably too simplified and might over-estimate atmospheric CO2 towards the outer edge of the habitable zone.

  1. BinHab: A Numerical Tool for the Calculation of S/P-Type Habitable Zones in Binary Systems

    NASA Astrophysics Data System (ADS)

    Cuntz, M.; Bruntz, R.

    2015-01-01

    The aim of this contribution is to introduce the numerical tool BinHab, a publicly accessible code, available at The University of Texas at Arlington, that allows the calculation of S-type and P-type habitable zones of general binary systems.

  2. WISE Detections of Dust in the Habitable Zones of Planet-Bearing Stars

    NASA Technical Reports Server (NTRS)

    Morales, Farisa Y.; Padgett, Deborah L.; Bryden, Geoffrey; Werner, M. W.; Furlan, E.

    2012-01-01

    We use data from the Wide-field Infrared Survey Explorer (WISE) all-sky release to explore the incidence of warm dust in the habitable zones around exoplanet-host stars. Dust emission at 12 and/or 22 microns (T(sub dust) approx.300 and/or approx.150 K) traces events in the terrestrial planet zones; its existence implies replenishment by evaporation of comets or collisions of asteroids, possibly stirred by larger planets. Of the 591 planetary systems (728 extrasolar planets) in the Exoplanet Encyclopedia as of 2012 January 31, 350 are robustly detected by WISE at > or = 5(sigma) level. We perform detailed photosphere subtraction using tools developed for Spitzer data and visually inspect all the WISE images to confirm bona fide point sources. We find nine planet-bearing stars show dust excess emission at 12 and/or 22 microns at > or = 3(sigma) level around young, main-sequence, or evolved giant stars. Overall, our results yield an excess incidence of approx.2.6% for stars of all evolutionary stages, but approx.1% for planetary debris disks around main-sequence stars. Besides recovering previously known warm systems, we identify one new excess candidate around the young star UScoCTIO 108.

  3. WISE DETECTIONS OF DUST IN THE HABITABLE ZONES OF PLANET-BEARING STARS

    SciTech Connect

    Morales, Farisa Y.; Bryden, G.; Werner, M. W.; Padgett, D. L.; Furlan, E.

    2012-09-20

    We use data from the Wide-field Infrared Survey Explorer (WISE) all-sky release to explore the incidence of warm dust in the habitable zones around exoplanet-host stars. Dust emission at 12 and/or 22 {mu}m (T{sub dust} {approx} 300 and/or {approx}150 K) traces events in the terrestrial planet zones; its existence implies replenishment by evaporation of comets or collisions of asteroids, possibly stirred by larger planets. Of the 591 planetary systems (728 extrasolar planets) in the Exoplanet Encyclopaedia as of 2012 January 31, 350 are robustly detected by WISE at {>=}5{sigma} level. We perform detailed photosphere subtraction using tools developed for Spitzer data and visually inspect all the WISE images to confirm bona fide point sources. We find nine planet-bearing stars show dust excess emission at 12 and/or 22 {mu}m at {>=}3{sigma} level around young, main-sequence, or evolved giant stars. Overall, our results yield an excess incidence of {approx}2.6% for stars of all evolutionary stages, but {approx}1% for planetary debris disks around main-sequence stars. Besides recovering previously known warm systems, we identify one new excess candidate around the young star UScoCTIO 108.

  4. Exo-oceanography, climate, and habitability of tidal-locking exoplanets in the habitable zone of M dwarfs

    NASA Astrophysics Data System (ADS)

    Hu, Yongyun

    2015-08-01

    The distinctive nature of tidal-locking exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Thus, the permanent nightside can be extremely cold. It had been worried about that atmosphere and water could be condensed on the nightside of habitable exoplanets around M dwarfs. Previous studies have demonstrated that atmospheric circulations are able to transport sufficient heat to warm the nightside and prevent atmosphere collapse there. However, it remains a question of how ocean heat transports and sea-ice feedbacks play important roles in determining climates and habitability of such kind of exoplanets and whether water could be completely frozen on the nightside. Here, we apply a coupled atmospheric and oceanic general circulation model and a three-dimensional ice-sheet model to this problem. It is found that oceanic zonal heat transport plays important roles in determining climate states of habitable aqua-exoplanets orbiting M-type stars. For sufficiently high greenhouse gas levels, the nightside can be completely ice free due to ocean heat transport. Futhermore, we show that for an ocean planet surface winds drive sea ice toward the dayside and the ocean carries heat toward the nightside, both of which keep the nightside sea ice thin. Our results show that the thickness of nightside sea ice is only about 10 m or less. Thus, nightside water trapping on a water-world should not be significant. We also test whether a large ice sheet could grow on a nightside super-continent using an ice sheet model driven by the climate model output. We find that for weak precipitation generated by the climate model the ice-sheet thickness is strongly dependent on the geothermal heat flux, and could reach 1-2 km if the geothermal heat is similar to Earth's or lower. These suggest that complete nightside water trapping would not happen if exoplanets have fairly deep and extensive oceans.

  5. Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable-zone Planets

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-02-01

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  6. Photoevaporation of Earth and Super-Earth Atmospheres in the Habitable Zones of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy

    2015-08-01

    Kepler data show that multiple terrestrial-sized planets (i.e., Earths / super-Earths), packed in very close to the central star, are the norm in exoplanetary systems around low-mass stars. Around M dwarfs, a significant fraction of these planets reside within the Habitable Zone (HZ). This has kindled intense excitement about the possibility of finding habitable planets around these cool red stars. However, M dwarfs also remain extremely magnetically active for much longer than solar-type stars: e.g., an M3 dwarf evinces saturated levels of coronal and chromospheric activity over Gyr timescales, compared to ~100 Myr for solar-mass stars. Thus, basal levels of coronal/chromospheric X-ray/EUV emission from M dwarfs, integrated over their saturated activity lifetimes, may severely photoevaporate the atmospheres of terrestrial planets in M dwarf HZs; this would only be exacerbated by flares (which are correspondingly more intense in active M dwarfs). Here we present detailed hydrodynamic calculations of such photoevaporation for planets spanning a range of Earth/super-Earth sizes, residing in the HZ of M dwarfs of various spectral sub-types, over Gyr evolutionary timescales. Our calculations include the effects of: (1) simultaneous X-ray and EUV heating, using state-of-the-art stellar XUV SED models; (2) the change in the stellar XUV SED over evolutionary timescales; (3) realistic radiative losses (which can both dominate and vary in time); (4) thermal evolution of the planetary core; and (5) a range of initial planetary entropies (i.e.,`hot' or `cold' start) and core compositions. The analysis yields the location and extent of the HZ as a function of planetary mass, core composition, initial conditions and M sub-type. We will focus on H/He dominated (i.e., solar abundance) atmospheres; however, we will also discuss qualtitative trends for CO2 / H2O dominated atmospheres, which we are beginning to explore by coupling a detailed photochemical code with our hydrodynamic simulations. The predictions of these studies can be tested in the near future by missions such as JWST, and will also guide their search for habitable planets.

  7. The Mt John University Observatory search for Earth-mass planets in the habitable zone of ? Centauri

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Bergmann, Christoph; Hearnshaw, John; Barnes, Stuart I.; Wittenmyer, Robert A.; Ramm, David; Kilmartin, Pam; Gunn, Fraser; Brogt, Erik

    2015-04-01

    The `holy grail' in planet hunting is the detection of an Earth-analogue: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analogue around one of the stars in the immediate solar neighbourhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the ? Centauri system using the High Efficiency and Resolution Canterbury University Large chelle Spectrograph (Hercules) at the 1 m McLellan telescope at Mt John University Observatory in New Zealand. The goal of our project is to obtain such a large number of radial velocity (RV) measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past few years, we have collected more than 45 000 spectra for both stars combined. These data are currently processed by an advanced version of our RV reduction pipeline, which eliminates the effect of spectral cross-contamination. Here we present simulations of the expected detection sensitivity to low-mass planets in the habitable zone by the Hercules programme for various noise levels. We also discuss our expected sensitivity to the purported Earth-mass planet in a 3.24-day orbit announced by Dumusque et al. (2012).

  8. Metastable non-runaway states near the inner edge of the habitable zone

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2012-12-01

    The classic runaway greenhouse requires the absorbed solar radiation to exceed a threshold (called by some the Kombayashi-Ingersoll limit) which consists of the asymptotic OLR for a saturated atmosphere in the limit of high surface temperature. However, there are situations in which the limit can be exceeded and a runaway can be sustained, but in which the system nonetheless has a metastable non-runaway state, i.e. a state which is stable to sufficiently small perturbations but which will go into a runaway if given a sufficiently large perturbation on the warm side. I will review the types of processes that can lead to the existence of such states. These processes include subsaturation, clouds, and admixture of a noncondensible background gas which has a weak greenhouse effect compared to the condensible gas. In this talk, I will focus on the first two of these. The key controlling factor is that, for water vapor on a planet with Earthlike gravity, essentially all of the radiation to space comes from the water vapor window and originates in the upper 50 hPa of the atmosphere. It is argued that even in a hot climate, substantial subsaturation can be maintained at these levels; the key question for metastability is whether the subsaturation at these levels becomes asymptotically independent of surface temperature. I will also quantitative discuss the effect of clouds on the runaway, and point out that in order for clouds to facilitate a runaway, they must consist of sufficiently large particles and be concentrated in the upper 50 hPa of the atmosphere. Finally, I will discuss the effect of clouds deeper in the atmosphere, which act almost exclusively to increase the albedo and inhibit the runaway. This discussion will be complemented by a brief discussion of the microphysics and dynamics that govern the character of such clouds in a water-vapor dominated atmosphere. In this talk, the main application discussed is to the water vapor runaway near the inner edge of the habitable zone, but similar considerations apply with regard to the CO2 runaway which governs the outer edge of the conventional habitable zone.

  9. Habitable Zone Planets: PLATO, and the search for Earth 2.0

    NASA Astrophysics Data System (ADS)

    Brown, D. J. A.

    2015-10-01

    The PLATO mission, part of ESA's Cosmic Vision program, will launch in 2024 and will revolutionize the field of transiting exoplanets. By observing a large sample of bright stars, PLATO will discover thousands of terrestrial planets, including hundreds in the habitable zones of their host stars. The brightness of PLATO targets allows full characterization of both the planets and their host stars, including asteroseismic analysis to precisely determine masses, radii, and ages. Moreover, PLATO host stars will be bright enough to allow atmospheric spectroscopy. Confirmation and characterization of PLATO planets will require a coordinated, ground-based follow-up program to both eliminate false-positives, and derive planetary masses. I will present an introduction to PLATO, discussing the scientific motivation behind the mission, its aims and goals, and the significant contribution that PLATO will make to the search for a second Earth. I will also talk about the requirements and formulation of the follow-up program, showing that the demands are not as onerous as might be feared.

  10. Validation of Twelve Small Kepler Transiting Planets in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Caldwell, Douglas A.; Torres, Guillermo; Kipping, David M.; Ballard, Sarah; Batalha, Natalie; Borucki, William J.; Bryson, Steve; Ciardi, David R.; Crepp, Justin R.; Everett, Mark; Fressin, Francois; Henze, Christopher; Horch, Elliott; Howard, Andrew; Howell, Steve B.; Isaacson, Howard T.; Jenkins, Jon Michael; Kolbl, Rea; Marcy, Geoffrey W.; McCauliff, Sean D.; Muirhead, Philip Steven; Newton, Elizabeth; Petigura, Erik; Twicken, Joseph D.; Quintana, Elisa V.; Barclay, Thomas

    2015-01-01

    We report on the work to validate twelve candidate-transiting planets from Kepler with orbital periods ranging from 34 to 207 days initially identified in the pipeline search of three years of Kepler data from quarters 1 to 12. The candidates were selected based on pipeline Data Validation models indicating that they are small and potentially in the habitable zone (HZ) of their parent stars. As their expected Doppler signals are too small for a direct measure of their masses, we verify their planetary nature by validating them statistically using the BLENDER technique. BLENDER simulates large numbers of false-positive scenarios and compares the resulting light curves with the Kepler photometry, taking into account additional information from the analysis of Kepler flux centroids and new follow-up observations, including high-resolution optical and NIR spectroscopy, adaptive optics imaging, and speckle imaging. For eleven of the candidates we show that the likelihood they are true planets is far greater than that of a false positive, to a 99.73% confidence level. For the twelfth candidate, the planet confidence level is about 99.2%. Using improved stellar parameters for the host stars, we derive planetary radii ranging from 1.12 to 2.73 R?. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of the candidates that have been previously validated by others, our study doubles the number of known potentially rocky planets in the HZ.

  11. Ground Truth Insights on Space Weather Effects at Habitable Zone Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Luhmann, Janet G.; Lillis, Robert; Lee, Christina; hara, Takuya; Halekas, Jasper; Morgan, David; Gurnett, Donald; Brain, David; McEnulty, Tess; Fang, Xiaohua; Jakosky, Bruce; Mahaffy, Paul; Eparvier, Frank; Futaana, Yoshifumi; Holmstrom, Matts; Edberg, Niklas; Opgenoorth, Hermann; Leblanc, Francois; Opitz, Andrea; Espley, Jared; Ma, Yingjuan; Russell, Christopher T.; Zhang, Tielong; Withers, Paul; Odstrcil, Dusan

    2015-08-01

    In investigations of the role of atmosphere escape to space in habitable zone terrestrial planet evolution, solar activity and its related interplanetary consequences have been suggested as possibly key to increasing rates to historically significant levels. While at least the present day impacts at planets with magnetospheres is relatively well-understood because of extensive observations at Earth, that at our neighboring weakly magnetized planets remains a matter of wide speculation. We describe the various components of solar activity-produced space weather events and what we look for in observations at Venus and Mars. Effects may include enhanced upper atmosphere heating and ionization from increased solar EUV, X-ray, and precipitating particle fluxes, reduced dayside ionopause/magnetopause altitudes from increased solar wind pressure, greater roles of planetary/interplanetary magnetic field reconnection at Mars in enabling escape, enhanced planetary ion acceleration and pickup, and related atmosphere sputtering. We summarize to what extent these have been identified and characterized in observations so far ranging from Pioneer Venus Orbiter and Venus Express to Mars Express and the MAVEN mission.

  12. Space mission and instrument design to image the Habitable Zone of Alpha Centauri

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo; Belikov, Ruslan; Thomas, Sandrine; Lozi, Julien

    2015-01-01

    The Alpha Centauri System is particularly well suited for high-contrast imaging. The angular separation of the A and B stars Habitable Zone ranges from 0.7' to 1.63' and 0.4' to 0.95' respectively, with contrast ratios for an earth-like planet in the order of 10-10. A 35cm telescope using an aggressive coronagraph is capable of imaging and constrain the contents of earth-like, or larger planets, from the inner HZ out to the equivalent orbit of a Jupiter class planet. Here we present a mission concept design, which considers an off-axis telescope with elliptical aperture primary mirror, an embedded Phase Induced Amplitude Apodization lossless Coronagraph (PIAA), and a Kilo DM deformable mirror for wavefront control and speckle nulling. Our goal is to obtain 2x1011contrast at 0.7' and 6x1011contrast at 0.4' after post processing. To solve the binary diffraction contamination we will use the Multiple Star Wavefront Control approach than can correct for the light of both stars. We baseline a 3 year mission on a heliocentric orbit, that provides a thermally stable environment and continuous access to the target.

  13. Calculating the habitable zones of multiple star systems with a new interactive Web site

    SciTech Connect

    Mller, Tobias W. A.; Haghighipour, Nader

    2014-02-10

    We have developed a comprehensive methodology and an interactive Web site for calculating the habitable zone (HZ) of multiple star systems. Using the concept of spectral weight factor, as introduced in our previous studies of the calculations of HZ in and around binary star systems, we calculate the contribution of each star (based on its spectral energy distribution) to the total flux received at the top of the atmosphere of an Earth-like planet, and use the models of the HZ of the Sun to determine the boundaries of the HZ in multiple star systems. Our interactive Web site for carrying out these calculations is publicly available at http://astro.twam.info/hz. We discuss the details of our methodology and present its application to some of the multiple star systems detected by the Kepler space telescope. We also present the instructions for using our interactive Web site, and demonstrate its capabilities by calculating the HZ for two interesting analytical solutions of the three-body problem.

  14. Scrambling and modal noise mitigation in the Habitable Zone Planet Finder fiber feed

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Halverson, Samuel; Mahadevan, Suvrath; Ramsey, Lawrence W.

    2014-07-01

    We present the baseline fiber feed design for the Habitable-zone Planet Finder (HPF), a precision radial velocity (RV) spectrograph designed to detect Earth analogs around M-dwarfs. HPF is a stabilized, fiber-fed, R50,000 spectrograph operating in the near-infrared (NIR) from 0.82 to 1.3 m, and will be deployed on the Hobby- Eberly Telescope (HET) in Texas. While the essential function of the optical fibers is to deliver high throughput, this mode of light transport also provides the opportunity to introduce radial and azimuthal scrambling, which boosts instrument stability and thereby RV precision. Based on the unique requirements of HPF on the HET, we present initial tests showing very high scrambling gains via a compact scrambler in conjunction with octagonal fibers. Conversely, the propagation of light through the fibers injects modal noise, which can limit achievable RV precision. Laboratory tests of a custom-built mechanical agitator show significant gains over a static fiber feed. Overall, the fiber feed is designed to provide high relative throughput, excellent scrambling, and reliable modal noise suppression. We will also attempt to minimize focal ratio degradation (FRD) to the extent possible with the chosen configuration. HPF inculcates several other new technologies developed by the Penn State Optical-Infrared instrumentation group, including a rigorous calibration system, which are discussed separately in these proceedings.

  15. Habitable Zones around Main-sequence Stars: Dependence on Planetary Mass

    NASA Astrophysics Data System (ADS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; SchottelKotte, James; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M ? and 5 M ?. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (~10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (~7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  16. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    SciTech Connect

    Kaltenegger, Lisa; Haghighipour, Nader

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries ? Cen AB and HD 196886.

  17. DIRECT IMAGING IN THE HABITABLE ZONE AND THE PROBLEM OF ORBITAL MOTION

    SciTech Connect

    Males, Jared R.; Skemer, Andrew J.; Close, Laird M.

    2013-07-01

    High contrast imaging searches for exoplanets have been conducted on 2.4-10 m telescopes, typically at H band (1.6 {mu}m) and used exposure times of {approx}1 hr to search for planets with semi-major axes of {approx}> 10 AU. We are beginning to plan for surveys using extreme-AO systems on the next generation of 30 m class telescopes, where we hope to begin probing the habitable zones (HZs) of nearby stars. Here we highlight a heretofore ignorable problem in direct imaging: planets orbit their stars. Under the parameters of current surveys, orbital motion is negligible over the duration of a typical observation. However, this motion is not negligible when using large diameter telescopes to observe at relatively close stellar distances (1-10 pc), over the long exposure times (10-20 hr) necessary for direct detection of older planets in the HZ. We show that this motion will limit our achievable signal-to-noise ratio and degrade observational completeness. Even on current 8 m class telescopes, orbital motion will need to be accounted for in an attempt to detect HZ planets around the nearest Sun-like stars {alpha} Cen A and B, a binary system now known to harbor at least one planet. Here we derive some basic tools for analyzing this problem, and ultimately show that the prospects are good for de-orbiting a series of shorter exposures to correct for orbital motion.

  18. RESEARCH PAPER: The dynamical architecture and habitable zones of the quintuplet planetary system 55 Cancri

    NASA Astrophysics Data System (ADS)

    Ji, Jiang-Hui; Kinoshita, Hiroshi; Liu, Lin; Li, Guang-Yu

    2009-06-01

    We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this system can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790 AU <= a <= 5.900 AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and several stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.

  19. Estimates of dynamic parameters and boundaries of habitable zones of selected stars of the Pulkovo program

    NASA Astrophysics Data System (ADS)

    Shakht, N. A.; Romanenko, L. G.; Gorshanov, D. L.; Vasilkova, O. O.

    2016-01-01

    A list of selected binary stars is presented that have been observed for several decades using a 26-inch refractor at the Pulkovo Observatory. These stars are at a distance from 3.5 to 25 pc from the Sun. They belong to spectral classes F, G, K, and M. Their masses range from 0.3 to 1.5 solar masses. We have analyzed them as possible parent stars for exoplanets taking into account the physical characteristics of these stars. In view of dynamic parameters and orbital elements that we have obtained by Pulkovo observations, ephemerides of positions for the coming years are calculated. The boundaries of the habitable zones around these stars are calculated. The astrometric signal that depends on the gravitational influence of hypothetical planets is estimated. Space telescopes for astrometric observations with microsecond accuracy can be used to detect Earth-like planets near the closest stars of this program. This paper presents an overview of astrometric programs of searches for exoplanets.

  20. Asteroid flux and water transport towards circumprimary habitable zones in binary star systems

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pilat-Lohinger, E.; Eggl, S.; Lammer, H.; Johnston, C.; Maindl, T. I.; Dvorak, R.

    2015-10-01

    Dynamical simulations show that the outcome of planetary formation process can lead to various planetary architectures (i.e. location, size, mass and water content) when the star system is single or double. In the late phase of planetary formation, when embryosized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems' characteristics and their efficiency to move icy asteroids from beyond the snow-line into orbits crossing the HZ. In our results, we highlight the key role of secular and mean motion resonances, causing an efficient flux of asteroids to the HZ on a short timescale. This in turn leads to asteroids bearing a non negligeable amount of water towards the HZ and available for any planets or embryos moving in this area. We also discuss how mass loss mechanisms can alter the water content on asteroids' surface.

  1. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    SciTech Connect

    Burke, Christopher J.

    2014-09-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with ?{sub rv} ? 0.6 m s{sup 1} precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision ?{sub phot} ? 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a ?{sub rv} ? 2.0 m s{sup 1} precision radial velocity survey has comparable efficiency to a transit survey with ?{sub phot} ? 2300 ppm.

  2. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    PubMed

    Leconte, Jrmy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-01

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. PMID:25592420

  3. Delayed gratification habitable zones: when deep outer solar system regions become balmy during post-main sequence stellar evolution.

    PubMed

    Stern, S Alan

    2003-01-01

    Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >10(5) objects > or =50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, approximately 10(9) Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy. PMID:14577880

  4. Exoplanet detection. Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581.

    PubMed

    Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita

    2014-07-25

    The M dwarf star Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet--GJ 581g--is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the H? line, we measure a stellar rotation period of 130 2 days and a correlation for H? modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 standard deviations) while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g. PMID:24993348

  5. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). III. THE FIRST SEARCH FOR AN EXOMOON AROUND A HABITABLE-ZONE PLANET

    SciTech Connect

    Kipping, D. M.; Forgan, D.; Hartman, J.; Bakos, G. Á.; Nesvorný, D.; Schmitt, A.; Buchhave, L.

    2013-11-10

    Kepler-22b is the first transiting planet to have been detected in the habitable zone of its host star. At 2.4 R{sub ⊕}, Kepler-22b is too large to be considered an Earth analog, but should the planet host a moon large enough to maintain an atmosphere, then the Kepler-22 system may yet possess a telluric world. Aside from being within the habitable zone, the target is attractive due to the availability of previously measured precise radial velocities and low intrinsic photometric noise, which has also enabled asteroseismology studies of the star. For these reasons, Kepler-22b was selected as a target-of-opportunity by the 'Hunt for Exomoons with Kepler' (HEK) project. In this work, we conduct a photodynamical search for an exomoon around Kepler-22b leveraging the transits, radial velocities, and asteroseismology plus several new tools developed by the HEK project to improve exomoon searches. We find no evidence for an exomoon around the planet and exclude moons of mass M{sub S} > 0.5 M{sub ⊕} to 95% confidence. By signal injection and blind retrieval, we demonstrate that an Earth-like moon is easily detected for this planet even when the time-correlated noise of the data set is taken into account. We provide updated parameters for the planet Kepler-22b, including a revised mass of M{sub P} < 53 M{sub ⊕} to 95% confidence and an eccentricity of 0.13{sub -0.13}{sup +0.36} by exploiting Single-body Asterodensity Profiling. Finally, we show that Kepler-22b has a >95% probability of being within the empirical habitable zone but a <5% probability of being within the conservative habitable zone.

  6. Detection of a Proto-planetary Clump in the Habitable Zone of GM Cephei

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Hu, S. C.-L.

    2014-04-01

    GM Cephei is an active T Tauri star in the young open cluster Trumpler 37, showing abrupt UX Orionis type of photometric variability. Its light curves exhibit frequent, sporadic brightening events, each of <0.5 mag and lasting for days, which must have been originated from unsteady circumstellar accretion. In addition, the star undergoes a brightness drop up to ~1 mag lasting for about a month, during which the star became bluer when fainter. Moreover, the brightness drops seem to have a recurrence timescale of about 300 days. It is proposed that the brightness drop arises from obscuration of the central star by an orbiting dust concentration, exemplifying disk inhomogeneity in transition between grain coagulation and planetesimal formation in a young circumstellar disk. GM Cep was found to show a few percent polarization in the optical wavelengths, and an enhanced level of polarization during the occultation phase.

  7. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    SciTech Connect

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.; Rowe, Jason F.; Huber, Daniel; Jenkins, Jon M.; Quintana, Elisa V.; Still, Martin; Twicken, Joseph D.; Bryson, Stephen T.; Borucki, William J.; Caldwell, Douglas A.; Clarke, Bruce D.; Christiansen, Jessie L; Coughlin, Jeffrey L.; Ciardi, David; Fischer, Debra A.; and others

    2013-05-10

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radius of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.

  8. WATER-PLANETS IN THE HABITABLE ZONE: ATMOSPHERIC CHEMISTRY, OBSERVABLE FEATURES, AND THE CASE OF KEPLER-62e AND -62f

    SciTech Connect

    Kaltenegger, L.; Sasselov, D.; Rugheimer, S.

    2013-10-01

    Planets composed of large quantities of water that reside in the habitable zone are expected to have distinct geophysics and geochemistry of their surfaces and atmospheres. We explore these properties motivated by two key questions: whether such planets could provide habitable conditions and whether they exhibit discernable spectral features that distinguish a water-planet from a rocky Earth-like planet. We show that the recently discovered planets Kepler-62e and -62f are the first viable candidates for habitable zone water-planets. We use these planets as test cases for discussing those differences in detail. We generate atmospheric spectral models and find that potentially habitable water-planets show a distinctive spectral fingerprint in transit depending on their position in the habitable zone.

  9. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays. PMID:16225432

  10. Validation of 12 Small Kepler Transiting Planets in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Kipping, David M.; Fressin, Francois; Caldwell, Douglas A.; Twicken, Joseph D.; Ballard, Sarah; Batalha, Natalie M.; Bryson, Stephen T.; Ciardi, David R.; Henze, Christopher E.; Howell, Steve B.; Isaacson, Howard T.; Jenkins, Jon M.; Muirhead, Philip S.; Newton, Elisabeth R.; Petigura, Erik A.; Barclay, Thomas; Borucki, William J.; Crepp, Justin R.; Everett, Mark E.; Horch, Elliott P.; Howard, Andrew W.; Kolbl, Rea; Marcy, Geoffrey W.; McCauliff, Sean; Quintana, Elisa V.

    2015-02-01

    We present an investigation of 12 candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For 11 of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3?) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6?). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R ?. All 12 objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.

  11. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    SciTech Connect

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.; SchottelKotte, James; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  12. Asteroid flux towards circumprimary habitable zones in binary star systems. I. Statistical overview

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pilat-Lohinger, E.; Eggl, S.; Maindl, T. I.; Schäfer, C.; Speith, R.; Dvorak, R.

    2015-09-01

    Context. So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architecture (i.e. location, size, mass, and water content) when the star system is single or double. Aims: In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. Methods: We modelled a belt of 10 000 asteroids (remnants from the late phase of the planetary formation process) beyond the snow line. The planetesimals are placed randomly around the primary star and move under the gravitational influence of the two stars and a gas giant. As the planetesimals do not interact with each other, we divided the belt into 100 subrings which were integrated separately. In this statistical study, several double star configurations with a G-type star as primary are investigated. Results: Our results show that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favours a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ.

  13. Towards the habitable zone: Direct imaging of extrasolar planets with the Magellan AO system

    NASA Astrophysics Data System (ADS)

    Males, Jared Robert

    One of the most compelling scientific quests ever undertaken is the quest to find life in our Universe somewhere other than Earth. An important piece to this puzzle is finding and characterizing extrasolar planets. This effort, particularly the characterization step, requires the ability to directly image such planets. This is a challenging task---such planets are much fainter than their host stars. One of the major solutions to this problem is Adaptive Optics (AO), which allows us to correct the turbulence in the Earth's atmosphere, and thereby further the hunt for exoplanets with ground based telescopes. The Magellan Adaptive Optics system has recently obtained its first on-sky results at Las Campanas Observatory, marking a significant step forward in the development of high-resolution high-contrast ground-based direct imaging. MagAO includes a visible wavelength science camera, VisAO, which---for the first time---provides diffraction limited imaging, in long exposures, on a large filled-aperture (6.5 m) telescope. In this dissertation we report on the design, development, laboratory testing, and initial on-sky results of MagAO and VisAO, which include the first ground-based image of an exoplanet (beta Pictoris b) with a CCD. We also discuss some of the exciting science planned for this system now that it is operational. We close with an analysis of a new problem in direct imaging: planets orbiting their stars move fast enough in the habitable zone to limit our ability to detect them.

  14. Observations of Interstellar Formamide: Availability of a Prebiotic Precursor in the Galactic Habitable Zone

    PubMed Central

    Adande, Gilles R.; Woolf, Neville J.

    2013-01-01

    Abstract We conducted a study on interstellar formamide, NH2CHO, toward star-forming regions of dense molecular clouds, using the telescopes of the Arizona Radio Observatory (ARO). The Kitt Peak 12 m antenna and the Submillimeter Telescope (SMT) were used to measure multiple rotational transitions of this molecule between 100 and 250 GHz. Four new sources of formamide were found [W51M, M17 SW, G34.3, and DR21(OH)], and complementary data were obtained toward Orion-KL, W3(OH), and NGC 7538. From these observations, column densities for formamide were determined to be in the range of 1.1×1012 to 9.1×1013 cm−2, with rotational temperatures of 70–177 K. The molecule is thus present in warm gas, with abundances relative to H2 of 1×10−11 to 1×10−10. It appears to be a common constituent of star-forming regions that foster planetary systems within the galactic habitable zone, with abundances comparable to that found in comet Hale-Bopp. Formamide's presence in comets and molecular clouds suggests that the compound could have been brought to Earth by exogenous delivery, perhaps with an infall flux as high as ∼0.1 mol/km2/yr or 0.18 mmol/m2 in a single impact. Formamide has recently been proposed as a single-carbon, prebiotic source of nucleobases and nucleic acids. This study suggests that a sufficient amount of NH2CHO could have been available for such chemistry. Key Words: Formamide—Astrobiology—Radioastronomy—ISM—Comets—Meteorites. Astrobiology 13, 439–453. PMID:23654214

  15. A simple evolutional model of Habitable Zone around host stars with various mass and low metallicity

    NASA Astrophysics Data System (ADS)

    Oishi, Midori; Kamaya, Hideyuki

    2016-02-01

    Habitable Zone (HZ) is defined as a life existence area, where water at the surface of the terrestrial planet is in liquid phase. This is caused by the balance of flux from the host star and effective radiative cooling with greenhouse effect of the planet. However, the flux varies according to evolutional phase of the host star. So, a simple but newest HZ model considering stellar mass range from 0.08 to 4.00 M⊙ has been proposed. It studies both at zero-age main sequence (ZAMS) and terminal-age main sequence (TMS) phases to examine persistence of HZ. By the way, it discusses the case of the metallicity like the Sun. Actually, it is interesting to study a HZ model considering host stars with low metallicity. So, we examine the effect of metallicity, following the precedent simple model. In our analysis, metallicity affects little for HZ orbital range at ZAMS, while it affects clearly in case of TMS. Since the inner and outer HZ boundaries at TMS are shifted outward especially in the mass range from 1.5 to 2.0 M⊙, we find persistent HZ is allowed above about 1.8 M⊙. The age of the universe is 13.8 Gyr, which is comparable to main sequence life time of about 0.8 M⊙ for the low metallicity case. Then, the effect of metallicity to estimate HZ of low metallicity host stars is important for the mass range from 0.8 to 1.8 M⊙.

  16. Bistability of the climate around the habitable zone: a thermodynamic investigation

    NASA Astrophysics Data System (ADS)

    Pascale, S.; Boschi, R.; Lucarini, V.

    2012-12-01

    The goal of this paper is to explore the potential multistability of the cli- mate of a planet around the habitable zone. We apply our methodology to the Earth system, but our investigation has more general relevance. A thor- ough investigation of the thermodynamics of the climate system is performed for very diverse conditions of energy input and infrared atmosphere opacity. Using PlaSim, an Earth-like general circulation model, the solar constant S is modulated between 1160 and 1510 Wm-2 and the CO2 concentration, [CO2], from 90 to 2880 ppm. It is observed that in such a parameter range the climate is bistable, i.e. there are two coexisting attractors, one char- acterised by warm, moist climates (W) and one by completely frozen sea surface (Snowball Earth, SB). Linear relationships are found for the two transition lines (W→SB and SB →W) in (S,[CO2]) between S and the log- arithm of [CO2]. The dynamical and thermodynamical properties - energy fluxes, Lorenz energy cycle, Carnot efficiency, material entropy production - of the W and SB states are very different: W states are dominated by the hydrological cycle and latent heat is prominent in the material entropy production; the SB states are eminently dry climates where heat transport is realized through sensible heat fluxes and entropy mostly generated by dis- sipation of kinetic energy. We also show that the Carnot efficiency regularly increases towards each transition between W and SB, with a large decrease in each transition. Finally, we propose well-defined empirical functions al- lowing for expressing the global non-equilibrium thermodynamical properties of the system in terms of either the mean surface temperature or the mean planetary emission temperature. This paves the way for the possibility of proposing efficient parametrisations of complex non-equilibrium properties and of practically deducing fundamental properties of a planetary system from a relatively simple observable.

  17. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  18. Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone.

    PubMed

    Adande, Gilles R; Woolf, Neville J; Ziurys, Lucy M

    2013-05-01

    We conducted a study on interstellar formamide, NH2CHO, toward star-forming regions of dense molecular clouds, using the telescopes of the Arizona Radio Observatory (ARO). The Kitt Peak 12 m antenna and the Submillimeter Telescope (SMT) were used to measure multiple rotational transitions of this molecule between 100 and 250 GHz. Four new sources of formamide were found [W51M, M17 SW, G34.3, and DR21(OH)], and complementary data were obtained toward Orion-KL, W3(OH), and NGC 7538. From these observations, column densities for formamide were determined to be in the range of 1.110(12) to 9.110(13) cm(-2), with rotational temperatures of 70-177 K. The molecule is thus present in warm gas, with abundances relative to H2 of 110(-11) to 110(-10). It appears to be a common constituent of star-forming regions that foster planetary systems within the galactic habitable zone, with abundances comparable to that found in comet Hale-Bopp. Formamide's presence in comets and molecular clouds suggests that the compound could have been brought to Earth by exogenous delivery, perhaps with an infall flux as high as ~0.1 mol/km(2)/yr or 0.18 mmol/m(2) in a single impact. Formamide has recently been proposed as a single-carbon, prebiotic source of nucleobases and nucleic acids. This study suggests that a sufficient amount of NH2CHO could have been available for such chemistry. PMID:23654214

  19. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs.

    PubMed

    Luger, R; Barnes, R

    2015-02-01

    We show that terrestrial planets in the habitable zones of M dwarfs older than ?1?Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ?5 bar/Myr on Earth-mass planets and up to ?25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars. PMID:25629240

  20. Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks

    NASA Astrophysics Data System (ADS)

    Lyra, W.; Johansen, A.; Zsom, A.; Klahr, H.; Piskunov, N.

    2009-04-01

    Context: As accretion in protoplanetary disks is enabled by turbulent viscosity, the border between active and inactive (dead) zones constitutes a location where there is an abrupt change in the accretion flow. The gas accumulation that ensues triggers the Rossby wave instability, which in turn saturates into anticyclonic vortices. It has been suggested that the trapping of solids within them leads to a burst of planet formation on very short timescales. Aims: We study in the formation and evolution of the vortices in greater detail, focusing on the implications for the dynamics of embedded solid particles and planet formation. Methods: We performed two-dimensional global simulations of the dynamics of gas and solids in a non-magnetized thin protoplanetary disk with the Pencil code. We used multiple particle species of radius 1, 10, 30, and 100 cm. We computed the particles' gravitational interaction by a particle-mesh method, translating the particles' number density into surface density and computing the corresponding self-gravitational potential via fast Fourier transforms. The dead zone is modeled as a region of low viscosity. Adiabatic and locally isothermal equations of state are used. Results: The Rossby wave instability is triggered under a variety of conditions, thus making vortex formation a robust process. Inside the vortices, fast accumulation of solids occurs and the particles collapse into objects of planetary mass on timescales as short as five orbits. Because the drag force is size-dependent, aerodynamical sorting ensues within the vortical motion, and the first bound structures formed are composed primarily of similarly-sized particles. In addition to erosion due to ram pressure, we identify gas tides from the massive vortices as a disrupting agent of formed protoplanetary embryos. We find evidence that the backreaction of the drag force from the particles onto the gas modifies the evolution of the Rossby wave instability, with vortices being launched only at later times if this term is excluded from the momentum equation. Even though the gas is not initially gravitationally unstable, the vortices can grow to Q ? 1 in locally isothermal runs, which halts the inverse cascade of energy towards smaller wavenumbers. As a result, vortices in models without self-gravity tend to rapidly merge towards a m = 2 or m =1 mode, while models with self-gravity retain dominant higher order modes (m = 4 or m = 3) for longer times. Non-selfgravitating disks thus show fewer and stronger vortices. We also estimate the collisional velocity history of the particles that compose the most massive embryo by the end of the simulation, finding that the vast majority of them never experienced a collision with another particle at speeds faster than 1 m s-1. This result lends further support to previous studies showing that vortices provide a favorable environment for planet formation.

  1. Bistability of the climate around the habitable zone: A thermodynamic investigation

    NASA Astrophysics Data System (ADS)

    Boschi, Robert; Lucarini, Valerio; Pascale, Salvatore

    2013-11-01

    The goal of this paper is to explore the potential multistability of the climate for a planet around the habitable zone. We apply our methodology to the Earth system, but our investigation has more general relevance. A thorough investigation of the thermodynamics of the climate system is performed for very diverse conditions of energy input and infrared atmosphere opacity. Using PlaSim, an Earth-like general circulation model, the solar constant S? is modulated between 1160 and 1510 W m-2 and the CO2 concentration, [CO2], between 90 and 2880 ppm. It is observed that in such a parameter range the climate is bistable, i.e. there are two coexisting attractors, one characterised by warm, moist climates (W) and one by completely frozen sea surface (Snowball Earth, SB). The tipping points of both the transitions (W ? SB and SB ?W) are located along straight lines in the (S?, log[CO2]) space. The dynamical and thermodynamical properties - energy fluxes, Lorenz energy cycle, Carnot efficiency, material entropy production - of the W and SB states are very different: W states are dominated by the hydrological cycle and latent heat is prominent in the material entropy production; the SB states are eminently dry climates where heat transport is realised through sensible heat fluxes and entropy mostly generated by dissipation of kinetic energy. We also show that the Carnot efficiency regularly increases towards each transition between W and SB, with a large discontinuous decrease at the point of each transition. Finally, we propose well-defined empirical functions allowing for expressing the global non-equilibrium thermodynamical properties of the system in terms of either the mean surface temperature or the mean planetary emission temperature. While the specific results presented in this paper depend on some characteristics of the Earth system (e.g. rotation rate, position of the continents), this paves the way for the possibility of proposing efficient parameterisations of complex non-equilibrium properties and of practically deducing fundamental properties of a planetary system from a relatively simple observable. As a preliminary result, we obtain that when reducing the rotation rate of the planet by a factor of two, the multistability properties, the quantitative estimators of the thermodynamics of the system, and the approximate parameterisations in terms of the surface of emission temperature are only weakly affected.

  2. EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE

    SciTech Connect

    Danchi, William C.; Lopez, Bruno E-mail: bruno.lopez@oca.eu

    2013-05-20

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M{sub Sun} for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M{sub Sun} star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and {approx}4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  3. Extreme Water Loss and Abiotic O2 Buildup on Planets Throughout the Habitable Zones of M Dwarfs

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars. Key Words: Astrobiology—Biosignatures—Extrasolar terrestrial planets—Habitability—Planetary atmospheres. Astrobiology 15, 119–143. PMID:25629240

  4. Extreme Water Loss and Abiotic O2 Buildup On Planets Throughout the Habitable Zones of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Luger, Rodrigo; Barnes, Rory

    2015-01-01

    We show that terrestrial planets in the habitable zones of M dwarfs older than ~1 Gyr could have been in runaway greenhouses for several hundred Myr following their formation due to the star's extended pre-main sequence phase. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone. We find that the amount of water lost roughly scales with the planet mass: super-Earths, which lose water primarily via the escape of hydrogen, lose more water than Earth-mass planets, which lose water more slowly via the escape of both hydrogen and oxygen. If the surface is able to absorb most of the photolytically produced oxygen, planets around low mass M dwarfs can be completely desiccated for initial inventories of up to several tens of Earth oceans. On the other hand, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bars of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate of ~5 bars/Myr on Earth-mass planets and up to ~25 bars/Myr on super- Earths. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low mass stars.

  5. The Loss of Nitrogen-rich Atmospheres from Earth-like Exoplanets within M-star Habitable Zones

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Lichtenegger, H. I. M.; Khodachenko, M. L.; Kulikov, Y. N.; Griessmeier, J.

    2011-12-01

    After the first discovery of massive Earth-like exoplanets around M-type dwarf stars, the search for exoplanets which resemble more an Earth analogue continues. The discoveries of super-Earth planets pose questions on habitability and the possible origin of life on such planets. Future exoplanet space projects designed to characterize the atmospheres of terrestrial exoplanets will also search for atmospheric species which are considered as bio-markers (e.g. O3, H2O, CH4, etc.). By using the Earth with its atmosphere as a proxy and in agreement with the classical habitable zone concept, one should expect that Earth-like exoplanets suitable for life as we know it should have a nitrogen atmosphere and a very low CO2 content. Whether a water bearing terrestrial planet within its habitable zone can evolve into a habitable world similar than the Earth, depends on the capability of its water-inventory and atmosphere to survive the period of high radiation of the young and/or active host star. Depending on their size and mass, lower mass stars remain at high X-ray and EUV (XUV) activity levels for hundreds of Ma's to Ga's. XUV flux values which are 10 or 20 times higher than that of the present Sun can heat the thermosphere and expand the exobase of N2-rich Earth-like exoplanets to altitudes well above their expected magnetopause distances. This results in magnetically non-protected upper atmospheres and high non-thermal escape rates. We studied this plasma induced N+ ion pick up escape and applied a numerical test-particle stellar wind plasma - exosphere interaction model. Our results indicate that Earth-analogue exoplanets with atmosphere compositions similar to that of present Earth will lose their nitrogen inventories if they are exposed over a sufficient period of time to XUV fluxes ? 10 times that of the present Sun. Because most M-type stars are active in XUV radiation we suggest that these planets will undergo a different atmospheric evolution than the Earth so that life as we know it may not evolve on their surfaces.

  6. STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE

    SciTech Connect

    Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël; Fabrycky, Daniel C.

    2014-05-20

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

  7. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth of any major planets in this region, plus the planetesimal disk's heavy mass-loss rate, suggests that the 75 {approx}< r < 150 AU zone at {beta} Pic might be a region of planetesimal destruction, rather than a site of ongoing planet formation.

  8. Diagnosing Circumstellar Debris Disks

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.

    2010-08-01

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting β Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Qs . The model is then applied to optical observations of the edge-on dust disk orbiting β Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 <~ r <~ 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Qs = 0.7), then the cross section of dust in the disk is Ad ~= 2 × 1020 km2 and its mass is Md ~= 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, \\dot{M}_d˜ 9 M ⊕ Myr-1, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth of any major planets in this region, plus the planetesimal disk's heavy mass-loss rate, suggests that the 75 <~ r < 150 AU zone at β Pic might be a region of planetesimal destruction, rather than a site of ongoing planet formation.

  9. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    SciTech Connect

    Quintana, Elisa V.; Lissauer, Jack J.

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  10. A study of the stable regions in the planetary system HD 74156 - Can it host earthlike planets in habitable zones?

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Pilat-Lohinger, E.; Funk, B.; Freistetter, F.

    2003-10-01

    Using numerical methods we thoroughly investigate dynamical stability in the region between the two planets found in HD 74156. The two planets with semimajor axes 0.28 AU and 3.82 AU move on quite eccentric orbits (e=0.649 and 0.354). There is a region between 0.7 and 1.4 AU which may host additional planets which we checked via numerical integrations for different dynamical models. Besides the orbital evolution of several thousands of massless planets in a three-dimensional restricted 4-body problem (host star, two planets + massless bodies) we also have undertaken test computations of the orbital evolution of fictitious planets with masses of 0.1, 0.3 and 1 MJUP in the region between HD 74156b and HD 74156c. For direct numerical integrations up to 107 years we used the Lie-integrator, a method with adaptive step-size. We also computed the Fast Lyapunov Indicators to detect chaotic motion in this region. We emphasize the important rle of the inner resonances (with the outer planet) and outer resonances (with the inner planet) with test bodies located inside the resonances. In these two ``resonance'' regions almost no orbits survive. The region between the 1:5 outer resonance (0.8 AU) and the 5:1 inner resonance (1.3 AU), just in the right position for habitability, is also not very likely to host planets. Our results do not strictly ``forbid'' planets to move in the habitable zone, but their existence is unlikely.

  11. Atmospheric expansion in runaway greenhouse atmospheres: the inner edge of the habitable zone depends on planet mass

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.; Zahnle, K. J.

    2014-12-01

    As a wet planet becomes hot, evaporation of the ocean provides a thick steam atmosphere. As the atmosphere thickens, the level at which optical depth is unity (whence radiative emission and absorption dominantly occur) rises into the atmosphere, first for thermal wavelengths and later for solar wavelengths. Consequently, two radiation limits emerge. First, an asymptotic limit on the thermal radiation, as the level at which thermal emission occurs tends towards a fixed temperature, decoupled from surface temperature. Next, a limit the albedo of the planet, as all incoming sunlight is either reflected or absorbed in the atmosphere and almost none reaches the surface. A runaway greenhouse occurs when the product of co-albedo and area-averaged incoming sunlight exceeds the thermal radiation limit. Earth today is perilously close to this [1].Returning to the first sentence, we generate a thick atmosphere: the height of optical depth of unity becomes a non-trivial fraction of the planetary radius. Hence the area of the absorbing and emitting surfaces increase. Thermal emission wins slightly, as this occurs higher, increasing thermal emission in all cases. The underlying tendency is for a larger thermal limit for heavier planets due to pressure effects, making these appear more resistant to a runaway. However, atmospheric expansion affects light planets more, making these seem much more resilient. The least resilient planet would be between Mars-size and Venus-size (Figure 1). It would be foolish to regard small planets as habitable. As the atmospheres become large, so does the problem of atmospheric escape. Theoretical considerations show hydrodynamic escape to happen disastrously for a Europa-size planet. The observation is that Mars is too feeble to hold on to any hefty atmosphere, even far from the Sun as it is, is probably relevant too. The take home points for habitable zone nerds are: (1) planet size matters (2) for small planets, atmospheric escape from a "moist greenhouse" state, with habitable surface temperatures, is the mortal wound. [1] Goldblatt, C., Robinson, T.D., Zahnle, K.J. & Crisp, D., Low simulated radiation limit for runaway greenhouse climates, Nat. Geosci, 6, 661-667, doi:10.1038/NGEO1892

  12. Occurrence and food habits of the round goby in the profundal zone of southwestern Lake Ontario

    USGS Publications Warehouse

    Walsh, M.G.; Dittman, D.E.; O'Gorman, R.

    2007-01-01

    Little is known about the ecology of round goby (Neogobius melanostomus), an invasive benthic fish, in the profundal zone of the Great Lakes. In April 2002-2005 we caught increasing numbers of round gobies with a bottom trawl in the 45-150 m depth range of southwestern Lake Ontario. In 2005, we examined gut contents of 30 round gobies from each of three depths, 55, 95, and 130 m, and qualitatively compared gut contents with density of benthic invertebrates determined by Ponar grabs. Round goby guts contained mostly Dreissena spp. and opposum shrimp, Mysis relicta (Mysis); the frequency of occurrence of dreissenids in guts decreased with depth, whereas the frequency of occurrence of Mysis in guts increased with depth. Abundance of these invertebrates in the environment followed the same pattern, although dreissenids of optimum edible size (3-12 mm) were still abundant (1,373/m2) at 130 m, where round gobies primarily consumed Mysis, suggesting that round gobies may switch from dreissenids to more profitable prey when it is available. Other food items were ostracods and fish, with ostracods generally eaten by smaller round gobies and fish eaten by larger round gobies. Occurrence and increasing abundance of round gobies in the profundal zone and predation on Mysis by round goby could have far-reaching consequences for the Lake Ontario fish community.

  13. A Campaign for the Detection of Earth-Mass Planets in the Habitable Zone of Alpha Centauri

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Endl, Michael; Bergmann, Christoph; Hearnshaw, John; Barnes, Stuart I.; Wright, Duncan

    2014-04-01

    We review the possible formation and orbital stability of Earth-mass or super Earth-mass planets around either of the stars Alpha Centauri A or B and describe a program at Mt John University Observatory using the Doppler method that aims to detect such planets. From New Zealand, we are able to observe the Alpha Centauri system year-round. This is critical in order to acquire data of sufficient quantity and phase coverage to detect the orbit of a terrestrial-mass planet in the habitable zone. Our observations are being made at high resolution (R = 70,000) and high signal-to-noise with the Hercules vacuum echelle spectrograph attached to the 1-m McLellan telescope by a 25-m long optical fibre and using an iodine cell. We discuss the velocity precision and instrumental stability required for success and outline the progress of the observations so far. At present we are collecting about 10,000 observations of each star, A and B, per year with a typical precision of 2.5 m/s per observation.

  14. The Habitable-zone Planet Finder (HPF): Achieving high precision radial velocities and mitigating stellar activity noise

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Ramsey, Lawrence W.; Terrien, Ryan; Robertson, Paul; Marchwinski, Robert C.; Hearty, Fred; Levi, Eric; Kári Stefánsson, Gudmundur; Bender, Chad F.; Halverson, Samuel; Roy, Arpita; Nelson, Matt; Schwab, Christian

    2015-01-01

    HPF is a stabilized, fiber-fed, near infrared (NIR) spectrograph currently being built at Penn State for the 10m Hobby-Eberly Telescope (HET). HPF will be capable of discovering low mass planets in the Habitable Zones of mid-late M dwarfs via radial velocity (RV). We discuss the development of critical sub-systems like our high-stability temperature control system, vacuum cryostat, and implementation of new wavelength calibration techniques. The design of the HET enables queue-scheduled operation, but its variable pupil requires attention to both near- and far-field fiber scrambling, which we accomplish with double scramblers and octagonal fibers.HPF will provide partial bandwith coverage of the information-rich z, Y and J NIR bands at a spectral resolving power of R˜50,000. While stellar activity induced RV noise is lower in the NIR than at visible wavelengths, we have carefully included NIR activity indicators in our spectral bandpass to help discriminate stellar activity from real planet signals, as has been recently demonstrated for Gliese 581 and Gliese 667C systems.

  15. Delayed Gratification Habitable Zones (DG-HZs): When Deep Outer Solar System Regions Become Balmy During Post-Main Sequence Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Stern, S. A.

    2002-09-01

    Late in the Sun's evolution it, like all low and moderate mass stars, it will burn as a red giant, generating 1000s of solar luminosities for a few tens of millions of years. A dozen years ago this stage of stellar evolution was predicted to create observable sublimation signatures in systems where Kuiper Belts (KBs) are extant (Stern et al. 1990, Nature, 345, 305); recently, the SWAS spacecraft detected such systems (Melnick et al. 2001, 412, 160). During the red giant phase, the habitable zone of our solar system will lie in the region where Triton, Pluto-Charon, and KBOs orbit. Compared to the 1 AU habitable zone where Earth resided early in the solar system's history, this "delayed gratification habitable zone (DG-HZ)" will enjoy a far less biologically hazardous environment-- with far lower harmful UV radiation levels from the Sun, and a far quieter collisional environment. Objects like Triton, Pluto-Charon, and KBOs, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Sun's DG-HZ may only be of academic interest owing to its great separation from us in time. However, several 108 approximately solar-type Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our solar system (and as inferred in numerous main sequence stellar disk systems), then DG-HZs form a kind of niche habitable zone that is likely to be numerically common in the galaxy. I will show the calculated temporal evolution of DG-HZs around various stellar types using modern stellar evolution luminosity tracks, and then discuss various aspects of DG-HZs, including the effects of stellar pulsations and mass loss winds. This work was supported by NASA's Origins of Solar Systems Program.

  16. Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; Chen, C. H.; Wyatt, M. C.; Morlok, A.

    2008-02-01

    We present an analysis of the gas-poor circumstellar material in the HD 113766 binary system (F3/F5, 10-16 Myr), recently observed by the Spitzer Space Telescope. For our study we have used the IR mineralogical model derived from observations of the Deep Impact experiment. We find the dust dominated by warm, fine (~1 μm) particles, abundant in Mg-rich olivine, crystalline pyroxenes, amorphous silicates, Fe-rich sulfides, amorphous carbon, and colder water ice. The warm dust material mix is akin to an inner main-belt asteroid of S-type composition. The ~440 K effective temperature of the warm dust implies that the bulk of the observed material is in a narrow belt ~1.8 AU from the 4.4 L☉ central source, in the terrestrial planet-forming region and habitable zone of the system (equivalent to 0.9 AU in the solar system). The icy dust lies in two belts, located at 4-9 and 30-80 AU. The lower bound of warm dust mass in 0.1-20 μm, dn/da ~ a‑3.5 particles is very large, at least 3 × 1020 kg, equivalent to a 320 km radius asteroid of 2.5 g cm‑3 density. Assuming 10 m particles are the largest present, the lower bound of warm dust mass is at least 0.5 MMars. Neither primordial nor mature, the dust around HD 113766A originates from catastrophic disruption of terrestrial planet embryo(s) and subsequent grinding of the fragments or from collisions in a young, extremely dense asteroid belt undergoing planetary aggregation. The persistence of the strong IR excess over the last two decades argues for a mechanism to provide replenishment of the circumstellar material on yearly timescales.

  17. A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone

    NASA Astrophysics Data System (ADS)

    Anglada-Escud, Guillem; Tuomi, Mikko; Gerlach, Enrico; Barnes, Rory; Heller, Ren; Jenkins, James S.; Wende, Sebastian; Vogt, Steven S.; Butler, R. Paul; Reiners, Ansgar; Jones, Hugh R. A.

    2013-08-01

    Context. Since low-mass stars have low luminosities, orbits at which liquid water can exist on Earth-sized planets are relatively close-in, which produces Doppler signals that are detectable using state-of-the-art Doppler spectroscopy. Aims: GJ 667C is already known to be orbited by two super-Earth candidates. We have recently applied developed data analysis methods to investigate whether the data supports the presence of additional companions. Methods: We obtain new Doppler measurements from HARPS extracted spectra and combined them with those obtained from the PFS and HIRES spectrographs. We used Bayesian and periodogram-based methods to re-assess the number of candidates and evaluated the confidence of each detection. Among other tests, we validated the planet candidates by analyzing correlations of each Doppler signal with measurements of several activity indices and investigated the possible quasi-periodic nature of signals. Results: Doppler measurements of GJ 667C are described better by six (even seven) Keplerian-like signals: the two known candidates (b and c); three additional few-Earth mass candidates with periods of 92, 62, and 39 days (d, e and f); a cold super-Earth in a 260-day orbit (g) and tantalizing evidence of a ~1 M? object in a close-in orbit of 17 days (h). We explore whether long-term stable orbits are compatible with the data by integrating 8 104 solutions derived from the Bayesian samplings. We assess their stability using secular frequency analysis. Conclusions: The system consisting of six planets is compatible with dynamically stable configurations. As for the solar system, the most stable solutions do not contain mean-motion resonances and are described well by analytic Laplace-Lagrange solutions. Preliminary analysis also indicates that masses of the planets cannot be higher than twice the minimum masses obtained from Doppler measurements. The presence of a seventh planet (h) is supported by the fact that it appears squarely centered on the only island of stability left in the six-planet solution. Habitability assessments accounting for the stellar flux, as well as tidal dissipation effects, indicate that three (maybe four) planets are potentially habitable. Doppler and space-based transit surveys indicate that 1) dynamically packed systems of super-Earths are relatively abundant and 2) M-dwarfs have more small planets than earlier-type stars. These two trends together suggest that GJ 667C is one of the first members of an emerging population of M-stars with multiple low-mass planets in their habitable zones. Based on data obtained from the ESO Science Archive Facility under request number ANGLADA36104. Such data had been previously obtained with the HARPS instrument on the ESO 3.6 m telescope under the programs 183.C-0437, 072.C-0488 and 088.C-0662, and with the UVES spectrograph at the Very Large Telescopes under the program 087.D-0069. This study also contains observations obtained at the W.M. Keck Observatory - which is operated jointly by the University of California and the California Institute of Technology - and observations obtained with the Magellan Telescopes, operated by the Carnegie Institution, Harvard University, University of Michigan, University of Arizona, and the Massachusetts Institute of Technology.Time-series (Table C.2) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A126Appendices except Table C.2 are available in electronic form at http://www.aanda.org

  18. Discovery and Validation of Kepler-452b: A 1.6 R⨁ Super Earth Exoplanet in the Habitable Zone of a G2 Star

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Twicken, Joseph D.; Batalha, Natalie M.; Caldwell, Douglas A.; Cochran, William D.; Endl, Michael; Latham, David W.; Esquerdo, Gilbert A.; Seader, Shawn; Bieryla, Allyson; Petigura, Erik; Ciardi, David R.; Marcy, Geoffrey W.; Isaacson, Howard; Huber, Daniel; Rowe, Jason F.; Torres, Guillermo; Bryson, Stephen T.; Buchhave, Lars; Ramirez, Ivan; Wolfgang, Angie; Li, Jie; Campbell, Jennifer R.; Tenenbaum, Peter; Sanderfer, Dwight; Henze, Christopher E.; Catanzarite, Joseph H.; Gilliland, Ronald L.; Borucki, William J.

    2015-08-01

    We report on the discovery and validation of Kepler-452b, a transiting planet identified by a search through the 4 years of data collected by NASA’s Kepler Mission. This possibly rocky {1.63}-0.20+0.23 {R}\\oplus planet orbits its G2 host star every {384.843}-0.012+0.007 days, the longest orbital period for a small ({R}{{P}}\\lt 2 {R}\\oplus ) transiting exoplanet to date. The likelihood that this planet has a rocky composition lies between 49% and 62%. The star has an effective temperature of 5757 ± 85 K and a {log}g of 4.32 ± 0.09. At a mean orbital separation of {1.046}-0.015+0.019 AU, this small planet is well within the optimistic habitable zone of its star (recent Venus/early Mars), experiencing only 10% more flux than Earth receives from the Sun today, and slightly outside the conservative habitable zone (runaway greenhouse/maximum greenhouse). The star is slightly larger and older than the Sun, with a present radius of {1.11}-0.09+0.15 {R}⊙ and an estimated age of ˜6 Gyr. Thus, Kepler-452b has likely always been in the habitable zone and should remain there for another ˜3 Gyr.

  19. The Inner Edge of the Habitable Zone for Synchronously Rotating Planets around Low-mass Stars Using General Circulation Models

    NASA Astrophysics Data System (ADS)

    Kopparapu, Ravi kumar; Wolf, Eric T.; Haqq-Misra, Jacob; Yang, Jun; Kasting, James F.; Meadows, Victoria; Terrien, Ryan; Mahadevan, Suvrath

    2016-03-01

    Terrestrial planets at the inner edge of the habitable zone (HZ) of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the HZ for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar cloud deck are sensitive to the precise rotation rate of the planet. Around mid-to-late M-dwarf stars with low metallicity, planetary rotation rates at the inner edge of the HZ become faster, and the inner edge of the HZ is farther away from the host stars than in previous GCM studies. For an Earth-sized planet, the dynamical regime of the substellar clouds begins to transition as the rotation rate approaches ∼10 days. These faster rotation rates produce stronger zonal winds that encircle the planet and smear the substellar clouds around it, lowering the planetary albedo, and causing the onset of the water-vapor greenhouse climatic instability to occur at up to ∼25% lower incident stellar fluxes than found in previous GCM studies. For mid-to-late M-dwarf stars with high metallicity and for mid-K to early-M stars, we agree with previous studies.

  20. Determining the Inner Edge of the Habitable Zone Around M and late K-Stars Using 3-D Climate Models

    NASA Astrophysics Data System (ADS)

    Kopparapu, Ravi; Wolf, Eric T.; Haqq-Misra, Jacob; Jun, Yang; Kasting, James; Mahadevan, Suvrath; Terrien, Ryan

    2015-12-01

    We present preliminary results for the inner edge of the habitable zone (HZ) around M and late K-stars, calculated from state of the art 3-D global climate models, the NCAR Community Atmosphere Model and Flexible Modeling System (FMS) developed by the Geophysical Fluid Dynamics. Both 1-D and 3-D models show that, for a water-rich planet, as the surface temperature increases due to increased stellar radiation, water vapor becomes a significant fraction of the atmosphere. M- and late K-stars have their peak flux in the near-infrared, where water is a strong absorber. Our models have been updated with a new radiation scheme and with H2O absorption coefficients derived from the most recent line-by-line databases (HITRAN2012 and HITEMP2010). These updates will most likely result in moving the inner edge of the HZ around M and late-K stars further away from the star than previous estimates. The initial targets for survey missions such as K2 and the Transiting Exoplanet Survey Satellite (TESS) will likely be planets near the inner edge of the HZ due to the increased signal-to-noise ratio that results from their proximity to their host star. The James Webb Space Telescope (JWST) may be capable of probing the atmospheric composition of terrestrial planets around a nearby M-dwarf. Thus, determining the most accurate inner edge of the HZ around M-dwarf stars is crucial for selecting target candidates for atmospheric characterization and to identify potential biomarkers.

  1. The Snow Line in Viscous Disks around Low-mass Stars: Implications for Water Delivery to Terrestrial Planets in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Ciesla, Fred J.; Min, Michiel; Pascucci, Ilaria

    2015-07-01

    The water-ice or snow line is one of the key properties of protoplanetary disks that determines the water content of terrestrial planets in the habitable zone. Its location is determined by the properties of the star, the mass accretion rate through the disk, and the size distribution of dust suspended in the disk. We calculate the snow-line location from recent observations of mass accretion rates and as a function of stellar mass. By taking the observed dispersion in mass accretion rates as a measure of the dispersion in initial disk mass, we find that stars of a given mass will exhibit a range of snow-line locations. At a given age and stellar mass, the observed dispersion in mass accretion rates of 0.4 dex naturally leads to a dispersion in snow-line locations of 0.2 dex. For ISM-like dust sizes, the 1? snow-line location among solar-mass stars of the same age ranges from 2 to 5 AU. For more realistic dust opacities that include larger grains, the snow line is located up to two times closer to the star. We use these locations and the outcome of N-body simulations to predict the amount of water delivered to terrestrial planets that formed in situ in the habitable zone. We find that the dispersion in snow-line locations leads to a large range in water content. For ISM-like dust sizes, a significant fraction of habitable-zone terrestrial planets around Sun-like stars remain dry, and no water is delivered to the habitable zones of low-mass M stars (\\lt 0.5 {M}? ) as in previous works. The closer-in snow line in disks with larger grains enables water delivery to the habitable zone for a significant fraction of M stars and all FGK stars. Considering their larger numbers and higher planet occurrence, M stars may host most of the water-rich terrestrial planets in the galaxy if these planets are able to hold on to their water in their subsequent evolution.

  2. Atmospheric Erosion Caused by Stellar Coronal Plasma Flows on Terrestrial Exoplanets within Close-In Habitable Zones of Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Terada, N.; Kulikov, Yu. N.; Lichtenegger, H. I. M.; Khodachenko, M. L.; Penz, T.

    2008-04-01

    Since low mass M stars show a higher level of stellar activity compared to solar-like stars, and because of the closer orbital distance of their habitable zones compared to that of the Solar System, terrestrial exoplanets within M star habitable zones are expected to be much more strongly influenced by stellar winds and dense plasma ejected from the host star by coronal mass ejections. The efficiency of atmospheric erosion of CO_2-rich exoplanets, having the size and mass similar to that of the Earth, due to dense stellar plasma flows within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and EUV radiation (XUV) wavelengths over long time periods, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by the CO_2 IR radiation in the 15?m band. Our study shows that intense XUV radiation of active M-stars, together with the photochemical production of excited atomic oxygen results in atmospheric expansion and extended exospheres which can interact with the stellar plasma flow. Using the calculated thermospheric neutral and ion densities, we applied a 3-D magnetohydrodynamic and a test particle model for calculating the non-thermal loss rates from the extended exospheres of magnetized and non-magnetized Earth-like exoplanets. The consequences of our preliminary results for the evolution of habitable planets within active M star environments are discussed.

  3. A REVISED ESTIMATE OF THE OCCURRENCE RATE OF TERRESTRIAL PLANETS IN THE HABITABLE ZONES AROUND KEPLER M-DWARFS

    SciTech Connect

    Kopparapu, Ravi Kumar

    2013-04-10

    Because of their large numbers, low-mass stars may be the most abundant planet hosts in our Galaxy. Furthermore, terrestrial planets in the habitable zones (HZs) around M-dwarfs can potentially be characterized in the near future and hence may be the first such planets to be studied. Recently, Dressing and Charbonneau used Kepler data and calculated the frequency of terrestrial planets in the HZ of cool stars to be 0.15{sup +0.13}{sub -0.06} per star for Earth-size planets (0.5-1.4 R{sub Circled-Plus }). However, this estimate was derived using the Kasting et al. HZ limits, which were not valid for stars with effective temperatures lower than 3700 K. Here we update their result using new HZ limits from Kopparapu et al. for stars with effective temperatures between 2600 K and 7200 K, which includes the cool M stars in the Kepler target list. The new HZ boundaries increase the number of planet candidates in the HZ. Assuming Earth-size planets as 0.5-1.4 R{sub Circled-Plus }, when we reanalyze their results, we obtain a terrestrial planet frequency of 0.48{sup +0.12}{sub -0.24} and 0.53{sup +0.08}{sub -0.17} planets per M-dwarf star for conservative and optimistic limits of the HZ boundaries, respectively. Assuming Earth-size planets as 0.5-2 R{sub Circled-Plus }, the frequency increases to 0.51{sup +0.10}{sub -0.20} per star for the conservative estimate and to 0.61{sup +0.07}{sub -0.15} per star for the optimistic estimate. Within uncertainties, our optimistic estimates are in agreement with a similar optimistic estimate from the radial velocity survey of M-dwarfs (0.41{sup +0.54}{sub -0.13}). So, the potential for finding Earth-like planets around M stars may be higher than previously reported.

  4. Looking Through the Ice: Searching for Past and Present Habitable Zones in the Martian North Polar Region Using MOLA DEMs

    NASA Astrophysics Data System (ADS)

    Payne, M. C.; Farmer, J. D.

    2002-12-01

    Hydrothermal systems have been acknowledged as important gateways to accessing a potential subsurface biology (extant or extinct) on Mars. Groundwater circulation, sustained for up to one billion years by large plutonic bodies (as modeled by previous authors), might well be capable of tapping into a deep subsurface biosphere and subsequently carrying members of microbial communities to the surface. Hence, future robotic missions with near surface drilling capabilities may be able to unearth cryopreserved biosignatures, or perhaps extant organisms, in the midst of the hydrothermal system itself. Digital Elevation Models (DEMs) constructed from Mars Orbiter Laser Altimeter (MOLA) data have proved to be a valuable tool in the search for potential habitable zones for extant and extinct life, and the detection of possible hydrothermal systems on Mars. When formatted for use in a Geographical Information Systems (GIS) software package such as ESRI's ArcView, MOLA data can be used to compose DEMs. Those DEMs can, in turn, be used to create contour maps, to allow profiling through features of interest, and to generate hillshaded views, which provide an image-like perspective of a selected area. Furthermore, DEMs eliminate many problems associated with photographic images such as over-/underexposure, poor focus, and albedo values too high or low for optimal observations. During this study, DEMs were used in the analysis of several regions north of 70 N latitude, in the Martian north polar cap and polar cap margin. The regions were selected during a Viking image survey that concentrated on the location of surface expressions of potential magma-ice interactions, and hence past or present hydrothermal activity. Specific features sought included individual volcanoes and volcanic fields, as well as pseudocrater fields, subglacial volcanic constructs (such as tuyas and tindar ridges), fluvial channels and outwash plains (indicative of jkulhlaup flooding events), possible subglacial lakes, and impact melt sheets capable of generating and sustaining localized hydrothermal systems. Two candidate sites, both located in the Olympia Planitia region in the remnant margin of the Martian north polar cap, will be discussed. MOLA revealed potential fluvial and volcanic activity beneath the ice of one site, and a possible mix of small volcanoes and rootless pseudocraters in the other region. Hence, those two auspicious sites, significant for astrobiologically driven research, represent a diversity of possible hydrothermal regions. It must be cautioned at all times that interpretations made of the selected sites are done so through polar ice. Nevertheless, the wealth of information imparted by MOLA of the underlying terrain is remarkable. Although MOLA is incapable of revealing present aqueous processes beneath the ice surface, it is an invaluable aid in the location of promising subglacial sites that suggest a history of hydrothermal activity.

  5. The structure of circumstellar shells

    NASA Technical Reports Server (NTRS)

    Fix, John D.

    1993-01-01

    This document provides a report on research activities carried out with the support of NASA grant NAG 5-1174, the Structure of Circumstellar Shells, funded under the Astrophysics Data Program. The research carried out with the support of this grant is a study of the properties of circumstellar dust shells for which spectra are available through IRAS low resolution spectrometry (LRS). This research consisted of the development and application of models of axisymmetric circumstellar shells and a preliminary survey of the applicability of neural nets for analysis of the IRAS LRS spectra of circumstellar dust shells.

  6. PLANET HUNTERS. V. A CONFIRMED JUPITER-SIZE PLANET IN THE HABITABLE ZONE AND 42 PLANET CANDIDATES FROM THE KEPLER ARCHIVE DATA

    SciTech Connect

    Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.; Schmitt, Joseph R.; Giguere, Matthew J.; Brewer, John M.; Barclay, Thomas; Schwamb, Megan E.; Lintott, Chris; Simpson, Robert; Jek, Kian J.; Hoekstra, Abe J.; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Smith, Arfon M.; Parrish, Michael; Lynn, Stuart; Schawinski, Kevin; and others

    2013-10-10

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.

  7. Formation, habitability, and detection of extrasolar moons.

    PubMed

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-09-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology. PMID:25147963

  8. Formation, Habitability, and Detection of Extrasolar Moons

    PubMed Central

    Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Émeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I.

    2014-01-01

    Abstract The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1–0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology. Key Words: Astrobiology—Extrasolar planets—Habitability—Planetary science—Tides. Astrobiology 14, 798–835. PMID:25147963

  9. Host's stars and habitability

    NASA Astrophysics Data System (ADS)

    Gallet, F.; Charbonnel, C.; Amard, L.

    2015-12-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term ``habitable''. The aim of this talk is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  10. The Habitable Zone Planet Finder: A Proposed High Resolution Nir Spectrograph For The Het To Discover Low Mass Exoplanets Around M Stars

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Ramsey, L.; Wolszczan, A.; Wright, J.; Endl, M.; Redman, S.

    2010-01-01

    The Habitable Zone Planet Finder (HZPF) is a proposed instrument for the 9m Hobby Eberly telescope that will be capable of discovering low mass planets around M dwarfs. HZPF will be fiber-fed, provide a spectral resolution R 50,000 and cover the wavelength range 0.9-1.65mm, the Y, J and H near infrared (NIR) bands where most of the flux is emitted by late type M stars, and where most of the radial velocity information is concentrated. Enclosed in a vacuum tank with active temperature control, fiber scrambling and mechanical agitation, HZPF is designed to achieve a radial velocity precision < 3m/s, with a desire to achieve 1m/s for the brightest targets. This instrument will enable a study of the properties of low mass planets around M dwarfs; discover planets in the habitable zones around these stars, and serve as an essential radial velocity confirmation tool for astrometric and transit detections around late M dwarfs. Radial velocity observation the NIR will also enable a search for close in planets around young active stars, complementing the search space enabled by upcoming high-contrast imaging instruments. Tests with our laboratory prototype have already demonstrated the ability to recover radial velocities in the NIR at 7-10 m/s precision from integrated sunlight. We will discuss lessons learned about calibration and NIR array performance from our tests and how they impact the design of the HZPF.

  11. THE LICK-CARNEGIE EXOPLANET SURVEY: A 3.1 M{sub +} PLANET IN THE HABITABLE ZONE OF THE NEARBY M3V STAR GLIESE 581

    SciTech Connect

    Vogt, Steven S.; Rivera, E. J.; Haghighipour, N.; Henry, Gregory W.; Williamson, Michael H.

    2010-11-01

    We present 11 years of HIRES precision radial velocities (RVs) of the nearby M3V star Gliese 581, combining our data set of 122 precision RVs with an existing published 4.3-year set of 119 HARPS precision RVs. The velocity set now indicates six companions in Keplerian motion around this star. Differential photometry indicates a likely stellar rotation period of {approx}94 days and reveals no significant periodic variability at any of the Keplerian periods, supporting planetary orbital motion as the cause of all the RV variations. The combined data set strongly confirms the 5.37-day, 12.9-day, 3.15-day, and 67-day planets previously announced by Bonfils et al., Udry et al., and Mayor et al.. The observations also indicate a fifth planet in the system, GJ 581f, a minimum-mass 7.0 M{sub +} planet orbiting in a 0.758 AU orbit of period 433 days, and a sixth planet, GJ 581g, a minimum-mass 3.1 M{sub +} planet orbiting at 0.146 AU with a period of 36.6 days. The estimated equilibrium temperature of GJ 581g is 228 K, placing it squarely in the middle of the habitable zone of the star and offering a very compelling case for a potentially habitable planet around a very nearby star. That a system harboring a potentially habitable planet has been found this nearby, and this soon in the relatively early history of precision RV surveys, indicates that {eta}{sub +}, the fraction of stars with potentially habitable planets, is likely to be substantial. This detection, coupled with statistics of the incompleteness of present-day precision RV surveys for volume-limited samples of stars in the immediate solar neighborhood, suggests that {eta}{sub +} could well be on the order of a few tens of percent. If the local stellar neighborhood is a representative sample of the galaxy as a whole, our Milky Way could be teeming with potentially habitable planets.

  12. The Lick-Carnegie Exoplanet Survey: A 3.1 M ? Planet in the Habitable Zone of the Nearby M3V Star Gliese 581

    NASA Astrophysics Data System (ADS)

    Vogt, Steven S.; Butler, R. Paul; Rivera, E. J.; Haghighipour, N.; Henry, Gregory W.; Williamson, Michael H.

    2010-11-01

    We present 11 years of HIRES precision radial velocities (RVs) of the nearby M3V star Gliese 581, combining our data set of 122 precision RVs with an existing published 4.3-year set of 119 HARPS precision RVs. The velocity set now indicates six companions in Keplerian motion around this star. Differential photometry indicates a likely stellar rotation period of ~94 days and reveals no significant periodic variability at any of the Keplerian periods, supporting planetary orbital motion as the cause of all the RV variations. The combined data set strongly confirms the 5.37-day, 12.9-day, 3.15-day, and 67-day planets previously announced by Bonfils et al., Udry et al., and Mayor et al.. The observations also indicate a fifth planet in the system, GJ 581f, a minimum-mass 7.0 M ? planet orbiting in a 0.758 AU orbit of period 433 days, and a sixth planet, GJ 581g, a minimum-mass 3.1 M ? planet orbiting at 0.146 AU with a period of 36.6 days. The estimated equilibrium temperature of GJ 581g is 228 K, placing it squarely in the middle of the habitable zone of the star and offering a very compelling case for a potentially habitable planet around a very nearby star. That a system harboring a potentially habitable planet has been found this nearby, and this soon in the relatively early history of precision RV surveys, indicates that ??, the fraction of stars with potentially habitable planets, is likely to be substantial. This detection, coupled with statistics of the incompleteness of present-day precision RV surveys for volume-limited samples of stars in the immediate solar neighborhood, suggests that ?? could well be on the order of a few tens of percent. If the local stellar neighborhood is a representative sample of the galaxy as a whole, our Milky Way could be teeming with potentially habitable planets.

  13. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O

    2007-02-01

    Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances

  14. Habitability of Extrasolar Moons

    NASA Astrophysics Data System (ADS)

    Heller, R.

    2014-04-01

    Most of the roughly one hundred Kepler planets and candidates in the stellar habitable zones are much larger than Earth. Though some of them may have their bulk mass in the form of rock, many of these super-Earths are reminiscent of Uranus, Neptune, or even Saturn, and they cannot have liquid surface water. Yet, their moons may be habitable. With the first detection of an extrasolar moon on the horizon, parameterization of the effects that constrain their habitability has become a new subdiscipline of planetary research. I here summarize our recent work on the effects of planetary illumination, planet-moon eclipses, tidal heating, gas giants' magnetic environments, and orbital stability on the potential of moons to maintain liquid surface water. I also present our new targeted Search for Exomoons Escorting Kepler Exoplanets (SEEKE), which favors detection of moons orbiting planets in the stellar habitable zones of M and K stars.

  15. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    PubMed

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 ?m, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought. PMID:22181553

  16. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    PubMed

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Dsert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jrgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-01

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R?), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R? < planet radius ? 2.0 R?) planets in the habitable zone of their host star, respectively receiving 1.2 0.2 times and 0.41 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk. PMID:23599262

  17. The Habitable Zone Planet Finder Project: A Proposed High Resolution NIR Spectrograph for the Hobby Eberly Telescope (HET) to Discover Low Mass Exoplanets around M Stars

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Ramsey, L.; Redman, S.; Zonak, S.; Wright, J.; Wolszczan, A.; Endl, M.; Zhao, B.

    2010-10-01

    Radial velocity precision in the NIR is now approaching the level necessary to detect exoplanets around mid-late M stars that are very faint in the optical and emit most of their flux in the NIR. The Penn State Pathfinder prototype instrument has already demonstrated 7-10 ms-1 precision on sunlight, and similar precision has been reported at the Pathways conference using CRIRES and an ammonia gas-cell. We discuss the science goals that motivate a stable cross-dispersed, high-resolution NIR spectrograph on a large telescope, as well as the path leading from the Pathfinder prototype to one such possible instrument—the fiber-fed Habitable Zone Planet Finder (HZPF) on the Hobby Eberly Telescope (HET). We also discuss wavelength calibration issues specific to the NIR, and our ongoing exploration with Pathfinder to mitigate these issues.

  18. Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J.; Marcy, Geoffrey W.; Fabrycky, Daniel; Dsert, Jean-Michel; Bryson, Stephen T.; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A.; Burke, Chris; Caldwell, Douglas A.; Carter, Josh; Charbonneau, David; Crepp, Justin R.; Christensen-Dalsgaard, Jrgen; Christiansen, Jessie L.; Ciardi, David; Cochran, William D.; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K.; Endl, Michael; Everett, Mark E.; Ford, Eric B.; Fortney, Jonathan; Gautier, Thomas N.; Geary, John C.; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W.; Howell, Steve B.; Huber, Daniel; Jenkins, Jon M.; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W.; Lee, Brian L.; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A.; Prsa, Andrej; Quintana, Elisa V.; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H.; Still, Martin; Tenenbaum, Peter; Thompson, Susan E.; Torres, Guillermo; Twicken, Joseph D.; Welsh, William F.; Winn, Joshua N.

    2013-05-01

    We present the detection of five planetsKepler-62b, c, d, e, and fof size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R?), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R? < planet radius ? 2.0 R?) planets in the habitable zone of their host star, respectively receiving 1.2 0.2 times and 0.41 0.05 times the solar flux at Earths orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.

  19. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    SciTech Connect

    Agúndez, M.; Cernicharo, J.; Encrenaz, P.; Teyssier, D.

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  20. The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass exoplanets around M dwarfs

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Ramsey, Larry; Wright, Jason; Endl, Michael; Redman, Stephen; Bender, Chad; Roy, Arpita; Zonak, Stephanie; Troupe, Nathaniel; Engel, Leland; Sigurdsson, Steinn; Wolszczan, Alex; Zhao, Bo

    2010-07-01

    The Habitable Zone Planet Finder (HZPF) is a proposed instrument for the 10m class Hobby Eberly telescope that will be capable of discovering low mass planets around M dwarfs. HZPF will be fiber-fed, provide a spectral resolution R~ 50,000 and cover the wavelength range 0.9-1.65μm, the Y, J and H NIR bands where most of the flux is emitted by midlate type M stars, and where most of the radial velocity information is concentrated. Enclosed in a chilled vacuum vessel with active temperature control, fiber scrambling and mechanical agitation, HZPF is designed to achieve a radial velocity precision < 3m/s, with a desire to obtain <1m/s for the brightest targets. This instrument will enable a study of the properties of low mass planets around M dwarfs; discover planets in the habitable zones around these stars, as well serve as an essential radial velocity confirmation tool for astrometric and transit detections around late M dwarfs. Radial velocity observation in the near-infrared (NIR) will also enable a search for close in planets around young active stars, complementing the search space enabled by upcoming high-contrast imaging instruments like GPI, SPHERE and PALM3K. Tests with a prototype Pathfinder instrument have already demonstrated the ability to recover radial velocities at 7-10 m/s precision from integrated sunlight and ~15-20 m/s precision on stellar observations at the HET. These tests have also demonstrated the ability to work in the NIR Y and J bands with an un-cooled instrument. We will also discuss lessons learned about calibration and performance from our tests and how they impact the overall design of the HZPF.

  1. A Joint Approach to the Study of S-Type and P-Type Habitable Zones in Binary Systems: New Results in the View of 3-D Planetary Climate Models

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred

    2015-01-01

    In two previous papers, given by Cuntz (2014a,b) [ApJ 780, A14 (19 pages); arXiv:1409.3796], a comprehensive approach has been provided for the study of S-type and P-type habitable zones in stellar binary systems, P-type orbits occur when the planet orbits both binary components, whereas in case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach considers a variety of aspects, including (1) the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes; (2) the treatment of conservative (CHZ), general (GHZ) and extended zones of habitability (EHZ) [see Paper I for definitions] for the systems as previously defined for the Solar System; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are devised for which kind of system S-type and P-type habitability is realized; and (4) the applications of the theoretical approach to systems with the stars in different kinds of orbits, including elliptical orbits (the most expected case). Particularly, an algebraic formalism for the assessment of both S-type and P-type habitability is given based on a higher-order polynomial expression. Thus, an a prior specification for the presence or absence of S-type or P-type radiative habitable zones is - from a mathematical point of view - neither necessary nor possible, as those are determined by the adopted formalism. Previously, numerous applications of the method have been given encompassing theoretical star-panet systems and and observations. Most recently, this method has been upgraded to include recent studies of 3-D planetary climate models. Originally, this type of work affects the extent and position of habitable zones around single stars; however, it has also profound consequence for the habitable regions in binary systems (both S-type and P-type), the topic of the intended presentation.

  2. The structure of circumstellar shells

    NASA Technical Reports Server (NTRS)

    Fix, John D.; Cobb, Michael L.

    1988-01-01

    Speckle-interferometric measurements are reported for the brightness distributions of the OH/IR stars OH 26.5 + 0.6 and IRC + 10420 at wavelengths which are near the center of and just outside the 10-micron absorption/emission feature produced by circumstellar dust. For OH 26.5 + 0.6, the angular size within the absorption feature is 0.50 + or - 0.02 arcsec, while the angular size outside the feature is less than 0.2 arcsec. For IRC + 10420, the angular sizes inside and outside the emission feature are both 0.42 + or - 0.02 arcsec. Simple models of the circumstellar shells are calculated which can account for the measured angular sizes and flux distributions of the objects. The models give the wavelength dependence of the opacity of the circumstellar material, which is quite different for the two objects.

  3. EXOPLANET CHARACTERIZATION BY PROXY: A TRANSITING 2.15 R{sub Circled-Plus} PLANET NEAR THE HABITABLE ZONE OF THE LATE K DWARF KEPLER-61

    SciTech Connect

    Ballard, Sarah; Charbonneau, David; Fressin, Francois; Torres, Guillermo; Irwin, Jonathan; Newton, Elisabeth; Desert, Jean-Michel; Crepp, Justin R.; Shporer, Avi; Mann, Andrew W.; Ciardi, David R.; Horch, Elliott P.; Everett, Mark E.

    2013-08-20

    We present the validation and characterization of Kepler-61b: a 2.15 R{sub Circled-Plus} planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with a set of spectroscopically similar stars with directly measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15 {+-} 0.13 R{sub Circled-Plus} and an equilibrium temperature of 273 {+-} 13 K (given its period of 59.87756 {+-} 0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby ''proxy'' stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses.

  4. Circumstellar Dust Created by Terrestrial Planet Formation Processes Around HD 113766A

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.; Chen, C. H.; Wyatt, M. C.; Morlok, A.

    2007-10-01

    We present an analysis of the circumstellar disk material in the HD 113766 binary system (F3/F5, 16 Myr), recently observed by the Spitzer Space Telescope. For our study we have used the infrared mineralogical model derived from observations of the Deep Impact experiment. We find the dust dominated by warm, fine ( 1 um) particles, abundant in Mg-rich olivine, crystalline pyroxenes, amorphous silicates, Fe-rich sulfides, amorphous carbon, and water ice. The material mix is akin to an inner main belt asteroid of S- or V-type composition, and is dissimilar to the organic- and water-rich comet systems 9P/Tempel 1, C/Hale-Bopp 1995 O1, or the comet-dominated YSO HD 100546. The 440 K effective temperature of the warm dust implies that the bulk of the observed material is at 1.8 AU from the 4.4 Lsolar central source, in the terrestrial planet-forming region and habitable zone of the system (equivalent to 0.9 AU in the solar system). The icy dust lies in 2 belts, at 9 AU and at 60-80 AU. The amount of mass responsible for the warm dust emission in dn/da a-3.5 particles is very large, 3 x 1023 kg, or 0.5 MMars. The persistence of the strong IR excess over the last two decades argues for a mechanism to provide replenishment of the circumstellar material on yearly timescales. The disk around HD 113766A appears to arise from collisions in a young, extremely dense asteroid belt, or from catastrophic disruption of terrestrial planet embryo(s) and subsequent grinding of the fragments.

  5. The Copernicus observations - Interstellar or circumstellar material. [UV spectra of early stars

    NASA Technical Reports Server (NTRS)

    Steigman, G.; Strittmatter, P. A.; Williams, R. E.

    1975-01-01

    It is suggested that the sharp absorption lines observed in the ultraviolet spectra of early-type stars by the Copernicus satellite may be entirely accounted for by the circumstellar material in the H II regions and associated transition zones around the observed stars. If this interpretation is correct, the Copernicus results yield little information on the state of any interstellar (as opposed to circumstellar) gas and, in particular, shed little light on the degree of element depletion in interstellar space.

  6. Age aspects of habitability

    NASA Astrophysics Data System (ADS)

    Safonova, M.; Murthy, J.; Shchekinov, Yu. A.

    2016-04-01

    A `habitable zone' of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the planet important for its habitability? If we define habitability as the ability of a planet to beget life, then probably it is not. After all, life on Earth has developed within only ~800 Myr after its formation - the carbon isotope change detected in the oldest rocks indicates the existence of already active life at least 3.8 Gyr ago. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere - the so-called biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed (complex) life as we know it. Thus, photosynthesis is a powerful biogenic engine that is known to have changed our planet's global atmospheric properties. The importance of planetary age for the detectability of life as we know it follows from the fact that this primary process, photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones, and is sensitive to the particular thermal conditions of the planet. Therefore, the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life - many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9-13 Gyr) metal-poor Population II stars have been discovered. Such planets had had enough time to develop necessary chains of chemical reactions and may carry detectable life if located in a habitable zone. These old planets should be primary targets in search for the extraterrestrial life.

  7. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    SciTech Connect

    Kadoya, S.; Tajika, E. E-mail: tajika@astrobio.k.u-tokyo.ac.jp

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  8. THE LICK-CARNEGIE EXOPLANET SURVEY: A SATURN-MASS PLANET IN THE HABITABLE ZONE OF THE NEARBY M4V STAR HIP 57050

    SciTech Connect

    Haghighipour, Nader; Vogt, Steven S.; Rivera, Eugenio J.; Laughlin, Greg; Meschiari, Stefano; Henry, Gregory W.

    2010-05-20

    Precision radial velocities (RV) from Keck/HIRES reveal a Saturn-mass planet orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of Msin i {approx} 0.3 M{sub J}, an orbital period of 41.4 days, and an orbital eccentricity of 0.31. V-band photometry reveals a clear stellar rotation signature of the host star with a period of 98 days, well separated from the period of the RV variations and reinforcing a Keplerian origin for the observed velocity variations. The orbital period of this planet corresponds to an orbit in the habitable zone of HIP 57050, with an expected planetary temperature of {approx}230 K. The star has a metallicity of [Fe/H] = 0.32 {+-} 0.06 dex, of order twice solar and among the highest metallicity stars in the immediate solar neighborhood. This newly discovered planet provides further support that the well-known planet-metallicity correlation for F, G, and K stars also extends down into the M-dwarf regime. The a priori geometric probability for transits of this planet is only about 1%. However, the expected eclipse depth is {approx}7%, considerably larger than that yet observed for any transiting planet. Though long on the odds, such a transit is worth pursuing as it would allow for high quality studies of the atmosphere via transmission spectroscopy with Hubble Space Telescope. At the expected planetary effective temperature, the atmosphere may contain water clouds.

  9. Where to Look for Habitability

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    One of the main goals of exoplanet surveys like the Kepler mission is to find potentially habitable planets orbiting other stars. Finding planets in a stars habitable zone, however, is easier when we know in advance where to look! A recent study has provided us with a starting point.Defining the ZoneA habitable zone is defined as the range of distances from a star where liquid water could exist on an orbiting planet, given a dense enough planetary atmosphere. The habitable zone can be calculated from the stars parameters, and the inner and outer edges of a habitable zone are set considering hypothetical planetary atmospheres of different composition.Knowing the parameters of the habitable zones around nearby stars is important for current and future exoplanet surveys, as this information allows them to identify stars with habitable zones that can be probed, given the surveys sensitivity. To provide this target selection tool, a team of scientists led by Colin Chandler (San Francisco State University) has created a catalog of the habitable zones of roughly 37,000 nearby, main-sequence stars.Distribution of habitable-zone widths found in CELESTA, for conservative and optimistic measurements. [Chandler et al. 2016]Selecting for Sun-Like StarsThe Catalog of Earth-Like Exoplanet Survey Targets, or CELESTA, was built starting with the Revised Hipparcos Catalog, a high-precision catalog of photometry and parallax measurements (which provides the stars distance) for 117,955 bright, nearby stars. Chandler and collaborators combined these measurements with stellar models to determine parameters such as effective temperature, radius, and mass of the stars.The authors exclude giant stars and cool dwarfs, choosing to focus on main-sequence stars within the temperature range 26007200K, more similar to the Sun. They test their derived stellar parameters by comparing to observational data from the Exoplanet Data Explorer (EDE), where available, and confirm that their photometrically derived stellar parameters agree well with the parameters in EDE, typically measured spectroscopically.Providing Survey TargetsPlot showing the number of stellar habitable zones that can be probed by a survey, based on how long the stars are observed in the surveys. Surveys listed as reference points are TESS at 27 days, K2 at 75 days, PLATO at 180 days, HARPS at 6 years, and AAPS at 15 years. [Chandler et al. 2016]The final CELESTA catalog details the habitable zones of 37,354 bright, main-sequence stars. The stars habitable-zone widths are generally under 5 AU, with the majority falling between 1 and 1.5 AU. The authors also provide an estimate of how many of these habitable zones current surveys (like Kepler) and upcoming surveys (like the Transiting Exoplanet Survey Satellite, or TESS) will be able to probe, based on the duration of the surveys typical campaigns.Though a planets potential for habitability relies on additional factors besides the location of its orbit, cataloging the locations of stellar habitable zones for nearby, observable stars is an important start. CELESTA is an excellent reference for this, and it will provide a living resource that the authors plan to continue to update with additional stars, as well as with improved-accuracy stellar measurements, expected from upcoming astrometric missions.CitationColin Orion Chandler et al 2016 AJ 151 59. doi:10.3847/0004-6256/151/3/59

  10. Imaging Polarimetry of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Hines, D. C.; Perrin, M. D.

    2013-12-01

    Imaging polarimetry of circumstellar disks around young stars is providing new insights into the formation and evolution of planetary systems. Imaging polarimetry can be used to assess the grain growth processes that work within protoplanetary disks to build up planetesimals and planets from primordial material, as well as the collisional processes that counter this growth by grinding larger bodies down to dust. The equilibrium between these processes causes dust grain populations within disks to evolve over time as systems shift from protoplanetary (containing primordial material) to transitional (epoch of planet formation) to debris disk (post-planet formation, collision erosion) phases. When light is scattered from circumstellar material, a signature of the scattering bodies is encoded into the resulting degree and pattern of polarization. Inverting this process enables us infer the nature of the scattering bodies and assess grain growth within the disk. A few dozen young planetary systems have been imaged in polarized light so far, enabling us to see resolved structures in disks on scales of a few AUs to a few hundred AUs. In this contribution, we briefly review the state of the art for imaging polarimetry of circumstellar disks, summarize some of the current questions that are being addressed with this technique, and present some illustrative examples from our research.

  11. Habitable Trinity

    NASA Astrophysics Data System (ADS)

    Dohm, J. M.; Maruyama, S.

    2013-12-01

    We propose a new concept of a habitable environment in the search for life beyond Earth that goes beyond the follow-the-water paradigm, newly named Habitable Trinity. Habitable Trinity is the coexistence of an atmosphere (consisting largely of C and N), an ocean (H and O), and a landmass (supplier of nutrients). It is the minimum requirement for the beginning of life to satisfy (1) formation of membrane, (2) metabolism, and (3) self-replication as we know it. A habitable planet, which has largely been defined as having an adequate climate, a sufficient atmosphere, and the presence of liquid water on its surface, is insufficient to meet the requirements to bear life. Also, material circulation driven by the Sun must be maintained with Habitable Trinity to continue the supply of elements necessary to sustain organic radical reactions that is the basis of life. The Sun is the major engine that links the three components primarily through hydrological cycling, including weathering, erosion, and transport of nutrient-enriched landmass materials to the ocean via far-reaching river systems. Habitable Trinity can be applied to other planets and moons to discuss the presence of extraterrestrial life. Mars is considered to be the best target to test the hypothesis of whether life exists elsewhere in our solar system, as it records an ancient Habitable Trinity (i.e., lakes and oceans which interacted with a landmass (cratered southern highlands) and an atmosphere). Other terrestrial planets, as well as satellites of the gaseous giants such as Europa and Titan, have little chance to harbor life as we know it because they lack Habitable Trinity. Going beyond 'the-follow-the-water-approach', the Habitable-Trinity concept provides an index in the quest for life-containing planetary bodies beyond our solar system as the reconnaissance systems become increasingly autonomous and at higher resolution, affording greater perspective during this golden age of international and interdisciplinary exploration and discovery.

  12. Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR

    SciTech Connect

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Howell, Steve B.; Lissauer, Jack J.; Batalha, Natalie; Rowe, Jason; Caldwell, Douglas A.; DeVore, Edna; Jenkins, Jon M.; Fressin, Francois; Torres, Guillermo; Geary, John C.; Latham, David W.; Christensen-Dalsgaard, Jorgen; Cochran, William D.; Gautier, Thomas N.; Gilliland, Ronald; Gould, Alan; Marcy, Geoffrey W.; and others

    2012-02-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 {+-} 0.060 M{sub Sun} and 0.979 {+-} 0.020 R{sub Sun }. The depth of 492 {+-} 10 ppm for the three observed transits yields a radius of 2.38 {+-} 0.13 Re for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities (RVs) obtained with the High Resolution Echelle Spectrometer on Keck I over a one-year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{sigma} upper limit of 124 M{sub Circled-Plus }, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other than the Sun.

  13. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.

    PubMed

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E

    2014-09-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5. PMID:24277805

  14. A PLANETARY SYSTEM AROUND THE NEARBY M DWARF GJ 667C WITH AT LEAST ONE SUPER-EARTH IN ITS HABITABLE ZONE

    SciTech Connect

    Anglada-Escude, Guillem; Butler, R. Paul; Arriagada, Pamela; Minniti, Dante; Vogt, Steven S.; Rivera, Eugenio J.; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S.

    2012-05-20

    We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the European Southern Observatory public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/Planet Finder Spectrograph and Keck/High Resolution Echelle Spectrometer spectrometers reveals three additional signals beyond the previously reported 7.2 day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (period {approx}10 years). The 28 day signal implies a planet candidate with a minimum mass of 4.5 M{sub Circled-Plus} orbiting well within the canonical definition of the star's liquid water habitable zone (HZ), that is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition, and interior dynamics. The 75 day signal is less certain, being significantly affected by aliasing interactions among a potential 91 day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal-poor compared to the Sun. The presence of a super-Earth in the HZ of a metal-poor M dwarf in a triple star system supports the evidence that such worlds should be ubiquitous in the Galaxy.

  15. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars

    PubMed Central

    Kasting, James F.; Kopparapu, Ravikumar; Ramirez, Ramses M.; Harman, Chester E.

    2014-01-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet’s atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, “Dune” planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, Seff, the recently recalculated HZ boundaries are: recent Venus—1.78; runaway greenhouse—1.04; moist greenhouse—1.01; maximum greenhouse—0.35; and early Mars—0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4–0.5. PMID:24277805

  16. CHARACTERIZING HABITABLE EXOMOONS

    SciTech Connect

    Kaltenegger, L.

    2010-04-01

    We discuss the possibility of screening the atmosphere of exomoons for habitability. We concentrate on Earth-like satellites of extrasolar giant planets (EGPs) that orbit in the Habitable Zone (HZ) of their host stars. The detectability of exomoons for EGPs in the HZ has recently been shown to be feasible with the Kepler Mission or equivalent photometry using transit duration observations. Transmission spectroscopy of exomoons is a unique potential tool to screen them for habitability in the near future, especially around low mass stars. Using the Earth itself as a proxy we show the potential and limits of spectroscopy to detect biomarkers on an Earth-like exomoon and discuss effects of tidal locking for such potential habitats.

  17. Exoplanet Habitability: Effects of Planetesimal Carbon Chemistry

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence; Mousis, Olivier; Lunine, Jonathan; Madhusudhan, Nikku

    2014-05-01

    We explore the effects of reported differences in C/O values for exoplanet host stars on the composition of planetesimals formed beyond the snow line in these systems. Since the value of C/O in a planet forming nebula has a strong effect on amount of oxygen available for water ice in an oxidizing nebula, exoplanet systems for host stars with C/O greater than the solar value may have planetesimals with very little or no water ice. We have estimated the composition of volatile and refractory material in extrasolar planetesimals using a set of stars with a wide range of measured C/O abundances (Johnson et al. ApJ. 757(2), 192, 2012). The volatile ice content of planetesimals in these systems varies significantly with C/O, controlled primarily by the availability of O for H2O ice condensation. Systems with C/O less than the solar value (C/O = 0.55) should have very water ice rich planetesimals, while water ice mass fraction decreases rapidly with increasing C/O until only ices of CO and CO2 are left in significant proportions. If a significant fraction of C is in the form of refractory CHON particles, C and O are removed from the gas phase and the condensates for super-solar C/O values will be water-poor mixtures of silicates and metal, carbon, and carbon-bearing volatile ices, depending on temperature. For very carbon-rich systems, oxidizing conditions cannot be sustained beyond about C/O=1, due to the oxygen sequestered in solid silicates, oxides and CHON, for refractory C fractions within the Pollack et al. range of 0.4 - 0.7 (ApJ. 421, 615, 1994). These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host star's C/O in the circumstellar nebula. Thus one the key chemical ingredients for habitability may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the 'habitable zone'. TVJ acknowledges government support at JPL/Caltech, under a contract with NASA. NM acknowledges support from Yale University. JIL was supported by the JWST Project through NASA. O.M. acknowledges support from CNES.

  18. Tides and Habitability

    NASA Astrophysics Data System (ADS)

    Barnes, R.

    2014-04-01

    The relatively low luminosities of M dwarfs, white dwarfs, and brown dwarfs result in habitable zones that are close enough in for strong tidal processes between the planet and its host to occur. As is well known, tidal despinning can result in slow or synchronous rotation for close-in planets, but recent investigations have revealed that tides impact habitability in other ways. Tides can drive planetary obliquity to 0, eliminating seasons and creating strong cold traps at the poles. Tides can force a migration of the semi-major axis, possibly removing planets from the habitable zone. Tidal despinning and orbital evolution produces internal heating that can alter both the interior and the atmosphere. For modest eccentricities, tidal heating can be comparable to the modern Earth's (non-tidal) energy sources, changing the thermal profile in the planet and possibly quenching dynamo generation. For larger eccentricities tidal heating can be orders of magnitude larger, suggesting some super-Earths are actually "super-Ios." In extreme cases tidal heating could trigger a runaway greenhouse for hundreds of millions of years, threatening permanent sterilization. Tides damp eccentricity, which lowers the heating rate, but companion planets can perturb orbits and maintain non-zero eccentricities. In some cases, tidal heating sustained by companions could power geochemical cycles that permit habitability for trillions of years.

  19. Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307

    NASA Astrophysics Data System (ADS)

    Tuomi, M.; Anglada-Escudé, G.; Gerlach, E.; Jones, H. R. A.; Reiners, A.; Rivera, E. J.; Vogt, S. S.; Butler, R. P.

    2013-01-01

    Context. The K2.5 dwarf HD 40307 has been reported to host three super-Earths. The system lacks massive planets and is therefore a potential candidate for having additional low-mass planetary companions. Aims: We re-derive Doppler measurements from public HARPS spectra of HD 40307 to confirm the significance of the reported signals using independent data analysis methods. We also investigate these measurements for additional low-amplitude signals. Methods: We used Bayesian analysis of our radial velocities to estimate the probability densities of different model parameters. We also estimated the relative probabilities of models with differing numbers of Keplerian signals and verified their significance using periodogram analyses. We investigated the relation of the detected signals with the chromospheric emission of the star. As previously reported for other objects, we found that radial velocity signals correlated with the S-index are strongly wavelength dependent. Results: We identify two additional clear signals with periods of 34 and 51 days, both corresponding to planet candidates with minimum masses a few times that of the Earth. An additional sixth candidate is initially found at a period of 320 days. However, this signal correlates strongly with the chromospheric emission from the star and is also strongly wavelength dependent. When analysing the red half of the spectra only, the five putative planetary signals are recovered together with a very significant periodicity at about 200 days. This signal has a similar amplitude as the other new signals reported in the current work and corresponds to a planet candidate with Msini ~ 7 M⊕ (HD 40307 g). Conclusions: We show that Doppler measurements can be filtered for activity-induced signals if enough photons and a sufficient wavelength interval are available. If the signal corresponding to HD 40307 g is a genuine Doppler signal of planetary origin, this candidate planet might be capable of supporting liquid water on its surface according to the current definition of the liquid water habitable zone around a star and is not likely to suffer from tidal locking. Also, at an angular separation of ~46 mas, HD 40307 g would be a primary target for a future space-based direct-imaging mission. Appendix A is available in electronic form at http://www.aanda.org

  20. Origin and loss of nebula-captured hydrogen envelopes from `sub'- to `super-Earths' in the habitable zone of Sun-like stars

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Stkl, A.; Erkaev, N. V.; Dorfi, E. A.; Odert, P.; Gdel, M.; Kulikov, Yu. N.; Kislyakova, K. G.; Leitzinger, M.

    2014-04-01

    We investigate the origin and loss of captured hydrogen envelopes from protoplanets having masses in a range between `sub-Earth'-like bodies of 0.1 M? and `super-Earths' with 5 M? in the habitable zone at 1 au of a Sun-like G star, assuming that their rocky cores had formed before the nebula gas dissipated. We model the gravitational attraction and accumulation of nebula gas around a planet's core as a function of protoplanetary luminosity during accretion and calculate the resulting surface temperature by solving the hydrostatic structure equations for the protoplanetary nebula. Depending on nebular properties, such as the dust grain depletion factor, planetesimal accretion rates, and resulting luminosities, for planetary bodies of 0.1-1 M? we obtain hydrogen envelopes with masses between 2.5 1019 and 1.5 1026 g. For `super-Earths' with masses between 2 and 5 M? more massive hydrogen envelopes within the mass range of 7.5 1023-1.5 1028 g can be captured from the nebula. For studying the escape of these accumulated hydrogen-dominated protoatmospheres, we apply a hydrodynamic upper atmosphere model and calculate the loss rates due to the heating by the high soft-X-ray and extreme ultraviolet (XUV) flux of the young Sun/star. The results of our study indicate that under most nebula conditions `sub-Earth' and Earth-mass planets can lose their captured hydrogen envelopes by thermal escape during the first 100 Myr after the disc dissipated. However, if a nebula has a low dust depletion factor or low accretion rates resulting in low protoplanetary luminosities, it is possible that even protoplanets with Earth-mass cores may keep their hydrogen envelopes during their whole lifetime. In contrast to lower mass protoplanets, more massive `super-Earths', which can accumulate a huge amount of nebula gas, lose only tiny fractions of their primordial hydrogen envelopes. Our results agree with the fact that Venus, Earth, and Mars are not surrounded by dense hydrogen envelopes, as well as with the recent discoveries of low density `super-Earths' that most likely could not get rid of their dense protoatmospheres.

  1. Mapping the Region in the Nearest Star System to Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quarles, B.

    2015-01-01

    Circumstellar planets within the alpha Centauri AB star system have been suggested through formation models and recent observations, and ACESat (Belikov et al. AAS Meeting #225, #311.01, 2015) is a proposed space mission designed to directly image Earth-sized planets in the habitable zones of both of these stars. The alpha Centauri system is billions of years old, so planets are only expected to be found in regions where their orbits are long-lived. We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales and we map the positions in the sky plane where planets on stable orbits about either stellar component may appear. We confirm the qualitative results of Wiegert & Holman (Astron. J. 113, 1445, 1997) regarding the approximate size of the regions of stable orbits, which are larger for retrograde orbits relative to the binary than for prograde orbits. Additionally, we find that mean motion resonances with the binary orbit leave an imprint on the limits of orbital stability, and the effects of the Lidov-Kozai mechanism are also readily apparent. Overall, orbits in the habitable zones near the plane of the binary are stable, whereas high-inclination orbits are short-lived.

  2. Circumstellar Dust in Symbiotic Novae

    NASA Astrophysics Data System (ADS)

    Jurkic, T.; Kotnik-Karuza, D.

    2015-12-01

    We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the near-IR photometry, ISO spectra and mid-IR interferometry. The dust properties were determined using the DUSTY code. A compact circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel shows the presence of an equatorially enhanced dust density during minimum obscuration. Obscuration events are explained by an increase in optical depth caused by the newly condensed dust. The mass loss rates are significantly higher than in intermediate-period single Miras but in agreement with longer-period O-rich AGB stars.

  3. The Habitability of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Agol, E.

    2014-04-01

    There exists a region just outside the Roche limit of white dwarfs where a planet would receive an insolation between that of Venus and Mars for up to 8 billion years. If planets can migrate in or re-form after the red-giant phase, there may be a possible long-lived 'habitable zone' around white dwarfs. I will review some of the theoretical prospects, and pitfalls, for planets that might occupy the white dwarf habitable zone, as well as the observational prospects in the near term for finding close-in planets around white dwarfs.

  4. Your Child's Habits

    MedlinePLUS

    ... for Your Child All About Food Allergies Your Child's Habits KidsHealth > For Parents > Your Child's Habits Print ... Mom or Dad. previous continue Coping With Your Child's Habit The good news is that most habits ...

  5. Your Child's Habits

    MedlinePLUS

    ... Cerebral Palsy: Caring for Your Child Your Child's Habits KidsHealth > For Parents > Your Child's Habits Print A ... and is not cause for alarm. What's a Habit? A habit is a pattern of behavior that's ...

  6. Polytype distribution in circumstellar silicon carbide.

    SciTech Connect

    Daulton, T. L.; Bernatowicz, T. J.; Lewis, R. S.; Messenger, S.; Stadermann, F. J.; Amari, S.; Materials Science Division; Naval Research Lab.; Washington Univ.; Univ. of Chicago

    2002-06-07

    The inferred crystallographic class of circumstellar silicon carbide based on astronomical infrared spectra is controversial. We have directly determined the polytype distribution of circumstellar SiC from transmission electron microscopy of presolar silicon carbide from the Murchison carbonaceous meteorite. Only two polytypes (of a possible several hundred) were observed: cubic 3C and hexagonal 2H silicon carbide and their intergrowths. We conclude that this structural simplicity is a direct consequence of the low pressures in circumstellar outflows and the corresponding low silicon carbide condensation temperatures.

  7. EXoplanetary Circumstellar Environments and Disk Explorer technology demonstration: Experimental results in air and vacuum

    NASA Astrophysics Data System (ADS)

    Lozi, J.; Belikov, R.; Bendek, E.; Davis, P. K.; Duncan, A.; Greene, T. P.; Guyon, O.; Hix, T.; Irwin, W.; Kendrick, R.; Lynch, D.; Mihara, R.; PIuzhnik, E.; Schneider, G.; Smith, E.; Thomas, S.; Witteborn, F. C.

    2014-03-01

    Coronagraph technology is advancing and promises to enable space telescopes capable of directly detecting and spatially resolving low surface brightness circumstellar debris disks as well as imaging giant planets as close as in the habitable zones of their host stars. One proposed mission capable of doing this is called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which in 2011 was selected by NASA's Explorer program for technology development A (Category Ill). EXCEDE is a 0.7 m space telescope concept designed to achieve raw contrasts of 1e-6 at an inner working angle of 1.2 l/D and 1e-7 at 2 l/D and beyond. In addition to doing fundamental science on debris disks, EXCEDE will also serve as a technological and scientific precursor for an exo-Earth imaging mission. EXCEDE uses a Starlight Suppression System (SSS) based on the PIAA coronagraph, enabling aggressive performance. In this presentation, we report on our continuing progress of developing the SSS for EXCEDE, and in particular the achievement of the first major milestone in our technology development program (1e-6 median raw contrast between a 1.2 l/D inner working angle and 2 l/D, simultaneously with 1e-7 median raw contrast between 2 l/D and 4 l/D, in monochromatic light and in a controlled and repeatable fashion). In addition, we will describe the upgrades to our system, such as (a) the Low Order Wavefront Sensor (LOWFS) which enabled achieving deep contrasts at aggressive inner working angles; (b) efficient model-based wavefront control algorithms; (c) a reconfiguration of our DM to be upstream of the coronagraph and the addition of the "inverse PIAA" system that enables better outer working angles. Finally, we report on preliminary demonstrations in a vacuum chamber. Even though this technology development is primarily targeted towards EXCEDE, it is also germane to any exoplanet direct imaging spacebased telescopes because of the many challenges common to different coronagraph architectures and mission requirements.

  8. Circumstellar dust in symbiotic novae

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2015-08-01

    Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 m) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 1710-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use of the CLOUDY code, we have showed that a high-density gas region can effectively stop most of the UV flux from the white dwarf and provide the observed dust shielding.

  9. Lifestyle Habits

    PubMed Central

    Kilani, Hashem; Al-Hazzaa, Hazzaa; Waly, Mostafa I.; Musaiger, Abdulrahman

    2013-01-01

    Objectives: This study aimed to investigate the lifestyle habitsphysical activity (PA), eating habits (EH), and sleep duration (SD)of Omani adolescents, and to examine gender differences in such variables. Methods: 802 Omani adolescents (442 females and 360 males), aged 1518 years were randomly recruited. Anthropometric indices, PA level, and EH and SD were evaluated by the Arab Teenage Lifestyle questionnaire. A semi-quantitative food frequency questionnaire for dietary assessment was also administered. Results: The results showed that although the study subjects had a sedentary lifestyle (lack of PA, average of 6.7 hours sleep, and consumption of high calorie foods), they maintained a normal body mass (less than 25 Kg/m2). Males were more than twice as active as females. With respect to EH, there were few gender differences, except in dairy and meat consumption where 62.5% and 55.5% of males consumed more than 3 servings, respectively, compared to 18.78 % and 35.2% of females, respectively. In addition, waist/height ratio, height, reasons for being active, energy drinks, potato consumption, eating sweets, vigorous PA and breakfast EHs were statistically significant independent predictors for BMI, P <0.05 for both males and females. Conclusion: This study revealed a high prevalence of sedentary behaviors and a low level of physical activity, especially among females. Unhealthy dietary habits were also widely found among both genders. There is an urgent need for more research as well as a national policy promoting active living and healthy eating and discouraging sedentary behaviour among Omani adolescents. PMID:24273660

  10. Exoplanet habitability.

    PubMed

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world. PMID:23641111

  11. Exoplanet habitability.

    TOXLINE Toxicology Bibliographic Information

    Seager S

    2013-05-03

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  12. Polarimetric microlensing of circumstellar discs

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  13. Teaching Your Child Healthy Hair Care Habits

    MedlinePLUS

    ... zone Video library Find a dermatologist Teaching your child healthy hair care habits Many common hair care ... Damaged hair looks and feels unhealthy. Teaching your child how to shampoo Healthy hair care begins with ...

  14. Comparative Habitability of Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  15. Circumstellar Oxide Grains in Ordinary Chondrites and Their Origin

    NASA Technical Reports Server (NTRS)

    Krestina, Natalia; Hsu, Weibiao; Wasserburg, G. J.

    2002-01-01

    Three new circumstellar hibonite and 14 circumstellar corundum grains have been found based on their highly anomalous oxygen. Al-Mg isotopes have been measured for these circumstellar oxides and for 14 oxides with a normal oxygen composition. Additional information is contained within the original extended abstract.

  16. HABEBEE: habitability of eyeball-exo-Earths.

    PubMed

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms. PMID:23510083

  17. Isothermal Circumstellar Dust Shell Model for Teaching

    ERIC Educational Resources Information Center

    Robinson, G.; Towers, I. N.; Jovanoski, Z.

    2009-01-01

    We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a…

  18. On circumstellar molecules in the Pleiades.

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.

    1972-01-01

    Consideration of both old and new observations of the interstellar 4232-A line of CH(+) for the brightest members of the Pleiades. These observations suggest that the molecules are circumstellar in some sense, perhaps resembling in this respect the micron-sized grains inferred to be present in this region.

  19. Small Carbon Chains in Circumstellar Envelopes

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Hinkle, Kenneth; Bernath, Peter F.

    2014-06-01

    Observations were made of a number of carbon-rich circumstellar envelopes using the Phoenix spectrograph on the Gemini South telescope to determine the presence of small carbon chain molecules. The circumstellar envelope of IRC+10216 (CRL 1381) has been extensively studied, due to its brightness in the infrared, and C_3 and C_5 have previously been observed. Vibration-rotation lines of the ?b{3} antisymmetric stretch of C_3 near 2040 wn have been used to determine the column density of C_3 in three new circumstellar envelopes: CRL 865, CRL 1922 and CRL 2023. Our new observations support the column density determined from CRL 1381 and also demonstrate that C_3 is common in carbon-rich circumstellar shells. We additionally determine upper limits for the small carbon chains, C_5 and C_7. Hinkle, K.W., Keady, J.J., & Bernath, P.F. 1988, Science, 241, 1319 Bernath, P.F., Hinkle, K.H., & Keady, J.J. 1989, Science, 244, 562

  20. Isothermal Circumstellar Dust Shell Model for Teaching

    ERIC Educational Resources Information Center

    Robinson, G.; Towers, I. N.; Jovanoski, Z.

    2009-01-01

    We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a

  1. Circumbinary habitability niches

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.; Clark, Joni M.

    2015-07-01

    Binaries could provide the best niches for life in the Galaxy. Although counterintuitive, this assertion follows directly from stellar tidal interaction theory and the evolution of lower mass stars. There is strong evidence that chromospheric activity of rapidly rotating young stars may be high enough to cause mass loss from atmospheres of potentially habitable planets. The removal of atmospheric water is most critical. Tidal breaking in binaries could help reduce magnetic dynamo action and thereby chromospheric activity in favour of life. We call this the Binary Habitability Mechanism (BHM) that we suggest allows for water retention at levels comparable to or better than the Earth. We discuss novel advantages that life may exploit, in these cases, and suggest that life may even thrive on some circumbinary planets. We find that while many binaries do not benefit from BHM, high-quality niches do exist for various combinations of stars between 0.55 and 1.0 solar masses. For a given pair of stellar masses, BHM operates only for certain combinations of period and eccentricity. Binaries having a solar-type primary seem to be quite well-suited niches having wide and distant habitable zones with plentiful water and sufficient light for photosynthetic life. We speculate that, as a direct result of BHM, conditions may be suitable for life on several planets and possibly even moons of giant planets orbiting some binaries. Lower mass combinations, while more restrictive in parameter space, provide niches lasting many billions of years and are rich suppliers of photosynthetic photons. We provide a publicly available web-site (http://bit.ly/BHM-calculator or http://bit.ly/BHM-calculator-mirror), which calculates the BHM effects presented in this paper.

  2. Interior Evolution and Habitability

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Breuer, D.

    2007-08-01

    Planetary habitability is usually thought to require water on (or near) the surface, a magnetic field to protect life against cosmic radiation, and transport mechanisms for nutrients. A magnetic field also serves to protect an existing atmosphere against erosion by the solar wind and thus helps to stabilize the presence of water and habitability. Magnetic fields are generated in the cores of the terrestrial planets and thus habitability is linked to the evolution of the interior. Moreover, the interior is a potential source as well as a sink for water and may interact with the surface reservoirs through volcanic activity and recycling. The simplest mechanism for recycling is plate tectonics. Plate tectonics is known to operate - at present - only on the Earth, although Mars may have had a phase of plate tectonics as may have Venus. Single-plate tectonics associated with stagnant lid convection - the present tectonic styles of the later planets - can also transfer water from the interior but a simple recycling mechanism is lacking. However, stagnant lid convection will evolve to thicken the lid and increasingly frustrate volcanic activity and degassing. This will keep the interior from running completely dry. Plate tectonics also facilitates generation of a magnetic field by effectively cooling the deep interior. For Mars and Venus it is likely that a present-day magnetic field would require plate tectonics to operate. An early field is possible even with stagnant lid convection but the dynamo will only operate less than 1 Ga under these circumstances. A question is then whether or not plate tectonics existed on Mars and Venus and if yes, why plate tectonics will cease to operate. Model calculations suggest relations to the yield strength of the mantle and the effect of water on the latter. Other models suggest at the existence of an asthenosphere (low viscosity zone underneath the lithosphere) is decisive and the dependence of its existence on the water content of the mantle.

  3. Effects of Exoplanet Planetesimal Carbon Chemistry on Habitability

    NASA Astrophysics Data System (ADS)

    Johnson, T. V.; Mousis, O.; Lunine, J. I.; Madhusudhan, N.

    2013-12-01

    We explore the effects of reported differences in C/O values for exoplanet host stars on the composition of planetesimals formed beyond the snow line in these systems. Since the value of C/O in a planet forming nebula has a strong effect on amount of oxygen available for water ice in an oxidizing nebula, exoplanet systems for host stars with C/O greater than the solar value may have planetesimals with very little or no water ice. We have estimated the composition of volatile and refractory material in extrasolar planetesimals using a set of stars with a wide range of measured C/O abundances (Johnson et al. ApJ. 757(2), 192, 2012). The volatile ice content of planetesimals in these systems varies significantly with C/O, controlled primarily by the availability of O for H2O ice condensation. Systems with C/O less than the solar value (C/O = 0.55) should have very water ice rich planetesimals, while water ice mass fraction decreases rapidly with increasing C/O until only ices of CO and CO2 are left in significant proportions. If a significant fraction of C is in the form of refractory CHON particles, C and O are removed from the gas phase and the condensates for super-solar C/O values will be water-poor mixtures of silicates and metal, carbon, and carbon-bearing volatile ices, depending on temperature. For very carbon-rich systems, oxidizing conditions cannot be sustained beyond about C/O=1, due to the oxygen sequestered in solid silicates, oxides and CHON, for refractory C fractions within the Pollack et al. range of 0.4 - 0.7 (ApJ. 421, 615, 1994). These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host star's C/O in the circumstellar nebula. Thus one the key chemical ingredients for habitability may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the ';habitable zone'. TVJ acknowledges government support at JPL/Caltech, under a contract with NASA. NM acknowledges support from Yale University. JIL was supported by the JWST Project through NASA. O.M. acknowledges support from CNES.Planetesimal compositions for several stellar systems with a fraction, Csolid, of C in solid CHON particles

  4. The Possibility of Multiple Habitable Worlds Orbiting Binary Stars

    NASA Astrophysics Data System (ADS)

    Mason, P. A.

    2014-03-01

    Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a lower mass companion provide enhanced habitable zones as well as improved photosynthetic flux for habitable zone worlds.

  5. Flares and habitability

    NASA Astrophysics Data System (ADS)

    Abrevaya, Ximena C.; Cortn, Eduardo; Mauas, Pablo J. D.

    2012-07-01

    At present, dwarf M stars are being considered as potential hosts for habitable planets. However, an important fraction of these stars are flare stars, which among other kind of radiation, emit large amounts of UV radiation during flares, and it is unknown how this events can affect life, since biological systems are particularly vulnerable to UV. In this work we evaluate a well known dMe star, EV Lacertae (GJ 873) as a potential host for the emergence and evolution of life, focusing on the effects of the UV emission associated with flare activity. Since UV-C is particularly harmful for living organisms, we studied the effect of UV-C radiation on halophile archaea cultures. The halophile archaea or haloarchaea are extremophile microorganisms, which inhabit in hypersaline environments and which show several mechanisms to cope with UV radiation since they are naturally exposed to intense solar UV radiation on Earth. To select the irradiance to be tested, we considered a moderate flare on this star. We obtained the mean value for the UV-C irradiance integrating the IUE spectrum in the impulsive phase, and considering a hypothetical planet in the center of the liquid water habitability zone. To select the irradiation times we took the most frequent duration of flares on this star which is from 9 to 27 minutes. Our results show that even after considerable UV damage, the haloarchaeal cells survive at the tested doses, showing that this kind of life could survive in a relatively hostile UV environment.

  6. ABUNDANT CIRCUMSTELLAR SILICA DUST AND SiO GAS CREATED BY A GIANT HYPERVELOCITY COLLISION IN THE {approx}12 MYR HD172555 SYSTEM

    SciTech Connect

    Lisse, C. M.; Chen, C. H.; Wyatt, M. C.; Morlok, A.; Song, I.; Bryden, G.; Sheehan, P. E-mail: cchen@stsci.edu E-mail: A.Morlok@open.ac.uk E-mail: Geoffrey.Bryden@jpl.nasa.gov

    2009-08-20

    The fine dust detected by infrared (IR) emission around the nearby {beta} Pic analog star HD172555 is very peculiar. The dust mineralogy is composed primarily of highly refractory, nonequilibrium materials, with approximately three quarters of the Si atoms in silica (SiO{sub 2}) species. Tektite and obsidian lab thermal emission spectra (nonequilibrium glassy silicas found in impact and magmatic systems) are required to fit the data. The best-fit model size distribution for the observed fine dust is dn/da = a {sup -3.95{+-}}{sup 0.10}. While IR photometry of the system has stayed stable since the 1983 IRAS mission, this steep a size distribution, with abundant micron-sized particles, argues for a fresh source of material within the last 0.1 Myr. The location of the dust with respect to the star is at 5.8 {+-} 0.6 AU (equivalent to 1.9 {+-} 0.2 AU from the Sun), within the terrestrial planet formation region but at the outer edge of any possible terrestrial habitability zone. The mass of fine dust is 4 x 10{sup 19}-2 x 10{sup 20} kg, equivalent to a 150-200 km radius asteroid. Significant emission features centered at 4 and 8 {mu}m due to fluorescing SiO gas are also found. Roughly 10{sup 22} kg of SiO gas, formed by vaporizing silicate rock, is also present in the system, and a separate population of very large, cool grains, massing 10{sup 21}-10{sup 22} kg and equivalent to the largest sized asteroid currently found in the solar system's main asteroid belt, dominates the solid circumstellar material by mass. The makeup of the observed dust and gas, and the noted lack of a dense circumstellar gas disk, strong stellar X-ray activity, and an extended disk of {beta} meteoroids argues that the source of the observed circumstellar materials is a giant hypervelocity (>10 km s{sup -1}) impact between large rocky planetesimals, similar to the ones which formed the Moon and which stripped the surface crustal material off of Mercury's surface.

  7. Technology Demonstration Milestone #1 for the EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE) I. Laboratory/Experimental Results

    NASA Astrophysics Data System (ADS)

    Belikov, Ruslan; Bendek, E.; Davis, P.; Duncan, A.; Greene, T. P.; Guyon, O.; Hix, T.; Irwin, W.; Kendrick, R.; Lozi, J.; Lynch, D.; Mihara, R.; Pluzhnik, E.; Schneider, G.; Smith, E.; Thomas, S.; Witteborn, F. C.

    2014-01-01

    Coronagraph technology is advancing and promises to enable space telescopes capable of directly detecting and spatially resolving low surface brightness circumstellar debris disks as well as imaging giant planets as close as in the habitable zones of their host stars. One proposed mission capable of doing this is called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which in 2011 was selected by NASA's Explorer program for technology development (Category III). EXCEDE is a 0.7m space telescope concept designed to achieve raw contrasts of 1e6 at an inner working angle of 1.2 l/D and 1e7 at 2 l/D and beyond. In addition to doing fundamental science on debris disks, EXCEDE will also serve as a technological and scientific precursor for an exo-Earth imaging mission. EXCEDE uses a Starlight Suppression System (SSS) based on the PIAA coronagraph, enabling aggressive performance. In this presentation, we report on our continuing progress of developing the SSS for EXCEDE, and in particular the achievement of the first major milestone in our technology development program (1e6 median raw contrast between a 1.2 l/D inner working angle and 2 l/D, simultaneously with 1e7 median raw contrast between 2 l/D and 4 l/D, in monochromatic light and in a controlled and repeatable fashion - see companion paper by Schneider et al. for science drivers). In addition, we will describe the upgrades to our system, such as (a) the Low Order Wavefront Sensor (LOWFS) which enabled achieving deep contrasts at aggressive inner working angles; (b) efficient model-based wavefront control algorithms; (c) a reconfiguration of our DM to be upstream of the coronagraph and the addition of the inverse PIAA system that enables better outer working angles. Finally, we report on preliminary demonstrations in a vacuum chamber. Even though this technology development is primarily targeted towards EXCEDE, it is also germane to any exoplanet direct imaging space-based telescopes because of the many challenges common to different coronagraph architectures and mission requirements. This work was supported in part by the NASA Explorer program and Ames Research Center, University of Arizona, and Lockheed Martin SSC.

  8. Response of Atmospheric Biomarkers to NOx-Induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M Dwarf Stars

    PubMed Central

    Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A. Beate C.; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-01-01

    Abstract Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides (NOx) in the planetary atmosphere, hence affecting biomarkers such as ozone (O3). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NOx production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O3 formation proceeds via the reaction O+O2+M→O3+M. At high NOx abundances, the O atoms arise mainly from NO2 photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O2). For the flaring case, O3 is mainly destroyed via direct titration, NO+O3→NO2+O2, and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O3, Rayleigh scattering by the main atmospheric gases (O2, N2, and CO2) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O3 survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker nitrous oxide (N2O) could survive in the planetary atmosphere under all conditions of stellar activity considered here, which clearly has important implications for missions that aim to detect spectroscopic biomarkers. Key Words: M dwarf—Atmosphere—Earth-like—Biomarkers—Stellar cosmic rays. Astrobiology 12, 1109–1122. PMID:23215581

  9. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    PubMed

    Grenfell, John Lee; Griemeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M?O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)?NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker nitrous oxide (N(2)O) could survive in the planetary atmosphere under all conditions of stellar activity considered here, which clearly has important implications for missions that aim to detect spectroscopic biomarkers. PMID:23215581

  10. The HARPS search for southern extra-solar planets. XXXIV. A planetary system around the nearby M dwarf GJ 163, with a super-Earth possibly in the habitable zone

    NASA Astrophysics Data System (ADS)

    Bonfils, X.; Lo Curto, G.; Correia, A. C. M.; Laskar, J.; Udry, S.; Delfosse, X.; Forveille, T.; Astudillo-Defru, N.; Benz, W.; Bouchy, F.; Gillon, M.; Hbrard, G.; Lovis, C.; Mayor, M.; Moutou, C.; Naef, D.; Neves, V.; Pepe, F.; Perrier, C.; Queloz, D.; Santos, N. C.; Sgransan, D.

    2013-08-01

    The meter-per-second precision achieved by today's velocimeters enables us to search for 1-10 M? planets in the habitable zone of cool stars. This paper reports on the detection of three planets orbiting GJ 163 (HIP 19394), a M3 dwarf monitored by our ESO/HARPS search for planets. We made use of the HARPS spectrograph to collect 150 radial velocities of GJ 163 over a period of eight years. We searched the radial-velocity time series for coherent signals and found five distinct periodic variabilities. We investigated the stellar activity and called into question the planetary interpretation for two signals. Before more data can be acquired we concluded that at least three planets are orbiting GJ 163. They have orbital periods of Pb = 8.632 0.002, Pc = 25.63 0.03, and Pd = 604 8 days and minimum masses msini = 10.6 0.6, 6.8 0.9, and 29 3 M?, respectively. We hold our interpretations for the two additional signals with periods P(e) = 19.4 and P(f) = 108 days. The inner pair presents an orbital period ratio of 2.97, but a dynamical analysis of the system shows that it lays outside the 3:1 mean motion resonance. The planet GJ 163c, in particular, is a super-Earth with an equilibrium temperature of Teq = (302 10)(1 - A)1/4 K and may lie in the so-called habitable zone for albedo values (A = 0.34 - 0.89) moderately higher than that of Earth (A? = 0.2-0.3). Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 072.C-0488, 082.C-0718, and 183.C-0437 at Cerro La Silla (Chile).Table 6 is available in electronic form at http://www.aanda.orgRadial-velocity time series (Table 6) are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A110

  11. Living with an Old Red Dwarf: X-ray-UV Emissions of Kapteyns Star - Effects of X-UV radiation on Habitable Zone Planets hosted by old Red Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Durbin, Allyn J.; Engle, Scott G.

    2015-01-01

    Red dwarfs (dM) stars make up over 75% of the local stellar population and a significant fraction (~40-50%) are older than the Sun. Because of the high frequency of red dwarfs and their longevity (> 50 Gyr), there is a greater possibility of more advanced life in red dwarf-exoplanet systems. MEarths, UVES, SDSS-III, and the upcoming TESS mission are some surveys that are targeting red dwarfs in the search for hosted potentially habitalble planets. As part of Villanova's 'Living with a Red Dwarf' program, we have obtained HST-COS Ultraviolet spectra (1150-3000A) and Chandra X-ray observations of Kapteyn's star (GJ 191; M1 V, V = 8.85 mag , d = 12.76 +/- 0.05 ly). Kapyteyn's Star is important for the study of old red dwarfs because it is the nearest (Pop II) halo star with a radial velocity of +245.2 km/s and an estimated age of 11.2 +/-0.9 Gyrs. Recently Kapteyn's Star was found to host two super-Earth mass planets - one of these is orbiting inside the star's Habitable Zone (Anglada-Escude' 2014: MNRAS 443, L89). In our program, Kapteyn's star is the oldest red dwarf and as such serves as an anchor for our age, rotation, and activity relations. The spectra obtained from HST/COS provide one of the cleanest measurements of the important HI Lyman-alpha 1215.6 A emission flux for red dwarfs. This is due to the large Doppler shift from the high radial velocity, separating the stellar Ly-alpha emission from by the Ly-alpha ISM and local geo-coronal sources. These observations further provide calibrations at the old age/low rotation/low activity extremes for our relations. As the nearest and brightest old red dwarf star, Kapteyn's Star also provides insights into its magnetic properties to investigae coronal x-ray and UV emission for the large population of old, slowly rotating red dwarf stars. Kapteyn's star also serves as a proxy for the numerous metal-poor old disk - Pop II M dwarfs by providing information about X-UV emissions. This information is crucial for determining X-ray-UV irradiances for habitable zone planets hosted by these old numerous, cool low luminosity stars.We gratefully acknowledge the support from NSF/RUI Grant AST-1009903, NASA/Chandra Grants GO2-13020X, and HST-GO-13020

  12. Energy Balance Models of planetary climate as a tool for investigating the habitability of terrestrial planets and its evolution

    NASA Astrophysics Data System (ADS)

    Ferri, G.; Murante, G.; Provenzale, A.; Silva, L.; Vladilo, G.

    2012-04-01

    The study of the habitability and potential for life formation of terrestrial planets requires a considerable work of modelization owing to the limited amount of experimental constraints typical of this type of research. As an example, the paucity of experimental Archean data severely limits the study of the habitability of the primitive Earth at the epoch of the origin of life. In the case of exoplanets the amount of experimental information available is quite limited and the need for modelization strong. Here we focus on the modelization of the surface planetary temperature, a key thermodynamical quantity used to define the habitability. Energy Balance Models (EBM) of planetary climate provide a simple way to calculate the temperature-latitude profile of terrestrial planets with a small amount of computing resources. Thanks to this fact EBMs offer an excellent tool to exploring a wide range of parameter space and therefore testing the effects of variations of physical/chemical quantities unconstrained by experimental data. In particular, one can easily probe possible scenarios of habitability at different stages of planetary evolution. We have recently implemented one-dimensional EBMs featuring the possibility of probing variations of astronomical and geophysical parameters, such as stellar luminosity, orbital semi-major axis and eccentricity, obliquity of the planetary axis, planet rotational velocity, land/ocean surface fractions and thermal capacities, and latitudinal heat diffusion. After testing our models against results obtained in previous work (Williams & Kasting 1997, Icarus, 129, 254; Spiegel et al. 2008, ApJ, 681, 1609), we introduced a novel parametrization of the diffusion coefficient as a function of the stellar zenith distance. Our models have been validated using the mean temperature-latitude profiles of the present Earth and its seasonal variations; the global albedo has been used as an additional constraint. In this work we present specific examples of application of our EBMs to studies of habitability of terrestrial planets. In the first part we focus on the primitive Earth, taking into account the effects of the higher speed of Earth rotation and reduced solar luminosity at the epoch of life formation. In the second part we provide examples of habitability studies of planetary systems discovered in surveys of exoplanets. These examples allow us to critically discuss the concept of circumstellar habitable zone.

  13. High contrast imaging polarimetry of circumstellar environments

    NASA Astrophysics Data System (ADS)

    Canovas Cabrera, H.

    2011-09-01

    The work presented in this thesis is based on the analysis of the results produced by ExPo, the Extreme Polarimeter. ExPo is an imaging polarimeter that has been designed and built by the group of prof. Christoph Keller, at Utrecht University. The purpose of this instrument is to use polarimetry to detect and characterize the circumstellar environments around different types of stars. In this work I focus on the polarized features that are produced by scattering by dust grains. Depending on the properties of the particles producing the scattering (size, shape...) and the scattering angle (forward, backward scattering), the light becomes polarized in higher or lower degree. The main problem when studying circumstellar environments is the high contrast ratios that are faced. For example, a young star is typically four orders of magnitude (10000 times) brighter than its protoplanetary disk. On the other hand, the light emitted by the star is largely unpolarized, while the light that is scattered (by the protoplanetary disk in this example) is polarized. Therefore, polarimetry offers a very elegant way to remove most of the starlight, allowing the detection of only the polarized photons. Furthermore, and as explained before, by studying the polarization of the light that we measure we can learn more about the properties of the circumstellar environments (dust composition, geometry, etc.). ExPo has produced a wealth of data, combining observations of very different targets such as protoplanetary disks, post-AGB stars, comets and planets of our Solar System (Venus and Saturn).

  14. The Habitable-zone Planet Finder: A status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby-Eberly telescope

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Ramsey, Lawrence W.; Terrien, Ryan; Halverson, Samuel; Roy, Arpita; Hearty, Fred; Levi, Eric; Stefansson, Gudmundur K.; Robertson, Paul; Bender, Chad; Schwab, Chris; Nelson, Matt

    2014-07-01

    The Habitable-Zone Planet Finder is a stabilized, fiber-fed, NIR spectrograph being built for the 10m Hobby- Eberly telescope (HET) that will be capable of discovering low mass planets around M dwarfs. The optical design of the HPF is a white pupil spectrograph layout in a vacuum cryostat cooled to 180 K. The spectrograph uses gold-coated mirrors, a mosaic echelle grating, and a single Teledyne Hawaii-2RG (H2RG) NIR detector with a 1.7-micron cutoff covering parts of the information rich z, Y and J NIR bands at a spectral resolution of R50,000. The unique design of the HET requires attention to both near and far-field fiber scrambling, which we accomplish with double scramblers and octagonal fibers. In this paper we discuss and summarize the main requirements and challenges of precision RV measurements in the NIR with HPF and how we are overcoming these issues with technology, hardware and algorithm developments to achieve high RV precision and address stellar activity.

  15. Psychology of Habit.

    PubMed

    Wood, Wendy; Rünger, Dennis

    2016-01-01

    As the proverbial creatures of habit, people tend to repeat the same behaviors in recurring contexts. This review characterizes habits in terms of their cognitive, motivational, and neurobiological properties. In so doing, we identify three ways that habits interface with deliberate goal pursuit: First, habits form as people pursue goals by repeating the same responses in a given context. Second, as outlined in computational models, habits and deliberate goal pursuit guide actions synergistically, although habits are the efficient, default mode of response. Third, people tend to infer from the frequency of habit performance that the behavior must have been intended. We conclude by applying insights from habit research to understand stress and addiction as well as the design of effective interventions to change health and consumer behaviors. PMID:26361052

  16. Circumstellar material around young stars in Orion

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1994-01-01

    The star cluster associated with the Orion nebula is one of the richest known. Lying at the nearside of the Orion Molecular cloud and at a distance of about 500 pc from us, it contains many premain-sequence stars with ages of about 300,000 yr. The nebula itself is a blister type, representing a wall of material ionized by the hottest star in the Trapezium group (member C). Although this is not the closest star formation region, it is probably the easiest place to detect circumstellar, possibly proto-planetary, material around these solar mass stars. This is because the same process of photoionization that creates the nebula also photoionizes these circumstellar clouds, thus rendering them easily visible. Moreover, their dust component is made visible by extinction of light from the background nebula. Young stars with circumstellar material were found in Orion on the second set of HST images and were called proplyds, indicating their special nature as circumstellar clouds caused to be luminous by being in or near a gaseous nebula. The brightest objects in the field had previously been seen in the optical and radio, and although their true nature had been hypothesized it was the HST images that made it clear what they are. The forms vary from cometlike when near the Trapezium to elliptical when further away, with the largest being 1000 AU and the bright portions of the smallest, which are found closest to the Trapezium, being about 100 AU in diameter. We now have a second set of HST observations made immediately after the refurbishment mission that provides even greater detail and reveals even more of these objects. About half of all the low-luminosity stars are proplyds. The poster paper describes quantitative tests about their fundamental structure and addresses the question of whether the circumstellar material is a disk or shell. One object (HST 16) is seen only in silhouette against the nebula and is easily resolved into an elliptical form of optical depth monotonically increasing toward the central star.

  17. Technology Demonstration Milestone #1 for the EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE) II. Science Drivers and Implications

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; Belikov, R.; Guyon, O.; Lozi, J.; Eduardo, B.; Davis, P.; Greene, T. P.; Lynch, D.; Eugene, P.; Sandrine, T.; Witteborn, F.; Duncan, A.; Kendrick, R.; Hix, T.; Mihara, R.; Smith, E.; Irwin, W.; Debes, J. H.; Carson, J.; Hines, D. C.; Grady, C. A.; Perrin, M. D.; Silverstone, M. D.; Wisniewski, J. P.; Hinz, P.; Moro-Martin, A.; Henning, T.; Tamura, M.; Jang-Condell, H.; Weinberger, A. J.; Woodgate, B. E.; Goto, M.; Serabyn, G.; Rodigas, T.; Kuchner, M. J.; Stark, C. C.; EXCEDE Project Technology Development Team; HST GO 12228 Team

    2014-01-01

    The EXoplanetary Circumstellar (CS) Environments and Disk Explorer (EXCEDE) is an EX class Explorer mission proposed to study the formation, evolution, architectures, and diversity of exoplanetary systems by characterizing suspected planet-hosting CS environments into and beyond host-star habitable zones using a small (0.7 m diameter) off-axis telescope. EXCEDE was selected by NASA (as a Class III Explorer program) for technology demonstration and maturation to advance key elements of its proposed starlight suppression system (SSS) combining the use of a Phase Induced Amplitude Apodized coronagraph, MEMS Deformable Mirror, closed-loop Low-Order Wavefront Sensing and Control, and mid-spatial frequency wavefront error correction and control using the science camera for electric field conjugation and speckle suppression for image contrast enhancement. To meet the science goals of the EXCEDE mission, the SSS must simultaneously, repeatably, and stably, deliver disk-to-starlight raw image contrast per resel of 1E-6 from 1.2 to 2 lambda/D, and 1E-7 from 2 to ~ 20 lambda/D in optical light, which has now been laboratory demonstrated for monochromatic light in an in-air environment (see paper I. by Belikov et al.) This level of performance when extended to 10% - 20% broadband light (technology demonstration milestone #2 to be pursued over the next year) will enable the EXCEDE mission. Here we discuss the applicability of these performance metrics to studying the current "here be dragons" regions of light-scattering CS debris disks, including those now well-observed as revealed at larger stellocentric angular distances with the Hubble Space Telescope Imaging Spectrograph's coronagraph with multiple-roll PSF-template subtracted coronagraphy as imaged in HST GO program 12228 in the context of the EXCEDE science mission goals. This investigation is funded in part by NASA grant NNX12AH39G, and STScI grant GO-12228.

  18. Planetary evolution and habitability

    NASA Astrophysics Data System (ADS)

    Spohn, T.

    2008-09-01

    Planetary habitability is usually thought to require water on (or near) the surface, a magnetic field to protect life against cosmic radiation, and transport mechanisms for nutrients. A magnetic field also serves to protect an existing atmosphere against erosion by the solar wind and thus helps to stabilize the presence of water and habitability. Magnetic fields are generated in the cores of the terrestrial planets and thus habitability is linked to the evolution of the interior. Moreover, the interior is a potential source and sink for water and CO2 and may interact with the surface and atmosphere reservoirs through volcanic activity and recycling. On the Earth, water is stabilized by complex interactions between the atmosphere, the biosphere, the oceans, the crust, and the deep interior. On geological timescales, the anorganic CO2 cycle is most important. The most efficient known mechanism for recycling is plate tectonics. Plate tectonics is known to operate, at present, only on the Earth, although Mars may have had a phase of plate tectonics as may have Venus. Single-plate tectonics associated with stagnant lid convection can transfer water and CO2 from the interior but a simple recycling mechanism is lacking for this tectonic style. Stagnant lid convection will evolve to thicken the lid and increasingly frustrate volcanic activity and degassing. (This can keep the interior from running completely dry.) Plate tectonics supports the generation of magnetic fields by effectively cooling the deep interior. In addition, plate tectonics rejuvenates nutrients on the surface and generates granitic cratons. For Venus it is likely that a present-day magnetic field would require plate tectonics to operate. The chemistry of the Martian core likely precludes the growth of an inner core and thus a present-day dynamo. An early field is possible for both planets even with stagnant lid convection but the dynamos will have operated less than about a billion years on Mars and a few billion years on Venus. This dynamo would have been driven by thermal buoyancy and require that the core was sufficiently superheated with respect to the mantle after core formation. The dynamo would have ceased to operate as the core cooled depending on the vigor of mantle convection. A question is then whether or not plate tectonics existed on Mars and Venus and if yes why plate tectonics ceased to operate. Or, more generally, why do planets have plate tectonics and others do not? Convection model calculations suggest relations to the yield strength of the mantle and the effect of water on the latter. Other models suggest that the existence of an asthenosphere (a low viscosity zone underneath the lithosphere) may be decisive. The presence of water will lower the solidus of mantle rock and help to form an asthenosphere. Thus, there appear to be links between plate tectonics and (near) surface water, plate tectonics and magnetic fields, magnetic fields and habitability, and habitability and water. Is plate tectonics even a potential biosignature?

  19. Tides and the evolution of planetary habitability.

    PubMed

    Barnes, Rory; Raymond, Sean N; Jackson, Brian; Greenberg, Richard

    2008-06-01

    Tides raised on a planet by the gravity of its host star can reduce the planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close in, and tides can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that tides can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars ( less or similar to 0.35 M(circle)). Such migration may have important implications for the evolution of the atmosphere, internal heating, and the Gaia hypothesis. Similarly, a planet that is detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently discovered, approximately 5 M(circle) planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when constraints derived from the additional companions are included, most parameter choices that indicate past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable. PMID:18598142

  20. Tides, Planetary Companions, and Habitability

    NASA Astrophysics Data System (ADS)

    Van Laerhoven, Christa L.; Barnes, Rory; Greenberg, Richard

    2014-05-01

    Earth-scale planets in the classical habitable zone (HZ) are more likely to be habitable if they possess active geophysics to drive processes that regulate their atmosphere. Without a constant internal energy source, planets cool as they age, eventually terminating tectonic activity. Planets orbiting low-mass stars can be very old, due to the longevity of such stars, so they may be rendered sterile to life in this way. However, the presence of an outer companion could generate enough tidal heat in the HZ planet to prevent such cooling. The range of mass and orbital parameters for the companion that give adequate long-term heating of the inner HZ planet, while avoiding very early total desiccation, is substantial. We locate the ideal location for the outer of a pair of planets, under the assumption that the inner planet has the same incident flux as Earth, orbiting example stars: a generic late M dwarf and the M9V/L0 dwarf DEN1048. We also analyze the extent to which systems with ideal parameters for heating will evolve over time. Thus discoveries of Earth-scale planets in the HZ zone of old small stars should be followed by searches for outer companion planets that might be essential for current habitability.

  1. Planetary Habitability of the Solar System

    NASA Astrophysics Data System (ADS)

    Mendez, Abel

    2009-09-01

    Habitability is a qualitative concept generally defined as the suitability of an environment to support life. Although there are many works related to planetary habitability, there is no practical quantitative definition of habitability. The search for habitable environments in the Solar System and beyond requires a method to quantify and compare their significance. Therefore, this study presents a quantitative approach to assess the habitability of Earth and other planetary bodies. A Quantitative Habitability Model (QH Model) was develop and used to model the terrestrial habitability as a standard for comparison. The QH Model provides a simple ecophysiology-based framework that can be used to predict the potential distribution, abundance and productivity of life in planetary bodies from local to global scales. The simplest QH Model calculates habitability from the environment temperature and relative humidity in gas phases (i.e. atmospheres), and from temperature and salinity in liquid phases (i.e. oceans). The model was used to explain the latitudinal gradients of primary producers on Earth and was validated with ground and satellites observations of net primary productivity (NPP). The potential global habitability for prokaryotes of the upper-troposphere of Venus, the subsurface of Mars, Europa, Titan, and Enceladus was compared. Results show that Enceladus has the zone with the highest mean habitability in the Solar System although to deep for direct exploration. Results also show that the current global terrestrial environment of land areas is not optimized for primary producers, but it was during some paleoclimates. The QH Model has applications in ecosystem modeling, global climate studies including paleoclimates and global warming, planetary protection, and astrobiology. It can also be used to quantify the potential for life of any terrestrial-size extrasolar planet as compared to Earth. This study was partially supported by UPR Arecibo and NASA Astrobiology Institute.

  2. FUSE Observations of the ? Pic Circumstellar Environment

    NASA Astrophysics Data System (ADS)

    Lecavelier des Etangs, A.; Vidal-Madjar, A.; Ferlet, R.; Roberge, A.; Feldman, P. D.; Deleuil, M.; Bouret, J.-C.; Andr, M.; Blair, W. P.; Moos, H. W.; FUSE Science Team

    2000-12-01

    We present the first far UV spectrum of Beta Pictoris obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Although the stellar continuum drops below detectability for wavelengths shorter than 1100 , the Ciii line at 977 and the Ovi doublet at 1032 and 1037 are clearly detected in emission. These emissions are believed to have a stellar origin. Because we did not detect H2 absorption in our spectrum, the coincidence of Ovi and H2 transitions allows us to set a very low upper limit on the H2 column density toward ? Pic. This is surprising, as Beta Pic has one of the largest circumstellar disks seen around a main-sequence star. From the comparison with HST observations, we obtain a CO/H2 ratio above the typical interstellar value of 10-4; this seems to confirm the circumstellar origin of the observed CO. Species observed in the ? Pic circumstellar gas at the stellar radial velocity, like Feii and Caii, feel strong radiation pressure from the star and should be ejected from the system. Lagrange et al. (1998) suggested that these species could be slowed down by a thick, colliding torus of massive gas; our non-detection of H2 toward Beta Pic leaves this dynamical problem unresolved. This work is based on data obtained for the Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University. Financial support to U.S. participants has been provided by NASA contract NAS5-32985.

  3. Infrared heterodyne spectroscopy of circumstellar molecules

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Mclaren, R. A.

    1980-01-01

    Ammonia has been detected in the circumstellar envelopes of IRC+10216, VY CMa, VX Sgr, and IRC+10420. A number of absorption lines of (N-14)H3 in the nu sub 2 vibration-rotation band around 28 THz (950 per cm) have been observed at a velocity resolution of 0.2 km/s. Typical linewidths are 1 to 4 km/s, and the details of the line profiles provide additional insights on the process of mass loss in these stars.

  4. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere. PMID:20307182

  5. Multi-wavelength Observations and Modeling of Circumstellar Disks

    SciTech Connect

    Wolf, Sebastian

    2009-08-05

    The enormous progress in the field of circumstellar disk observations during the last two decades has provided a basis for detailed models of these objects and thus constraints for the initial conditions of the planet formation process. A brief summary of the results derived from modeling various observables of circumstellar disks is provided and illustrated by selected exemplary studies.

  6. A 'dry' condensation origin for circumstellar carbonates.

    PubMed

    Toppani, Alice; Robert, Franois; Libourel, Guy; de Donato, Philippe; Barres, Odile; d'Hendecourt, Louis; Ghanbaja, Jaafar

    2005-10-20

    The signature of carbonate minerals has long been suspected in the mid-infrared spectra of various astrophysical environments such as protostars. Abiogenic carbonates are considered as indicators of aqueous mineral alteration in the presence of CO2-rich liquid water. The recent claimed detection of calcite associated with amorphous silicates in two planetary nebulae and protostars devoid of planetary bodies questions the relevance of this indicator; but in the absence of an alternative mode of formation under circumstellar conditions, this detection remains controversial. The main dust component observed in circumstellar envelopes is amorphous silicates, which are thought to have formed by non-equilibrium condensation. Here we report experiments demonstrating that carbonates can be formed with amorphous silicates during the non-equilibrium condensation of a silicate gas in a H2O-CO2-rich vapour. We propose that the observed astrophysical carbonates have condensed in H2O(g)-CO2(g)-rich, high-temperature and high-density regions such as evolved stellar winds, or those induced by grain sputtering upon shocks in protostellar outflows. PMID:16237436

  7. Habitability: from stars to cells

    NASA Astrophysics Data System (ADS)

    Javaux, Emmanuelle J.; Dehant, Vronique

    2010-07-01

    To determine where to search for life in our solar system or in other extrasolar systems, the concept of habitability has been developed, based on the only sample we have of a biological planetthe Earth. Habitability can be defined as the set of the necessary conditions for an active life to exist, even if it does not exist. In astronomy, a habitable zone (HZ) is the zone defined around a sun/star, where the temperature conditions allow liquid water to exist on its surface. This habitability concept can be considered from different scientific perspectives and on different spatial and time scales. Characterizing habitability at these various scales requires interdisciplinary research. In this article, we have chosen to develop the geophysical, geological, and biological aspects and to insist on the need to integrate them, with a particular focus on our neighboring planets, Mars and Venus. Important geodynamic processes may affect the habitability conditions of a planet. The dynamic processes, e.g., internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution, meteorite impacts, and erosion, modify the planetary surface, the possibility to have liquid water, the thermal state, the energy budget, and the availability of nutrients. They thus play a role in the persistence of life on a planet. Earth had a liquid water ocean and some continental crust in the Hadean between 4.4 and 4.0 Ga (Ga: billions years ago), and may have been habitable very early on. The origin of life is not understood yet; but the oldest putative traces of life are early Archean (~3.5 Ga). Studies of early Earth habitats documented in the rock record hosting fossil life traces provide information about possible habitats suitable for life beyond Earth. The extreme values of environmental conditions in which life thrives today can also be used to characterize the envelope of the existence of life and the range of potential extraterrestrial habitats. The requirement of nutrients by life for biosynthesis of cellular constituents and for growth, reproduction, transport, and motility may suggest that a dynamic and rocky planet with hydrothermal activity and formation of relief, liquid water alteration, erosion, and runoff is required to replenish nutrients and to sustain life (as we know it). The concept of habitability is very Earth-centric, as we have only one biological planet to study. However, life elsewhere would most probably be based on organic chemistry and leave traces of its past or recent presence and metabolism by modifying microscopically or macroscopically the physico-chemical characteristics of its environment. The extent to which these modifications occur will determine our ability to detect them in astrobiological exploration. Looking at major steps in the evolution of life may help determining the probability of detecting life (as we know it) beyond Earth and the technology needed to detect its traces, be they morphological, chemical, isotopic, or spectral.

  8. On the Habitability of Aquaplanets

    NASA Astrophysics Data System (ADS)

    Cardenas, Rolando; Perez, Noel; Martinez-Frias, Jesus; Martin, Osmel

    2014-08-01

    An Aquatic Habitability Index is proposed, based on Quantitative Habitability Theory, and considering a very general model for life. It is a primary habitability index, measuring habitability for phytoplankton in the first place. The index is applied to some case studies, such as the habitability changes in Earth due to environmental perturbations caused by asteroid impacts.

  9. Tidal Limits to Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-07-01

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO2 may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  10. TIDAL LIMITS TO PLANETARY HABITABILITY

    SciTech Connect

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-07-20

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO{sub 2} may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  11. Dynamical habitability of planetary systems.

    PubMed

    Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Lger, Alain; Liseau, Ren; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Rttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries). PMID:20307181

  12. The Matter of Habit.

    ERIC Educational Resources Information Center

    Camic, Charles

    1986-01-01

    An historical investigation of the concept of habit in sociology, this article points out that though missing from most contemporary work in sociology, the concept of habit was an important term in sociological works of the late nineteenth and early twentieth centuries. The general question of how conceptual structure of an intellectual field

  13. A sensitive line search in circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Nguyen-Q-Rieu; Deguchi, S.; Izumiura, H.; Kaifu, N.; Ohishi, M.; Suzuki, H.; Ukita, N.

    A molecular line search in the range between 85 and 89 GHz has been performed in the circumstellar envelopes of 11 evolved stars. Emissions of 29SiO J=2-1,28SiO J=2-1, HCN J=1-0, H13CN J=1-0, HC5 N J=33-32, HCO+ J=1-0 transitions and other transitions of C2 H, C4 H, and C3 N have been observed in 11 stars. We have detected the ground state 29SiO J=2-1 maser in several stars. We have also detected HCN emission in VY CMa. A narrow H13CN spike feature near the central velocity has been found in the spectrum of CRL 2688.

  14. Properties of Circumstellar Dust in Symbiotic Miras

    NASA Astrophysics Data System (ADS)

    Kotnik-Karuza, D.; Jurkic, T.; Friedjung, M.

    2007-08-01

    We present a study of the properties of circumstellar dust in symbiotic Miras during sufficiently long time intervals of minimal obscuration. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel and R Aqr have been collected. In order to investigate their long-term variations, we removed the Mira pulsations to correct their light curves. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case.The preliminary results of this systematic study of dust envelopes in symbiotic stars with Miras as cool components provide information on nature of dust in these objects.

  15. HL Tauri and its circumstellar disk

    NASA Astrophysics Data System (ADS)

    Cohen, M.

    1983-07-01

    New far infrared observations of HL Tau which support the identification of an edge-on disk surrounding the star are presented. A bolometric luminosity for the star of 7.2 solar luminosities and a ratio of infrared to optical luminosity of 630 are indicated. A circumstellar A(V) of about 7.0 mag is produced, consistent with the silicate optical depth to the star. Data on HL Tau's effective temperature and radius and its position on the HR diagram suggest that the star has recently completed its accretion phase and is only 100,000 yr old. The column masses of ice and silicates are combined with the disk dimensions to build a simple model of the disk for comparison with the primitive solar nebula. Estimates of the far-infrared emitting mass provide independent probes of the mass in larger grains around HL Tau.

  16. Dust Stratification in Young Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Rettig, Terrence W.; Brittain, S. D.; Simon, T.; Gibb, E.; Balsara, D. S.; Tilley, D. A.; Kulesa, C.

    2006-06-01

    We present high-resolution infrared spectra of four YSOs (T Tau N, T Tau S, RNO 91, and HL Tau). The spectra exhibit narrow absorption lines of 12CO, 13CO, and C18O as well as broad emission lines of gas phase12CO. The narrow absorption lines of CO are shown to originate from the colder circumstellar gas. We find that the line of sight gas column densities resulting from the CO absorption lines are much higher than expected for the measured extinction for each source and suggest the gas to dust ratio is measuring the dust settling and/or grain coagulation in these extended disks. We provide a model of turbulence, dust settling and grain growth to explain the results.

  17. Dust Stratification in Young Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Rettig, Terrence; Brittain, Sean; Simon, Theodore; Gibb, Erika; Balsara, Dinshaw S.; Tilley, David A.; Kulesa, Craig

    2006-07-01

    We present high-resolution infrared spectra of four YSOs (T Tau N, T Tau S, RNO 91, and HL Tau). The spectra exhibit narrow absorption lines of 12CO, 13CO, and C18O, as well as broad emission lines of gas-phase 12CO. The narrow absorption lines of CO are shown to originate from the colder circumstellar gas. We find that the line-of-sight gas column densities resulting from the CO absorption lines are much higher than expected for the measured extinction for each source and suggest the gas/dust ratio is measuring the dust settling and/or grain coagulation in these extended disks. We provide a model of turbulence, dust settling, and grain growth to explain the results.

  18. Chemistry and evolution of gaseous circumstellar disks

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1993-01-01

    An investigation of the chemical and physical processes which determine the composition and evolution of gas-rich circumstellar disks is reported. Strong mixing in a thermoclinic environment like an accretion disk leads to thermochemical disequilibration due to 'kinetic inhibition' induced by chemical time constants becoming longer than outward mixing time constants. In this case, species thermodynamically stable at high temperatures but not at low temperatures dominate at all temperatures in the disk. Nonaxisymmetric accretion of material at hypersonic speeds is a major forcing mechanism for mixing in the disk and can produce eddy speeds of 1 percent of the sound speed. The implications kinetic inhibition in the carbon, nitrogen, and anhydrous/hydrous silicate families has for the compositions of the terrestrial planets, giant planets, ice-rich satellites, Pluto, comets, meteorites, and asteroids are discussed.

  19. HL Tauri and its circumstellar disk

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1983-01-01

    New far infrared observations of HL Tau which support the identification of an edge-on disk surrounding the star are presented. A bolometric luminosity for the star of 7.2 solar luminosities and a ratio of infrared to optical luminosity of 630 are indicated. A circumstellar A(V) of about 7.0 mag is produced, consistent with the silicate optical depth to the star. Data on HL Tau's effective temperature and radius and its position on the HR diagram suggest that the star has recently completed its accretion phase and is only 100,000 yr old. The column masses of ice and silicates are combined with the disk dimensions to build a simple model of the disk for comparison with the primitive solar nebula. Estimates of the far-infrared emitting mass provide independent probes of the mass in larger grains around HL Tau.

  20. Discovering metal-poor circumstellar OH masers

    NASA Astrophysics Data System (ADS)

    Goldman, Steve; Green, James; van Loon, Jacco; Wood, Peter; Imai, Hiroshi; Groenewegen, Martin; Nanni, Ambra

    2014-10-01

    OH masers are excellent signposts for a variety of phenomenon including winds of highly-evolved stars (1612 MHz). Using the superior angular resolution and sensitivity of the ATCA, high spectral resolution of the CABB backend, and close proximity to the LMC (with half solar metallicity), this observation will allow us to extend an important relation involving the evolution of red giants and supergiants in a lower metallicity (van Loon, 2012). With even fewer detections with clear double-peaked profiles, indicating an expansion velocity of the circumstellar envelope, successful observation is vital for the advancement of our stellar mass-loss models. By refining the metallicity dependence of the mass-loss of highly-evolved red giants and supergiants in their superwind phase, we can better understand the evolution of these stars and their feedback within galaxies.

  1. The circumstellar environment of UX ORI

    NASA Astrophysics Data System (ADS)

    Natta, A.; Prusti, T.; Neri, R.; Thi, W. F.; Grinin, V. P.; Mannings, V.

    1999-10-01

    This paper presents new observations of UX Ori obtained with the millimeter interferometer of Plateau de Bure and with ISO. UX Ori is the prototype of a group of pre-main-sequence, intermediate-mass stars, often indicated as precursors of beta Pic. The interferometry observations at 1.2 and 2.6 mm show that UX Ori has a circumstellar disk, with outer radius ~ less 100 AU. We determine the spectral index between these two wavelengths to be 2.1+/-0.2, consistent with the disk being optically thick at mm wavelengths. Alternatively, the disk solid matter can be in the form of ``pebbles" (radius ~ 10 cm). In both cases most of the disk mass must be in gas form, and small grains must be present, at least in the disk atmosphere. In both cases also, the disk must be rather massive ( ~ great 0.1 M_sun). The existence of a circumstellar disk supports the model of the UXOR phenomenon in terms of a star+disk system. Self-consistent models of almost edge-on disks account well for the observed emission at all wavelengths longer than about 8mu m, if we include the emission of the optically thin, superheated layers that enshroud the disk. These rather simple disk models fail to account for the strong emission observed in the near-IR (i.e., between ~ 2 and 7 mu m), and we suggest a number of possible explanations. Based in part on observations obtained with ISO. ISO is an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  2. A Review of Habit Reversal with Childhood Habit Disorders.

    ERIC Educational Resources Information Center

    Woods, Douglas W.; Miltenberger, Raymond G.

    1996-01-01

    This paper first reviews four classes of habit disorders in children: motor and vocal tics, nervous habits, stuttering, and Tourette's disorder. It then describes the habit reversal procedure and reviews the literature on its use and variations to treat each of the four classes of habit disorders. Emphasis is on simplified versions of the original

  3. Porous dust grains in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Kirchschlager, Florian; Wolf, Sebastian

    2013-07-01

    We investigate the impact of porous dust grains on the structure and observable appearance of circumstellar disks (Kirchschlager & Wolf 2013). Our study is motivated by observations and laboratory studies which indicate that dust grains in various astrophysical environments are porous. In addition, the modeling of the spatial structure and grain size distribution of debris disks reveals that under the assumption of spherical compact grains the resulting minimum grain size is often significantly larger than the blowout size, which might be a hint for porosity. Using the discrete dipole approximation, we compute the optical properties of spherical, porous grains (Draine & Flatau 1994, 2010). Subsequently, we calculate the blowout sizes for various debris disk systems and grain porosities. We find that the blowout size increases with particle porosity and stellar temperature. In addition, the lower dust equilibrium temperature of porous particles results in a shift of the maximum of the thermal reemission of debris disks towards longer wavelengths. For our studies of the impact of dust grain porosity in protoplanetary disks we use the radiative transfer software MC3D, which is based on the Monte-Carlo method and solves the radiative transfer problem self-consistently (Wolf et al. 1999, Wolf 2003). We find that the spectral energy distribution of protoplanetary disks shows significant differences between the cases of porous and compact grains. In particular, the flux in the optical wavelength range is increased for porous grains. Furthermore, the silicate peak at ~9.8 microns exhibits a strong dependence on the degree of grain porosity. We also investigate the temperature distribution in the disk. In the midplane no influence of porosity is detectable, but in the vertical direction minor changes of a few Kelvin are found. To complete our study we outline the differences between the two grain types in maps of the linear polarization. We detect a polarization reversal in selected disk regions, depending on the grain porosity and disk inclination, which might set an observational test for porous grains in circumstellar disks.

  4. Damaging Oral Habits

    PubMed Central

    Kamdar, Rajesh J; Al-Shahrani, Ibrahim

    2015-01-01

    Oral habits, if persist beyond certain developmental age, can pose great harm to the developing teeth, occlusion, and surrounding oral tissues. In the formative years, almost all children engage in some non-nutritive sucking habits. Clinicians, by proper differential diagnosis and thorough understanding of natural growth and developmental processes, should take a decision for intervening. This article describes case series reports of thumb sucking, finger sucking, and tongue thrusting habits, which have been successfully treated by both removable and fixed orthodontic appliances. The cases shown are ranging from the age group of 9-19 years presenting combination of both mixed and permanent dentition development. All cases show satisfactory correction of habits and stable results. PMID:25954079

  5. Damaging oral habits.

    PubMed

    Kamdar, Rajesh J; Al-Shahrani, Ibrahim

    2015-04-01

    Oral habits, if persist beyond certain developmental age, can pose great harm to the developing teeth, occlusion, and surrounding oral tissues. In the formative years, almost all children engage in some non-nutritive sucking habits. Clinicians, by proper differential diagnosis and thorough understanding of natural growth and developmental processes, should take a decision for intervening. This article describes case series reports of thumb sucking, finger sucking, and tongue thrusting habits, which have been successfully treated by both removable and fixed orthodontic appliances. The cases shown are ranging from the age group of 9-19 years presenting combination of both mixed and permanent dentition development. All cases show satisfactory correction of habits and stable results. PMID:25954079

  6. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  7. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  8. Habitability: CAMELOT 4

    NASA Technical Reports Server (NTRS)

    Alequin, W.; Barragan, A.; Carro, M.; Garcia, F.; Gonzalez, I.; Mercado, J. A.; Negron, N.; Lopez, D.; Rivera, L. A.; Rivera, M.

    1990-01-01

    During 1988 to 1989 the NASA/USRA Advanced Design Program sponsored research and design efforts aimed at developing habitability criteria and at defining a habitability concept as a useful tool in understanding and evaluating dwellings for prolonged stays in extraterrestrial space. The Circulating Auto sufficient Mars-Earth Luxurious Orbital Transport (CAMELOT) was studied as a case in which the students would try to enhance the quality of life of the inhabitants by applying architectural design methodology. The study proposed 14 habitability criteria considered necessary to fulfill the defined habitability concept, which is that state of equilibrium that results from the interaction between components of the Individual Architecture Mission Complex, which allows a person to sustain physiological homeostatis, adequate performance, and acceptable social relationships. Architecture, design development, refinements and revisions to improve the quality of life, new insights on artificial gravity, form and constitution problems, and the final design concept are covered.

  9. WHERE TO FIND HABITABLE ''EARTHS'' IN CIRCUMBINARY SYSTEMS

    SciTech Connect

    Liu Huigen; Zhang Hui; Zhou Jilin

    2013-04-20

    Six P-type planets have been found thus far around five binary systems, i.e., Kepler-16b, 34b, 35b, 38b, and 47b and c, which are all Neptune- or Jupiter-like planets. The stability of planets and the habitable zones are influenced by the gravitational and radiative perturbations of binary companions. In this Letter, we check the stability of an additional habitable Earth-mass planet in each system. Based on our simulations in 10 Myr, a habitable ''Earth'' is hardly stable in Kepler-16, while a stable ''Earth'' in Kepler-47 close to the boundaries of the habitable zone is possible. In contrast, Kepler-34, 35, and 38 seem to have high probabilities of being able to tolerante a stable ''Earth'' in their habitable zones. The affects of transit time variations are quite small due to the small mass of an undetected ''Earth,'' except that of Kepler-16b. With a time precision of 10{sup -3} day ({approx}88 s), an ''Earth'' in the corotational resonance with Kepler-16b can be detected in three years, while habitable ''Earths'' in the Kepler-34 and 38 systems can be detected in 10 yr. Habitable ''Earths'' in Kepler-35 and 47 are not likely to be detected in 10 yr under this precision.

  10. Magnetic constraints on the habitability of exomoons

    NASA Astrophysics Data System (ADS)

    Zuluaga, J. I.; Heller, R.

    2014-03-01

    Detection and characterization of exomoons is probably the next major step in extrasolar research. Exomoons around giant planets in the stellar habitable zone could provide common places for life in the Galaxy. But the environment of exomoons will be very different from that of terrestrial planets and therefore an in-depth characterization of these different conditions is key for assessing their habitability. To this purpose, we simulate the evolution of giant planets' magnetospheres and compare their extents with orbits in which natural satellites can be habitable from an illumination and tidal heating perspective (Heller & Zuluaga 2013). We discuss how magnetic and plasma environments can strongly constrain surface habitability on exomoons. Outside the planet's magnetosphere, a moon's atmosphere may be exposed to the erosion by the stellar wind and by the planetary corotational magnetoplasma. Inside the planetary magnetosphere, high-energy particles trapped in the planet's radiation belt may also harm a moon's atmosphere or life on the surface. We provide numerical estimations of these effects and their impact at constraining exomoon habitability.

  11. The Habitability of the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Gowanlock, M.

    2014-04-01

    The Galactic Habitable Zone is defined as the region(s) of the Galaxy that may support complex life. Studies of the habitability of the Milky Way are becoming increasingly important with the growing number of extrasolar planet detections, and the multitude of conditions that life is found to thrive on the Earth. Through the evolution of the Galaxy, the distribution of stars and the planets that they host vary throughout space and time. Combining the information of the frequency of extrasolar planets, and the prospects for life in a range of environments within our evolving galaxy, we are able to make initial estimates of the habitability of the Milky Way. Some of the prerequisites for complex life include having enough metallicity, or building blocks for planet formation, enough time for biological evolution and low exposure to transient radiation events, such as supernovae. Our previous work suggests that the inner disk of the Milky Way may contain the greatest number density of habitable planets at the present day at a galactocentric distance of R>2.5 kpc, despite the higher supernovae rate in the region in comparison to the Sun's location at 8 kpc. I will discuss our previous work, and present an overview of dangers to habitable planets beyond supernovae in different galactic environments.

  12. Climate and Habitability of Kepler 452b

    NASA Astrophysics Data System (ADS)

    Hu, Yongyun; Wang, Yuwei; Liu, Yonggang

    2015-12-01

    The discovery of Kepler 452b marks a milestone of searching for habitable exoplanets. While simple estimation indicates that Kepler 452b is located in the habitable zone of a Sun-like star, the climate state and habitability of Kepler 452b require detailed studies. Using a three-dimensional fully coupled atmosphere-ocean climate model and assuming an aqua-planet, we perform simulations to demonstrate climate states of Kepler 452b for different greenhouse effects and ice-albedo feedbacks. Our simulations show that sea ice can only invade from poles to about 45 degree in latitude for extremely low levels of CO2 (5 ppmv), and that surface temperature near the equator remains as high as 300 K. For high level of CO2 (0.2 bars), the exoplanet becomes ice free, and tropical surface temperature reaches about 335 K. The results suggest that Kepler 452b is very close to the inner edge of the habitable zone, and that its climate state can readily reach the runaway greenhouse limit as greenhouse concentration is higher.

  13. The infrared characteristics of circumstellar silicate grains

    NASA Technical Reports Server (NTRS)

    Schutte, W.; Tielens, A. G. G. M.

    1985-01-01

    A theoretical study of the infrared emission from circumstellar shells around late-type giants is made, with the aim of deriving the infrared characteristics of the silicate grains condensing in these shells. A large grid of models has been compared with observations of optically visible Miras, IRC sources and OH/IR stars. From fitting the observed relation between the color temperature and the strength of the 10-micron feature, it is concluded that the ratio of the 3.5 to 10-micron absorption efficiencies of the dust is about 0.25, a factor of 2 less than a previous determination. Detailed modeling of the 2 to 13-micron spectrum of OH 26.5 + 0.6, IRC + 10011 and R Cas yielded a similar ratio. These detailed models also show that the shape of the 10-micron feature, particularly around 8 and 13 microns, varies from source to source. The derived 10-micron feature is narrower for larger dust column densities. These observed differences in the intrinsic shape of the 10-micron feature are not due to differences in size of the condensing particles. Probably they are related to structural or compositional differences in the condensing silicates.

  14. Organics in the interstellar/circumstellar medium

    NASA Astrophysics Data System (ADS)

    Dartois, Emmanuel; Alata, Ivan; Bardin, Nomie; Beroff, Karine; Brunetto, Rosario; Chabot, Marin; Cruz-Diaz, Gustavo A.; Delauche, Lucie; Dumas, Paul; Duprat, Jean; Engrand, Cecile; Gavilan, Lisseth; Jallat, Aurlie; Jamme, Frdric; Muoz Caro, Guillermo M.; Pino, Thomas; Quirico, Eric; Rmusat, Laurent; Sandt, Christophe; Mostefaoui, Smail

    2015-08-01

    The interstellar medium is a physico-chemical laboratory where extreme conditions are encountered and its environmental parameters (e.g. density, reactant nature, radiations, temperature, time scales) define both the structure and the composition of matter.Whereas astrochemists must rely on remote observations to monitor and analyze the physico-chemical composition of interstellar organic solids,planetologists and cosmochemists can infer spectroscopically in the laboratory the actual structure and composition of collected extraterrestrial material.The interstellar/circumstellar observations give essentially access to the molecular functionality of these solids, rarely their elemental composition and the isotopic fractionation can almost only be inferred in the gas phase. Astrochemistery can provide additional information from the study of analogs produced in the laboratory, placed in simulated space environments.In this presentation, I will briefly summarize some observations in the diffuse interstellar medium (DISM) and molecular clouds (MC), setting constraints on both the composition of organic solids and the large molecules belonging to the cycle of matter in the Galaxy and briefly discuss the relations and differences between materials found in the Solar System and the interstellar dust.

  15. A database of circumstellar OH masers

    NASA Astrophysics Data System (ADS)

    Engels, D.; Bunzel, F.

    2015-10-01

    We present a new database of circumstellar OH masers at 1612, 1665, and 1667 MHz in the Milky Way galaxy. The database (version 2.4) contains 13 655 observations and 2341 different stars detected in at least one transition. Detections at 1612 MHz are considered to be complete until the end of 2014 as long as they were published in refereed papers. Detections of the main lines (1665 and 1667 MHz) and non-detections in all transitions are included only if published after 1983. The database contains flux densities and velocities of the two strongest maser peaks, the expansion velocity of the shell, and the radial velocity of the star. Links are provided for about 100 stars (<5% of all stars with OH masers) to interferometric observations and monitoring programs of the maser emission published since their beginnings in the 1970s. Access to the database is possible over the Web (http://www.hs.uni-hamburg.de/maserdb), allowing cone searches for individual sources and lists of sources. A general search is possible in selected regions of the sky and by defining ranges of flux densities and/or velocities. Alternative ways to access the data are via the German Virtual Observatory and the CDS. The data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A68

  16. Circumstellar disks around binary stars in Taurus

    SciTech Connect

    Akeson, R. L.

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup 4} M {sub ?}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}?M{sub ?}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  17. CIRCUMSTELLAR SHELL FORMATION IN SYMBIOTIC RECURRENT NOVAE

    SciTech Connect

    Moore, Kevin; Bildsten, Lars

    2012-12-20

    We present models of spherically symmetric recurrent nova shells interacting with circumstellar material (CSM) in a symbiotic system composed of a red giant (RG) expelling a wind and a white dwarf accreting from this material. Recurrent nova eruptions periodically eject material at high velocities ({approx}> 10{sup 3} km s{sup -1}) into the RG wind profile, creating a decelerating shock wave as CSM is swept up. High CSM densities cause the shocked wind and ejecta to have very short cooling times of days to weeks. Thus, the late-time evolution of the shell is determined by momentum conservation instead of energy conservation. We compute and show evolutionary tracks of shell deceleration, as well as post-shock structure. After sweeping up all the RG wind, the shell coasts at a velocity {approx}100 km s{sup -1}, depending on system parameters. These velocities are similar to those measured in blueshifted CSM from the symbiotic nova RS Oph, as well as a few Type Ia supernovae that show evidence of CSM, such as 2006X, 2007le, and PTF 11kx. Supernovae occurring in such systems may not show CSM interaction until the inner nova shell gets hit by the supernova ejecta, days to months after the explosion.

  18. An MCMC Circumstellar Disks Modeling Tool

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  19. Kepler Mission: A Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Koch, David; Fonda, Mark (Technical Monitor)

    2002-01-01

    The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.

  20. Application of the Titius-Bode Rule to the 55 Cancri System: Tentative Prediction of a Possibly Habitable Planet

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred

    2012-08-01

    Following the notion that the Titius-Bode rule (TBR) may also be applicable to some extrasolar planetary systems, although this number could be relatively small, it is applied to 55 Cancri, which is a G-type main-sequence star currently known to host five planets. Following a concise computational process, we tentatively identified four new hypothetical planetary positions, given as 0.081, 0.41, 1.51, and 2.95 AU from the star. The likelihood that these positions are occupied by real existing planets is significantly enhanced for the positions of 1.51 and 2.95 AU in view of previous simulations on planet formation and planetary orbital stability. For example, Raymond, Barnes, and Gorelick (2008, ApJ, 689, 478) argued that additional planets would be possible between 55 Cnc f and 55 Cnc d, which would include planets situated at 1.51 and 2.95 AU. If two additional planets are assumed to exist between 55 Cnc f and 55 Cnc d, the deduced domains of stability would be given as 1.3-1.6 and 2.2-3.3 AU. The possible planet near 1.5 AU appears to be located at the outskirts of the stellar habitable zone, which is, however, notably affected by the stellar parameters as well as the adopted model of circumstellar habitability. We also computed the distance of the next possible outer planet in the 55 Cnc system, which, if existing, is predicted to be located between 10.9 and 12.2 AU, which is consistent with orbital stability constraints. The inherent statistical significance of the TBR was evaluated following a method by Lynch (2003, MNRAS, 341, 1174). Yet it is up to future planetary search missions to verify or falsify the applicability of the TBR to the 55 Cnc system, and to obtain information on additional planets, if existing.

  1. Projection of circumstellar disks on their environments

    NASA Astrophysics Data System (ADS)

    Pontoppidan, K. M.; Dullemond, C. P.

    2005-05-01

    We use a 3D Monte Carlo radiative transfer code to study the projection of large shadows by circumstellar disks around young stellar objects on surrounding reflection nebulosity. It is shown that for a wide range of parameters a small (10-100 AU) circumstellar disk can project a large (1000-10 000 AU) dark band in the near-infrared that often resembles a massive edge-on disk. The disk shadows are divided into two basic types, depending on the distribution of the reflecting material and the resulting morphology of the shadows in the near-infrared. Two YSOs associated with bipolar nebulosity, CK 3/EC 82 illuminating the Serpens Reflection Nebula (SRN) and Ced 110 IRS 4 in the Chamaeleon I molecular cloud, are modelled in detail as disk shadows. Spectral energy distributions of the two sources are collected using both archival ISO data and new Spitzer-IRS data. An axisymmetric model consisting of a small disk and a spherically symmetric envelope can reproduce the near-infrared images and full spectral energy distributions of the two disk shadow candidates. It is shown that the model fits can be used to constrain the geometry of the central disks due to the magnifying effect of the projection. The presence of a disk shadow may break a number of degeneracies encountered when fitting to the SED only. Specifically, the inclination, flaring properties and extinction toward the central star may be independently determined from near-infrared images of disk shadows. Constraints on the disk mass and size can be extracted from a simultaneous fit of SEDs and images. We find that the CK 3 disk must have a very low mass in opacity-producing, small (? 10 ?m) dust grains (corresponding to a total mass of 7 10-6 {M?}, assuming a gas-to-dust ratio of 100) to simultaneously reproduce the very strong silicate emission features and the near-infrared edge-on morphology. Ced 110 IRS 4 requires that a roughly spherical cavity with radius 500 AU centered on the central star-disk system is carved out of the envelope to reproduce the near-infrared images. We show that in some cases the bipolar nebulosity created by a disk shadow may resemble the effect of a physical bipolar cavity where none exists. We find that a disk unresolved in near-infrared images, but casting a large disk shadow, can be modelled at a level of sophistication approaching that of an edge-on disk with resolved near-infrared images. Selection criteria are given for distinguishing disk shadows from genuine large disks. It is found that the most obvious observable difference between a disk shadow and a large optically thick disk is that the disk shadows have a compact near-infrared source near the center of the dark band. High resolution imaging and/or polarimetry should reveal the compact source in the center of a disk shadow as an edge-on disk. Finally, it is shown that disk shadows can be used to select edge-on disks suitable for observing ices located inside the disk.

  2. The chemical history of molecules in circumstellar disks. I. Ices

    NASA Astrophysics Data System (ADS)

    Visser, R.; van Dishoeck, E. F.; Doty, S. D.; Dullemond, C. P.

    2009-03-01

    Context: Many chemical changes occur during the collapse of a molecular cloud to form a low-mass star and the surrounding disk. One-dimensional models have been used so far to analyse these chemical processes, but they cannot properly describe the incorporation of material into disks. Aims: The goal of this work is to understand how material changes chemically as it is transported from the cloud to the star and the disk. Of special interest is the chemical history of the material in the disk at the end of the collapse. Methods: A two-dimensional, semi-analytical model is presented that, for the first time, follows the chemical evolution from the pre-stellar core to the protostar and circumstellar disk. The model computes infall trajectories from any point in the cloud and tracks the radial and vertical motion of material in the viscously evolving disk. It includes a full time-dependent radiative transfer treatment of the dust temperature, which controls much of the chemistry. A small parameter grid is explored to understand the effects of the sound speed and the mass and rotation of the cloud. The freeze-out and evaporation of carbon monoxide (CO) and water (H2O), as well as the potential for forming complex organic molecules in ices, are considered as important first steps towards illustrating the full chemistry. Results: Both species freeze out towards the centre before the collapse begins. Pure CO ice evaporates during the infall phase and re-adsorbs in those parts of the disk that cool below the CO desorption temperature of ~18 K. Water remains solid almost everywhere during the infall and disk formation phases and evaporates within ~10 AU of the star. Mixed CO-H2O ices are important in keeping some solid CO above 18 K and in explaining the presence of CO in comets. Material that ends up in the planet- and comet-forming zones of the disk (~5-30 AU from the star) is predicted to spend enough time in a warm zone (several 104 yr at a dust temperature of 20-40 K) during the collapse to form first-generation complex organic species on the grains. The dynamical timescales in the hot inner envelope (hot core or hot corino) are too short for abundant formation of second-generation molecules by high-temperature gas-phase chemistry.

  3. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    PubMed Central

    Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.

    2014-01-01

    Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714

  4. Possible Habitability of Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Hning, Dennis; Bredehft, Jan H.; Lammer, Helmut

    2014-05-01

    In the last decade, the number of detected exoplanets has increased to over thousand confirmed planets and more as yet unconfirmed planet candidates. The scientific community mainly concentrates on terrestrial planets (up to 10 Earth masses) in the habitable zone, which describes the distance from the host star where liquid water can exist at the surface (Kasting et al., 1993). Another target group of interest are ocean worlds, where a terrestrial-like body (i.e. with an iron core and a silicate mantle) is covered by a thick water-ice layer - similar to the icy moons of our solar system but with several Earth masses (e.g. Grasset et al., 2009). When an exoplanet is detected and confirmed as a planet, typically the radius and the mass of it are known, leading to the mean density of the planet that gives hints to possible interior structures. A planet with a large relative iron core and a thick ocean on top of the silicate mantle for example would have the same average planet density as a planet with a more Earth-like appearance (where the main contributor to the mass is the silicate mantle). In this study we investigate how the radius and mass of a planet depend on the amount of water, silicates and iron present (after Wagner et al., 2011) the occurence of high-pressure-ice in the water-ice layer (note: we only consider surface temperatures at which liquid water exists at the surface) if the ocean layer influences the initiation of plate tectonics We assume that ocean worlds with a liquid ocean layer (and without the occurence of high-pressure ice anywhere in the water layer) and plate tectonics (especially the occurence of subduction zones, hydrothermal vents and continental formation) may be called habitable (Class III/IV habitats after Lammer et al., 2009). References: Kasting, J.F., Whitmire, D.P., and Reynolds, R.T. (1993). Habitable Zones around Main Sequence Stars. Icarus 101, 108-128. Grasset, O., Schneider, J., and Sotin, C. (2009). A study of the accuracy of mass-radius relationships for silicate-rich and ice-rich planets up to 100 Earth masses. The Astrophysical Journal 693, 722-733. Wagner, F.W., Sohl, F., Hussmann, H., Grott, M., and Rauer, H. (2011). Interior structure models of solid exoplanets using material laws in the infinite pressure limit. Icarus 214, 366-376. Lammer, H., Bredehft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M., Wahlund, J.-E., Griemeier, J.-M., Stangl, G., Cockell, C.S., Kulikov, Yu.N., Grenfell, J.L., and Rauer, H. (2009). What makes a planet habitable? Astron Astrophys Rev 17, 181-249.

  5. THE RICH CIRCUMSTELLAR CHEMISTRY OF SMP LMC 11

    SciTech Connect

    Malek, S. E.; Cami, J.; Bernard-Salas, J. E-mail: jcami@uwo.ca

    2012-01-01

    Carbon-rich evolved stars from the asymptotic giant branch to the planetary nebula phase are characterized by a rich and complex carbon chemistry in their circumstellar envelopes. A peculiar object is the preplanetary nebula SMP LMC 11, whose Spitzer Infrared Spectrograph spectrum shows remarkable and diverse molecular absorption bands. To study how the molecular composition in this object compares to our current understanding of circumstellar carbon chemistry, we modeled this molecular absorption. We find high abundances for a number of molecules, perhaps most notably benzene. We also confirm the presence of propyne (CH{sub 3}C{sub 2}H) in this spectrum. Of all the cyanopolyynes, only HC{sub 3}N is evident; we can detect at best a marginal presence of HCN. From comparisons to various chemical models, we can conclude that SMP LMC 11 must have an unusual circumstellar environment (a torus rather than an outflow).

  6. First Circumstellar Disk around a Massive Star

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Observations with an infrared-sensitive instrument at the ESO 3.6-m telescope at La Silla have for the first time shown the presence of a disk around a hot and massive star, known as G339.88-1.26 . Until now, disks have only been found around less massive stars. Planets are formed in such disks. The new discovery may thus have important implications for our understanding of the formation of planetary systems around stars. TIMMI observations Observations at mid-infrared wavelengths were carried out in July 1997 by Bringfried Stecklum (Landessternwarte Thringen, Tautenburg, Germany) and Hans-Ulrich Kufl (ESO), using the TIMMI instrument at the ESO 3.6-m telescope. Additional measurements were carried out in March 1998. TIMMI ( T hermal I nfrared M ulti M ode I nstrument) is a general-purpose camera spectrometer operating at a wavelength of 10 m. To reach sufficient sensitivity, the camera must be cooled to approx. -260 o C, i.e. a few degrees above the absolute minimum, by use of liquid Helium. Astronomical objects whose temperatures are between -120 o C and 300 o C radiate most of their energy at this wavelength. In addition, dust and haze that are absolutely impenetrable for light visible to the human eye, are often found to be nearly transparent at this wavelength. This is why fire-fighters now use similar equipment to look through smoke. G339.88-1.26: A very special object ESO PR Photo 22a/98 ESO PR Photo 22a/98 [JPEG, 800k] This image is a true-color composite of near-infrared observations of the sky region around the radio source G339.88-1.26 with the ESO/MPI 2.2-m telescope at La Silla. In this image, the visible colors red, green and blue have been used to represent the infrared filters J, H and K (at 1.25, 1.63 and 2.2 m wavelength, respectively). No object is visible at the position of the radio source, even at these near-infrared wavelengths. A dark band of absorbing dust is clearly visible, exactly at the position of the object (indicated by an arrow). Earlier observations with radio telescopes of the object G339.88-1.26 , deeply embedded in an interstellar nebula, had been interpreted in terms of the possible existence of a circumstellar disk around a high-mass star. It was concluded that the star responsible for heating the surrounding gas must be very hot and also that it must be intrinsically very bright. The star, most likely of spectral type O9, would have a luminosity 10,000 times higher than that of the Sun and a mass of about 20 times that of the Sun. From the measured velocity, the likely distance of this object is about 10,000 light-years. The object is associated with several "spots" of very strong radio emission from methanol molecules (methanol masers). Interestingly, they form a chain in the sky and the measured velocities of the individual spots are indicative for orbital motion in a rotating disk around the central star. The circumstellar disk ESO PR Photo 22/98 ESO PR Photo 22b/98 [JPEG, 640k] The TIMMI 10 m image of the inclined dust disk around a hot O9 star at the G339.88-1.26 radio source. The diameter of the disk is of the order of 5 arcsec, i.e. at the most probable distance to the object (10,000 lightyears) it is 20,000 times larger than the diameter of the Earth's orbit around the Sun. The new TIMMI observations of G339.88-1.26 showed an elliptical object with strong infrared radiation. The peak of this radiation (as seen in the sky) coincides with the peak of the radio emission. Furthermore, the apparent orientation of the disk is well aligned with that of the methanol maser "spots". There is little doubt that this object is indeed the infrared image of a circumstellar disk, viewed at an angle. As far as known, this is the first direct image of a disk around a very massive star. At a wavelength of 10 m, however, the central star that is responsible for heating the dust disc, cannot be seen in spite of its rather high luminosity. This is because it radiates mostly in the ultra-violet part of the spectrum. Moreover, the dust disk in which the hot star is embedded, absorbs the stellar ultraviolet light extremely efficiently, thereby re-emitting this energy in the infrared. And any stellar light that escapes the dust shroud is in any case completely blocked by intervening interstellar material in the nebula. Implications of the discovery The formation of disks of dust and gas around young stars is now considered to be a normal feature of star formation. This is well established for stars of about the size and mass of our Sun. However, until now there has been no direct evidence of such disks being also formed around young massive stars. In view of the extremely high luminosity of such massive stars, any surrounding disks are subject to a fierce attack by the enormous flux of light to which they are exposed. Hence the existence of such disks around massive and luminous stars has been questioned by astronomers interested in the physical process of star formation. The discovery of the disk around G339.88-1.26 now settles the question whether such disks can indeed be formed and are stable over periods long enough that they can be observed. Supplementary measurements to investigate the molecules and dust around G339.88-1.26 have been performed with the SEST submillimeter telescope at La Silla in March 1998. Near-infrared images have also been taken at the NTT and at the 2.2-m telescope. The team responsible for this project also includes Thomas Henning and Markus Feldt (Astrophysikalisches Institut & Universitts-Sternwarte, Jena, Germany), Andreas Eckart (Max-Planck-Institut fr extraterrestrische Physik, Garching, Germany) and Lars-ke Nyman (ESO). Further information is available at URL: http://www.tls-tautenburg.de/research/g339.html. This Press Release is accompanied by ESO PR Photo 22a/98 and ESO PR Photo 22b/98 . They may be reproduced, if credit is given to the European Southern Observatory. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  7. The Water Vapor Abundance in Circumstellar Envelopes

    NASA Astrophysics Data System (ADS)

    González-Alfonso, Eduardo; Cernicharo, José

    1999-11-01

    The maser emission of the para-H2O 313-->220 line at 183 GHz in O-rich evolved stars has been modeled to account for the empirical characteristics of this line reported by González-Alfonso et al. Likewise, efforts have been made to derive water vapor abundance in these sources. The Sobolev or large velocity gradient (LVG) method has been employed to study the intensity of this line as a function of source properties and physical conditions (i.e., mass-loss rate, p-H2O abundance, velocity field, kinetic temperature profile, stellar luminosity, and the set of collisional rates adopted in the calculations). It has been found that the intensity of the 313-->220 line is sensitive to the mass-loss rate, the p-H2O abundance, and the terminal velocity of the envelope, but it is rather insensitive to the rest of the parameters in stars with high mass-loss rates (Ṁ>10-6 Msolar yr-1). The models reproduce the main spectral characteristics of the emission at 183 GHz in the latter sources. A global fit to the data proves that the observational luminosities can be explained by assuming an H2O abundance relative to H2 [x(H2O)] of 1-2×10-4. Detailed fitting to the line profile in five selected objects yields a similar value for x(H2O). The validity of the LVG approach has been verified by modeling the maser emission at 183 GHz through a nonlocal radiative transfer code. The model calculations with both methods lead to similar results. The pumping of the first bending mode of water vapor through absorption of photons emitted by the dust and the star has been also simulated. This effect is found to be important in the pumping of the H2O rotational levels. Hence, in order to recover LVG results, the water abundance must be increased by a factor of ~2 for stars with high mass-loss rates. Consequently, x(H2O) has been estimated to be 3×10-4 within a factor ~=2. With this value for x(H2O), the expected near- and far-infrared spectra of the circumstellar envelopes of O-rich stars for several mass-loss rates have also been computed. Hence, it is possible to predict that, in some stars, the ro-vibrational lines of the 6 μm water vapor band with wavelengths longer that 6.3 μm--the P-branch--can be observed in emission, rather than in absorption.

  8. Magnetic Shielding of Exomoons beyond the Circumplanetary Habitable Edge

    NASA Astrophysics Data System (ADS)

    Heller, Ren; Zuluaga, Jorge I.

    2013-10-01

    With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet's magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.

  9. MAGNETIC SHIELDING OF EXOMOONS BEYOND THE CIRCUMPLANETARY HABITABLE EDGE

    SciTech Connect

    Heller, René; Zuluaga, Jorge I. E-mail: jzuluaga@fisica.udea.edu.co

    2013-10-20

    With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet's magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.

  10. Erosion of circumstellar particle disks by interstellar dust

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Griffith, Caitlin A.

    1989-01-01

    Circumstellar particle disks appear to be a common phenomenon; however, their properties vary greatly. Models of the evolution of such systems focus on internal mechanisms such as interparticle collisions and Poynting-Robertson drag. Herein it is shown that 'sandblasting' by interstellar dust can be an important and even dominant contributor to the evolution of circumstellar particle disks. Stars spend up to about 3 percent of their main-sequence lifetimes within atomic clouds. Among an IRAS sample of 21 nearby main-sequence A stars, beta Pictoris has the brightest disk; it also possesses the smallest random velocity and therefore the slowest predicted erosion rate.

  11. Europa: Processes and Habitability

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.

    Europa may be a habitable world. Evidence points strongly to a subsurface ocean beneath an ice shell about 20 km thick. Europa's surface geology as viewed by Galileo imaging suggests a thin brittle lithosphere above a warm ice layer that is at least in part convecting, in turn situated above a liquid water ocean. This configuration is consistent with thermal and geochemical modeling, and with Galileo magnetometer results. Dynamical modeling and visible crater density suggests a surface age of ˜60 million years, implying that Europa is probably still geologically active today. Large shallow craters and multi-ringed structures imply impact into low-viscosity (warm) subsurface material. The satellite's bright plains are crossed by narrow troughs and double ridges (paired ridges separated by a medial trough); a morphological sequence exists from isolated troughs to double ridges to wider and more complex ridge morphologies. Troughs are inferred as widened fractures formed though tensile and shear failure in response to global stressing of the ice shell above liquid water. Several models exist to explain ridges, but the most promising is one in which localized shear heating triggers upwelling of warm ice along fracture zones. Ruddy diffuse ruddy ridge may have formed through thermal alteration and/or partial melting of briny ice. Wider pull-apart bands represent complete separation and spreading of the icy lithosphere, in a manner broadly analogous to terrestrial sea-floor spreading. Europa's global lineament pattern implies that nonsynchronous rotation and orbital flexing ("diurnal" stressing) have worked together to deform the surface. Diurnal stressing can explain Europa's enigmatic cycloid ridge and fracture patterns, and may drive rapid strike-slip faulting along ridges. Because significant tidal amplitude is necessary to produce significant diurnal stressing, this argues strongly for a subsurface liquid layer. Extremely slow nonsynchronous rotation of the ice shell may drive shear failure in equatorial regions, and may have opened the satellite's pull-apart bands. Mottled terrain consists of pits, domes, dark spots, patches of smooth plains, and regions of chaos terrain. Chaos is characterized by fragmented blocks of the preexisting surface in a hummocky matrix. Mottled terrain landforms suggest vertical deformation and disruption of the surface and localized partial melting. Their formation has been interpreted as due to diapiric upwelling-the expression of solid-state convection of warm subsurface ice-predicted within a tidally strained ice shell tens of kilometers thick above liquid water. Warm ice diapirs can circulate material between Europa's ocean and shallow levels within the ice shell, and can trigger local partial melting of briny ice, potentially creating near-surface biological niches. Europa's astonishing geology and its biological potential makes the satellite a high priority for future orbital and landed exploration.

  12. Stability of habitable exomoons of circumbinary planets

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Haghighipour, Nader; Quarles, Billy

    2015-12-01

    Among the currently known Kepler circumbinary planets, three, namely Kepler-453b, Kepler-16b, and Kepler-47c are in the binary habitable zone (HZ). Given the large sizes of these planets, it is unlikely that they would be habitable. However, similar to the giant planets in our solar system, these planets may have large moons, which orbit their host planets while in the HZ. These exomoons, if exist, present viable candidates for habitability. As a condition for habitability, the planet-moon system has to maintain its orbital stability for long time. Usually, the empirical formula by Holeman & Wiegert (1999) is used as a measure of orbital stability in circumbinary systems. However, this formula was obtained by assuming planets to be test particles and therefore does not include possible perturbation of the planet on the binary. In this work, we present results of more realistic calculations of stability of circumbinary planets where the interactions between planets and their central binaries are taken into account. We map the region of stability, which in this case will be specific to each system, and determine the range of the orbital parameters of the moons for which their orbits will be long-term stable.

  13. The origin and evolution of dust in interstellar and circumstellar environments

    NASA Technical Reports Server (NTRS)

    Whittet, Douglas C. B.; Leung, Chun M.

    1993-01-01

    This status report covers the period from the commencement of the research program on 1 Jul. 1992 through 30 Apr. 1993. Progress is reported for research in the following areas: (1) grain formation in circumstellar envelopes; (2) photochemistry in circumstellar envelopes; (3) modeling ice features in circumstellar envelopes; (4) episodic dust formation in circumstellar envelopes; (5) grain evolution in the diffuse interstellar medium; and (6) grain evolution in dense molecular clouds.

  14. Atmospheric studies of habitability in the Gliese 581 system

    NASA Astrophysics Data System (ADS)

    von Paris, P.; Gebauer, S.; Godolt, M.; Rauer, H.; Stracke, B.

    2011-08-01

    Context. The M-type star Gliese 581 is orbited by at least one terrestrial planet candidate in the habitable zone, i.e. GL 581 d. Orbital simulations have shown that additional planets inside the habitable zone of GL 581 would be dynamically stable. Recently, two other planet candidates have been claimed, one of them in the habitable zone. Aims: In view of the ongoing search for planets around M stars that is expected to result in numerous detections of potentially habitable super-Earths, we take the GL 581 system as an example for investigating such planets. In contrast to previous studies of habitability in the GL 581 system, we use a consistent atmospheric model to assess surface conditions and habitability. Furthermore, we performed detailed atmospheric simulations for a much larger subset of potential planetary and atmospheric scenarios than previously considered. Methods: A 1D radiative-convective atmosphere model was used to calculate temperature and pressure profiles of model atmospheres, which we assumed to be composed of molecular nitrogen, water, and carbon dioxide. In these calculations, key parameters such as surface pressure and CO2 concentration, as well as orbital distance and planetary mass are varied. Results: Results imply that surface temperatures above freezing could be obtained, independent of the atmospheric scenarios considered here, at an orbital distance of 0.117 AU. For an orbital distance of 0.146 AU, CO2 concentrations as low as 10 times the present Earth's value are sufficient to warm the surface above the freezing point of water. At 0.175 AU, only scenarios with CO2 concentrations of 5% and 95% were found to be habitable, so an additional super-Earth planet in the GL 581 system in the previously determined dynamical stability range would be considered a potentially habitable planet.

  15. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  16. Adult Reading Habits and Patterns.

    ERIC Educational Resources Information Center

    Scales, Alice M.; Rhee, Ock

    2001-01-01

    Examines the reading habits and patterns of White and Asian American adults. Hypothesizes that when grouped by demographic variables, participants' responses about their reading habits and patterns would not differ. Concludes that gender, race, and education were predictors for participants' reading habits; education and race were predictors for

  17. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  18. Effects of extreme obliquity variations on the habitability of exoplanets.

    PubMed

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. PMID:24611714

  19. HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS

    SciTech Connect

    Hinkel, Natalie R.; Kane, Stephen R.

    2013-09-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets {mu} Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery.

  20. The Circumstellar Environments of FU Orionis Stars

    NASA Astrophysics Data System (ADS)

    McMuldroch, Stuart

    1995-01-01

    Extensive observations were made of six FU Orionis objects (RNO 1B/1C, V1057 Cygni, Elias 1-12, V1515 Cygni and FU Orionis) and one pre-outburst candidate (V1331 Cygni) using the Owens Valley millimeter-wave array and the Caltech Submillimeter Observatory (CSO). Aperture synthesis maps of CO (1 to 0), ^ {13}CO (1 to 0), 13CO (2 to 1), C18O (1 to 0), and CS (2 to 1) molecular lines and associated dust continuum emission trace the masses, kinematics and morphology of FU Orionis disks, envelopes, and outflows. Maps from the CSO delineate outflowing gas at larger spatial scales while line strengths, when input into radiative transfer models, yield column densities and fractional chemical abundances. Unresolved 1.3 mm continuum emission from V1331 Cygni and V1057 Cygni reveal massive circumstellar disks of 0.5 and 0.09 Modot , respectively. Maps of the 2.6 and 3.1 mm continuum emission reveal that RNO 1C is surrounded by a flattened dusty envelope, 5000 AU in size, with mass >= 1.1 Modot. No evidence is seen for multiple systems with orbital periods _sp{~}>4 times 10^4 years. All sources, with the exception of RNO 1B/1C are surrounded by large molecular gas envelopes between 2000 -7500 AU in size, with masses ranging from 2 times 10^{-3} to 0.36 Modot. Aperture synthesis maps suggest the envelopes are asymmetrically distributed. Gas kinematics around V1057 Cygni and Elias 1-12 suggest, but do not demand, that this material is rotating and possibly infalling. Of the seven sources observed, all but FU Orionis show signs of outflowing molecular gas. No high velocity clumps or "bullets" are seen towards any of the sources. V1331 Cygni, V1057 Cygni, and V1515 Cygni possess arc or ring -like outflow morphologies, while emission from RNO 1B/1C and Elias 1-12 delineates filled outflow shells. All emission patterns are consistent with outflow shells being viewed at different angles. Although based on the statistics of small numbers, observations suggest shells are seen more frequently around FUors than T Tauri stars. Cross -cutting arcs within the shell structure, seen towards RNO 1B/1C and Elias 1-12, are probably ridges of gas swept -up by the most recent outbursts, confirming the repetitive nature of FUor outbursts. Estimates of the dynamical ages of the arcs suggest that the interval between outbursts is {~}5 times 10^3 and 1.3 times 10^4 years for RNO 1B/1C and Elias 1-12 respectively, consistent with previous estimates of FUor cycling times. Comparable envelopes and shell-like outflow structure are seen towards embedded sources while envelopes surrounding T Tauri stars are smaller and less massive. The strength of the molecular outflow emission is correlated with the mass of the extended envelope; the outflow has evacuated molecular gas leaving less to be swept-up by subsequent outbursts, while envelope masses are smaller since less material is available for accretion. Chemically, fractional abundances of SiO and methanol are enhanced towards RNO 1B/1C by over an order of magnitude. Methanol is enhanced relative to HCN and H_2CO towards Elias 1-12. Such large changes in fractional abundances must be caused by chemical processing. (Abstract shortened by UMI.).

  1. On the Classification of Infrared Spectra from Circumstellar Dust Shells

    NASA Technical Reports Server (NTRS)

    Sloan, G. C.; Little-Marenin, I. R.; Price, S. D.

    1996-01-01

    We present results from an ongoing effort to classify the infrared spectra produced by circumstellar dust shells. Earlier efforts concentrated on oxygen-rich dust shells from sources associated with the asymptotic giant branch (AGB). Here, we describe the expansion of our classification to include S stars, supergiants, and carbon stars.

  2. Chemical evolution of circumstellar matter around young stellar objects

    NASA Technical Reports Server (NTRS)

    van Dishoeck, E. F.; Blake, G. A.

    1995-01-01

    Recent observational studies of the chemical composition of circumstellar matter around both high- and low-mass young stellar objects are reviewed. The molecular abundances are found to be a strong function of evolutionary state, but not of system mass or luminosity. The data are discussed with reference to recent theoretical models.

  3. Chemical evolution of circumstellar matter around young stellar objects.

    PubMed

    van Dishoeck, E F; Blake, G A

    1995-01-01

    Recent observational studies of the chemical composition of circumstellar matter around both high- and low-mass young stellar objects are reviewed. The molecular abundances are found to be a strong function of evolutionary state, but not of system mass or luminosity. The data are discussed with reference to recent theoretical models. PMID:11538416

  4. Trajectories of Martian Habitability

    PubMed Central

    2014-01-01

    Abstract Beginning from two plausible starting points—an uninhabited or inhabited Mars—this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments. Key Words: Mars—Habitability—Liquid water—Planetary science. Astrobiology 14, 182–203. PMID:24506485

  5. Trajectories of martian habitability.

    PubMed

    Cockell, Charles S

    2014-02-01

    Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments. PMID:24506485

  6. Sleep habits and diabetes.

    PubMed

    Larcher, S; Benhamou, P-Y; Pépin, J-L; Borel, A-L

    2015-09-01

    Sleep duration has been constantly decreasing over the past 50 years. Short sleep duration, sleep quality and, recently, long sleep duration have all been linked to poor health outcomes, increasing the risk of developing metabolic diseases and cardiovascular events. Beyond the duration of sleep, the timing of sleep may also have consequences. Having a tendency to go early to bed (early chronotype) compared with the habit of going to bed later (late chronotype) can interfere considerably with social schedules (school, work). Eventually, a misalignment arises in sleep timing between work days and free days that has been described as 'social jet lag'. The present review looks at how different sleep habits can interfere with diabetes, excluding sleep breathing disorders, and successively looks at the effects of sleep duration, chronotype and social jet lag on the risk of developing diabetes as well as on the metabolic control of both type 1 and type 2 diabetes. Finally, this review addresses the current state of knowledge of physiological mechanisms that could be linking sleep habits and metabolic health. PMID:25623152

  7. Effective Physics Study Habits

    NASA Astrophysics Data System (ADS)

    Zettili, Nouredine

    2011-04-01

    We discuss the methods of efficient study habits and how they can be used by students to help them improve learning physics. In particular, we deal with ideas pertaining to the most effective techniques needed to help students improve their physics study skills. These ideas were developed as part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), an outreach grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. In the presentation, focus on topics such as the skills of how to develop long term memory, how to improve concentration power, how to take class notes, how to prepare for and take exams, how to study scientific subjects such as physics. We argue that the student who conscientiously uses the methods of efficient study habits will be able to achieve higher results than the student who does not; moreover, a student equipped with the proper study skills will spend much less time to learn a subject than a student who has no good study habits. The underlying issue here is not the quantity of time allocated to the study efforts by the student, but the efficiency and quality of actions. This work is supported by the Alabama Commission on Higher Education as part of IMPACTSEED grant.

  8. HABITABLE CLIMATES: THE INFLUENCE OF ECCENTRICITY

    SciTech Connect

    Dressing, Courtney D.; Spiegel, David S.; Scharf, Caleb A.; Menou, Kristen; Raymond, Sean N. E-mail: dsp@astro.princeton.ed E-mail: caleb@astro.columbia.ed

    2010-10-01

    In the outer regions of the habitable zone, the risk of transitioning into a globally frozen 'snowball' state poses a threat to the habitability of planets with the capacity to host water-based life. Here, we use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and the fraction of the surface covered by ocean might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for a constant semimajor axis, the annual mean stellar irradiation scales with (1 - e {sup 2}){sup -1/2}, one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1 - e {sup 2}){sup -1/4}. We find that this standard simple ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of both obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, for instance, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars, as considered here, since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turnout to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.

  9. The Solar Neighborhood: Habitable Real Estate Around Nearby Stars

    NASA Astrophysics Data System (ADS)

    Cantrell, Justin R.; Jao, W.; Henry, T.; Monteiro, H.

    2007-12-01

    We have determined the amount of habitable "real estate" for 38 stars nearer than 5 parsecs. Using photometric spectral energy distributions (SEDs) derived using available and new UBVRIJHK photometry from the RECONS (Research Consortium on Nearby Stars) effort, we estimate the region around each target star in which liquid water may exist on any orbiting planet, i.e. the classical habitable zone. From the SEDs and parallax data from RECONS, we were able to estimate radii and temperatures for these stars using an IDL curve fitting function and GAIA models. These radii and temperatures were then used to estimate habitable area around each star, and the sums for each spectral type were found. Results indicate that spectral type A stars provide the most habitable real estate as a group, followed by the F stars. This research has been supported by NSF grant AST 05-07711, NASA's Space Interferometry Mission, and Georgia State University.

  10. Habitable planets around the Sun and other stars

    NASA Astrophysics Data System (ADS)

    Kasting, James F.

    This chapter gives an overview about planetary habitability, which is based on the assumption that a habitable planet is one that supports liquid water on at least part of its surface. The factors that have kept Earth habitable throughout most of its life are reviewed, as well as those that made present-day Mars and Venus uninhabitable. These serve also as indicators for the expected width of the habitable zone around solar-like stars. The last two sections cover the causes for low abiotic O2 abundances expected in Earth's early atmosphere, and the (biological) origin of the current high concentrations of O2 and O3. Implications for the detectability of biological activity on extrasolar planets are discussed.

  11. Habitability and Life - an Overview

    NASA Astrophysics Data System (ADS)

    Bredehöft, J. H.

    2008-09-01

    Abstract The search for habitable planets has seen a significant boost, since much effort was invested into development of newer and more powerful techniques of detecting such planetary bodies. This search is fuelled by the interest that is sparked by its help in answering the bigger question of the origin of life on Earth and its abundance in the universe. Traditionally a planetary body has been deemed habitable when it provides conditions under which water is liquid. This led to the formulation of a habitable zone across stars, in which liquid water can exist. [1] Liquid water remains to this day the single most important feature in the search for life. There have been various suggestions of life being present in waterless environments like liquid hydrocarbons or even liquid ammonia, but how exactly a living system under such conditions might work, no one can satisfactorily explain. [2] A very important point in this context that is not often raised is that while water might be a favourable medium in which to live and certainly a major constituent of all living organism we know of, water alone is not alive and it will not spontaneously evolve into life. It would thus seem that apart from the presence of liquid water there a number of other, minor, necessary ingredients to life that determine whether a planet is habitable (meaning capable of sustaining life) or whether it is also capable of providing the starting grounds for the evolution of living systems. These other ingredients are determined by the minimum requirements of life itself. They include the molecular components of the most primitive encasing of an organism, the most primitive molecules needed for something like a metabolism and the most primitive way of storing information. [3] In addition to these molecular components, life must be able to utilise a source of energy to drive chemical reactions. Observations of various extremophiles on Earth utilising all kinds disequilibria suggest that these can be very diverse. The exact nature of these other ingredients, their possible presence and history of formation and their impact for the formation and evolution of life will be discussed for several different types of habitats all across the regime in which liquid water can be found, such as very dry and cold bodies like Mars, hot bodies like Venus, bodies covered completely in water or bodies with subsurface oceans. References [1] Kasting J.F., Whitmire D.P., Reynolds R.T., (1993) Icarus 101(1), 108-128 [2] Benner S.A., Ricardo A., Carrigan M.A. (2004) Curr Opin Chem Biol 8(6), 672-689 [3] Ruiz-Mirazo K., Peretó J., Moreno A., (2004) OLEB 34(3), 323-346 EPSC Abstracts, Vol. 3, EPSC2008-A-00039, 2008 European Planetary Science Congress, Author(s) 2008

  12. POST-CAPTURE EVOLUTION OF POTENTIALLY HABITABLE EXOMOONS

    SciTech Connect

    Porter, Simon B.; Grundy, William M.

    2011-07-20

    The satellites of extrasolar planets (exomoons) have been recently proposed as astrobiological targets. Since giant planets in the habitable zone are thought to have migrated there, it is possible that they may have captured a former terrestrial planet or planetesimal. We therefore attempt to model the dynamical evolution of a terrestrial planet captured into orbit around a giant planet in the habitable zone of a star. We find that approximately half of loose elliptical orbits result in stable circular orbits over timescales of less than a few million years. We also find that those orbits are mostly at low inclination, but have no prograde/retrograde preference. In addition, we calculate the transit timing and duration variations for the resulting systems, and find that potentially habitable Earth-mass exomoons should be detectable.

  13. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  14. Computer codes for evaluation of control room habitability (HABIT)

    SciTech Connect

    Stage, S.A.

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs.

  15. Longevity of moons around habitable planets

    NASA Astrophysics Data System (ADS)

    Sasaki, Takashi; Barnes, Jason W.

    2014-10-01

    We consider tidal decay lifetimes for moons orbiting habitable extrasolar planets using the constant Q approach for tidal evolution theory. Large moons stabilize planetary obliquity in some cases, and it has been suggested that large moons are necessary for the evolution of complex life. We find that the Moon in the Sun-Earth system must have had an initial orbital period of not slower than 20 h rev-1 for the moon's lifetime to exceed a 5 Gyr lifetime. We assume that 5 Gyr is long enough for life on planets to evolve complex life. We show that moons of habitable planets cannot survive for more than 5 Gyr if the stellar mass is less than 0.55 and 0.42 M ? for Q p=10 and 100, respectively, where Q p is the planetary tidal dissipation quality factor. Kepler-62e and f are of particular interest because they are two actually known rocky planets in the habitable zone. Kepler-62e would need to be made of iron and have Q p=100 for its hypothetical moon to live for longer than 5 Gyr. A hypothetical moon of Kepler-62f, by contrast, may have a lifetime greater than 5 Gyr under several scenarios, and particularly for Q p=100.

  16. The detectability of habitable exomoons with Kepler

    NASA Astrophysics Data System (ADS)

    Awiphan, S.; Kerins, E.

    2013-07-01

    In this paper, the detectability of habitable exomoons orbiting around giant planets in M-dwarf systems using transit timing variations (TTVs) and transit duration variations (TDVs) with Kepler-class photometry is investigated. Light curves of systems with various configurations were simulated around M-dwarf hosts of mass 0.5 M? and radius 0.55 R?. Jupiter-like giant planets which offer the best potential for hosting habitable exomoons were considered with rocky super-Earth-mass moons. The detectability is measured by using the phase-correlation between TTV and TDV signals. Since the TDV signal is typically weaker than the TTV signal, confirmation of an exomoon detection will depend on being able to detect a TDV signal. We find that exomoons around planets orbiting within the habitable zone of an M-dwarf host star can produce both detectable TTV and TDV signatures with Kepler-class photometry. While aliasing between the planet period and moon period may hinder exomoon detection, we also find some strong correlation signatures in our simulation (e.g. correlation: >0.7) which would provide convincing exomoon signatures. With the addition of red noise stellar variability, correlations generally weaken. However simulated examples with planet masses less than around 25 M?, moons of mass 8-10 M? and specific values of planet and moon periods still yield detectable correlation in 25-50 per cent of cases. Our simulation indicates that Kepler provides one of the best available opportunities for exomoon detection.

  17. Detection of circumstellar material in a normal type Ia supernova.

    PubMed

    Patat, F; Chandra, P; Chevalier, R; Justham, S; Podsiadlowski, Ph; Wolf, C; Gal-Yam, A; Pasquini, L; Crawford, I A; Mazzali, P A; Pauldrach, A W A; Nomoto, K; Benetti, S; Cappellaro, E; Elias-Rosa, N; Hillebrandt, W; Leonard, D C; Pastorello, A; Renzini, A; Sabbadin, F; Simon, J D; Turatto, M

    2007-08-17

    Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion. PMID:17626848

  18. Atomic Hydrogen in the Circumstellar Envelope of IRC+10216

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Grard, E.; Le Bertre, T.

    2015-08-01

    Using the Robert C. Byrd Green Bank Telescope (GBT), we have performed the most sensitive search to date for neutral atomic hydrogen (HI) associated with the circumstellar envelope (CSE) of the carbon star IRC+10216. We report the discovery of a low surface brightness HI shell of diameter 1280'' (0.8 pc) surrounding the star. The shell's kinematics are consistent with matter that has been decelerated through interaction with the interstellar medium (ISM). The angular extent of the shell is comparable to the far ultraviolet (FUV)-emitting astrosphere previously detected with GALEX. The total mass of atomic hydrogen associated with IRC+10216 is < 1% of the expected total mass of the CSE. We briefly discuss implications for the possible origins of the circumstellar atomic hydrogen.

  19. Circumstellar Absorption in Double Detonation Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.; Guillochon, James; Foley, Ryan J.

    2013-06-01

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  20. Circumstellar Disk Properties of Young Stellar Objects Revealed by CARMA

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin

    2010-05-01

    Radio interferometers at sub/millimeter wavelengths sensitive to dust continuum are the main tools to study circumstellar disk properties, which show the initial conditions of planet formation. We have initiated a circumstellar disk survey using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and have obtained 6 T Tauri disk data at both 1.3 and 2.7 mm continua so far, including HL Tau with an angular resolution up to 0.13 arcsecond. We constrained disk properties by visibility modeling in Bayesian inference using power-law disk and viscous accretion disk models. In addition, we compared the two models quantitatively. Furthermore, we detected substructures presumably showing an ongoing mechanism of planet formation.

  1. Dust mineralogy in the circumstellar envelope of SVS13

    NASA Astrophysics Data System (ADS)

    Fujiyoshi, T.; Wright, C.; Moore, T.

    It is of great interest to study the mineralogy of circumstellar dust around young stars as it represents the original constituents of planetesimals, hence of the rocky planets like our own Earth. To this end, we have obtained an N-band (8-13 µm) spectrum of a pre-main-sequence star SVS13, using the facility mid-infrared imaging spectrometer COMICS on the Japanese 8.2-m Subaru Telescope atop the summit of Mauna Kea, Hawaii. We have fitted various emissivities/absorption coefficients of dust species to the spectrum to examine dust mineralogy in the circumstellar envelope of this remarkable young star. In this presentation, we outline the modelling and highlight some of our findings.

  2. The chemistry of molecular anions in circumstellar sources

    SciTech Connect

    Agndez, Marcelino; Cernicharo, Jos; Gulin, Michel

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup ?}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  3. Revising Circumstellar Disk Evolution -- How Binaries Change the Picture

    NASA Astrophysics Data System (ADS)

    Daemgen, Sebastian; Petr-Gotzens, Monika; Meyer, Elliot

    2015-01-01

    We combine new and previously published high-angular resolution near-infrared spectroscopic and photometric observations to measure the presence of accretion and hot circumstellar dust around the individual components of visual multiple stars and confirmed singles with separations between ˜20 and 800 AU in the Orion Nebula Cluster, Chamaeleon I, and Taurus star-forming regions. The data provide evidence for an accelerated disk dispersal in binaries -- in particular of the less massive stellar component -- at a mass accretion rate identical to that of single stars. Our findings have stringent implications on circumstellar disk parameters, which have been traditionally inferred from observations of ``binary-contaminated'' samples. For example, we find an increased single star accretor fraction, i.e., evidence for a longer single star disk lifetime, compared to previous surveys.

  4. Circumstellar interaction in type Ibn supernovae and SN 2006jc

    NASA Astrophysics Data System (ADS)

    Chugai, N. N.

    2009-12-01

    I analyse peculiar properties of light curve and continua of enigmatic Ibn supernovae, including SN 2006jc, and argue in favour of the early strong circumstellar interaction. This interaction explains the high luminosity and fast flux rise of SN 1999cq, while the cool dense shell (CDS) formed in shocked ejecta can explain the smooth early continuum of SN 2000er and unusual blue continuum of SN 2006jc. The dust is shown to condense in the CDS at about day 50. Monte Carlo modelling of the HeI 7065 Å line profile affected by the dust occultation supports a picture, in which the dust resides in the fragmented CDS, whereas HeI lines originate from circumstellar clouds shocked and fragmented in the forward shock wave.

  5. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    SciTech Connect

    Shen, Ken J.; Guillochon, James; Foley, Ryan J.

    2013-06-20

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  6. Planetary habitability: lessons learned from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Preston, Louisa J.; Dartnell, Lewis R.

    2014-01-01

    Terrestrial analogue studies underpin almost all planetary missions and their use is essential in the exploration of our Solar system and in assessing the habitability of other worlds. Their value relies on the similarity of the analogue to its target, either in terms of their mineralogical or geochemical context, or current physical or chemical environmental conditions. Such analogue sites offer critical ground-truthing for astrobiological studies on the habitability of different environmental parameter sets, the biological mechanisms for survival in extreme environments and the preservation potential and detectability of biosignatures. The 33 analogue sites discussed in this review have been selected on the basis of their congruence to particular extraterrestrial locations. Terrestrial field sites that have been used most often in the literature, as well as some lesser known ones which require greater study, are incorporated to inform on the astrobiological potential of Venus, Mars, Europa, Enceladus and Titan. For example, the possibility of an aerial habitable zone on Venus has been hypothesized based on studies of life at high-altitudes in the terrestrial atmosphere. We also demonstrate why many different terrestrial analogue sites are required to satisfactorily assess the habitability of the changing environmental conditions throughout Martian history, and recommend particular sites for different epochs or potential niches. Finally, habitable zones within the aqueous environments of the icy moons of Europa and Enceladus and potentially in the hydrocarbon lakes of Titan are discussed and suitable analogue sites proposed. It is clear from this review that a number of terrestrial analogue sites can be applied to multiple planetary bodies, thereby increasing their value for astrobiological exploration. For each analogue site considered here, we summarize the pertinent physiochemical environmental features they offer and critically assess the fidelity with which they emulate their intended target locale. We also outline key issues associated with the existing documentation of analogue research and the constraints this has on the efficiency of discoveries in this field. This review thus highlights the need for a global open access database for planetary analogues.

  7. Magnetic Field and Early Evolution of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Yusuke

    2016-03-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetised cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper, we review the mechanism of magnetic braking, its effect on disk formation and early evolution, and the mechanisms that resolve the magnetic braking problem. In particular, we emphasise the importance of non-ideal effects. The combination of magnetic diffusion and thermal evolution during gravitational collapse provides a robust formation process for the circumstellar disk at the very early phase of protostar formation. The rotation induced by the Hall effect can supply a sufficient amount of angular momentum for typical circumstellar disks around T Tauri stars. By examining the combination of the suggested mechanisms, we conclude that the circumstellar disks commonly form in the very early phase of protostar formation.

  8. NASA plans relevant to the study of circumstellar matter

    NASA Astrophysics Data System (ADS)

    Stencel, Robert E.

    The Astrophysics program of the National Aeronautics and Space Administration of the United States emphasizes use of vehicles to obtain above-the-atmosphere observational advantages, including expanded electromagnetic frequency access, enhanced sensitivity resulting from reduced or eliminated atmospheric absorption of light and image smearing. Space technology provides a superior means for astrophysical inquiry, particularly in the case of circumstellar material. Much of the flight program is undergoing intensive review following the Space Shuttle disaster of January 1986.

  9. Hot circumstellar material resolved around ? Pic with VLTI/PIONIER

    NASA Astrophysics Data System (ADS)

    Defrre, D.; Lebreton, J.; Le Bouquin, J.-B.; Lagrange, A.-M.; Absil, O.; Augereau, J.-C.; Berger, J.-P.; di Folco, E.; Ertel, S.; Kluska, J.; Montagnier, G.; Millan-Gabet, R.; Traub, W.; Zins, G.

    2012-10-01

    Aims: We aim at resolving the circumstellar environment around ? Pic in the near-infrared in order to study the inner planetary system (<200 mas, i.e., ~4 AU). Methods: Precise interferometric fringe visibility measurements were obtained over seven spectral channels dispersed across the H band with the four-telescope VLTI/PIONIER interferometer. Thorough analysis of interferometric data was performed to measure the stellar angular diameter and to search for circumstellar material. Results: We detected near-infrared circumstellar emission around ? Pic that accounts for 1.37% 0.16% of the near-infrared stellar flux and that is located within the field-of-view of PIONIER (i.e., ~200 mas in radius). The flux ratio between this excess and the photosphere emission is shown to be stable over a period of 1 year and to vary only weakly across the H band, suggesting that the source is either very hot (?1500 K) or dominated by the scattering of the stellar flux. In addition, we derive the limb-darkened angular diameter of ? Pic with an unprecedented accuracy (?LD= 0.736 0.019 mas). Conclusions: The presence of a small H-band excess originating in the vicinity of ? Pic is revealed for the first time thanks to the high-precision visibilities enabled by VLTI/PIONIER. This excess emission is likely due to the scattering of stellar light by circumstellar dust and/or the thermal emission from a yet unknown population of hot dust, although hot gas emitting in the continuum cannot be firmly excluded. Based on data collected at the ESO Paranal Observatory under commissioning time and programme 088.C-0266.

  10. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  11. Circumstellar Environments of Southern M Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Silverstein, Michele L.; Henry, Todd J.; Jao, Wei-Chun; Winters, Jennifer G.; Recons Team

    2015-01-01

    We present the first results from SIRENS, the Search for InfraRed Excesses around Nearby Stars. Our goal is to characterize the circumstellar environments of the most common and closest stars in the Universe, the ubiquitous red dwarfs. In this phase of the study, we search 1404 southern M dwarfs within 25 parsecs of the Sun, as reported in Winters et. al 2014, using (Johnson-Kron-Cousins) optical, (2MASS) near-infrared, and (WISE) mid-infrared photometry for circumstellar disks and low-mass companions. Several studies have recently used WISE photometry to detect circumstellar disks and companions --- searches around members of the nearby young moving groups, objects with parallaxes from Hipparcos, and many northern M stars in the SDSS. However, no work has yet been done that focuses on the nearest red dwarfs, which account for at least 75% of all stars. This study, a volume-limited search around M dwarfs in the southern sky, includes statistical conclusions applicable to a majority of the stars in the universe, and opens potential gateways to a better understanding of star and planet formation.

  12. Additional constraints on circumstellar disks in the Trapezium Cluster

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Prosser, Charles F.; Hartmann, Lee; Mccaughrean, Mark J.

    1994-01-01

    We discuss new constraints on the population of compact ionized sources in the Trapezium Cluster thought to arise from the ionization by the central OB stars of circumstellar disks around low-mass pre-main sequence stars. We present new HST Planetary Camera observations of two of these candidate disk sources, resolving extended nebulosity around them. One source shows a small-scale (greater than 100 AU) bow-shock structure, previously seen on larger scales by O'Dell et al. We show that the circumstellar disk model is the most likely one for the majority of sources, although it remains plausible that some of the larger objects could be equilibrium globules. We combine the most complete censuses of compact radio sources and stars in the core region to derive the fraction of the stellar population that may be associated with a circumstellar disk. Our estimate of 25-75 percent is comparable to that found for PMS stars in the Taurus-Auriga dark clouds, indicating that the dense cluster environment of the Trapezium has not drastically reduced the frequency of disks seen around pre-main sequence stars.

  13. Additional constraints on circumstellar disks in the Trapezium Cluster

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Prosser, Charles F.; Hartmann, Lee; Mccaughrean, Mark J.

    1994-01-01

    We discuss the new constraints on the population of compact ionized sources in the Trapezium Cluster thought to arise from the ionization by the central OB stars of circumstellar disks around low-mass pre-main sequence stars. We present new Hubble Space Telescope (HST) Planetary Camera observations of two of these candidate disk sources, resolving extended nebulosity around them. One source shows a small-scale (greater than or approximately = 100 AU) bow-shock structure, previously seen on larger scales by O'Dell et al. We show that the circumstellar disk model is the most likely one for the majority of sources, although is remains plausible that some of the larger objects could be equilibrium globules. We combine the most complete censuses of compact radio sources and stars in the core region to derive the fraction of the stellar population that may be associated with a circumstellar disk. Our estimate of 25%-75% is comparable to that found for pre-main sequence (PMS) stars in the Taurus-Auriga dark clouds, indicating that the dense cluster environment of the Trapezium has not drastically reduced the frequency of disks seen around PMS stars.

  14. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-04-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the calculated abundances of cations and the peak-abundance radius of both cations and neutrals: as the mass-loss rate increases, the peak abundance of cations generally decreases and the peak-abundance radius of all species moves outwards. The effects of varying the envelope expansion velocity and cosmic-ray ionization rate are not as significant.

  15. Habits: Do We Practice What We Preach?

    ERIC Educational Resources Information Center

    Rogers, Joan C.

    2000-01-01

    Discusses the following: understanding the nature of habits; following skill training with habit training; attending to habits in a context; anticipating that a breakdown of daily-living habits may lead to a breakdown of skill; and recognizing that the repetitiveness of habits can lead to boredom. (Author)

  16. Which Galaxies Are the Most Habitable?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Habitable zones are a hot topic in exoplanet studies: where, around a given star, could a planet exist that supports life? But if you scale this up, you get a much less common question: which type of galaxy is most likely to host complex life in the universe? A team of researchers from the UK believes it has the answer.Criteria for HabitabilityLed by Pratika Dayal of the University of Durham, the authors of this study set out to estimate the habitability of a large population of galaxies. The first step in this process is to determine what elements contribute to a galaxys habitability. The authors note three primary factors:Total number of starsMore stars means more planets!Metallicity of the starsPlanets are more likely to form in stellar vicinities with higher metallicities, since planet formation requires elements heavier than iron.Likelihood of Type II supernovae nearbyPlanets that are located out of range of supernovae have a higher probability of being habitable, since a major dose of cosmic radiation is likely to cause mass extinctions or delay evolution of complex life. Galaxies supernova rates can be estimated from their star formation rates (the two are connected via the initial mass function).Hospitable Cosmic GiantsLower panel: the number of Earth-like habitable planets (given by the color bar, which shows the log ratio relative to the Milky Way) increases in galaxies with larger stellar mass and lower star formation rates. Upper panel: the larger stellar-mass galaxies tend to be elliptical (blue line) rather than spiral (red line). Click for larger view. [Dayal et al. 2015]Interestingly, these three conditions have previously been shown to be linked via something termed the fundamental metallicity relation, which relates the total stellar masses, metallicities, and star formation rates of galaxies. By using this relation, the authors were able to create predictions for the number of habitable planets in more than 100,000 galaxies in the local universe (cataloged by the Sloan Digital Sky Survey).Based on these predictions, the authors find that the galaxies likely to host the largest number of habitable planets are those that have a mass greater than twice that of the Milky Way and star formation rates less than a tenth of that of the Milky Way.These galaxies tend to be giant elliptical galaxies, rather than compact spirals like our own galaxy. The authors calculate that the most hospitable galaxies can host up to 10,000 times as many Earth-like planets and 1,000,000 times as many gas-giants (which might have habitable moons) as the Milky Way!CitationPratika Dayal et al.2015 ApJ 810 L2 doi:10.1088/2041-8205/810/1/L2

  17. Which Galaxies Are the Most Habitable?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Habitable zones are a hot topic in exoplanet studies: where, around a given star, could a planet exist that supports life? But if you scale this up, you get a much less common question: which type of galaxy is most likely to host complex life in the universe? A team of researchers from the UK believes it has the answer.Criteria for HabitabilityLed by Pratika Dayal of the University of Durham, the authors of this study set out to estimate the habitability of a large population of galaxies. The first step in this process is to determine what elements contribute to a galaxys habitability. The authors note three primary factors:Total number of starsMore stars means more planets!Metallicity of the starsPlanets are more likely to form in stellar vicinities with higher metallicities, since planet formation requires elements heavier than iron.Likelihood of Type II supernovae nearbyPlanets that are located out of range of supernovae have a higher probability of being habitable, since a major dose of cosmic radiation is likely to cause mass extinctions or delay evolution of complex life. Galaxies supernova rates can be estimated from their star formation rates (the two are connected via the initial mass function).Hospitable Cosmic GiantsLower panel: the number of Earth-like habitable planets (given by the color bar, which shows the log ratio relative to the Milky Way) increases in galaxies with larger stellar mass and lower star formation rates. Upper panel: the larger stellar-mass galaxies tend to be elliptical (blue line) rather than spiral (red line). Click for larger view. [Dayal et al. 2015]Interestingly, these three conditions have previously been shown to be linked via something termed the fundamental metallicity relation, which relates the total stellar masses, metallicities, and star formation rates of galaxies. By using this relation, the authors were able to create predictions for the number of habitable planets in more than 100,000 galaxies in the local universe (cataloged by the Sloan Digital Sky Survey).Based on these predictions, the authors find that the galaxies likely to host the largest number of habitable planets are those that have a mass greater than twice that of the Milky Way and star formation rates less than a tenth of that of the Milky Way.These galaxies tend to be giant elliptical galaxies, rather than compact spirals like our own galaxy. The authors calculate that the most hospitable galaxies can host up to 10,000 times as many Earth-like planets and 1,000,000 times as many gas-giants (which might have habitable moons) as the Milky Way!CitationPratika Dayal et al.2015 ApJ 810 L2 doi:10.1088/2041-8205/810/1/L2

  18. HABITABLE PLANETS ECLIPSING BROWN DWARFS: STRATEGIES FOR DETECTION AND CHARACTERIZATION

    SciTech Connect

    Belu, Adrian R.; Selsis, Franck; Raymond, Sean N.; Bolmont, Emeline; Palle, Enric; Street, Rachel; Sahu, D. K.; Anupama, G. C.; Von Braun, Kaspar; Figueira, Pedro; Ribas, Ignasi

    2013-05-10

    Given the very close proximity of their habitable zones, brown dwarfs (BDs) represent high-value targets in the search for nearby transiting habitable planets that may be suitable for follow-up occultation spectroscopy. In this paper, we develop search strategies to find habitable planets transiting BDs depending on their maximum habitable orbital period (P{sub HZ{sub out}}). Habitable planets with P{sub HZ{sub out}} shorter than the useful duration of a night (e.g., 8-10 hr) can be screened with 100% completeness from a single location and in a single night (near-IR). More luminous BDs require continuous monitoring for longer duration, e.g., from space or from a longitude-distributed network (one test scheduling achieved three telescopes, 13.5 contiguous hours). Using a simulated survey of the 21 closest known BDs (within 7 pc) we find that the probability of detecting at least one transiting habitable planet is between 4.5{sup +5.6}{sub -1.4}% and 56{sup +31}{sub -13}%, depending on our assumptions. We calculate that BDs within 5-10 pc are characterizable for potential biosignatures with a 6.5 m space telescope using {approx}1% of a five-year mission's lifetime spread over a contiguous segment only one-fifth to one-tenth of this duration.

  19. C/O: Effects on Habitability of Stellar Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence V.; Sevin Peckmezci, Gül; Mousis, Olivier; Lunine, Jonathan I.; Madhusudhan, Nikku

    2015-11-01

    We assess how differences in the composition of exoplanet host stars might affect the availability of water in their systems, particularly the role of carbon and oxygen abundances. Water, one of the key chemical ingredients for habitability, may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the ‘habitable zone’. For the solar system, C/O = 0.55 is particularly important in determining the refractory (silicate and metal) to volatile ice ratio expected in material condensed beyond the snow line (Gaidos E. J. Icarus 145, 637, 2000; Wong M. H. et al. in Oxygen in the Solar System, G.J. MacPherson, Ed., 2008). Our analysis of published compositions for a set of exoplanet host stars (Johnson T. V. et al. ApJ. 757(2), 192, 2012) showed that the amount of condensed water ice in those systems might range from as much as 50% by mass for sub-solar C/O = 0.35 to less than a few percent for super-solar C/O = 0.7. A recent analysis using similar techniques (Pekmezci G. S., Dottorato di Ricerca in Astronomia, Università Degli Studi di Roma “Tor Vergata”, 2014) of a much larger stellar composition data set for 974 FGK stars (Petigura E. and Marcy G. Journal of Astrophysics 735, 2011), allows us to assess the possible range of water ice abundance in the circumstellar accretion disks of these ‘solar-type’ stars (of which 72 were known to have one or more planets as of 2011). Stellar C/O in a subset (457 stars) of this stellar database with reported C, O, Ni, and Fe abundances ranges from 0.3 to 1.4. The resulting computed water ice fractions and refractory (silicate + metal) fractions range from ~0 to 0.6 and 0.3 to 0.9 respectively. These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host stars’ C/O in the circumstellar nebula. TVJ acknowledges government support at JPL/Caltech, under a contract with NASA. JIL was supported by the JWST Project through NASA. O.M. acknowledges support from CNES.

  20. What Makes a Habitable Planet?

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L.

    2013-04-01

    Space missions help answer one of humanity's most profound questions: Are we alone in the universe? To begin to understand what makes a planet habitable, and thus where to look for life both within and outside of Earth's solar system, scientists need to understand what in planetary formation and what in its subsequent evolution combine to produce a habitable planet.

  1. Developing Mathematical Habits of Mind

    ERIC Educational Resources Information Center

    Mark, June; Cuoco, Al; Goldenberg, E. Paul; Sword, Sarah

    2010-01-01

    "Mathematical habits of mind" include reasoning by continuity, looking at extreme cases, performing thought experiments, and using abstraction that mathematicians use in their work. Current recommendations emphasize the critical nature of developing these habits of mind: "Once this kind of thinking is established, students can apply it in the…

  2. Developing Mathematical Habits of Mind

    ERIC Educational Resources Information Center

    Mark, June; Cuoco, Al; Goldenberg, E. Paul; Sword, Sarah

    2010-01-01

    "Mathematical habits of mind" include reasoning by continuity, looking at extreme cases, performing thought experiments, and using abstraction that mathematicians use in their work. Current recommendations emphasize the critical nature of developing these habits of mind: "Once this kind of thinking is established, students can apply it in the

  3. How Common are Habitable Planets?

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    The Earth is teeming with life, which, occupies a diverse array of environments; other bodies in our Solar System offer fewer, if any, niches which are habitable by life as we know it. Nonetheless, astronomical studies suggest that a large number of habitable planets-are likely to be present within our Galaxy.

  4. Infrared interferometry and spectroscopy of circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Monnier, John David

    This thesis reports on two experiments designed to reveal fundamentally new information about the inner dust and gas envelopes around mass-losing stars. The mid-infrared Infrared Spatial Interferometer was outfitted with an RF filterbank to allow interferometric observations of molecular absorption features (NH3 and SiH4) with very high spectral resolution ( / ~ 105). These new data permitted the molecular stratification around carbon star IRC +10216 and red supergiant VY CMa to be investigated. For IRC +10216, it was determined that both ammonia and silane form in the dusty outflow significantly beyond both the dust formation and gas acceleration zones ( >~ 20 R* ). More specifically, ammonia was found to form before silane in a region of decaying gas turbulence, while the silane is produced in a region of relatively smooth gas flow much further from the star ( >~ 80 R* ). The depletion of SiS on grains soon after dust formation may fuel silane-producing reactions on the grain surfaces. For VY CMa, a combination of interferometric and spectral observations suggest that NH3 is forming near the termination of the gas acceleration phase in a region of high gas turbulence (~40 R* ). The second half of the thesis describes a novel aperture masking experiment which converted the Keck-I 10-m primary mirror into a separate-element interferometric array. High signal-to-noise images were reconstructed of bright near-infrared sources at the diffraction limit (~ 0.050'' at 2 m m) using VLBI techniques. The inner dust shells of IRC +10216 and VY CMa are shown to be highly clumpy and inhomogeneous, a finding inconsistent with current (simple) models of mass-loss. For IRC +10216, spatial resolution on the scale of the star itself was attained, and proper motion of dust clumps within 10 R* was detected, revealing the dynamics of the outflow directly. Unexpectedly, carbon-rich dust shells around some late- type Wolf-Rayet stars were resolved into highly- collimated, spinning ``pinwheel'' nebulae, formed from the interacting winds of embedded short- period (~1 yr) binaries. Precise orbital parameters and wind velocities are determined from the multi-epoch spiral morphology; important implications on binary and stellar evolution are discussed.

  5. An Investigation of Circumbinary Planet Orbital Stability and Habitability to Identify Potential Planetary Systems with Several Habitable Planets

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge; Cuartas, Pablo A.

    2015-08-01

    The census of planets orbiting the center of mass of binary stars is rapidly growing. The question of stability for circumbinary planets has been the focus of much recent research. We review this work and present results of new simulations, from which we find criteria for the long term stability of exoplanets orbiting binaries. We are especially concerned with the potential stability of planets in habitable zones surrounding binaries. For this purpose, we merge a long-term orbital stability study with an analysis of the rotational evolution of the stellar components. The stellar evolution and rotational study enables estimates of stellar activity, and the effects on the magnetospheres and atmospheres of planets over the course of history for a potentially habitable circumbinary planet. We find that the long-term orbital stability of circumbinary habitable zone depends sensitively on the initial orbit of the binary and on the masses of the stars. We find that stellar twins (binary mass ratio ~ 1) and binaries with circular orbits provide the most stable solutions. However, if the binary orbit evolves too rapidly, planets may be lost due to changes in resonance locations. A subset of binaries are identified possessing both stable orbital solutions for multiple planets in the habitable zone and reduced stellar aggression due to tidal torqueing of the stellar rotation.

  6. Using infrared observations of circumstellar dust around evolved stars to test dust formation hypotheses

    NASA Astrophysics Data System (ADS)

    Guha Niyogi, Suklima

    Asymptotic Giant Branch (AGB) stars are evolved, low to intermediate mass (0.8--8 M⊙ ) stars. These stars lose a significant fraction of their mass through stellar pulsation. As a result, they are surrounded by gaseous, dusty circumstellar envelopes. They are major contributors of material to the interstellar medium (ISM), new stars, planets and also produce the majority of the dust complement of galaxies. Consequently, understanding the dust around AGB stars is critical to our understanding of the contribution of dust to many aspects of astrophysics. This thesis aims to study how the mineralogy and morphology of circumstellar dust varies with the pulsation cycle of the star and how the variation in spectral dust features (temporally and spatially) can be explained by different competing dust formation hypotheses. In the circumstellar envelopes of oxygen-rich (O-rich) AGB stars, all carbon (C) atoms from the gas are locked into carbon-monoxide (CO), leaving a surplus of oxygen (O) atoms to dominate the chemistry and form silicate dust particles (among other dust species). Consequently, AGB stars are divided into two main categories: oxygen-rich (O-rich) and carbon-rich (C-rich). In this thesis I consider only O-rich AGB stars where silicate dust is expected to dominate. The silicate dust may be present in either crystalline or amorphous form, where the crystalline silicates exhibit sharp and narrow spectral features throughout the infrared (IR) spectral region, while the amorphous silicates show two broad spectral features at 10 and 18 mum. Circumstellar dust should vary both temporally as these stars pulsate; and spatially as dust flows away from the star and physical conditions change. My research on the temporal variation of the spectral dust features with pulsation cycle for single, O-rich Mira variable, T Cep, suggests that its spectral features cannot be explained in terms of the "classic" dust formation hypothesis. Instead, it suggests that the dust is crystalline in nature and iron-rich silicates, neither of which is expected around low mass-loss rate O-rich AGB stars. This scenario may be consistent with the so-called "chaotic solids" hypothesis. My research on spatial variation of spectral dust features investigates seven O-rich AGB stars for which I have acquired spatially resolved spectra using Gemini/MICHELLE spectrometer. In most cases, the observational data show that the spectral features vary significantly but without any spatial trend. These scenarios may also be consistent with the "chaotic solids" hypothesis. These results also suggest that the turbulent dynamics, pulsation shocks in the dust-forming zones around O-rich AGB stars lead to inhomogeneous dust formation, producing fine scale structure in the density of the dust envelope. In this O-rich environment, there are many potential minerals can be formed but their stability is very sensitive to the precise local conditions. In this thesis, I have also explored different parameter space of the IR laboratory spectra of crystalline olivine minerals. The spectral feature parameters (peak, width and amplitude) can be strongly affected by composition, temperature and grain shape and that can create degeneracy, such that a given spectral feature can have more than one explanation. In order to disentangle these effects, I have developed a database, which will allow to study the IR spectral features of crystalline olivine as a combined function of composition and temperature. For future work, I propose tools for mapping and breaking this degeneracy, which will help us in order to have a better understanding on astromineralogy around O-rich AGB stars. This thesis provides a significant contribution to our understanding of dust formation process around O-rich AGB stars, which is considered to be a complicated process and not well understood.

  7. Assessing Habitability: Lessons from the Phoenix Mission

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.

    2013-01-01

    The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered 1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of various regions visited to date on Mars that involved computing a habitability probability, defined as the product of probabilities for the presence of liquid water (P(sub lw)), energy (P(sub e)), nutrients (P(sub ch)), and a benign environment (P(sub b)). Using this formalism, they argued that the Phoenix site was the most habitable of any site visited to date by landed missions and warranted a follow up mission to search for modern evidence of life. This paper will review that conclusion in view of more recent information from the Mars Exploration Rovers and Mars Science Lander missions.

  8. Endolithic microniches support habitability

    NASA Astrophysics Data System (ADS)

    Gmez, F.; Rodrguez, N.; Rodrguez-Manfredi, J. A.; Fernndez-Sampedro, M.; Amils, R.

    2013-09-01

    Particular micro-niches on extreme environments give us some clues about the habitability potential under protected environments with important connotations from an astrobiological point of view [1]. The salts precipitation patters in extreme environments can contribute to biomineralization processes which could be of special interest for organics but also life preservation on environmental harsh conditions. These "oasys" for organics and/or life forms are of special as trobiological interest and should attract our attention in other planets and we should be looking for it during rover exploration missions. Endolithic micro niches in Rio Tinto salts precipitates determine controlled scenarios where phototrops develop under controlled conditions. Rio Tinto, 100 km river located at South West of Spain, is being taken as a well reported Mars analog due to the similarities in the mineralogy of the system which that reported by MER Opportunity Rover missions which landed in Meridiani Planum where sedimentary deposits have been identified in different craters [2]. Interesting multi layered salty deposits were identified in Rio Tinto source area where endolithic micro niches were settled [3]. Green layers appear included in brown stratified salt precipitates. The crust deposit was between 5 mm and 1 cm width. The layered structure is deposited over rocks or over man made structures as dam or mining tunnels walls but always in places with specific environmental characteristics. It appears in not direct Sun light exposed places (shadow side of walls) with thermal and pH stability.

  9. Cepheids at high angular resolution: circumstellar envelope and pulsation

    NASA Astrophysics Data System (ADS)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  10. Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy

    NASA Astrophysics Data System (ADS)

    Malygin, M. G.; Kuiper, R.; Klahr, H.; Dullemond, C. P.; Henning, Th.

    2014-08-01

    Context. In a molecular cloud dust opacity typically dominates over gas opacity, yet in the vicinities of forming stars dust is depleted, and gas is the sole provider of opacity. In the optically thin circumstellar environments the radiation temperature cannot be assumed to be equal to the gas temperature, hence the two-temperature Planck means are necessary to calculate the radiative equilibrium. Aims: By using the two-temperature mean opacity one does obtain the proper equilibrium gas temperature in a circumstellar environment, which is in a chemical equilibrium. A careful consideration of a radiative transfer problem reveals that the equilibrium temperature solution can be degenerate in an optically thin gaseous environment. Methods: We compute mean gas opacities based on the publicly available code DFSYNTHE by Kurucz and Castelli. We performed the calculations assuming local thermodynamic equilibrium and an ideal gas equation of state. The values were derived by direct integration of the high-resolution opacity spectrum. Results: We produced two sets of gas opacity tables: Rosseland means and two-temperature Planck means. For three metallicities [Me/H] = 0.0, 0.3 we covered the parameter range 3.48 ? log Trad [K] ? 4.48 in radiation temperature, 2.8 ? log Tgas [K] ? 6.0 in gas temperature, and -10 ? log P [dyn cm-2] ? 6 in gas pressure. We show that in the optically thin circumstellar environment for a given stellar radiation field and local gas density there are several equilibrium gas temperatures possible. Conclusions: We conclude that, in general, equilibrium gas temperature cannot be determined without treating the temperature evolution. The opacity tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A91 as well as via http://www.mpia.de/~malygin

  11. ISOPHOT Observations of the Circumstellar Environment of Young Stars

    NASA Astrophysics Data System (ADS)

    brahm, P.; Leinert, Ch.; Lemke, D.; Burkert, A.; Henning, T. H.

    The young pre-main sequence T Tau and Herbig Ae/Be stars are associated with circumstellar dust, whose thermal emission can be observed at infrared wavelengths. We report on 3.6-200 micron photometric observations performed with ISOPHOT, the photometer on-board the Infrared Space Observatory. Seven Herbig Ae/Be stars were observed at mid- and far-infrared wavelengths. At ??25?m the emission mainly arises from a compact circumstellar region, and the observed spectral energy distributions follow the power-law relationship F???-n with n typically around 1. The peak of the SEDs (in F?) is at 60-100?m, corresponding to temperatures of around 50 K. At longer wavelengths the observed emission is spatially extended, and at ?>100?m the emission observed by ISOPHOT is never dominated by the Herbig Ae/Be stars. The most likely sources of the far-infrared radiation are arcminute size dust cores located in the vicinity of the stars, and probably related to the star forming process. We also analysed ISOPHOT observations of 16 binary T Tau stars. For the 7 brightest objects the broad-band photometry was supplemented by 2.5-11.7?m spectrophotometry obtained by the PHT-S subinstrument. In most cases strong silicate emission at 10?m was detected with some indications for the presence of crystalline silicate. The comparison of the derived SEDs with those of single T Tau stars will help to understand how the presence of companions could affect the evolution of the circumstellar disks.

  12. A hydrodynamic study of the circumstellar envelope of ? Scorpii

    NASA Astrophysics Data System (ADS)

    Braun, K.; Baade, R.; Reimers, D.; Hagen, H.-J.

    2012-10-01

    Context. Both the absolute mass-loss rates and the mechanisms that drive the mass loss of late-type supergiants are still not well known. Binaries such as ? Sco provide the most detailed empirical information about the winds of these stars. Aims: Our goal was to improve the binary technique for the determination of the mass-loss rate of ? Sco A by including a realistic density distribution and velocity field from hydrodynamic and plasma simulations. Methods: We performed 3D hydrodynamic simulations of the circumstellar envelope of ? Sco in combination with plasma simulations accounting for the heating, ionization, and excitation of the wind by the radiation of ? Sco B. These simulations served as the basis for an examination of circumstellar absorption lines in the spectrum of ? Sco B as well as of emission lines from the Antares nebula. Results: The present model of the extended envelope of ? Sco reproduces some of the structures that were observed in the circumstellar absorption lines in the spectrum of ? Sco B. Our theoretical density and velocity distributions of the outflow deviate considerably from a spherically expanding model, which was used in previous studies. This results in a higher mass-loss rate of (2 0.5) 10-6 M? yr-1. The hot H ii region around the secondary star induces an additional acceleration of the wind at large distances from the primary, which is seen in absorption lines of Ti ii and Cr ii at -30 km s-1. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program ID 076.D-0690(A), and on observations made with the NASA/ESA Hubble Space Telescope (program # 5952), obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. Photochemistry and molecular ions in oxygen-rich circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Mamon, G. A.; Glassgold, A. E.; Omont, A.

    1987-01-01

    A theory for the ionization of the circumstellar envelopes around O-rich red giants is developed from the photochemical model. The main source of ionization is photoionization of H2O, OH, and C by the interstellar UV radiation field, supplemented by cosmic-ray ionization of hydrogen. Significant amounts of H3O(+) and HCO(+) are produced, with peak abundances of about 10 to the -7th at intermediate distances from the star. Although H3O(+) may be difficult to detect with current instrumentation, HCO(+) is probably detectable in nearby O-rich envelopes with large millimeter-wave telescopes.

  14. Circumstellar Environments of MYSOs Revealed by IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2015-01-01

    Formation of massive stars (M > 8 M ?) is still not well understood and lacks of observational constraints. We observed 7 MYSO candidates using the NIFS spectrometer at Gemini North Telescope to study the accretion process at high angular resolution (~ 50 mas) and very closer to the central star. Preliminary results for 2 sources have revealed circumstellar structures traced by Brackett-Gamma, CO lines and extended H2 emission. Both sources present kinematics in the CO absorption lines, suggesting rotating structures. The next step will derive the central mass of each source by applying a keplerian model for these CO features.

  15. Protonated acetylene - An important circumstellar and interstellar ion

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Omont, A.; Guelin, M.

    1992-01-01

    In a circumstellar envelope, a substantial amount of acetylene is transported in a wind to the outer envelope, where it can be photoionized by interstellar radiation and then converted into C2H3(+) by a low-temperature reaction with H2. New chemical modeling calculations indicate that sufficient C2H3(+) may be produced in the outer envelope of IRC + 10216 to be observable. Similar considerations suggest that C2H3(+) should also be detectable in interstellar clouds, provided its rotational spectrum has been measured accurately in the laboratory.

  16. Detection of circumstellar gas associated with GG Tauri

    NASA Technical Reports Server (NTRS)

    Skrutskie, M. F.; Snell, R. L.; Strom, K. M.; Strom, S. E.; Edwards, S.; Fukui, Y.; Mizuno, A.; Hayashi, M.; Ohashi, N.

    1993-01-01

    Double-peaked (C-12)O (1-0) emission centered on the young T Tauri star GG Tau possesses a line profile which may be modeled on the assumption that CO emission arises in an extended circumstellar disk. While bounds on the observed gas mass can be estimated on this basis, it is suggested that a large amount of mass could lie within a small and optically thick region, escaping detection due to beam-dilution effects. In addition, CO may no longer accurately trace the gas mass due to its dissociation, or freezing into grains, or due to the locking-up of carbon into more complex molecules.

  17. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems. PMID:11326083

  18. On the Inner Circumstellar Envelopes of R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Leo, I. C.; Bright, S. N.; Chesneau, O.

    2015-12-01

    We present different analyses of Very Large Telescope Interferometer (VLTI) data to interpret the inner circumstellar envelope (CSE) morphology of R Coronae Borealis (RCB) stars. Three objects were considered: RY Sgr, V CrA, and V854 Cen. Chi-squared maps of different geometrical models allow to identify a reasonable description of these CSEs, which can be further studied in radiative transfer codes. Overall, the inner CSE morphology of these RCB stars are consistent with a central star surrounded by a dusty shell with at least a bright clump (or a dust cluster).

  19. The discrete nature of circumstellar OH maser emission

    NASA Technical Reports Server (NTRS)

    Zell, Philip J.; Fix, John D.

    1990-01-01

    The Arecibo radio telescope was used to obtain high-resolution, high-SNR 1612-MHz observations of seven circumstellar OH maser sources. Each spectrum displays the double-peaked emission line profile characteristics of an expanding shell. The jaggedness of the spectra, which varies from source to source, is consistent with statistical fluctuations in the number of discrete emitting elements contributing at a given velocity. In particular, it is found that the spectra of WX Psc and OH 53.6-0.2 contain narrow, weak, isolated emission features which may arise from individual emitting elements.

  20. Direct UV observations of the circumstellar envelope of alpha Orionis

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.; Carpenter, K. G.; Pesce, J. E.; Skinner, S.; Brown, A.; Judge, P.

    1988-01-01

    Observations were made in the IUE LWP camera, low dispersion mode, with alpha Ori being offset various distances from the center of the Long Wavelength Large Aperture along its major axis. Signal was acquired at all offset positions and is comprised of unequal components of background/dark counts, telescope-scattered light, and scattered light emanating from the extended circumstellar shell. The star is known from optical and infrared observations to possess an extended, arc-minute sized, shell of cool material. Attempts to observe this shell with the IUE are described, although the deconvolution of the stellar signal from the telescope scattered light requires further calibration effort.

  1. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    SciTech Connect

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.; Clark, Joni M.

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  2. Rotational Synchronization May Enhance Habitability for Circumbinary Planets: Kepler Binary Case Studies

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Clark, Joni M.; Cuartas-Restrepo, Pablo A.

    2013-09-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  3. Habitability of the Phoenix landing site

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.; Zent, Aaron; Catling, David C.; Douglas, Susanne; Marshall, John R.; Archer, Douglas; Clark, Benton; Kounaves, Samuel P.; Lemmon, Mark T.; Quinn, Richard; Renno, Nilton; Smith, Peter H.; Young, Suzanne M. M.

    2010-06-01

    The Phoenix mission's key objective was to search for a habitable zone. Mission results are used to evaluate habitability where Phoenix landed. A habitability probability (HI) is defined as the product of probabilities for the presence of liquid water (Plw), energy (Pe), nutrients (Pch), and a benign environment (Pb). Observational evidence for the presence of liquid water (past or present) includes clean ice at a polygon boundary, chemical etching of soil grains, and carbonate minerals. The presence of surface and near subsurface ice, along with thermodynamic conditions that support melting, suggest that liquid water is theoretically possible. Presently, unfrozen water can form only in adsorbed films or saline brines but more clement conditions recur periodically due to variations in orbital parameters. Energy to drive metabolism is available from sunlight, when semitransparent soil grains provide shielding from UV radiation and chemical energy from the redox couple of perchlorate and reduced iron. Nutrient sources including C, H, N, O, P, and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Surface soil temperatures currently reach 260 K and are periodically much higher, the pH is 7.8 and is well buffered, and the water activity is high enough to allow growth when sufficient water is available. Computation of HI for the sites visited by landers yields Phoenix, 0.47; Meridiani, 0.23; Gusev, 0.22; Pathfinder, 0.05; Viking 1, 0.01; Viking 2, 0.07. HI for the Phoenix site is the largest of any site explored, but dissimilar measurements limit the comparisons' confidence.

  4. Rotating Stars Can Help Planets Become Habitable

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    What characteristics must a terrestrial planet exhibit to have the potential to host life? Orbiting within the habitable zone of its host star is certainly a good start, but theres another important aspect: the planet has to have the right atmosphere. A recent study has determined how host stars can help their planets to lose initial, enormous gaseous envelopes and become more Earth-like.Collecting An EnvelopeWhen a terrestrial planet forms inside a gaseous protoplanetary disk, it can accumulate a significant envelope of hydrogen gas causing the planet to bear more similarity to a mini-Neptune than to Earth. Before the planet can become habitable, it must shed this enormous, primordial hydrogen envelope, so that an appropriate secondary atmosphere can form.So what determines whether a planet can get rid of its protoatmosphere? The dominant process for shedding a hydrogen atmosphere is thermal mass loss: as the planets upper atmosphere is heated by X-ray and extreme-ultraviolet (XUV) radiation from the host star, the envelope evaporates.A Critical DependenceIn a recent study led by Colin Johnstone (University of Vienna), a team of scientists has developed models of this evaporation process for hydrogen planetary atmospheres. In particular, Johnstone and collaborators examine how the host stars initial rotation rate which strongly impacts the stars level of XUV activity affects the degree to which the planets hydrogen atmosphere is evaporated, and the rate at which the evaporation occurs.The authors findings can be illustrated with the example of an Earth-mass planet located in the habitable zone of a solar-mass star. In this case, the authors find four interesting regimes (shown in the plot to the right):Evolution of the hydrogen protoatmosphere of an Earth-mass planet in the habitable zone of a solar-mass star. The four lettered cases describe different initial atmospheric masses. The three curves for each case describe the stellar rotation rate: slow (red), average (green), or fast (blue). [Johnstone et al. 2015]Case A(Initial atmospheric mass of 10-4 Earth masses)Entire atmosphere evaporates quickly, regardless of the rotation speed of the host star.Case B(Initial atmospheric mass of 10-3 Earth masses)Entire atmosphere evaporates, but the timescale is much shorter if the stellar host is fast-rotating as opposed to slow-rotating.Case C(Initial atmospheric mass of 10-2 Earth masses)If the stellar host is fast-rotating, entire atmosphere evaporates on a short timescale. If the host is slow-rotating, very little of the atmosphere evaporates.Case D(Initial atmospheric mass of 10-1 Earth masses)Very little of the atmosphere evaporates, regardless of the rotation speed of the host star.These results demonstrate that the initial rotation rate of a host star not only determines whether a planet will lose its protoatmosphere, but also how long this process will take. Thus, the evolution of host stars rotation rates is an important component in our understanding of how planets might evolve to become habitable.CitationC. P. Johnstone et al 2015 ApJ 815 L12. doi:10.1088/2041-8205/815/1/L12

  5. Rotating Stars Can Help Planets Become Habitable

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    What characteristics must a terrestrial planet exhibit to have the potential to host life? Orbiting within the habitable zone of its host star is certainly a good start, but theres another important aspect: the planet has to have the right atmosphere. A recent study has determined how host stars can help their planets to lose initial, enormous gaseous envelopes and become more Earth-like.Collecting An EnvelopeWhen a terrestrial planet forms inside a gaseous protoplanetary disk, it can accumulate a significant envelope of hydrogen gas causing the planet to bear more similarity to a mini-Neptune than to Earth. Before the planet can become habitable, it must shed this enormous, primordial hydrogen envelope, so that an appropriate secondary atmosphere can form.So what determines whether a planet can get rid of its protoatmosphere? The dominant process for shedding a hydrogen atmosphere is thermal mass loss: as the planets upper atmosphere is heated by X-ray and extreme-ultraviolet (XUV) radiation from the host star, the envelope evaporates.A Critical DependenceIn a recent study led by Colin Johnstone (University of Vienna), a team of scientists has developed models of this evaporation process for hydrogen planetary atmospheres. In particular, Johnstone and collaborators examine how the host stars initial rotation rate which strongly impacts the stars level of XUV activity affects the degree to which the planets hydrogen atmosphere is evaporated, and the rate at which the evaporation occurs.The authors findings can be illustrated with the example of an Earth-mass planet located in the habitable zone of a solar-mass star. In this case, the authors find four interesting regimes (shown in the plot to the right):Evolution of the hydrogen protoatmosphere of an Earth-mass planet in the habitable zone of a solar-mass star. The four lettered cases describe different initial atmospheric masses. The three curves for each case describe the stellar rotation rate: slow (red), average (green), or fast (blue). [Johnstone et al. 2015]Case A(Initial atmospheric mass of 10-4 Earth masses)Entire atmosphere evaporates quickly, regardless of the rotation speed of the host star.Case B(Initial atmospheric mass of 10-3 Earth masses)Entire atmosphere evaporates, but the timescale is much shorter if the stellar host is fast-rotating as opposed to slow-rotating.Case C(Initial atmospheric mass of 10-2 Earth masses)If the stellar host is fast-rotating, entire atmosphere evaporates on a short timescale. If the host is slow-rotating, very little of the atmosphere evaporates.Case D(Initial atmospheric mass of 10-1 Earth masses)Very little of the atmosphere evaporates, regardless of the rotation speed of the host star.These results demonstrate that the initial rotation rate of a host star not only determines whether a planet will lose its protoatmosphere, but also how long this process will take. Thus, the evolution of host stars rotation rates is an important component in our understanding of how planets might evolve to become habitable.CitationC. P. Johnstone et al 2015 ApJ 815 L12. doi:10.1088/2041-8205/815/1/L12

  6. Detecting Habitable Planets via Astrometry in Current Planetary Systems

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Gen

    2015-08-01

    We explore the potential of astrometry method in finding habitable planets orbiting nearby solar-like stars. We consider different types of planet systems with an undiscovered habitable Earth-like exoplanets in them. We simulate their astrometry signals and use our code to fit the masses and orbits of the habitable planets. When comparing our fitting results with the real ones, we find the threshold of different noise levels and the detection potential in different planet systems. We find astrometry is nearly suitable for all kinds of planet systems we discover today. Only in the case when the other planets in the systems have very short periods(less than 3 days) or long period about 30 years, the fitting errors of the giant planets lead to large fitting errors of the habitbale Earth-like planets. After adding noise in the astrometry data, the fitting of the orbital elemants, such as the eccentricity and inclination, becomes difficult. Under the presicion of 0.3 uas, we suggest 10 earth mass is the boundary of good-fitting, compared to 100 earth mass under the precision of 10 uas. At last, we simulate the discovered planet systems in 50 pc, assuming that 10 earth mass is in the habitable zone at about 1 AU, we use the fitting results of their masses, semi-major axes, eccentricities and inclinations to give a rank to suggest the possibility of discovering habitable exoplanets in these systems.

  7. Attenuation of supersoft X-ray sources by circumstellar material

    NASA Astrophysics Data System (ADS)

    Nielsen, M. T. B.; Gilfanov, M.

    2015-11-01

    Recent studies have suggested the possibility of significantly obscuring supersoft X-ray sources in relatively modest amounts of local matter lost from the binaries themselves. If correct, then this would have explained the paucity of observed supersoft X-ray sources and would have significance for the search for single-degenerate Type Ia supernova progenitors. We point out that earlier studies of circumbinary obscuration ignored photoionizations of the gas by the emission from the supersoft X-ray source. We revisit the problem using a full, self-consistent calculation of the ionization state of the circumbinary material photoionized by the radiation of the central source. Our results show that the circumstellar mass-loss rates required for obscuration of supersoft X-ray sources is about an order of magnitude larger than those reported in earlier studies, for comparable model parameters. While this does not entirely rule out the possibility of circumstellar material obscuring supersoft X-ray sources, it makes it unlikely that this effect alone can account for the majority of the missing supersoft X-ray sources. We discuss the observational appearance of hypothetical obscured nuclear-burning white dwarfs and show that they have signatures making them distinct from photoionized nebulae around supersoft X-ray sources imbedded in the low-density interstellar medium.

  8. Far-Infrared Water Line Emissions from Circumstellar Outflows

    NASA Technical Reports Server (NTRS)

    Chen, Wesley; Neufeld, David A.

    1995-01-01

    We have modeled the far-infrared water line emission expected from circumstellar outflows from oxygen-rich late-type stars, as a function of the mass-loss rate and the terminal outflow velocity. For each mass-loss rate and terminal outflow velocity considered, we computed self-consistently the gas density, temperature, outflow velocity, and water abundance as a function of distance from the star. We then used an escape probability method to solve for the equilibrium level populations of 80 rotational states of water and thereby obtained predictions for the luminosity of a large number of far-infrared rotational transitions of water. In common with previous models, our model predicts that water will be copiously produced in the warm circumstellar gas and that water rotational emission will dominate the radiative cooling. However, our use of a realistic radiative cooling function for water leads to a lower gas temperature than that predicted in previous models. Our predictions for the far-infrared water line luminosities are consequently significantly smaller than those obtained in previous studies. Observations to be carried out by the Infrared Space Observatory will provide a crucial test of the models presented here.

  9. THE PROGENITOR OF SN 2011ja: CLUES FROM CIRCUMSTELLAR INTERACTION

    SciTech Connect

    Chakraborti, Sayan; Ray, Alak; Yadav, Naveen; Smith, Randall; Ryder, Stuart; Sutaria, Firoza; Dwarkadas, Vikram V.; Chandra, Poonam; Pooley, David; Roy, Rupak

    2013-09-01

    Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until core collapse, produce Type II plateau (IIP) supernovae. The ejecta from these explosions shocks the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray parts of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work, we use X-rays observations from the Chandra and radio observations from the Australia Telescope Compact Array to study the relative importance of processes which accelerate particles and those which amplify magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the explosion date. Multiple Chandra observations allow us to probe the history of variable mass loss from the progenitor. The ejecta expands into a low-density bubble followed by interaction with a higher density wind from a red supergiant consistent with M{sub ZAMS} {approx}> 12 M{sub Sun }. Our results suggest that a fraction of Type IIP supernovae may interact with circumstellar media set up by non-steady winds.

  10. Probing Pre-Supernova Mass Loss With Circumstellar Dust Shells

    NASA Astrophysics Data System (ADS)

    Fox, Ori; Filippenko, Alex; Skrutskie, Mike; van Dyk, Schuyler; Kelly, Pat

    2014-12-01

    Late-time (>100 day) mid-infrared (mid-IR) observations of supernovae (SNe) offer a valuable probe of the progenitor system's mass-loss. Already, this technique has been demonstrated with the Type IIn subclass, which often have large, dusty, pre-existing shells formed in pre-SN eruptions. While other SN subclasses are thought of having relatively low density circumstellar environments, a growing number of objects in other subclasses now show evidence for significant pre-SN mass loss and similar mid-IR characteristics. Long after the SN radioactive tail fades, warm dust can stay bright at mid-IR wavelengths due to alternative heating mechanisms, such as shocks. Here we propose a SNAPSHOT survey of a well-studied and high-profile SN sample, extending over a range of subclasses, including both recent and historical events with evidence of a dense CSM and/or dust. This program will (a) discover new SNe with warm dust and (b) monitor the evolution of warm dust in previously detected SNe. Harnessing the success of our previous Spitzer programs, these observations will expand upon that work by probing the similarities in and differences between the subclasses' circumstellar environments, pre-SN mass-loss, and ultimately, the progenitors themselves.

  11. Archival legacy investigations of circumstellar environments: overview and first results

    NASA Astrophysics Data System (ADS)

    Choquet, Élodie; Pueyo, Laurent; Hagan, J. Brendan; Gofas-Salas, Elena; Rajan, Abhijith; Chen, Christine; Perrin, Marshall D.; Debes, John; Golimowski, David; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Mawet, Dimitri; Marois, Christian; Soummer, Rémi

    2014-08-01

    We are currently conducting a comprehensive and consistent re-processing of archival HST-NICMOS coronagraphic surveys using advanced PSF subtraction methods, entitled the Archival Legacy Investigations of Circumstellar Environments program (ALICE, HST/AR 12652). This virtual campaign of about 400 targets has already produced numerous new detections of previously unidentified point sources and circumstellar structures. We present five newly spatially resolved debris disks revealed in scattered light by our analysis of the archival data. These images provide new views of material around young solar-type stars at ages corresponding to the period of terrestrial planet formation in our solar system. We have also detected several new candidate substellar companions, for which there are ongoing followup campaigns (HST/WFC3 and VLT/SINFONI in ADI mode). Since the methods developed as part of ALICE are directly applicable to future missions (JWST, AFTA coronagraph) we emphasize the importance of devising optimal PSF subtraction methods for upcoming coronagraphic imaging missions. We describe efforts in defining direct imaging high-level science products (HLSP) standards that can be applicable to other coronagraphic campaigns, including ground-based (e.g., Gemini Planet Imager), and future space instruments (e.g., JWST). ALICE will deliver a first release of HLSPs to the community through the MAST archive at STScI in 2014.

  12. Carbon stars with oxygen-rich circumstellar material

    NASA Technical Reports Server (NTRS)

    Jura, Michael; Hawkins, I.

    1991-01-01

    The IUE satellite was used to search for companions to two carbon-rich stars with oxygen-rich circumstellar envelopes, EU And and V778 Cyg. Depending upon the amount of interstellar extinction and distances (probably between 1 and 2 kpc from the Sun) to these two stars, upper limits were placed between approx. 1.5 and 6 solar mass to the mass of any main sequence companions. For the 'near' distance of 1 kpc, it seems unlikely that there are white dwarf companions because the detection would be expected of ultraviolet emission from accretion of red giant wind material onto the white dwarf. A new model is proposed to explain the oxygen-rich envelopes. If these stars have a high nitrogen abundance, the carbon that is in excess of the oxygen may be carried in the circumstellar envelopes in HCN rather than C2H2 which is a likely key seed molecule for the formation of carbon grains. Consequently, carbon particles may not form; instead, oxygen-rich silicate dust may nucleate from the SiO present in the outflow.

  13. An energetic stellar outburst accompanied by circumstellar light echoes.

    PubMed

    Bond, Howard E; Henden, Arne; Levay, Zoltan G; Panagia, Nino; Sparks, William B; Starrfield, Sumner; Wagner, R Mark; Corradi, R L M; Munari, U

    2003-03-27

    Some classes of stars, including novae and supernovae, undergo explosive outbursts that eject stellar material into space. In 2002, the previously unknown variable star V838 Monocerotis brightened suddenly by a factor of approximately 10(4). Unlike a supernova or nova, it did not explosively eject its outer layers; rather, it simply expanded to become a cool supergiant with a moderate-velocity stellar wind. Superluminal light echoes were discovered as light from the outburst propagated into the surrounding, pre-existing circumstellar dust. Here we report high-resolution imaging and polarimetry of those light echoes, which allow us to set direct geometric distance limits to the object. At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the brightest star in the Milky Way. The presence of the circumstellar dust implies that previous eruptions have occurred, and spectra show it to be a binary system. When combined with the high luminosity and unusual outburst behaviour, these characteristics indicate that V838 Mon represents a hitherto unknown type of stellar outburst, for which we have no completely satisfactory physical explanation. PMID:12660776

  14. The Progenitor of SN 2011ja: Clues from Circumstellar Interaction

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Ray, Alak; Smith, Randall; Ryder, Stuart; Yadav, Naveen; Sutaria, Firoza; Dwarkadas, Vikram V.; Chandra, Poonam; Pooley, David; Roy, Rupak

    2013-09-01

    Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until core collapse, produce Type II plateau (IIP) supernovae. The ejecta from these explosions shocks the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray parts of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work, we use X-rays observations from the Chandra and radio observations from the Australia Telescope Compact Array to study the relative importance of processes which accelerate particles and those which amplify magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the explosion date. Multiple Chandra observations allow us to probe the history of variable mass loss from the progenitor. The ejecta expands into a low-density bubble followed by interaction with a higher density wind from a red supergiant consistent with M ZAMS >~ 12 M ?. Our results suggest that a fraction of Type IIP supernovae may interact with circumstellar media set up by non-steady winds.

  15. Probing Pre-Supernova Mass Loss With Circumstellar Dust Shells

    NASA Astrophysics Data System (ADS)

    Fox, Ori; Filippenko, Alex; Skrutskie, Mike; van Dyk, Schuyler; Kelly, Pat

    2013-10-01

    Late-time (>100 day) mid-infrared (mid-IR) observations of supernovae (SNe) offer a valuable probe of the progenitor mass-loss. Already, this technique has been exemplified with the Type IIn subclass, which often have large, dusty, pre-existing shells formed in pre-SN eruptions. While other SN subclasses are generally thought of having relatively low density circumstellar environments, a growing number of objects in other subclasses now show evidence for significant pre-SN mass loss and similar mid-IR characteristics. Long after the SN radioactive tail disappears, warm dust can stay bright at mid-IR wavelengths due to alternative heating mechanisms, such as shocks. The success of Spitzer archival studies has already been highlighted by the work of several members of this team. Here we propose a SNAPSHOT survey of a well-studied and high-profile SN sample, extending over a range of subclasses, and including both recent and historical events with evidence of a dense CSM and/or dust. This program will (a) discover new SNe with warm dust and (b) monitor the evolution of warm dust in previously detected SNe. Expanding upon our previous mid-IR work on SNe IIn, these observations will probe the similarities in and differences between the subclasses' circumstellar environments, pre-SN mass-loss, and ultimately, the progenitors themselves.

  16. Children's Work Habits and Reading Performance.

    ERIC Educational Resources Information Center

    Schroeder, Tom S.

    Two types of problems are found in the reading performance of children with poor work habits: a child may have mastered skills but performs inadequately in tasks due to poor work habits, and a child may never have mastered skills because of such habits. Work habit behavior is the student's tendency to apply himself or herself to learning tasks by…

  17. A Habitability Test of the Exoplanetary System K2-3

    NASA Astrophysics Data System (ADS)

    Diaz-Perez, Ryan; Kipping, David M.; Johnson, John A.

    2016-01-01

    The question of habitability is one of the most interesting questions in exoplanetary science. By studying the orbital properties of a planet, like it's eccentricity and habitable zone inner edge distance we can answer this question. Here we answer the habitability question for the planets in the exoplanetary system K2-3 discovered by the Kepler 2 spacecraft. The system is compose of three planets with radii 1.61-2.17 Rearth, and with orbital periods of 10-45 days. The most outer planet in this system known as K2-3d is particularly interesting due to its proximity towards the habitable zone. The eccentricities of the planets in K2-3 were calculated using a method known as stellar density profiling, and from these eccentricities the range of the semi-major axis were determined. The planet K2-3d was calculated to have a semi-major axis of 0.18 AU, which puts it outside the habitable zone where inner edge of the habitable zone is 0.27 AU from its host star. This project was supported by the The Harvard Banneker Institute.

  18. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  19. Can habitable planets form in clustered environments?

    NASA Astrophysics Data System (ADS)

    de Juan Ovelar, M.; Kruijssen, J. M. D.; Bressert, E.; Testi, L.; Bastian, N.; Cnovas, H.

    2012-10-01

    We present observational evidence of environmental effects on the formation and evolution of planetary systems. We combine catalogues of resolved protoplanetary discs (PPDs) and young stellar objects in the solar neighbourhood to analyse the PPD size distribution as a function of ambient stellar density. By running Kolmogorov-Smirnov tests between the PPD radii at different densities, we find empirical evidence, at the >97% confidence level, for a change in the PPD radius distribution at ambient stellar densities ? ? 103.5 pc-2. This coincides with a simple theoretical estimate for the truncation of PPDs or planetary systems by dynamical encounters. If this agreement is causal, the ongoing disruption of PPDs and planetary systems limits the possible existence of planets in the habitable zone, with shorter lifetimes at higher host stellar masses and ambient densities. Therefore, habitable planets are not likely to be present in long-lived stellar clusters, and may have been ejected altogether to form a population of unbound, free-floating planets. We conclude that, while highly suggestive, our results should be verified through other methods. Our simple model shows that truncations should lead to a measurable depletion of the PPD mass function that can be detected with ALMA observations of the densest nearby and young clusters. Appendices are available in electronic form at http://www.aanda.org

  20. Habitable moons around extrasolar giant planets.

    PubMed

    Williams, D M; Kasting, J F; Wade, R A

    1997-01-16

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere. PMID:9000072

  1. Habitable moons around extrasolar giant planets

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.; Wade, R. A.

    1997-01-01

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  2. On the inclination and habitability of the HD 10180 system

    SciTech Connect

    Kane, Stephen R.; Gelino, Dawn M.

    2014-09-10

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD 10180 system, which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100% of an eccentric orbit within the Habitable Zone.

  3. On the Inclination and Habitability of the HD 10180 System

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.; Gelino, Dawn M.

    2014-09-01

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD 10180 system, which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100% of an eccentric orbit within the Habitable Zone.

  4. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar abundances. The latter observation may indicate a decoupling of the silicate and sulfide components in grains that condense in stellar outflows. The amorphous silicate grains described here were not extensively affected by irradiation, sputtering, or thermal processing and may represent relatively pristine circumstellar grains. They are strong candidates for the "dirty silicates" in astronomical observations of circumstellar dust shells. The polycrystalline grains were originally amorphous silicate grains that were likely annealed in the early solar nebula but the processing was not sufficient to erase their anomalous oxygen isotopic compositions.

  5. SN 2007od: A TYPE IIP SUPERNOVA WITH CIRCUMSTELLAR INTERACTION

    SciTech Connect

    Andrews, J. E.; Gallagher, J. S.; Clayton, Geoffrey C.; Chatelain, J. P.; Clem, J. E-mail: jgallagher@phys.lsu.ed E-mail: jchate6@tigers.lsu.ed

    2010-05-20

    SN 2007od exhibits characteristics that have rarely been seen in a Type IIP supernova (SN). Optical V-band photometry reveals a very steep brightness decline between the plateau and nebular phases of {approx}4.5 mag, likely due to SN 2007od containing a low mass of {sup 56}Ni. The optical spectra show an evolution from normal Type IIP with broad H{alpha} emission, to a complex, four-component H{alpha} emission profile exhibiting asymmetries caused by dust extinction after day 232. This is similar to the spectral evolution of the Type IIn SN 1998S, although no early-time narrow ({approx}200 km s{sup -1}) H{alpha} component was present in SN 2007od. In both SNe, the intermediate-width H{alpha} emission components are thought to arise in the interaction between the ejecta and its circumstellar medium (CSM). SN 2007od also shows a mid-infrared excess due to new dust. The evolution of the H{alpha} profile and the presence of the mid-IR excess provide strong evidence that SN 2007od formed new dust before day 232. Late-time observations reveal a flattening of the visible light curve. This flattening is a strong indication of the presence of a light echo, which likely accounts for much of the broad, underlying H{alpha} component seen at late times. We believe that the multi-peaked H{alpha} emission is consistent with the interaction of the ejecta with a circumstellar ring or torus (for the inner components at {+-}1500 km s{sup -1}) and a single blob or cloud of circumstellar material out of the plane of the CSM ring (for the outer component at -5000 km s{sup -1}). The most probable location for the formation of new dust is in the cool dense shell created by the interaction between the expanding ejecta and its CSM. Monte Carlo radiative transfer modeling of the dust emission from SN 2007od implies that up to {approx}4 x 10{sup -4} M{sub sun} of new dust has formed. This is similar to the amounts of dust formed in other core-collapse supernovae such as SNe 1999em, 2004et, and 2006jc.

  6. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-01

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets. PMID:16960000

  7. Towards a Classification System for Assessing Extrasolar Planet Habitability

    NASA Astrophysics Data System (ADS)

    Sohl, L. E.; Chandler, M. A.; Scharf, C. A.; del Genio, A.; Allison, M.; Menou, K.

    2005-12-01

    There is currently no quantitatively-based framework on which to focus the search for Earth-like habitable planets, or to assess the habitability of extrasolar planets already discovered. We suggest that previous assessments have been limited by an incomplete understanding of what a habitable planet could be, and that the search for habitable worlds has been overly limited. We propose to create the first quantitative guide to the habitability and observable characteristics of a broad range of extrasolar planets, using a hierarchy of numerical climate models for worlds spanning a parameter space of orbit and spin configurations, gravity, stellar parents, hydrologic cycles, and atmospheric composition. Habitability is defined, at least initially, via terrestrial analogs. We will explore these through a series of 3-D general circulation model (GCM) paleoclimate simulations, based upon available geologic data. The time slices selected represent Earth's own passage through distinct phases of habitability, from the late Archaean (2.8 Ga) through the Early Paleozoic (440 Ma); each phase reflects steps in the co-evolution of climate and life. Various impacts upon the hydrologic cycle of Earth-like worlds, such as changes in rotation rate, land/sea distribution and ocean heat transports will also be explored using generic GCM simulations at a higher resolution (2 x 2.5 degree grid). Our classification effort will then extend to non-Earth-like terrestrial bodies and to gas giants orbiting various types of stars, through the use of simplified GCMs and 1-D energy balance models (EBMs) better suited to exploration of certain conditions as superrotation, tidal lock, and non-Earth-specific radiative schemes. This array of models will not only allow us to explore a broader range of investigations, but will also permit some degree of calibration and physical understanding between the different approaches. In addition to unveiling the physical diversity of potential habitable zones and exoplanet climates, this effort will form a critical basis for the selection of candidate planets for intensive observation by future planet-finding instruments. At the same time, the project will help us to understand both the Earth and our Solar System within the much broader context of exoplanetary habitability and the potential for extrasolar life.

  8. The photochemistry of carbon-rich circumstellar shells

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Glassgold, A. E.

    1982-01-01

    The effect of ambient ultraviolet photons on the chemical structure of carbon-rich, circumstellar envelopes is investigated with a simple formulation of the time-dependent, photochemical rate equations valid for optically thick shells. Molecules injected into the shielded inner envelope are broken down when they reach the outer regions where ambient ultraviolet photons can penetrate. A quantitative description of the abundance variations is obtained for the case of uniform expansion by detailed consideration of the shielding of the radiation by the dust and molecules of the envelope. Representative results are presented to illustrate the role of shielding in defining the extent of molecular envelopes, the formation of C I and C II shells by photodestruction of carbon-bearing molecules, and the development of layered chemical structures from the photobreakup of polyatomic molecules. Photochemistry makes the outer parts of thick, carbon-rich envelopes into complex regions containing radicals, ions, and atoms which are of considerable observational and theoretical interest.

  9. The Circumstellar Disk of HD 141569 Imaged with NICMOS.

    PubMed

    Weinberger; Becklin; Schneider; Smith; Lowrance; Silverstone; Zuckerman; Terrile

    1999-11-01

    Coronagraphic imaging with the Near-Infrared Camera and Multiobject Spectrometer on the Hubble Space Telescope reveals a large, approximately 400 AU (4&arcsec;) radius, circumstellar disk around the Herbig Ae/Be star HD 141569. A reflected light image at 1.1 µm shows the disk oriented at a position angle of 356&j0;+/-5&j0; and inclined to our line of sight by 51&j0;+/-3&j0;; the intrinsic scattering function of the dust in the disk makes the side inclined toward us, the eastern side, brighter. The disk flux density peaks 185 AU (1&farcs;85) from the star and falls off to both larger and smaller radii. A region of depleted material, or a gap, in the disk is centered 250 AU from the star. The dynamical effect of one or more planets may be necessary to explain this morphology. PMID:10511512

  10. The Be star Achernar and its circumstellar environment

    NASA Astrophysics Data System (ADS)

    Faes, D. M.; Carciofi, A. C.; Domiciano de Souza, A.

    2014-10-01

    The circumstellar disks ejected by many rapidly rotating B stars (so-called Be stars) offer the rare opportunity to study the structure and dynamics of gaseous disks at high spectral as well as angular resolution. Recent works, largely based on optical long baseline interferometry, showed that Achernar (? Eridani, HD10144), the brightest (V=0.46 mag) and nearest (distance of 42.75 pc) Be star is a key target to a deeper understanding of the physics of Be stars, because it displays most of features that characterizes the Be phenomenon: (i) Strong rotational rate; (ii) Residual disk; (iii) Episodic mass ejections; (iv) Quasi-cyclic disk formation/dissipation; (v) Polar wind; and (vi) Binarity.

  11. Warm Circumstellar Debris Disks: Dynamical Excitation by Massive External Perturbers?

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika; Naoz, Smadar; Vican, Laura; Vican, Laura; Zuckerman, Ben M.; Holmbeck, Erika

    2016-01-01

    Observations of circumstellar debris disks have revealed that a subset of this population are warm disks (~300 K). A dynamically excited disk may indicate the presence of an exoplanet orbiting within and stirring the disk. However, observations suggest another possible mechanism for heating a debris disk: an external stellar-mass perturber exciting the eccentricities and inclinations of the particles in a disk.We explore the consequences of an external perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. The perturber excites the eccentricities of the particles in the disk via the Kozai-Lidov mechanism, triggering a collisional cascade among the planetesimals. These collisions produce smaller dust grains and damp the particles' larger eccentricities.We present the results of our study and discuss the connections to observations of warm disks and the implications for planet formation.

  12. The circumstellar environments of intermediate mass main sequence stars

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1993-01-01

    Analysis of archival Infrared Astronomy Satellite (IRAS) and International Ultraviolet Explorer (IUE) data resulted in identification of accreting gas toward a 2.8 Myr post-Herbig Be star in the R CrA star formation region, and identification of accreting gas toward HD 93563, previously identified as a classical Be star. Accreting gas was also detected toward two B(e) stars of previously controversial evolutionary state, resulting in identification of these systems as pre-Main Sequence Herbig Be stars viewed edge-on to their circumstellar disks. In parallel with this effort, accreting gas was detected toward the Herbig Ae star HR 5999, resulting in development of identification criteria for edge-on PMS proto-planetary disk systems. The work on individual stars is described.

  13. Archival Legacy Investigation of Circumstellar Environments (ALICE). Survey results

    NASA Astrophysics Data System (ADS)

    Soummer, Remi; Choquet, Elodie; Pueyo, Laurent; Brendan Hagan, J.; Gofas-Salas, Elena; Rajan, Abhijith; Chen, Christine; Perrin, Marshall D.; Debes, John H.; Golimowski, David A.; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Mawet, Dimitri; Marois, Christian

    2016-01-01

    We report on the status of the ALICE project (Archival Legacy Investigation of Circumstellar Environments. HST/AR-12652), which consists in a consistent reanalysis of the entire HST-NICMOS coronagraphic archive with advanced post-processing techniques. Over the last two years, we have developed a sophisticated pipeline able to handle the data of the 400 stars of the archive. We present the results of the overall reduction campaign and discuss the first statistical analysis of the candidate detections. As we will deliver high-level science products to the STScI MAST archive, we are defining a new standard format for high-contrast science products, which will be compatible with every new high-contrast imaging instrument and used by the JWST coronagraphs. We present here an update and overview of the specifications of this standard.

  14. 1612 MHz OH maser emission from axisymmetric circumstellar envelopes - Miras

    NASA Technical Reports Server (NTRS)

    Collison, Alan J.; Fix, John D.

    1992-01-01

    Radiative transfer calculations are performed using a modified form of the Sobolev approximation to determine the inversion of the 1612 MHz line of OH in axisymmetric circumstellar envelopes around Miras. The mass loss is assumed to be occurring in the form of a smooth wind. Line profiles and maps are presented for three models of varying degrees of asymmetry and for various orientations of the envelopes. It is concluded that the axisymmetric models can reproduce many of the features of observed profiles and maps which both the standard, spherically symmetric model and the discrete emission model cannot easily explain. The model profiles reproduce all of the general features seen in the line profiles of real sources.

  15. Circumstellar grain extinction properties of recently discovered post AGB stars

    NASA Technical Reports Server (NTRS)

    Buss, Richard H., Jr.; Lamers, Henny J. G. L. M.; Snow, Theodore P., Jr.

    1989-01-01

    The circumstellar grains of two hot evolved post asymptotic giant branch (post AGB) stars, HD 89353 and HD 213985 were examined. From ultraviolet spectra, energy balance of the flux, and Kurucz models, the extinction around 2175 A was derived. With visual spectra, an attempt was made to detect 6614 A diffuse band absorption arising from the circumstellar grains so that we could examine the relationship of these features to the infrared features. For both stars, we did not detect any diffuse band absorption at 6614 A, implying the carrier of this diffuse band is not the carrier of the unidentified infrared features not of the 2175 A bump. The linear ultraviolet extinction of the carbon-rich star HD 89353 was determined to continue across the 2175 A region with no sign of the bump; for HD 213985 it was found to be the reverse: a strong, wide bump in the mid-ultraviolet. The 213985 bump was found to be positioned at 2340 A, longward of its usual position in the interstellar medium. Since HD 213985 was determined to have excess carbon, the bump probably arises from a carbonaceous grain. Thus, in view of the ultraviolet and infrared properties of the two post AGB stars, ubiquitous interstellar infrared emission features do not seem to be associated with the 2175 A bump. Instead, the infrared features seem related to the linear ultraviolet extinction component: hydrocarbon grains of radius less than 300 A are present with the linear HD 89353 extinction; amorphous anhydrous carbonaceous grains of radius less than 50 A might cause the shifted ultraviolet extinction bump of HD 213985.

  16. Bimodality of Circumstellar Disk Evolution Induced by the Hall Current

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Y.; Iwasaki, K.; Okuzumi, S.; Machida, M. N.; Inutsuka, S.

    2015-09-01

    The formation process of circumstellar disks is still controversial because of the interplay of complex physical processes that occurs during the gravitational collapse of prestellar cores. In this study, we investigate the effect of the Hall current term on the formation of the circumstellar disk using three-dimensional simulations. In our simulations, all non-ideal effects, as well as the radiation transfer, are considered. The size of the disk is significantly affected by a simple difference in the inherent properties of the prestellar core, namely whether the rotation vector and the magnetic field are parallel or anti-parallel. In the former case, only a very small disk (\\lt 1 {AU}) is formed. On the other hand, in the latter case, a massive and large (\\gt 20 {AU}) disk is formed in the early phase of protostar formation. Since the parallel and anti-parallel properties do not readily change, we expect that the parallel and anti-parallel properties are also important in the subsequent disk evolution and the difference between the two cases is maintained or enhanced. This result suggests that the disk size distribution of the Class 0 young stellar objects is bimodal. Thus, the disk evolution can be categorized into two cases and we may call the parallel and anti-parallel systems Ortho-disk and Para-disk, respectively. We also show that the anti-rotating envelopes against the disk rotation appear with a size of ? 200 {AU}. We predict that the anti-rotating envelope will be found in the future observations.

  17. Stellar orbit evolution in close circumstellar disc encounters

    NASA Astrophysics Data System (ADS)

    Muñoz, D. J.; Kratter, K.; Vogelsberger, M.; Hernquist, L.; Springel, V.

    2015-01-01

    The formation and early evolution of circumstellar discs often occurs within dense, newborn stellar clusters. For the first time, we apply the moving-mesh code AREPO, to circumstellar discs in 3D, focusing on disc-disc interactions that result from stellar flybys. Although a small fraction of stars are expected to undergo close approaches, the outcomes of the most violent encounters might leave an imprint on the discs and host stars that will influence both their orbits and their ability to form planets. We first construct well-behaved 3D models of self-gravitating discs, and then create a suite of numerical experiments of parabolic encounters, exploring the effects of pericentre separation rp, disc orientation and disc-star mass ratio (Md/M*) on the orbital evolution of the host stars. Close encounters (2rp ≲ disc radius) can truncate discs on very short time-scales. If discs are massive, close encounters facilitate enough orbital angular momentum extraction to induce stellar capture. We find that for realistic primordial disc masses Md ≲ 0.1M*, non-colliding encounters induce minor orbital changes, which is consistent with analytic calculations of encounters in the linear regime. The same disc masses produce entirely different results for grazing/colliding encounters. In the latter case, rapidly cooling discs lose orbital energy by radiating away the energy excess of the shock-heated gas, thus causing capture of the host stars into a bound orbit. In rare cases, a tight binary with a circumbinary disc forms as a result of this encounter.

  18. Circumstellar disks revealed by H/K flux variation gradients

    NASA Astrophysics Data System (ADS)

    Pozo Nuez, F.; Haas, M.; Chini, R.; Ramolla, M.; Westhues, C.; Hodapp, K.-W.

    2015-06-01

    The variability of young stellar objects (YSO) changes their brightness and color preventing a proper classification in traditional color-color and color magnitude diagrams. We have explored the feasibility of the flux variation gradient (FVG) method for YSOs, using H and K band monitoring data of the star forming region RCW 38 obtained at the University Observatory Bochum in Chile. Simultaneous multi-epoch flux measurements follow a linear relation FH = ? + ?FK for almost all YSOs with large variability amplitude. The slope ? gives the mean HK color temperature Tvar of the varying component. Because Tvar is hotter than the dust sublimation temperature, we have tentatively assigned it to stellar variations. If the gradient does not meet the origin of the flux-flux diagram, an additional non- or less-varying component may be required. If the variability amplitude is larger at the shorter wavelength, e.g. ?< 0, this component is cooler than the star (e.g. a circumstellar disk); vice versa, if ?> 0, the component is hotter like a scattering halo or even a companion star. We here present examples of two YSOs, where the HK FVG implies the presence of a circumstellar disk; this finding is consistent with additional data at J and L. One YSO shows a clear K-band excess in the JHK color-color diagram, while the significance of a K-excess in the other YSO depends on the measurement epoch. Disentangling the contributions of star and disk it turns out that the two YSOs have huge variability amplitudes (~3-5 mag). The HK FVG analysis is a powerful complementary tool to analyze the varying components of YSOs and worth further exploration of monitoring data at other wavelengths.

  19. TIDALLY INDUCED BROWN DWARF AND PLANET FORMATION IN CIRCUMSTELLAR DISKS

    SciTech Connect

    Thies, Ingo; Kroupa, Pavel; Goodwin, Simon P.; Stamatellos, Dimitrios; Whitworth, Anthony P.

    2010-07-01

    Most stars are born in clusters and the resulting gravitational interactions between cluster members may significantly affect the evolution of circumstellar disks and therefore the formation of planets and brown dwarfs (BDs). Recent findings suggest that tidal perturbations of typical circumstellar disks due to close encounters may inhibit rather than trigger disk fragmentation and so would seem to rule out planet formation by external tidal stimuli. However, the disk models in these calculations were restricted to disk radii of 40 AU and disk masses below 0.1 M{sub sun}. Here, we show that even modest encounters can trigger fragmentation around 100 AU in the sorts of massive ({approx}0.5 M{sub sun}), extended ({>=}100 AU) disks that are observed around young stars. Tidal perturbation alone can do this; no disk-disk collision is required. We also show that very low mass binary systems can form through the interaction of objects in the disk. In our computations, otherwise non-fragmenting massive disks, once perturbed, fragment into several objects between about 0.01 and 0.1 M{sub sun}, i.e., over the whole BD mass range. Typically, these orbit on highly eccentric orbits or are even ejected. While probably not suitable for the formation of Jupiter- or Neptune-type planets, our scenario provides a possible formation mechanism for BDs and very massive planets which, interestingly, leads to a mass distribution consistent with the canonical substellar initial mass function. As a minor outcome, a possible explanation for the origin of misaligned extrasolar planetary systems is discussed.

  20. Beta Pic-like Circumstellar Gas Disk Around 2 And

    NASA Technical Reports Server (NTRS)

    Cheng, Patricia

    2003-01-01

    This grant was awarded to support the data analysis and publication of results from our project entitled P Pic-like Circumstellar Gas Disk Around 2 And . We proposed to obtain FUSE observations of 2 And and study the characteristics and origin of its circumstellar gas. We observed 2 Andromedae with FUSE on 3-4 July 2001 in 11 exposures with a total exposure time of 21,289 seconds through the LWRS aperture. Our data were calibrated with Version 1.8.7 of the CALFUSE pipeline processing software. We corrected the wavelength scale for the heliocentric velocity error in this version of the CALFUSE software. The relative accuracy of the calibrated wavelength scale is +/- 9 km/s . We produced a co-added spectrum in the LiF 1B and LiF 2A channels (covering the 1100 to 1180 A region) by cross-correlating the 11 individual exposures and doing an exposure-time weighted average flux. The final co-added spectra have a signal-to-noise ratio in the stellar continuum near 1150 A of about 20. To obtain an absolute wavelength calibration, we cross-correlated our observed spectra with a model spectrum to obtain the best fit for the photospheric C I lines. Because the photospheric lines are very broad, this yields an absolute accuracy for the wavelength scale of approx.+/- 15 km/s. We then rebinned 5 original pixels to yield the optimal sampling of .033 A for each new pixel, because the calibrated spectra oversample the spectral resolution for FUSE+LWRS (R = 20,000 +/- 2,000).

  1. Pioneering Concepts of Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Raulin Cerceau, Florence

    Famous astronomers such as Richard A. Proctor (1837-1888), Jules Janssen (1824-1907), and Camille Flammarion (1842-1925) studied the concept of planetary habitability a century before this concept was updated in the context of the recent discoveries of exoplanets and the development of planetary exploration in the solar system. They independently studied the conditions required for other planets to be inhabited, and these considerations led them to specify the term "habitability." Naturally, the planet Mars was at the heart of the discussion. Our neighboring planet, regarded as a sister planet of Earth, looked like a remarkable abode for life. During the second part of the nineteenth century, the possibility of Martian intelligent life was intensively debated, and hopes were still ardent to identify a kind of vegetation specific to the red planet. In such a context, the question of Mars' habitability seemed to be very valuable, especially when studying hypothetical Martian vegetation. At the dawn of the Space Age, German-born physician and pioneer of space medicine Hubertus Strughold (1898-1987) proposed in the book The Green and Red Planet: A Physiological Study of the Possibility of Life on Mars (1954) to examine the planets of the solar system through a "planetary ecology." This innovative notion, which led to a fresh view of the concept of habitability, was supposed to designate a new field involving biology: "the science of planets as an environment for life" (Strughold 1954). This notion was very close to the concept of habitability earlier designated by our nineteenth-century pioneers. Strughold also coined the term "ecosphere" to name the region surrounding a star where conditions allowed life-bearing planets to exist. We highlight in this chapter the historical aspects of the emergence of the (modern) concept of habitability. We will consider the different formulations proposed by the pioneers, and we will see in what way it can be similar to our contemporary notion of planetary habitability. This study also shows the convergence of the methodological aspects used to examine the concept of habitability, mainly based on analogy.

  2. Kinematics of the circumstellar gas of HL Tauri and R Monocerotis

    NASA Astrophysics Data System (ADS)

    Sargent, Anneila I.; Beckwith, Steven

    1987-12-01

    The authors present interferometric observations of 13CO emission from HL Tau and R Mon. The data permit quantitative determinations of the column density, mass, and dimensions of the circumstellar gas around each object. Simultaneous measurements of the 2.7 mm continuum emission allow an investigation of the circumstellar dust at high spatial resolution, furnishing a secondary probe of the circumstellar mass. Kinematic analysis of the weak, extended, molecular emission detected around both objects is consistent with the hypothesis that the gas orbits the stars in bound disks.

  3. O VI gas - Circumstellar or interstellar. [abundance models due to ionization of circumstellar bubbles or supernova shock waves

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1978-01-01

    Observations in the UV spectra from the Copernicus satellite have revealed absorption lines from five-times ionized oxygen atoms. To explain this abundance, two explanations have been advanced to supplant the traditional model of steady loss from nearby stars. One, ionization from circumstellar bubbles, is said to result from rapidly rotating stars. The other, examined in more detail, suggests a mechanism whereby shock waves from explosive disturbances in nearby supernovae preferentially channel coronal-type O VI regions in the interstellar medium into areas of high temperature (above 100,000 K). An examination of column densities with increasing distribution is proposed to examine the hypotheses, although the results are as yet inconclusive.

  4. Practicing Good Habits, Grade 2.

    ERIC Educational Resources Information Center

    Nguyen Van Quan; And Others

    This illustrated primer, designed for second grade students in Vietnam, consists of stories depicting rural family life in Vietnam. The book is divided into the following six chapters: (1) Practicing Good Habits (health, play, helpfulness); (2) Duties at Home (grandparents, father and mother, servants, the extended family; (3) Duties in School…

  5. Practicing Good Habits, Grade 1.

    ERIC Educational Resources Information Center

    Huynh Cong Tu; And Others

    This primer, intended for use during the child's first year in elementary school in Vietnam, relates the story of the daily lives of Hong, age 10, and her brother Lac, age 7, at home and at school. The 64 lessons are divided into four chapters: (1) Good Habits (personal hygiene, grooming, dressing, obedience, truthfulness); (2) At Home: Father and

  6. Environmental control system for Habitable-zone Planet Finder (HPF)

    NASA Astrophysics Data System (ADS)

    Hearty, Fred; Levi, Eric; Nelson, Matt; Mahadevan, Suvrath; Burton, Adam; Ramsey, Lawrence; Bender, Chad; Terrien, Ryan; Halverson, Samuel; Robertson, Paul; Roy, Arpita; Blank, Basil; Blanchard, Ken; Stefansson, Gudmundur

    2014-07-01

    HPF is an ultra-stable, precision radial velocity near infrared spectrograph with a unique environmental control scheme. The spectrograph will operate at a mid-range temperature of 180K, approximately half way between room temperature and liquid nitrogen temperature; it will be stable to sub -milli-Kelvin(mK) levels over a calibration cycle and a few mK over months to years. HPF's sensor is a 1.7 micron H2RG device by Teledyne. The environmental control boundary is a 9 m2 thermal enclosure that completely surrounds the optical train and produces a near blackbody cavity for all components. A large, pressure - stabilized liquid nitrogen tank provides the heat sink for the system via thermal straps while a multichannel resistive heater control system provides the stabilizing heat source. High efficiency multi-layer insulation blanketing provides the outermost boundary of the thermal enclosure to largely isolate the environmental system from ambient conditions. The cryostat, a stainless steel shell derived from the APOGEE design, surrounds the thermal enclosure and provides a stable, high quality vacuum environment. The full instrument will be housed in a passive 'meat -locker' enclosure to add a degree of additional thermal stability and as well as protect the instrument. Effectiveness of this approach is being empirically demonstrated via long duration scale model testing. The full scale cryostat and environmental control system are being constructed for a 2016 delivery of the instrument to the Hobby-Eberly Telescope. This report describes the configuration of the hardware and the scale-model test results as well as projections for performance of the full system.

  7. The Quest for Cradles of Life: Using the Fundamental Metallicity Relation to Hunt for the Most Habitable Type of Galaxy

    NASA Astrophysics Data System (ADS)

    Dayal, Pratika; Cockell, Charles; Rice, Ken; Mazumdar, Anupam

    2015-09-01

    The field of astrobiology has made huge strides in understanding the habitable zones around stars (stellar habitable zones) where life can begin, sustain its existence and evolve into complex forms. A few studies have extended this idea by modeling galactic-scale habitable zones (galactic habitable zones) for our Milky Way (MW) and specific elliptical galaxies. However, estimating the habitability for galaxies spanning a wide range of physical properties has so far remained an outstanding issue. Here, we present a cosmobiological framework that allows us to sift through the entire galaxy population in the local universe and answer the question, Which type of galaxy is most likely to host complex life in the cosmos? Interestingly, the three key astrophysical criteria governing habitability (total mass in stars, total metal mass and ongoing star formation rate) are found to be intricately linked through the fundamental metallicity relation as shown by Sloan Digital Sky Survey observations of more than a hundred thousand galaxies in the local universe. Using this relation we show that metal-rich, shapeless giant elliptical galaxies at least twice as massive as the MW (with a tenth of its star formation rate) can potentially host ten thousand times as many habitable (Earth-like) planets, making them the most probable cradles of life in the universe.

  8. Breastfeeding FAQs: Your Eating and Drinking Habits

    MedlinePLUS

    ... Allergy Emergency Cerebral Palsy: Caring for Your Child Breastfeeding FAQs: Your Eating and Drinking Habits KidsHealth > For Parents > Breastfeeding FAQs: Your Eating and Drinking Habits Print A ...

  9. Exploring Asymmetries in Circumstellar Environments: Winds, Disks, and Things that Go Clump in the Light

    NASA Technical Reports Server (NTRS)

    Wood, Kenneth

    1999-01-01

    The aim of the NASA LTSA grant is to develop Monte Carlo radiation transfer techniques for use in the analysis of data from stellar systems that exhibit evidence for extended, non-spherical circumstellar environments.

  10. TW HYA ASSOCIATION MEMBERSHIP AND NEW WISE-DETECTED CIRCUMSTELLAR DISKS

    SciTech Connect

    Schneider, Adam; Song, Inseok; Melis, Carl E-mail: song@physast.uga.edu

    2012-07-20

    We assess the current membership of the nearby, young TW Hydrae association and examine newly proposed members with the Wide-field Infrared Survey Explorer (WISE) to search for infrared excess indicative of circumstellar disks. Newly proposed members TWA 30A, TWA 30B, TWA 31, and TWA 32 all show excess emission at 12 and 22 {mu}m providing clear evidence for substantial dusty circumstellar disks around these low-mass, {approx}8 Myr old stars that were previously shown to likely be accreting circumstellar material. TWA 30B shows large amounts of self-extinction, likely due to an edge-on disk geometry. We also confirm previously reported circumstellar disks with WISE and determine a 22 {mu}m excess fraction of 42{sup +10}{sub -{sub 9}}% based on our results.

  11. Habitability of enceladus: planetary conditions for life.

    PubMed

    Parkinson, Christopher D; Liang, Mao-Chang; Yung, Yuk L; Kirschivnk, Joseph L

    2008-08-01

    The prolific activity and presence of a plume on Saturn's tiny moon Enceladus offers us a unique opportunity to sample the interior composition of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies of the potential habitability of Jupiter's moon Europa, icy satellite oceans can be habitable if they are chemically mixed with the overlying ice shell on Myr time scales. We hypothesize that Enceladus' plume, tectonic processes, and possible liquid water ocean may create a complete and sustainable geochemical cycle that may allow it to support life. We discuss evidence for surface/ocean material exchange on Enceladus based on the amounts of silicate dust material present in the Enceladus' plume particles. Microphysical cloud modeling of Enceladus' plume shows that the particles originate from a region of Enceladus' near surface where the temperature exceeds 190 K. This could be consistent with a shear-heating origin of Enceladus' tiger stripes, which would indicate extremely high temperatures ( approximately 250-273 K) in the subsurface shear fault zone, leading to the generation of subsurface liquid water, chemical equilibration between surface and subsurface ices, and crustal recycling on a time scale of 1 to 5 Myr. Alternatively, if the tiger stripes form in a mid-ocean-ridge-type mechanism, a half-spreading rate of 1 m/year is consistent with the observed regional heat flux of 250 mW m(-2) and recycling of south polar terrain crust on a 1 to 5 Myr time scale as well. PMID:18566911

  12. Study of variable extinction of hot stars with circumstellar dust shells

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Various projects on the topic of hot stars with circumstellar dust are reported. The surface temperature, wind speed, and interstellar reddening were determined for the variable WC7 star HD 193793. Circumstellar carbon monoxide molecules were detected around a hot star. The dust envelope of the star W90 in the young cluster NGC2264 is discussed, and the spectra of low-redshift and X-ray emitting quasars are mentioned.

  13. Circumstellar emission in Be/X-ray binaries of the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Riquelme, M. S.; Torrejn, J. M.; Negueruela, I.

    2012-03-01

    Aims: We study the optical and near-infrared colour excesses produced by circumstellar emission in a sample of Be/X-ray binaries. Our main goals are exploring whether previously published relations, valid for isolated Be stars, are applicable to Be/X-ray binaries and computing the distance to these systems after correcting for the effects of the circumstellar contamination. Methods: Simultaneous UBVRI photometry and spectra in the 3500-7000 spectral range were obtained for 11 optical counterparts to Be/X-ray binaries in the LMC, 5 in the SMC and 12 in the Milky Way. As a measure of the amount of circumstellar emission we used the H? equivalent width corrected for photospheric absorption. Results: We find a linear relationship between the strength of the H? emission line and the component of E(B - V) originating from the circumstellar disk. This relationship is valid for stars with emission lines weaker than EW ? -15 . Beyond this point, the circumstellar contribution to E(B - V) saturates at a value ?0.17 mag. A similar relationship is found for the (V - I) near infrared colour excess, albeit with a steeper slope and saturation level. The circumstellar excess in (B - V) is found to be about five times higher for Be/X-ray binaries than for isolated Be stars with the same equivalent width EW(H?), implying significant differences in the physical properties of their circumstellar envelopes. The distance to Be/X-ray binaries (with non-shell Be star companions) can only be correctly estimated by taking into account the excess emission in the V band produced by free-free and free-bound transitions in the circumstellar envelope. We provide a simple method to determine the distances that includes this effect. Partially based on observations collected at the European Southern Observatory, La Silla, Chile (66.D-0292; 074.D-0529) and the Nordic Optical Telescope.

  14. Herschel/HIFI deepens the circumstellar NH3 enigma

    NASA Astrophysics Data System (ADS)

    Menten, K. M.; Wyrowski, F.; Alcolea, J.; De Beck, E.; Decin, L.; Marston, A. P.; Bujarrabal, V.; Cernicharo, J.; Dominik, C.; Justtanont, K.; de Koter, A.; Melnick, G.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schier, F. L.; Szczerba, R.; Teyssier, D.; Waters, L. B. F. M.; Edwards, K.; Olberg, M.; Phillips, T. G.; Morris, P.; Salez, M.; Caux, E.

    2010-10-01

    Context. Circumstellar envelopes (CSEs) of a variety of evolved stars have been found to contain ammonia (NH3) in amounts that exceed predictions from conventional chemical models by many orders of magnitude. Aims: The observations reported here were performed in order to better constrain the NH3 abundance in the CSEs of four, quite diverse, oxygen-rich stars using the NH3 ortho JK = 10-00 ground-state line. Methods: We used the Heterodyne Instrument for the Far Infrared aboard Herschel to observe the NH3 JK = 10-00 transition near 572.5 GHz, simultaneously with the ortho-H2O JKa , Kc = 11,0 - 10,1 transition, toward VY CMa, OH 26.5+0.6, IRC+10420, and IK Tau. We conducted non-LTE radiative transfer modeling with the goal to derive the NH3 abundance in these objects' CSEs. For the last two stars, Very Large Array imaging of NH3 radio-wavelength inversion lines were used to provide further constraints, particularly on the spatial extent of the NH3-emitting regions. Results: We find remarkably strong NH3 emission in all of our objects with the NH3 line intensities rivaling those of the ground state H2O line. The NH3 abundances relative to H2 are very high and range from 210-7 to 310-6 for the objects we have studied. Conclusions: Our observations confirm and even deepen the circumstellar NH3 enigma. While our radiative transfer modeling does not yield satisfactory fits to the observed line profiles, it does lead to abundance estimates that confirm the very high values found in earlier studies. New ways to tackle this mystery will include further Herschel observations of more NH3 lines and imaging with the Expanded Very Large Array. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A (page 5) is only available in electronic form at http://www.aanda.org

  15. Effects of Exoplanet Planetesimal Carbon Chemistry on Habitability

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence V.; Mousis, O.; Lunine, J. I.; Madhusudhan, N.

    2013-10-01

    We explore the effects of reported differences in C/O values for exoplanet host stars on the composition of planetesimals formed beyond the snow line in these systems. Since the value of C/O in a planet forming nebula has a strong effect on amount of oxygen available for water ice in an oxidizing nebula, exoplanet systems for host stars with C/O greater than the solar value may have planetesimals with very little or no water ice. We have estimated the composition of volatile and refractory material in extrasolar planetesimals using a set of stars with a wide range of measured C/O abundances (Johnson et al. ApJ. 757(2), 192, 2012). The volatile ice content of planetesimals in these systems varies significantly with C/O, controlled primarily by the availability of O for H2 O ice condensation. Systems with C/O less than the solar value (C/O = 0.55) should have very water ice rich planetesimals, while water ice mass fraction decreases rapidly with increasing C/O until only ices of CO and CO2 are left in significant proportions. If a significant fraction of C is in the form of refractory CHON particles, C and O are removed from the gas phase and the condensates for super-solar C/O values will be water-poor mixtures of silicates and metal, carbon, and carbon-bearing volatile ices, depending on temperature. For very carbon-rich systems, oxidizing conditions cannot be sustained beyond about C/O=1, due to the oxygen sequestered in solid silicates, oxides and CHON, for refractory C fractions within the Pollack et al. range of 0.4 - 0.7 (ApJ. 421, 615, 1994). These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host star’s C/O in the circumstellar nebula. Thus one the key chemical ingredients for habitability may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the ‘habitable zone’. TVJ acknowledges government support at JPL/Caltech, under a contract with NASA. NM acknowledges support from Yale University. JIL was supported by the JWST Project through NASA. O.M. acknowledges support from CNES.

  16. Habitability of extrasolar planets and tidal spin evolution.

    PubMed

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded. PMID:22139513

  17. Climate stability of habitable Earth-like planets

    NASA Astrophysics Data System (ADS)

    Menou, Kristen

    2015-11-01

    The carbon-silicate cycle regulates the atmospheric CO2 content of terrestrial planets on geological timescales through a balance between the rates of CO2 volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric CO2 content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  18. Grain growth and dust trapping in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola

    2015-08-01

    Circumstellar disks around young stars are known to be the birthplace of planets. Planet formation starts with the coagulation of micron-sized particles to larger dust aggregates. This process, which covers more than forty orders of magnitude in mass, has different physical challenges. One of the oldest mysteries is how planetesimals are formed, in spite of fragmentation collisions and rapid inward drift. Radial drift theory is in disagreement with the observations of millimetre grains in the cold regions of protoplanetary disks. Nevertheless, a disk model that includes dust coagulation, fragmentation, and the presence of long-lived pressure bumps, which moderate the rapid inward migration of particles, leads to a better agreement between observations and theory. Disks with a dust depleted inner cavity, known as transition disks, are excellent candidates to investigate the dust evolution under the existence of a pressure bump. Millimetre observations of transition disks reveal crescent- and ring-shaped emissions that lend credence to the notion than planetesimals may form in localised hotspots or pressure traps. Recent ALMA observations have showed astonishing dust structures in transition disks, which together with data of CO and its isotopologues, have been giving major support for particle trapping induced by embedded planets, which can solve the old paradigm of radial drift.

  19. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Feigelson, Eric D.

    1989-01-01

    Production of polycyclic aromatic hydrocarbons in carbon-rich circumstellar envelopes was investigated using a kinetic approach. A detailed chemical reaction mechanism of gas-phase PAH formation and growth, containing approximately 100 reactions of 40 species, was numerically solved under the physical conditions expected in cool stellar winds. The chemistry is based on studies of soot production in hydrocarbon pyrolysis and combustion. Several first-ring and second-ring cyclization processes were considered. A linear lumping algorithm was used to describe PAH growth beyond the second aromatic ring. PAH production using this mechanism was examined with respect to a grid of idealized constant velocity stellar winds as well as several published astrophysical models. The basic result is that the onset of PAH production in the interstellar envelopes is predicted to occur within the temperature interval of 1100 to 900 K. The absolute amounts of the PAHs formed, however, are very sensitive to a number of parameters, both chemical and astrophysical, whose values are not accurately known. Astrophysically meaningful quantities of PAHs require particularly dense and slow stellar winds and high initial acetylene abundance. It is suggested that most of the PAHs may be produced in a relatively small fraction of carbon-rich red giants.

  20. Probing NH3 Formation in Oxygen-rich Circumstellar Envelopes

    NASA Astrophysics Data System (ADS)

    Wong, K. T.; Menten, K. M.; Kami?ski, T.; Wyrowski, F.

    2015-08-01

    The chemistry of ammonia (NH3) in the circumstellar envelopes (CSEs) of AGB stars and red supergiants is poorly understood. Thermodynamic equilibrium (TE) chemistry predicts an abundance of ?10-8, orders of magnitudes below values reported from observations (10-7-10-6). To date, there is no consistent model explaining the origin of such high abundances. To better understand the physical conditions necessary for the formation of NH3, we analysed the NH3 rotational and inversion lines observed in the spectrum of IK Tauri. The strength of the rotational lines clearly confirms the high abundances as compared to the TE predictions. From 1D radiative transfer modelling including infrared pumping via vibrational bands, we infer a total NH3 abundance of 7.5 10-7, along with an ortho-to-para ratio (OPR) of ? 1.5 : 1, slightly above the statistical equilibrium value of 1. We discuss these preliminary results and the possible origin of NH3 in oxygen-rich CSEs.

  1. THE MORPHOLOGY OF IRC+10420's CIRCUMSTELLAR EJECTA

    SciTech Connect

    Tiffany, Chelsea; Humphreys, Roberta M.; Jones, Terry J.; Davidson, Kris E-mail: roberta@umn.ed

    2010-08-15

    Images of the circumstellar ejecta associated with the post-red supergiant IRC+10420 show a complex ejecta with visual evidence for episodic mass loss. In this paper, we describe the transverse motions of numerous knots, arcs, and condensations in the inner ejecta measured from second epoch Hubble Space Telescope/WFPC2 images. When combined with the radial motions for several of the features, the total space motion and direction of the outflows show that they were ejected at different times, in different directions, and presumably from separate regions on the surface of the star. These discrete structures in the ejecta are kinematically distinct from the general expansion of the nebula and their motions are dominated by their transverse velocities. They are apparently all moving within a few degrees of the plane of the sky. We are thus viewing IRC+10420 nearly pole-on and looking nearly directly down onto its equatorial plane. We also discuss the role of surface activity and magnetic fields on IRC+10420's recent mass-loss history.

  2. On circumstellar disks: Spitzer identifies two possible evolutionary paths

    NASA Astrophysics Data System (ADS)

    Teixeira, Paula S.; Lada, Charles J.; Marengo, Massimo; Lada, Elizabeth

    Multi-wavelength surveys have vastly improved our understanding of many astrophysical objects, in particular, circumstellar disks. We present our results for the disk population of the young cluster NGC 2264. Our study was based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer on board the Spitzer Space Telescope combined with previously published optical data. We divide the disk population into 3 classes based on their spectral energy distribution shapes: optically thick disks, homologously depleted anemic disks, and radially depleted transition disks. We find that there are two distinct evolutionary paths for disks: a homologous one, where the disk emission decreases uniformly in NIR and mid-infrared wavelengths (anemic disks) and throughout which most sources pass, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (transition disks). Whether a disk evolves in a homologously or radially depleted fashion is still unknown and may depend on the nature of planet formation in the disk.

  3. High-spatial resolution observations of circumstellar disks

    SciTech Connect

    Salas-casales, L.

    1990-01-01

    Current indirect evidence that supports the hypothesis that disks of gas and dust surround young stars in their formation stages is reviewed. Current theoretical models explain this evidence, in particular the observed spectral energy distributions (Lambda)F (sub lambda) varies as Lambda (sup -eta) and luminosities. A consequence of these models is a flared disk structure H(r) varies as r(sup z) that should be observable, yielding a relation between the flaring constant z and the spectral index eta that can be used to propose an evolutionary sequence for the geometry of such disks. High resolution observations were performed in the infrared, aimed imaging scattered radiation from dust embedded in circumstellar disks in solar type pre-main sequence stars. An infrared array recently developed by the Kitt Peak National Observatory was used in combination with the 4 meter telescope. These observations were analyzed using different super-resolution techniques such as image motion suppression, speckle shift-and-add, contrast-ratio analysis, maximum entropy restorations, and speckle interferometry. The results of these studies for the star SCrA are presented as a case study. However, the response function of the telescope has three peaks, with typical separations of half to one arc second, and variations in intensity and position of 30 percent in times as short as one minute. In addition, the noise in long exposure images in the infrared is proportional to the signal, possibly due to the low number of speckles at these wavelengths.

  4. The formation and structure of circumstellar and interstellar dust

    NASA Technical Reports Server (NTRS)

    Kroto, H. W.

    1990-01-01

    The intriguing abundance of long linear carbon chain molecules in some dark clouds and in circumstellar shells is still not well understood. Recent laboratory studies which have probed this problem indicate that when carbon vapor nucleates to form particles, linear chains and hollow cage molecules (fullerenes) also form at more-or-less the same time. The results have consequences for the formation, structures and spectroscopic properties of the molecular and dust components ejected from cool carbon-rich stars. A most interesting result of the experimental observations relates to the probability that a third character in addition to the chains and grains, the C(sub 60) molecule probably in the form of the ion C(sub 60)(sup +) in the less shielded regions, is present and perhaps responsible for some of the ubiquitously observed interstellar spectroscopic features such as the Diffuse Interstellar Features, the 2170A UV Absorption or perhaps some of the Unidentified Infrared Bands. Further study of small carbon particles which form in the gas phase has resulted in the discovery that they have quasi-icosahedral spiral shell structures. The role that such species may play in the interstellar medium as well as that played by C(sub 60) (or C sub 60 sup +) should soon be accessible to verification by a combination of laboratory experiment and astronomical spectroscopy.

  5. On the Chemistry of Circumstellar Disk Around MWC349A

    NASA Astrophysics Data System (ADS)

    Lagergren, Kristen; Bans, A.; Strelnitski, V.

    2012-01-01

    The evolutionary status of MWC 349A - the unique source of hydrogen maser and laser radiation arising in a massive circumstellar disk - is still a matter of debate. One way to shed light on this issue would be to measure the isotopic composition of the disk. We performed computer simulations of the chemical composition of the disk using the package CLOUDY (Ferland et al. 1998). The best agreement between the calculated hydrogen line strength ratios and those measured by Hamann and Simon (1986) was achieved for a model with a central (black body) star of T ? 20,000 K and a disk with the inner radius 1014 cm, hydrogen density at the inner radius 108 cm-3 and the r-2 drop of density with radius. We present the column densities predicted by CLOUDY for observed (CO) and several not yet observed molecules containing the major isotopes of C, N, O and discuss the prospects of detecting and measuring the radio lines of these molecules and their isotopologues with existing and forthcoming facilities. This project was supported by NSF/REU grant AST-0851892, the Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring, and the Nantucket Maria Mitchell Association.

  6. The Circumstellar Environments of Born-Again Giants

    NASA Astrophysics Data System (ADS)

    Helton, L. Andrew; Evans, Aneurin; Gehrz, Robert D.; Woodward, Charles; Eyres, Stewart

    2015-08-01

    When a solar-mass star reaches the end of its main sequence life, has shed a planetary nebula or become a proto-planetary nebula, and is heading towards the white dwarf phase of its evolution, the star may reignite residual surface helium and be "reborn". It retraces its path on the HR diagram and once again becomes a giant: it undergoes a Very Late Thermal Pulse (VLTP) and becomes a "Born-Again Giant" (BAG). This alternate scenario for the demise of low mass stars may occur in as many as 20% of cases. During this phase the star may become a prolific dust producer such that the star is completely obscured and the only means of monitoring its evolution is by observing the ejected dust.Over the past 10-20 years we have used ground-based, spaceborne and airborne infrared (IR) facilities to monitor the spectral energy distributions of the dust shells of stars that have recently undergone VLTPs. Covering a time period from ~1996 to the present, and with recent SOFIA observations that extend the spectral coverage from 1 - 38 microns, we have been able to determine mass-loss rates from the stars, and the physical state, nature and extent of their circumstellar dust shells.Our observations throw light on a phase of the evolution of low mass stars that is very rare, poorly observed, and little understood. Understanding these phenomena can potentially give us a glimpse of the ultimate fate of the Sun.

  7. A WISE survey of circumstellar disks in Taurus

    SciTech Connect

    Esplin, T. L.; Luhman, K. L.; Mamajek, E. E.

    2014-04-01

    We have compiled photometry at 3.4, 4.6, 12, and 22 ?m from the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) for all known members of the Taurus complex of dark clouds. Using these data and photometry from the Spitzer Space Telescope, we have identified members with infrared excess emission from circumstellar disks and have estimated the evolutionary stages of the detected disks, which include 31 new full disks and 16 new candidate transitional, evolved, evolved transitional, and debris disks. We have also used the WISE All-Sky Source Catalog to search for new disk-bearing members of Taurus based on their red infrared colors. Through optical and near-infrared spectroscopy, we have confirmed 26 new members with spectral types of M1-M7. The census of disk-bearing stars in Taurus should now be largely complete for spectral types earlier than ?M8 (M ? 0.03 M {sub ?}).

  8. A WISE Survey of Circumstellar Disks in Taurus

    NASA Astrophysics Data System (ADS)

    Esplin, T. L.; Luhman, K. L.; Mamajek, E. E.

    2014-04-01

    We have compiled photometry at 3.4, 4.6, 12, and 22 ?m from the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) for all known members of the Taurus complex of dark clouds. Using these data and photometry from the Spitzer Space Telescope, we have identified members with infrared excess emission from circumstellar disks and have estimated the evolutionary stages of the detected disks, which include 31 new full disks and 16 new candidate transitional, evolved, evolved transitional, and debris disks. We have also used the WISE All-Sky Source Catalog to search for new disk-bearing members of Taurus based on their red infrared colors. Through optical and near-infrared spectroscopy, we have confirmed 26 new members with spectral types of M1-M7. The census of disk-bearing stars in Taurus should now be largely complete for spectral types earlier than ~M8 (M >~ 0.03 M ?). Based on data from the Wide-field Infrared Survey Explorer, the Spitzer Space Telescope, the Two Micron All-Sky Survey, the NASA Infrared Telescope Facility, the Hobby-Eberly Telescope, and the Digitized Sky Survey.

  9. Circumstellar Disk of HL Tau Revealed by CARMA

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin; Looney, Leslie W.; Mundy, Lee G.

    2011-10-01

    The physical properties of circumstellar disks around T Tauri stars - the so-called proto-planetary disks as the natal place of planets - are mainly studied by millimeter/submillimeter wavelength continuum, which is sensitive to dust thermal emission. We present high angular resolution (0.13 arc-second) imaging results of the T Tauri star HL Tau in 1.3 and 2.7 mm continua using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Through simultaneous model fitting to both wavelength data in Bayesian inference with the standard viscous accretion disk model, we constrained its physical properties such as density distribution, dust opacity spectral index, disk mass, disk size, inclination angle, and position angle. In addition, we found that our millimeter data prefer a thin disk model, while mid-infrared emission of HL Tau needs a thick disk model. This implies that large grains have selectively been settled down into the midplane: a stratified structure. Furthermore, we found that the outer region of the HL Tau disk, between 50 and 100 AU, appears to be gravitationally unstable. However, we did not detect any compact signal supporting a protoplanet candidate claimed by 1.3 cm continuum observations of the Very Large Array.

  10. Resolving the Circumstellar Disk of HL Tauri at Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin; Looney, Leslie W.; Mundy, Lee G.

    2011-11-01

    We present results of high-resolution imaging toward HL Tau by the Combined Array for Research in Millimeter-wave Astronomy. We have obtained ? = 1.3 mm and 2.7 mm dust continua with an angular resolution down to 0farcs13. Through simultaneous model fitting to the two wavelength data sets in Bayesian inference using a flared viscous accretion disk model, we estimate the physical properties of HL Tau, such as density distribution, dust opacity spectral index, disk mass, disk size, inclination angle, position angle, and disk thickness. HL Tau has a circumstellar disk mass of 0.13 M sun, a characteristic radius of 79 AU, an inclination of 40, and a position angle of 136. Although a thin disk model is preferred by our two wavelength data sets, a thick disk model is needed to explain the high mid- and far-infrared emission of the HL Tau spectral energy distribution. This could imply large dust grains settled down on the midplane with fine dust grains mixed with gas. The HL Tau disk is likely gravitationally unstable and can be fragmented between 50 and 100 AU of radius. However, we did not detect dust thermal continuum supporting the protoplanet candidate claimed by a previous study using observations of the Very Large Array at ? = 1.3 cm.

  11. ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR DISKS DURING THE EMBEDDED PHASE

    SciTech Connect

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C. E-mail: kbatygin@gps.caltech.edu

    2014-12-20

    Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the cloud, causing a stochastic variation in the orientation of the disk forming from the collapsing material. In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural mechanism for the production of primordial spin-orbit misalignments in the resulting planetary systems. However, owing to high accretion rates in the embedded phase of star formation, the inner edge of the circumstellar disk extends down to the stellar surface, resulting in efficient gravitational and accretional angular momentum transfer between the star and the disk. Here, we demonstrate that the resulting gravitational coupling is sufficient to suppress any significant star-disk misalignment, with accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wandering of star-aligned bipolar outflows. Such wandering widens the effective opening angle of stellar outflows, allowing for more efficient clearing of the remainder of the protostar's gaseous envelope. Accordingly, the processes described in this work provide an additional mechanism responsible for sculpting the stellar initial mass function.

  12. ON THE EXCITATION AND FORMATION OF CIRCUMSTELLAR FULLERENES

    SciTech Connect

    Bernard-Salas, J.; Jones, A. P.; Groenewegen, M. A. T.

    2012-09-20

    We compare and analyze the Spitzer mid-infrared spectrum of three fullerene-rich planetary nebulae in the Milky Way and the Magellanic Clouds: Tc1, SMP SMC 16, and SMP LMC 56. The three planetary nebulae share many spectroscopic similarities. The strongest circumstellar emission bands correspond to the infrared active vibrational modes of the fullerene species C{sub 60} and little or no emission is present from polycyclic aromatic hydrocarbons. The strengths of the fullerene bands in the three planetary nebulae are very similar, while the ratios of the [Ne III]15.5 {mu}m/[Ne II]12.8 {mu}m fine structure lines, an indicator of the strength of the radiation field, are markedly different. This raises questions about their excitation mechanism and we compare the fullerene emission to fluorescent and thermal models. In addition, the spectra show other interesting and common features, most notably in the 6-9 {mu}m region, where a broad plateau with substructure dominates the emission. These features have previously been associated with mixtures of aromatic/aliphatic hydrocarbon solids. We hypothesize on the origin of this band, which is likely related to the fullerene formation mechanism, and compare it with modeled hydrogenated amorphous carbon that present emission in this region.

  13. Observation of Circumstellar Gas in the Neighborhood of RZ Psc

    NASA Astrophysics Data System (ADS)

    Potravnov, I. S.; Grinin, V. P.; Ilyin, I. V.

    2013-12-01

    The first evidence is found of the existence of circumstellar gas in the nearest surroundings of the UX Ori star RZ Psc. Spectra obtained at the Terskol Observatory, Special Astrophysical Observatory (SAO), and the Nordic Optical Telescope (NOT) reveal a strong variability in the sodium doublet lines that is indicative of a sporadic outflow of matter. Weak variability was also observed in the core of the Hα line. One nontrivial feature of this discovery is that RZ Psc is of spectral class K0 IV. This means that the star has no intrinsic energy resources for creating the observed outflow of matter. There are no emission lines in the star's spectrum which might indicate that matter is falling into the star so that the observed outflow could be related to an accretion process. We suggest, nevertheless, that the ejection of gas is related to residual (slow) accretion and is driven by a propeller mechanism. The latter is possible if the star has a sufficiently high (on the order of 103 G) magnetic field.

  14. Rapid disappearance of a warm, dusty circumstellar disk.

    PubMed

    Melis, Carl; Zuckerman, B; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-07-01

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC?8241?2652?1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations. PMID:22763553

  15. Using Optogenetics to Study Habits

    PubMed Central

    Smith, Kyle S.; Graybiel, Ann M.

    2013-01-01

    It is now well documented that optogenetics brings to neuroscience a long sought-after foothold to study the causal role of millisecond-scale activity of genetically or anatomically defined populations of neurons. Progress is rapid, and, as evidenced by the work collected in this Special Issue, the possibilities of what can now be done are almost dizzying. Even for those concerned with complex phenomena, such as behavioral habits and flexibility, signs are that we could be on the threshold of a leap in scientific understanding. In this article, we note this special time in neuroscience by the example of our use of optogenetics to study habitual behavior. We present a basic sketch of the neural circuitry of habitual behavior built mainly on findings from experiments in which lesion and drug microinjection techniques were employed in combination with sophisticated behavioral analysis. We then outline the types of questions that now can be approached through the use of optogenetic approaches, and, as an example, we summarize the results of a recent study of ours in which we took this approach to probe the neural basis of habit formation. With optogenetic methods, we were able to demonstrate that a small site in the medial prefrontal cortex can control habits on-line during their execution, and we were able to control new habits when they competed with prior ones. The nearly immediate effect of disabling this site optogenetically suggests the existence of a mechanism for moment-to-moment monitoring of behaviors that long have been thought to be almost automatic and reflexive. This example highlights the kind of new knowledge that can be gained by the carefully timed use of optogenetic tools. PMID:23313580

  16. Widen the Belt of Habitability!

    NASA Astrophysics Data System (ADS)

    Mhlmann, D.

    2012-06-01

    Among the key-parameters to characterize habitability are presence or availability of liquid water, an appropriate temperature range, and the time scale of reference. These criteria for habitability are discussed and described from the point of view of water- and ice-physics, and it is shown that liquid water may exist in the sub-surfaces of planetary bodies like Mars, and possibly of inner asteroids and internally heated ice-moons. Water can remain fluid there also at temperatures far below the "canonical" 0 C. This behaviour is made possible as a consequence of the freezing point depression due to salty solutes in water or "brines", as they can be expected to exist in nature more frequently than pure liquid water. On the other hand, low temperatures cause a slowing down of chemical processes, as can be described by Arrhenius's relation. The resulting smaller reaction rates probably will have the consequence to complicate the detection of low-temperature life processes, if they exist. Furthermore, the adaptation potential of life is to be mentioned in this context as a yet partially unknown process. Resulting recommendations are given to improve the use of criteria to characterize habitable conditions.

  17. Widen the belt of habitability!

    PubMed

    Mhlmann, D

    2012-06-01

    Among the key-parameters to characterize habitability are presence or availability of liquid water, an appropriate temperature range, and the time scale of reference. These criteria for habitability are discussed and described from the point of view of water- and ice-physics, and it is shown that liquid water may exist in the sub-surfaces of planetary bodies like Mars, and possibly of inner asteroids and internally heated ice-moons. Water can remain fluid there also at temperatures far below the "canonical" 0C. This behaviour is made possible as a consequence of the freezing point depression due to salty solutes in water or "brines", as they can be expected to exist in nature more frequently than pure liquid water. On the other hand, low temperatures cause a slowing down of chemical processes, as can be described by Arrhenius's relation. The resulting smaller reaction rates probably will have the consequence to complicate the detection of low-temperature life processes, if they exist. Furthermore, the adaptation potential of life is to be mentioned in this context as a yet partially unknown process. Resulting recommendations are given to improve the use of criteria to characterize habitable conditions. PMID:22638839

  18. Insensitivity of weathering behavior to planetary land fraction and effect on habitability

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.; Archer, D.; Pierrehumbert, R. T.; Ciesla, F. J.; Bean, J. L.

    2012-04-01

    It is likely that an increasing number of terrestrial planets of unknown water content will soon be discovered in the habitable zone of their stars. Planetary surface land fraction may, however, influence the functioning of the silicate weathering feedback, which buffers planetary surface climate against changes in stellar luminosity over a star's lifetime. It is therefore worthwhile to consider the effect of land fraction on the planetary carbon cycle and weathering behavior in a general sense. Here a low-order model of weathering and climate is developed that includes both continental silicate weathering and seafloor weathering. This model can be used to gain an intuitive sense of the behavior of terrestrial planets with different land fractions in the habitable zone of main-sequence stars as their star's insolation changes with time. It is found that, as long as seafloor weathering is independent of surface temperature, there can be no weathering feedback on a waterworld. This means that the tenure of a waterworld in the habitable zone (before it undergoes a moist greenhouse) is likely to be much shorter than that of a planet with some land fraction. The silicate weathering feedback, however, is effective even at very low land fractions. A planet with a land fraction of 0.01 should remain in the habitable zone nearly as long as a planet with a land fraction of 0.3. Finally, by comparing the timescale for water loss to space to the weathering timescale, it is found that it is possible for a waterworld to draw down atmospheric CO2 quickly enough as a moist greenhouse is in progress to prevent complete loss of all water. This would imply that waterworlds in the habitable zone of main sequence stars can go through a moist greenhouse stage and end up as planets like Earth with only partial ocean coverage and a habitable climate.

  19. A model of habitability within the Milky Way galaxy.

    PubMed

    Gowanlock, M G; Patton, D R; McConnell, S M

    2011-11-01

    We present a model of the galactic habitable zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favor the development of complex life. The Milky Way galaxy was modeled using a computational approach by populating stars and their planetary systems on an individual basis by employing Monte Carlo methods. We began with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We varied some of these properties and created four models to test the sensitivity of our assumptions. To assess habitability on the galactic scale, we modeled supernova rates, planet formation, and the time required for complex life to evolve. Our study has improved on other literature on the GHZ by populating stars on an individual basis and modeling Type II supernova (SNII) and Type Ia supernova (SNIa) sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we considered habitability on tidally locked and non-tidally locked planets separately and studied habitability as a function of height above and below the galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ∼5.6× more lethal than an individual SNII on average. In addition, we predict that ∼1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ∼75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found toward the inner Galaxy, distributed within, and significantly above and below, the galactic midplane. PMID:22059554

  20. Habitability: From solar system planets to Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Lammer, H.

    2007-08-01

    For understanding the principles that generated Earth's long-time habitable environment compared with other terrestrial Solar System planets like Venus and Mars and terrestrial exoplanets inside the habitable zones of late-type stars, one has to understand the evolutionary influence of the solar/stellar radiation and particle environment to the atmosphere and surface. Because the spectral type of the star plays a major role in the photochemistry and evolution of planetary atmospheres and their water inventories must be understood within the context of the evolving stellar energy and particle fluxes. An only stable and dense enough atmosphere, which allows water to be liquid over geological time periods and protects the planetary surface from hostile radiation, will allow the evolution of surface life and Earth-like biospheres. Such long-time habitable environments are ideal cases of course, but life may have also originated in other habitats in the young Solar System. Such habitats could have been the environments of early Venus and Mars, subsurface (during formation maybe surface) oceans of icy satellites like in Europa, Titan, Encleadus, in hydrocarbon lakes of Titan, etc. Therefore, studies related to habitability and comparative planetology in the Solar System are essential for precursor studies dedicated to the investigation of habitability of terrestrial exoplanets.With comparative planetology one means the investigation on how different planetary systems and their individual planets - and particularly Earth-like ones - are formed, how they evolve in their radiation and particle interaction with their host stars under different circumstances, how often they give rise to conditions that could in principle be benevolent enough for the origin of life to occur, and even whether life as we know it could have arisen on any world in Earth's neighborhood. The presentation will point out the synergy of these studies and latest theoretical models currently applied for Solar System planets to terrestrial exoplanet atmospheres, which will be characterized by terrestrial planet finding missions like Darwin.

  1. An Optical Study of the Circumstellar Environment Around the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Fesen, Robert A.; Shull, J. Michael; Hurford, Alan P.

    1997-01-01

    Long-slit spectra of two peripheral regions around the Crab Nebula show no H(alpha) emission down to a flux level of 1.5 x 10(exp -7)erg/sq cm s sr (0.63 Rayleigh), corresponding to an emission measure limit of 4.2 cm(sup - 6) pc (3(sigma)) assuming A(sub V)= 1.6(sup m) and T(sub e)=7000 K. This is below the flux levels reported by Murdin & Clark (Nature, 294, 543 (198 1)) for an H(alpha) halo around the Crab. Narrow H(beta) emission as described by Murdin (MNRAS, 269, 89 (1994)) is detected but appears to be Galactic emission unassociated with the remnant. A review of prior searches indicates no convincing observational evidence to support either a high- or low-velocity envelope around the remnant. Spectral scans confirm a well-organized, N-S expansion asymmetry of the filaments with a approx. 500 km/s central velocity constriction as described by MacAlpine et al. (ApJ, 342, 364 (1989)) and Lawrence et (it. (AJ, 109, 2635 (1995)] but questioned by Hester et al. (ApJ, 448, 240 (1995)). The velocity pinching appears to coincide with an cast-west chain of bright [O III] and helium-rich filaments. This expansion asymmetry might be the result of ejecta interaction with a disk of circumstellar matter, but such a model may be inconsistent with H and He filament abundances in the velocity constriction zone. A re-analysis of the remnant's total mass suggests that the filaments contain 4.6 +/- 1.8 M(solar) in ionized and neutral cas, about twice that of earlier estimates. For a 10M(solar) progenitor, this suggests that approx.equals 4M(solar) remains to be detected in an extended halo or wind.

  2. Maintenance of permeable habitable subsurface environments by earthquakes and tidal stresses

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2012-10-01

    Life inhabits the subsurface of the Earth down to depths where temperature precludes it. Similar conditions are likely to exist within the traditional habitable zone for objects between 0.1 Earth mass (Mars) and 10 Earth masses (superearth). Long-term cooling and internal radioactivity maintain surface heat flow on the Earth. These heat sources are comparable and likely to be comparable in general within old rocky planets. Surface heat flow scales with mass divided by surface area and hence with surface gravity. The average absolute habitable subsurface thickness scales inversely with heat flow and gravity. Surface gravity varies by only 0.4 g for Mars to 3.15 g for a superearth. This range is less than the regional variation of heat flow on the Earth. Still ocean-boiling asteroid impacts (if they occur) are more likely to sterilize the thin habitable subsurface of large objects than thick habitable subsurface of small ones. Tectonics self-organizes to maintain subsurface permeability and habitability within both stable and active regions on the Earth. Small earthquakes within stable regions allow sudden mixing of water masses. Large earthquakes at plate boundaries allow surface water to descend to great habitable depths. Seismic shaking near major faults cracks shallow rock forming permeable regolith. Strong tidal strains form a similar porous regolith on small bodies such as Enceladus with weak stellar heating. This regolith may be water-saturated within rocky bodies and thus habitable.

  3. THE SOLAR NEIGHBORHOOD XXIX: THE HABITABLE REAL ESTATE OF OUR NEAREST STELLAR NEIGHBORS

    SciTech Connect

    Cantrell, Justin R.; Henry, Todd J.; White, Russel J. E-mail: thenry@chara.gsu.edu

    2013-10-01

    We use the sample of known stars and brown dwarfs within 5 pc of the Sun, supplemented with AFGK stars within 10 pc, to determine which stellar spectral types provide the most habitable real estate—defined as locations where liquid water could be present on Earth-like planets. Stellar temperatures and radii are determined by fitting model spectra to spatially resolved broadband photometric energy distributions for stars in the sample. Using these values, the locations of the habitable zones are calculated using an empirical formula for planetary surface temperature and assuming the condition of liquid water, called here the empirical habitable zone (EHZ). Systems that have dynamically disruptive companions are considered not habitable. We consider companions to be disruptive if the separation ratio of the companion to the habitable zone is less than 5:1. We use the results of these calculations to derive a simple formula for predicting the location of the EHZ for main sequence stars based on V – K color. We consider EHZ widths as more useful measures of the habitable real estate around stars than areas because multiple planets are not expected to orbit stars at identical stellar distances. This EHZ provides a qualitative guide on where to expect the largest population of planets in the habitable zones of main sequence stars. Because of their large numbers and lower frequency of short-period companions, M stars provide more EHZ real estate than other spectral types, possessing 36.5% of the habitable real estate en masse. K stars are second with 21.5%, while A, F, and G stars offer 18.5%, 6.9%, and 16.6%, respectively. Our calculations show that three M dwarfs within 10 pc harbor planets in their EHZs—GJ 581 may have two planets (d with msin i = 6.1 M {sub ⊕}; g with msin i = 3.1 M {sub ⊕}), GJ 667 C has one (c with msin i = 4.5 M {sub ⊕}), and GJ 876 has two (b with msin i = 1.89 M {sub Jup} and c with msin i = 0.56 M {sub Jup}). If Earth-like planets are as common around low-mass stars as recent Kepler results suggest, M stars will harbor more Earth-like planets in habitable zones than any other stellar spectral type.

  4. The Solar Neighborhood XXIX: The Habitable Real Estate of Our Nearest Stellar Neighbors

    NASA Astrophysics Data System (ADS)

    Cantrell, Justin R.; Henry, Todd J.; White, Russel J.

    2013-10-01

    We use the sample of known stars and brown dwarfs within 5 pc of the Sun, supplemented with AFGK stars within 10 pc, to determine which stellar spectral types provide the most habitable real estatedefined as locations where liquid water could be present on Earth-like planets. Stellar temperatures and radii are determined by fitting model spectra to spatially resolved broadband photometric energy distributions for stars in the sample. Using these values, the locations of the habitable zones are calculated using an empirical formula for planetary surface temperature and assuming the condition of liquid water, called here the empirical habitable zone (EHZ). Systems that have dynamically disruptive companions are considered not habitable. We consider companions to be disruptive if the separation ratio of the companion to the habitable zone is less than 5:1. We use the results of these calculations to derive a simple formula for predicting the location of the EHZ for main sequence stars based on V - K color. We consider EHZ widths as more useful measures of the habitable real estate around stars than areas because multiple planets are not expected to orbit stars at identical stellar distances. This EHZ provides a qualitative guide on where to expect the largest population of planets in the habitable zones of main sequence stars. Because of their large numbers and lower frequency of short-period companions, M stars provide more EHZ real estate than other spectral types, possessing 36.5% of the habitable real estate en masse. K stars are second with 21.5%, while A, F, and G stars offer 18.5%, 6.9%, and 16.6%, respectively. Our calculations show that three M dwarfs within 10 pc harbor planets in their EHZsGJ 581 may have two planets (d with msin i = 6.1 M ? g with msin i = 3.1 M ?), GJ 667 C has one (c with msin i = 4.5 M ?), and GJ 876 has two (b with msin i = 1.89 M Jup and c with msin i = 0.56 M Jup). If Earth-like planets are as common around low-mass stars as recent Kepler results suggest, M stars will harbor more Earth-like planets in habitable zones than any other stellar spectral type.

  5. Circumstellar Dust around AGB Stars and Implications for Infrared Emission from Galaxies

    NASA Astrophysics Data System (ADS)

    Villaume, Alexa; Conroy, Charlie; Johnson, Benjamin D.

    2015-06-01

    Stellar population synthesis (SPS) models are used to infer many galactic properties including star formation histories, metallicities, and stellar and dust masses. However, most SPS models neglect the effect of circumstellar dust shells around evolved stars and it is unclear to what extent they impact the analysis of spectral energy distributions (SEDs). To overcome this shortcoming we have created a new set of circumstellar dust models, using the radiative transfer code DUSTY, for asymptotic giant branch (AGB) stars and incorporated them into the Flexible Stellar Population Synthesis code. The circumstellar dust models provide a good fit to individual AGB stars as well as the IR color-magnitude diagrams of the Large and Small Magellanic Clouds. IR luminosity functions from the Large and Small Magellanic Clouds are not well-fit by the 2008 Padova isochrones when coupled to our circumstellar dust models and so we adjusted the lifetimes of AGB stars in the models to provide a match to the data. We show, in agreement with previous work, that circumstellar dust from AGB stars can make a significant contribution to the IR (? 4 ? m) emission from galaxies that contain relatively little diffuse dust, including low-metallicity and/or non-star-forming galaxies. Our models provide a good fit to the mid-IR spectra of early-type galaxies. Circumstellar dust around AGB stars appears to have a small effect on the IR SEDs of metal-rich star-forming galaxies (i.e., when AV ? 0.1). Stellar population models that include circumstellar dust will be needed to accurately interpret data from the James Webb Space Telescope and other IR facilities.

  6. Discovery of a Circumstellar Disk in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    1997-04-01

    Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on photos as tear-drop shaped, bright-rimmed areas with the cusps of the ionised regions aligned towards the exciting star. Such a region is also a very compact source of radio emission. Clearly, the harsh environment in which these disks reside does not favour planet formation. These findings were facilitated by the fact that, at a distance of `only' 1500 lightyears (about 450 parsec), the Orion Nebula is the closest site of high-mass star formation. Furthermore, many circumstellar disks around stars in this nebula are seen in silhouette against a bright and uniform background and are therefore comparatively easy to detect. The Lagoon Nebula In principle, similar phenomena should occur in any giant molecular cloud that gives rise to the birth of massive stars. However, the detection of such disks in other clouds would be very difficult, first of all because of their much larger distance. The Lagoon Nebula (M8) is located four times further away than the Orion Nebula and it is also a site of recent high-mass star formation. Its brightest part constitutes a conspicuous region of ionised hydrogen gas (an `HII-region') dubbed `The Hourglass' because of the resemblance. The gas in this area is ionised by the action of the nearby, hot star Herschel 36 (Her 36) . High-resolution radio maps show that the emission from the ionised gas peaks at 2.7 arcsec southeast of Her 36. An early explanation was that this emission is due to an unseen, massive star that is deeply embedded in the gas and dust and which is causing an ultra-compact HII-region (UCHR), catalogued as G5.97-1.17 according to its galactic coordinates. High-resolution images from ESO During a detailed investigation of such ultra-compact HII regions, Bringfried Stecklum and his colleagues found that, unlike ordinary UCHRs, this particular object is visible on optical images obtained with the HST Wide-Field Planetary Camera (HST-WFPC). This means that, contrary to the others, it is not deeply embedded in the nebula - its light reaches us directly without suffering a high degree of absorption. They subsequently obtained a series of high-resolution, near-infrared images using the adaptive optics camera ADONIS at the ESO 3.6-m telescope and the speckle camera SHARP at the 3.5-m New Technology Telescope, both at the La Silla observatory. These observing techniques revealed a star which is slightly offset from the extended optical image of G5.97-1.17 seen on the HST-WFPC frames [3]. This star is found to radiate strongly in the near-infrared spectral region, quite similar to the reddest central stars of the Orion proplyds . This is a clear sign of the presence of circumstellar dust. In addition, the star is intrinsically not as bright as Her 36; it is therefore less massive and exercises less influence on its immediate surroundings. Thus, it cannot be responsible for the observed ionisation of G5.97-1.17. Caption to ESO PR Photo 09/97 [JPEG, 296k] ESO Press Photo 09/97 shows a true-colour, composite mosaic of several ADONIS near-infrared frames, covering a 35 x 26 arcsec area around the newly found star. The colour coding corresponds to the three wavelength regions of the frames used to make the mosaic, i.e. blue represents the J-filter (at 1.2 microns), green the H-filter (1.6 microns) and red the K-filter (2.2 microns). In this image, hot stars appear white and cool ones red. It is obvious that the brightest object in this area, Her 36, is surrounded by a dense cluster of (young) stars. The central star of G5.97-1.17 is indicated with an arrow. New HST images The recent release by the Space Telescope--European Coordinating Facility (ST-ECF) [4] of new HST images taken during a second series of observations of M8 with the new HST-WFPC2 camera allows an unambiguous identification of the physical nature of G5.97-1.17. On these images, G5.97-1.17 is spatially resolved and presents the typical bow shape with the apex of the bow pointing towards Her 36. The infrared star, seen on the ESO images and barely visible on the HST-WFPC2 images taken at far-red optical wavelengths, is indeed situated behind the bright bow which is most conspicuous in the light of the red H-alpha spectral line, emitted by hydrogen atoms. The appearance of this object is thus similar to that of the proplyd sources found in the Orion Nebula. Caption to ESO PR Photo 10/97 [GIF, 296k] This is quite obvious from ESO Press Photo 10/97 which shows a colour composite based on HST-WFPC2 images obtained through narrow-band optical filtres, isolating the light of doubly ionized oxygen atoms ([OIII]; blue) and atomic hydrogen (H-alpha; green) and in a far-red band (red). Two more faint stars are seen in this image while the bright star Her 36 is outside the border of the image (its location is at the lower left, at the intersection of the vertical, saturated CCD column and the 45 o line caused by the light diffracted in the telescope). In contrast to the Orion Nebula, the non-uniform distribution of light-absorbing dust in the foreground makes the detection of the ionised tail difficult. Note that the image is rotated clockwise by 146 o with respect to the astronomical coordinate system. A proplyd in the Lagoon Nebula The detailed description of these results is the subject of a forthcoming research paper [5]. The new understanding of G5.97-1.17, i.e. as harbouring an evaporating circumstellar disk heated by far-ultraviolet radiation from Her 36, is supported by the fact that a sufficient amount of high-energy ultraviolet light is received from that star to account for the radio emission observed from the ionised bow. This object therefore represents the first proplyd-type object detected outside Orion at a much larger distance . The full description of this phenomenon requires detailed knowledge on the physical conditions of the star Her 36 and the object itself. Unfortunately, sofar little is known about the properties of the stellar wind from Her 36, the mass-loss rate from G5.97-1.17 and the velocities of the interacting matter. The astronomer team therefore intends to carry out further adaptive-optics imaging and spectroscopy with the ESO instruments later this year. Great prospects for related research projects The detection of this new object shows that direct proofs for the existence of circumstellar disks in distant star-forming regions are possible with currently available telescopes. It also represents an important step forward for the preparation of scientific programmes devoted to the formation of stars and planets that will soon be carried out with the ESO Very Large Telescope (VLT). The new results demonstrate that the high-resolution images that will be obtained with the future giant telescopes and, especially, with the VLT Interferometer (VLTI) will most likely lead to important breakthroughs in our understanding on the complicated processes of star formation. This will in turn cast new light on how the Sun and the Earth came into existence, more than 4.5 billion years ago. Where to find additional information More details on the investigation of star formation in M8 and the newly discovered proplyd can be found on the World-Wide Web page of the Thringer Landessternwarte (URL: http://www.tls-tautenburg.de/M8.html Notes: [1] The team consists of Bringfried Stecklum and Steffen Richter (Thringer Landessternwarte, Tautenburg, Germany), Thomas Henning, Ralf Launhardt and Markus Feldt (Astrophysikalisches Institut und Universittssternwarte, Friedrich-Schiller-Universitt Jena), Thomas L. Hayward (Center for Radiophysics & Space Research, Cornell University, New York, USA), Melvin G. Hoare (Physics & Astronomy Department, Leeds University, UK) and Peter Hofner (National Astronomy & Ionosphere Center, Arecibo, USA). [2] Some years ago, infrared observations with the IRAS spacecraft led to the discovery of a disk around the isolated, nearby southern star Beta Pictoris . [3] This result was published in a paper by Stecklum et al. in 1995 (ApJ 445, L153). [4] The ST-ECF is a joint ESA/ESO group of specialists that is located at the ESO Headquarters in Garching, Germany. [5] Submitted to the Astronomical Journal . How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  7. Investigations of the Formation of Carbon Grains in Circumstellar Outflows

    NASA Technical Reports Server (NTRS)

    Contreras, Cesar; Salama, Farid

    2013-01-01

    The study of formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of carbonaceous dust. PAHs are important chemical building blocks of interstellar dust. They are detected in interplanetary dust particles and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs, in their neutral and ionized forms, are an important, ubiquitous component of the interstellar medium. Also, the formation of PAHs from smaller molecules has not been extensively studied. Therefore, it is imperative that laboratory experiments be conducted to study the dynamic processes of carbon grain formation from PAH precursors. Studies of interstellar dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We report the first set of measurements obtained in these experiments and identify the species present in the experiments and the ions that are formed in the plasma process. From these unique measurements, we derive information on the size and the structure of interstellar dust grain particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules.

  8. Doppler tomography of the circumstellar disk of π Aquarii

    NASA Astrophysics Data System (ADS)

    Zharikov, S. V.; Miroshnichenko, A. S.; Pollmann, E.; Danford, S.; Bjorkman, K. S.; Morrison, N. D.; Favaro, A.; Guarro Fló, J.; Terry, J. N.; Desnoux, V.; Garrel, T.; Martineau, G.; Buchet, Y.; Ubaud, S.; Mauclaire, B.; Kalbermatten, H.; Buil, C.; Sawicki, C. J.; Blank, T.; Garde, O.

    2013-12-01

    Aims: The work is aimed at studying the circumstellar disk of the bright classical binary Be star π Aqr. Methods: We analysed variations of a double-peaked profile of the Hα emission line in the spectrum of π Aqr that was observed in many phases during ~40 orbital cycles in 2004-2013. We applied the discrete Fourier transform (DFT) method to search for periodicity in the peak intensity ratio (V/R). Doppler tomography was used to study the structure of the disk around the primary. Results: The dominant frequency in the power spectrum of the Hα V/R ratio is 0.011873 day-1, which corresponds to a period of 84.2(2) days and agrees with the earlier determined orbital period of the system, Porb = 84.1 days. The V/R shows a sinusoidal variation that is phase-locked with the orbital period. Doppler maps of all our spectra show a non-uniform structure of the disk around the primary: a ring with the inner and outer radii at Vin ≈ 450 km s-1 and Vout ≈ 200 km s-1, respectively, along with an extended stable region (spot) at Vx ≈ 225 km s-1 and Vy ≈ 100 km s-1. The disk radius of ≈65 R⊙ = 0.33 AU was estimated by assuming Keplerian motion of a particle on a circular orbit at the disk's outer edge. Table 1 and π Aquarii spectra in FITS format are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A30 http://www.astrosurf.com/aras/

  9. Direct Imaging of Circumstellar Disks in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    McCaughrean, Mark J.; O'dell, C. Robert

    1996-05-01

    Recent surveys of the Orion Nebula with the Hubble Space Telescope have revealed a number of stars surrounded by dark silhouettes seen projected against the bright background H II region. In this paper, we present a detailed analysis of HST and ground-based observations of the six most distinct silhouettes. We find a variety of morphologies, all consistent with thin circumstellar disks spanning a range of diameters (50 to 1000 AU) and inclination angles (0 to >80 degrees). The silhouette intensity profiles cannot be fit by standard disk models in which the surface density follows a radial power law with an exponent in the range -0.75 to - 1.5. Rather, the data are best fit by opaque inner disks with exponential edges, and we discuss possible physical origins of this apparent truncation. Masses in the range 61026-41030 g (i.e., up to 0.002 Msun) are determined for the disks by assuming that the faint light measured from them is background light transmitted through the disk. However, we argue that these are strict lower limits on the true disk masses, as most of this light can be accounted for by PSF blurring and scattering in the HST optical train, and that the present observations are in fact consistent with completely opaque disks. Central stars are seen directly in five of the silhouettes, while the presence of a star is inferred in the sixth, where small reflection nebulae are seen above and below the plane of the near edge-on disk. Optical and near-infrared stellar photometry is consistent with young (1 Myr) low-mass (0.3-1.5 Msun) stars, with several showing evidence for excess near-infrared emission from the disk inner edge.

  10. Circumstellar disk structure and evolution through resolved submillimeter observations

    NASA Astrophysics Data System (ADS)

    Hughes, Alanna Meredith

    Circumstellar disks provide the reservoirs of raw material and determine conditions for the formation of nascent planetary systems. This thesis presents observations from millimeter-wavelength interferometers, particularly the Submillimeter Array, that address the following outstanding problems in the study of protoplanetary disks: (1) constraining the physical mechanisms driving the viscous transport of material through the disk, and (2) carrying out detailed studies of "transitional" objects between the gas-rich protoplanetary and tenuous, dusty debris disk phases to better understand how gas and dust are cleared from the system. We study accretion processes in three complementary ways: using spatially resolved observations of molecular gas lines at high spectral resolution to determine the magnitude and spatial distribution of turbulence in the disk; using polarimetry to constrain the magnetic properties of the outer disk in order to evaluate whether the MRI is a plausible origin for this turbulence and investigating the gas and dust distribution at the outer disk edge in the context of self-similar models of accretion disk structure and evolution. The studies of transition disks use spatially resolved observations to study the detailed structure of the gas and dust in systems that are currently in the process of clearing material. We obtain snapshots of the inside-out clearing of gas and dust in several systems, and compare our observations with the theoretical predictions generated for different disk clearing mechanisms. Our observations are generally consistent with the characteristics predicted for viscous transport driven by the magnetorotational instability and disk clearing accomplished through the dual action of giant planet formation and photoevaporation by energetic radiation from the star.

  11. Oxygen chemistry in the circumstellar envelope of the carbon-rich star IRC+10216

    NASA Astrophysics Data System (ADS)

    Agndez, Marcelino; Cernicharo, Jos

    IRC+10216 is a low mass AGB star losing mass at a rate of 2-4 10-5 Msol yr-1 in the form of a wind that produces an extended circumstellar envelope (CSE). The processes of dredge-up during this thermal pulsating evolutionary phase has enhanced the C/O ratio above 1. Local thermodynamic equilibrium (LTE) calculations, valid in the high temperature and density region (T ~ 2500 K and ? ~ 1014 cm-3) near the photosphere, show that in such a C-rich environment the CO molecule locks almost all the oxygen, due to its high stability, and allow for the carbon in excess to form C-bearing molecules, which dominate the circumstellar chemistry. However, recently some O-bearing molecules have been detected towards IRC+10216 with moderate abundances, H2O (Melnick et al. 2001; Nature, 412, 160), OH (Ford et al. 2003; ApJ, 589, 430) and H2CO (Ford et al. 2004; ApJ, 614, 990). The presence of water, not expected in this source, was interpreted by these authors as the evaporation of cometary ices from a Kuiper belt-analog. Can the presence of water in a C-rich CSE be univoquely assigned to a cometary origin?. We have studied the possible chemical routes leading to the formation of H2O as well as other O-bearing molecules in the conditions of the C-rich expanding envelope of IRC+10216. We distinguish two zones of the CSE: inner and outer envelope, with well differentiated properties. The former extends from the photosphere up to some few stellar radii, in which phenomena such as pulsational driven shocks and dust condensation make the gas to expands. LTE calculations predict that H2O become very abundant when temperature decreases below ~ 700 K but gas phase chemical reactions are not rapid enough for transforming CO into H2O in the dynamical timescales of the expanding envelope. Only processes on grain surfaces acting as a catalyst would be able of such transformation, as have been proposed by Willacy 2004 (ApJ, 600, L87). In the expanding outer envelope some O-bearing species increase its abundances when CO photodissociates due to the interstellar standard UV field. Neutral-neutral reactions without activation energy and radiative associations are competitive in producing O-bearing species until they are also photodissociated. At this moment we just have some preliminary results: H2CO abundance predicted by these routes reach a peak values of 4 10-9, somewhat lower than the observational estimation of 1.3 10-8. Predictions for H2O and OH abundances are some orders of magnitude lower than the ones derived from line observations, but these depends on the assumptions for the size of the emitting region. The higher the size, the lower the abundance needed for explaining a given line intensity. HCO+ is also predicted with an abundance that ranges from 1 10-10 to 6 10-10 depending on the H2 ionization rate by cosmic rays. Using these values in a non-local radiative transfer modelling, the 1-0 line of HCO+, which has an intensity of ~ 20 mK, can be well reproduced. Future observations of submillimeter lines of H2O with the HIFI instrument on board the Herschel satellite together with detailed radiative transfer modelling of the lines will help to constraint the water abundance, the location from where it comes as well as the chemical origin, i.e. cometary ices, grain surface processes or chemistry in the outer envelope.

  12. Human factor design of habitable space facilities

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1987-01-01

    Current fundamental and applied habitability research conducted as part of the U.S. space program is reviewed with emphasis on methods, findings, and applications of the results to the planning and design of the International Space Station. The discussion covers the following six concurrent directions of habitability research: operational simulation, functional interior decor research, space crew privacy requirements, interior layout and configuration analysis, human spatial habitability model, and analogous environments research.

  13. Habit breaking appliance for multiple corrections.

    PubMed

    Abraham, Reji; Kamath, Geetha; Sodhi, Jasmeet Singh; Sodhi, Sonia; Rita, Chandki; Sai Kalyan, S

    2013-01-01

    Tongue thrusting and thumb sucking are the most commonly seen oral habits which act as the major etiological factors in the development of dental malocclusion. This case report describes a fixed habit correcting appliance, Hybrid Habit Correcting Appliance (HHCA), designed to eliminate these habits. This hybrid appliance is effective in less compliant patients and if desired can be used along with the fixed orthodontic appliance. Its components can act as mechanical restrainers and muscle retraining devices. It is also effective in cases with mild posterior crossbites. PMID:24198976

  14. 24 CFR 203.673 - Habitability.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FAMILY MORTGAGE INSURANCE Servicing Responsibilities Occupied Conveyance 203.673 Habitability. (a) For... equipment used in the residential unit; (iii) Adequate cooking facilities; (iv) A continuing supply of...

  15. 24 CFR 203.673 - Habitability.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FAMILY MORTGAGE INSURANCE Servicing Responsibilities Occupied Conveyance 203.673 Habitability. (a) For... equipment used in the residential unit; (iii) Adequate cooking facilities; (iv) A continuing supply of...

  16. 24 CFR 203.673 - Habitability.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FAMILY MORTGAGE INSURANCE Servicing Responsibilities Occupied Conveyance 203.673 Habitability. (a) For... equipment used in the residential unit; (iii) Adequate cooking facilities; (iv) A continuing supply of...

  17. Space station group activities habitability module study

    NASA Technical Reports Server (NTRS)

    Nixon, David

    1986-01-01

    This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.

  18. Mass-losing pulsating stars and their circumstellar matter. Observations and theory

    NASA Astrophysics Data System (ADS)

    Nakada, Y.; Honma, M.; Seki, M.

    2003-04-01

    The rapid progress in research on mass-losing pulsating stars has now taken us far from its early photographic light variation study to the world of massive photometry and interferometic observations. Still some fundamental problems such as the pulsational mode and the mass-loss mechanism remain a mystery. In this volume the modern theoretical works are confronted with the latest observations and the active discussions indicate the directions of future research. Among the subjects presented in this workshop are: recent results of massive photometry; pulsation and properties of mass-losing stars; optical and infrared observations of circumstellar matter; radio and mm observations of circumstellar matter; distribution of maser sources in the Galaxy; VERA and other future projects. Thorough and up-to-date information on mass-losing stars provides invaluable references for all researchers and students who are interested in the AGB evolution, pulsation models, circumstellar matter, precision astrometry, and the Galactic structure.

  19. On the detections of C60 and derivatives in circumstellar environments

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Kwok, Sun

    2013-10-01

    C60 (buckminsterfullerene) was recently discovered in a variety of circumstellar environments by the Spitzer Space Telescope, suggesting that the envelopes around evolved stars are active sites for the synthesis of fullerenes. However, the physical state, excitation mechanism, and formation route of circumstellar C60 are not completely understood so far. These open issues are discussed in this paper. For that purpose we investigate the observed wavelengths and strengths of C60 bands and compare them with the experimental values. We also statistically study the environments and emission properties of the C60 sources. We would like to stress that improved flux measurements and more accurate Einstein coefficients are required to draw solid conclusions. Furthermore, we present possible detections of hydrogenated C60 and , and discuss their implications on fullerene chemistry in circumstellar environments.

  20. S-type and P-type habitability in stellar binary systems: A comprehensive approach. I. Method and applications

    SciTech Connect

    Cuntz, M.

    2014-01-01

    A comprehensive approach is provided for the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in the case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) the consideration of a joint constraint, including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ), needs to be met; (2) the treatment of conservative, general, and extended zones of habitability for the various systems as defined for the solar system and beyond; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for the kind of system in which S-type and P-type habitability is realized; (4) applications of the attained theoretical approach to standard (theoretical) main-sequence stars. In principle, five different cases of habitability are identified, which are S-type and P-type habitability provided by the full extent of the RHZs; habitability, where the RHZs are truncated by the additional constraint of planetary orbital stability (referred to as ST- and PT-type, respectively); and cases of no habitability at all. Regarding the treatment of planetary orbital stability, we utilize the formulae of Holman and Wiegert as also used in previous studies. In this work, we focus on binary systems in circular orbits. Future applications will also consider binary systems in elliptical orbits and provide thorough comparisons to other methods and results given in the literature.

  1. Type Ia Supernovae Strongly Interacting with Their Circumstellar Medium

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey Michael; Nugent, Peter; Gal-Yam, Avishay; Howell, D. A.; Sullivan, Mark; Filippenko, Alex

    2015-08-01

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; these objects are referred to as SNe Ia-CSM. PTF11kx began life as a SN Ia, but after a month it began to show indications of significant interaction with its CSM. This well-studied object was revolutionary in that in solidified the connection between SNe Ia-CSM and more typical SNe Ia, despite their spectral similarity to Type IIn SNe (which likely come from massive star progenitors, as opposed to the white dwarf progenitors for the SNe Ia-CSM). There are currently nearly 20 SNe Ia-CSM with published data. The spectra of all SNe Ia-CSM are dominated by Hα emission (with widths of ~2000 km s-1) and exhibit large Hα/Hβ intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of Hα 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag ≤ MR ≤ -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population.

  2. Chemical composition of the circumstellar disk around AB Aurigae

    NASA Astrophysics Data System (ADS)

    Pacheco-Vzquez, S.; Fuente, A.; Agndez, M.; Pinte, C.; Alonso-Albi, T.; Neri, R.; Cernicharo, J.; Goicoechea, J. R.; Bern, O.; Wiesenfeld, L.; Bachiller, R.; Lefloch, B.

    2015-06-01

    Aims: Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is paramount for understanding the chemical evolution of the gas in warm disks. Methods: We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (a chemical survey of Sun-like star-forming regions). These data were complemented with interferometric observations of the HCO+ 1?0 and C17O 1?0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results: Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN, and CS, were detected. In addition, we detected the SO 54?33 and 56?45 lines, confirming the previously tentative detection. Compared to other T Tauri and Herbig Ae disks, AB Aur presents low HCN 3?2/HCO+ 3?2 and CN 2?1/HCN 3?2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far, and its detection is consistent with interpretation of this disk being younger than those associated with T Tauri stars. Conclusions: We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 M?, Rin = 110 AU, Rout = 550 AU, a surface density radial index of 1.5, and an inclination of 27. The intensities and line profiles were reproduced within a factor of 2 for most lines. This agreement is reasonable considering the simplicity of our model that neglects any structure within the disk. However, the HCN 3?2 and CN 2?1 line intensities were predicted to be more intense by a factor of >10. We discuss several scenarios to explain this discrepancy. Appendix A is available in electronic form at http://www.aanda.org

  3. TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM

    SciTech Connect

    Silverman, Jeffrey M.; Nugent, Peter E.; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi; Sullivan, Mark; Howell, D. Andrew; Graham, Melissa L.; Filippenko, Alexei V.; Bloom, Joshua S.; Cenko, S. Bradley; Clubb, Kelsey I.; Cao, Yi; Horesh, Assaf; Kulkarni, Shrinivas R.; Chornock, Ryan; Foley, Ryan J.; Coil, Alison L.; Griffith, Christopher V.; Kasliwal, Mansi M.; and others

    2013-07-01

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of {approx}2000 km s{sup -1}) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag {<=} M{sub R} {<=} -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

  4. Polarized Line Profiles as Diagnostics of Circumstellar Geometry in Type IIn Supernovae

    NASA Astrophysics Data System (ADS)

    Hoffman, J. L.

    2007-08-01

    Supernovae of Type IIn possess spectral signatures that indicate an intense interaction between the supernova ejecta and surrounding dense circumstellar material cast off by the star in pre-explosion mass-loss episodes. Studying this interaction can yield clues to the nature of Type IIn progenitors and their mass loss history. In particular, polarization spectra of Type IIn's show complex line polarization and position angle features that arise from a combination of geometrical and optical effects. I have constructed a Monte Carlo code that simulates the transfer of the H? line through circumstellar shells with various geometrical configurations and optical characteristics. The superposition of broad and narrow line components produced in different regions of the circumstellar environment and modified by electron and line scattering, hydrogen absorption, thermal emission, and geometrical and viewing angle effects gives rise to a variety of polarized line shapes in the model spectra. Comparison of these results with recent high-quality spectropolarimetric observations of Type IIn supernovae suggests that a model ``shock" region between the supernova photosphere and the circumstellar shell is necessary to produce the narrow polarized emission features at the rest wavelength of H? seen in some IIn's. Further model results point toward other features in the polarized line profile that can be used to constrain the characteristics of the circumstellar material in these intriguing objects. The code's usefulness will be extended by the treatment of Doppler effects due to expansion of the circumstellar scattering region, such as those that characterize the polarized H? profiles of the Type IIn SN 1997eg.

  5. The set of habitable planets and astrobiological regulation mechanisms

    NASA Astrophysics Data System (ADS)

    Vukoti?, Branislav

    2010-04-01

    The number of habitable planets in the Milky Way and its temporal variation are major unknowns in the nascent fields of astrobiology and Search for ExtraTerrestrial Intelligence studies. All numerical models developed thus far have suffered from large uncertainties in the input data, in addition to our lack of understanding of the processes of astrobiological dynamics. Here, we argue that at least the input data can now be specified with more confidence, and use a simple Monte Carlo model of the Galactic Habitable Zone (GHZ) as a flexible platform for their elucidation. Previous papers have described some of the major results of this class of models; in this paper we present its mechanics and input parameters, notably the number of the habitable planets in the GHZ and their temporal distribution, based on the results of Lineweaver et al. (Lineweaver, C.H., Fenner, Y. & Gibson, B.K. (2004). Science 303, 59-62.) Regulation mechanisms (such as gamma-ray bursts or supernovae) and their temporal evolution, assumed to be main agents responsible for large-scale correlation effects, are modelled as type ? (which can sterilize part of or the entire GHZ) and type ? (which are of local importance) events with decreasing mean temporal frequency over the cosmological timescale. The considered global risk function implies as an upper limit that about one out of a hundred habitable sites will achieve high astrobiological complexity. The preliminary results of numerical modelling presented here and elsewhere imply that the lack of a sudden change from an essentially dead Galaxy to a Galaxy filled with complex life - the astrobiological phase transition - in our past (a version of Fermi's paradox) may be understood as a consequence of global astrobiological disequilibrium, strongly indicating such a transitional epoch in our future.

  6. On the Possibility of Habitable, Trojan Planets in the Kepler Circumbinary Planetary Systems

    NASA Astrophysics Data System (ADS)

    Sudol, Jeffrey; Haghighipour, Nader

    2015-12-01

    The recent discovery of circumbinary planets with the Kepler space telescope has opened a new direction in the search for habitable planets. Three of the known Kepler circumbinary planets reside in habitable zones: Kepler 16b, Kepler 47c, and Kepler 453b. Although these planets are too large to be habitable, they present the possibility of having habitable, terrestrial-size Trojan planets and/or moons. Although no Trojan planets have yet been detected in any exoplanetary system, theoretical studies suggest Trojan planets can exist in stable orbits in circumbinary planetary systems and can be detected with current and future space telescopes. We have performed more than 1,000 numerical integrations of each of these systems in which we have included an Earth-mass object in a random orbit near one of the two Lagrangian points in the habitable zone. We present the results of these integrations and further discuss their implications for the formation and evolution of these particular systems. We also report on the detectability of Earth-mass Trojan planets via transits or transit timing variations.

  7. Tidal Timelines: Evolution of Terrestrial Exoplanet Habitability Around Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Mullins, K.; Barnes, R.

    2009-12-01

    The range of orbits for planetary habitability have traditionally been based on the stellar flux that allows liquid water to persist on a planetary surface. However, when considering terrestrial (rocky) planets close to a low mass star (?0.35M?), tidal effects must be considered because of the additional energy input from tidal heating. Of further interest is the time over which habitable conditions are generated by tidal interaction. Tides cause orbital evolution, during which the heat flux varies, which may cause the planet to migrate in and out of habitable zones and possibly result in sterilization. So, the heating history of a planet should be a consideration when searching for life-supporting planets. We apply heat flux limitations on habitability (based on observations within our solar system) and tidally evolve planets across a range of initial conditions of orbits and masses. Our results provide a visualization of the time a planet has spent with a favorable amount of tidal heat for habitability and/or the amount of time until the heating is no longer conducive to habitability. As a greater number of close in terrestrial planets are found, these results can provide a method for identifying those planets with the highest potential for life.

  8. On the Habitability of Planets in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, E.; Eggl, S.; Gyergyovits, M.

    2012-04-01

    The discovery of more and more extra-solar planets in and around binary star systems cause questions concerning the determination of the classical habitable zone (HZ). We present calculations of the radiative and gravitational perturbations of two stars on a terrestrial planet moving in the HZ in different binary - planet configurations. Two types of planetary motion will be considered, i.e. S-type motion (or circumprimary motion) where the planet orbits one star only and P-type (or circumbinary motion) where the binary revolves inside the planet's orbit. It was found that the HZ in S-type configurations tend to be gravitationally dominated, the radiative input due to the second star is negligible compared to its dynamical influence causing secular changes in the eccentricity of the planets. This alters the amount of incident radiation significantly. In P-type configurations the radiation estimates can be determined on shorter time-scales. The radiation amplitude depends on the eccentricity of the binary in both configurations. Finally we present time independent analytical estimates about the habitability of a terrestrial planet in the HZ of a binary star system as shown by Eggl et al.(2012). This work was financed by the Austrian Science Fonds (FWF) P22603-N16 and AS11608-N16 and S.Eggl was financed by the University of Vienna (Forschungsstipendium 2012). Ref.: Eggl, S., Pilat-Lohinger, E., Gerogakarakos, N., Gyergyovits, M. and Funk, B., "Habitable Zones in S-Type Binary Star Systems", ApJ, submitted.

  9. Planetary Habitability Under Dynamic Temperatures

    NASA Astrophysics Data System (ADS)

    Mndez, A.

    2009-12-01

    One of the main environmental factors affecting the viability, growth and distribution of microbial life is temperature. Microorganisms are generally exposed to extreme diurnal temperature variations in the surface layer of planetary bodies where temperature is mostly in phase with solar radiation. This is epecially the case of bare soils in terrestrial deserts and the surface of Mars where potential microbial life might not only have to survive low nutrients and water levels but also to dynamic temperatures. Although there is extensive research about microbial growth kinetics at constant temperatures, there is little knowledge about microbial growth kinetics at dynamic temperatures, especially those associated with natural environments. Therefore, this work presents a new dynamic growth kinetics model based on a thermal habitability function. The model is being use in understanding the growth, distribution and potential habitats for microbial life in planetary bodies with extreme surface temperature fluctuations.

  10. The Habitability of the Moon

    NASA Astrophysics Data System (ADS)

    Herczeg, Tibor

    Following the vague guesswork of some writers in antiquity, early telescopic astronomy was strongly preoccupied with the ``World in the Moone.'' About the same time, as Kepler's charming ``Dream'' appeared posthumously, Wilkins set out to prove that there was no contradiction ``with reason or faith'' if we assumed the habitability of the Moon. For about two hundred years, this hypothesis remained quite popular (Cyrano, Fontenelle, Huygens) particularly among the wider public. That in spite of the reverberations, for instance, of the Whewell-Brewster controversy over the habitability of planets, now largely forgotten. On this background, the success of the famous ``Moon hoax of 1835'' seems more understandable. It was only in the middle of the 19th century that this idea began to slowly fade as the lack of lunar atmosphere became more and more obvious. The scientific evidence was mainly in connection with the lunar occultations (Bessel, John Herschel, and others), and also with the well-observed total solar eclipse of 1842. Yet, even later, rather fanciful assumptions about the lunar atmosphere collecting on the invisible far side of the Moon kept a modicum of believability alive for some years. Ultimately, however, the ``Selenites'' wandered over into the domain of science fiction -- the best representative being perhaps Wells' utopia in the ``First Men on the Moon'' exploring the inside of the Moon. The scientific studies concentrated more on the rather frustrating topic of lunar surface variations such as the disappearance of the crater Linnae. Nevertheless, as late as the 1960's, a possibly overly cautious NASA was ready to quarantine the returning Apollo astronauts, paying homage, perhaps, to the panspermia hypothesis.

  11. [Stability of changeability of food habits].

    PubMed

    Lewerenz, G

    1989-01-01

    Theoretic reflections were made about the relation between turning points in individual life and food habits. Interviews of 439 people indicate a flexible-exploratory attitude of young adults concerning problems of nutrition, while food habits become more stable with increasing age. PMID:2716807

  12. The Leisure Reading Habits of Urban Adolescents

    ERIC Educational Resources Information Center

    Hughes-Hassell, Sandra; Rodge, Pradnya

    2007-01-01

    Research indicates that there is a strong relationship between leisure reading and school achievement, but the leisure reading habits of urban adolescents have rarely been studied. From their investigation of the leisure reading habits of 584 urban minority middle school students, the authors identify these key findings: (1) More than two-thirds…

  13. Habit: Subtle Technology Barrier and Tool.

    ERIC Educational Resources Information Center

    Boettcher, Judith

    2000-01-01

    Discusses the use of information technology, technology diffusion and reinvention, and technology adoption and implementation. Considers the change process in higher education and the need to develop good computer habits and overcome old habits that are based on old teaching and learning methods. (LRW)

  14. The Leisure Reading Habits of Urban Adolescents

    ERIC Educational Resources Information Center

    Hughes-Hassell, Sandra; Rodge, Pradnya

    2007-01-01

    Research indicates that there is a strong relationship between leisure reading and school achievement, but the leisure reading habits of urban adolescents have rarely been studied. From their investigation of the leisure reading habits of 584 urban minority middle school students, the authors identify these key findings: (1) More than two-thirds

  15. The Online Reading Habits of Malaysian Students

    ERIC Educational Resources Information Center

    Abidin, Mohammad Jafre Bin Zainol; Pourmohammadi, Majid; Varasingam, Nalini A/P; Lean, Ooi Choon

    2014-01-01

    The purpose of this study is to ascertain the differences in online reading habits between genders and investigate the relationship between socio-economic status and online reading habits. Using a questionnaire, a quantitative approach was administered to 240 Form-Four students from four secondary schools in Penang Island, Malaysia. Findings

  16. Genetic Influences on Adolescent Eating Habits

    ERIC Educational Resources Information Center

    Beaver, Kevin M.; Flores, Tori; Boutwell, Brian B.; Gibson, Chris L.

    2012-01-01

    Behavioral genetic research shows that variation in eating habits and food consumption is due to genetic and environmental factors. The current study extends this line of research by examining the genetic contribution to adolescent eating habits. Analysis of sibling pairs drawn from the National Longitudinal Study of Adolescent Health (Add Health)…

  17. Genetic Influences on Adolescent Eating Habits

    ERIC Educational Resources Information Center

    Beaver, Kevin M.; Flores, Tori; Boutwell, Brian B.; Gibson, Chris L.

    2012-01-01

    Behavioral genetic research shows that variation in eating habits and food consumption is due to genetic and environmental factors. The current study extends this line of research by examining the genetic contribution to adolescent eating habits. Analysis of sibling pairs drawn from the National Longitudinal Study of Adolescent Health (Add Health)

  18. Experiences of habit formation: a qualitative study.

    PubMed

    Lally, Phillippa; Wardle, Jane; Gardner, Benjamin

    2011-08-01

    Habit formation is an important goal for behaviour change interventions because habitual behaviours are elicited automatically and are therefore likely to be maintained. This study documented experiences of habit development in 10 participants enrolled on a weight loss intervention explicitly based on habit-formation principles. Thematic analysis revealed three themes: Strategies used to support initial engagement in a novel behaviour; development of behavioural automaticity; and selecting effective cues to support repeated behaviour. Results showed that behaviour change was initially experienced as cognitively effortful but as automaticity increased, enactment became easier. Habits were typically formed in work-based contexts. Weekends and vacations temporarily disrupted performance due to absence of associated cues, but habits were reinstated on return to work. Implications for theory and practice are discussed. PMID:21749245

  19. Maser mapping of small-scale structure in the circumstellar envelope of S Persei

    NASA Astrophysics Data System (ADS)

    Richards, A. M. S.; Yates, J. A.; Cohen, R. J.

    1999-07-01

    Water and hydroxyl maser emission from the typical red supergiant star S Persei has been mapped using MERLIN. Water maser components are found grouped in clumps which appear to be discrete clouds with a velocity span of ~1 km s^-1 and an angular size of ~8 milliarcsec (mas). This corresponds to a diameter of (2.5-3) x 10^12 m, and is the first measurement of the unbeamed size of maser clouds. By comparing this with the full-width half-maximum (FWHM) beamed angular size, the beaming angle of the brightest partially saturated masers is (1.5 +/- 0.8) x 10^-3 sr. Water maser cloud brightness temperatures are in the range ~10^6 to > 10^12 K. The water maser shell has well-defined inner and outer limits of (8-26) x 10^12 m. The quenching density at the inner rim shows that the water maser clouds are about 30 times denser than the average wind density in this region. This can be explained if 4-6 dense dusty clouds (with a filling factor of ~1/70) are formed close to the photosphere during each stellar pulsation period of 2-3 yr. The water masers show evidence for significant acceleration of the wind, and this continues with a shallower gradient into the hydroxyl regions at up to 9.3x10^13 m. These results are consistent with a wind driven by radiation pressure on dust, but the ongoing acceleration implies that the dust surface absorption efficiency increases throughout the maser zones. Dust momentum is more efficiently coupled to the gas in the denser clouds, and the drift velocity is greater in less dense regions, consistent with conditions (such as a longer velocity resonance length) required by 1612-MHz masers. The circumstellar envelope appears to be spherical but irregularly filled. The mas resolution at 22 GHz allows the radial distribution of maser brightness to be related to AAVSO light curves. An anomalously dim region in the centre of the shell corresponds to low-amplitude periods in the 1930s; such behaviour is thought to reduce mass-loss and dust formation efficiency.