Science.gov

Sample records for clastic rocks

  1. Influence of sedimentary environments on mechanical properties of clastic rocks

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoping; Zhang, Jincai; Peng, Suping

    2006-10-01

    The sedimentary environments are the intrinsic factor controlling the mechanical properties of clastic rocks. Examining the relationship between rock sedimentary environments and rock mechanical properties gives a better understanding of rock deformation and failure mechanisms. In this study, more than 55 samples in coal measures were taken from seven different lithologic formations in eastern China. Using the optical microscope the sedimentary characteristics, such as components of clastic rocks and sizes of clastic grains were quantitatively tested and analyzed. The corresponding mechanical parameters were tested using the servo-controlled testing system. Different lithologic attributes in the sedimentary rocks sampled different stress-strain behaviors and failure characteristics under different confining pressures, mainly due to different compositions and textures. Results demonstrate that clastic rocks have the linear best-fit for Mohr-Coulomb failure criterion. The elastic moduli in clastic rocks are highly dependent upon confining pressures, unlike hard rocks. The envelope lines of the mechanical properties versus the contents of quartz, detritus of the grain diameter of more than 0.03 mm, and grain size in clastic rocks are given. The compressive strength or elastic modulus and the grain diameter have a non-monotonic relation and demonstrate the “grain-diameter softening” effect.

  2. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  3. Clastic sedimentary rocks of the Michipicoten Volcanic-sedimentary belt, Wawa, Ontario

    NASA Technical Reports Server (NTRS)

    Ojakangas, R. W.

    1983-01-01

    The Wawa area, part of the Michipicoten greenstone belt, contains rock assemblages representative of volcanic sedimentary accumulations elsewhere on the shield. Three mafic to felsic metavolcanic sequences and cogenetic granitic rocks range in age from 2749 + or - 2Ma to 2696 + or - 2Ma. Metasedimentary rocks occur between the metavolcanic sequences. The total thickness of the supracrustal rocks may be 10,000 m. Most rocks have been metamorphosed under greenschist conditions. The belt has been studied earlier and is currently being remapped by Sage. The sedimentrologic work has been briefly summarized; two mainfacies associations of clastic sedimentary rocks are present - a Resedimented (Turbidite) Facies Association and a Nonmarine (Alluvial Fan Fluvial) Facies Association.

  4. A generalized Nadai failure criterion for both crystalline and clastic rocks based on true triaxial tests

    NASA Astrophysics Data System (ADS)

    Haimson, Bezalel; Chang, Chandong; Ma, Xiaodong

    2016-04-01

    The UW true triaxial testing system enables the application of independent compressive loads to cuboidal specimens (19×19×38 mm) along three principal directions. We used the apparatus to conduct extensive series of experiments in three crystalline rocks (Westerly granite, KTB amphibolite, and SAFOD granodiorite) and three clastic rocks of different porosities [TCDP siltstone (7%), Coconino sandstone (17%), and Bentheim sandstone (24%)]. For each rock, several magnitudes of σ3 were employed, between 0 MPa and 100-160 MPa, and for every σ3, σ2 was varied from test to test between σ2 = σ3 and σ2=(0.4 to 1.0) σ1.Testing consisted of keeping σ2and σ3constant, and raising σ1to failure (σ1,peak). The results, plotted as σ1,peakvs. σ2for each σ3 used, highlight the undeniable effect of σ2on the compressive failure of rocks. For each level of σ3, the lowest σ2 tested (σ2 = σ3) yielded the data point used for conventional-triaxial failure criterion. However, for the same σ3 and depending on σ2 magnitude, the maximum stress bringing about failure (σ1,peak) may be considerably higher, by as much as 50% in crystalline rocks, or 15% in clastic rocks, over that in a conventional triaxial test. An important consequence is that use of a Mohr-type criterion leads to overly conservative predictions of failure. The true triaxial test results demonstrate that a criterion in terms of all (three principal stresses is necessary to characterize failure. Thus, we propose a 'Generalized Nadai Criterion' (GNC) based on Nadai (1950), i.e. expressed in terms of the two stress invariants at failure (f), τoct,f = βσoct,f, where τoct,f = 1/3[(σ1,peak ‑σ2)2+(σ2 ‑σ3)2+(σ3 ‑σ1,peak)2]0.5 and σoct,f = (σ1,peak + σ2 + σ3)/3, and β is a function that varies from rock to rock. Moreover, the criterion depends also on the relative magnitude of σ2, represented by a parameter b [= (σ2 - σ3)/(σ1,peak - σ3)]. For each octahedral shear stress at failure (

  5. Standardizing texture and facies codes for a process-based classification of clastic sediment and rock

    USGS Publications Warehouse

    Farrell, K.M.; Harris, W.B.; Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Pierson, J.; Self-Trail J.M.; Lautier, J.C.

    2012-01-01

    Proposed here is a universally applicable, texturally based classification of clastic sediment that is independent from composition, cementation, and geologic environment, is closely allied to process sedimentology, and applies to all compartments in the source-to-sink system. The classification is contingent on defining the term "clastic" so that it is independent from composition or origin and includes any particles or grains that are subject to erosion, transportation, and deposition. Modifications to Folk's (1980) texturally based classification that include applying new assumptions and defining a broader array of textural fields are proposed to accommodate this. The revised ternary diagrams include additional textural fields that better define poorly sorted and coarse-grained deposits, so that all end members (gravel, sand, and mud size fractions) are included in textural codes. Revised textural fields, or classes, are based on a strict adherence to volumetric estimates of percentages of gravel, sand, and mud size grain populations, which by definition must sum to 100%. The new classification ensures that descriptors are applied consistently to all end members in the ternary diagram (gravel, sand, and mud) according to several rules, and that none of the end members are ignored. These modifications provide bases for standardizing vertical displays of texture in graphic logs, lithofacies codes, and their derivatives- hydrofacies. Hydrofacies codes are nondirectional permeability indicators that predict aquifer or reservoir potential. Folk's (1980) ternary diagram for fine-grained clastic sediments (sand, silt, and clay size fractions) is also revised to preserve consistency with the revised diagram for gravel, sand, and mud. Standardizing texture ensures that the principles of process sedimentology are consistently applied to compositionally variable rock sequences, such as mixed carbonate-siliciclastic ramp settings, and the extreme ends of depositional

  6. Hydrogeologic assessment of shallow clastic and carbonate rock aquifers in Hendry and Collier counties, southwestern Florida

    USGS Publications Warehouse

    Brown, C. Erwin; Krulikas, R.K.; Brendle, D.L.

    1996-01-01

    Direct-current electrical resistivity data were collected from 109 vertical electrical sounding sites in Hendry and Collier Counties, southwestern Florida. Selected direct-current electrical resistivity surveys, together with available borehole geologic and geophysical data, were used to determine the approximate areal extent of the shallow clastic aquifers composed of thick sands and carbonate lithologies. Results indicated that a complex pattern of shallow sands, clays, and carbonate lithologies occur throughout the area. Buried channel sands were found as deep as 50 meters below land surface in some places. The channels contain unconsolidated fine- to medium-grained quartz sand interbedded with sandy limestone, shell fragments, and gray-green sandy clay. Both surface and borehole geophysical techniques with lithologic data were necessary to approximately locate and define layers that might behave as confining layers and to locate and define the extent of any buried sand aquifers. The borehole geophysical data were used to analyze the zones of higher resistivity. Direct-current electrical resistivity data indicated the approximate location of certain layer boundaries. The conjunctive use of natural gamma and short- and long-normal resistivity logs was helpful in determining lithologic effects. Geohydrologic sections were prepared to identify potential locations of buried channels and carbonates containing freshwater. Buried channel sands and carbonate rock sections were identified in the subsurface that potentially may contain freshwater supplies.

  7. Using the U-Pb system of calcretes to date the time of sedimentation of clastic sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Wang, Z. S.; Rasbury, E. T.; Hanson, G. N.; Meyers, W. J.

    1998-08-01

    The time of sedimentation of rapidly deposited clastic sedimentary rocks in fluvial environments may be directly dated with an uncertainty of less than three million years using U-Pb dating of pure micritic calcite from calcretes developed in overbank deposits. This conclusion is based on results obtained for calcretes (soil calcite, caliche) formed in the late Triassic New Haven Arkose, Hartford Basin, Connecticut, USA. The paragenesis of calcrete samples from the New Haven Arkose was determined using plane-polarized light and cathodoluminesence petrography, uranium fission track analysis, as well as trace element and stable isotope geochemistry. These calcretes contain an abundance of paleosol microfabrics and diagenetic calcite. The first-generation micritic calcite and second-generation blocky calcite have characteristics consistent with soil calcite. The third generation blocky calcite is a later diagenetic calcite (post-soil calcite). The U-Pb data for pure micritic calcite (first generation) in a horizontal sheet calcrete in sedimentary rocks of Norian age gives a 238U/ 207Pb- 206Pb/ 207Pb isochron age of 211.9 ± 2.1 Ma (2-sigma, and used hereafter for all ages). This age and the stratigraphic position for this sample are in excellent agreement with the ages proposed by Gradstein et al. (1994) for the Norian/Rhaetian boundary of 209.6 ± 4.1 Ma and the Carnian/Norian boundary of 220.7 ± 4.4 Ma. The U-Pb data for two samples of first generation micrite in rhizoliths with about 15% insoluble residues give "ages" of 7 ± 66 Ma and 20 ± 36 Ma. These results suggest that relatively recent events disturbed the U-Pb system of these detrital rich samples, perhaps due to redistribution of U during weathering or during chemical dissolution for analysis. The U-Pb data for a sample of pure third generation blocky calcite cement in a rhizolith yields a 206Pb/ 238U- 207Pb/ 235U isochron age of 81 ± 11 Ma. This age suggests that this sample of third generation blocky

  8. A Multi-technique Approach for Provenance Studies of Mesozoic Clastic Rocks in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Matthews, N. E.; Zimmermann, U.; Støle, L.; Ruud, C.; Mostafa, E.; Andò, S.; Borromeo, L.; Magnaghi, M.; Lapen, T. J.

    2015-12-01

    Sediments of Mesozoic age deposited in the Arctic Hammerfest and Tromsø basins (southern Barents Sea) are the focus of a comprehensive provenance study which forms part of ongoing work by the LoCrA consortium (Lower Cretaceous Basin Studies in the Arctic). Jurassic (Stø, Fuglen, Hekkingen) and Cretaceous (Knurr, Kolje, Kolmule) formations were sampled from seven wells. Analytical methods include petrography, whole-rock geochemistry, heavy mineral (HM) analysis and U-Pb on detrital zircons. HM concentration is <1%, with an ultrastable HM assemblage of zircon, rutile, tourmaline, spinel, apatite, garnet, chloritoid and common authigenic heavy minerals and opaques. Cretaceous sedimentary rocks show geochemical variations that reflect an unrecycled Upper Continental Crust signature, whereas Jurassic detritus tends to show more evidence of recycling with a relatively low input of mafic material. Kolmule Formation whole-rock geochemistry indicates sediment recycling from a major Sc-depleted but intermediate to mafic source and hence suggests input of rift detritus from the syn-depositional opening of the Atlantic Ocean. U-Pb ages for detrital zircons for Cretaceous sandstones show age groups of 200-500 Ma, 1200-1800 Ma, and 2100-2800 Ma, indicating potential source regions in the Urals/Novaya Zemlya, the Caledonides, Grenvillian/Sveconorwegian, and Palaeoproterozoic and Archean sources. Provenance data via geochemistry and HM analysis indicate different sources in the same formation basin-wide, with a significant change in provenance and sediment composition from Jurassic to Cretaceous and between the Knurr and Kolmule formations. These differences in composition need to be compared to detailed single grain studies and may only be explained in terms of basin dynamics, or even on a smaller scale, in terms of facies distributions. If so, this case study raises concerns about the use of single samples for provenance models on a larger scale.

  9. Electric fabric of Cretaceous clastic rocks in Abu Gharadig basin, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Nabawy, Bassem S.; ElHariri, Tarek Y. M.

    2008-09-01

    Measuring the petrophysical properties of sedimentary rocks in three-dimensions (3-D) has a high priority for interpretation of their physical behaviour. The present work attempts to study the 3-D electric behaviour of the Upper Cretaceous sandstones and clayey sandstones in the Abu Gharadig basin, Egypt. These rocks belong to the Betty, Bahariya, and Abu Roash Formations. The apparent electrical resistivity ( Ro) was measured in three perpendicular directions, one normal to the bedding plane along Z-axis, and the other two directions parallel to the bedding plane and normal to each other, along X-axis and Y-axis. The electrical resistivity ( Ro) was also studied at three NaCl-saline concentrations of Rw = 0.53, 0.13, and 0.07 Ω m in ambient conditions, using A-C bridge at 1 kHz. It is proposed that, processing and matching the electric data in 3-D as ellipsoids instead of in 2-D, has led to the electric fabric concept. It is a combination of electric foliation ( F) and electric lineation ( L). Statistical analyses of measured electrical resistivity reveal that the electric fabric at the second brine concentration should be taken into consideration to avoid the effect of clay content. The electric lineation and foliation of the studied sandstones and clayey sandstones at the second concentration are mostly small (1.1-1.5) to moderate (1.5-2.5), with few sandstone samples having high (2.5-5.0) to very high foliation (5.0-7.5), whereas the electric anisotropy values for these samples are small to moderate (1.1-2.5). This fabric is contributed mainly from their electric foliation, indicating some load pressure compaction that led to small to moderate anisotropic grains and flow paths/network pore spaces.

  10. Using the U-Pb system of calcretes to date the time of sedimentation of clastic sedimentary rocks

    SciTech Connect

    Wang, Z.S.; Rasbury, E.T.; Hanson, G.N.; Meyers, W.J.

    1998-08-01

    The time of sedimentation of rapidly deposited clastic sedimentary rocks in fluvial environments may be directly dated with an uncertainty of less than three million years using U-Pb dating of pure micritic calcite from calcretes developed in overbank deposits. This conclusion is based on results obtained for calcretes (soil calcite, caliche) formed in the late Triassic New Haven Arkose, Hartford Basin, Connecticut, USA. The paragenesis of calcrete samples from the New Haven Arkose was determined using plane-polarized light and cathodoluminescence petrography, uranium fission track analysis, as well as trace element and stable isotope geochemistry. These calcretes contain an abundance of paleosol microfabrics and diagenetic calcite. The first-generation micritic calcite and second-generation blocky calcite have characteristics consistent with soil calcite. The third generation blocky calcite is a later diagenetic calcite (post-soil calcite). The U-Pb data for pure micritic calcite (first generation) in a horizontal sheet calcrete in sedimentary rocks of Norian age gives a {sup 238}U/{sup 207}Pb-{sup 206}Pb/{sub 207}Pb isochron age of 211.9 {+-} 2.1 Ma (2-sigma, and used hereafter for all ages). The U-Pb data for two samples of first generation micrite in rhizoliths with about 15% insoluble residues give ages of 7 {+-} 66 Ma and 20 {+-} 36 Ma. These results suggest that relatively recent events disturbed the U-Pb system of these detrital rich samples, perhaps due to redistribution of U during weathering or during chemical dissolution for analysis. The U-Pb data for a sample of pure third generation blocky calcite cement in a rhizolith yields a {sup 206}Pb/{sup 238}U-{sup 207}Pb/{sup 235}U isochron age of 81 {+-} 11 Ma. This age suggests that this sample of third generation blocky calcite precipitated during the late Cretaceous perhaps over an extended period.

  11. U-Pb detrital zircon age patterns of Cenozoic clastic sedimentary rocks in Trinidad and its implications

    NASA Astrophysics Data System (ADS)

    Xie, Xiangyang; Mann, Paul

    2014-06-01

    The Cenozoic evolution of northern South America can be simplified as a diachronous, west-to-east change from north-facing passive margin, to active convergence and transcurrent plate margin. As the current eastern end of the Caribbean-South America plate boundary, the Trinidad area records the most recent tectonic regime transition. Documenting the provenance of Cenozoic clastic rocks in Trinidad provides insights into the spatial and temporal relationships between mountain range uplifting, sediment dispersal, and drainage system development along the eastern end of the Caribbean-South American plate boundary. Four Eocene to Pliocene age outcropping sandstone samples were collected from Trinidad and 545 detrital zircon grains were analyzed using the U-Pb LA-ICP-MS method. A total of 404 analyses with less than 10% discordance were used for the final interpretation. Results show that the age distribution of the Eocene to the Early Oligocene samples is very restricted and dominated by Precambrian age grains with age peaks at ~ 1400 Ma, ~ 1800 Ma, and ~ 2000 Ma, typically derived from the Guyana Shield. In contrast, the Late Oligocene and younger samples show much broader and mixed age distribution that includes Mesozoic, Paleozoic, and Precambrian peaks. This age shift was interpreted as arriving of the Great Caribbean Arc and oblique collision between the South America and Caribbean plates. Continuing collision uplifted the Andes belts to the west. The Eastern Cordillera of Colombia, the Merida Andes, and the northern Venezuela coastal ranges then became the second primary sources. Offshore sedimentation switched from the passive margin with multiple small drainage systems to the active convergent and transcurrent plate margin with a single large river-dominated delivery system.

  12. Fractured reservoirs in clastic rocks: Differences between a basement-cored structure and a detached fold belt

    SciTech Connect

    Engelder, T.; Gross, M.R.; Younes, A.

    1996-08-01

    The Elk Basin anticline, Wyoming-Montana, has an order of magnitude more structural relief than structures of the Appalachian Plateau, New York. Despite its structural relief the Elk Basin anticline shows very little macroscopic evidence for layer-parallel shortening vs. more than 10% for the subtle Appalachian Plateau folds. Elk Basin anticline is a passive drape fold extending over a tongue of basement punching up into the sedimentary cover. On the other extreme, the detached fold belt of the Appalachian Plateau remained in compression during most, if not all, of the Alleghanian layer-parallel shortening event. The joint pattern in Elk Basin is dominated by fold-parallel sets. The joint pattern in the Appalachian Plateau is dominated by fold-perpendicular sets. These two joint patterns are consistent with states of stress that suppress layer-parallel shortening in the former case and favor it in the latter case. Curvy cross joints are unambiguous records of the change in stress field orientation. Such structures in the clastic rocks of Elk Basin indicate a 10{degrees} to 15{degrees} clockwise reorientation of the stress field during later stages of fold development. The early to synfolding propagation of fold-parallel joints is indicated by their attitude normal to bedding on both limbs of the Elk Basin anticline. Fold-parallel joints are also rotated during strike-slip motion on later, vertical faults cutting subperpendicular to the anticlinal axis. Finally, the fracture spacing index for fold-parallel joints in various formations at Elk Basin is less than for cross fold joints of the Appalachian Plateau.

  13. Geochemistry of low-grade clastic rocks in the Acatlán Complex of southern Mexico: Evidence for local provenance in felsic-intermediate igneous rocks

    NASA Astrophysics Data System (ADS)

    Dostal, Jaroslav; Keppie, J. D.

    2009-12-01

    Geochemical data of sedimentary basins have been used to determine their plate tectonic setting. Here we test geochemical data for paired psammite-pelite samples from two greywacke packages that underlie 60% of the Paleozoic Acatlán Complex of southern Mexico: one an Ordovician rift-passive margin suite and the other a Carboniferous active margin suite. Both units consist of low-grade, polydeformed psammites and pelites associated with rare tholeiitic flows and dikes. Analyses of paired psammite-pelite samples from a number of different units in the eastern part of the Acatlán Complex indicate that they all have a similar geochemistry with their major components dependent on the proportion of sand and clay. The chemical index of alteration yielded values between 55 and 70 recording a moderate degree of weathering of plagioclase to illite/kaolinite in the source area. The REE patterns suggest provenance in felsic-intermediate igneous rocks, and the wide range of TiO 2-Zr ratios indicates that this was followed by extensive sorting. The mantle-normalized trace element patterns of the psammites generally display positive Zr and Hf anomalies reflecting elevated concentration of zircon in these rocks. Detrital zircon ages from some of these units show that the major source for these clastic rocks probably lay in the adjacent Mesoproterozoic Oaxacan Complex and in the Neoproterozoic basement underlying the Acatlán Complex and/or the Yucatan Peninsula. Geological parameters point to a rift-passive margin setting for the Ordovician rocks and an active, subduction-related margin for the Carboniferous units. However, the commonly used tectonic discrimination, bi- to tri-variant diagrams cannot readily distinguish between the two suites on geochemical grounds. Their geochemistry probably reflects the general felsic-intermediate compositions of the rocks in the Precambrian source regions, rather than the contemporaneous tectonic setting. Future work involving a more

  14. Evidence of Quaternary rock avalanches in the central Apennines: new data and interpretation of the huge clastic deposit of the L'Aquila basin (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Esposito, Carlo; Scarascia Mugnozza, Gabriele; Tallini, Marco; Della Seta, Marta

    2014-05-01

    Active extensional tectonics and widespread seismicity affect the axial zone of the central Apennines (Italy) and led to the formation of several plio-quaternary intermontane basins, whose morpho-evolution was controlled by the coupling of tectonic and climatic inputs. Common features of the Apennines intermontane basins as well as their general morpho-evolution are known. Nonetheless, the complex interaction among regional uplift, local fault displacements and morpho-climatic factors caused differences in the denudational processes of the single intermontane basins. Such a dynamic response left precious records in the landscape, which in some cases testify for the occurrence of huge, catastrophic rock slope failures. Several Quaternary rock avalanches have been identified in central Apennines, which are often associated with Deep Seated Gravitational Slope Deformation (DSGSD) and thus strictly related to the geological-structural setting as well as to the Quaternary morpho-structural evolution of the mountain chain. The L'Aquila basin is one of the intermontane tectonic depression aligned along the Middle Aterno River Valley and was the scene of strong historical earthquakes, among which the last destructive event occurred on April 6, 2009 (Mw 6.3). We present here the evidence that the huge clastic deposit on which the city of L'Aquila was built up is the body of a rock avalanche detached from the southern slope of the Gran Sasso Range. The clastic deposit elongates for 13 km to the SW, from the Assergi Plain to L'Aquila and is characterized by typical morphological features such as hummocky topography, compressional ridges and run-up on the opposite slope. Sedimentological characters of the deposit and grain size analyses on the matrix let us confirm the genetic interpretation, while borehole data and significant cross sections allowed us reconstructing the 3D shape and volume of the clastic body. Finally, morphometric analyses of the Gran Sasso Range southern

  15. Geochemistry of fine-grained clastic rocks in the Mesoproterozoic Kawabulake Group: implications for provenance and the tectonic model of the Eastern Tianshan, Xinjiang, NW China

    NASA Astrophysics Data System (ADS)

    Li, Deng-Feng; Chen, Hua-Yong; Zhang, Li; Fralick, Philip; Hollings, Pete; Mi, Mei; Lu, Wan-Jian; Han, Jin-Sheng; Wang, Cheng-Ming; Fang, Jing

    2016-02-01

    The Mesoproterozoic Kawabulake Group, which is unconformably overlain by the Lower Cambrian Huangshan Formation and conformably overlies the Mesoproterozoic Xingxingxia Group in the Eastern Tianshan area, NW China, is comprised mainly of siltstone, slate, sandstone and phyllite. New geochemical data for the clastic rocks from the Kawabulake Group were investigated to constrain the provenance and weathering history of the source rocks, in order to evaluate the tectonic evolution of the Eastern Tianshan area. Kawabulake Group rocks are compositionally similar to PAAS (average Post-Archean Australian Shale), indicating derivation from a felsic source that is characterized by depletion in some HFSEs such as Nb, Ta and Ti. The Chemical Index of Alteration (CIA) for the sandstone, siltstone and slate samples (CIA = 60 on average) suggests intensely weathered sources. Light REE-enrichment patterns ((La/Yb)CN = 4-20) coupled with negative Eu anomalies (Eu/Eu* between 0.44 and 0.89 with an average of 0.62) are similar to those of PAAS, consistent with cratonic sources. The major and trace element compositions imply a dominantly Precambrian felsic source region with a minor contribution from mafic materials. The Sr-Nd isotopic compositions and the ages of T DM2 (~3.4, 2.5-1.8, 1.2 and 1.0 Ga) are consistent with the evolutionary history of Kuluketage in the northern Tarim, suggesting that the Tarim Craton was the main source area for the Kawabulake Group.

  16. Post-emplacement history of the Zambales Ophiolite Complex: Insights from petrography, geochronology and geochemistry of Neogene clastic rocks

    NASA Astrophysics Data System (ADS)

    Dimalanta, C. B.; Salapare, R. C.; Faustino-Eslava, D. V.; Ramos, N. T.; Queaño, K. L.; Yumul, G. P.; Yang, T. F.

    2015-05-01

    The Zambales Ophiolite Complex in Luzon, Philippines is made up of two blocks with differing geochemical signatures and ages - the Middle Jurassic to Early Cretaceous Acoje Block-San Antonio Massif that is of island arc tholeiite composition and the Eocene Coto Block-Cabangan Massif which is of transitional mid-ocean ridge basalt-island arc tholeiite affinity. These ophiolitic bodies are overlain by Miocene to Pliocene sedimentary units whose petrochemistry are reported here for the first time. Varying degrees of influences from ophiolitic detritus and from arc volcanic materials, as shown by petrography and indicator elements including Cr, Co and Ni, are observed in these sedimentary formations from north to south and from the oldest to the youngest. The Early to Middle Miocene Cabaluan Formation, whose outcrops are found to overlie only the Acoje Block, registers a more dominant ophiolitic signature as compared to the Late Miocene to Pliocene Santa Cruz Formation. The Santa Cruz Formation is generally characterized by fewer ophiolitic clasts and higher amounts of felsic components. Additionally, within this formation itself, a pronounced compositional change is observed relative to its spatial distribution. From the south to the north, an increase in ophiolitic components and a relative decrease in felsic signature is noted in units of the Santa Cruz Formation. It is therefore inferred that changes in the petrochemistry of rocks from the older Cabaluan to the younger Santa Cruz sedimentary formations record a decline in the influx of ophiolitic detritus or, conversely, the introduction of more diverse sediment sources as the deposition progressed. Detrital zircon U-Pb ages from the Santa Cruz Formation, with peaks at 46.73 ± 0.94 and 5.78 ± 0.13 Ma, reflects this change in provenance from the unroofing of an Early Eocene oceanic crust to fresh contributions from an active volcanic arc during the Late Miocene. The contrast in compositions of the southern and

  17. Spatio-temporal autocorrelation of Neogene-Quaternary volcanic and clastic sedimentary rocks in SW Montana and SE Idaho: Relationship to Cenozoic tectonic and thermally induced extensional events

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Dai, D.

    2013-12-01

    Two systems of full and half grabens have been forming since the mid-Tertiary through tectonic and thermally induced extensional events in SW Montana and neighboring SE Idaho. The earlier mid-Tertiary Basin and Range (BR) tectonic event formed the NW- and NE-striking mountains around the Snake River Plain (SRP) in Idaho and SW Montana, respectively. Since the mid-Tertiary, partially synchronous with the BR event, diachronous bulging and subsidence due to the thermally induced stress field of the Yellowstone hotspot (YHS) has produced the second system of variably-oriented grabens through faulting across the older BR fault blocks. The track of the migration of the YHS is defined by the presence of six prominent volcanic calderas along the SRP which become younger toward the present location of the YHS. Graben basins bounded by both the BR faults and thermally induced cross-faults (CF) systems are now filled with Tertiary-Quaternary clastic sedimentary and volcanic-volcaniclastic rocks. Neogene mafic and felsic lava which erupted along the SRP and clastic sedimentary units (Sixmile Creek Fm., Ts) deposited in both types of graben basins were classified based on their lithology and age, and mapped in ArcGIS 10 as polygon using a combination of MBMG and USGS databases and geological maps at scales of 1:250.000, 1:100,000, and 1:48,000. The spatio-temporal distributions of the lava polygons were then analyzed applying the Global and Local Moran`s I methods to detect any possible spatial or temporal autocorrelation relative to the track of the YHS. The results reveal the spatial autocorrelation of the lithology and age of the Neogene lavas, and suggest a spatio-temporal sequence of eruption of extrusive rocks between Miocene and late Pleistocene along the SRP. The sequence of eruptions, which progressively becomes younger toward the Yellowstone National Park, may track the migration of the YSH. The sub-parallelism of the trend of the SRP with the long axis of the

  18. An analysis of strain in fine-grained clastic rocks of the Appalachian Mountains using a best-fit ellipse search of center-to-center data

    SciTech Connect

    Engelder, T. . Dept. of Geosciences)

    1993-03-01

    Fine-grained clastic rocks are often more poorly sorted than their coarser brethren. When viewed in thin section such sorting gives the impression that relatively coarse grains are floating in a finer matrix. Do these relatively coarse grains act as passive markers in a deforming matrix In order to answer this question samples of both very fine-grained siltstone and shale were collected from the Ordovician Reedsville shale of the Appalachian Valley and Ridge and the Devonian Catskill Delta of the Appalachian Plateau. Strain, as recorded by larger grains floating in a matrix, was evaluated using a center-to-center approach. The visual center of grains with a diameter larger than a predetermined size (usually 15 [mu]m) was used as a datum. Centers were digitized to produce Fry-type scatter plots using a version of the INSTRAIN program. Fry plots produced in this manner often have a scattering of points so sparse that a best-fit ellipse could not be identified with confidence. As a consequence, a best-fit ellipse was calculated using a search routine according to the following plan. An elliptical template of a predetermined size and shape was centered over the inner portion of the Fry plot. A goodness of fit between the selected data points and the calculated ellipse was determined using a simple root-mean-square average. A goodness of fit was calculated for data points falling inside the template for each combination of template shape and size. The best fit ellipse was then identified as that ellipse with smallest the RMS average. Preliminary work using Ordovician samples from the Valley and Ridge suggests that layer-parallel shortening strain as measured using this modified center-to-center technique is consistent with layer-parallel shortening indicated by deformed fossils within the Reedsville.

  19. Critical elements in sediment-hosted deposits (clastic-dominated Zn-Pb-Ag, Mississippi Valley-type Zn-Pb, sedimentary rock-hosted Stratiform Cu, and carbonate-hosted Polymetallic Deposits): A review: Chapter 12

    USGS Publications Warehouse

    Marsh, Erin; Hitzman, Murray W.; Leach, David L.

    2016-01-01

    Some sediment-hosted base metal deposits, specifically the clastic-dominated (CD) Zn-Pb deposits, carbonate-hosted Mississippi Valley-type (MVT) deposits, sedimentary-rock hosted stratiform copper deposits, and carbonate-hosted polymetallic (“Kipushi type”) deposits, are or have been important sources of critical elements including Co, Ga, Ge, and Re. The generally poor data concerning trace element concentrations in these types of sediment-hosted ores suggest that there may be economically important concentrations of critical elements yet to be recognized.

  20. Integrated Nd isotopic and U-Pb detrital zircon systematics of clastic sedimentary rocks from the Slave Province, Canada: evidence for extensive crustal reworking in the early- to mid-Archean

    NASA Astrophysics Data System (ADS)

    Yamashita, Katsuyuki; Creaser, Robert A.; Villeneuve, Mike E.

    2000-01-01

    A combined U-Pb geochronology and Nd isotopic analysis of clastic metasedimentary rocks from the Archean Slave Province, Northwest Territories, Canada is presented. A series of clastic sedimentary rocks with deposition age of ˜3.13 Ga to ˜2.58 Ga was collected from the west-central Slave Province. These samples include conglomerates as well as finer sedimentary rocks such as greywacke, arkose and quartzite. Although it is generally agreed that the Nd model age ( TDM) of clastic sedimentary rocks represents the average sedimentary provenance age, TDM of samples studied here is generally older than the average U-Pb age of detrital zircons extracted from the same sample. Rather, there seems to be a better ˜1:1 relationship between the TDM and U-Pb age of the oldest zircon from each sample. A simple model relationship between U-Pb geochronology and TDM suggests that such correlation is a result of Archean crustal evolution of the Slave Province being dominated by crustal reworking (i.e. intracrustal processes) rather than addition of juvenile materials from the mantle. One exception is the period between ˜3.1 and ˜3.2 Ga, during which period a significant portion of detrital zircons have U-Pb ages exceeding the TDM, indicating a large input of juvenile material and/or decreasing level of crustal reworking. An alternative explanation for the U-Pb vs. TDM trend may be a mixing of older mafic juvenile crust (containing no zircon) and younger felsic juvenile crust. However, the general lack of extensive pre-2.8 Ga mafic crust in the Slave Province makes this scenario unlikely. The results of this study cannot constrain the change in the volume of continental crust at any given period of time, since the addition of juvenile crust may always be counterbalanced by recycling of crustal material back into the mantle. However, a dominance of crustal reworking during the early- to mid-Archean strongly implies that a large part of ancient crust was lost during the younger

  1. Provenance and tectonic setting of Late Carboniferous clastic rocks in West Junggar, Xinjiang, China: A case from the Hala-alat Mountains

    NASA Astrophysics Data System (ADS)

    Tao, Huifei; Wang, Qingchen; Yang, Xiaofa; Jiang, Lin

    2013-03-01

    The Late Carboniferous palaeo-tectonic setting of the West Junggar region is comprised of arcs alternating with basins. Geochemical analysis of the sedimentary rocks associated with these arc-related basins was conducted to better constrain the provenance and tectonic setting.Major and trace element geochemistry data of Late Carboniferous mudstones and sandstones in the Hala-alat Mountains suggest that these sedimentary rocks and their source areas are characterized by the following four features: (1) sediments experienced a simple recycling process; (2) a low degree weathering conditions in the source areas; (3) compositional immature of the sedimentary rocks; (4) dominated by intermediate to felsic provenance, with a few intermediate to mafic sediments. Integrated with the palaeo-flow data and previous authors' works, a fore-arc basin model is proposed for the tectonic setting of the sedimentary rocks. The Sawur arc is the primary provenance and supplies the major intermediate to felsic detrital fragments. The Bozchekul-Chingiz arc and Kexia oceanic island arc are the other two secondary sources.

  2. Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China

    NASA Astrophysics Data System (ADS)

    Wang, Changle; Zhang, Lianchang; Dai, Yanpei; Lan, Caiyun

    2015-01-01

    The Lüliang Complex is situated in the central part of the western margin of the Trans-North China Orogen (TNCO) in the North China Craton (NCC), and consists of metamorphic volcanic and sedimentary rocks and granitoid intrusions. The Yuanjiacun Formation metasediments occupy roughly the lowest part of the Lüliang Group and are mainly represented by well-bedded meta-pelites (chlorite schists and sericite-chlorite phyllites), banded iron formations (BIFs) and meta-arenites (sericite schists), which have undergone greenschist-facies metamorphism. The youngest group of detrital zircons from the meta-arenite samples constrains their maximum depositional age at ~ 2350 Ma. In combination with previous geochronological studies on meta-volcanic rocks in the overlying Jinzhouyu Formation, the depositional age of the Yuanjiacun Formation can be constrained between 2350 and 2215 Ma. The metasediments have suffered varying degrees of source weathering, measured using widely employed weathering indices (e.g., CIA, CIW, PIA and Th/U ratios). Source rocks of the low-Al meta-pelites have undergone severe chemical weathering, whereas those of the meta-arenites and high-Al meta-pelites have suffered relatively moderate chemical weathering. Significant secondary K addition is recognized in the A-CN-K diagram for most of the studied samples. Diagnostic geochemical features like the Al2O3/TiO2 values, trace element ratios (e.g., Th/Sc) and REE patterns, suggest that the meta-arenites and high-Al meta-pelites are predominantly derived from felsic igneous sources, whereas the low-Al meta-pelites are sourced mainly from mafic rocks. Coupled with Nd isotopic data, it is proposed that the meta-arenites and high-Al meta-pelites were sedimentary erosion products of the less differential felsic terrain (likely the old upper continental crust). The low-Al meta-pelites, however, have geochemical affinities with both pelite- and BIF-like components, suggesting that they were mixtures of these

  3. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism

    NASA Astrophysics Data System (ADS)

    He, Bin; Xu, Yi-Gang; Zhong, Yu-Ting; Guan, Jun-Peng

    2010-09-01

    Previous studies on the temporal link between the end-Guadalupian mass extinction event and Emeishan flood volcanism were mainly based on geochronological and bio- and chemostratigraphic correlation techniques (Wignall et al., 2009). The absence of material-based hard evidence that directly links the extinction with the Emeishan volcanism remains a major obstacle regardless of the indication of coincidence in timing (Isozaki et al., 2007). The Emeishan basalts overlie Permian platform carbonates that may contain a record of the end-Guadalupian mass extinction and erosional product of this province. This paper presents mineralogy and geochemistry of mudstones from the Guadalupian-Lopingian Boundary (G-LB) at Chaotian, SW China. Results indicate that these G-LB mudstones are not air-fall acidic tuff as previously thought, but likely represent clastic rocks derived from erosional deposits of the Emeishan large igneous province (ELIP). Mudstones of the lower part (Group 1) have a geochemical affinity to the Emeishan felsic volcanic rocks, whereas mudstones of the upper part (Group 2) are compositionally akin to mafic components of the Emeishan traps. This chemostratigraphic sequence resembles the Xuanwei Formation which sits on the Emeishan basalts (He et al., 2007). These data therefore indicate that the lower part of the mudstones at the Chaotian G-LB section, the lowermost part of Xuanwei and Longtan Formations and the Emeishan felsic extrusives broadly constitute an isochron horizon throughout the ELIP and adjacent region, suggesting a short duration for the Emeishan volcanism. A temporal coincidence between Emeishan volcanism and the end-Guadalupian mass extinction are therefore inferred thus providing support for a cause-and-effect relationship.

  4. Physical and Chemical Effects of Two-Phase Brine/Supercritical-CO2 Fluid Flow on Clastic Rocks: Real-Time Monitoring and NMR Imaging of Flow-Through Core Experiments

    NASA Astrophysics Data System (ADS)

    Shaw, C. A.; Vogt, S.; Maneval, J. E.; Brox, T.; Skidmore, M. L.; Codd, S. L.; Seymour, J. D.

    2010-12-01

    Sandstone core samples were challenged with a supercritical CO2-saturated brine mixture in a laboratory flow-through core reactor system over a range of temperatures and brine strengths. Cores of quartz arenite from the Berea formation were selected to represent ideal ‘clean’ sandstone These laboratory experiments potentially provide an analog for the acidification of pore fluids near the brine/CO2 interface during CO2 flooding of depleted clastic hydrocarbon reservoirs for carbon sequestration. Flow in the reactor was perpendicular to bedding. Initial experiments were run at 50°C and 100°C with brine concentrations of 1g/L and 10g/L (TDS) to test effects of different temperatures and brine compositions. Real-time monitoring of fluid pH and conductivity provided a measure of reaction rates. Introduction of supercritical CO2 into the brine-saturated cores initiated a reduction in pH accompanied by an increase in conductivity. NMR images of fresh cores were compared with images of challenged cores using a protocol for pixel-by-pixel comparison to determine the effects on bulk pore volume and geometry. Two types of imaging experiments were conducted: multi-slice spin echo and 3-D spin echo images. Multi-slice experiments had a slice thickness of 1.5 mm and an in-plane resolution of 0.27 mm x 0.27 mm, and 3-D experiments had a resolution of 0.47 mm x 0.55 mm x 0.55mm. Imaging results reflected the observed changes in the physical and chemical structure post-challenge. Two-dimensional relaxation correlation experiments were also conducted to probe the pore sizes, connectivity and fluid saturation of the rock cores before and after challenging. Chemical analyses and microscopic examination of the challenged cores will provide a better understanding of alteration in the cores and the changes in the volume, geometry and connectivity of pore space.

  5. Provenance of the Middle Ordovician Blount clastic wedge, Georgia and Tennessee

    NASA Astrophysics Data System (ADS)

    Mack, Greg H.

    1985-04-01

    Convergent tectonism along the Appalachian continental margin in Middle Ordovician time resulted in cratonward-prograding clastic wedges. Detrital modes of 52 sandstones of the Blount clastic wedge in Georgia and Tennessee are dominated by monocrystalline quartz (68%), feldspar (10%, plagioclase >K-feldspar), and pelitic rock fragments (10%), with lesser amounts of polycrystalline quartz (6%), chert (2%), low-grade metamorphic rock fragments (2%), and quartzofeldspathic rock fragments (0.3%). The primary source rocks were sedimentary; subordinate contributions were from low-grade metamorphic and plagioclase-rich plutonic and/or gneissic rocks. The composition of sandstones from the Martinsburg clastic wedge, based on point-counting 18 samples from the collection of McBride, and from the Taconic clastic wedge, based on data of Hiscott, is similar to the Blount clastic wedge except that Martinsburg and Taconic sandstones have additional evidence of derivation from intermediate or mafic volcanic and deep-water sedimentary source rocks, which were lacking in the Blount source terrane. The differences in provenance among the clastic wedges may indicate along-strike variations in tectonic style, or variations in the distribution of rock types, or differences in the level of erosion within orogenic terranes of similar origin.

  6. Distribution of Permo-Carboniferous clastics of Greater Arabian basin

    SciTech Connect

    Al-Laboun, A.A.

    1987-05-01

    Strikingly correlative sequences of sediments composed of sandstones, siltstones, shales, and thin argillaceous carbonate beds are present, practically everywhere, underlying the Late Permian carbonates in the Greater Arabian basin. The Greater Arabian basin as defined here occupies the broad Arabian Shelf that borders the Arabian shield. This basin is composed of several smaller basins. These clastics are exposed as thin bands and scattered small exposures in several localities around the margins of the basin. The Permo-Carboniferous clastics are represented by the Unayzah Formation of Arabia, the Doubayat Group of Syria, the Hazro Formation of southeast Turkey, the Ga'arah Formation of Iraq, the Faraghan Formation of southwest Iran, and the Haushi Group of Oman. A Late Carboniferous-Early Permian age is assigned to these clastics because they contain fossil plants and palynomorphs. These sediments represent time-transgressive fluctuating sea deposits following a phase of regional emergence, erosion, and structural disturbance which preceded the Permian transgression. The basal contact of these clastics is marked by a well-pronounced angular unconformity with various older units, ranging in age from early Carboniferous to late Precambrian. This regional unconformity is probably related to the Hercynian movements. The upper contact is conformable with the Permian carbonates. The porous sandstones of the Permo-Carboniferous sediments are important hydrocarbon exploration targets. These reservoir rocks sometimes overlie mature source rocks and are capped by shales, marls, and tight carbonates. Significant quantities of hydrocarbons are contained in these reservoirs in different parts of the Greater Arabian basin.

  7. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  8. The Eau Claire Formation in Iowa, an Upper Cambrian, inner shelf, cratonic clastic wedge

    SciTech Connect

    McKay, R.M. . Geological Survey Bureau)

    1993-03-01

    The Eau Claire Formation has been defined, in its outcrop belt in west-central Wisconsin, as an argillaceous, fine-grained sandstone and shale interval sandwiched between coarser sandstone units of the older Mt. Simon Fm and the younger Wonewoc Fm. This stratigraphic arrangement continues into the subsurface of eastern iowa, but undergoes substantial variation throughout the rest of the state. Terrigenous clastic-dominated facies of the Eau Claire in northern and eastern Iowa are laterally transitional to mixed terrigenous clastic/carbonate facies in southern and western iowa. These lithofacies transitions are independently correlatable through trilobite and brachiopod biostratigraphy. Carbonate dominated facies (dolomite and limestone) contain a diverse suite of rock types including bioturbated skeletal wackestones/packstones, skeletal grainstones and cryptalgal/microbial boundstones. Locally, pyritic and glauconitic encrusted hardgrounds occur. Maximum carbonate facies development within terrigenous clastic dominated sections is interpreted to have occurred under the conditions of transgression and maximum coastal onlap during Crepicephalus zone time. The establishment of carbonate production facies tracts was possible due to clastic sediment entrapment up the depositional slope, resulting in clearer-water sedimentary environments in southern Iowa. The development of dominant carbonate production facies tracts in western Iowa were enhanced by their distal position along the northeasterly sourced (present latitudinal coordinates) clastic sediment dispersal path. The Eau Claire was probably never deposited in far southwest Iowa and adjacent southeast Nebraska due to the presence of paleohighlands, but this land area appears to have been only a minor source area for terrigenous clastic sediment supply.

  9. Realistic Expectations for Rock Identification.

    ERIC Educational Resources Information Center

    Westerback, Mary Elizabeth; Azer, Nazmy

    1991-01-01

    Presents a rock classification scheme for use by beginning students. The scheme is based on rock textures (glassy, crystalline, clastic, and organic framework) and observable structures (vesicles and graded bedding). Discusses problems in other rock classification schemes which may produce confusion, misidentification, and anxiety. (10 references)…

  10. Organic geochemistry of Upper Carboniferous bituminous coals and clastic sediments from the Lublin Coal Basin

    NASA Astrophysics Data System (ADS)

    Gola, Marek R.; Karger, Michał; Gazda, Lucjan; Grafka, Oliwia

    2013-09-01

    Bituminous coals and clastic rocks from the Lublin Formation (Pennsylvanian, Westphalian B) were subjected to detailed biomarker and Rock-Eval analyses. The investigation of aliphatic and aromatic fractions and Rock-Eval Tmax suggests that the Carboniferous deposits attained relatively low levels of thermal maturity, at the end of the microbial processes/initial phase of the oil window. Somewhat higher values of maturity in the clastic sediments were caused by postdiagenetic biodegradation of organic matter. The dominance of the odd carbon-numbered n-alkanes in the range n-C25 to n-C31 , high concentrations of moretanes and a predominance of C 28 and C29 steranes are indicative of a terrigenous origin of the organic matter in the study material. This is supported by the presence of eudesmane, bisabolane, dihydro-ar-curcumene and cadalene, found mainly in the coal samples. In addition, tri- and tetracyclic diterpanes, e. g. 16β(H)-kaurane, 16β(H)-phyllocladane, 16α(H)-kaurane and norisopimarane, were identified, suggesting an admixture of conifer ancestors among the deposited higher plants. Parameters Pr/n-C17 and Rdit in the coal samples show deposition of organic matter from peat swamp environments, with the water levels varying from high (water-logged swamp) to very low (ephemeral swamp). Clastic deposits were accumulated in a flood plain environment with local small ponds/lakes. In pond/lake sediments, apart from the dominant terrigenous organic matter, research also revealed a certain quantity of algal matter, indicated, i.a., by the presence of tricyclic triterpanes C28 and C29 and elevated concentrations of steranes. The Paq parameter can prove to be a useful tool in the identification of organic matter, but the processes of organic matter biodegradation observed in clastic rocks most likely influence the value of the parameter, at the same time lowering the interpretation potential of these compounds. The value of Pr/Ph varies from 0.93 to 5.24 and from 3

  11. Simulation model of clastic sedimentary processes

    SciTech Connect

    Tetzlaff, D.M.

    1987-01-01

    This dissertation describes SEDSIM, a computer model that simulates erosion, transport, and deposition of clastic sediments by free-surface flow in natural environments. SEDSIM is deterministic and is applicable to sedimentary processes in rivers, deltas, continental shelves, submarine canyons, and turbidite fans. The model is used to perform experiments in clastic sedimentation. Computer experimentation is limited by computing power available, but is free from scaling problems associated with laboratory experiments. SEDSIM responds to information provided to it at the outset of a simulation experiment, including topography, subsurface configuration, physical parameters of fluid and sediment, and characteristics of sediment sources. Extensive computer graphics are incorporated in SEDSIM. The user can display the three-dimensional geometry of simulated deposits in the form of successions of contour maps, perspective diagrams, vector plots of current velocities, and vertical sections of any azimuth orientation. The sections show both sediment age and composition. SEDSIM works realistically with processes involving channel shifting and topographic changes. Example applications include simulation of an ancient submarine canyon carved into a Cretaceous sequence in the National Petroleum Reserve in Alaska, known mainly from seismic sections and a sequence of Tertiary age in the Golden Meadow oil field of Louisiana, known principally from well logs.

  12. Clastic dikes of Heart Mountain fault breccia, northwestern Wyoming, and their significance

    USGS Publications Warehouse

    Pierce, W.G.

    1979-01-01

    Structural features in northwestern Wyoming indicate that the Heart Mountain fault movement was an extremely rapid, cataclysmic event that created a large volume of carbonate fault breccia derived entirely from the lower part of the upper plate. After fault movement had ceased, much of the carbonate fault breccia, here called calcibreccia, lay loose on the resulting surface of tectonic denudation. Before this unconsolidated calcibreccia could be removed by erosion, it was buried beneath a cover of Tertiary volcanic rocks: the Wapiti Formation, composed of volcanic breccia, poorly sorted volcanic breccia mudflows, and lava flows, and clearly shown in many places by inter lensing and intermixing of the calcibreccia with basal volcanic rocks. As the weight of volcanic overburden increased, the unstable water-saturated calcibreccia became mobile and semifluid and was injected upward as dikes into the overlying volcanic rocks and to a lesser extent into rocks of the upper plate. In some places the lowermost part of the volcanic overburden appears to have flowed with the calcibreccia to form dike like bodies of mixed volcanic rock and calcibreccia. One calcibreccia dike even contains carbonized wood, presumably incorporated into unconsolidated calcibreccia on the surface of tectonic denudation and covered by volcanic rocks before moving upward with the dike. Angular xenoliths of Precambrian rocks, enclosed in another calcibreccia dike and in an adjoining dikelike mass of volcanic rock as well, are believed to have been torn from the walls of a vent and incorporated into the basal part of the Wapiti Formation overlying the clastic carbonate rock on the fault surface. Subsequently, some of these xenoliths were incorporated into the calcibreccia during the process of dike intrusion. Throughout the Heart Mountain fault area, the basal part of the upper-plate blocks or masses are brecciated, irrespective of the size of the blocks, more intensely at the base and in places

  13. Mixing of biogenic siliceous and terrigenous clastic sediments: South Belridge field and Beta field, California

    SciTech Connect

    Schwartz, D.E. )

    1990-05-01

    The intermixing and interbedding of biogenically derived siliceous sediment with terrigenous clastic sediment in reservoirs of upper Miocene age provides both reservoir rock and seal and influences productivity by affecting porosity and permeability. Miocene reservoirs commonly contain either biogenic-dominated cyclic diatomite, porcelanite, or chert (classic Monterey Formation) or clastic-dominated submarine fan sequences with interbedded or intermixed siliceous members of biogenic origin. Biogenic-clastic cycles, 30-180 ft thick, at South Belridge field were formed by episodic influx of clastic sediment from distant submarine fans mixing with slowly accumulating diatomaceous ooze. The cycles consist of basal silt and pelletized massive diatomaceous mudstone, overlain by burrowed, faintly bedded clayey diatomite and topped by laminated diatomite. Cycle tops have higher porosity and permeability, lower grain density, and higher oil saturation than clay and silt-rich portions of the cycles. Submarine fan sediments forming reservoirs at the Beta field are comprised of interbedded sands and silts deposited in a channelized middle fan to outer fan setting. Individual turbidites display fining-upward sequences, with oil-bearing sands capped by wet micaceous silts. Average sands are moderately to poorly sorted, fine- to medium-grained arkosic arenites. Sands contain pore-filling carbonate and porcelaneous cements. Porcelaneous cement consists of a mixture of opal-A, opal-CT, and chert with montmorillonite and minor zeolite. This cement is an authigenic material precipitated in intergranular pore space. The origin of the opal is biogenic, with recrystallization of diatom frustules (opal-A) into opal-CT lepispheres and quartz crystals. Porcelaneous cement comprises 4-21% of the bulk volume of the rock. Seventy percent of the bulk volume of the cement is micropore space.

  14. Pre-lithification tectonic foliation development in a clastic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David; Timmermann, Martin; Dewey, John

    2016-04-01

    The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case fabric development is achieved by a number of deformation mechanisms including grain rigid body rotation, crystal-plastic deformation and pressure solution (wet diffusion). The latter is believed to be the primary mechanism responsible for shortening and the domainal structure of cleavage development commonly observed in low grade metamorphic rocks. In this study we combine field observations with strain analysis and modelling to fully characterise considerable (>50%) mid-Devonian Acadian crustal shortening in a Devonian clastic sedimentary sequence from south west Ireland. Despite these high levels of shortening and associated penetrative tectonic fabric there is a marked absence of the expected domainal cleavage structure and intra-clast deformation, which are expected with this level of deformation. In contrast to the expected deformation processes associated with conventional cleavage development, fabrics in these rocks are a product of translation, rigid body rotation and repacking of extra-formational clasts during deformation of an un-lithified clastic sedimentary sequence.

  15. Offscraping accretion of Jurassic chert-clastic complexes in the Mino-Tamba belt, central Japan

    NASA Astrophysics Data System (ADS)

    Kimura, Katsumi; Hori, Rie

    1993-02-01

    Detailed structural and biostratigraphical analysis of the Jurassic Inuyama Sequence, a coherent chert-clastic complex in the Mino-Tamba Belt, central Japan, clarifies the evolution of accretionary processes at shallow structural levels. The Inuyama Sequence is characterized by a series of stacked thrust sheets. Each sheet consists of an Early Triassic to Middle Jurassic oceanic plate stratigraphy composed of four lithologic units which are, in ascending order: siliceous claystone; ribbon chert; siliceous mudstone; and clastic rocks. The structural features of the Inuyama Sequence demonstrate a four-stage progressive deformation. (1) A décollement was initiated within the siliceous mudstone when this sequence was just seaward of the deformation front. Clastic dikes and sills formed at the horizon just above the décollement at this time. (2) The stratigraphic section above the décollement was imbricated by in-sequence thrusting in the frontal part of the wedge. This initial stage of thrusting and imbrication was followed by (3) the formation of duplex structures with fault-related folds within the lower stratigraphic section as the décollement stepped down-section to the lowest siliceous claystone interval. Finally, (4) these thrust packages were overprinted by secondary prism thickening in the form of out-of-sequence thrust faulting.

  16. Model for the incorporation of plant detritus within clastic accumulating interdistributary bays

    SciTech Connect

    Gastaldo, R.A.; McCarroll, S.M.; Douglass, D.P.

    1985-01-01

    Plant-bearing clastic lithologies interpreted as interdistributary bay deposits are reported from rocks Devonian to Holocene in age. Often, these strata preserve accumulations of discrete, laterally continuous leaf beds or coaly horizons. Investigations within two modern inter-distributary bays in the lower delta plain of the Mobile Delta, Alabama have provided insight into the phytotaphonomic processes responsible for the generation of carbonaceous lithologies, coaly horizons and laterally continuous leaf beds. Delvan and Chacalooche Bays lie adjacent to the Tensaw River distributary channel and differ in the mode of clastic and plant detrital accumulation. Delvan Bay, lying west of the distributary channel, is accumulating detritus solely by overbank deposition. Chacaloochee Bay, lying east of the channel, presently is accumulating detritus by active crevasse-splay activity. Plant detritus is accumulating as transported assemblages in both bays, but the mode of preservation differs. In Delvan Bay, the organic component is highly degraded and incorporated within the clastic component resulting in a carbonaceous silt. Little identifiable plant detritus can be recovered. On the other hand, the organic component in Chacaloochee Bay is accumulating in locally restricted allochthonous peat deposits up to 2 m in thickness, and discrete leaf beds generated by flooding events. In addition, autochthonous plant accumulations occur on subaerially and aerially exposed portions of the crevasse. The resultant distribution of plant remains is a complicated array of transported and non-transported organics.

  17. Belize model, a carbonate-clastic shelf buildup

    SciTech Connect

    Shepard, W.

    1987-05-01

    Belize, a small Central American country located on the Caribbean Sea south of the Yucatan Peninsula, offers an excellent modern analog of a mixed carbonate/clastic shelf buildup. Its 175-mi long reef tract, second longest in the world, restricts a shallow shelf depobasin into which terrigenous clastics source from the Maya Mountains to the west and carbonates dominate from the east. Mixed lithologies occur along strandlines, in submarine channels, and in lagoons and river-delta fronts, which are scattered throughout the depobasin. Energy sources from both land and sea influence sedimentation. Heavy summer rains flood the basin with arkosic and quartzose clastics, and periodic sea storms and hurricanes drive carbonate particles from the reef tract landward into the basin. Modern environments include the reef tract, carbonate tidal flats, shallow shelf patch reefs, lagoons, cayes, mainland coast deltas, estuaries, lagoons, and beach/bar barriers. Modern sediments include reef metazoans, algae, coralline algae, lime mud, quartz, and feldspathic sand and clay. The setting for the model has been influenced by Tertiary tectonics and Pleistocene sea level changes. Karstification occurred during the past 10,000 years, partly controlling topography and resulting Holocene sediment patterns. Facies patterns of the Belize Holocene are compared to the Jurassic of Montana. The Middle Jurassic Piper Formation exhibits a nearly 100-mi long carbonate barrier/buildup restricting a clastic-dominated shelf. Other ancient mixed carbonate/clastic terranes may fit this model as well.

  18. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  19. Sequence stratigraphy simulations of carbonate, clastics, and mixed basin margins

    SciTech Connect

    Kendall, C.G.St.C.; Moore, P.; Birdwell, B.A.; Rouchie, L.; Cannon, R. ); Biswas, G. ); Bezdek, J. )

    1991-03-01

    Clastics, carbonates, and their mixtures have different depositional and post-depositional behavior that produces the different margin characteristics seen in seismic sequences. Carbonates undergo early cementation while maintaining higher angles of repose, while clays and sands accumulate at lower-angle slopes whose inclination is proportional to the grain size and post-depositional cohesive behavior. In higher energy regimes, waves or currents winnow less cohesive finer material that is transported downdip to from slope sediments rimming the basin. Simulations of mixed carbonate-clastic sediment accumulation, tectonism, and eustasy for settings in the Permian basin of west Texas and New Mexico show that sharp differentiation of clastics from carbonates is a product of higher angles of repose that carbonates maintain and the higher rates of clastic input at lowstands in sea level. In contrast, simulation of mixed grain-size margins like the Exmouth Plateau of Western Australia, the Baltimore Canyon, and the Gulf Coast Tertiary indicate that muds are winnowed preferentially from shelf-margin crests but accumulate on slopes, while sands accumulate on higher energy shelves. When they bypass at lowstands in sea level, they accumulate in the near slope basin but not on the slope. Simulation of pure carbonate systems like that of the Bahamian platform suggests that progradation is greatest in areas of low wave and current energy while backstepping and cliffed margins occur in high energy settings. The ability to accurately simulate mixed carbonate-clastic slopes is a key to development of exploration and production models of these systems.

  20. Challenges modeling clastic eruptions: applications to the Lusi mud eruption, East Java, Indonesia.

    NASA Astrophysics Data System (ADS)

    Collignon, Marine; Schmid, Daniel; Mazzini, Adriano

    2016-04-01

    Clastic eruptions involve brecciation and transport of the hosting rocks by ascent fluids (gas and/or liquids), resulting in a mixture of rock clasts and fluids (i.e. mud breccia). This kind of eruptions is often associated with geological features such as mud volcanoes, hydrothermal vents or more generically with piercement structures. Over the past decades, several numerical models, often based on those used in volcanology, have been employed to better understand the behavior of such clastics systems. However, modeling multiphase flow is challenging, and therefore most of the models are considering only one phase flow. Many chemical, mechanical and physical aspects remain still poorly understood. In particular, the rheology of the fluid is one of the most important aspects, but also the most difficult to characterize. Experimental flow curves can be obtained on the finest fraction, but coarser particles (> 1mm) are usually neglected. While these experimental measurements usually work well on magma, they are much more difficult to perform when clay minerals are involved. As an initial step, we use analytical and simplified numerical models (flow in a pipe) to better understand the flow dynamics within a main conduit connected to an overpressured reservoir. The 2D numerical model solves the stokes equations, discretized on a finite element mesh. The solid phase is treated as rigid particles in suspension in the liquid. The gaseous phase (methane and carbon dioxide) is treated in an analytical manner using the equations of state of the H2O-CO2 and H2O-CH4 systems. Here, we present an overview of the state-of-the-art in modeling clastic eruptions as well as the limitations and challenges of such numerical models. We also discuss the challenges associated to the specific case of Lusi. In particular the difficulty to characterize the mud properties and the technical challenges associated with the acquisition of new data and development of more sophisticated models

  1. Saucer-shaped Clastic Intrusions and Associated Injectites in the Westerm San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Hurst, A.; Vigorito, M.; Vetel, W.; Cartwright, J.

    2007-12-01

    Clastic sills, including saucer-shaped intrusions, are the most volumetrically significant clastic intrusions in the Panoche Giant Injectite Complex (PGIC). Injection occurred in the Lower Paleocene during a period of inversion caused by the convergence of the Pacific and North American plates. Almost 400 km2 of exposure reveals the relationships between clastic intrusions, their parent beds and seafloor sand extrusions (extrudites). Sand was injected into partially-consolidated deepwater mudstones of late Cretaceous and early Paleocene age in a single event but with many pulses that produced cross-cutting intrusions. More than 40 km3 of sand is estimated to have injected within the area of outcrop. The total thickness of strata cut by injections (from deepest known Lower Cretaceous parent bed to extrudite) is in excess of 1.2 km. Saucer-shaped intrusions are composite features that comprise sills, low-angle dikes and dike swarms, arranged as low-angle conical or saucer-shaped injected units that exhibit a semi-elliptical to horse-shoe geometry in plan view and are V- or U-shaped in cross section. Saucer-shaped intrusions are 500 to 1.5km wide and in some cases cut through more than 250 m of stratigraphic section. The lowest parts of the saucer-shaped intrusions consists of multiply-stacked, low-angle dikes up to 80m thick that cut the stratigraphy at angles between 5-10º and locally exhibit stepped or transgressive geometry. The low-angle dykes are 8 to 20 m wide and laterally continuous over distances of a few to several hundreds of metres. Steeper segments (up to 30 deg) emanate laterally from the periphery of the lowest units and cut through the host-rock for a few up to several tens of metres, pinching-out laterally over distances of several tens to a few hundreds of metres. At their margins the saucer-shaped intrusions are bounded by steep (50-70 deg), narrow dikes (generally <1 m wide); such dikes are unlikely to be imaged on seismic data. The central areas

  2. Mississippian clastic-to-carbonate transition in the northeastern Brooks Range, Alaska: Depositional cycles of the Endicott and Lisburne Groups

    SciTech Connect

    Lepain, D.L.; Crowden, R.K.; Watts, K.F. )

    1990-05-01

    The Ellesmerian sequence in northeastern Alaska consists of a thick succession of Mississippian to Lower Cretaceous platform carbonate and terrigenous clastic rocks. At the base of the Ellesmerian sequence, clastic rocks of the Endicott Group are the lower part of a major transgressive sequence that passes gradationally upward into carbonates of the Lisburne Group. In the Endicott Group, the basal Kekiktuk Conglomerate was deposited in fluvial and marginal marine environments. A broad suite of tidally influenced, shallow-marine environments are recorded in the overlying Kayak Shale. The transition into carbonate platform rocks of the Lisburne Group is recorded in a series of depositional cycles developed within the upper half of the Kayak Shale. In the lower beds of the transition, the depositional cycles are multiple upward-thickening and upward-coarsening successions composed of (1) organic-rich siltstone containing flaser-bedded and lenticular-bedded fine-grained sandstone, (2) fine-grained, ripple-laminated quartzarenite, and (3) an intensely bioturbated horizon of medium- to coarse-grained quartzarenite that contains scattered brachiopods, bryozoa, and crinoids. Each cycle is terminated by a sharp transgressive surface that consists of a thin shale drape. Near the top of the Kayak Shale, the coarse-grained horizons become increasingly replaced by wackestone, grainstone, and coralline boundstone. Despite the lithologic change, the vertical upward-thickening and upward-coarsening cycles continue in the basal limestone of the Lisburne Group. Repeated upward-shallowing episodes, followed by coastal onlap, are likely mechanisms for this cyclicity and suggests a genetic relation between both the clastic and carbonate depositional cycles.

  3. Deep-water facies and petrography of the Galoc clastic unit, offshore Palawan, Philippines (south China Sea)

    SciTech Connect

    Link, M.H.; Helmold, K.P.

    1988-02-01

    The lower Miocene Galoc clastic unit, offshore Palawan, Philippines, is about 500-600 ft thick. The unit overlies the Galoc Limestone and is overlain by the Pelitic Pagasa Formation. The Galoc clastic unit consists of alternating quartzose sandstone, mudstone, and resedimented carbonate deposited at bathyal depths, mainly as turbidites. The deep-water deposits are confined to the axis of a northeast-trending trough in which slope, submarine channel, interchannel, depositional lobe, slump, and basinal facies are recognized. Eroded shallow-marine carbonate lithoclasts are commonly incorporated within the siliciclastic turbidites. The main reservoir sandstones occur in submarine channels and depositional lobes. The sandstones are texturally submature, very fine to medium-grained feldspathic litharenites and subarkoses. The sandstones have detrital modes of Q78:F11:L11 and Qm51:F11:Lt38, with partial modes of the monocrystalline components of Qm82:P13:K5. Lithic fragments include chert, shale, schist, volcanic rock fragments, and minor plutonic rock fragments. Porosity in the better reservoir sandstones ranges from 11 to 25%, and calcite is the dominant cement. Dissolution textures and inhomogeneity of calcite distribution suggest that at least half of the porosity in the sandstones has formed through the leaching of calcite cement and labile framework grains. A source terrain of quartzo-feldspathic sediments and metasediments, chert, volcanics, and acid-intermediate plutonic rocks is visualized.

  4. Clastic depositional styles and reservoir potential of Mediterranean basins

    SciTech Connect

    Bouma, A.H. )

    1990-05-01

    A variety of tectonic styles and activities throughout the late Mesozoic and younger epochs influenced sediment transport to the Mediterranean basins and, consequently, the approach needed to finding reservoir-type clastics. The style of the present-day basins varies from west to east, with large basinal depressions and continental rises in the western province, more elongate shapes in the central area, and numerous small basins and trenches in the eastern Mediterranean. In general terms, all these basins contain a similar fill: a deep-water sequence older than late Miocene, overlain by upper Miocene evaporites, and topped by Pliocene-Quaternary clastics. The exact type of fill depends on several factors, including proximity to the sediment source, climatic conditions, subsidence and tectonic activity, and tectono-eustatic or glacio-eustatic oscillations. Investigations on many of the clastic reservoirs in Mediterranean basins should emphasize submarine fans. The modern Mediterranean Sea contains several mid-sized fans (Rhone, Ebro, Valencia, and Nile fans) and many small ones (e.g., Crati Fan). There are several well-studied Tertiary subsurface and outcropping turbidite systems. The concept of deep-water marine sands, and many of the initial studies, began with some of the now classic outcrops in Italy, France, and Spain. A well-integrated study of both modern and ancient turbidite series is needed to construct basic exploration models for the Mediterranean region. 9 figs., 1 tab.

  5. Martian sediments and sedimentary rocks

    NASA Technical Reports Server (NTRS)

    Markun, C. D.

    1988-01-01

    Martian sediments and sedimentary rocks, clastic and nonclastic, should represent a high priority target in any future return-sample mission. The discovery of such materials and their subsequent analysis in terrestrial laboratories, would greatly increase the understanding of the Martian paleoclimate. The formation of Martian clastic sedimentary rocks, under either present, low-pressure, xeric conditions or a postulated, high-pressure, hydric environment, depends upon the existence of a supply of particles, various cementing agents and depositional basins. A very high resolution (mm-cm range) photographic reconnaissance of these areas would produce a quantum jump in the understanding of Martian geological history. Sampling would be confined to more horizontal (recent) surfaces. Exploration techniques are suggested for various hypothetical Martian sedimentary rocks.

  6. Mineralogy and geochemistry of pseudogley soils and recent alluvial clastic sediments in the Ngog-Lituba region, Southern Cameroon: An implication to their genesis

    NASA Astrophysics Data System (ADS)

    Ndjigui, Paul-Désiré; Ebah Abeng, Sandrine Appolonie; Ekomane, Emile; Nzeukou, Aubin Nzeugang; Ngo Mandeng, Francine Sidonie; Matoy Lindjeck, Marthe

    2015-08-01

    Mineralogical and geochemical investigations have been done on the hydromorphic clays (pseudogley soils and recent alluvial clastic sediments) in the Sanaga Maritime region (Southern Cameroon). Pseudogley soils are developed on gneisses from the Yaoundé Group. They have a dark brown to greyish brown color, with silty clay texture. Their mineral assemblage is made up of kaolinite, goethite, quartz, smectite, rutile, muscovite-illite and feldspars. The alluvial clastic sediments are characterized by variable colors (purple yellow, greenish, dark brown and purple brown) and sandy clay to clay texture. The mineral assemblage of alluvial clays is similar to that of pseudogley soils. SEM observations confirm the presence of kaolinite, smectite, quartz and muscovite-illite. Infrared data show that kaolinite is more orderly in pseudogley than in the alluvial clastic sediments. The Ngog-Lituba gneisses have moderate contents in SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O and several trace elements including REE. High element depletion is noticed in the pseudogley soils except Cr, V, Zr, Pb and REE. However, the alluvial clays are marked by a strong mobilization of LILE (Na, K, Ba, Rb and Sr) and REE, relative to the parent rock and pseudogley soils. The chondrite-normalized REE patterns are homogenous and parallel with Ce-anomalies. The (La/Yb)N shows that the REE fractionation increase from the parent rock to the alluvial clastic sediments. The mineralogical and geochemical features show that the clastic river sediments are derived from the erosion of the neighboring pseudogley materials before hydraulic sorting.

  7. Emplacement of the Jurassic Mirdita ophiolites (southern Albania): evidence from associated clastic and carbonate sediments

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair H. F.; Ionescu, Corina; Hoeck, Volker; Koller, Friedrich; Onuzi, Kujtim; Bucur, Ioan I.; Ghega, Dashamir

    2012-09-01

    Sedimentology can shed light on the emplacement of oceanic lithosphere (i.e. ophiolites) onto continental crust and post-emplacement settings. An example chosen here is the well-exposed Jurassic Mirdita ophiolite in southern Albania. Successions studied in five different ophiolitic massifs (Voskopoja, Luniku, Shpati, Rehove and Morava) document variable depositional processes and palaeoenvironments in the light of evidence from comparable settings elsewhere (e.g. N Albania; N Greece). Ophiolitic extrusive rocks (pillow basalts and lava breccias) locally retain an intact cover of oceanic radiolarian chert (in the Shpati massif). Elsewhere, ophiolite-derived clastics typically overlie basaltic extrusives or ultramafic rocks directly. The oldest dated sediments are calpionellid- and ammonite-bearing pelagic carbonates of latest (?) Jurassic-Berrasian age. Similar calpionellid limestones elsewhere (N Albania; N Greece) post-date the regional ophiolite emplacement. At one locality in S Albania (Voskopoja), calpionellid limestones are gradationally underlain by thick ophiolite-derived breccias (containing both ultramafic and mafic clasts) that were derived by mass wasting of subaqueous fault scarps during or soon after the latest stages of ophiolite emplacement. An intercalation of serpentinite-rich debris flows at this locality is indicative of mobilisation of hydrated oceanic ultramafic rocks. Some of the ophiolite-derived conglomerates (e.g. Shpati massif) include well-rounded serpentinite and basalt clasts suggestive of a high-energy, shallow-water origin. The Berriasian pelagic limestones (at Voskopoja) experienced reworking and slumping probably related to shallowing and a switch to neritic deposition. Mixed ophiolite-derived clastic and neritic carbonate sediments accumulated later, during the Early Cretaceous (mainly Barremian-Aptian) in variable deltaic, lagoonal and shallow-marine settings. These sediments were influenced by local tectonics or eustatic sea

  8. The Rocks of the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth; Hurowitz, Joel; Kusack, Alastair; McSween, Harry Y.; Ming, Douglas W.; Morris, Richard V.; Ruff, Steven W.; Wang, Alian; Yen, Albert

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.

  9. Clastic Pipes: Proxies of High Water Tables and Strong Ground Motion, Jurassic Carmel Formation, Southern Utah

    NASA Astrophysics Data System (ADS)

    Wheatley, David; Chan, Marjorie

    2015-04-01

    Multiple soft sediment deformation features from bed-scale to basin-scale are well preserved within the Jurassic Carmel Formation of Southern Utah. Field mapping reveals thousands of small-scale clastic injectite pipes (10 cm to 10 m diameter, up to 20 m tall) in extremely high densities (up to 500+ pipes per 0.075 square kilometers). The pipes weather out in positive relief from the surrounding host strata of massive sandstone (sabkha) and crossbedded sands with minor conglomerate and shale (fluvial) deposits. The host rock shows both brittle and ductile deformation. Reverse, normal, and antithetical faulting is common with increased frequency, including ring faults, surrounding the pipes. The pipes formed from liquefaction and subsequent fluidization induced by strong ground motion. Down-dropped, graben blocks and ring faults surrounding pipes indicate initial sediment volume increase during pipe emplacement followed by sediment volume decrease during dewatering. Complex crosscutting relationships indicate several injection events where some pipe events reached the surface as sand blows. Multiple ash layers provide excellent stratigraphic and temporal constraints for the pipe system with the host strata deposited between 166 and 164 Ma. Common volcanic fragments and rounded volcanic cobbles occur within sandstone and conglomerate beds, and pipes. Isolated volcanic clasts in massive sandstone indicate explosive volcanic events that could have been the exogenic trigger for earthquakes. The distribution of pipes are roughly parallel to the Middle Jurassic paleoshoreline located in marginal environments between the shallow epicontinental Sundance Sea and continental dryland. At the vertical stratigraphic facies change from dominantly fluvial sediments to dominantly massive sabkha sediments, there is a 1-2 m-thick floodplain mudstone that was a likely seal for underlying, overpressurized sediments. The combination of loose porous sediment at a critical depth of water

  10. Volga-Ural basin, U. S. S. R. : Rich petroleum systems with a single source rock

    SciTech Connect

    Ulmishek, G.F. )

    1991-03-01

    The Volga-Ural basin has produced about 40 billion barrels of oil and still produces a billion barrels annually. The productive Middle Devonian-Lower Permian sequence is composed of various carbonate rocks (including reefs) with clastic intervals in the Middle Devonian-lower Frasnian, middle-upper Visean, and Middle Carboniferous. A single source-rock unit, the Frasnian Domanik Formation, 30-60 m thick, is responsible for productivity of the entire sedimentary section. The three clastic intervals and underlying carbonate strata contain the bulk of the hydrocarbon reserves. Widespread upward and downward vertical migration in this structurally simple basin is explained by imperfect regional seals. Imperfection of the seals has also resulted in a predominance of oil over gas. The best seal is the overpressured Domanik Formation itself; it separates the sedimentary section into two petroleum systems: one in underlying Middle Devonian-lower Frasnian clastics and the other in overlying clastic and carbonate rocks.

  11. Late Mississippian (Chesterian) carbonate to carbonate-clastic cycles in the eastern Illinois Basin

    SciTech Connect

    Smith, L.B.; Read, J.F. )

    1994-03-01

    Late Mississippian (Chesterian) rocks of the eastern Illinois Basin in Kentucky and Indiana show depositional cycles (3--20 meters thick) composed of a range of facies deposited during the transition from carbonate-dominated deposition of the Middle Mississippian to the predominantly siliciclastic regime of the Pennsylvanian. Within the basal Ste. Genevieve Formation (30--70 meters thick) there are five predominantly carbonate cycles. Cycle bases vary from thin calcareous sandstone near the northern clastic source to ooid-quartz dolomitic pelletal grainstone and mudstone further south. Massive cross-bedded and channeled ooid-skeletal grainstones represent the cycle tops and are commonly capped by caliche and subaerial breccia, particularly where there was no subsequent siliciclastic deposition. The cycles are interpreted to be driven by fourth-order (400 k.y.) glacio-eustatic sea-level fluctuations based on coincidence of the calculated cycle period with the long-term eccentricity signal, the Late Mississippian onset of Gondwana glaciation and cycle correlation over more than 100 kilometers. The breccia and caliche formed during lowstands, the siliciclastics, eolianites and dolomitic pelletal grainstones are transgressive facies and the ooid-skeletal grainstones represent sea-level highstands.

  12. Origin and depositional setting of pre-Devonian, coarse-clastic sequences in the central Transantarctic Mountains: Evidence of one or more tectonic events

    SciTech Connect

    Rees, M.N. )

    1987-09-01

    The Transantarctic Mountains extend over 4,000 kilometers between the Weddell and Ross seas and form the western boundary of the east antarctic craton. Within the mountain chain and in the Ellsworth Mountains in West Antarctica, Upper Proterozoic and Lower Paleozoic rocks crop out in isolated areas. From regional mapping and some detailed studies geologists have shown that generally these areas have similar geologic histories, but these studies also have indicated that differences in stratigraphy and structure exist. The study focuses on two sequences of conglomerate and sandstone, one in the central Transantarctic Mountains and the other in northern Victoria Land. The similarity in stratigraphy of the clastic sequences in these areas suggests that a genetic relationship may exist between the two geographically widespread areas. To improve the understanding of the tectonic and geologic history of rocks in these areas, the authors will analyze facies to establish the depositional settings, evaluate the sediment composition to ascertain the lithologies and ages of the source areas, determine ages of interbedded volcanic rocks, collect fossils from fine-grained sedimentary units to establish the age of deposition, and examine the relationship between the coarse-clastic sequences and underlying formations. From these data, he will try to determine if the tectonic setting that controlled the origin and distribution of the sequences later deformed them. If he can determine that there is a genetic relationship between the coarse-clastic rocks of the Bowers terrane and those in the central Transantarctic Mountains, these data will greatly modify scientific understanding of the lower Paleozoic development of the western continental margin of Antarctica and perhaps of Gondwana.

  13. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A; Eysa, E A

    2013-03-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively. PMID:23306160

  14. Predicting carbonate mineral precipitation/dissolution events during progressive diagenesis of clastic rocks

    SciTech Connect

    Surdam, R.C.; MacGowan, D.B.; Dunn, T.L. ); Moraes, M. )

    1991-03-01

    There is an observable, regular progression of early and late carbonate cements that is separated by carbonate mineral dissolution in many sandstones during progressive burial and diagenesis. The distribution of early cements is a function of incipient hydration of framework grains, sulfate reduction, and bacterial methanogenesis. These early cements typically precipitate from the sediment water interace to burial depths corresponding to about 80C. The distribution of late carbonate cements is a function of the relationship of organic acid anions, aluminosilicate reactions and CO{sub 2} in formation waters. Elevated PCO{sub 2} in a fluid where the pH is buffered by organic acid anions or aluminosilicates results in precipitation of a late carbonate cement (typically ferroan); these late carbonate cements generally form over the temperature interval of 100-130C. The late and early carbonate cement events are separated in time by a period of carbonate mineral dissolution or nonprecipitation. This dissolution is related to the increase in concentration of carboxylic acid anions resulting from the thermocatalytic cracking of oxygen-bearing functional groups from kerogen and/or redox reactions involving kerogen. Examples of the importance of early carbonate cementation/decementation to hydrocarbon reservoirs include the Campos basin of Brazil and the U.S. Gulf Coast. An example of late carbonate cementation/decementation includes the Norphlet Formation. This observed sequence of cementation and decementation can be modeled, and the modeling results can be used to predict enhanced porosity in the subsurface.

  15. Characterization of Clastic Dikes Using Controlled Source Audio Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Persichetti, J. A.; Alumbaugh, D.

    2001-12-01

    A site consisting of 3D geology on the Hanford Reservation in Hanford, Washington, has been surveyed using Controlled Source Audio Magnetotellurics (CSAMT) to determine the method's ability to detect clastic dikes. The dikes are fine-grained, soft-sediment intrusions, formed by the buoyant rise of buried, unconsolidated, water rich mud into overlying unconsolidated sediment. The dikes are of major importance because they may act as natural barriers inhibiting the spread of contaminants, or as conduits, allowing the contaminants to be quickly wicked away from the contaminant storage tanks that may be located in close vicinity of the dikes. The field setup consisted of a 33 meter by 63 meter receiver grid with 3 meter spacing in all directions with the transmitter positioned 71.5 meters from the center of the receiver grid. A total of 12 frequencies were collected from 1.1kHz to 66.2kHz. The CSAMT data is being analyzed using a 2D CSAMT RRI code (Lu, Unsworth and Booker, 1999) and a 2D MT RRI code (Smith and Booker, 1991). Of interest is examining how well the 2D codes are able to map 3D geology, the level of resolution that is obtained, and how important it is to include the 3D source in the solution. The ultimate goal is to determine the applicability of using CSAMT for mapping these types of features at the Hanford Reservation site.

  16. Caldera formation and varied eruption styles on North Pacific seamounts: the clastic lithofacies record

    NASA Astrophysics Data System (ADS)

    Portner, Ryan A.; Clague, Dave A.; Paduan, Jennifer B.

    2014-08-01

    Detailed examination of volcaniclastic and sedimentary rocks collected from the Taney (30 Ma), President Jackson (4 Ma), Vance (3 Ma) and Alarcon (2 Ma) near-ridge seamount chains of the North Pacific reveals seven clastic lithofacies that record various modes of eruption, magma fragmentation, and particle dispersal. Lithofacies are distinguished by differences in lithology, bedding habit, compositional heterogeneity, and relationship to volcanic landforms. Breccia lithofacies were produced through mechanical fragmentation during caldera collapse (polymict) or effusive eruptions onto steep slopes (monomict). Rare globular lapilli mudstone lithofacies contain clasts with morphologies formed by magma-sediment mingling processes (peperite). Seamount summit pyroclastic deposits include proximal lapilli tuff with vesicular pyroclasts, and more distal limu o Pele tuff lithofacies. Much finer-grained hydrothermal mudstone/tuff lithofacies occurs around caldera rims and contains greenschist minerals, hydrothermal clays and basaltic ash that record subsurface phreatomagmatic fragmentation processes. Very fine-grained ash is transported to distal regions by oceanic currents and hydrothermal plumes, and is a component of the regional pelagic sediment budget. Pyroclastic lithofacies only occur on seamount summits suggesting formation during the latter stages of seamount evolution. As a seamount drifts away from an adjacent ridge axis and associated heat source, its magma supply is reduced allowing for magmatic gas buildup and mild explosive eruptions. During this stage, the diminished melt supply under the seamount is unable to fully compensate for extension along the ridge axis and vertical seamount growth. Lateral intrusion into spreading-related structures in this stage causes magma withdrawal and caldera formation. Formation of caldera ring faults also promotes seawater ingress into subseafloor hydrothermal cells, which interact with magma conduits causing phreatomagmatic

  17. A simple model of clastic sediments on Mars

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Malin, Michael C.

    1993-01-01

    In preparation for the start of Mars Observer operations at Mars later this year, Viking Infrared Thermal Mapper (IRTM) observations were synthesized into a simple but geologically coherent conceptual model for use in establishing targets for coordinated Thermal Emission Spectrometer (TES) and Mars Observer Camera (MOC) observations. The model is based on three assumptions that are, at best, only partly true: that albedo is a measure of the presence or absence of dust; that thermal inertia is a measure of the weighted average particle size; and that rock abundance is a measure of the statistical thickness of fine sediment (i.e., that the observed areal abundance of rock reflects the whole or partial burial of rocks). Using this model, it is possible to show that, on the scale of 30 km, mantles of wind-transportable sediment (dust and sand) are at most about 1 m thick, and that on a global average such mantles are about 35 cm thick. It is shown that 3.8 x 10(exp 19) cu cm of such sediment covers Mars equatorward of +/- 60 deg latitude. Using the model, interpretation of digital maps of IRTM data focus attention not only on areas where dust is the primary sediment (e.g., Arabia Terra), but also on areas where sand is the primary sediment (e.g., eastern Valles Marineris) and where rocks and other coarse materials are abundant (e.g., eastern Kasei Vallis). Three IRTM data sets are used in the analysis: Viking 1 and 2 pre-dawn observations mosaiced into a global map of single-point thermal inertias at 0.5 deg/bin resolution; Pleskot and Miner's global albedo map using the best available, clear-period IRTM observations (1x/bin); and Christensen's 1 deg/bin rock abundance map. Uncertainty analyses indicate these data sets to be accurate to 5 percent, 2 percent, and 20 percent, respectively.

  18. Granitic rocks and metasediments in Archean crust, Rainy Lake area, Ontario: ND isotope evidence for mantle-like SM/ND sources

    NASA Technical Reports Server (NTRS)

    Shirey, S. B.; Hanson, G. N.

    1983-01-01

    Granitoids, felsic volcanic rocks and clastic metasediments are typical rocks in Archean granite-greenstone belts that could have formed from preexisting continentasl crust. The petrogenesis of such rocks is assessed to determine the relative roles of new crust formation or old crust formation or old crust recycling in the formation of granite-greenstone belts.

  19. Clastic-hosted stratiform, vein/breccia and disseminated Zn-Pb-Ag deposits of the northwestern Brooks Range, AK: Are they different expressions of dewatering of the same source basin

    SciTech Connect

    Schmidt, J.M. ); Werdon, M.B. . Dept. of Geology)

    1993-04-01

    Sphalerite and galena, with significant silver occur in 3 distinct types of mineralization hosted in Upper Devonian and Carboniferous clastic rocks of the northwestern Brooks Range. The best known are Zn-Pb-Ag massive sulfide deposits with variable pyrite, barite, and hydrothermal silifica hosted in Mississippian (to Pennsylvanian ) black siliceous shale and chert, and similar to shale-hosted Pb-Zn massive sulfide deposits worldwide. Zn-Pb-Ag breccias and veins are hosted in Upper Devonian to Lower Mississippian fine-grained quartzites and siltstone which stratigraphically underlie the massive sulfide-hosting units. The breccia-vein and disseminated occurrences are co-extensive with the rocks that host massive sulfide deposits, and with the western part of the Endicott Group clastic basin. Pb isotopic ratios of galena from all the deposits are remarkably uniform, and suggest a single Pb source. The authors genetic model suggests that all types are the result of dewatering of a single clastic source basin. Different mineralization styles are probably due to variable depths of emplacement (at or below the seafloor), thermal variations related to extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional faulting and permeability variations in local stratigraphy. The most likely sources for Zn and Pb are clay minerals within the lowermost (Hunt Fork Shale) portions of the western Endicott Group.

  20. 70193-Influence of Clastic Dikes on Vertical Migration of Contaminants in the Vadose Zonde at Hanford

    SciTech Connect

    Christopher J Murray; Anderson L. Ward; John L. Wilson

    2004-04-07

    The purpose of this study was to examine the hypothesis that clastic dikes could form a preferential flow path through the vadose zone to the water table at the Hanford Site. Clastic dikes are subvertical structures that form within sedimentary sequences after deposition and cut across the original sedimentary layers. They are common throughout the Hanford Site, often occurring in organized polygonal networks. In the initial phase of the project, we analyzed the large-scale geometry of the clastic dikes and developed an algorithm for simulating their spatial distribution. This result will be useful in providing maps of the potential distribution of clastic dikes in areas where they are not exposed at the surface (e.g., where covered by windblown sand or construction of facilities like tank farms at the surface). In addition to the study of the large-scale distribution of the dikes, a major focus of the project was on field, laboratory, and modeling studies of the hydrogeological properties of the clastic dikes and the effect that they have on transport of water through the vadose zone. These studies were performed at two field locations at the Hanford Site. We performed an extensive series of field and laboratory measurements of a large number of samples from the clastic dikes, linked with infrared (IR) and visual imagery of the clastic dikes and surrounding matrix. We developed a series of correlations from the sample data that allowed us to estimate the unsaturated hydraulic conductivity of the dike and matrix at an extremely high resolution (approximately 1 mm). The resulting grids, each of which measured several meters on a side and included nearly four million grid nodes, were used to study the distribution of moisture between the clastic dike and surrounding matrix, as well as the relative velocities that moisture would have through the clastic dike and matrix for a number of different recharge scenarios. Results show the development of complex flow networks

  1. Cretaceous source rocks in Pakistan

    SciTech Connect

    Kari, I.B. )

    1993-02-01

    Pakistan is located at the converging boundaries of the Indian, Arabian, and Eurasian plates. Evolution of this tectonic setting has provided an array of environmental habitats for deposition of petroleum source rocks and development of structural forms. The potential Cretaceous source rocks in Central and South Indus Basin are spread over an area of about 300,000 km[sup 2]. With 2% cutoff on Total Organic Carbon, the average source rock thickness is 30-50 m, which is estimated to have generated more than 200 billion bbl of oil equivalent. To date, production of more than 30,000 bbl of oil and about 1200 million ft[sup 3] of gas per day can be directly attributed to Cretaceous source. This basin was an area of extensional tectonics during the Lower to Middle Cretaceous associated with slightly restricted circulation of the sea waters at the north-western margin of Indian Plate. Lower Cretaceous source rocks (Sembar Formation) were deposited while the basin was opening up and anoxia was prevailing. Similarly Middle to Upper Cretaceous clastics were deposited in setting favorable for preservation of organic matter. The time and depth of burial of the Cretaceous source material and optimum thermal regime have provided the requisite maturation level for generation of hydrocarbons in the basin. Central Indus basin is characterized by Cretaceous source rocks mature for gas generation. However, in South Indus Basin Cretaceous source rocks lie within the oil window in some parts and have gone past it in others.

  2. PROGRESS REPORT. INFLUENCE OF CLASTIC DIKES ON VERTICAL MIGRATION OF CONTAMINANTS IN THE VADOSE ZONE AT HANFORD

    EPA Science Inventory

    This research project addresses the effect of clastic dikes on contaminant transport in the vadose zone. Clastic dikes are vertically oriented subsurface heterogeneities that are common at the Hanford Site, including the subsurface sediments below the tank farms in the 200 West A...

  3. Clastic metasediments of the Early Proterozoic Broken Hill Group, New South Wales, Australia: Geochemistry, provenance, and metallogenic significance

    USGS Publications Warehouse

    Slack, J.F.; Stevens, B.P.J.

    1994-01-01

    Whole-rock analyses of samples of pelite, psammite, and psammopelite from the Early Proterozoic Broken Hill Group (Willyama Supergroup) in the Broken Hill Block, New South Wales, Australia, reveal distinctive geochemical signatures. Major-element data show high Al2O3 and K2O, low MgO and Na2O, and relatively high Fe2O3T MgO ratios, compared to average Early Proterozoic clastic metasediments. High field strength elements (HFSE) are especially abundant, including Nb (most 15-27 ppm), Ta (most 1.0-2.2 ppm), Th (17-36 ppm), Hf (4-15 ppm), and Zr (most 170-400 ppm); Y (33-74 ppm) is also high. Concentrations of ferromagnesian elements are generally low (Sc = < 20 ppm, Ni = ??? 62 ppm, Co = <26 ppm; Cr = most < 100 ppm). Data for rare earth elements (REEs) show high abundances of light REEs (LaCN = 116-250 ?? chondrite; LaCN = 437 in one sample), high LaCN YbCN ratios (5.6-13.9), and large negative Eu anomalies ( Eu Eu* = 0.32-0.57). The geochemical data indicate derivation of the metasedimentary rocks of the Broken Hill Group by the erosion mainly of felsic igneous (or meta-igneous) rocks. High concentrations of HFSE, Y, and REEs in the metasediments suggest a provenance dominanted by anorogenic granites and(or) rhyolites, including those with A-type chemistry. Likely sources of the metasediments were the rhyolitic to rhyodacitic protoliths of local quartz + feldspar ?? biotite ?? garnet gneisses (e.g., Potosi-type gneiss) that occur within the lower part of the Willyama Supergroup, or chemically similar basement rocks in the region; alternative sources may have included Early Proterozoic anorogenic granites and(or) rhyolites in the Mount Isa and(or) Pine Creek Blocks of northern Australia, or in the Gawler craton of South Australia. Metallogenic considerations suggest that the metasediments of the Broken Hill Block formed enriched source rocks during the generation of pegmatite-hosted deposits and concentrations of La, Ce, Nb, Ta, Th, and Sn in the region. Li, Be, B, W

  4. INFLUENCE OF CLASTIC DIKES ON VERTICAL MIGRATION OF CONTAMINANTS IN THE VADOSE ZONE AT HANFORD

    EPA Science Inventory

    This research will test the hypothesis that clastic dikes at the Hanford Site provide preferential pathways that enhance the vertical movement of moisture and contaminants through the vadose zone. Studies indicate that contaminants have migrated to greater depths at the Hanford ...

  5. Clastic dikes of the Hatrurim basin (western flank of the Dead Sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability

    NASA Astrophysics Data System (ADS)

    Sokol, E. V.; Gaskova, O. L.; Kozmenko, O. A.; Kokh, S. N.; Vapnik, E. A.; Novikova, S. A.; Nigmatulina, E. N.

    2014-11-01

    This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.

  6. Upper Strawn (Desmoinesian) carbonte and clastic depositional environments, southeastern King County, Texas

    SciTech Connect

    Boring, T.H. )

    1990-02-01

    The Pennsylvanian upper Strawn Group of southeastern King County, Texas, provides a unique setting to study interactions between coeval carbonate and clastic deposition during the Desmoinesian. One of the most perplexing problems is the relationship of massive Pennsylvanian platform carbonates to shallow-water terrigenous clastic sediments. Within the study area, carbonate facies were deposited along the northern edge of the Knox-Baylor trough on the Spur platform, and terrigenous clastics were carried toward the Midland basin through the Knox-Baylor trough. Based on the analysis of subsurface cores, five carbonate lithofacies and four clastic lithofacies were recognized in southeastern King County, Texas. The distribution and geometry of these lithofacies are related to variations in the rate of subsidence in the Knox-Baylor trough, Pennsylvanian tectonics, deltaic progradation, avulsion, and compaction. The platform carbonates within the northern region of southeastern King County record environments within the carbonate platform complex, including middle platform, outer platform, algal mound, and platform margin. The quartzarenitic sandstones within the southern region of southeastern King County occur in a variety of complex depositional geometries, including distributary-bar fingers, lobate deltas, and offshore bars. Cores of these sandstones represent mainly the uppermost portion of the various sandstone bodies. The upper Strawn Group provides an attractive area for exploration geology. Both carbonates and clastics provide excellent reservoirs from a depth of approximately 5,000-6,000 ft. Total production within the area is over 100 million bbl of oil since the early 1940s. Multiple pay zones within a 600-ft interval also provide an added incentive for exploration. Areas within and around the Knox-Baylor trough deserve a detailed study due to these relatively shallow, unexplored, multiple pay zones.

  7. Modeling and inversion of elastic wave velocities and electrical conductivity in clastic formations with structural and dispersed shales

    NASA Astrophysics Data System (ADS)

    Aquino-López, A.; Mousatov, A.; Markov, M.; Kazatchenko, E.

    2015-05-01

    This paper presents a new approach for simulating P- and S-wave velocities, and electrical conductivity in shaly-sand rocks and determining the shale spatial distribution (dispersed and/or structural shales). In this approach, we used the effective medium method and hierarchical model for clastic formations. We treat shaly-sand formations as porous natural-composite materials containing: solid grains (such as quartz, feldspars and structural shale) and pores completely filled with a mixture of hydrocarbon, water and dispersed shale. For calculating the effective elastic properties and electrical conductivity of this composite, we have applied the multi-component self-consistent effective media approximation (EMA) method. We simulate the elastic velocities and electrical conductivity for clastic formations in two steps. Firstly, we calculate the effective properties of mixture (combination of water, hydrocarbon and dispersed shale) filling the pores. Then we find the effective elastic and electrical conductivity properties of formation constituted of solid grains (quartz and structural shale) and pores with the effective properties determined in the previous step. We considered that all components are represented by ellipsoids. The aspect ratios (shapes) of grains and pores; are defined as a porosity function obtained for the model of clean sand formations. Modeling results have demonstrated that the shapes of both shale components (dispersed and structural) weakly affect the effective elastic velocities and electrical conductivity of shaly-sand formation and can be approximated by flatted ellipsoids. The model proposed has been used to determine the volumes of dispersed and structural shales for two sets of published experimental data obtained from the cores. For determining the shale distribution, we have performed the joint inversion of the following physical properties: P-, S-wave velocities, total porosity, and total shale volume. Additionally, we have

  8. Chemical composition of sawdust from lunar rock 12013 and comparison of a java tektite with the rock.

    PubMed

    Showalter, D L; Wakita, H; Smith, R H; Schmitt, R A; Gillum, D E; Ehmann, W D

    1972-01-14

    Abundances of 11 major and minor elements and 11 trace elements have been determined by instrumental neutron activation analysis of two Apollo 12013 rock fragments, a sample of rock 12013,17 sawdust, and a Java tektite (J2). Although the abundances of major elements in tektite J2 are similar to those of rock 12013, comparison of the minor and trace elements shows that no fragment or sawdust of rock 12013 that has been analyzed to date is chemically similar to tektite glass. Rock sawdust is representative of "whole rock" composition only if the amount of contamination from the sawing process is known. After appropriate correction for saw wire contamination, analyses of sawdust yield fairly accurate averaged elemental compositions of complex clastic lunar and other rocks. PMID:17771802

  9. Chemical composition of sawdust from lunar rock 12013 and comparison of a Java tektite with the rock.

    NASA Technical Reports Server (NTRS)

    Showalter, D. L.; Wakita, H.; Schmitt, R. A.; Gillum, D. E.; Ehmann, W. D.; Smith, R. H.

    1972-01-01

    Abundances of 11 major and minor elements and 11 trace elements have been determined by instrumental neutron activation analysis of two Apollo 12013 rock fragments, a sample of rock 12013,17 sawdust, and a Java tektite (J2). Although the abundances of major elements in tektite J2 are similar to those of rock 12013, comparison of the minor and trace elements shows that no fragment of sawdust or rock 12013 that has been analyzed to date is chemically similar to tektite glass. Rock sawdust is representative of ?whole rock' composition only if the amount of contamination from the sawing process is known. After appropriate correction for saw wire contamination, analyses of sawdust yield fairly accurate averaged elemental compositions of complex clastic lunar and other rocks.

  10. Early Vendian stage of folding in the Patom folded zone: Syn-folded clastic dikes in the Dalnetaiginsky Group, Central Siberia

    NASA Astrophysics Data System (ADS)

    Chumakov, N. M.

    2016-03-01

    This work describes clastic dikes which intruded along cleavage planes into Lower Vendian clay shales of the Barakun Formation (the eastern part of the Patom folded zone). Dikes are composed of sandstones, which are common in other parts of the Barakun Formation, or more often by thin intercalations of finely oolitic limestones in surrounding shales. It is evident that dikes were formed as a result of elision processes synchronous to the folding, the major system of cleavage planes, and dehydration of clayey rocks of the Dalnetaiginsky Group at the end of Early Vendian. This stage of folding can be considered as one of the first phases of the Baikal folding by N.S. Shatsky.

  11. Unusual occurrence of some sedimentary structures and their significance in Jurassic transgressive clastic successions of Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Dubey, N.; Bheemalingeswara, K.

    2009-04-01

    Mesozoic sedimentary successions produced by marine transgression and regression of sea in northeastern part of Africa are well preserved in Mekelle basin of Ethiopia. Here, a typical second order sequence is well developed and preserved overlying the Precambrian basement rocks or patchy Palaeozoic sedimentary successions. Initiation of Mesozoic sedimentation in Mekelle basin has started with deposition of Adigrat Sandstone Formation (ASF). It is a retrogradational succession of siliciclastics in coastline/beach environment due to transgression of sea from southeast. ASF is followed by Antallo Limestone Formation (ALF)- an aggradational succession of carbonates in tidal flat environment; Agula Shale/Mudstone Formation (AMF); and Upper/Ambaradom Sandstone Formation (USF)- a progradational succession formed during regression in ascending order (Dubey et al., 2007). AMF is deposited in a lagoonal evaporatic environment whereas USF in a fluvial coastal margin. ASF is an aggregate of cyclically stacked two lithologies ASF1 and ASF2 produced by sea-level rise and fall of a lower order mini-cycle. ASF1 is a thick, multistoried, pink to red, friable, medium to fine grained, cross-bedded sandstone deposited in a high energy environment. ASF2 is a thin, hard and maroon colored iron-rich mudstone (ironstones) deposited in a low energy environment. ASF1 has resulted during regressive phase of the mini-cycle when rate of sedimentation was extremely high due to abundant coarser clastic supply from land to the coastal area. On the other hand, ASF2 has resulted during transgressive phase of the mini-cycle which restricted the supply of the coarser clastic to the coastal area and deposited the muddy ferruginous sediments in low energy offshore part of the basin where sedimentation rate was very low. Apart from these two major lithologies, there are also few other minor lithologies like fine-grained white sandstone, carbonate (as bands), claystone and mudstone present in ASF. ASF is

  12. Subsurface geology of Tertiary rocks of northeastern district of Western Desert, Egypt

    SciTech Connect

    Elzarka, M.H.; Radwan, I.A.

    1983-03-01

    The lithofacies analysis of the Tertiary rocks reveals two ancient subbasins at the north and southeast of the northeastern district, Western Desert. The lithofacies of the Paleocene and early and middle Eocene sections are mainly calcareous. Shale predominates in the late Eocene rocks. The Paleocene rocks seem to have accumulated in a lagoonal environment of epineritic depths. The Paleocene rocks of the northern subbasin indicate accumulation on an unstable shelf. The Paleocene environmental conditions seem to have prevailed during the early and middle Eocene. During the late Eocene, rocks of shallow-water and current-agitated environments accumulated. The lower clastic layers of the Oligocene, having a sand/shale ratio less than one, indicate a clastic shoreline environment-lagoonal subenvironment. The Oligocene clastics are overlain by a basaltic sheet at the eastern part of the district. The middle Miocene lithofacies indicate rock accumulation in a contemporaneously subsiding basin under lagoonal or delta-front conditions at the southern part of the district. Marine stagnant-bottom-water conditions prevailed during the accumulation of the middle Miocene rocks at the norther parts. The Pliocene rocks seem to have accumulated in lagoons, where the inflow exceeded evaporation and alternating periods of exposure and flooding by either fresh or saline water of poor circulation prevailed. The tectonic instability of the district was initiated by volcancity during the late Oligocene.

  13. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  14. Upper Strawn (Desmoinesian) carbonate and clastic depositional environments, SE King County, TX

    SciTech Connect

    Boring, T.H. )

    1990-05-01

    The Pennsylvanian upper Strawn Group of southeast King County, Texas, provides a unique setting to study interactions between coeval carbonate and clastic deposition during the Desmoinesian. One of the most perplexing problems is the relationship of massive Pennsylvanian platform carbonates to shallow-water marine and deltaic sediments. Within the study area carbonate facies were deposited along the northern edge of the Knox-Baylor trough on the Spur platform, and terrigenous clastics were carried toward the Midland basin through the Knox-Baylor trough. Based on the analysis of subsurface cores, five carbonate lithofacies and four clastic lithofacies were recognized in southeast King County, Texas. The distribution and geometry of these lithofacies are related to variations in the rate of subsidence in the Knox-Baylor trough, Pennsylvanian tectonics, deltaic progradation, avulsion and compaction. The platform carbonates within the northern region record environments within the carbonate platform complex, including middle platform, outer platform, algal mound, and platform margin. The quartzarenitic sandstones within the southern region occur in a variety of complex depositional geometries, including distributary bar fingers, lobate deltas, and offshore bars. The upper Strawn Group provides an attractive area for exploration geology. Both carbonates and clastics provide excellent reservoirs from a depth of approximately 5,000 to 6,000 ft. Total production since the early 1940s, within the area is over 100,000,000 bbl of oil. Multiple pay zones within a 600-ft interval also provide an added incentive for exploration. Areas within and around the Knox-Baylor trough deserve additional study due to these relatively shallow, unexplored, multiple pay zones.

  15. Neoproterozoic to Early Cambrian clastics sedimentation and stratigraphy in the Central and Southern Appalachians: An overview

    SciTech Connect

    Schwab, F.L. . Dept. of Geology)

    1993-03-01

    A clear understanding of paleogeography, tectonics, and sedimentary framework now exists for Neoproterozoic to Early Cambrian clastics in the Central and Southern Appalachians. It is based on well-constrained data on mineralogy, texture, and sedimentary structures and less precise information on age and regional variations in lithology and thickness. From 900 m.y. ago until 600 m.y. ago, tension along the eastern edge of North America produced a series of NE-SW basins (grabens and aulacogens ). These rift-related basins filled with thick, coarse, arkosic clastics (Mechum River Fm., Mt. Rogers Volc. Gp., Grandfather Mtn. Fm., portions of the Ocoee Series) mimicking the setting that later typified the Triassic of eastern North America. Coeval sequences exposed along the southeastern edge of the Blue Ridge in Va. and N.C. (Fauquier Fm., Lynchburg Gp., Ashe Fm.) define the hinge zone of a developing continental margin. Farther south in Tenn., Ga., and Ala., the picture is less clear. In latest Precambrian and Early Cambrian time, a passive Atlantic-type'' margin existed. This consisted of paired continental shelf and continental slope-rise areas (shallow water deposits of the Chilhowee Gp. and overlying muds and carbonates to the northwest; deep water clastics of the Evington Gp. and Alligator Back Fm. to the southeast). The cohesiveness of this framework argues against these tectonostratigraphic belts being considered terranes.

  16. Source rock potential of middle Cretaceous rocks in southwestern Montana

    SciTech Connect

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J. Jr.; Pawlewicz, M.J.

    1996-08-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S{sub 1}+S{sub 2}) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% R{sub o}. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% R{sub o}, and at Big Sky, Montana, where vitrinite reflectance averages 2.5% R{sub o}. At both localities, high R{sub o} values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  17. The Effects of Clastic Dikes on Vadose Zone Transport at the Hanford Site, Southcentral Washington

    NASA Astrophysics Data System (ADS)

    Murray, C. J.; Ward, A. L.; Wilson, J. L.; Long, P. E.; Lechler, B. J.; Clement, W. P.; Kannberg, P. K.; Gee, G. W.

    2001-12-01

    Clastic dikes are common sedimentary structures in the vadose zone at the Hanford Site, a U.S. Department of Energy facility in Washington State. The dikes consist of vertically oriented sand and silt bands that are often contorted and irregular and cut the subhorizontal sand and silt beds of the Hanford and Ringold formations. Evidence from recent drilling indicates that clastic dikes penetrate to depths exceeding 50 m. Our field investigations have quantified several structural and textural features associated with clastic dikes that will impact vadose zone transport. The clay content is 5 to 10 percent higher within the dike than it is in the adjacent sediments. The average grain size of the dikes is finer and the air permeability is about an order of magnitude less within the dikes than it is in the adjacent matrix. Field measurements of saturated hydraulic conductivity also showed an order of magnitude difference between the dike and the matrix. However, variability within the dikes is high. The grain size within adjacent bands of the dikes varies from silt to medium sand and the air permeability associated with the sand and silt bands varies over at least two orders of magnitude. Evidence from measurements and infrared imaging of the bands within excavated dikes indicates that they are not continuous horizontally or vertically, with most bands terminated within a meter or two by the anastamosing network of low permeability clay and silt laminae that bound the dikes and their internal bands. Fine-grained clastic sills projecting from the dikes are also common, and were found to exert a strong influence on subsurface transport of moisture. In recent infiltration experiments, moisture traveled several meters laterally within a fine-grained sill that intercepted a portion of the infiltrating moisture. The sill had high moisture levels prior to the injection experiment, as indicated by neutron probe data and cone penetrometer data, which may have increased the

  18. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons

    SciTech Connect

    Maas, R. Curtin Univ., Perth ); McCulloch, M.T. )

    1991-07-01

    Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3,000 to 3,700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneiss terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. {epsilon}{sub Nd}(T{sub Dep}) values in Jack Hills metasediments vary widely (+5 to {minus}12) but have a smaller range in the Mt. Narryer belt ({minus}5 to {minus}9). The lowest {epsilon}{sub Nd} values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger ({ge} 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons ({approx}3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.

  19. Remote sensing of some sedimentary rocks.

    NASA Technical Reports Server (NTRS)

    Brennan, P. A.; Lintz, J., Jr.

    1971-01-01

    Sedimentary rocks including varying sized clastics and carbonates were overflown by aircraft between 1966 and 1971 producing data in the ultraviolet to microwave regions of the electromagnetic spectrum. This paper reports that multispectral analysis increases the ease and rapidity of discrimination of rock types having subtle differences in physical characteristics, but fails to enhance and may degrade distinctions where physical characteristics are significantly different. Brief resumes of color and color IR photographic data are presented. Thermal infrared is found to be useful in the mapping of rock units, but limitations such as moisture variation, soil cover, and vegetation may exceed in one formation the distinction between differing lithologies. A brief review of previously published SLAR data is included for completeness. Remote sensing techniques should reduce field geological effort by as much as 50%.

  20. Chromian spinels from Apollo 14 rocks.

    NASA Technical Reports Server (NTRS)

    Steele, I. M.

    1972-01-01

    Results of electron microprobe analysis of 13 pink, isotropic, high-relief grains from Apollo 14 elastic rock 14063,14 and a lithic fragment from the 1 to 2 mm fines, 14002,7, identifying them as spinel minerals dominated by the spinel component MgAl2O4 associated with a moderate content of chromite and hercynite. The spinel is thought to have crystallized from a magma high in aluminum and low in iron, with possible crystal separation, followed by incorporation in clastic rocks by impacts. Many bulk compositions of the elastic fragments fall near the field of primary spinel in the model system An-Fo-SiO2. Experimental syntheses of Apollo 14 rocks are needed to test the suggested primary origin.

  1. Cambrian rocks of the Pioche mining district, Nevada, with a section on Pioche shale faunules

    USGS Publications Warehouse

    Merriam, Charles Warren; Palmer, Allison R.

    1964-01-01

    The Pioche mining district in the Ely Range, southeastern Nevada, is one of several districts in the Great Basin where Cambrian rocks are hosts of important ore deposits. Cambrian strata underlying the Ely Range are intruded by porphyritic granite and other dikes. Tertiary volcanic rocks and Pliocene fresh-water clastic deposits of the Panaca Formation occupy adjacent valleys and extend over the Cambrian strata on the south and east.

  2. Late Wisconsinan sub-glacial clastic intrusive sheets along Lake Erie bluffs, at Bradtville, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Dreimanis, Aleksis; Rappol, Martin

    1997-07-01

    Numerous clastic intrusive sheets, a few decimetres to more than 16 m long, 1-120 cm thick, and extending one to more than 25 m laterally, occur along a 350 m long section of the late Wisconsinan Catfish Creek Drift in the Lake Erie bluffs at Bradtville, southwestern Ontario. Most of them are downglacier-dipping dikes, the largest one terminating in the underlying middle Wisconsinan Tyrconnell Formation. Most dikes strike NNE-SSW, at right angles to the local direction of glacier movement during the deposition of Catfish Creek Drift. The tops of some of them are truncated or displaced downglacier by shearing. The main concentration of clastic intrusive sheets is on the upglacier side of a glaciotectonically folded anticline of Tyrconnell Formation clays and silts underlying the Catfish Creek Drift. The host sediments are Catfish Creek till, gravel, sand and silt, and Tyrconnell Formation silt and clay. Most intrusive sheets, particularly the small to medium ones, consist of massive to crudely laminated sand and silt, intruded from below by a dewatering process. The largest dike reflects in its composition mainly the adjoining or higher-lying host-sediment materials, and its main part was formed by downward infilling, or by gravity flows into an open fracture. The large dike is flanked by small laminated silty sand sheets and several small apophyses, some of them injected downward and sideways, others upward by dewatering. The clastic intrusive sheets were formed under a moving glacier, the Erie lobe, probably both at the beginning and towards the end of the deposition of Catfish Creek till. Their location and position was predetermined by glaciotectonically induced listric planar structures and zones of weakness, mainly tension fractures, that strike transverse to glacier movement and dip downglacier and also by confinement of pore-water in a permeable sediment wedge between the less pervious Tyrconnell Formation and massive Catfish Creek basal till.

  3. Clastic injection dynamics during ice front oscillations: A case example from Sólheimajökull (Iceland)

    NASA Astrophysics Data System (ADS)

    Ravier, Edouard; Buoncristiani, Jean-François; Menzies, John; Guiraud, Michel; Portier, Eric

    2015-06-01

    Soft-sediment deformation structures are being increasingly used as a tool for reconstructing palaeoenvironments and porewater pressure conditions in glacial settings. However, the potential of hydrofractures and clastic injections in the reconstruction of ice dynamics remains poorly constrained. This paper presents the results of a detailed study of a clastic injection network outcropping in the Sólheimajökull forefield (South Iceland). Sedimentological descriptions are combined with microscopic to macroscopic analyses of clastic injection geometries, sediment-fills, and cross-cutting relationships. The 250 m long and 20 m high exposure observed along the east flank of the proglacial braid plain displays alternating glaciofluvial sediments and subglacial tills, illustrating oscillations of the ice margins. These sediments are cross-cut by a dense network of injection composed of dykes propagating upward or downward, sills, and stepped sills. These clastic injections result from processes of hydrofracturing and the sediment-fills in these hydrofractures are generally laminated with an increase of grain-size towards the centre of the injections. These fracture-fill characteristics suggest multiple injection phases within the hydrofractures and an increase of porewater pressure over time. Five main generations of clastic injections showing different senses of propagation and dip directions are determined and are interpreted as forming in different environments. Per descensum clastic dykes dipping down ice demonstrate subglacial hydrofracturing underneath flowing-ice, while sills and per ascensum clastic dykes form in submarginal to marginal environments due to the decrease of ice overburden pressure. The integration of these results with the sedimentological characteristics allows the Holocene ice front oscillations of the Sólheimajökull to be reconstructed. This study demonstrates the importance of hydrofracture systems and their sediment-fills in the

  4. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  5. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  6. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  7. GPR Imaging of Clastic Dikes at the Hanford Site, Hanford, Washington

    SciTech Connect

    Clement, William P.; Murray, Christopher J.

    2007-12-08

    We use ground penetrating radar (GPR) data to help determine the spatial distribution and the subsurface geometry of clastic injection dikes at the Hanford site. This information will help to improve the understanding of the hydrological role of these ubiquitous clastic dikes at the Han¬ford Site. We collected 100 MHz ground penetrating radar (GPR) 3D surface reflection data at two sites, the S-16 Pond and the Army Loop Road sites, and 2D reflection data along a 6.9 km lin¬ear transect near the Army Loop Road site. The dikes are distinguished in the GPR data by a strongly attenuated zone, disruptions in the continuity of reflections, and diffractions where reflections are disrupted. In general, the data quality is better at the Army Loop Road and Traverse sites than at the S-16 Pond site, probably due to the presence of cobbles at the S-16 Pond site. A high-moisture, fine-grained unit probably causes the strong reflections at the Army Loop Road site and the Traverse survey site. The signal penetration varies between 5 to 12 m below the land surface.

  8. The paleomagnetism of clastic and precipitate deposits in limestone and dolomite caves

    SciTech Connect

    Latham, A.G. ); Ford, D.C. )

    1991-03-01

    Clastic sediments and calcite precipitates (stalagmites, flowstones, etc.) are abundant in modern limestone caves and normally are the dominant infillings in buried (paleokarst) caves. Clastic sediment fillings are chiefly of fluviatile or local breakdown origin, but lacustrine, colluvial, eolian, and glacial deposits are known. Paleomagnetism has been studied in the fluviatile and lacustrine types: (1) reversal stratigraphy aids dating of geomorphic and paleoclimatic events in the late Pliocene/Pleistocene; (2) fine magnetostratigraphy has yielded estimates of the westward drift. Calcite precipitates (speleothems) may display natural remanent magnetism of either depositional (DRM) or chemical (CRM) origin. NRMs of modern speleothems are primary, not diagenetic; CRMs are invariably associated with the degradation of surface organic matter. (1) Coarse reversal stratigraphy dates geomorphic, etc., events and erosion rates. (2) Fine stratigraphy combined with {sup 230}Th:{sup 234}U dating gives high precision estimates of secular variation, westward drift, and rate of change of geomagnetic anomalies in upper Pleistocene and Holocene deposits. Magnetostratigraphy of paleokarst speleothem fillings associated with hydrocarbons in Ordovician limestones suggest a Permian age for the karstification. Potential applications of magnetostratigraphy to paleokarst deposits of many different scales are considerable.

  9. Effects of heterogeneity and friction on the deformation and strength of rock

    SciTech Connect

    Nihei, K.T.; Myer, L.R.; Liu, Z.; Cook, N.G.W.; Kemeny, J.M.

    1994-03-01

    Experimental observations of the evolution of damage in rocks during compressive loading indicate that macroscopic failure occurs predominantly by extensile crack growth parallel or subparallel to the maximum principal stress. Extensile microcracks initiate at grain boundaries and open pores by a variety of micromechanical processes which may include grain bending, Brazilian type fracture and grain boundary sliding. Microstructural heterogeneity in grain size, strength and shape determines the magnitude of the local tensile stresses which produce extensile microcracking and the stability with which these microcracks coalesce to form macrocracks. Friction at grain boundaries and between the surfaces of microcracks reduces the strain energy available for extensile crack growth and increases the stability of microcrack growth. In clastic rocks, frictional forces may improve the conditions for extensile microcrack growth by constraining the amount of sliding and rotation of individual grains. Micromechanical models are used to investigate the effects of heterogeneity and friction on the deformation and strength of crystalline and clastic rocks.

  10. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  11. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?" asked another. At this moment, a…

  12. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  13. Clastic Breccias at the Slates Islands Complex Impact Structure, Northern Lake Superior

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Sharpton, V. L.; Schnieders, B.; Scott, J.

    1996-01-01

    About 150 impact craters are known on Earth and each year several structures are added to this number. The general geology of the Slate Islands archipelago has been described by Sage (1991) and a short summary based on Sage's work is given in Dressler et al. (1995). The reader is referred to these publications for information on the bedrock geology of the island group. Early studies on the Slate Islands impact structure include: Halls and Grieve (1976), Grieve and Robertson (1976) and Stesky and Halls (1983). In this report, we provide a summary of the impact process as presently understood. We also present some of the results of our laboratory investigations conducted in 1995 and 1996. We describe in some detail the various clastic breccias encountered on the islands during our 1994 and 1995 field work and relate them to the various phases of the impact process. A more encompassing treatise on the breccias has been submitted for publication. (Dressler and Sharpton 1996).

  14. Sedimentation and tectonic implications of Cambrian-Ordovician clastics, Renville county, North Dakota

    SciTech Connect

    Mescher, P.K.; Pol, J.C.

    1985-02-01

    Cambrian-Ordovician clastics of the Deadwood Formation were studied in detail from Newporte field in Renville County, North Dakota. This small Cambrian-Ordovician oil pool was extensively cored, often to the Precambrian basement, allowing close examination of clastic deposition influenced by local basement tectonics. In Renville County, the basal unit consists of a well-rounded, fine to medium-grained glauconitic quartz sandstone. Paleohighs appear to have had a pronounced effect on Deadwood sedimentation. Sands, from quiet water settings, show poor to moderate sorting, are commonly finely laminated, and/or show traces of minor small-scale cross-bedding. In places, bedding planes are highly disrupted, suggesting intervals of intense bioturbation (Skolithos). Sands associated with paleohighs are clean, well sorted, and commonly friable. Their association with basement structure is suggestive of beach-barrier-bar sequences related to irregularly upthrown basement blocks. In one example, this clean basal sand is associated with an upthrown basement block and is sharply truncated by the pre-Winnipeg (early Ordovician) unconformity. The first unit above the basal sandstone in structurally lower wells is an anomalous conglomerate unit. Large angular basement clasts up to cobble size were viewed in core. This unit grades upward into a fine sand sequence and distally grades into a marine sand. It terminates abruptly in upthrown wells and indicates rapid fault movement and offset during middle Deadwood deposition, with development of localized fanglomerate sequences associated with fault scarps. Immediately capping this sequence is a dark-gray marine shale that thins depositionally toward paleohighs.

  15. Complex carbonate and clastic stratigraphy of the inner shelf off west-central Florida

    SciTech Connect

    Locker, S.D.; Doyle, L.J.; Hine, A.C.; Blake, N.J. )

    1990-05-01

    The near surface stratigraphy (< 30 m) of the inner shelf off the west coast of Florida was investigated using high-resolution seismic, side-scan sonar, and continuous underwater video camera coverage. The simultaneous operation of all three systems provided a unique opportunity to calibrate acoustic data with actual video images of the sea floor in a geologically complex area characterized by limestone dissolution structures, hard-bottom exposures, and overlain by a limited supply of terrigenous clastics. Three principle bottom types, grass, sand, and hard-bottom mapped using video and side-scan sonographs, show a correlation with two subsurface stratigraphic zones. The nearshore subsurface zone extending to 6-7 m water depth is characterized by flat or rolling strata and sinkholes that increase in size (200-1,200 m in diameter) and become more numerous further offshore. This zone is truncated by a major erosional unconformity overlain by a thin (<3 m) sequence of Holocene sediment, which together form a terrace upon which the Anclote Key barrier island formed. The offshore subsurface zone (7-11 m water depth) exhibits irregular and discontinuous high-amplitude flat or inclined reflections and few sinkholes. Offshore, extensive hard-bottom exposures are common with discontinuous sediment that occur as lenses or sand waves. The complex stratigraphy of the west Florida shelf includes outcropping Neogene limestones that have undergone dissolution during sea level lowstands. Carbonates and clastics dispersed during multiple sea level changes overlie the Neogene limestones. Dissolution styles and erosional unconformities produced bedrock topography and now control modern geological and biological processes.

  16. ANNUAL REPORT. INFLUENCE OF CLASTIC DIKES ON VERTICAL MIGRATION OF CONTAMINANTS IN THE VADOSE ZONE AT HANFORD

    EPA Science Inventory

    This research is testing the hypothesis that clastic dikes at the Hanford Site provide preferential pathways that enhance the vertical movement of moisture and contaminants through the vadose zone. Current flow and transport models of the vadose zone at the 200 Areas are based on...

  17. 'Tetl' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's trek through the 'Columbia Hills' at 'Gusev Crater,' shows the horizontally layered rock dubbed 'Tetl.' Scientists hope to investigate this rock in more detail, aiming to determine whether the rock's layering is volcanic or sedimentary in origin. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba.' Spirit took this image on its 264th martian day, or sol (Sept. 29, 2004). This is a false-color composite image generated from the panoramic camera's 750-, 530-, and 430-nanometer filters.

  18. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  19. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  20. A Southern Alps and Northern Pyrenees Holocene record of snowmelt-induced flood events and clastic layers associated with negative NAO phases in Western Europe

    NASA Astrophysics Data System (ADS)

    Simonneau, Anaëlle; Chapron, Emmanuel; Galop, Didier; Tachikawa, Kazuyo; Magny, Michel; Bard, Edouard

    2014-05-01

    The origin of both extreme flood events in Lake Ledro (southern Italian Alps) and coarse sandy layers in two disconnected lakes from the Bassies valley (Lakes Majeur and Sigriou, northern Pyrenees) have been related to the impact of snowmelt processes enhancing erosion of mountainous drainage basins (1, 2) throughout the Holocene. Because of increasing human impact on catchment erosion processes since the mid-Holocene in these western European mountain ranges, this study compares these well-dated lacustrine sequences in order to further document the influence of westerlies and of the North Atlantic Oscillation on clastic supply in contrasted lake basins. The integrative approaches performed on each site allow us to show that organic and minerogenic markers, such as non-pollen microsfossils, Rock-Eval pyrolysis or X-ray microfluorescence, are powerful tools to identify clastic sediment source areas. At Ledro, we therefore demonstrated that over the Late Holocene snowmelt-induced flood events essentially remobilized high altitude pasture areas whereas afterwards the flood events affected former forested areas from lower altitude1. In the Pyrenees, the southern slopes of lakes Majeur and Sigriou are characterized by two narrow canyons whose drainage basins are disconnected, relatively small and limited to the high altitude part of the valley of Bassiès. Our results demonstrated that the mid-late Holocene period was regularly interrupted by coarse sandy layers affecting both lakes Majeur and Sigriou and reflecting the high sensitivity of the two active canyons to intense rainfall or snowmelt periods². While extreme flood deposits in Lake Ledro during the Bronze Age period may result from the combination of both climate and human activities, contemporaneous extreme flood events in Ledro and coarse sandy layers in the Bassiès lakes, dated to AD 1710, AD1530, AD1360, AD940, AD570 and 1850, 1050, 1410, 1850, 2690, 4190, 4800 cal BP, testify of regional hydrological

  1. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. Ground Penetrating Radar Imaging of Ancient Clastic Deposits: A Tool for Three-Dimensional Outcrop Studies

    NASA Astrophysics Data System (ADS)

    Akinpelu, Oluwatosin Caleb

    The growing need for better definition of flow units and depositional heterogeneities in petroleum reservoirs and aquifers has stimulated a renewed interest in outcrop studies as reservoir analogues in the last two decades. Despite this surge in interest, outcrop studies remain largely two-dimensional; a major limitation to direct application of outcrop knowledge to the three dimensional heterogeneous world of subsurface reservoirs. Behind-outcrop Ground Penetrating Radar (GPR) imaging provides high-resolution geophysical data, which when combined with two dimensional architectural outcrop observation, becomes a powerful interpretation tool. Due to the high resolution, non-destructive and non-invasive nature of the GPR signal, as well as its reflection-amplitude sensitivity to shaly lithologies, three-dimensional outcrop studies combining two dimensional architectural element data and behind-outcrop GPR imaging hold significant promise with the potential to revolutionize outcrop studies the way seismic imaging changed basin analysis. Earlier attempts at GPR imaging on ancient clastic deposits were fraught with difficulties resulting from inappropriate field techniques and subsequent poorly-informed data processing steps. This project documents advances in GPR field methodology, recommends appropriate data collection and processing procedures and validates the value of integrating outcrop-based architectural-element mapping with GPR imaging to obtain three dimensional architectural data from outcrops. Case studies from a variety of clastic deposits: Whirlpool Formation (Niagara Escarpment), Navajo Sandstone (Moab, Utah), Dunvegan Formation (Pink Mountain, British Columbia), Chinle Formation (Southern Utah) and St. Mary River Formation (Alberta) demonstrate the usefulness of this approach for better interpretation of outcrop scale ancient depositional processes and ultimately as a tool for refining existing facies models, as well as a predictive tool for subsurface

  3. Finding a way to optimize drilling depths in clastic aquifers for geothermal energy

    NASA Astrophysics Data System (ADS)

    van Putten, M.; van Wees, J. D. A. M.; Pluymaekers, M. P. D.; Kramers, L.

    2012-04-01

    Clastic aquifers generally are marked by decreasing porosity and associated permeability with depth. Uncertainties in porosity of a few percentages can result in an order of magnitude change in permeability. Further, temperature increases with depth and is marked by an uncertainty of about 10-20%. Monte Carlo performance calculations, adopting variable temperature and porosity distributions, along with other natural uncertainties and engineering options for drilling, show that performance in doublet power and levelized costs of energy (LCOE in EUR/GJ) is most sensitive to changes in the temperature gradient and the porosity. As the temperature increases with depth while the porosity decreases with depth, these relationships show a trade-off in performance, such that a theoretical optimal depth can be found for a specific temperature gradient and porosity-depth curve, and associated porosity-permeability relationship. The optimal drilling depth is at the depth level where the LCOE are minimal. In mature oil and gas basin areas, such as the Netherlands, it is possible to obtain relationships of porosity and underlying permeability as a function of depth. Therefore, the applicability for establishing and using an optimal depth has been tested for a clastic aquifer in the Rotliegend stratigraphic group in the Netherlands. This aquifer has high geothermal potential and is subject to many exploration activities. Temperature gradient and porosity-depth trends (and underlying uncertainties) for this aquifer have been adopted from the national geothermal information system ThermoGIS (www.thermogis.nl). For the performance calculation of doublet power and LCOE an in-house techno-economical performance assessment (TEPA) tool called DoubletCalc has been used. The results show that optimal depth corresponds to a pronounced and sharp minimum in LCOE. Its depth depends strongly on the actual porosity-depth relationship and ranges between 1.5 and 3 km. Remarkably, variations in

  4. Organic facies and systems tracts: Implications for source rock preservation and prediction

    SciTech Connect

    Kosters, E.C.; Vanderzwaan, F.J.; Gijsbert, J. )

    1993-09-01

    Sequence stratigraphy is concerned with making predictions about reservoirs ahead of the drill, however, little attention has been paid to the configuration of organic-rich facies of source rock quality. We suggest that preservation of source rock type facies in clastic systems is mutually exclusive and time successive. The main database is a collection of cores and other samples through the Holocene Rhone delta. The early Holocene Transgressive Systems Tract (TST) contains five levels of channelization. The most significant peat bed is located immediately landward of the shoreline of maximum transgression (SMT). The Highstand Systems Tract (HST) consists of two parasequences, containing mostly laterally continuous strandplain complexes without peat. In addition to sufficient accommodation space, an important control on formation of fresh-water peats and organic-rich shelf muds is availability of river-induced nutrients. Peat quality, however, is best without riverine clastics. In a delta plain, a balance between these two controls may be reached when river-fed nutrients are trapped there indirectly. The potential for such a condition arises in a TST setting. On the shelf, eutrophication of marine habitats is also controlled by river-fed nutrients, but excess river clastics are detrimental to marine source rock quality. A balance between these two controls may be reached in HST settings where fine-grained riverine clastics are forced onto the shelf rather than in the delta plain. In this case, nutrient supply to the shelf results in large quantities of marine biomass. This biomass becomes sufficiently concentrated due to moderate fine-grained riverine sedimentation which guarantees burial and preservation. Thus, varying river-water and nutrient supply in TST and HST settings seems to control large-scale preservation patterns of both continental and marine organics. This hypothesis suggests further potential for using sequence stratigraphy for source rock occurrence.

  5. Clastic diversion by fold salients and blind thrust ridges in coal-swamp development

    SciTech Connect

    Wise, D.U. ); Belt, E.S. ); Lyons, P.C. )

    1991-05-01

    Abrupt shifts from single widespread coal swamps to coarse siliciclastic alluvial channel deposits occur in at least five coal beds and zones within the Pennsylvania Allegheny Formation. One of these, the Upper Freeport coal zone, was deposited over and area at least 200 {times} 200 km with a spacing of alluvial channels one-half to possibly one-fifth that of the immediately overlying coarse clastics. All these shifts occured next to the rising Appalachian orogen, far from the eustatic effects of a marine shoreline. Recent models relating coal-swamp formation to isostatic warping of orogenic forelands by tectonic loads surely apply to this environment, but they seem to need an additional, more delicate mechanism to produce such abrupt but widespread switches in grain size and drainage spacing. The authors propose that irregularities in the advancing front folds and blind thrusts caused temporary geomorphic diversions into the recessed areas and allowed a widespread coal swamp to form in the sedimentary shadow of the salients, a shadowing process that is occurring today in the central Zagros Mountains of Iraq and Iran.

  6. Domal structure in Devonian rocks of Kimberling basin, Bland County, Virginia

    SciTech Connect

    McDowell, R.C.

    1988-08-01

    The Kimberling basin, which is floored with Middle Devonian clastic rocks, is a topographic and structural low in the Narrows fault block of the southern Appalachian Valley and Ridge province in Bland County, Virginia. The basin is bounded on the northwest and southeast by the southeast-dipping Narrows and Saltville thrust faults, respectively. Two doubly plunging anticlines lie along the strike of the basin. Lower Ordovician rocks are exposed in the Burkes Garden dome to the southwest, and Lower Cambrian rocks are present in the core of the Bane dome to the northeast. Previous workers have postulated continuity between the Burkes Garden and Bane domes through the Kimberling basin, as well as the presence in the basin of an anomalously thick Devonian clastic section, which has been ascribed by some authors to contemporaneous downwarp of a depositional syncline. Recent mapping has shown both of these postulates to be incorrect. The basin contains an anticline-syncline pair that is en echelon with the axes of the Burkes Garden and Bane anticlines and that trends about 20/degree/ more northerly than the regional strike of the bounding thrusts. Rediscovery of small outcrops of Lower and Middle Devonian Huntersville Chert and Rocky Gap Sandstone in the core of the Kimberling basin anticline, which were recorded by M.R. Campbell in 1896 but overlooked by later mappers, shows that the Devonian clastic sequence has a normal thickness and that the Kimberling basin contains a domal structure similar to the Burkes Garden and Bane domes.

  7. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico

    SciTech Connect

    Smit, J. ); Montanari, A.; Swinburne, N.H.M.; Alvarez, W. ); Hildebrand, A.R. ); Margolis, S.V.; Claeys, P. ); Lowrie, W. ); Asaro, F. )

    1992-02-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatan, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. The authors interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal 'spherule bed' contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded 'laminated beds' contains intraclasts can abundant plant debris, and may the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin 'ripple beds' composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 {plus minus} 23 pg/g) is observed at the top of the ripple beds. Their observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatan.

  8. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico.

    PubMed

    Smit, J; Montanari, A; Swinburne, N H; Alvarez, W; Hildebrand, A R; Margolis, S V; Claeys, P; Lowrie, W; Asaro, F

    1992-02-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatán, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. We interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal "spherule bed" contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded "laminated beds" contains intraclasts and abundant plant debris, and may be the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin "ripple beds" composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 +/- 23 pg/g) is observed at the top of the ripple beds. Our observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatán. PMID:11537752

  9. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico

    NASA Technical Reports Server (NTRS)

    Smit, J.; Montanari, A.; Swinburne, N. H.; Alvarez, W.; Hildebrand, A. R.; Margolis, S. V.; Claeys, P.; Lowrie, W.; Asaro, F.

    1992-01-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatan, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. We interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal "spherule bed" contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded "laminated beds" contains intraclasts and abundant plant debris, and may be the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin "ripple beds" composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 +/- 23 pg/g) is observed at the top of the ripple beds. Our observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatan.

  10. Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.

    Most of the advances in volcanology during the past 20 years have concerned the recognition, interpretation, and mode of emplacement of pyroclastic rocks. The literature on pyroclastic rocks is widely scattered, in part because the field draws from sedimentology, igneous petrology, physics, and fluid mechanics, and there have been few review papers on the topic. Fisher and Schmincke have done the discipline of volcanology and all field-oriented geologists a great service in assembling material from a wide range of sources in this comprehensive treatment of pyroclastic rocks. With its introduction to the petrology of magmas involved in explosive eruptions in chapter 2 and a complete treatment of magma rheology and the behavior of dissolved and exsolving magmatic volatiles in chapter 3, they lay sufficient groundwork that anyone with a rudimentary knowledge of geology can understand the book.

  11. Sequence stratigraphy and depositional environments on a Palaeozoic clastic ramp margin, Ahnet-Timimoun Basin, Algeria

    SciTech Connect

    Myers, K.J.; Hirst, J.P.P.; Arezki, A.

    1995-08-01

    A wide, ramp margin was developed during the Devonian/Carboniferous in the Ahnet-Timimoun Basin, Algerian Sahara. Variations in relative sea level resulted in rapid, long distance (>500km) lateral translations of the clastic facies belts; this was the main influence on the locations of sand depocentres. The geometry and distribution of both Gedinnian and Emsian shallow marine sandstones is complex. Understanding the influence of relative sea level, shelf processes and local tectonics is essential to predicting the distribution of potential reservoir units. The Silurian to Carboniferous succession preserved in the Ahnet-Timimoun Basin can be divided into two major Transgressive-Regressive cycles, each of approximately 45 million years duration (Ashigill to Siegenian; Siegenian to Tournaisian). The T-R cycles several sequences of approximately 10 million years duration. Major source the basin were deposited in the Early Silurian (Llandovery) and Late Devonian (Frasnian) around the transgressive maximum of the T-R cycles. In the Ahnet-Timimoun Basin, marine sedimentation prevailed across much of the ramp margin. During Gedinnian times (early Devonian), progradational events associated with each sequence deposited a succession of extensive, shallow marine, coarsening-up sandstones. The sequence boundary marking the regressive maximum. Of the first T-R cycle (Siegenian) resulted in a rapid transition from an inner shelf environment to braided rivers which deposited a regional, high N/G sandstone. Sequence boundaries, although marked by rapid basinward shifts in facies belts, are without significant fluvial incision. The transgressive sequence set in the overlying T/R cycle, is marked initially by rapid southwards directed trangression and an extensive ravinement surface of early Emsian age.

  12. High resolution sequence stratigraphy of Miocene deep-water clastic outcrops, Taranaki coast, New Zealand

    SciTech Connect

    King, P.R.; Browne, G.H.; Slatt, R.M.

    1995-08-01

    Approximately 700m of deep water clastic deposits of Mt. Messenger Formation are superbly exposed along the Taranaki coast of North Island, New Zealand. Biostratigraphy indicates the interval was deposited during the time span 10.5-9.2m.y. in water depths grading upward from lower bathyal to middle-upper bathyal. This interval is considered part of a 3rd order depositional sequence deposited under conditions of fluctuating relative sea-level, concomitant with high sedimentation rates. Several 4th order depositional sequences, reflecting successive sea-level falls, are recognized within the interval. Sequence boundaries display a range of erosive morphologies from metre-wide canyons to scours several hundred metres across. All components of a generic lowstand systems tract--basin floor fan, channel-levee complex and progading complex--are present in logical and temporal order. They are repetitive through the interval, with the relatively shallower-water components becoming more prevalent upward. Basin floor fan lithologies are mainly m-thick, massive and convolute-bedded sandstones that alternate with cm- and dm-thick massive, horizontally-stratified and ripple-laminated sandstones and bioturbated mudstones. Channel-levee deposits consist of interleaving packages of thin-bedded, climbing-rippled and parallel-laminated sandstones and millstones; infrequent channels are filled with sandstones and mudstones, and sometimes lined with conglomerate. Thin beds of parallel to convoluted mudstone comprise prograding complex deposits. Similar lowstand systems tracts can be recognized and correlated on subsurface seismic reflection profiles and wireline logs. Such correlation has been aided by a continuous outcrop gamma-ray fog obtained over most of the measured interval. In the adjacent Taranaki peninsula, basin floor fan and channel-levee deposits comprise hydrocarbon reservoir intervals. Outcrop and subsurface reservior sandstones exhibit similar permeabilities.

  13. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has been…

  14. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  15. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  16. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  17. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  18. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  19. Identifying the annual signal in laminated clastic sediments from a Late Pleistocene lake succession

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Starnberger, Reinhard; Spötl, Christoph; Brauer, Achim; Dulski, Peter

    2014-05-01

    A thick (>250m) succession of laminated lacustrine sediments at the Baumkirchen site in the Inn Valley (Austria) indicates the presence of a lake or series of lake phases existing during Marine Isotope Stage 3. The laminations are highly complex, entirely clastic, and vary considerably in thickness and internal structure. Despite high sedimentation rates of 5-6 cm per year indicated by radiocarbon and pollen data, there is no systematic macroscopic annual pattern in the laminations which could be used to develop a high-resolution (varve) chronology. Microscopic investigations of thin sections revealed sub-mm to cm-scale silt layers punctuated by very thin (0.25-2 mm) clay-rich layers spaced semi-regularly between 2 and 8 cm where present. The spacing and small grain size of these thin layers suggests a possible annual process responsible for their formation: rain-out of the fine suspended sediment from the water column during winter, when fluvial discharge into the lake was negligible and its surface was frozen. These potentially annual layers are not reliably identifiable macroscopically, however, analysis of X-ray fluorescence core scan data revealed the layers to be enriched in several heavy metals: most strongly in Zn but also in Pb, Cu and Ni. Possible carrier minerals of these heavy metals are currently being investigated. The radiocarbon chronology (in the short upper section where it is available) and heavy metal peak counting agree within error suggesting the heavy metal enriched clay-rich layers are mostly annual. Available X-ray fluorescence data for 150 m of the section suggest no significant long-term changes in annual layer spacing (i.e. sedimentation rate) from the 5-6 cm average indicated by the radiocarbon data, although there is a high degree of small-scale variation. Preliminary optically stimulated luminescence dates point to the presence of several hiatuses in this succession suggesting a fragmented record containing several lake periods of

  20. Stratigraphic analysis of the carboniferous rocks of the Central Appalachian Basin

    SciTech Connect

    Chesnut, D.R. Jr.

    1988-01-01

    A series of seven cross sections was constructed across part of the Central Appalachian Basin in Kentucky, Tennessee, Virginia, West Virginia, and Ohio. Information used to make these sections included well logs, coal-company core descriptions, measured sections, and mapped surface geology. Newly discovered surface and subsurface structural features such as faults, folds, and flexures, are described. A new, unofficial lithostratigraphic nomenclature was introduced to illustrate the stratigraphic framework, and a regional unconformity was interpreted to occur between the Pennsylvanian Pocahontas Formation and the Pennsylvanian New River Formation. The cross sections reveal that sequential truncation of formations below the unconformity occurs t the northwest in the basin. A regional unconformity and biostratigraphic evidence indicate that the Carboniferous rocks were deposited in a series of several small-scale environmental continua. Pennsylvanian rocks overlying the regional unconformity sequentially overlap the underlying rocks to the northwest in the basin. Belts of quartzose sandstones (Lee Formation) within the overlying rocks, are oriented northeast-southwest. Succeeding sandstone belts onlap the unconformity to the northwest within the basin. A fluvial origin is suggested for the quartzose, conglomeratic sands of the Lee Formation. The source for these sands may have been reworked sediments derived from the Old Red Sandstone continent to the northwest in Canada. The remaining Pennsylvanian coal-bearing clastic rocks (Breathitt Group) were deposited as clastic wedges derived from the east and southeast on coastal lowlands.

  1. Stratigraphy and environmental significance of continental Triassic rock of Texas

    SciTech Connect

    Gawloski, T.

    1983-03-01

    The continental Triassic rocks of Texas are represented by four distinct but similar rock groups that exist both in outcrop and in the subsurface and include the Eagle Mills Formation (south-central and northeast Texas), Sycamore Formation (central Texas), Dockum Group (west Texas), and Bissett Formation (southwest Texas). They are clearly terrigenous in nature derived principally from older Paleozoic sedimentary rocks. The rock groups are composed in part or entirely of mudstone, siltstone, medium to coarse-grained sandstone, and pebble to boulder conglomerate (intrabasinal and extrabasinal). The sediments were deposited in alluvial fans, braided and meandering streams, lobate deltas, fan deltas, and lakes. The coarse sandstone and conglomerate are the products of high-energy, short-duration depositional events. Sedimentation was greatly affected by alternating climatic conditions that produced changes in base level, water depth, and lake area as well as the type of streams that flowed into the depositional basins. The character of the rock groups strongly suggests semi-arid to arid deposition typical of the low latitude desert regions of today. Thus, the rocks comprising the Eagle Mills, Sycamore, Dockum, and Bissett Formations appear to be products of continental clastic deposition during a major semi-arid to arid climatic episode, such as that of late Triassic time.

  2. Influence of substrate rocks on Fe-Mn crust composition

    USGS Publications Warehouse

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  3. Rock glaciers and the sediment dynamics in arid mountain belts

    NASA Astrophysics Data System (ADS)

    Blöthe, Jan Henrik; Höser, Thorsten; Rosenwinkel, Swenja; Korup, Oliver

    2016-04-01

    Rock glaciers are common periglacial features in highest elevations of semiarid to arid mountain ranges. Rock glaciers predominate in realms where precipitation values fall below thresholds that allow for ice glacier formation, then even outranging ice glaciers in size and number. The influence of ice glaciers on high-mountain's sediment dynamics is manifold: ice-glacier-driven erosion produces large amounts of clastic material; ice glaciers act as a conveyor belt for sediments, delivering material from their source regions to their terminus; ice glaciers entering trunk valleys form efficient dams that interrupt sediment delivery. While these mechanisms have been addressed in numerous earlier studies, the role of rock glaciers for the sediment dynamics of arid mountain belts remains elusive. We address this shortcoming by analysing a rock glacier inventory that we compiled for the Himalaya-Karakoram ranges and the Tien Shan ranges in Central Asia. Our inventory comprises more than 1000 specimen, a large number of which form dams of large trunk rivers and minor tributaries, disconnecting the sediment fluxes from upstream. In certain regions that are nearly devoid of ice-glaciers, like the Gamugah surface of NW Pakistan, rock glaciers of >10^4-m length occupy valley bottoms entirely, constituting the only mode of transport for sediments produced in headwaters. In conclusion, we call for a better understanding of the role that rock glaciers take in the sediment dynamics of arid mountain belts.

  4. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  5. Bed-form climb models to analyze geometry and preservation potential of clastic facies and erosional surfaces

    SciTech Connect

    Larue, D.K.; Martinez, P.A.

    1989-01-01

    Based on a combination of Walther's Law of Facies and bed-form climb theory, the authors propose a model that explains how erosion surfaces and vertical sequences of clastic strata are preserved where deposition occurs in channelized or locally erosional environments including fluvial and submarine-channel deposits, barred beaches, and transgressive coastlines. the model considers both lateral and vertical migration of a scour surface and its associated depositional products. As in studies of bed-form climb, they recognize subcritical, critical, and supercritical climb of scour surfaces relative to adjacent depositional forms. 12 figures.

  6. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  7. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  8. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  9. Comparative palynology of clastics and lignites from the Manning Formation, Jackson Group, Upper Eocene, Grimes County, TX

    SciTech Connect

    Gennett, J.A.

    1996-09-01

    The 3500 lignite seam at the Gibbons Creek Mine in Grimes County, TX was sampled for pollen and spores at 10 cm intervals. The majority of samples are dominated (to 60%) by Momipites from the Juglandaceae (walnut family), as is typical of Jackson Group sediments. Other palynomorph taxa vary systematically, with a peak of pollen of the freshwater tree Nyssa (blackgum) and associated Rboipites angustus (to 17%) occurring at the base. Higher in the seam, increase (to 55%) of Cupuliferoipollenites (a chestnut-like grain) and Cyrillaceae-pollenites? ventosus (to 7%) percentages may indicate a higher salinity environment. A Chrysophyllum (satin leaf) peak (to 25%) near the top of the seam suggests relatively shallow fresh-water conditions. Core samples from an interval above the lignites represent a transgressive-regressive cycle in inner shelf clastics. These samples were taken at 40 cm or greater intervals and reveal the regional pollen flora. Although minor changes occur, palynomorph spectra are for the most part homogenous. The dominant grain is again Momipites coryloides, but in general percentages are lower (to 35%). Cupuliferoipollenites (to 17%), Chrysophyllum (to 5%), and Rhoipites angustus (to 3%) are not less important, but do not peak as they do in the lignite spectra. Palm leaf megafossils; in one sample suggest a clastic wetland; in this sample palm pollen (mostly Arecipites, representing the modern saw palmetto) reaches 73%. Another sample contains high (26%) percentages of the fern spore Lygodiumsporites adriennis. High percentages of these two taxa do not occur in the lignite samples.

  10. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  11. The effect of non-passive clast behaviour in the estimation of finite strain in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Meere, Patrick A.; Mulchrone, Kieran F.; Sears, James W.; Bradway, Michael D.

    2008-10-01

    Existing methodologies that use ellipsoidal objects for the analysis of geological strain typically assume that these objects acted passively during deformation. This assumption, when not valid, can lead to significant underestimates of strain in rocks deformed under low-grade conditions in orogenic forelands. This is especially true when clastic sedimentary rocks are utilized to measure strain; the competency contrast between clasts and matrix possibly leading to marked 'non-passive' behaviour. The systematic nature of this finite strain underestimation may allow for a correction of strain estimates when this type of behaviour is evident.

  12. Compilation of Mineral Resource Data for Mississippi Valley-Type and Clastic-Dominated Sediment-Hosted Lead-Zinc Deposits

    USGS Publications Warehouse

    Taylor, Ryan D.; Leach, David L.; Bradley, Dwight C.; Pisarevsky, Sergei A.

    2009-01-01

    This report contains a global compilation of the mineral resource data for sediment-hosted lead-zinc (SH Pb-Zn) deposits. Sediment-hosted lead-zinc deposits are historically the most significant sources of lead and zinc, and are mined throughout the world. The most important SH Pb-Zn deposits are hosted in clastic-dominated sedimentary rock sequences (CD Pb-Zn) that are traditionally called sedimentary exhalative (SEDEX) deposits, and those in carbonate-dominated sequences that are known as Mississippi Valley-type (MVT) Pb-Zn deposits. In this report, we do not include sandstone-Pb, sandstone-hosted Pb, or Pb-Zn vein districts such as those in Freiberg, Germany, or Coeur d'Alene, Idaho, because these deposits probably represent different deposit types (Leach and others, 2005). We do not include fracture-controlled deposits in which fluorite is dominant and barite typically abundant (for example, Central Kentucky; Hansonburg, N. Mex.) or the stratabound fluorite-rich, but also lead- and zinc-bearing deposits, such as those in southern Illinois, which are considered a genetic variant of carbonate-hosted Pb-Zn deposits (Leach and Sangster, 1993). This report updates the Pb, Zn, copper (Cu), and silver (Ag) grade and tonnage data in Leach and others (2005), which itself was based on efforts in the Canadian Geological Survey World Minerals Geoscience Database Project (contributions of D.F. Sangster to Sinclair and others, 1999). New geological or geochronological data, classifications of the tectonic environment in which the deposits formed, and key references to the geology of the deposits are presented in our report. Data for 121 CD deposits, 113 MVT deposits, and 6 unclassified deposits that were previously classified as either SEDEX or MVT in the Leach and others (2005) compilation, are given in appendix table A1. In some cases, mineral resource data were available only for total district resources, but not for individual mines within the district. For these

  13. Interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time — An example from basal Gulcheru Formation, Cuddapah basin, India

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Gopal; Shome, Debashish

    2010-04-01

    The siliciclastic basal Gulcheru Formation (˜ 1.8 Ga) of the Proterozoic Cuddapah basin preserves abundance of mat-induced sedimentary structures like old elephant skin, wrinkle structure, kinneyia ripples, palimpsest ripples etc. in the vicinity of Pullivendla town (Kottalu village), Andhra Pradesh, India in a low gradient tidal-flat deposional setting. This is the first report of interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time in Indian Purana stratigraphy and probably from the viewpoint of Global Proterozoic biosedimentation. Various types of cracks on bed-top, hitherto considered as of trace-fossil in origin, may be considered to be formed on exposed surface due to dessication or under water due to synaeresis in presence of microbial communities.

  14. Uranium Isotopes in Fine-grained Clastic Sediments: A New Perspective on Erosion and Sedimentation

    NASA Astrophysics Data System (ADS)

    Depaolo, D. J.; Maher, K.; Christensen, J. N.; McManus, J.

    2005-12-01

    High precision uranium isotope measurements may provide a means of determining the timescale associated with the transformation of bedrock to sediment, which includes the time required to mechanically break down rock into transportable fragments, the residence time of sediment particles in soils, streambeds, floodplains, dunes, and moraines, and their transport by wind, rivers and ocean currents to the site of final deposition on the seafloor or in lakes. The interpretation of variations in the 234U/238U ratios in sediments is based on a model for the disruption of the 238U decay series due to the loss of the decay product 234Th by recoil associated with the alpha decay of 238U. This paper presents the results of a study of 234U/238U ratios, as well as O, Nd and Sr isotopes, in fine-grained deep sea sediments, 0 to about 400 ky in age, cored in the North Atlantic Ocean at Ocean Drilling Program Site 984A. The sediments are largely siliciclastic, but have a significant carbonate component that varies between a few and 30 per cent by volume. The O isotope data obtained on separated foraminifera clearly show the last several glacial cycles, and thus provide a detailed temporal framework for the sediments. The Nd and Sr isotopic data show that the provenance of the sediment has oscillated, roughly but not exactly, in concert with the extent of continental ice volume, between a local source - probably volcanic rocks from Iceland - and a continental source. An unexpected finding is that the 234U/238U ratios of the siliciclastic portion of the sediment, isolated by leaching, show large and systematic variations that are correlated with glacial cycles and to some degree with sediment provenance. The U isotope variations are inferred to reflect differences in the transport time of the sediment - the time elapsed between the generation of the small sediment particles on Iceland and the continental source areas, and the time of deposition on the seafloor in the North Atlantic

  15. Breccia 66055 and related clastic materials from the Descartes region, Apollo 16

    NASA Technical Reports Server (NTRS)

    Fruchter, J. S.; Kridelbaugh, S. J.; Robyn, M. A.; Goles, G. G.

    1974-01-01

    Trace and major element contents obtained by instrumental neutron activation are reported for a number of Apollo 16 soil samples and miscellaneous breccia fragments. In addition, data obtained by instrumental neutron activation and electron microprobe techniques along with petrographic descriptions are presented for selected subsamples of breccia 66055. The compositions of our soil samples can be modeled by mixtures of various amounts of anorthosite, anorthositic gabbro and low-K Fra Mauro basalt components. These mixtures are typical of those found in a number of petrographic surveys of the fines. Breccia 66055 is a complex regolith breccia which consists of at least four distinct types of microbreccias. No systematic relation with respect to stratigraphic age among the various microbreccia types was observed. Compositionally and texturally, the clasts which compose breccia 66055 are similar to a number of previously reported rock types from the Apollo 16 area. The entire breccia appears to have undergone a complex history of thermal metamorphism. We conclude from the study of these samples that the Cayley Formation is probably homogeneous in its gross compositional and petrographic aspects.

  16. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    NASA Technical Reports Server (NTRS)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  17. Incision rates of headwater streams: Determination by paleomagnetic dating of clastic cave sediments in valley walls

    SciTech Connect

    Sasowsky, I.D.; White, W.B. . Dept. of Geosciences); Schmidt, V.A. . Dept. of Geology and Planetary Science)

    1992-01-01

    Incision rates of headwater streams which downcut through carbonate rocks can be inferred by correlating surface channels to associated subsurface drainage and the conduit fragments that remain as the channel deepens. Stream-deposited sediments from caves in the valley walls can be sampled for paleomagnetic polarity. Using these data, a local paleomagnetic column is constructed and matched with the global paleomagnetic record which then provides time markers for the sediments. The morphological characteristics of the caves are used to relate paleo-drainage in the karst to previous elevations of the surface channel. A test case was made in a headwater basin in the Western Cumberland Plateau Escarpment, the East Fork of the Obey River in northcentral Tennessee. The basin has a relief of 300m and an area of 523 km[sup 2]. Four extensive caves in the valley walls provided 118 paleomagnetic samples. Samples were step-demagnetized in an alternating field from 10 to 100 mT, and gave well-clustered normal and reversed field directions. NRM intensities were between 8 [times] 10[sup [minus]8] and 1 [times] 10[sup [minus]5] kA/m. Construction of a local paleomagnetic polarity column revealed that two normal and one reversed sedimentary sequences were present in the caves. The age of the uppermost (oldest) cave level was placed at 0.91 Ma, yielding an incision rate for the basin of 0.06 m/ka. This rate is consistent with rates of incision determined for other basins in the eastern US using different methods.

  18. Depositional ages of clastic metasediments from Samos and Syros, Greece: results of a detrital zircon study

    NASA Astrophysics Data System (ADS)

    Löwen, Kersten; Bröcker, Michael; Berndt, Jasper

    2015-01-01

    Siliciclastic metasediments from the islands of Samos and Syros, Cycladic blueschist unit, Greece, were studied to determine maximum sedimentation ages. Four samples from the Ampelos unit on Samos yielded age distribution spectra that range from ~320 Ma to ~3.2 Ga with a dominance of Cambrian-Neoproterozoic zircons (500-1,100 Ma). The youngest well-constrained age groups cluster at 500-550 Ma. Our results allow to link the Samos metasediments with occurrences showing similar age distribution patterns elsewhere in the eastern Mediterranean region (Greece, Turkey, Libya, Israel and Jordan) that record the influx of `Pan-African' detritus. The lack of post-500-Ma zircons in the Samos samples is in marked contrast to the data from Syros that indicates Triassic to Cretaceous depositional ages. The samples from Syros were collected from the matrix of a meta-ophiolitic mélange that is exposed near the top of the metamorphic succession as well as from outcrops representing the basal part of the underlying marble-schist sequence. The zircon populations from Syros were mainly supplied by Mesozoic sources dominated by Triassic protolith ages. Subordinate is the importance of pre-Triassic zircons, but this may reflect bias induced by the research strategy. Sediment accumulation continued until Late Cretaceous time, but the overall contribution of Jurassic to Cretaceous detritus is more limited. Zircon populations are dominated by grains with small degree of rounding suggesting relatively short sediment transportation. Available observations are in accordance with a model suggesting deposition close to the magmatic source rocks.

  19. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  20. Numerical calculation of the rock permittivity using micro computerized tomography image

    NASA Astrophysics Data System (ADS)

    Guo, Chen; Liu, Richard; Jin, Zhao; He, Zhili

    2014-05-01

    A numerical evaluation of the permittivity of sandstones through the micro computerized tomography (micro CT) images at 1.1 GHz is conducted by using an image porosity extracting algorithm and an improved Finite Difference Method (FDM). Within the acquired physical properties by 3D micro CT scanning, numerical method is used to compute the permittivity of the rock samples. A resonant cavity is used for experimental measurement. The simulated results of 2 clastic sandstone samples with dry state and saturated state are compared with experimental data for validating the accuracy of the proposed numerical method. The results show great agreement and the error of permittivity evaluation is less than 3%.

  1. Petrogenesis of lunar rocks: Rb-Sr constraints and lack of H2O

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Gancarz, A. J.

    1974-01-01

    Rb and Sr isotopic data and other chemical data indicate major lunar differentiation at about 4.6 AE and very limited subsequent differentiation. The constraints of limited differentiation post 4.6 AE and the apparent lack of H2O on the moon, when applied to the derivation and petrogenesis of lunar samples, suggest the following: (1) soil samples, breccias, metaclastic rocks, and feldspathic basalts represent mixtures of repeatedly-modified clastic material, which was ultimately derived from materials formed during the about 4.6 AE differentiation; and (2) mare basalts crystallized from melts which formed by partial melting and, which developed without equilibration between the melt and crystalline residuum.

  2. Transport of marked pebbles in short periods of time on a coarse clastic beach (Marina di Pisa, Italy)

    NASA Astrophysics Data System (ADS)

    Bertoni, D.; Ciavola, P.; Grottoli, E.; Sarti, G.

    2012-04-01

    Transport of coarse sediments on coarse clastic beaches still presents aspects that are not fully understood. For instance, there is a generally perceived notion that during fair-weather periods coarse grains hardly move, if not at all. The aim of this experiment is to prove that sediments such as pebbles are subject to significant shift in very short lapses of time and under low energy waves. An artificial coarse clastic beach at Marina di Pisa (Tuscany, Italy) was chosen as study site: Barbarossa beach is 110 m long and is bounded by two groynes. The mean grain size is about 40-to-50 mm. About 80 pebbles were marked by means of the RFID technology, which enables to univocally identify the tracers. The marked pebbles were released along cross-shore transects (one pebble each on the fair-weather berm, on the beachface and on the step crest) on the morning of September 15th, and two recovery campaigns were carried out after 6 and 24 hours from the injection. No particular wave activity was recorded during the time frame of the experiment. After the first recovery campaign, which was performed 6 hours later than the injection, about 94% of the pebbles were detected. After the second recovery campaign, 24 hours later, the recovery rate decreased to 89%. Considering that the technique provides for detection of tracers within 50 cm, the resulting loss of pebbles after so brief spans of time is remarkable. The lack of detection of few tracers implies that the transport rate that they experienced is not negligible. The highest rate of losses was recorded on the beachface, the zone that is subjected the most to waves even under calm conditions. Pebble movement is also confirmed by the fact that tracers detected after the first recovery campaign were not detected once again after the second recovery campaign, and vice versa. The results of the experiment are useful to better define the transport of coarse sediments, verifying that pebbles have to be expected be moving even

  3. Geophysical and transport properties of reservoir rocks. Summary annual report

    SciTech Connect

    Cook, N.G.W.

    1990-04-29

    Definition of petrophysical properties, such as porosity, permeability and fluid saturation, on the scale of meters, is the key to planning and control of successful Enhanced Oil Recovery techniques for domestic reservoirs. Macroscopic transport properties in reservoir rocks depend critically upon processes at the pore level involving interactions between the pore topology and the physical and chemical properties of the rock minerals and interstitial fluids. Similar interactions at the pore level determine also the macroscopic electrical and seismic properties of reservoir rocks. The objective of this research is to understand, using analysis and experiment, how fluids in pores affect the geophysical and sport properties of reservoir rocks. The goal is to develop equations-relating seismic and electrical properties of rock to the porosity, permeability and fluid saturations so as to invert geophysical images for improved reservoir management. Results from seismic measurements performed so far in this study suggest that even subtle changes in fluid contacts and the in-situ state of effective stress can be detected using geophysical imaging techniques. The experiments using Wood`s metal and wax are revealing the topology and sport properties of the pore space in clastic sedimentary rocks. A deeper understanding of these properties is considered-to be the key to the recovery of much of the mobile oil left in domestic reservoirs and to the effective management of enhanced oil recovery techniques. The results of Wood`s metal percolation tests indicate that most of the permeability of Berea sandstone resides in the critical percolating paths and these paths occupy only a small fraction of the total porosity. This result may have important implications for flooding in terms of override and efficiency as a function of saturation.

  4. Sedimentation and basin-fill history of the Neogene clastic succession exposed in the southeastern fold belt of the Bengal Basin, Bangladesh: a high-resolution sequence stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Royhan Gani, M.; Mustafa Alam, M.

    2003-02-01

    The Tertiary basin-fill history of the Bengal Basin suffers from oversimplification. The interpretation of the sedimentary history of the basin should be consistent with the evolution of its three geo-tectonic provinces, namely, western, northeastern and eastern. Each province has its own basin generation and sediment-fill history related mainly to the Indo-Burmese and subordinately to the Indo-Tibetan plate convergence. This paper is mainly concerned with facies and facies sequence analysis of the Neogene clastic succession within the subduction-related active margin setting (oblique convergence) in the southeastern fold belt of the Bengal Basin. Detailed fieldwork was carried out in the Sitapahar anticline of the Rangamati area and the Mirinja anticline of the Lama area. The study shows that the exposed Neogene succession represents an overall basinward progradation from deep marine through shallow marine to continental-fluvial environments. Based on regionally correlatable erosion surfaces the entire succession (3000+ m thick) has been grouped into three composite sequences C, B and A, from oldest to youngest. Composite sequence C begins with deep-water base-of-slope clastics overlain by thick slope mud that passes upward into shallow marine and nearshore clastics. Composite sequence B characteristically depicts tide-dominated open-marine to coastal depositional systems with evidence of cyclic marine regression and transgression. Repetitive occurrence of incised channel, tidal inlet, tidal ridge/shoal, tidal flat and other tidal deposits is separated by shelfal mudstone. Most of the sandbodies contain a full spectrum of tide-generated structures (e.g. herringbone cross-bedding, bundle structure, mud couplet, bipolar cross-lamination with reactivation surfaces, 'tidal' bedding). Storm activities appear to have played a subordinate role in the mid and inner shelf region. Rizocorallium, Rosselia, Planolites and Zoophycos are the dominant ichnofacies within the

  5. 3D multicomponent seismic characterization of a clastic reservoir in the Middle Magdalena Valley Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Velasquez-Espejo, Antonio Jose

    Paleo-high). 2. Northeast striking younger normal faults indicate younger local extension, that affects the entire Cenozoic sequence. Normal faults are, in fact, the structural heterogeneities that most affect the geometry of the reservoir compartments in Tenerife Field. This normal faulting oriented oblique to the maximum horizontal stress, together with the associated folding, can arise from a left-lateral shear deformation that creates a local trans-tensional regime. Hence, the structure of Tenerife Field at the top of the Oligocene sandstones, can be described as a two-way closure anticline within a negative flower structure. In addition, Upper Eocene - Early Oligocene syn-tectonic deposits are also documented in this work, dating the last episode of deformation associated with the Infantas Paleohigh uplift. The value of multicomponent data goes beyond the structural interpretation since it provides an independent seismic measure of shear-wave velocities for obtaining VP/VS ratios from interpretation and for performing elastic inversion. From the interpretation of both PP and PS data, the interval VP/VS ratio was computed for the entire Mugrosa Formation. Forward modeling of PS wave response showed that computing VP/VS ratio from picking thin intervals may lead to erroneous values since it is not possible to interpret the same seismic events in both PP and PS data. Nonetheless, analysis of the full-waveform (dipole) sonic log together with Gamma Ray measured in the reservoir interval, showed that there is a close correlation between lithology and VP/VS ratio. VP/VS ≈ 1:85 is an effective upper bound to characterize sandstones from fine grained rocks. Further, a model-based elastic inversion of acoustic impedance and VP/VS ratio performed using the PP volume and the sonic logs available, allowed to find stratigraphic features in the Mugrosa and Esmeraldas

  6. 3-D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Simmons, J.L. Jr.; Jons, R.A.; Lancaster, D.E.; Elphick, R.Y.; Pendleton, V.M.

    1996-09-01

    A multidisciplinary team, composed of stratigraphers, petrophysicists, reservoir engineers, and geophysicists, studied a portion of Boonsville gas field in the Fort Worth Basin of north-central Texas to determine how modern techniques can be combined to understand the mechanisms by which fluvio-deltaic depositional processes create reservoir compartmentalization in a low- to moderate-accommodation basin. An extensive database involving well logs, cores, production, and pressure data from more than 200 wells, 26 mi{sup 2} of 3-D seismic data, vertical seismic profiles, and checkshots was assembled to support this investigation. The authors found the most important geologic influence on stratigraphy and reservoir compartmentalization in this basin to be the existence of numerous karst collapse chimneys over the area covered. These near-vertical karst collapses originated in, or near, the deep Ordovician-age Ellenburger carbonate section and created vertical chimneys extending as high as 2,500 ft above their point of origin, causing significant disruptions in the overlying clastic strata.

  7. Molecular orbital calculations of proton transfer involving amines as models for the clastic binding of opiates with their receptor

    SciTech Connect

    Bennett, L.K.; Beamer, R.L.

    1986-08-01

    Semi-empirical (CNDO) molecular orbital calculations, based on a previously reported ammonia-amine model system, were performed on an extended series of methyl-, ethyl-, and propylamines as models for the analgesic receptor. Methyl-, dimethyl-, and trimethylamines were chosen to represent the opiate molecules. Interatomic distances were varied within normally expected biological values. The results for the larger systems are similar to more elaborate calculations previously reported using smaller molecules. At internuclear distances of greater than 0.275 nm, the potential energy curves had two minima. At 0.2731 nm, the optimized N-N distance, the depth of the minima in the potential energy curve were not as great. Energy differences as well as population differences suggest deviation from the currently stated clastic binding theories mechanism for the analgesic response of the tertiary amines. The dimethylamine energy profile and population data indicate that the hypothesis of N-demethylated opiate as the active molecule needs further consideration and investigation. Investigation of larger systems is also indicated to develop increasingly realistic models for the analgesic response.

  8. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  9. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  10. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  11. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  12. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  13. Grain-size distribution of volcaniclastic rocks 2: Characterizing grain size and hydraulic sorting

    NASA Astrophysics Data System (ADS)

    Jutzeler, Martin; McPhie, Jocelyn; Allen, Sharon R.; Proussevitch, A. A.

    2015-08-01

    Quantification of the grain size distribution of sediments allows interpretation of processes of transport and deposition. Jutzeler et al. (2012) developed a technique to determine grain size distribution of consolidated clastic rocks using functional stereology, allowing direct comparison between unconsolidated sediments and rocks. Here, we develop this technique to characterize hydraulic sorting and infer transport and deposition processes. We compare computed grain size and sorting of volcaniclastic rocks with field-based characteristics of volcaniclastic facies for which transport and depositional mechanisms have been inferred. We studied pumice-rich, subaqueous facies of volcaniclastic rocks from the Oligocene Ohanapecosh Formation (Ancestral Cascades, Washington, USA), Pliocene Dogashima Formation (Izu Peninsula, Honshu, Japan), Miocene Manukau Subgroup (Northland, New Zealand) and the Quaternary Sierra La Primavera caldera (Jalisco State, Mexico). These sequences differ in bed thickness, grading and abundance of matrix. We propose to evaluate grain size and sorting of volcaniclastic deposits by values of their modes, matrix proportion (< 2 mm; F-1) and D16, instead of median diameter (D50) and standard deviation parameters. F-1 and D16 can be uniformly used to characterize and compare sieving and functional stereology data. Volcaniclastic deposits typically consist of mixtures of particles that vary greatly in density and porosity. Hydraulic sorting ratios can be used to test whether mixed clast populations of pumice and dense clasts are hydraulically sorted with each other, considering various types of transport underwater. Evaluation of this ratio for our samples shows that most studied volcaniclastic facies are deposited by settling from density currents, and that basal dense clast breccias are emplaced by shear rolling. These hydraulic sorting ratios can be applied to any type of clastic rocks, and indifferently on consolidated and unconsolidated samples.

  14. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  15. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  16. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  17. Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge

    SciTech Connect

    Goodfellow, W.D.; Franklin, J.M. )

    1993-12-01

    Middle Valley is a sediment-covered rift near the northern end of Juan de Fuca Ridge. Hydrothermal fluids are presently being discharged at two vent fields about 3 km apart, Bent Hill and the area of active venting. The hydrothermally active chimneys at both Bent Hill and the area of active venting consist of anhydrite and Mg-rich silicates with minor pyrite, Cu-Fe sulfide, sphalerite, and galena. Hydrothermal discharge in these areas appears to be focused along extensional faults. At the Bent Hill massive sulfide deposit, clastic sulfide layers are interbedded with hydrothermally altered and unaltered hemipelagic and turbiditic sediment along the flanks of the sulfide mound. Sulfide textures and mineralogy suggest that the Bent Hill sulfide mound formed by the build-up and collapse of sulfide chimneys, the resedimentation of sulfide debris and the formation of clastic sulfide layers, and the infilling and replacement of clastic sulfides by hydrothermal fluids near vents. Sulfur isotope values that are consistently more positive than basaltic sulfur support the addition of seawater sulfur. Pb isotope values for the Bent Hill deposit that are transitional between midocean ridge basalt (MORB) and Middle Valley sediments indicate that the sulfides probably formed from fluids which originated in the oceanic crust but which have been modified by reaction with lower temperature (<274 C) fluids generated in the sedimentary pile, similar to those now venting in Middle Valley.

  18. Tectonic framework of petroliferous rocks in Alaska: hydrocarbons

    USGS Publications Warehouse

    Grantz, Arthur; Kirschner, C.E.

    1976-01-01

    Alaska, which contains about 28% of the land and continental shelf of the United States, is estimated by the U.S. Geological Survey to contain about one third of the nation's undiscovered oil and about one sixth of its undiscovered natural gas. The Survey estimates that fields discovered in Alaska through 1972 ultimately may produce about 26 billion bbl of oil and 68 Tcf of natural gas. In northern Alaska, Paleozoic and Mesozoic shelf and slope carbonate and clastic rocks of the Brooks Range orogen were thrust relatively northward over the depressed south margin of the Paleozoic and Mesozoic Arctic platform. A foredeep, the Colville geosyncline, developed across the depressed margin of the platform in earliest Cretaceous time. Detritus from the Brooks Range filled the foredeep and prograded northward to fill the Cretaceous and Tertiary North Chukchi and Umiat-Camden basins and form the progradational Beaufort shelf. The largest petroleum reserves (Prudhoe Bay and associated fields) and the best prospects for additional large discoveries in Alaska lie in the areally extensive upper Paleozoic to Tertiary carbonate and clastic rocks of northern Alaska. In southern Alaska, a series of arc-trench systems developed on oceanic rocks during Jurassic and Cretaceous time. Between these arcs and the metamorphic (continental) terranes of east-central and northern Alaska, large back-arc and arc-trench gap basins received thick volcanic and detrital deposits. These deposits were extensively, and commonly intensely, deformed and disrupted by mid-Jurassic to Tertiary plutonism, Laramide oroclinal bending, wrench faulting, and arc-related compression. This deformation, coupled with low porosity (in part produced by diagenetic mobilization of labile constituents), has left these rocks with only modest, local prospects for petroleum. Laramide events compressed and consolidated ("continentalized") the late Mesozoic back-arc basin deposits and welded them to the older continental

  19. Microcracks in lunar rocks

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1979-01-01

    Lunar samples contain abundant open microcracks that have closure characteristics completely unlike any shocked terrestrial rock; however, the microcracks present in the lunar rocks before the rocks reached the surface of the moon were likely similar to the microcracks in the shocked terrestrial rocks. Because the microcracks present in the lunar rocks in situ inside the moon were different, radically different, from the microcracks present today in returned lunar samples, any property that is sensitive to microcracks measured on the returned lunar samples is inappropriate for predicting that property as a function of depth in the moon. Therefore, many data that have been measured already on lunar samples simply do not apply to rocks in situ inside the moon. A plausible mechanism with which to account for the difference in microcrack characteristics of lunar samples on the surface of the moon and the microcrack characteristics of lunar rock in situ inside the moon is thermal cycling during residence on the moon's surface.

  20. Alteration of immature sedimentary rocks on Earth and Mars: Recording aqueous and surface-atmosphere processes

    NASA Astrophysics Data System (ADS)

    Cannon, Kevin M.; Mustard, John F.; Salvatore, Mark R.

    2015-05-01

    Rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. However, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previous and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water-rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water-rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. Our results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.

  1. Alteration of immature sedimentary rocks on Earth and Mars. Recording Aqueous and Surface-atmosphere Processes

    SciTech Connect

    Cannon, Kenneth M.; Mustard, John F.; Salvatore, Mark R.

    2015-03-05

    The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previous and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.

  2. The Potassic Sedimentary Rocks in Gale Crater, Mars, as Seen by ChemCam Onboard Curiosity.

    USGS Publications Warehouse

    Le Deit, Laetitia; Mangold, Nicolas; Forni, Olivier; Cousin, Agnes; Lasue, Jeremie; Schröder, Susanne; Wiens, Roger C.; Sumner, Dawn Y.; Fabre, Cecile; Stack, Katherine M.; Anderson, Ryan; Blaney, Diana L.; Clegg, Samuel M.; Dromart, Gilles; Fisk, Martin; Gasnault, Olivier; Grotzinger, John P.; Gupta, Sanjeev; Lanza, Nina; Le Mouélic, Stephane; Maurice, Sylvestre; McLennan, Scott M.; Meslin, Pierre-Yves; Nachon, Marion; Newsom, Horton E.; Payre, Valerie; Rapin, William; Rice, Melissa; Sautter, Violaine; Treiman, Alan H.

    2016-01-01

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters-thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system (Grotzinger et al., 2015). From ChemCam LIBS chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than five times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e. mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.

  3. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems

    NASA Astrophysics Data System (ADS)

    Borka, Szabolcs

    2016-01-01

    The aim of this study was to examine the relationship between structural elements and the so-called genetic lithofacies in a clastic deep-water depositional system. Process-sedimentology has recently been gaining importance in the characterization of these systems. This way the recognized facies attributes can be associated with the depositional processes establishing the genetic lithofacies. In this paper this approach was presented through a case study of a Tertiary deep-water sequence of the Pannonian-basin. Of course it was necessary to interpret the stratigraphy of the sequences in terms of "general" sedimentology, focusing on the structural elements. For this purpose, well-logs and standard deep-water models were applied. The cyclicity of sedimentary sequences can be easily revealed by using Markov chains. Though Markov chain analysis has broad application in mainly fluvial depositional environments, its utilization is uncommon in deep-water systems. In this context genetic lithofacies was determined and analysed by embedded Markov chains. The randomness in the presence of a lithofacies within a cycle was estimated by entropy tests (entropy after depositional, before depositional, for the whole system). Subsequently the relationships between lithofacies were revealed and a depositional model (i.e. modal cycle) was produced with 90% confidence level of stationarity. The non-randomness of the latter was tested by chi-square test. The consequences coming from the comparison of "general" sequences (composed of architectural elements), the genetic-based sequences (showing the distributions of the genetic lithofacies) and the lithofacies relationships were discussed in details. This way main depositional channel has the best, channelized lobes have good potential hydrocarbon reservoir attributes, with symmetric alternation of persistent fine-grained sandstone (Facies D) and muddy fine-grained sandstone with traction structures (Facies F)

  4. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2001-10-31

    The Nash Draw Brushy Canyon Pool (NDP) in southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope basin and deep-basin clastic depositional types. Production at the NDP is from the Brushy Canyon formation, a low-permeability turbidite reservoir in the Delaware Mountain Group of Permian, Guadalupian age. A major challenge in this marginal-quality reservoir is to distinguish oil-productive pay intervals from water-saturated non-pay intervals. Because initial reservoir pressure is only slightly above bubble-point pressure, rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Limited surface access, caused by the proximity of underground potash mining and surface playa lakes, prohibits development with conventional drilling. Reservoir characterization results obtained to date at the NDP show that a proposed pilot injection area appears to be compartmentalized. Because reservoir discontinuities will reduce effectiveness of a pressure maintenance project, the pilot area will be reconsidered in a more continuous part of the reservoir if such areas have sufficient reservoir pressure. Most importantly, the advanced characterization results are being used to design extended reach/horizontal wells to tap into predicted ''sweet spots'' that are inaccessible with conventional vertical wells. The activity at the NDP during the past year has included the completion of the NDP Well No.36 deviated/horizontal well and the completion of additional zones in three wells, the design of the NDP No.33 directional/horizontal well, The planning and regulatory approval for the

  5. Magnetic fabric (anisotropy of magnetic susceptibility) constraints on emplacement mechanism of clastic dikes: an example from the Cretaceous Dadaepo Basin in SE Korea

    NASA Astrophysics Data System (ADS)

    Son, M.; Cho, H.; Sohn, Y. K.

    2014-12-01

    Emplacement mechanisms of clastic dikes, which are discordant and tabular bodies comprised of weakly to strongly lithified clastic detritus, have been a matter of considerable interest over the last 20 years. Clastic dikes are generally classified into neptunian and injected dikes. Using the magnetic fabrics (AMS), we attempt to classify the clastic dikes in the late Cretaceous Dadaepo Basin, SE Korea, and interpret their emplacement mechanisms. The neptunian dikes exhibit a typical oblate sedimentary fabric which makes a sharp contrast with the injected dikes. The fabrics of the injected dikes are greatly influenced by current conditions (flow directions, rheological properties, and rates) and transportation types (imbrication or rolling) of filling materials. Based on the AMS fabrics, they are classified into four types. (1) Type-VP is formed by grain imbrication in low- to moderate-energy vertical flow of a Newtonian fluid and characterized by a bilateral symmetry of fabrics across the dike. (2) Type-VT results from grain rolling in vertical high-energy flow and is characterized by subvertical k2 and subhorizontal k1 axes on the dike plane. (3) Type-HP is formed by grain imbrication in horizontal low- to moderate-energy flow, resulting in subvertical k3 and subhorizontal k1 and k2 axes. (4) Type-HT is formed by grain rolling in horizontal high-energy flow, resulting in streaked k2-k3 on the dike plane and horizontally clustered k1 axes. The AMS fabrics of each type can be a significant indicator for flow direction. The observed AMS fabric of low-energy current immediately above the source layer indicates that fluidized clastic materials in the lower part of injected dike can flow laterally by lateral propagation of new or pre-existing fractures due to a dominant horizontal pressure gradient. Based on abundant AMS fabrics of high-energy current, coexistence of paleoseismic structures, and tectonic setting of the basin, earthquake-induced liquefaction is the most

  6. Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia

    USGS Publications Warehouse

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.; Barnes, R.G.

    1993-01-01

    Tourmaline-rich rocks are widespread minor lithologies within the Early Proterozoic Willyama supergroup. Most of the tourmaline-rich rocks are within the Broken Hill Group that hosts the main Pb-Zn-Ag ores. Electron microprobe analyses of tourmalines intergrown with Fe sulfides at the Globe mine show Mg-rich compositions relative to tourmalines in sulfide-free assemblages from the same area, suggesting early (premetamorphic) introduction of boron and Mg enrichment of tourmaline by sulfide-silicate reactions during metamorphism. Combined field and geochemical data indicate that the district tourmalinites represent normal clastic sediments that were metasomatically altered by boron-rich hydrothermal fluids at or below the sediment-water interface. The geochemical data imply relative immobility of Al, Ti, Cr, and heavy REE during hydrothermal alteration and later metamorphism. -from Authors

  7. Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site

    USGS Publications Warehouse

    McSween, H.Y., Jr.; Murchie, S.L.; Crisp, J.A.; Bridges, N.T.; Anderson, R.C.; Bell, J.F., III; Britt, D.T.; Brückner, J.; Dreibus, G.; Economou, T.; Ghosh, A.; Golombek, M.P.; Greenwood, J.P.; Johnson, J. R.; Moore, H.J.; Morris, R.V.; Parker, T.J.; Rieder, R.; Singer, R.; Wänke, H.

    1999-01-01

    Rocks at the Mars Pathfinder site are probably locally derived. Textures on rock surfaces may indicate volcanic, sedimentary, or impact-generated rocks, but aeolian abration and dust coatings prevent unambiguous interpretation. Multispectral imaging has resolved four spectral classes of rocks: gray and red, which occur on different surfaces of the same rocks; pink, which is probably soil crusts; and maroon, which occurs as large boulders, mostly in the far field. Rocks are assigned to two spectral trends based on the position of peak reflectance: the primary spectral trend contains gray, red, and pink rocks; maroon rocks constitute the secondary spectral trend. The spatial pattern of spectral variations observed is oriented along the prevailing wind direction. The primary spectral trend arises from thin ferric coatings of aeolian dust on darker rocks. The secondary spectral trend is apparently due to coating by a different mineral, probably maghemite or ferrihydrite. A chronology based on rock spectra suggests that rounded maroon boulders constitute the oldest petrologic unit (a flood deposit), succeeded by smaller cobbles possibly deposited by impact, and followed by aeolian erosion and deposition. Nearly linear chemical trends in alpha proton X-ray spectrometer rock compositions are interpreted as mixing lines between rock and adhering dust, a conclusion supported by a correlation between sulfur abundance and red/blue spectral ratio. Extrapolations of regression lines to zero sulfur give the composition of a presumed igneous rock. The chemistry and normative mineralogy of the sulfur-free rock resemble common terrestrial volcanic rocks, and its classification corresponds to andesite. Igneous rocks of this composition may occur with clastic sedimentary rocks or impact melts and breccias. However, the spectral mottling expected on conglomerates or breccias is not observed in any APXS-analyzed rocks. Interpretation of the rocks as andesites is complicated by absence

  8. Preliminary Descriptions of Impact Rocks Recovered by Recent Core Drilling in the Manson Impact Structure

    NASA Astrophysics Data System (ADS)

    Anderson, R. R.; Witzke, B. J.; Hartung, J. B.

    1993-07-01

    In a recent drilling program 12 cores totaling over 1200 m were recovered from the Manson Impact Structure. Four principal impact rock types were encountered (1) Sedimentary Clast Breccia (SCB), (2) Crystalline Clast Breccia with Sandy Matrix (CCB-S) and Melt Rock Matrix (CCB-M), (3) Central Peak Igneous and Metamorphic Rocks (CP), and (4) an overturned flap of Impact Ejecta (IE). The SCB is dominated by clasts of Cretaceous marine shale and mudstone, with subordinate Cretaceous sandstones, Paleozoic carbonates, minor Proterozoic Red Clastics, and rare crystalline rock and impact melt-rock clasts in a medium gray, calcareous, sandy shale matrix. Parallel deformation features (PDFs) and other evidence of impact metamorphism are extremely rare. The SCB reaches a maximum thickness in excess of 200 m and is interpreted as a post-impact debris flow that originated at the crater margins. The abundance, large clasts (up to 75 m) and pervasive occurrence of SCB (cored in all regions of the Manson Impact Structure including the Central Peak pit) suggests a high energy emplacement mechanism, possibly water rushing into the crater following an impact in a shallow marine environment. The uppermost unit on the Central Peak, the CCB-M, displays abundant clasts, dominated by quartz grains, most displaying PDFs, shock isotropism, and/or partial melting. Some clasts display accretionary mantling by melt materials, apparently while airborne, with subsequent mixing into the CCB-M. An isotropic melt matrix frequently displays flow-banding and devitrification textures. The CCB-M is interpreted as an impact melt layer, derived primarily from crystalline basement rocks, and may represent CCB-S that experienced sufficient heat to melt the matrix grains. A central zone of the CCB-M displays clusters of sanidine crystals, recrystalized from impact melt in a region that apparently cooled more slowly. The CCB-S is dominated by clasts of basement gneiss and granite in a matrix of sand- to silt

  9. Conflicting evidence on the timing of mesothermal and paleoplacer gold mineralisation in early Proterozoic rocks from Southwest Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    Eisenlohr, B. N.

    1992-01-01

    Rocks of early Proterozoic age (ca. 2100 Ma) host the major gold deposits in Ghana. The deposits are either located in mesothermal quartz vein systems or hosted in a quartz pebble conglomerate that represents a paleoplacer. Both types of mineralisation are largely confined to the Ashanti Belt, one of four parallel northeast-trending volcanic belts. While the stratigraphy and structure of the belts are similar, the Ashanti belt is characterised by a more tectonised northwest margin where most of the epigenetic gold deposits are located. In these deposits, gold mineralisation is located in faults that parallel the regional trend of the belts and were active late in the deformation history of the terrane. The auriferous quartz pebble conglomerate is part of a clastic sequence that is largely derived from the adjacent volcanic and plutonic rocks with the gold widely regarded as having originated from eroded vein deposits. Structural data, however, show that both the volcanic rocks and clastic sequence were deformed jointly prior to epigenetic gold mineralisation. Thus, the quartz vein deposits could not have been the source of the paleoplacer mineralisation. The paleoplacer gold could have originated from one of several possible sources but none has been unequivocally identified.

  10. New insights into the petrogenesis of volcanic rocks in the Shanghang Basin in the Fujian Province, China

    NASA Astrophysics Data System (ADS)

    Jiang, Si-Hong; Bagas, Leon; Liang, Qing-Ling

    2015-06-01

    The Mesozoic Shanghang Basin in southeastern China consists of Early Cretaceous mottled coarse-grained clastic and volcanic rocks, and Late Cretaceous clastic rocks. The volcanic rocks are intermediate-mafic to felsic and spatially close to the famous Zijinshan Mineral Field. In order to better understand the timing, petrogenesis and tectonic setting of these volcanic rocks and the relationship between magmatism and metallogeny in the mineral field, U-Pb zircon geochronological, geochemical and Sr-Nd-Pb-Hf isotopic studies were completed on the volcanic rocks. Fifteen LA-MC-ICP-MS U-Pb zircon analyses of the volcanic rocks yield weighted mean ages of between 105 and 99 Ma. Major and trace element geochemistry shows that these rocks are mostly high-K to shoshonitic, enriched in LREE and Th, U, and depleted in Ba, Nb, Sr, P and Ti. The volcanic rocks have 87Sr/86Sri ratios of between 0.70732 and 0.70977, 206Pb/204Pb isotope ratios of 18.57-19.77, 207Pb/204Pb isotope ratios of 15.64-15.71, 208Pb/204Pb isotope ratios of 38.87-40.62, 176Hf/177Hf ratios of 0.282589-0.282823, εNdT values of -7.5 to -4.7, and εHf(t) values of -4.2 to 4. Such characteristics, with similarities to coeval volcanic and intrusive rocks adjacent to the basin, suggest that the parent magma of the Cretaceous volcanic rocks in the basin and their contemporaneous intrusives originated from crustal melts with a juvenile component. Petrogenetically, fractional crystallization with minor wall-rock assimilation is the controlling process in deriving a wide range of more evolved rocks. With reference to the ore-forming events and isotopic features of ore-related intrusions in the Zijinshan Mineral Field, we propose that volcanism in the Shanghang Basin and coeval magmatism in the mineral field are related to the formation of the regional porphyry and epithermal Cu-Au-Mo-Ag deposits in an extension tectonic setting related to the subduction of the Paleo-Pacific Plate.

  11. The Rock Physics Handbook

    NASA Astrophysics Data System (ADS)

    Mavko, Gary; Mukerji, Tapan; Dvorkin, Jack

    2003-10-01

    The Rock Physics Handbook conveniently brings together the theoretical and empirical relations that form the foundations of rock physics, with particular emphasis on seismic properties. It also includes commonly used models and relations for electrical and dielectric rock properties. Seventy-six articles concisely summarize a wide range of topics, including wave propagation, AVO-AVOZ, effective media, poroelasticity, pore fluid flow and diffusion. The book contains overviews of dispersion mechanisms, fluid substitution, and Vp-Vs relations. Useful empirical results on reservoir rocks and sediments, granular media, tables of mineral data, and an atlas of reservoir rock properties complete the text. This distillation of an otherwise scattered and eclectic mass of knowledge is presented in a form that can be immediately applied to solve real problems. Geophysics professionals, researchers and students as well as petroleum engineers, well log analysts, and environmental geoscientists will value The Rock Physics Handbook as a unique resource.

  12. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  13. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  14. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  15. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  16. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    DOE PAGESBeta

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analysesmore » to evaluate the effects of differential stress and rock type on fracture mode.« less

  17. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    SciTech Connect

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analyses to evaluate the effects of differential stress and rock type on fracture mode.

  18. Postcambrian stratified rocks of the northern part of the Baikal-Vitim fold area

    NASA Astrophysics Data System (ADS)

    Buldygerov, V. V.; Krainov, M. A.

    2012-09-01

    The Ordovician stratified rocks previously referred to Riphean or Vendian are widespread in the northern part of the Baikal-Vitim fold area. They include volcanosedimentary rocks which accumulated in continental riftlike troughs after Vendian-Cambrian platform regime and were accompanied by subvolcanic bodies. The coarse-clastic facies, frequently olistostromes with olistoplaques, are abundant in the marginal parts of the troughs. The sandy-silty-clay rocks dominate in the centre. The volcanic rocks represent the contrast rhyolite-basaltic series and compose paleovolcanoes of the central type, locally, complicated by calderas. Tuffaceous material is nearly almost present in synchronous sedimentary rocks. In the Ordovician, the northern part of the Baikal-Vitim fold area was an uplift of island arc type complicated by the riftlike troughs. It occupied the central part of the Baikal-Vitim arc. The location of the troughs was subjected to its structural plan. They were formed successively after the Riphean-Vendian Baikal-Muya volcano-plutonic belt. The uplift existed within a shallow basin occupying nearly the entire Siberian Platform and Baikal-Vitim fold area. The data obtained confirm that marine sedimentary basin with islands sometimes existed within the Baikal-Vitim fold area and was a part of the basin occupying the adjacent part of the Siberian Platform. The effect of pulsating plume in the northern part of the Baikal-Vitim fold area periodically, including Ordovician, led to the origination of the uplift and to renewal of tectonic and volcano-plutonic activity.

  19. The gold content of some Archaean rocks and their possible relationship to epigenetic gold-quartz vein deposits

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Saager, R.

    1985-10-01

    Gold mineralization in Archaean granite-greenstone environments, especially gold-quartz veins, contributes considerably to the world's gold production. The formation of epigenetic gold mineralization in greenstone belts is generally explained by the metamorphic secretion theory. This theory is based on the assumption that the source of the gold may be komatiitic or tholeiitic lavas, pyritic chemical or clastic sediments and even granitic rocks from which, as a result of regional metamorphic overprinting, gold was extracted and concentrated in suitable structures. It has been shown that in proposed potential source rocks, gold is predominantly associated with sulfide minerals and thus relatively easily accessible to secretion and reconstitution processes. A large number of various rock types originating from granite-greenstone terranes of the Kaapvaal and the Rhodesian cratons were geochemically investigated, and the following ranges for gold determined: volcanic rocks (komatiitic and tholeiitic): 0.1 372 ppb granitic rocks of the basement: 0.3 7.8 ppb iron-rich chemical sediments: 1.0 667 ppb Statistical treatment of the data reveals that volcanic rocks as well as iron-rich chemical sediments are favorable sources for epigenetic gold mineralization formed by metamorphic secretion, while the granitic rocks make less suitable primary gold sources. This finding explains the close spatial relationship which is common between gold-quartz veins and greenstone belts. The conspicuous abundance of epigenetic gold mineralization in the Archaean, however, is attributed to the unique geologic and metamorphic history of the granite-greenstone terranes.

  20. A thrust-ridge paleodepositional model for the Upper Freeport coal bed and associated clastic facies, Upper Potomac coal field, Appalachian basin, U.S.A.

    USGS Publications Warehouse

    Belt, E.S.; Lyons, P.C.

    1989-01-01

    A blind-thrust-ridge model is proposed to explain the lack of coarse clastic material in the vast minable Upper Freeport coal bed (UF). This coal bed contains only fine elastic partings and is overlain by regionally extensive, closely spaced channel-belt deposits in the Upper Potomac coal field of the Appalachian basin. A blind-thrust ridge may have formed a sediment trap and prevented c coarse fluvial sediments from entering the swamp during a period (Westphalian D) when the thick Upper Freeport peat accumulated. Anticlinal thrust ridges and associated depressions may have existed uninterrupted for about 40 km parallel to the Appalachian orogen. Sediment shed from the breached anticlinal ridges accumulated in the sediment trap and was carried out of the ends of the trap by streams that occupied the shear zone at the ends of the blind-thrust ridge. The extent, parallel to the orogen, of thick, areally extensive UF is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastic sediments that entered the main basin from the east. The thrust plane eventually emerged to the surface of the blind-thrust ridge and peat accumulation was terminated when the ridge became eroded and the sediment trapped behind it was released. The peat was buried by abundant coarse clastic sediment, which formed closely spaced channel belts and intervening flood basins. This model has implications for widespread peat deposits (now coal) that developed in tropical regions a few hundred kilometers from the sea in a tectonically active foreland basin. ?? 1989.

  1. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  2. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  3. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  4. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  5. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Mark B.

    2000-10-25

    The Nash Draw Brushy Canyon Pool (NDP) is southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope-basin and deep-basin clastic depositional types.

  6. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  7. Layered Rocks in Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 June 2004 Exposures of layered, sedimentary rock are common on Mars. From the rock outcrops examined by the Mars Exploration Rover, Opportunity, in Meridiani Planum to the sequence in Gale Crater's central mound that is twice the thickness of of the sedimentary rocks exposed by Arizona's Grand Canyon, Mars presents a world of sediment to study. This unusual example, imaged by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows eroded layer outcrops in a crater in Terra Tyrrhena near 15.4oS, 270.5oW. Sedimentary rocks provide a record of past climates and events. Perhaps someday the story told by the rocks in this image will be known via careful field work. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  8. Exploring the techno-economic feasibility of mine rock waste utilisation in road works: The case of a mining deposit in Ghana.

    PubMed

    Agyeman, Stephen; Ampadu, Samuel I K

    2016-02-01

    Mine rock waste, which is the rock material removed in order to access and mine ore, is free from gold processing chemical contaminants but presents a significant environmental challenge owing to the large volumes involved. One way of mitigating the environmental and safety challenges posed by the large volume of mine rock waste stockpiled in mining communities is to find uses of this material as a substitute for rock aggregates in construction. This article reports on a study conducted to evaluate the engineering properties of such a mine deposit to determine its suitability for use as road pavement material. Samples of mine rock waste, derived from the granitic and granodioritic intrusive units overlying the gold-bearing metavolcanic rock and volcano-clastic sediments of a gold mining area in Ghana, were obtained from three mine rock waste disposal facilities and subjected to a battery of laboratory tests to determine their physical, mechanical, geotechnical, geometrical and durability properties. The overall conclusion was that the mine rock waste met all the requirements of the Ghana Ministry of Transportation specification for use as aggregates for crushed rock subbase, base and surface dressing chippings for road pavements. The recommendation is to process it into the required sizes for the various applications. PMID:26526020

  9. Zinc Enrichments in the Rocks of Gale Crater, Mars Measured by MSL-APXS Reflect Both High Zn in Jake_M Rocks and the Concentration of Zn in Sedimentary Cements

    NASA Astrophysics Data System (ADS)

    Berger, J. A.; Schmidt, M. E.; Gellert, R.; Fisk, M. R.

    2014-12-01

    Zinc enrichments have been discovered by Curiosity's alpha-particle X-ray spectrometer (APXS) in Gale Crater, Mars. Mugearitic Jake_M class rocks have 80-925 ppm Zn (Zn error in APXS accuracy ~16%), which is higher than shergottites (49-90 ppm) [Meyer, 2012] and abraded Adirondack rocks in Gusev Crater (75-117 ppm) [Gellert et al., 2006], but similar to Irvine and Barnhill class rocks in Gusev (230-422 ppm) [Ming et al., 2008]. The source of Jake_M was enriched in Zn, possibly by partial melting of metasomatized mantle [Stolper et al., 2013; Schmidt et al., 2014]. Relative to Jake_M, most clastic rocks encountered in Gale (sols 0-687) are moderately enriched in Zn (500-1900 ppm). Surface alteration is unlikely to cause elevated Zn because soils have lower Zn (310 to 380 ppm). Excluding soils, veins, very dusty rocks, and high-Ni John Klein rocks, Zn correlates with Fe, Mn, Cr, and Ni (r = 0.83, 0.68, 0.72, and 0.67, respectively). The positive relationships suggest that Zn is mobilized with these metals, possibly precipitating in oxide sedimentary cements with Fe-oxides and/or in the Fe-rich amorphous component. In this subset of rocks, Zn does not correlate with Cl, Br, or S; widespread Zn-halogen salts and Zn-sulfides are unlikely. Notable exceptions are the float rocks Et_Then and Secure, which have high FeO (25-27 wt%) but low Zn (~230-490 ppm) and are interpreted to reflect a distinct cementation or rock coating episode. Two Gale targets <1 m apart at the Kimberly outcrop are highly enriched in Zn, demonstrating the localized nature of Zn enrichments: Windjana drill fines (3430-4680 ppm Zn) have high K2O (3.6 wt%), FeO (~26 wt%), MnO (~0.56 wt%), and Ni (~380 ppm); Stephen (~8150 ppm Zn), interpreted to have a MnO-rich (~4.5 wt%) coating, also has high Ni (~1285 ppm), Cl (~3.2 wt%), and Br (~1850 ppm). An igneous origin of the Zn enrichments in Jake M class rocks is likely, and hydrothermal and/or diagenetic processes probably concentrated Zn in the clastic

  10. Integrating geology, rock physics, and seismology for reservoir-quality prediction

    NASA Astrophysics Data System (ADS)

    Florez-Nino, Juan-Mauricio

    This research focuses on the prediction of reservoir quality from seismic and well-log data, integrating concepts from geology and geophysics. The purpose has been to understand the geologic processes that control lateral variations in acoustic impedance and porosity. The work concentrates on the effect of rock texture and fractures on the elastic properties of sedimentary rocks. This work improves the understanding of the rock-physics depositional and diagenetic trends. The modified Hashin-Shtrikman lower bound can be used to distinguish between sorting and packing effects. It constitutes an upper bound for the sorting effect and a lower bound for the packing effect. Pressure solution is an alternative mechanism to reproduce the rock-physics diagenetic trend for high-porosity quartzose sands, using the Digby-Rutter model proposed here. The patterns that clastic sedimentary sequences present, in the rock-physics planes, agree with predictions from rock-physics models. Dispersed sand-clay mixtures predominate in fluvial deposits, whereas laminar mixtures predominate in mud-rich deep-water deposits. Scarcity of mixed lithofacies characterizes sand-rich deep-water deposits, whereas abundance of these lithofacies occurs in low-energy shallow marine deposits. The results demonstrate that the elastic properties of clastic mixed lithofacies strongly vary depending on the mixture's proportion and fabric, and rock-physics models can be used to predict these variations. The second part of this research deals with the use of outcrop information and seismic data to predict fracture distribution in the subsurface. This work documents a fundamental link between fracture hierarchies and sequence stratigraphy. Fracture spacing and dimensions of different fracture hierarchies are constrained by the thickness of the confining stratigraphic interval. It also documents examples of hierarchical shearing and progressive deformation, a concept that explains the evolution of faults and

  11. Our World: The Rock Cycle

    NASA Video Gallery

    Find out how rocks brought to Earth by the Apollo astronauts have helped NASA learn more about the rock cycle. Compare igneous, sedimentary and metamorphic rocks found on Earth to three types of ro...

  12. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced

  13. A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks

    USGS Publications Warehouse

    Burton, William C.; Southworth, Scott

    2010-01-01

    Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.

  14. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  15. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    SciTech Connect

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  16. Dirty Rotten Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a collection of rocks (upper right) at Gusev Crater that have captured the attention of scientists for their resemblance to rotting loaves of bread. The insides of the rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  17. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  18. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  19. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  20. Our World: Lunar Rock

    NASA Video Gallery

    Learn about NASA'€™s Lunar Sample Laboratory Facility at Johnson Space Center in Houston, Texas. See how NASA protects these precious moon rocks brought to Earth by the Apollo astronauts. Explore t...

  1. East Candor Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick, massive outcrop of light-toned rock exposed within eastern Candor Chasma, part of the vast Valles Marineris trough system. Dark, windblown sand has banked against the lower outcrop slopes. Outcrops such as this in the Valles Marineris chasms have been known since Mariner 9 images were obtained in 1972. However, the debate as to whether these represent sedimentary or igneous rocks has not been settled within the Mars science community. In either case, they have the physical properties of sedimentary rock (that is, they are formed of fine-grained materials), but some igneous rocks made up of volcanic ash may also exhibit these properties. This image is located near 7.8oS, 65.3oW, and covers an area approximately 3 km (1.9 mi) across. The scene is illuminated by sunlight from the lower left.

  2. Focus on the Rock.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    Describes historical accounts of the manipulation and importance of the Earth and its mineral resources. A foldout, "Out of the Rock," provides a collection of activities and information that helps make integration of the aforementioned concepts easy. (ZWH)

  3. Terby's Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 March 2004 Layered rock outcrops are common all across Mars, and the Mars rover, Opportunity, has recently investigated some layered rocks in Meridiani Planum. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rocks in northern Terby Crater, located just north of the giant Hellas Basin near 27.5oS, 285.8oW. Hundreds of layers are exposed in a deposit several kilometers thick within Terby. A history of events that shaped the northern Hellas region is recorded in these rocks, just waiting for a person or robot to investigate. The picture covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the left.

  4. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  5. Tithonium Chasma's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-565, 5 December 2003

    Exposures of light-toned, layered, sedimentary rocks are common in the deep troughs of the Valles Marineris system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from western Tithonium Chasma. The banding seen here is an eroded expression of layered rock. Sedimentary rocks can be composed of (1) the detritus of older, eroded and weathered rocks, (2) grains produced by explosive volcanism (tephra, also known as volcanic ash), or (3) minerals that were chemically precipitated out of a body of liquid such as water. These outcrops are located near 4.8oS, 89.7oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  6. Layered Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Now that solar conjunction is over so that communication between Earth and Mars is no longer blocked by the Sun, NASA's Mars Exploration Rover Spirit is continuing its trek through the 'Columbia Hills' in Gusev Crater. Straight ahead, in the foreground of this image, is a horizontally layered rock dubbed 'Tetl,' which scientists hope to investigate. Layering can be either volcanic or sedimentary in origin; researchers aim to determine which of these processes created this rock. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba,' just to the right, toward the middle of this image. Spirit took this image with its navigation camera on its 263rd martian day, or sol (Sept. 28, 2004).

  7. Broken Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows broken-up blocks of sedimentary rock in western Candor Chasma. There are several locations in western Candor that exhibit this pattern of broken rock. The manner in which these landforms were created is unknown; it is possible that there was a landslide or a meteoritic impact that broke up the materials. One attribute that is known: in some of these cases, it seems that the rock was broken and then buried by later sedimentary rocks, before later being exhumed so that they can be seen from orbit today.

    Location near: 6.9oS, 75.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  8. Rock in Its Elements

    ERIC Educational Resources Information Center

    MacCluskey, Thomas

    1969-01-01

    A discussion of the following musical elements of rock: rhythm, melody, harmony, and form. A impromptu analysis made at a session of the Youth Music Symposium, July 25, 1969. Remarks transcribed from tape. (Author/AP)

  9. Rock slope stability

    SciTech Connect

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  10. Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2014-09-01

    Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.

  11. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Mangold, N.; Forni, O.; Cousin, A.; Lasue, J.; Schröder, S.; Wiens, R. C.; Sumner, D.; Fabre, C.; Stack, K. M.; Anderson, R. B.; Blaney, D.; Clegg, S.; Dromart, G.; Fisk, M.; Gasnault, O.; Grotzinger, J. P.; Gupta, S.; Lanza, N.; Le Mouélic, S.; Maurice, S.; McLennan, S. M.; Meslin, P.-Y.; Nachon, M.; Newsom, H.; Payré, V.; Rapin, W.; Rice, M.; Sautter, V.; Treiman, A. H.

    2016-05-01

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.

  12. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect

    Claypool, G.E.; Mancini, E.A.

    1989-07-01

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  13. Miocene reef and nonreef carbonate rocks in Japan

    SciTech Connect

    Konishi, K.

    1988-01-01

    Japan's main islands experienced temperature climates throughout the Neogene with a tropical invasion around 16 Ma (early middle Miocene). This climatic warming, accompanied by a eustatic sea level rise, caused the unusual occurrence of reef facies, mangrove deposits, and lateritic beds in Japan. In cooler climates both before and after reef growth, sediments rich in bryozoan and algal material were widespread. Reef rocks emplaced as penecontemporaneous olistoliths in deep-water clastics at the Pacific coast of central Honshu are characterized by a wide lithologic spectrum, ranging from grainstone to bindstone. These rocks include rudstone and floatstone, which are rich in coralline algae (encrusting forms such as Lithophyllum and Mesophyllum and articulate forms such as Amphiroa) and codiacean algae (Halimeda) with hermatypic corals and large benthic formainifera (e.g., Nephrolepidina and Miogypsina) being less common. Two types of dolomite occur: (1) limpid dolomite with O/sup 18/ = -5.77 and with bipyramidal quartz and (2) microcrystalline dolomite with O/sup 18/ = 2.00 and with length-slow chalcedony. While microcrystalline dolomite tends to predominate in muddy matrix material, limpid dolomite appears to fill pores, some of which are moldic. Younger nonreef carbonate rocks, as occur on the Noto Peninsula of central Honshu, are commonly cross-bedded, contain Bryozoa, mollusks, small foraminifera, and echinoids, and are locally dolomitized. These dolomites are ascribed to a mixed-water origin. A different type of nonreef, yet reservoir-forming, dolostone occurs in the late middle Miocene of northeast Honshu and is interpreted to have formed as a transformation from bathyal opal.

  14. Petrology of metamorphic rocks

    SciTech Connect

    Suk, M.

    1983-01-01

    ''Petrology of Metamorphic Rocks'' reviews Central European opinions about the origin and formation of metamorphic rocks and their genetic systems, confronting the works of such distinguished European scientists as Rosenbusch, Becke, Niggli, Sander, Eskola, Barth and others with present-day knowledge and the results of Soviet and American investigations. The initial chapters discuss the processes that give rise to metamorphic rocks, and the main differences between regional metamorphism and other types of alterations, the emphasis being laid on the material characteristic of the processes of metamorphism, metasomatism and ultrametamorphism. Further chapters give a brief characterization of research methods, together with a detailed genetic classification based on the division of primary rocks into igneous rocks, sediments and ore materials. The effects of metamorphic alterations and those of the properties of the primary rocks are analyzed on the basis of examples taken chiefly from the Bohemian Massif, the West Carpathians, other parts of the European Variscides, from the crystalline Scandinavian Shelf in Norway and Finland, and from the Alps. Typical examples are documented by a number of charts, photographs and petrographical - particularly petrochemical - data.

  15. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  16. Annual and Longer Sedimentary Rhythms of the Organic Rock Record of Titan's Circumpolar Seas and Lakes

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Tan, S. P.; Marion, G. M.; Jennings, D. E.; Mastrogiuseppe, M.; Adidharma, H.

    2014-12-01

    Seasonality and phase equilibrium in Titan's lakes and seas will result in predictable sedimentary processes, deposits, and landforms. Calculated using CRYOCHEM, liquids on Titan should exhibit a counter-intuitive behavior where density increases with temperature but decreases with pressure, unless the temperature falls below 89.6 K. For warmer temperatures, the surface liquid of seas should flow toward the hottest spot; return flow may occur beneath the surface. Methane-rich liquid flowing southward from one interconnected northern sea to another will evaporate methane and concentrate ethane and other heavy hydrocarbons. In the north polar and circumpolar regions, a south-flowing river entering a sea from cold northerly uplands will inject a buoyant plume of low-density methane-rich liquid into the sea, unless the liquid at the inlet is heavily charged with dense solid phases or unless the lake is colder than 89.6 K. Generally north of (colder than) the seasonally shifting 89.6K transition (possible during the winter precisely when river discharges are high), a different behavior exists, whereby cold and methane-rich liquid forms denser liquids and flows across the bottom of the sea—possibly forming sub-sea channels as observed at Ligeia Mare. If the river carries clastic sediment denser than the methane liquid, the solids will undergo Stokes settling of the coarser fractions during periods of high river discharge, leaving the finest clastic fraction to undergo slow pelagic sedimentation throughout the year. From late spring to late summer, methane undergoes net evaporation from the sea, and solid organics that were saturated during the winter are likely to precipitate once warm weather starts. Hence, varves in Titan's seas are apt to consist of annual cycles of (1) winter: coarse clastics, (2) all dry season: fine-grained clastics, and (3) summer: evaporites. As Titan undergoes 'Milankovic' type variations in rotational obliquity and Saturn's orbital

  17. High Temperature Emplacement of Clastic Breccia Dikes and Implications for the Development and Magnetization of Impact Craters

    NASA Astrophysics Data System (ADS)

    Fairchild, L. M.; Swanson-Hysell, N.; Tikoo, S. M.

    2014-12-01

    Breccia dikes are a common feature of impact craters on Earth and should also be present within impact structures on other planetary bodies. Within the ~450 Ma, ~30 km diameter Slate Islands impact structure in Ontario, Canada, breccia dikes can be classified into two categories: 1) mm-scale irregular or anastomosing veins composed of a fine-grained to glassy matrix with variable clast content (type A of Lambert, 1981) and 2) thicker (2 cm to >15 m wide) polymict breccia bodies intruding parautochthonous host rock (type B of Lambert, 1981). We have targeted the clasts and matrix from 9 type B breccia dikes throughout the impact structure for paleomagnetic analysis. Preliminary results on one dike show that clasts fail a conglomerate test, indicating that they were completely remagnetized after the breccia dike was emplaced. We interpret this result to indicate that lithic breccia dikes can experience levels of frictional heating capable of fully thermally remagnetizing clasts. Furthermore, breccia bodies from different locales yield similar overprint directions minimally affected by tilting or rotation. This implies that these breccia dikes cooled to blocking temperatures at a rate slower than that of crater modification and obtained their magnetic remanence subsequent to the crater's final structural state. The magnetic directions of samples yield a virtual geomagnetic pole (VGP) that can serve as a reference direction for constraining the structural dynamics of crater formation/modification and evaluating the mechanism whereby impact-related overprints were imparted into the host rock. Breccia dikes have been interpreted to be present within impact craters on Mars (Head, 2006) and should be expected in other extraterrestrial impact structures where erosion levels have allowed exposure of the crater substructure. While breccia dike material would either be remagnetized or demagnetized by the impact (depending on the presence or absence of an ambient field), the

  18. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  19. Paleontology and sedimentology of upper clastic member of Wanakah Formation, Chama basin, New Mexico: Lacustrine paleoenvironmental implications

    SciTech Connect

    Good, S.J.; Ridgley, J.L. )

    1989-09-01

    Lacustrine strata of the upper part of the Jurassic Wanakah Formation were restricted to the Chama basin of north-central New Mexico by mid-Jurassic tectonic activity in the Brazos and Nacimiento uplifts and along the Gallina-Archuleta anticlinorium. Lateral and vertical facies of the upper Wanakah exposed around the southern margin of the Chama basin indicate that the deeper part of the lake was north of the outcrop belt. The upper 3-5 m of the Wanakah consists of thin-bedded rippled sandstone, interbedded mudstone, and limestone containing trace fossils and freshwater mollusks characteristic of marginal lacustrine facies. Taphonomic studies of mollusks in the Wanakah Formation have been combined with application of ecophenotypic variation documented in extant unionid bivalves to produce paleoenvironmental interpretations of these lacustrine rocks.

  20. Ganges Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 May 2004 Mariner 9 images acquired in 1972 first revealed a large, light-toned, layered mound in Ganges Chasma, part of the vast Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a higher-resolution view of these rocks than was achieved by Mariner 9 or Viking, and higher than can be obtained by Mars Odyssey or Mars Express. The image, with a resolution of about 3.7 meters (12 feet) per pixel, shows eroded layered rock outcrops in Ganges Chasma. These rocks record a history of events that occurred either in Ganges Chasma, or in the rocks brought to the surface by the opening of Ganges Chasma. Either way, the story they might tell could be as fascinating and unprecedented as the story told by sedimentary rocks investigated this year in Meridiani Planum by the Opportunity Mars Exploration Rover ... no one knows. The image is located near 7.3oS, 48.8oW, and covers an area about 3 km (1.9 mi) across. The picture is illuminated by sunlight from the upper left.

  1. Nd and Sr isotope systematics of clastic metasediments from Isua, West Greenland - Identification of pre-3.8 Ga differentiated crustal components

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.; Dymek, Robert F.

    1988-01-01

    A detailed Sm-Nd and Rb-Sr isotopic study of the Isua clastic metasediments has been performed in the context of recently established stratigraphy for the Isua section. Samples from the sequence B are investigated for the first time. A clear correlation between lithology and isotopic characteristics is pointed out. The results indicate the existence of at least three distinct components for each of the distinct sequences A and B. It is suggested that some of these components may be derived from continental crustal sources that predate the time of depositon of these sediments by as much as about 0.4 b.y. A large pre-3.8 Ga continental crust is also inferred by the data.

  2. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  3. The cretaceous source rocks in the Zagros Foothills of Iran: An example of a large size intracratonic basin

    SciTech Connect

    Bordenave, M.L. ); Huc, A.Y. )

    1993-02-01

    The Zagros orogenic belt of Iran is one of the world most prolific petroleum producing area. However, most of the oil production is originated from a relatively small area, the 60,000 km[sup 2] wide Dezful Embayment which contains approximately 12% of the proven oil global reserves. The distribution of the oil and gas fields results from the area extent of six identified source rock layers, their thermal history and reservoir, cap rock and trap availability. In this paper, the emphasis is three of the layers of Cretaceous sources rocks. The Garau facies was deposited during the Neocomian to Albian interval over Lurestan, Northeast Khuzestan and extends over the extreme northeast part of Fars, the Kazhdumi source rock which deposited over the Dezful Embayment, and eventually the Senonian Gurpi Formation which has marginal source rock characteristics in limited areas of Khuzestan and Northern Fars. The deposition environment of these source rock layers corresponds to semipermanent depressions, included in an overall shallow water intracratonic basin communicating with the South Tethys Ocean. These depressions became anoxic when climatic oceanographical and geological conditions were adequate, i.e., humid climate, high stand water, influxes of fine grained clastics and the existence of sills separating the depression from the open sea. Distribution maps of these source rock layers resulting from extensive field work and well control are also given. The maturation history of source rocks is reconstructed from a set of isopachs. It was found that the main contributor to the oil reserves is the Kazhdumi source rock which is associated with excellent calcareous reservoirs.

  4. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  5. Ladon Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rocks exposed by the fluids that carved the Ladon Valles system in the Erythraeum region of Mars. These rocks are so ancient that their sediments were deposited, cemented to form rock, and then eroded by the water (or other liquid) that carved Ladon Valles, so far back in Martian history that such liquids could still flow on the planet's surface.

    Location near: 20.8oS, 30.0oW Image width: 3 km (1.9 mi Illumination from: upper left Season: Southern Spring

  6. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  7. West Candor Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock exposures in western Candor Chasma, part of the vast Valles Marineris trough system. Most of west Candor's interior includes exposures of layered rock with very few superimposed impact craters. The rock may be very ancient, but the lack of craters suggests that the erosion of these materials is on-going.

    Location near: 6.3oS, 76.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  8. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-439, 1 August 2003

    Gale Crater, located in the Aeolis region near 5.5oS, 222oW, contains a mound of layered sedimentary rock that stands higher than the rim of the crater. This giant mound suggests that the entire crater was not only once filled with sediment, it was also buried beneath sediment. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the eroded remains of the sedimentary rock that once filled Gale Crater. The layers form terraces; wind has eroded the material to form the tapered, pointed yardang ridges seen here. The small circular feature in the lower right quarter of the picture is a mesa that was once a small meteor impact crater that was filled, buried, then exhumed from within the sedimentary rock layers exposed here. This image is illuminated from the left.

  9. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-348, 2 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image acquired in March 2003 shows dozens of repeated layers of sedimentary rock in a western Arabia Terra crater at 8oN, 7oW. Wind has sculpted the layered forms into hills somewhat elongated toward the lower left (southwest). The dark patches at the bottom (south) end of the image are drifts of windblown sand. These sedimentary rocks might indicate that the crater was once the site of a lake--or they may result from deposition by wind in a completely dry, desert environment. Either way, these rocks have something important to say about the geologic history of Mars. The area shown is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  10. Dipping Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 May 2004 The central peak of Oudemans Crater, located at the edge of the Labyrinthus Noctis trough system, consists of steeply-dipping rock layers that were uplifted and tilted by the meteor impact that formed the crater. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example. The banded features are layers of light-toned, possibly sedimentary, rock that were brought to the surface and uplifted by the impact process that formed the crater and its central peak. Oudemans Crater's central peak serves as a means for probing the nature of rock that lies beneath the plains cut by the Labyrinthus Noctis troughs, which are part of the vast Valles Marineris system. This March 2004 picture is located near 10.2oS, 92.0oW. The image covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  11. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  12. Petrogenesis of lunar rocks: Rb-Sr constraints and lack of H2O

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Gancarz, A. J.

    1977-01-01

    Rb and Sr isotopic data and other chemical data indicate major lunar differentiation at about 4.6 AE (AE = 10 to the 9th power years) and very limited subsequent differentiation. The constraints of limited differentiation after 4.6 AE and the apparent lack of H2O on the moon, when applied to the derivation and petrogenesis of lunar samples, suggest the following: (1) soil samples, breccias, metaclastic rocks, and feldspathic basalts represent mixtures of repeatedly modified clastic material, which was utimately derived from materials formed during the 4.6 AE differentiation; and (2) mare basalts crystallized from melts which formed by partial melting, and which developed without equilibrium between the melt and crystalline residuum.

  13. Geology and depositional environments of the Guadalupian rocks of the northern Del Norte Mountains, West Texas

    USGS Publications Warehouse

    Rudine, S.F.; Wardlaw, B.R.; Rohr, D.M.; Grant, R.E.

    2000-01-01

    The Guadalupian rocks of the northern Del Norte Mountains were deposited in a foreland basin between land of the Marathon orogen and a carbonate shoal established on the geanticline separating the foreland basin from the Delaware basin. Deposition was alternately influenced by coarse clastic input from the orogen and carbonate shoal, which interrupted shallow basinal siltstone depletion. Relatively deeper-water deposition is characterized by carbonate input from the shoal, and relatively shallow-water deposition is characterized by sandstone input from the orogen. Deposition was in five general transgressive-regressive packages that include (1) the Road Canyon Formation and the first siltstone member and first sandstone member of the Word Formation, (2) the second siltstone member, Appel Ranch Member, and limy sandy siltstone member of the Word Formation, (3) the Vidrio Formation, (4) the lower and part of the middle members of the Altuda Formation, and (5) part of the middle and upper members of the Altuda Formation.

  14. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  15. High resolution variability in the Quaternary Indian monsoon inferred from records of clastic input and paleo-production recovered during IODP Expedition 355

    NASA Astrophysics Data System (ADS)

    Hahn, Annette; Lyle, Mitchell; Kulhanek, Denise; Ando, Sergio; Clift, Peter

    2016-04-01

    The sediment cores obtained from the Indus fan at Site U1457 during Expedition 355 of the International Ocean Discovery Program (IODP) contain a ca. 100m spliced section covering the past ca. 1Ma. We aim to make use of this unique long, mostly continuous climate archive to unravel the millennial scale atmospheric and oceanic processes linked to changes in the Indian monsoon climate over the Quaternary glacial-interglacial cycles. Our aim is to fill this gap using fast, cost-efficient methods (Fourier Transform Infrared Spectroscopy [FTIRS] and X-ray Fluorescence [XRF] scanning) which allow us to study this sequence at a millennial scale resolution (2-3cm sampling interval). An important methodological aspect of this study is developing FTIRS as a method for the simultaneous estimation of the sediment total inorganic carbon and organic carbon content by using the specific fingerprint absorption spectra of minerals (e.g. calcite) and organic sediment components. The resulting paleo-production proxies give indications of oceanic circulation patterns and serve as a direct comparison to the XRF scanning data. Initial results show that variability in paleo-production is accompanied by changes in the quantity and composition of clastic input to the site. Phases of increased deposition of terrigenous material are enriched in K, Al, Fe and Si. Both changes in the weathering and erosion focus areas affect the mineralogy and elemental composition of the clastic input as grain size and mineralogical changes are reflected in the ratios of lighter to heavier elements. Furthermore, trace element compositions (Zn, Cu, Mn) give indications of diagenetic processes and contribute to the understanding of the depositional environment. The resulting datasets will lead to a more comprehensive understanding of the interplay of the local atmospheric and oceanic circulation processes over glacial-interglacial cycles; an essential prerequisite for regional predictions of global climate

  16. Digital carbonate rock physics

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  17. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  18. Layered Rocks In Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), image shows exposures of finely-bedded sedimentary rocks in western Melas Chasma, part of the vast Valles Marineris trough system. Rocks similar to these occur in neighboring west Candor Chasma, as well. The picture is located near 9.1oS, 74.5oW, and covers an area about 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the left/upper left.

  19. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers of sedimentary rock in a crater in western Arabia Terra. Layered rock records the history of a place, but an orbiter image alone cannot tell the entire story. These materials record some past episodes of deposition of fine-grained material in an impact crater that is much larger than the image shown here. The picture is located near 3.4oN, 358.7oW, and covers an area 3 km (1.9 mi.) wide. Sunlight illuminates the scene from the lower left.

  20. Rock Outcrops near Hellas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in a pitted and eroded region just northeast of Hellas Planitia. The light-toned materials are most likely sedimentary rocks deposited early in martian history (but long after the Hellas Basin formed by a giant asteroid or comet impact). The scene also includes a plethora of large dark-toned, windblown ripples. The image is located near 27.2oS, 280.7oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  1. Sedimentary Rocks and Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  2. Sedimentary Rock Remnants

    NASA Technical Reports Server (NTRS)

    2005-01-01

    29 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows knobs of remnant, wind-eroded, layered sedimentary rock that once completely covered the floor of a crater located west of the Sinus Meridiani region of Mars. Sedimentary rock outcrops are common throughout the Sinus Meridiani region and its surrounding cratered terrain.

    Location near: 2.2oN, 7.9oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  3. Layered Rocks in Ritchey

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 May 2004 This March 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light- and dark-toned layered rock outcrops on the floor of Ritchey Crater, located near 28.9oS, 50.8oW. Some or all of these rocks may be sedimentary in origin. Erosion has left a couple of buttes standing on a more erosion-resistant plain. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  4. Remnant Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    29 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of small yardangs -- wind eroded hills -- on the plains immediately west of Meridiani Planum. These yardangs are the remains of layered, sedimentary rock that once covered this area. The few craters visible in this 3 km (1.9 mi) -wide scene are all exhumed from beneath the rocks that comprise the yardang hills. The image is located near 0.4oS, 7.2oW. Sunlight illuminates the picture from the lower left.

  5. Layered Rocks of Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    04 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops exposed by erosion in southern Melas Chasma, one of the major Valles Marineris troughs. Such outcrops are common in southern Melas; they resemble the rock outcrops seen in some of the chaotic terrains and other Valles Marineris chasms. This image is located near 11.9oS, 74.6oW, and is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  6. Diverse Rock Named Squash

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image from the Sojourner rover's right front camera was taken on Sol 27. The Pathfinder lander is seen at middle left. The large rock at right, nicknamed 'Squash', exhibits a diversity of textures. It looks very similar to a conglomerate, a type of rock found on Earth that forms from sedimentary processes.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  7. Fault Rock Variation as a Function of Host Rock Lithology

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Diener, J.

    2013-12-01

    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  8. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks

    NASA Astrophysics Data System (ADS)

    Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; Nagase, Toshiro; Rosing, Minik T.

    2014-01-01

    Some graphite contained in the 3.7-billion-year-old metasedimentary rocks of the Isua Supracrustal Belt, Western Greenland, is depleted in 13C and has been interpreted as evidence for early life. However, it is unclear whether this graphite is primary, or was precipitated from metamorphic or igneous fluids. Here we analyse the geochemistry and structure of the 13C- depleted graphite in the Isua schists. Raman spectroscopy and geochemical analyses indicate that the schists are formed from clastic marine sediments that contained 13C-depleted carbon at the time of their deposition. Transmission electron microscope observations show that graphite in the schist occurs as nanoscale polygonal and tube-like grains, in contrast to abiotic graphite in carbonate veins that exhibits a flaky morphology. Furthermore, the graphite grains in the schist contain distorted crystal structures and disordered stacking of sheets of graphene. The observed morphologies are consistent with pyrolysation and pressurization of structurally heterogeneous organic compounds during metamorphism. We thus conclude that the graphite contained in the Isua metasediments represents traces of early life that flourished in the oceans at least 3.7billion years ago.

  9. Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 1. Application to sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Thorpe, Michael T.; Rogers, A. Deanne; Bristow, Thomas F.; Pan, Cong

    2015-11-01

    Thermal emission spectroscopy is used to determine the mineralogy of sandstone and mudstone rocks as part of an investigation of linear spectral mixing between sedimentary constituent phases. With widespread occurrences of sedimentary rocks on the surface of Mars, critical examination of the accuracy associated with quantitative models of mineral abundances derived from thermal emission spectra of sedimentary materials is necessary. Although thermal emission spectroscopy has been previously proven to be a viable technique to obtain quantitative mineralogy from igneous and metamorphic materials, sedimentary rocks, with natural variation of composition, compaction, and grain size, have yet to be examined. In this work, we present an analysis of the thermal emission spectral (~270-1650 cm-1) characteristics of a suite of 13 sandstones and 14 mudstones. X-ray diffraction and traditional point counting procedures were all evaluated in comparison with thermal emission spectroscopy. Results from this work are consistent with previous thermal emission spectroscopy studies and indicate that bulk rock mineral abundances can be estimated within 11.2% for detrital grains (i.e., quartz and feldspars) and 14.8% for all other mineral phases present in both sandstones and mudstones, in comparison to common in situ techniques used for determining bulk rock composition. Clay-sized to fine silt-sized grained phase identification is less accurate, with differences from the known ranging from ~5 to 24% on average. Nevertheless, linear least squares modeling of thermal emission spectra is an advantageous technique for determining abundances of detrital grains and sedimentary matrix and for providing a rapid classification of clastic rocks.

  10. Preliminary results on estimating permeability characteristics of carbonate rocks using pore microstructures

    NASA Astrophysics Data System (ADS)

    Lee, M.; Keehm, Y.

    2013-12-01

    Direct numerical simulation on pore microstructures from X-ray microtomography is regarded as a good tool to determine and characterize the physical properties of rocks, especially for sandstone. When the same approach is considered for carbonate rocks, we face many difficulties mostly from the heterogeneous nature of carbonates. In this study, we report preliminary results on permeability estimation of carbonate rocks from X-ray tomographic pore microstructures. Since carbonate rocks have quite different types of pore geometry depending on depositional and diagenetic environments, we choose three rock samples with different porosity types: interparticle; vuggy/moldic; and fracture, and obtain high-resolution 3D pore microstructures using X-ray microtomography technique. From the original 3D pore geometry (typically 2,000^3 voxels), we choose various digital sub-blocks to determine local variation and length dependency, and calculate permeability using the Lattice-Boltzmann method. For the interparticle case, the calculated permeability values show very similar trends to clastic sediments, and we can determine a porosity-permeability relation for a given formation as we do with the Koneny-Carman relation. On the other hand, for vuggy or fracture cases, we cannot observe any significant dependence of permeability on porosity. Thus we focus more on the local variation and scale variation of permeability. We perform analyses on percolation probability; local porosity distribution; and direction/length/width of fractures. And we present preliminary conceptual models to determine permeability characteristics. Although the results are from a few limited samples and more detailed researches will be required, our approach will be helpful to estimate and characterize permeability of carbonate rocks, and to investigate scaling and representativeness issues. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and

  11. Origin of crude oil in eastern Gulf Coast: Upper Jurassic, Upper Cretaceous, and lower Tertiary source rocks

    SciTech Connect

    Sassen, R.

    1988-02-01

    Analysis of rock and crude oil samples suggests that three source rocks have given rise to most crude oil in reservoirs of the eastern Gulf Coast. Carbonate source rocks of the Jurassic Smackover Formation are characterized by algal-derived kerogen preserved in an anoxic and hypersaline environment, resulting in crude oils with distinct compositions. Migration commenced during the Cretaceous, explaining the emplacement of Smackover-derived crude oil in Jurassic and in some Cretaceous reservoirs. Upper Cretaceous clastic and carbonate source rocks are also present. Much crude oil in Upper Cretaceous reservoirs has been derived from organic-rich marine shales of the Tuscaloosa Formation. These shales are characterized by algal and higher plant kerogen, resulting in distinct crude oil compositions. Migration commenced during the Tertiary, but was mostly focused to Upper Cretaceous reservoirs. Lower Tertiary shales, including those of the Wilcox Formation, are quite organic-rich and include downdip marine facies characterized by both algal and higher plant kerogen. Crude oils in lower Tertiary reservoirs are dissimilar to crude oils from deeper and older source rocks. Migration from lower Tertiary shales commenced during the late Tertiary and charged Tertiary reservoirs. Although most crude oil in the eastern Gulf Coast has been emplaced by short-range migration, often with a strong vertical component, some long-range lateral migration (> 100 km) has occurred along lower Tertiary sands. The framework of crude oil generation and migration onshore has important implications with respect to origin of crude oil in the Gulf of Mexico.

  12. Rocking and Rolling Rattlebacks

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    A rattleback is a well-known physics toy that has a preferred direction of rotation. If it is spun about a vertical axis in the "wrong" direction, it will slow down, start rocking from end to end, and then spin in the opposite (i.e. preferred) direction. Many articles have been written about rattlebacks. Some are highly mathematical and…

  13. Reducing Rock Climbing Risks.

    ERIC Educational Resources Information Center

    Attarian, Aram

    1998-01-01

    Provides checklists that can be used as risk-management tools to evaluate rock-climbing programs: developing goals, policies, and procedures; inspecting the climbing environment; maintaining and inspecting equipment; protecting participants; and managing staff (hiring, training, retraining, and evaluating) and campers (experience level, needs, and…

  14. Slippery Rock University

    ERIC Educational Resources Information Center

    Arnhold, Robert W.

    2008-01-01

    Slippery Rock University (SRU), located in western Pennsylvania, is one of 14 state-owned institutions of higher education in Pennsylvania. The university has a rich tradition of providing professional preparation programs in special education, therapeutic recreation, physical education, and physical therapy for individuals with disabilities.…

  15. The River Rock School.

    ERIC Educational Resources Information Center

    Gereaux, Teresa Thomas

    1999-01-01

    In the early 1920s, the small Appalachian community of Damascus, Virginia, used private subscriptions and volunteer labor to build a 15-classroom school made of rocks from a nearby river and chestnut wood from nearby forests. The school building's history, uses for various community activities, and current condition are described. (SV)

  16. Prestressed rock truss

    SciTech Connect

    Johnson, S.F.

    1981-06-23

    A roof support system for mines in which prestressed rock trusses are bolted to the roof of the mine with roof bolts which each extend beyond the width of the mine gallery and the method of installing said trusses into position.

  17. Teaching the Rock Cycle with Ease.

    ERIC Educational Resources Information Center

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  18. Chapter 39 The Edwardsburg Formation and related rocks, Windermere Supergroup, central Idaho, USA

    USGS Publications Warehouse

    Lund, Karen; Evans, Karl V.; Alienikoff, John N.

    2011-01-01

    In central Idaho, Neoproterozoic stratified rocks are engulfed by the Late Cretaceous Idaho batholith and by Eocene volcanic and plutonic rocks of the Challis event. Studied sections in the Gospel Peaks and Big Creek areas of west-central Idaho are in roof pendants of the Idaho batholith. A drill core section studied from near Challis, east-central Idaho, lies beneath the Challis Volcanic Group and is not exposed at the surface. Metamorphic and deformational overprinting, as well as widespread dismembering by the younger igneous rocks, conceals many primary details. Despite this, these rocks provide important links for regional correlations and have produced critical geochronological data for two Neoproterozoic glacial periods in the North American Cordillera. At the base of the section, the more than 700-m-thick Edwardsburg Formation (Fm.) contains interlayered diamictite and volcanic rocks. There are two diamictite-bearing members in the Edwardsburg Fm. that are closely related in time. Each of the diamictites is associated with intermediate composition tuff or flow rocks and the diamictites are separated by mafic volcanic rocks. SHRIMP U–Pb dating indicates that the lower diamictite is about 685±7 Ma, whereas the upper diamictite is 684±4 Ma. The diamictite units are part of a cycle of rocks from coarse clastic, to fine clastic, to carbonate rocks that, by correlation to better preserved sections, are thought to record an older Cryogenian glacial to interglacial period in the northern US Cordillera. The more than 75-m-thick diamictite of Daugherty Gulch is dated at 664±6 Ma. This unit is preserved only in drill core and the palaeoenvironmental interpretation and local stratigraphic relations are non-unique. Thus, the date for this diamictite may provide a date for a newly recognized glaciogenic horizon or may be a minimum age for the diamictite in the Edwardsburg Fm. The c. 1000-m-thick Moores Lake Fm. is an amphibolite facies diamictite in which glacial

  19. Variety and complexity in the mound of sedimentary rock in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Malin, M. C.

    2011-12-01

    NASA's Mars Science Laboratory rover, Curiosity, will be used to explore a portion of the lower stratigraphic record of the northwest side of a mound of layered rock ˜5 km thick in the 155 km-diameter Gale Crater. The rock materials are of a sedimentary origin, though the proportions of clastic sediment, tephra, and chemical precipitates are presently unknown. The mound is usually described as having lower and upper units separated by an erosional unconformity. However, some investigators recognize that it is considerably more complex. The stratigraphy displays vertical and lateral complexity; multiple erosional unconformities; filled, buried, interbedded, and exhumed or partly exhumed impact craters; evidence for deposition along the base of the mound followed by retreat of less-resistant rocks and abandonment of erosion-resistant materials shed from the mound; lithified sediments deposited at the mouths of streams that cut mound rock; inversion of intra-canyon stream channel sediment; and widening of canyons. On the northeast side of the mound there are landslide deposits, shed from the mound, that contain large blocks (10s to 100s of m) of layered rock in various orientations. The mound's highest feature does not exhibit layering and has been interpreted by some as being Gale's impact-generated central peak. However, its highest elevation exceeds that of most of the crater rim, an observation inconsistent with central peaks (where they occur at all) in martian craters of diameters similar to Gale. The layered materials that occur highest in the mound are also at elevations that exceed most of the crater rim; these exhibit repeated stratal packages that drape previously-eroded mound topography; they produce boulders as they erode, attesting to their lithified nature and requiring that a lithification process occurred in materials located ≥ 5 km above the deepest part of Gale. The lower mound strata, including the Curiosity field site, are diverse materials

  20. Plutonic rocks of Jurassic age in the Alaska-Aleutian Range batholith: chemical variation and polarity.

    USGS Publications Warehouse

    Reed, B.I.; Miesch, A.T.; Lanphere, M.A.

    1983-01-01

    Plutonic rocks of Jurassic age exposed on the Pacific side of this batholith form a compositionally continuous calc-alkaline suite that ranges from hornblende gabbro to quartz monzonite. Tonalite and quartz diorite are the dominant rock types. Trend-surface analysis of 102 samples indicates that the direction of slope of the trend is approximately normal to the Jurassic magmatic arc. K2O and SiO2 increase towards the E-SE and the other oxides towards the W-NW. If the chemical trends reflect the approximate geometry of a palaeo-subduction zone, the polarity of the Jurassic magmatic arc is to the NW, i.e. subduction was directed towards the SE. Thus the palaeo-subduction zone is on the opposite side of the arc from the position that has generally been assumed, indicating that the Jurassic plutonic rocks were not generated in response to classical Andean-type convergent plate margins. The magmatic arc may have been formed in an intra-ocean environment and subsequently has been rafted northwards and accreted to this part of the N Pacific rim during the late Mesozoic. Middle and Upper Jurassic clastics underlying Cook Inlet to the SE and derived from the magmatic arc are classified as back-arc deposits, rather than as an arc-trench gap sequence.-L.C.H.

  1. Source terrains and diagenetic imprints of Cretaceous marine rocks of the Cordillera Oriental, Colombia

    SciTech Connect

    Segall, M.P.; Allen, R.B. ); Rubiano, J.; Sarmiento, L. )

    1993-02-01

    Cretaceous marine rocks of the western Cordillera Oriental of Colombia are exposed in stratigraphic sections which reveal multiple source terrains and variable diagenetic histories that were imposed by later thrusting XRD and petrographic analyses indicate that earliest Cretaceous rocks were derived from a nearly plutonic source (Triassic-Jurassic Ibague Batholith of the Cordillera Central) which provided feldspathic lithic fragments and clay-sized illite. High smectite concentrations in the overlying Hauterivian-Barremian strata reflect contemporaneous volcanism, possibly in the Cordillera Central. This signal decreased upsection to the upper Aptian, where detrital clays (kaolinite, chlorite, feldspar, amphibole) indicate a shift to a cratonic source, probably the Guayana Shield. Cratonic detrital input continues into the Turonian-Coniacian and is accompanies by high concentrations of smectite representing another period of volcanic activity. Later tectonic activity divided the area into two regions, each with unique diagenetic signatures. Three primary clastic sources are inferred for the section east of the thrust belt, however, the mineral assemblage is masked by later diagenesis. Sediments within the thrust belt show greater variability in the relative abundance of mineral assemblages and more poorly crystallized illite than occurs to the east of the thrust section. The preservation of much of the original mineralogic components within the thrust section indicates that these sediments have experienced only limited diagenetic overprinting as a result of a relatively short burial history. These contrasting signatures have important implications for hydrocarbon maturation within Cretaceous source rocks in a structurally complex region.

  2. Geologic map of Paleozoic rocks in the Calico Hills, Nevada Test Site, southern Nevada

    SciTech Connect

    Cole, J.C.; Cashman, P.H.

    1998-11-01

    The Calico Hills area in the southwestern part of the Nevada Test Site, Nye County, Nevada, exposes a core of pre-Tertiary rocks surrounded by middle Miocene volcanic strata. This map portrays the very complex relationships among the pre-Tertiary stratigraphic units of the region. The Devonian and Mississippian rocks of the Calico Hills are distinct from age-equivalent carbonate-shelf or submarine-fan strata in other parts of the Nevada Test Site. The Calico Hills strata are interpreted to have been deposited beyond the continental shelf edge from alternating silicic and carbonate clastic sources. Structures of the Calico Hills area record the compounded effects of: (1) eastward-directed, foreland-vergent thrusting; (2) younger folds, kink zones, and thrusts formed by hinterland-vergent deformation toward northwesterly and northerly directions; and (3) low-angle normal faults that displaced blocks of Middle Paleozoic carbonate strata across the contractionally deformed terrane. All of these structures are older than any of the middle Miocene volcanic rocks that were erupted across the Calico Hills.

  3. Grain-size distribution of volcaniclastic rocks 1: A new technique based on functional stereology

    NASA Astrophysics Data System (ADS)

    Jutzeler, M.; Proussevitch, A. A.; Allen, S. R.

    2012-09-01

    The power of explosive volcanic eruptions is reflected in the grain size distribution and dispersal of their pyroclastic deposits. Grain size also forms part of lithofacies characteristics that are necessary to determine transport and depositional mechanisms responsible for producing pyroclastic deposits. However, the common process of welding and rock lithification prevents quantification of grain size by traditional sieving methods for deposits in the rock record. Here we show that functional stereology can be used to obtain actual 3D volume fractions of clast populations from 2D cross-sectional images. Tests made on artificially consolidated rocks demonstrate successful correlations with traditional sieving method. We show that the true grain size distribution is finer grained than its representation on a random 2D section. Our method allows the original size of vesicular pumice clasts to be estimated from their compacted shapes. We anticipate that the original grain-size distribution of welded ignimbrites can also be characterized by this method. Our method using functional stereology can be universally applied to any type of consolidated, weakly to non-deformed clastic material, regardless of grain size or age and therefore has a wide application in geology.

  4. Joint Commission on rock properties

    NASA Astrophysics Data System (ADS)

    A joint commission on Rock Properties for Petroleum Engineers (RPPE) has been established by the International Society of Rock Mechanics and the Society of Petroleum Engineers to set up data banks on the properties of sedimentary rocks encountered during drilling. Computer-based data banks of complete rock properties will be organized for sandstones (GRESA), shales (ARSHA) and carbonates (CARCA). The commission hopes to access data sources from members of the commission, private companies and the public domain.

  5. Microwave assisted hard rock cutting

    DOEpatents

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  6. A look at carbonate rocks

    SciTech Connect

    Bowsher, A.I. )

    1994-03-01

    Important ore deposits are found in carbonate rocks, and large volumes of oil and gas are also produced from carbonate rocks on a worldwide basis. Reservoir types and productive capability are most often related to rock type and the facies to which the rock belongs. Broad new understanding of carbonate rocks came with the publication of Classification of Carbonate Rocks-A Symposium (AAPG Memoir 1, 1962). The principal parameters of carbonate rocks are (1) chemical composition, (2) grade size, (3) sorting and packing, (4) identification of grains in the rock, (5) cement, (6) color, (7) alteration of recrystallization, and (8) porosity. Original porosity in carbonate rocks relates to kind and packing of original particles. Secondary porosity is reduced by infilling that usually relates to some particles, or is enhanced because some types of grains are dissolved. Carbonate sediments are organic detritus. The range of solubility of organic detritus is very large. Fossils present in the carbonates are clues as to the source of the detritus in the rock. Additional research is needed in faunal relations of facies and of rock types. Ore recovery, well completion, and EOR are more successful when the parameters of carbonate rocks are extensively studied. A simplified approach to carbonate description is discussed.

  7. Soil and rock 'Yogi'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several possible targets of study for rover Sojourner's Alpha Proton X-Ray Spectrometer (APXS) instrument are seen in this image, taken by the Imager for Mars Pathfinder (IMP) on Sol 2. The smaller rock at left has been dubbed 'Barnacle Bill,' while the larger rock at right, approximately 3-4 meters from the lander, is now nicknamed 'Yogi.' Barnacle Bill is scheduled to be the first object of study for the APXS. Portions of a petal and deflated airbag are also visible at lower right.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  8. Sedimentary Rock Outcrops

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded layered rock outcrops in a crater north of Meridiani Planum near 2.7oN, 359.1oW. The dozens and dozens of sedimentary rock layers of repeated thickness and similar physical properties at this location suggest that they may have been deposited in a lacustrine (lake) setting. The crater in which these layers occur may once have been completely filled and buried, as is the case for many craters in the Sinus Meridiani region. This image covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.

  9. Sedimentary Rock Near Coprates

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-420, 13 July 2003

    This mosaic of two Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle camera images, one from 2001, the other from 2003, shows light-toned, layered, sedimentary rock outcrops exposed on the floor of a trough that parallels Coprates Chasma in the Valles Marineris system. Layered rocks form the pages from which the history of a place can be read. It may be many years before the story is read, but or now at least we know where one of the books of martian history is found. This picture is located near 15.2oS, 60.1oW. Sunlight illuminates the scene from the left.

  10. Schiaparelli's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 October 2004 Schiaparelli Basin is a large, 470 kilometer (292 miles) impact crater located east of Sinus Meridiani. The basin might once have been the site of a large lake--that is, if the sedimentary rocks exposed on its northwestern floor were deposited in water. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.5 meter per pixel (5 ft per pixel) view of some of the light-toned, finely-bedded sedimentary rocks in northwestern Schiaparelli. The image is located near 1.0oS, 346.0oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  11. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    15 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of layered, sedimentary rock in eastern Gale Crater. North-central Gale Crater is the site of a mound that is more than several kilometers thick and largely composed of sedimentary rocks that record a complex history of deposition and erosion. At one time, Gale Crater might have been completely filled and buried beneath the martian surface.

    Location near: 4.9oS, 221.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  12. Poroelasticity of rock

    SciTech Connect

    Wang, H.F.

    1992-03-01

    The research program is an experimental study of static and dynamic poroelastic behavior of rocks. Measurements of Skempton's coefficient and undrained Poisson's ratio together with drained bulk modulus and shear modulus will provide a complete set of the four poroelastic moduli. Stress coupling to fluid flow in fractured rock can occur also through changes of fracture permeability due to fracture compressibility. Numerical models that include this effect will be compared with standard double porosity models of fluid extraction from oil reservoirs. Wave velocity and attenuation measurements will be made from seismic to ultrasonic frequencies to establish a phenomenological model of the effects of permeability, porosity and saturation for seismic exploration of oil and gas and for seismic characterization of an aquifer for environmental restoration and waste remediation.

  13. Sorted (clastic) polygons in the Argyre region, Mars, and possible evidence of pre- and post-glacial periglaciation in the Late Amazonian Epoch

    NASA Astrophysics Data System (ADS)

    Soare, R. J.; Conway, S. J.; Gallagher, C.; Dohm, J. M.

    2016-01-01

    The Argyre basin and associated rim-materials in the southern highlands of Mars are ancient, having been formed by the impact of a large body ∼3.9 Gya. Despite its age, the regional landscape exhibits a wide range of geological/geomorphological modifications and/or features, e.g. fluvial, lacustrine, aeolian, glacial and periglacial. Collectively, this bears witness to the dynamic evolution of the Argyre region from the deep past through to, perhaps, the present day. Here, we present three principal findings that point to at least two distinct episodes of periglaciation, separated by a possible glacial-interval, during the very Late Amazonian Epoch in eastern Aonia Terra (AT), i.e. on the western flank of the Argyre basin. These findings are the product of our circum-Argyre study of all HiRISE images (∼35-65°S and ∼290-350°E). (1) (a) The first periglacial episode involves the development of small-sized (∼15-25 m in diam.) and clastically-"sorted polygons" (SPs). The SPs are observed at eighteen locations within eastern AT. Hitherto, the presence of SPs in this region has been reported at one location alone. No other observations of SPs in the southern hemisphere of Mars have been documented. Morphologically similar landforms develop in cold-climate (permafrost) landscapes on Earth by means of periglacial processes, i.e. freeze-thaw cycling, segregated-ice formation, cryoturbation and frost heave. (b) We ascribe a periglacial origin to the SPs in eastern AT on the basis of this similarity of form and, no less importantly, on the close spatial-association of the SPs with blockfields (whose weathered "clastic" products are the building blocks of periglacial sorting on Earth), gelifluction-like lobes and possible "wet" gullies. Where similar assemblages occur in terrestrial permafrost-landscapes, the presence of liquid water and of boundary conditions tolerant of freeze-thaw cycling, are observed or inferred. (c) Fifteen of the eighteen

  14. Terby Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 December 2003 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops in Terby Crater, located near 27.7oS, 285.4oW. The layered sediments in Terby are several kilometers thick, attesting to a long history of deposition in this ancient basin. The picture covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  15. Eroded Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-372, 26 May 2003

    This high resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded, layered sedimentary rock exposures in an unnamed western Arabia Terra crater at 8oN, 7oW. The dark material is windblown sand; much of the erosion of these layers may have also been caused by wind. Sunlight illuminates the scene from the left.

  16. Ripples and Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rock outcrops and large dark-toned, windblown ripples in Aram Chaos.

    Location near: 3.0oN, 20.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Summer

  17. Iani Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rocks exposed by erosion in the Iani Chaos region of Mars.

    Location near: 4.2oS, 18.7oW Image width: 1 km (0.6 mi) Illumination from: upper left Season: Southern Winter

  18. Melas Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered, sedimentary rock outcrops in southwestern Melas Chasma, one of the troughs of the vast Valles Marineris system. Sunlight illuminates this scene from the upper left; it is located near 9.8oS, 76.0oW, and covers an area about 3 km (1.9 mi) wide.

  19. Soil Rock Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A redesigned version of a soil/rock analyzer developed by Martin Marietta under a Langley Research Center contract is being marketed by Aurora Tech, Inc. Known as the Aurora ATX-100, it has self-contained power, an oscilloscope, a liquid crystal readout, and a multichannel spectrum analyzer. It measures energy emissions to determine what elements in what percentages a sample contains. It is lightweight and may be used for mineral exploration, pollution monitoring, etc.

  20. Session: Hot Dry Rock

    SciTech Connect

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  1. Salty Martian Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which produces a spectrum, or fingerprint, of chemicals in martian rocks and soil. The instrument contains a radioisotope, curium-244, that bombards a designated area with alpha particles and X-rays, causing a cascade of reflective fluorescent X-rays. The energies of these fluorescent X-rays are unique to each atom in the periodic table, allowing scientists to determine a target's chemical composition.

    Both 'Tarmac' and 'McKittrick' are located within the small crater where Opportunity landed. The full spectra are expressed as X-ray intensity (logarithmic scale) versus energy. When comparing two spectra, the relative intensities at a given energy are proportional to the elemental concentrations, however these proportionality factors can be complex. To be precise, scientists extensively calibrate the instrument using well-analyzed geochemical standards.

    Both the alpha particle X-ray spectrometer and the rock abrasion tool are located on the rover's instrument deployment device, or arm.

  2. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S., Jr.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  3. Influence of climate on deep-water clastic sedimentation: application of a modern model, Peru-Chile Trough, to an ancient system, Ouachita Trough

    USGS Publications Warehouse

    Edgar, N. Terence; Cecil, C. Blaine

    2003-01-01

    Traditionally, an abrupt and massive influx of siliciclastic sediments into an area of deposition has been attributed to tectonic uplift without consideration of the influence of climate or climatic change on rates of weathering, erosion, transportation, and deposition. With few exceptions, fluvial sediment transport is minimal in both extremely arid climates and in perhumid (everwet) climates. Maximum sediment transport occurs in climates characterized by strongly seasonal rainfall, where the effect of vegetation on erosion is minimal. The Peru–Chile trench and Andes Mountain system (P–CT/AMS) of the eastern Pacific Ocean clearly illustrates the effects of climate on rates of weathering, erosion, transport, and deep-sea sedimentation. Terrigenous sediment is virtually absent in the arid belt north of lat. 30° S in the P–CT, but in the belt of seasonal rainfall south of lat. 30° S terrigenous sediment is abundant. Spatial variations in the amount and seasonality of annual precipitation are now generally accepted as the cause for this difference. The spatial variation in sediment supply to the P–CT appears to be an excellent modern analogue for the temporal variation in sediment supply to certain ancient systems, such as the Ouachita Trough in the southern United States. By comparison, during the Ordovician through the early Mississippian, sediment was deposited at very slow rates as the Ouachita Trough moved northward through the southern hemisphere dry belt (lat. 10° S to lat. 30° S). The deposystem approached the tropical humid zone during the Mississippian, coincident with increased coarse clastic sedimentation. By the Middle Pennsylvanian (Atokan), the provenance area and the deposystem moved well into the tropical humid zone, and as much as 8,500 m of mineralogically mature (but texturally immature) quartz sand was introduced and deposited. This increase in clastic sediment deposition traditionally has been attributed solely to tectonic activity

  4. Drawing rocks at primary school: a tool for emerging misconceptions and promoting conceptual change

    NASA Astrophysics Data System (ADS)

    Benciolini, L.; Muscio, G.

    2012-04-01

    Drawing rocks at primary school: a tool for emerging misconceptions and promoting conceptual change Luca Benciolini Dipartimento di Fisica, Chimica e Ambiente, Università di Udine (Italy) and Giuseppe Muscio Museo Friulano di Storia Naturale (Udine, Italy) In order to investigate spontaneous ideas of children about rock samples, the Museo Friulano di Storia Naturale in collaboration with the Università di Udine submitted six classrooms of fifth and fourth grade-students to a specific test. One hundred thirty-three students without a specific background in Earth Sciences were asked to give a) a written description of a rock sample; b) a drawing of the sample; c) a written short story about the sample. The selected thirty-five samples in the opinion of the researchers contain 255 geologically relevant self-evident characters such as fossils, clastic textures, planar discontinuities and so on. Childs spontaneously described 209 geological characters. Forty-seven fifth-grade students (group A) have been previously followed specific training in multisensory description of objects and observed the 90% of the geologically relevant characters. Group B (forty-three fifth-grade) and group C (forty-three fourth-grade) on the contrary, without any previous instructions discovered the 77%. In order to follow childs building their knowledge through experience we found that the main problem was the lack of consistency between written and drawing description. Heterogeneities as evident as a magmatic contact have been correctly represented by the drawing but it has not been worth of any attention in the written description. On the contrary, written description may sometimes contain careful description of the clastic sedimentary process but these criteria are applied for example to a travertine, without any relations with observed characters. Descriptions and drawing of rock outcrops performed by university students demonstrate the persistence of this attitude. Thus, groups B and

  5. Rheologic evolution of low-grade metasedimentary rocks and granite across a large strike-slip fault zone: A case study of the Kellyland fault zone, Maine, USA

    NASA Astrophysics Data System (ADS)

    Sullivan, W. A.; Monz, M. E.

    2016-05-01

    We examine a large strike-slip fault zone that juxtaposes low-grade clastic metasedimentary rocks with coarse-grained granite near the brittle-ductile transition. The load-bearing matrixes in granite-derived ultramylonites and pelite and wacke metasedimentary intervals are texturally similar, and all deformed by diffusion-assisted granular flow. Granite underwent rapid strengthening as the pluton cooled followed by rapid weakening driven by brittle grain-size reduction and mixing that catalyzed ultramylonite formation. The textural and mineralogical similarity of pelitic intervals across the zone indicates they experienced little textural and reaction weakening. Wacke intervals record progressive textural and reaction weakening in an open system. Quartz recrystallized grain sizes in granite-derived ultramylonites record ∼2-times more differential stress than those in metasedimentary rocks in the interior of the zone. The relative weakness of metasedimentary rocks is correlated with fluid influx that likely enhanced diffusion and grain-boundary sliding in pelitic and wacke intervals and catalyzed textural and reaction weakening in wacke intervals. The lack of evidence for fluid and ionic communication with granitic rocks indicates that fluid movement was restricted to foliation-parallel pathways within single rock units. This localized fluid influx is the best explanation for the strength contrasts between texturally similar fault rocks deformed by similar mechanisms.

  6. Uinta Arch Project: investigations of uranium potential in Precambrian X and older metasedimentary rocks in the Unita and Wasatch ranges, Utah and Colorado

    SciTech Connect

    Graff, P.J.; Sears, J.W.; Holden, G.S.

    1980-06-01

    This study is part of the United States Department of Energy's National Uranium Resource Evaluation Program to understand the geologic setting, amount, and availability of uranium resources within the boundaries of the United States. The systematic study of Precambrian quartz-pebble conglomerates and areas that may contain such conglomerates is an integral part of DOE's resource evaluation program, because deposits of world-wide importance occur in such terrains in Canada and South Africa, and because terrains similar to those producing uranium from quartz-pebble conglomerates exist elsewhere in the United States. Because of the ready availability of Tertiary sandstone and Colorado Plateau-type uranium deposits, large areas of Precambrian rocks in the US have not been fully assessed for uranium potential. Thus, the Uinta Arch Project was undertaken to assess the favorability of Precambrian metasedimentary rocks in northern Utah for deposits of uranium in Precambrian quartz-pebble conglomerates. Rocks of interest to this study are the thick, clastic sequences within the Uinta Arch that are considered to be of Early Proterozoic age. The Uinta Arch area is known to contain rocks which generally fit the lithologic characteristics that are understood to limit the occurrence of Precambrian fossil placers. However, detailed geology of these rocks and their exact fit to the model described for uraniferous conglomerates was not known. The primary goal of the Uinta Arch Project was to determine how well these Precambrian rocks resemble known deposits and to describe the favorability of placer uranium deposits.

  7. Grinding into Soft, Powdery Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars.

    Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements.

    In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  8. Three classes of Martian rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this portion of the 360-degree color gallery pan, looking to the northeast, the colors have been exaggerated to highlight the differences between rocks and soils. Visible are the downwind sides of rocks, not exposed to wind scouring like Barnacle Bill (which faces upwind). There is a close correspondence between the shapes and colors of the rocks. Three general classes of rocks are recognized: large rounded rocks with weathered coatings, small gray angular rocks lacking weathered coatings, and flat white rocks. The large rounded rocks in the distance, marked by the red arrows, are comparable to Yogi. Spectral properties show that these rocks have a highly weathered coating in addition to a distinctive shape. A second population of smaller, angular rocks (blue arrows) in the foreground have unweathered surfaces even on the downwind side, except where covered on their tops by drift. These are comparable to Barnacle Bill. They may have been emplaced at the site relatively recently, perhaps as ejecta from an impact crater, so they have not had time to weather as extensively as the larger older rocks. The third kind of rock (white arrows) is white and flat, and includes Scooby Doo in the foreground and a large deposit in the background called Baker's Bank. The age of the white rock relative to the other two classes is still being debated. One representative rock of each class (Yogi, Barnacle Bill, and Scooby Doo) has been measured by the rover.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  9. Rock Pore Structure as Main Reason of Rock Deterioration

    NASA Astrophysics Data System (ADS)

    Ondrášik, Martin; Kopecký, Miloslav

    2014-03-01

    Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite. However, rock as any other material if exposed to exogenous processes starts to deteriorate. Especially mechanical weathering can be very intensive if rock with unsuitable rock properties is used. For long it had been believed that repeated freezing and thawing in relation to high absorption is the main reason of the rock deterioration. In Slovakia for many years the high water absorption was set as exclusion criterion for use of rocks and stones in building industry. Only after 1989 the absorption was accepted as merely informational rock property and not exclusion. The reason of the change was not the understanding of the relationship between the porosity and rock deterioration, but more or less good experiences with some high porous rocks used in constructions exposed to severe weather conditions and proving a lack of relationship between rock freeze-thaw resistivity and water absorption. Results of the recent worldwide research suggest that understanding a resistivity of rocks against deterioration is hidden not in the absorption but in the structure of rock pores in relation to thermodynamic properties of pore water and tensile strength of rocks and rock minerals. Also this article presents some results of research on rock deterioration and pore structure performed on 88 rock samples. The results divide the rocks tested into two groups - group N in which the pore water does not freeze

  10. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

    1999-06-08

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

  11. Sedimentology of granite boulder conglomerates and associated clastics in the onshore section of the late Mesozoic Pletmos Basin (Western Cape, South Africa)

    NASA Astrophysics Data System (ADS)

    Bordy, Emese M.; America, Travis

    2016-07-01

    Along the southern margin of South Africa, intermountain rift successions, which comprise unusually large, rounded granite boulders and other coarse clastics, reveal an important geological history about the mid-Mesozoic extensional tectonics that lead to the break-up of Gondwana. These strata, mapped as part of the Mid to Upper Jurassic Enon Formation, allow the assessment of the nature, intensity and mode of sediment transport in onshore section of the Pletmos Basin, which is one of the late Mesozoic basins in southern Africa. Based on sedimentary facies analysis, palaeocurrent measurements and semi-quantitative palaeohydraulic calculations, the results suggest that the abundant coarse sediment was deposited by debris-flows and stream-flow floods on a proximal alluvial fan with high gradient alluvial channels. The floods were intense with mean flow velocity of ∼6 m3/s and peak discharge of ∼450 m3/s. While the role of climate in the sedimentation dynamics remains unknown, syn-sedimentary rift tectonics were likely significant and caused, north of the major boundary fault, the unroofing and denudation of the uplifted mountainous source areas, including the Late Ediacaran-Cambrian Maalgaten Granite Suite and the Siluro-Ordovician Table Mountain Group (Cape Supergroup).

  12. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Shirley P. Dutton

    1997-07-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation.

  13. Rock mechanics for hard rock nuclear waste repositories

    SciTech Connect

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff (Nevada Test Site).

  14. Evolution of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Veizer, J.; MacKenzie, F. T.

    2003-12-01

    For almost a century, it has been recognized that the present-day thickness and areal extent of Phanerozoic sedimentary strata increase progressively with decreasing geologic age. This pattern has been interpreted either as reflecting an increase in the rate of sedimentation toward the present (Barrell, 1917; Schuchert, 1931; Ronov, 1976) or as resulting from better preservation of the younger part of the geologic record ( Gilluly, 1949; Gregor, 1968; Garrels and Mackenzie, 1971a; Veizer and Jansen, 1979, 1985).Study of the rocks themselves led to similarly opposing conclusions. The observed secular (=age) variations in relative proportions of lithological types and in chemistry of sedimentary rocks (Daly, 1909; Vinogradov et al., 1952; Nanz, 1953; Engel, 1963; Strakhov, 1964, 1969; Ronov, 1964, 1982) were mostly given an evolutionary interpretation. An opposing, uniformitarian, approach was proposed by Garrels and Mackenzie (1971a). For most isotopes, the consensus favors deviations from the present-day steady state as the likely cause of secular trends.This chapter attempts to show that recycling and evolution are not opposing, but complementary, concepts. It will concentrate on the lithological and chemical attributes of sediments, but not deal with the evolution of sedimentary mineral deposits (Veizer et al., 1989) and of life ( Sepkoski, 1989), both well amenable to the outlined conceptual treatment. The chapter relies heavily on Veizer (1988a) for the sections dealing with general recycling concepts, on Veizer (2003) for the discussion of isotopic evolution of seawater, and on Morse and Mackenzie (1990) and Mackenzie and Morse (1992) for discussion of carbonate rock recycling and environmental attributes.

  15. Rocking and Rolling Rattlebacks

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2013-12-01

    A rattleback is a well-known physics toy that has a preferred direction of rotation. If it is spun about a vertical axis in the "wrong" direction, it will slow down, start rocking from end to end, and then spin in the opposite (i.e. preferred) direction. Many articles have been written about rattlebacks. Some are highly mathematical , 2 and others are purely descriptive. It is surprising that there is still no simple physical explanation. By that, I mean an explanation that can be given to a high school student and one that does not involve an obscure set of complicated equations.

  16. Sedimentary Rocks in Ganges

    NASA Technical Reports Server (NTRS)

    2004-01-01

    13 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows portions of two massifs composed of light-toned, sedimentary rock in Ganges Chasma, part of the Valles Marineris trough system. On the steeper slopes in this vista, dry talus shed from the outcrop has formed a series of dark fans. Surrounded by dark, windblown sand, these landforms are located near 8.6oS, 46.8oW. The image covers an area approximately 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  17. Aram Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location.

    Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  18. Sedimentary Rocks in Melas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows a butte and several other landforms eroded into light-toned, layered, sedimentary rock in southern Melas Chasma. Melas is part of the vast Valles Marineris trough system.

    Location near: 11.8oS, 74.6oW Image width: 3.0 km (1.9 mi) Illumination from: lower left Season: Southern Spring

  19. Sedimentary Rock in Candor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 February 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dozens of light- and a few dark-toned sedimentary rock layers exposed by faulting and erosion in western Candor Chasma, part of the vast Valles Marineris trough system.

    Location near: 6.5oS, 77.0oW Image width: 3.0 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  20. Ganges Rocks and Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 January 2004 The top half of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows wind-eroded remnants of sedimentary rock outcrops in Ganges Chasma, one of the troughs of the Valles Marineris system. The lower half shows a thick accumulation of dark, windblown sand. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left. These features are located near 7.6oS, 49.4oW.

  1. Melas Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 August 2004 Light-toned, layered, sedimentary rock outcrops are common within the vast martian Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a recent example from southern Melas Chasma at 1.5 m/pixel (5 ft/pixel) resolution. The image is located near 11.3oS, 73.9oW, and covers an area about 1.8 km (1.1 mi) across. Sunlight illuminates the scene from the upper left.

  2. From stones to rocks

    NASA Astrophysics Data System (ADS)

    Mortier, Marie-Astrid; Jean-Leroux, Kathleen; Cirio, Raymond

    2013-04-01

    With the Aquila earthquake in 2009, earthquake prediction is more and more necessary nowadays, and people are waiting for even more accurate data. Earthquake accuracy has increased in recent times mainly thanks to the understanding of how oceanic expansion works and significant development of numerical seismic prediction models. Despite the improvements, the location and the magnitude can't be as accurate as citizen and authorities would like. The basis of anticipating earthquakes requires the understanding of: - The composition of the earth, - The structure of the earth, - The relations and movements between the different parts of the surface of the earth. In order to answer these questions, the Alps are an interesting field for students. This study combines natural curiosity about understanding the predictable part of natural hazard in geology and scientific skills on site: observing and drawing landscape, choosing and reading a representative core drilling, replacing the facts chronologically and considering the age, the length of time and the strength needed. This experience requires students to have an approach of time and space radically different than the one they can consider in a classroom. It also limits their imagination, in a positive way, because they realize that prediction is based on real data and some of former theories have become present paradigms thanks to geologists. On each location the analyzed data include landscape, core drilling and the relation established between them by students. The data is used by the students to understand the meaning, so that the history of the formation of the rocks tells by the rocks can be explained. Until this year, the CBGA's perspective regarding the study of the Alps ground allowed students to build the story of the creation and disappearance of the ocean, which was a concept required by French educational authorities. But not long ago, the authorities changed their scientific expectations. To meet the

  3. Petrography of Rocks Examined by the Mars Exploration Rover Spirit within the Gusev Plains and Columbia Hills, Mars

    NASA Astrophysics Data System (ADS)

    Crumpler, L. S.; McSween, H.

    2005-12-01

    Petrographic and megascopic textures of rocks encountered along the traverse of the Spirit Mars Exploration Rover within the Gusev plains (landing site to hills) and within the Columbia Hills (West Spur to lower Husband Hill), together with chemical data based on in situ measurements with the Athena spectrometers, provide information about the mechanisms and conditions of rock emplacement. Primary igneous and low-grade alteration textures are identified within the plains whereas clastic and alteration textures dominate within the Columbia Hills. Plains rocks include primary igneous petrographic textures common to xenocrystic and phyric rocks, megascopic textures similar to that known to occur within differing vertical positions of terrestrial basaltic lavas, and uniform chemical compositions typical of batch melted mantle rocks. Apparent vesicularity (ratio of summed vesicle volume from area over rock unit volume) of rocks in the plains lava surface varied with host rock dimension and angularity. Vesicle distributions in the smaller clasts in the Gusev plains tend to be exponential, typical of upper sections, whereas, dis-tributions in larger, more angular Gusev plains blocks are characterized by hybrid distri-butions, typical of flow interiors. Since small vesicular clasts are a small fraction of the observed clast population, it is inferred that the upper vesicular zones within the Gusev plains lava flows were rela-tively thin (low vesicularity at shallow depths) compared with that predicted for lava flows on Earth. A thin upper vesicular zone in the Gusev plains lavas could be indirect evidence for atmospheric pressure close to current values at the time of Gusev plains basalt emplacement during the Hesperian. Rocks with volcaniclastic or impactite textures occur in outcrops visited within the Columbia Hills. Megascopic and microscopic (Microscopic Imager) textures were examined along apparent lamination planes at several outcrops of moderately consolidated

  4. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA

    USGS Publications Warehouse

    Smith, C.N.; Kesler, S.E.; Blum, J.D.; Rytuba, J.J.

    2008-01-01

    We present here the first study of the isotopic composition of mercury in rocks, ore deposits, and active spring deposits from the California Coast Ranges, a part of Earth's crust with unusually extensive evidence of mercury mobility and enrichment. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of mercury deposits, hot-spring deposits that form at shallow depths (< 300??m) and silica-carbonate deposits that extend to depths of 1000??m. Active springs and geothermal areas continue to precipitate Hg and Au and are modern analogues to the fossil hydrothermal systems preserved in the ore deposits. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake Volcanic Field. Mean mercury isotopic compositions (??202Hg) for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have similar average mercury isotopic compositions that are indistinguishable from averages for the three rock units, although ??202Hg values for the mercury deposits have a greater variance than the country rocks. Precipitates from spring and geothermal waters in the area have similarly large variance and a mean ??202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate that there is little or no isotopic fractionation (< ?? 0.5???) during release of mercury from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of mercury in deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids, separation of a mercury-bearing CO2 vapor

  5. Schiaparelli Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-403, 26 June 2003

    Some of the most important high resolution imaging results of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) experiment center on discoveries about the presence and nature of the sedimentary rock record on Mars. This old meteor impact crater in northwestern Schiaparelli Basin exhibits a spectacular view of layered, sedimentary rock. The 2.3 kilometer (1.4 miles) wide crater may have once been completely filled with sediment; the material was later eroded to its present form. Dozens of layers of similar thickness and physical properties are now expressed in a wedding cake-like stack in the middle of the crater. Sunlight illuminating the scene from the left shows that the circle, or mesa top, at the middle of the crater stands higher than the other stair-stepped layers. The uniform physical properties and bedding of these layers might indicate that they were originally deposited in a lake (it is possible that the crater was at the bottom of a much larger lake, filling Schiaparelli Basin); alternatively, the layers were deposited by settling out of the atmosphere in a dry environment. This picture was acquired on June 3, 2003, and is located near 0.9oS, 346.2oW.

  6. A smart rock

    NASA Astrophysics Data System (ADS)

    Pressel, Phil

    2014-12-01

    This project was to design and build a protective weapon for a group of associations that believed in aliens and UFO's. They collected enough contributions from societies and individuals to be able to sponsor and totally fund the design, fabrication and testing of this equipment. The location of this facility is classified. It also eventually was redesigned by the Quartus Engineering Company for use at a major amusement park as a "shoot at targets facility." The challenge of this project was to design a "smart rock," namely an infrared bullet (the size of a gallon can of paint) that could be shot from the ground to intercept a UFO or any incoming suspicious item heading towards the earth. Some of the challenges to design this weapon were to feed cryogenic helium at 5 degrees Kelvin from an inair environment through a unique rotary coupling and air-vacuum seal while spinning the bullet at 1500 rpm and maintain its dynamic stability (wobble) about its spin axis to less than 10 micro-radians (2 arc seconds) while it operated in a vacuum. Precision optics monitored the dynamic motion of the "smart rock."

  7. Rock Properties Model

    SciTech Connect

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  8. Fossils, rocks, and time

    USGS Publications Warehouse

    Edwards, Lucy E.; Pojeta, John

    1999-01-01

    We study our Earth for many reasons: to find water to drink or oil to run our cars or coal to heat our homes, to know where to expect earthquakes or landslides or floods, and to try to understand our natural surroundings. Earth is constantly changing--nothing on its surface is truly permanent. Rocks that are now on top of a mountain may once have been at the bottom of the sea. Thus, to understand the world we live on, we must add the dimension of time. We must study Earth's history. When we talk about recorded history, time is measured in years, centuries, and tens of centuries. When we talk about Earth history, time is measured in millions and billions of years. Time is an everyday part of our lives. We keep track of time with a marvelous invention, the calendar, which is based on the movements of Earth in space. One spin of Earth on its axis is a day, and one trip around the Sun is a year. The modern calendar is a great achievement, developed over many thousands of years as theory and technology improved. People who study Earth's history also use a type of calendar, called the geologic time scale. It looks very different from the familiar calendar. In some ways, it is more like a book, and the rocks are its pages. Some of the pages are torn or missing, and the pages are not numbered, but geology gives us the tools to help us read this book.

  9. Fossils, rocks, and time

    USGS Publications Warehouse

    Edwards, Lucy E.; Pojeta, John, Jr.

    1993-01-01

    We study out Earth for many reasons: to find water to drink or oil to run our cars or coal to heat our homes, to know where to expect earthquakes or landslides or floods, and to try to understand our natural surroundings. Earth is constantly changing--nothing on its surface is truly permanent. Rocks that are not on top of a mountain may once have been on the bottom of the sea. Thus, to understand the world we live on, we must add the dimension of time. We must study Earth's history. When we talk about recorded history, time is measured in years, centuries, and tens of centuries. When we talk about Earth history, time is measured in millions and billions of years. Time is an everyday part of our lives. We keep track of time with a marvelous invention, the calendar, which is based on the movements of the Earth in space. One spin of Earth on its axis is a day, and one trip around the sun is a year. The modern calendar is a great achievement, developed over many thousands of years as theory and technology improved. People who study Earth's history also use a type of calendar, called the geologic time scale. It looks very different from the familiar calendar. In some ways, it is more like a book, and the rocks are its pages. Some of the pages are torn or missing, and the pages are not numbered, but geology gives us the tools to help us read this book.

  10. 'They of the Great Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.'

  11. Building The Bell Rock Lighthouse

    ERIC Educational Resources Information Center

    Shallcross, David C.

    2005-01-01

    Ever since the first mariners sailed off the east coast of Scotland the Bell Rock has claimed many vessels and countless lives. Also known as the Inch Cape Rocks they lie 18 km off the coast at Arbroath. Located near the mouth of the Firth of Forth and its important shipping ports these dangerous rocks cover an area some 440 m long and 90 m wide.…

  12. [Hearing disorders and rock music].

    PubMed

    Lindhardt, Bjarne Orskov

    2008-12-15

    Only few studies have investigated the frequency of hearing disorders in rock musicians. Performing rock music is apparently associated with a hearing loss in a fraction of musicians. Tinnitus and hyperacusis are more common among rock musicians than among the background population. It seems as if some sort of resistance against further hearing loss is developed over time. The use of ear protection devices have not been studied systematically but appears to be associated with diminished hearing loss. PMID:19128557

  13. Geoelectrical Classification of Gypsum Rocks

    NASA Astrophysics Data System (ADS)

    Guinea, Ander; Playà, Elisabet; Rivero, Lluís; Himi, Mahjoub; Bosch, Ricard

    2010-12-01

    Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum rocks and its lithological composition has been established, with the presence of lutites being the main controlling factor in the geoelectrical response of the deposit. This phenomenon has been quantified in the present study, by means of a combination of theoretical calculations, laboratory measurements and field data acquisition. Direct modelling has been performed; the data have been inverted to obtain the mean electrical resistivity of the models. The laboratory measurements have been obtained from artificial gypsum-clay mixture pills, and the electrical resistivity has been measured using a simple electrical circuit with direct current power supply. Finally, electrical resistivity tomography data have been acquired in different evaporite Tertiary basins located in North East Spain; the selected gypsum deposits have different gypsum compositions. The geoelectrical response of gypsum rocks has been determined by comparing the resistivity values obtained from theoretical models, laboratory tests and field examples. A geoelectrical classification of gypsum rocks defining three types of gypsum rocks has been elaborated: (a) Pure Gypsum Rocks (>75% of gypsum content), (b) Transitional Gypsum Rocks (75-55%), and (c) Lutites and Gypsum-rich Lutites (<55%). From the economic point of view, the Pure Gypsum Rocks, displaying a resistivity value of >800 ohm.m, can be exploited as industrial rocks. The methodology used could be applied in other geoelectrical rock studies, given that this relationship

  14. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  15. Electromagnetic emissions during rock blasting

    NASA Astrophysics Data System (ADS)

    O'Keefe, S. G.; Thiel, D. V.

    1991-05-01

    Radio emissions during quarry blasting have been recorded in the audio frequency band. Three distinct mechanisms are suggested to explain the observed results; rock fracture at the time of the explosion, charged rocks discharging on impact with the pit floor and micro-fracture of the remaining rock wall due to pressure adjustment of the bench behind the blast. The last mechanism was evident by a train of discrete impulses recorded for up to one minute after the blast. It is assumed that during this time the rock behind the blast was subjected to a significant change in pressure. This may be related to ELF observations during earthquakes.

  16. Ready to Rock and Roll

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard-identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet)toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  17. Rock.XML - Towards a library of rock physics models

    NASA Astrophysics Data System (ADS)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  18. Hydrocarbon potential of hydrocarbon source rocks of the New Siberian Islands, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gaedicke, Christoph; Sobolev, Peter; Franke, Dieter; Piepjohn, Karsten; Brandes, Christian; Kus, Jolanta; Scheeder, Georg

    2016-04-01

    The New Siberian Islands are bridging the Laptev Sea with the East Siberian Sea. The Laptev and East Siberian Seas cover large areas of the continental margin of northeastern Arctic Russia. The East Siberian Shelf encompassing an area of 935.000 km2 is still virtually unexplored and most of the geological models for this shelf are extrapolations of the geology of the New Siberian Islands, the Wrangel Island and the northeast Siberian landmass. Apart from few seismic reflection lines, airborne magnetic data were the primary means of deciphering the structural pattern of the East Siberian Shelf. The Laptev Shelf covers an area of about 66.000 km2 and occupies a shelf region, where the active mid-oceanic spreading ridge of the Eurasian Basin hits the slope of the continental margin. During the joint VSEGEI/BGR field expedition CASE 13 (Circum Arctic Structural Events) in summer 2011 we sampled outcrops from the New Siberian Archipelago including the De Long Islands. 102 samples were collected and the Upper Palaeozoic to Lower Cenozoic units are found to be punctuated by several organic-rich intervals. Lithology varies from continental dominated clastic sedimentary rocks with coal seams to shallow marine carbonates and deep marine black shales. Rock-Eval pyrolysis, gas chromatography/mass spectrometry and organic petrography studies were performed to estimate organic matter contents, composition, source, and thermal maturity. According to the results of our analyses, samples from several intervals may be regarded as potential petroleum source rocks. The Lower Devonian shales have the highest source rock potential of all Paleozoic units. Triassic samples have a good natural gas potential. Cretaceous and Cenozoic low-rank coals, lignites, and coal-bearing sandstones display some gas potential. The kerogen of type III (humic, gas-prone) dominates. Most of the samples (except some of Cretaceous and Paleogene age) reached the oil generation window.

  19. Electrochemistry of lunar rocks

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  20. Light-toned Rock

    NASA Technical Reports Server (NTRS)

    2006-01-01

    1 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a scene reminiscent of some of the Mars Exploration Rover (MER-B), Opportunity, images of terrain in the vicinity of Erebus Crater -- a substrate of light-toned rock, broken into polygonal forms, overlain by large, dark-toned, ripple-like drifts. However, this scene is many hundreds of kilometers away from Meridiani Planum -- it lies on the floor of an old impact crater near the northwest rim of the giant Hellas Basin.

    Location near: 21.0oS, 312.0oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  1. Yogi the rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. The soil in the foreground will be the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists will be able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties.

    The image was taken by the Imager for Mars Pathfinder (IMP) after its deployment on Sol 3. Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. Meridiani Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-545, 15 November 2003

    Northern Sinus Meridiani is a region of vast exposures of layered, sedimentary rock. Buried within these layers are many filled impact craters. Erosion has re-exposed several formerly-buried craters in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. Arrows 1 and 2 indicate craters that are still emerging from beneath layered material; arrow 3 indicates a crater that has been fully re-exposed. This image is located near 5.1oN, 2.7oW. The area shown is about 3 km (1.9 mi) wide and illuminated from the left/upper left.

  3. Celebrated Moon Rocks

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2009-12-01

    The Need for Lunar Samples and Simulants: Where Engineering and Science Meet sums up one of the sessions attracting attention at the annual meeting of the Lunar Exploration Analysis Group (LEAG), held November 16-19, 2009 in Houston, Texas. Speakers addressed the question of how the Apollo lunar samples can be used to facilitate NASA's return to the Moon while preserving the collection for scientific investigation. Here is a summary of the LEAG presentations of Dr. Gary Lofgren, Lunar Curator at the NASA Johnson Space Center in Houston, Texas, and Dr. Meenakshi (Mini) Wadhwa, Professor at Arizona State University and Chair of NASA's advisory committee called CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials). Lofgren gave a status report of the collection of rocks and regolith returned to Earth by the Apollo astronauts from six different landing sites on the Moon in 1969-1972. Wadhwa explained the role of CAPTEM in lunar sample allocation.

  4. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  5. Fan-delta and interdeltaic shoreline sediments of Middle Devonian Granite Wash and Keg River clastics, Red Earth field, north Alberta basin, Canada

    SciTech Connect

    Sabry, H.

    1989-03-01

    A detailed sedimentological investigation of over 4000 ft of core and 500 well logs of the Middle Devonian granite wash and Keg River clastics in the Red Earth field, North Alberta basin, Canada, has led to the recognition of a granite wash subaerial fan-delta system that is laterally continuous with a Keg River subaqueous delta component along an eastern shoreline of the ancestral Peace River arch. The subaerial fan delta includes alluvial fan facies, sheet wash and mud flows, and playa lakes. The subaqueous delta component includes lower shoreface, upper shoreface, beach-foreshore, eolian sand dunes, lagoon, washover sands, tidal channels and flats, and supratidal carbonates and anhydrites. Within this system, six mappable units are defined. A conceptual depositional model for the sequence depicts four main events. (1) Erosion of Peach River arch uplifted fault blocks, which produced coarse-grained fan-delta sediments in an adjacent fault-bounded margin. Subsequent fluvial reworking resulted in the deposition of thick, lenticular, wedge-shaped alluvial fans of granite wash. (2) Progradation of alluvial fans seaward into the Keg River Sea. (3) Transgression by Middle Devonian seas from the east, which reworked alluvial fans and led to deposition of discontinuous linear sand bodies represented by the Keg River regressive shoreline sediments. (4) Restriction of the sea by the Presqu'ile barrier reef to the north, which deposited evaporites of the Muskeg Formation over the whole sequence. Modern analog to this fan-delta system is the coastal fans of the Gulf of Aqaba, Red Sea. Red Earth field contains over 27 million bbl of recoverable oil, related to a combination structural-stratigraphic trap.

  6. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope, and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Shirley P. Dutton

    1997-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO 2 flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other presentations, the knowledge gained in the comparative study of these two fields can then be applied to increase production from the more

  7. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin).

    SciTech Connect

    Dutton, S.P.

    1997-10-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, water flood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other present at ions, the knowledge gained in the comparative study of these two fields can then be applied to increase product ion

  8. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report

    SciTech Connect

    Dutton, S.P.

    1996-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

  9. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Andrew G. Cole; George B. Asquith; Jose I. Guzman; Mark D. Barton; Mohammad A. Malik; Shirley P. Dutton; Sigrid J. Clift

    1998-04-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based enhanced oil recovery. The study focused on the Ford Geraldine unit, which produces from the upper Bell Canyon Formation (Ramsey sandstone). Reservoirs in this and other Delaware Mountain Group fields have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Outcrop analogs were studied to better interpret the depositional processes that formed the reservoirs at the Ford Geraldine unit and to determine the dimensions of reservoir sandstone bodies. Facies relationships and bedding architecture within a single genetic unit exposed in outcrop in Culberson County, Texas, suggest that the sandstones were deposited in a system of channels and levees with attached lobes that initially prograded basinward, aggraded, and then turned around and stepped back toward the shelf. Channel sandstones are 10 to 60 ft thick and 300 to 3,000 ft wide. The flanking levees have a wedge-shaped geometry and are composed of interbedded sandstone and siltstone; thickness varies from 3 to 20 ft and length from several hundred to several thousands of feet. The lobe sandstones are broad lens-shaped bodies; thicknesses range up to 30 ft with aspect ratios (width/thickness) of 100 to 10,000. Lobe sandstones may be interstratified with laminated siltstones.

  10. Modeling differentiation of Karaj Dam basement igneous rocks (northern Iran)

    NASA Astrophysics Data System (ADS)

    Esmaeily, D.; M-Mashhour, R.

    2009-04-01

    The Karaj Dam basement igneous body (KDB) is located in the north of city of Karaj, 30 km from city of Tehran, which lies between 35° 50' N to 36° 05' N and between 50° 50' E to 51° 15' E. It is one of the several plutonic bodies within the E-W trending Alborz zone in northern Iran. Following the late Cretaceous orogenic movements, vast volumes of dacite, andesites and basaltic lavas with tuffaceous and other clastic sediments were deposited during Eocene time, forming Karaj Formation in central Iran and Albourz. The KDB is penetrated thorough middle and upper tuff units from Karaj Formation which is underlain by late Jurassic depositions (Shemshak Formation) and overlain by the Neogene red Conglomerates in regard to stratographic consideration. It is mainly composed of a layered series dominated by gabbro, diorite and monzonite, which is a rock sequence formed upward from the lower to upper chilled margins, respectively. The chilled margins, which have gabbroic in composition, show porphyritic texture with euhedral to subhedral plagioclase (andesine & labradorite) and pyroxene (augite) megacrysts up to 5 mm long. These rocks become coarse-grained inward and transform to equigranular texture gradually.In addition, a small fine-grained doleritic stock as well as some doleritic dykes is intrusive into the pyroclastic volcanic rocks of Karaj Formation. It is possible to observe doleritic enclaves included in the KDB, indicating that the KDB are slightly younger than the dolerites. Whole rock geochemistry and mineral chemistry of the plagioclase and pyroxene in various rock samples, suggest differentiation processes. The Mg# of the pyroxene and An% of plagioclase of the contact chilled samples can be used as an indication of the original magma and plotted between the gabbro and monzonitic samples. In addition, increasing of the Mg# within the whole rock samples from the upper of contact chilled, in comparison to the lower one, demonstrates elemental differentiation

  11. Results and Discussion on Physical Property Calculation from Pore Microstructures of Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Lee, M.; Keehm, Y.

    2014-12-01

    In this paper, we report results and discussion on the physical properties estimation of carbonate rocks using pore microstructures. We obtained high-resolution 3D microstructures with different porosity-types (inter-particle, vuggy/moldic, and fracture) from the X-ray microtomography technique. We calculated permeability, electrical conductivity, and P-wave velocity using the Lattice-Boltzmann method and finite element methods. We also applied the pore-scale simulation techniques to different sub-blocks from the original 3D pore geometry (2,0003 voxels) to determine the heterogeneity of pore geometry. For the inter-particle porosity-type, the calculated transport properties (permeability and electrical conductivity) show very similar trends to clastic sediments. These relations can be modeled by common empirical relations such as Kozeny-Carman relation for porosity-permeability or Archie's equation for porosity-formation factor. For the vuggy or fracture porosity-type, it is difficult to determine any consistent relations; therefore we tried to build conceptual models with cracks or vugs to establish quantitative relations. On the other hand, P-wave velocity showed very little dependence on the porosity-types, due to high frame stiffness of carbonate rocks. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Trade, Industry and Energy of Korea (GP2012-029).

  12. Influence of tectonic terranes adjacent to Precambrian Wyoming province of petroleum source and reservoir rock stratigraphy in northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J.

    1984-07-01

    The perimeter of the Archean Precambrian Wyoming province can be generally defined. A Proterozoic suture belt separates the province from the Archean Superior province to the east. The western margin of the Precambrian rocks lies under the western Overthrust belt, but the Precambrian province extends at least as far west as southwest Montana and southeast Idaho. The province is bounded on the north and south by more regionally extensive Proterozoic mobile belts. In the northern belt, Archean rocks have been remobilized by Proterozoic tectonic events, but the southern belt does not appear to contain rocks as old as Archean. The tectonic response of these Precambrian terranes to cratonic and continental margin vertical and horizontal forces has exerted a profound influence on Phanerozoic sedimentation and stratigraphic facies distributions. Petroleum source rock and reservoir rock stratigraphy of the Northern Rocky Mountain region has been correlated with this structural history. In particular, the Devonian, Permian, and Jurassic sedimentation patterns can be shown to have been influenced by articulation among the different terranes comprising the ancient substructure. Depositional patterns in the Chester-Morrow carbonate and clastic sequence in the Central Montana trough are also related to this substructure. Further, a correlation between these tectonic terranes and the localization of regional hydrocarbon accumulations has been observed and has been useful in basin analyses for exploration planning.

  13. The Rock Climbing Teaching Guide.

    ERIC Educational Resources Information Center

    Kudlas, John

    The product of 10 years of rock climbing instruction, this guide provides material from which an instructor can teach basic climbing concepts and safety skills as well as conduct a safe, enjoyable rock climbing class in a high school setting. It is designed for an instructor with limited experience in climbing; however, the need for teacher…

  14. Bakhtin's Dialogics and Rock Lyrics.

    ERIC Educational Resources Information Center

    Knight, Jeff Parker

    Rock music is ideological both implicitly (in its intrinsic valuing of change, and resistance to authority, for instance), and explicitly (in political records from activist artists such as John Lennon and U2). The texts of the rock genre offer rhetorical experiences. A dialogic conception may help scholars to account for and describe the…

  15. 'Mister Badger' Pushing Mars Rock

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  16. Further Reflections on Little Rock

    ERIC Educational Resources Information Center

    Allen, Danielle S.

    2007-01-01

    The famous photo of Hazel Bryan jeering at Elizabeth Eckford as a mob helped drive Elizabeth from Central High School in Little Rock, Arkansas, on September 4, 1957, compels meditation on the nature of democratic politics. This scene is commemorative of the Little Rock events where school segregation was rampant. The author believes that the photo…

  17. Rockin' around the Rock Cycle

    ERIC Educational Resources Information Center

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  18. Small-Town Rock Trade

    ERIC Educational Resources Information Center

    Robarge, Thomas J.

    1977-01-01

    Describes an eighth grade rock exchange project in which small groups of students researched, then wrote letters to schools throughout the United States requesting samples of local rocks and minerals. Provides experience in use of the atlas and letter writing. (CS)

  19. Rock Segmentation through Edge Regrouping

    NASA Technical Reports Server (NTRS)

    Burl, Michael

    2008-01-01

    Rockster is an algorithm that automatically identifies the locations and boundaries of rocks imaged by the rover hazard cameras (hazcams), navigation cameras (navcams), or panoramic cameras (pancams). The software uses edge detection and edge regrouping to identify closed contours that separate the rocks from the background.

  20. Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC belt in SW Japan: Constraints to the provenance of the mid-Mesozoic trench in East Asia

    NASA Astrophysics Data System (ADS)

    Fujisaki, Wataru; Isozaki, Yukio; Maki, Kenshi; Sakata, Shuhei; Hirata, Takafumi; Maruyama, Shigenori

    2014-07-01

    U-Pb ages of detrital zircon grains were determined from an upper Middle Jurassic siliceous mudstone and two lower Upper Jurassic sandstones of the Mino-Tanba belt, Southwest Japan, by Laser-ablation ICPMS. The age spectra of detrital zircon grains of the three analyzed samples show multiple age clusters: 175-198 Ma (Early Jurassic), 202-284 Ma (Permian to Triassic), 336-431 Ma (Silurian to Carboniferous), and 1691-2657 Ma (Neoarchean to Paleoproterozoic). As per the Precambrian grains, the prominent peak exists around 1800-2000 Ma in all analyzed samples. The age clusters of 175-198 Ma, 202-284 Ma, and 336-431 Ma suggest that pre-Middle Jurassic Japan has exposed older granitic batholiths. The corresponding batholiths occur in the Cathaysian part of South China block. In contrast, the absence of them in modern Japan suggests that these batholiths were totally consumed by post-Jurassic tectonic erosion. The Neoarchean to Paleoproterozoic detrital zircon grains were derived from South China, North China, or possibly both of them; nonetheless, the circumstantial geologic lines of evidence point to South China, in particular to Cathaysia, rather than North China.

  1. Tracer tomography (in) rocks!

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  2. New approaches in the indirect quantification of thermal rock properties in sedimentary basins: the well-log perspective

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Balling, Niels; Förster, Andrea

    2016-04-01

    Numerical temperature models generated for geodynamic studies as well as for geothermal energy solutions heavily depend on rock thermal properties. Best practice for the determination of those parameters is the measurement of rock samples in the laboratory. Given the necessity to enlarge databases of subsurface rock parameters beyond drill core measurements an approach for the indirect determination of these parameters is developed, for rocks as well a for geological formations. We present new and universally applicable prediction equations for thermal conductivity, thermal diffusivity and specific heat capacity in sedimentary rocks derived from data provided by standard geophysical well logs. The approach is based on a data set of synthetic sedimentary rocks (clastic rocks, carbonates and evaporates) composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities varying between 0 and 30%. Petrophysical properties are assigned to both the rock-forming minerals and the pore-filling fluids. Using multivariate statistics, relationships then were explored between each thermal property and well-logged petrophysical parameters (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) on a regression sub set of data (70% of data) (Fuchs et al., 2015). Prediction quality was quantified on the remaining test sub set (30% of data). The combination of three to five well-log parameters results in predictions on the order of <15% for thermal conductivity and thermal diffusivity, and of <10% for specific heat capacity. Comparison of predicted and benchmark laboratory thermal conductivity from deep boreholes of the Norwegian-Danish Basin, the North German Basin, and the Molasse Basin results in 3 to 5% larger uncertainties with regard to the test data set. With regard to temperature models, the use of calculated TC borehole profiles approximate measured temperature logs with an

  3. Analysis of Inflatable Rock Bolts

    NASA Astrophysics Data System (ADS)

    Li, Charlie C.

    2016-01-01

    An inflatable bolt is integrated in the rock mass through the friction and mechanical interlock at the bolt-rock interface. The pullout resistance of the inflatable bolt is determined by the contact stress at the interface. The contact stress is composed of two parts, termed the primary and secondary contact stresses. The former refers to the stress established during bolt installation and the latter is mobilized when the bolt tends to slip in the borehole owing to the roughness of the borehole surface. The existing analysis of the inflatable rock bolt does not appropriately describe the interaction between the bolt and the rock since the influence of the folded tongue of the bolt on the stiffness of the bolt and the elastic rebound of the bolt tube in the end of bolt installation are ignored. The interaction of the inflatable bolt with the rock is thoroughly analysed by taking into account the elastic displacements of the rock mass and the bolt tube during and after bolt installation in this article. The study aims to reveal the influence of the bolt tongue on the contact stress and the different anchoring mechanisms of the bolt in hard and soft rocks. A new solution to the primary contact stress is derived, which is more realistic than the existing one in describing the interaction between the bolt and the rock. The mechanism of the secondary contact stress is also discussed from the point of view of the mechanical behaviour of the asperities on the borehole surface. The analytical solutions are in agreement with both the laboratory and field pullout test results. The analysis reveals that the primary contact stress decreases with the Young's modulus of the rock mass and increases with the borehole diameter and installation pump pressure. The primary contact stress can be easily established in soft and weak rock but is low or zero in hard and strong rock. In soft and weak rock, the primary contact stress is crucially important for the anchorage of the bolt, while

  4. The Influence of the De-Icing Salt on the Deterioration of Rock Materials Used in Monumental Buildings

    NASA Astrophysics Data System (ADS)

    Kłopotowska, Agnieszka Katarzyna; Łukaszewski, Paweł

    2013-09-01

    The de-icing salt has been used for decades to increase safety on the roads and sidewalks. In Poland, mainly the sodium chloride is used in order to maintain the roads in good condition during winter. Like other salts used for surface de-icing, it depresses the freezing point to lower temperatures and has an additional thermal effect by an exothermic reaction. However, this salt causes the accumulation of chlorides in the walls and stone buildings contributing to the deterioration of these facilities. The paper addresses the issue of the influence of salt solutions on the structure and geomechanical properties of rocks at negative temperatures. The study was conducted on the basis of cyclic tests which simulate complex action of both the negative temperature and the salty environment. The conditions for the tests were chosen so as to reflect the actual conditions of the winter in Poland. During the tests, the longitudinal wave propagation velocity, changes in weights of the samples as well as visual changes were recorded which allowed continuous tracking of occurring changes. At the end of the tests, the rock samples were subjected to uniaxial compressive tests. For this purpose, four lithological types were chosen, representing the sedimentary rocks: clastic and carbonate, widely used in stone constructions.

  5. Geophysical log responses and their correlation with bed-to-bed stress contrasts in Paleozoic rocks, Appalachian Plateau, New York

    NASA Astrophysics Data System (ADS)

    Plumb, Richard A.; Evans, Keith F.; Engelder, Terry

    1991-08-01

    A 1-km profile of in situ stress and geophysical log data was acquired in the Wilkins well to study the relationship between rock properties and in situ stress contrasts. The Wilkins well penetrates Devonian clastic rocks on the Appalachian Plateau near the town of South Canisteo, New York. Open hole hydraulic fracture stress measurements were made in stratigraphic sequences where geophysical logs indicated significant bed-to-bed variations in elastic and lithologic properties. Analysis of stress magnitudes and interval-averaged geophysical data shows that principal horizontal stress magnitudes correlate directly with elastic stiffness and inversely with clay content. A similar relation is found for older Paleozoic strata penetrated by a well at Auburn, New York. Correlations between stress magnitude and geophysical properties observed in the Wilkins and Auburn wells provide strong evidence that bed to bed stress variations arise from a uniform ENE-WSW directed strain acting on beds of different Young's modulus rather than from variations in rock shear strength. Because of their high Young's modulus, sandstones, siltstones, and limestones in the northern Appalachian Basin are likely to be stronger barriers to hydraulic fracture propagation than shales. Porosity logs in the Wilkins well show that the large decrease in horizontal stress found at the base of the Rhine street Formation occurs where shales are less compacted. The correlation with undercompaction is consistent with a paleo-overpressure drainage mechanism as the cause for the stress decrease.

  6. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  7. Shotgun cartridge rock breaker

    DOEpatents

    Ruzzi, Peter L.; Morrell, Roger J.

    1995-01-01

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  8. Fracturing of rocks by ice

    NASA Astrophysics Data System (ADS)

    Vlahou, Ioanna; Grae Worster, M.

    2009-11-01

    Frost damage, caused by the freezing of water-saturated media, affects plant roots, pavements and the foundations of buildings, and is a major erosional force in rocks. The process has been studied extensively in the case of soils, and mechanisms such as the formation of ice lenses have been identified. Here, we consider the freezing of water in a three-dimensional cavity in a water-saturated, porous, elastic rock. Initially, the expansion of water as it freezes causes flow away from the solidification front, into the porous rock. The Darcy flow in the porous medium controls the pressure field and therefore the freezing temperature. At later times, disjoining thermomolecular forces create a pre-melted film of water between the ice and the rock and cause flow of pore water from the surrounding rock into the cavity. We find that the disjoining forces between the ice and the rock have the dominant effect, so we focus on those later times when the cavity is ice-filled. We solve the coupled set of integro-differential equations governing the elastic stress in the rock and the flow through its pores to determine the evolution of the shape and extent of the ice-filled cavity.

  9. Source rock potential in Pakistan

    SciTech Connect

    Raza, H.A. )

    1991-03-01

    Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceous rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.

  10. Rock Dusting Leaves 'Mickey Mouse' Mark

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the navigation camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Humphrey' and the circular areas on the rock that were wiped off by the rover. The rover used a brush on its rock abrasion tool to clean these spots before examining them with its miniature thermal emission spectrometer. Later, the rover drilled into the rock with its rock abrasion tool, exposing fresh rock underneath.

  11. Approaching Rock Target No. 1

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D stereo anaglyph image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists plan to use instruments at the end of the rover's robotic arm to examine the rock and understand how it formed.

  12. Multiverso: Rock'n'Astronomy

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  13. Dynamics of rock varnish formation

    SciTech Connect

    Raymond, R. Jr.; Reneau, S.L.; Guthrie, G.D. Jr.; Bish, D.L.; Harrington, C.D.

    1991-01-01

    Our studies of rock varnish from the southwestern United States suggest that the Mn-phase in rock varnish has neither the chemistry nor the crystal structure of birnessite. Rather, the Mn-rich phase is non-crystalline and contains Ba, Ca, Fe, Al, and P. Unknowns concerning the formation of this non-crystalline Mn phase must be resolved before researchers are able to define chemical parameters of rock varnish formation based upon conditions of formation of the Mn phase. 6 refs., 9 figs.

  14. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  15. Applicability of failure criteria and empirical relations of mechanical rock properties from outcrop analogue samples for wellbore stability analyses

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2013-12-01

    Knowledge of failure criteria, Young's modulus and uniaxial and tensile strengths, are important to avoid borehole instabilities and adapt the drilling plan on rock mechanical conditions. By this means, a considerable reduction of the total drilling costs can be achieved. This is desirable to enlarge the profit margin of geothermal projects which is rather small compared with hydrocarbon projects. Because core material is rare we aim at predicting in situ rock properties from outcrop analogue samples which are easy and cheap to provide. The comparability of properties determined from analogue samples with samples from depths is analysed by performing conventional triaxial tests, uniaxial compressive strength tests and Brazilian tests of both quarry and equivalent core samples. Equivalent means that the quarry sample is of the same stratigraphic age and of comparable sedimentary facies and composition as the associated core sample. We determined the parameters uniaxial compressive strength (UCS), Young's modulus, and tensile strength for 35 rock samples from quarries and 14 equivalent core samples from the North German Basin. A subgroup of these samples, consisting of one volcanic rock sample, three sandstone and three carbonate samples, was used for triaxial tests. In all cases, comparability of core samples with quarry samples is evaluated using thin section analyses. For UCS versus Young's modulus and tensile strengths, linear- and non-linear regression analyses were performed. We repeat regression separately for clastic rock samples or carbonate rock samples only as well as for quarry samples or core samples only. Empirical relations have high statistical significance and properties of core samples lie within 90% prediction bands of developed regression functions of quarry samples. With triaxial tests we determined linearized Mohr-Coulomb failure criteria, expressed in both principal stresses and shear and normal stresses, for quarry samples. Comparison with

  16. Sorted clastic stripes, lobes and associated gullies in high-latitude craters on Mars: Landforms indicative of very recent, polycyclic ground-ice thaw and liquid flows

    NASA Astrophysics Data System (ADS)

    Gallagher, C.; Balme, M. R.; Conway, S. J.; Grindrod, P. M.

    2011-01-01

    Self-organised patterns of stone stripes, polygons, circles and clastic solifluction lobes form by the sorting of clasts from fine-grained sediments in freeze-thaw cycles. We present new High Resolution Imaging Science Experiment (HiRISE) images of Mars which demonstrate that the slopes of high-latitude craters, including Heimdal crater - just 25 km east of the Phoenix Landing Site - are patterned by all of these landforms. The order of magnitude improvement in imaging data resolution afforded by HiRISE over previous datasets allows not only the reliable identification of these periglacial landforms but also shows that high-latitude fluviatile gullies both pre- and post-date periglacial patterned ground in several high-latitude settings on Mars. Because thaw is inherent to the sorting processes that create these periglacial landforms, and from the association of this landform assemblage with fluviatile gullies, we infer the action of liquid water in a fluvio-periglacial context. We conclude that these observations are evidence of the protracted, widespread action of thaw liquids on and within the martian regolith. Moreover, the size frequency statistics of superposed impact craters demonstrate that this freeze-thaw environment is, at least in Heimdal crater, less than a few million years old. Although the current martian climate does not favour prolonged thaw of water ice, observations of possible liquid droplets on the strut of the Phoenix Lander may imply significant freezing point depression of liquids sourced in the regolith, probably driven by the presence of perchlorates in the soil. Because perchlorates have eutectic temperatures below 240 K and can remain liquid at temperatures far below the freezing point of water we speculate that freeze-thaw involving perchlorate brines provides an alternative "low-temperature" hypothesis to the freeze-thaw of more pure water ice and might drive significant geomorphological work in some areas of Mars. Considering the

  17. Fluid and rock interaction in permeable volcanic rock

    SciTech Connect

    Lindley, J.I.

    1985-02-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K/sub 2/O as much as 130% of their original values at the expense of Na/sub 2/O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta/sup 18/O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta/sup 18/ of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals.

  18. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Balling, Niels; Förster, Andrea

    2015-12-01

    In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities of 0-30 per cent. Petrophysical properties and their well-logging-tool-characteristic readings were assigned to these rock-forming minerals and to pore-filling fluids. Relationships are explored between each thermal property and other petrophysical properties (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) using multivariate statistics. The application of these relations allows computing continuous borehole profiles for each rock thermal property. The uncertainties in the prediction of each property vary depending on the selected well-log combination. Best prediction is in the range of 2-8 per cent for the specific heat capacity, of 5-10 per cent for the thermal conductivity, and of 8-15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is <3 °C. The thermal-conductivity calculation allowed an evaluation of the depth range in which the palaeoclimatic effect on the subsurface temperature field can be observed in the North German Basin. This effect reduces the surface heat-flow density by 25 mW m-2.

  19. High resolution study of petroleum source rock variation, Lower Cretaceous (Hauterivian and Barremian) of Mikkelsen Bay, North Slope, Alaska

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.; Lillis, Paul G.

    2001-01-01

    Open File Report 01-480 was designed as a large format poster for the Annual Meeting of the American Association of Petroleum Geologists and the Society for Sedimentary Geology in Denver Colorado in June 2001. It is reproduced here in digital format to make widely available some unique images of mudstones. The images include description, interpretation, and Rock-Eval data that resulted from a high-resolution study of petroleum source rock variation of the Lower Cretaceous succession of the Mobil-Phillips Mikkelsen Bay State #1 well on the North Slope of Alaska. Our mudstone samples with Rock-Eval data plus color images are significant because they come from one of the few continuously cored and complete intervals of the Lower Cretaceous succession on the North Slope. This succession, which is rarely preserved in outcrop and very rarely cored in the subsurface, is considered to include important petroleum source rocks that have not previously been described nor explained Another reason these images are unique is that the lithofacies variability within mudstone dominated successions is relatively poorly known in comparison with that observed in coarser clastic and carbonate successions. They are also among the first published scans of thin sections of mudstone, and are of excellent quality because the sections are well made, cut perpendicular to bedding, and unusually thin, 20 microns. For each of 15 samples, we show a thin section scan (cm scale) and an optical photomicrograph (mm scale) that illustrates the variability present. Several backscattered SEM images are also shown. Rock-Eval data for the samples can be compared with the textures and mineralogy present by correlating sample numbers and core depth.

  20. ROCK DEFORMATION. Final Progress Report

    SciTech Connect

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  1. City Rocks and National Standards.

    ERIC Educational Resources Information Center

    Becker, Martin; Slattery, William; Finegan-Stoll, Colleen

    1998-01-01

    Presents a weeklong earth science module that allows students to explore the relationships between natural and manufactured materials. Relates rocks and minerals in the earth science curriculum to observations students make in their urban and suburban travels. (DDR)

  2. The Rock Your Students Dig.

    ERIC Educational Resources Information Center

    McCombs, John P.

    1990-01-01

    Described is a field trip in which eighth grade earth science students map the rock types located on the side of a mountain. Pretrip preparation, equipment, procedures, and posttrip analysis are discussed. (CW)

  3. 'White Rock' of Pollack Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 January 2004 The famous 'White Rock' of Pollack Crater has been known for three decades; it was originally found in images acquired by the Mariner 9 spacecraft in 1972. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) close-up view, obtained in October 2003, shows some of the light-toned, wind-eroded sedimentary rock that makes up 'White Rock.' It is not actually white, except when viewed in a processed, grayscale image (in color, it is more of a light butterscotch to pinkish material). The sediment that comprises 'White Rock' was deposited in Pollack Crater a long time ago, perhaps billions of years ago; the material was later eroded by wind. Dark, windblown ripples are present throughout the scene. This picture is located near 8.2oS, 335.1oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  4. Sinkhole susceptibility in carbonate rocks of the Apulian karst (southern Italy)

    NASA Astrophysics Data System (ADS)

    Di Santo, Antonio; Fazio, Nunzio L.; Fiore, Antonio; Lollino, Piernicola; Luisi, Michele; Miccoli, Maria N.; Pagliarulo, Rosa; Parise, Mario; Perrotti, Michele; Pisano, Luca; Spalluto, Luigi; Vennari, Carmela; Vessia, Giovanna

    2016-04-01

    Apulia region, the foreland of the southern Italian Apennines, is made up of a 6-7 km-thick succession of Mesozoic shallow-water limestones and dolostones, locally covered by thin and discontinuous Tertiary and Quaternary carbonate and clastic deposits. Due to their long subaerial exposure, the Mesozoic carbonate bedrock recorded the development in the subsurface of a dense network of karst cavities, mostly controlled by tectonic discontinuities. As a result, a strong susceptibility to natural sinkholes has to be recorded in Apulia. In addition, the possibility of occurrence of other problems related to the high number of man-made cavities has to be added in the region. A great variety of different typologies of artificial cavities (mostly excavated in the Plio-Pleistocene soft calcarenites) is actually present, including underground quarries, worship sites, oil mills, civilian settlements, etc. Overall, 2200 natural and 1200 artificial cavities, respectively, have been so far surveyed in Apulia. Following the urban development in the last century in Apulia, many of these cavities lie nowadays below densely populated neighborhoods, roads or communication routes. These conditions are at the origin of the main geomorphological hazard for the human society in Apulia, which requires a careful evaluation, aimed at protecting and safeguarding the human life, and at providing the necessary information for a correct land use planning and management. The importance of the sinkhole hazard is further testified by the worrying increase in the number of events during the last 5-6 years. In response to these situations, joint research activities were started by the Institute of Research for Hydrological Protection of the National Research Council (CNR-IRPI) and the Basin Authority of Apulia, aimed at several goals, that include (but are not limited to) the collection of information on natural and anthropogenic sinkholes in Apulia, the implementation of numerical analyses for

  5. Definitive Mineralogical Analysis of Martian Rocks and Soil Using the CheMin XRD/XRF Instrument and the USDC Sampler

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Bar-Cohen, Y.; Sherrit, S.; Collins, S.; Boyer, B.; Bryson, C.

    2003-01-01

    The search for evidence of extant or extinct life on Mars will initially be a search for evidence of present or past conditions supportive of life (e.g., evidence of water), not for life itself. Definitive evidence of past or present water activity lies in the discovery of: * Hydrated minerals: The "rock type" hosting the hydrated minerals could be igneous, metamorphic, or sedimentary, with only a minor hydrated mineral phase. Therefore, the identification of minor phases is important. * Clastic sediments: Clastic sediments are commonly identified by the fact that they contain minerals of disparate origin that could only have come together as a mechanical mixture. Therefore, the identification of all minerals present in a mixture to ascertain mineralogical source regions is important. * Hydrothermal precipitates and chemical sediments: Some chemical precipitates are uniquely identified only by their structure. For example, Opal A, Opal CT, tridymite, crystobalite, high and low Quartz all have the same composition (SiO2) but different crystal structures indicative of different environments - from hydrothermal hydrothermal formation to low temperature precipitation. Other silica types such as stishovite can provide evidence of shock metamorphism. Therefore, identification of crystal structures and structural polymorphs is important. The elucidation of the nature of the Mars soil will require the identification of mineral components that can unravel its history and the history of the Mars atmosphere.

  6. Rock expansion caused by ultrasound

    NASA Astrophysics Data System (ADS)

    Hedberg, C.; Gray, A.

    2013-12-01

    It has during many years been reported that materials' elastic modulus decrease when exposed to influences like mechanical impacts, ultrasound, magnetic fields, electricity and even humidity. Non-perfect atomic structures like rocks, concrete, or damaged metals exhibit a larger effect. This softening has most often been recorded by wave resonance measurements. The motion towards equilibrium is slow - often taking hours or days, which is why the effect is called Slow Dynamics [1]. The question had been raised, if a material expansion also occurs. 'The most fundamental parameter to consider is the volume expansion predicted to occur when positive hole charge carriers become activated, causing a decrease of the electron density in the O2- sublattice of the rock-forming minerals. This decrease of electron density should affect essentially all physical parameters, including the volume.' [2]. A new type of configuration has measured expansion of a rock subjected to ultrasound. A PZT was used as a pressure sensor while the combined thickness of the rock sample and the PZT sensor was held fixed. The expansion increased the stress in both the rock and the PZT, which gave an out-put voltage from the PZT. Knowing its material properties then made it possible to calculate the rock expansion. The equivalent strain caused by the ultrasound was approximately 3 x 10-5. The temperature was monitored and accounted for during the tests and for the maximum expansion the increase was 0.7 C, which means the expansion is at least to some degree caused by heating of the material by the ultrasound. The fraction of bonds activated by ultrasound was estimated to be around 10-5. References: [1] Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soils, Concrete. Wiley-VCH 2009 [2] M.M. Freund, F.F. Freund, Manipulating the Toughness of Rocks through Electric Potentials, Final Report CIF 2011 Award NNX11AJ84A, NAS Ames 2012.

  7. Observations and Rock Analyses in a Kumano Mud Volcano in Nankai Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Morita, S.; Aoike, K.; Sawada, T.; Ashi, J.; Gulick, S. P.; Flemings, P. B.; Kuramoto, S.; Saito, S.; Mikada, H.; Kinoshita, M.

    2002-12-01

    Kumano Basin is a forearc basin on the eastern Nankai Accretionary Prism off southwest Japan. Recent bathymetric survey showed existence of small knolls in the Kumano Basin. Submersible and ROV dives, sidescan sonar and deep-towed camera investigations revealed so far that at least five of the small knolls are mud volcanoes erupted on the Kumano Basin floor. In June and August, 2002, Dive 677 and 681 by submersible SHINKAI 6500 (YK02-02: R/V Yokosuka) and Dive 267 by ROV KAIKO (KR02-10: R/V Kairei) were performed in one of the mud volcanoes, Kumano Knoll No.4, which is 100 m high and 800 m in diameter at the foot of the knoll. The knoll has a plateau of about 300 m diameter on the top, which shows bumpy surface where there are waves, steps and craters of several meters in diameter. The craters imply active or dead cold seeps and are occasionally accompanied by Calyptogena colonies. The plateau is mostly covered with mud. Rock gravels and boulders were observed mainly on outer slope of the knoll. Sidescan sonar and subbottom profiler data by KAIKO system show marked contrasts in sonic reflectivity and penetration between the Kumano Knoll No.4 and the Kumano Basin floor. The high sonic reflectivity and the low penetration on the knoll indicate that main body of the knoll is composed of clastic ejecta as a mud volcano. On the Kumano Knoll No.4, the dives obtained semi-consolidated mudstone, mud breccia, and biotite arkose sandstone. Chronological analysis on nannofossil indicates the sedimentary rocks are in the late Early Miocene through the Middle Miocene. According to this age and geological information on land, it is likely that the sedimentary rocks on the knoll were originally deposited at the beginning of formation of the Kumano Basin. Porosity of these sedimentary rocks is very low (< 18 %). Some mud breccias contain calcite veins that cut the angular mud gravels. These features lead to finding processes until when the sedimentary rocks reached to the seafloor

  8. 'Mazatzal' Rock on Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Spirit took this navigation camera image of the 2-meter-wide (6.6-foot-wide) rock called 'Mazatzal' on sol 76, March 21, 2004. Scientists intend to aggressively analyze this target with Spirit's microscopic imager, Moessbauer spectrometer and alpha particle X-ray spectrometer before brushing and 'digging in' with the rock abrasion tool on upcoming sols.

    Mazatzal stood out to scientists because of its large size, light tone and sugary surface texture. It is the largest rock the team has seen at the rim of the crater informally named 'Bonneville.' It is lighter-toned than previous rock targets Adirondack and Humphrey. Its scalloped pattern may be a result of wind sculpting, a very slow process in which wind-transported silt and sand abrade the rock's surface, creating depressions. This leads scientists to believe that Mazatzal may have been exposed to the wind in this location for an extremely long time.

    The name 'Mazatzal' comes from a mountain range and rock formation that was deposited around 1.2 billion years ago in the Four Peaks area of Arizona.

  9. Institute for Rock Magnetism established

    NASA Astrophysics Data System (ADS)

    Banerjee, Subir K.

    There is a new focal point for cooperative research in advanced rock magnetism. The University of Minnesota in Minneapolis has established an Institute for Rock Magnetism (IRM) that will provide free access to modern equipment and encourage visiting fellows to focus on important topics in rock magnetism and related interdisciplinary research. Funding for the first three years has been secured from the National Science Foundation, the W.M. Keck Foundation, and the University of Minnesota.In the fall of 1986, the Geomagnetism and Paleomagnetism (GP) section of the AGU held a workshop at Asilomar, Calif., to pinpoint important and emerging research areas in paleomagnetism and rock magnetism, and the means by which to achieve them. In a report of this workshop published by the AGU in September 1987, two urgent needs were set forth. The first was for interdisciplinary research involving rock magnetism, and mineralogy, petrology, sedimentology, and the like. The second need was to ease the access of rock magnetists and paleomagnetists around the country to the latest equipment in modern magnetics technology, such as magneto-optics or electronoptics. Three years after the publication of the report, we announced the opening of these facilities at the GP section of the AGU Fall 1990 Meeting. A classified advertisement inviting applications for visiting fellowships was published in the January 22, 1991, issue of Eos.

  10. Depositional environment and distribution of Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica to West Africa

    SciTech Connect

    Erlich, R.N.; Sofer, Z. ); Pratt, L.M. ); Palmer, S.E. )

    1993-02-01

    Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica, western and eastern Venezuela, and Trinidad were studied using organic and inorganic geochemistry, biostratigraphy, and sedimentology in order to determine their depositional environments. Bulk mineralogy and major element geochemistry for 304 samples were combined with Rock Eval data and extract biomaker analysis to infer the types and distributions of the various Late Cretaceous productivity systems represented in the dataset. When data from this study are combined with published and proprietary data from offshore West Africa, Guyana/Suriname, and the central Caribbean, they show that these Late Cretaceous units can be correlated by their biogeochemical characteristics to establish their temporal and spatial relationships. Paleogeographic maps constructed for the early to late Cenomanian, Turonian, Coniacian to middle Santonian, and late Santonian to latest Campanian show that upwelling and excessive fluvial runoff were probably the dominant sources of nutrient supply to the coastal productivity systems. The late Santonian to Maastrichtian rocks examined in this study indicate that organic material was poorly preserved after deposition, even though biologic productivity remained constant or changed only slightly. A rapid influx of oxygenated bottom water may have occurred following the opening of a deep water connection between the North and South Atlantic oceans, and/or separation of India from Africa and the establishment of an Antarctic oceanic connection. This study suggests that the most important factors that controlled source rock quality in northern South America were productivity, preservation, degree of clastic dilution, and subsurface diagenesis.

  11. Protolith age and deformation history of high grade metamorphic rocks from the roots of a continental magmatic arc: the Central Gneiss Complex, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    MacLeod, D.; Pearson, D. M.

    2014-12-01

    The Central Gneiss Complex, located in western British Columbia, preserves mid and lower crustal igneous and metasedimentary rocks that yield insight into deformational and thermal processes at the roots of a continental magmatic arc. The complex primarily consists of gneiss interpreted as a volcanic sequence with calcareous interlayers and lesser clastic metasedimentary rocks. Cretaceous U-Pb zircon ages from granulite-facies equivalent rocks in the core of the complex hint at rapid burial following deposition. However, a Permian or older crinoid fossil found in one locality (Hill, 1985) requires the presence of some late Paleozoic or early Mesozoic material. A new U-Pb zircon age (313±5 Ma; LA-ICPMS) from ~10 km west of this fossil locality is interpreted to record volcanism. We also conducted focused structural and geochronological analysis at higher structural levels in the northeastern Central Gneiss Complex to positively identify sedimentary lithologies with which to document the early structural history of the complex prior to early Cenozoic rapid exhumation. In this area, a subhorizontal shear zone forms the boundary between mainly clastic metasedimentary rocks and the widespread metavolcanic and carbonate rocks where an important stretched pebble conglomerate has been previously documented. In the footwall of the shear zone, flattening fabrics transition structurally upward into E-W trending stretching lineations, lineation-parallel isoclinal fold axes, and boudinage that record E-W stretching and major shear strain near the contact. S-C fabrics and shear bands yield a top to the east sense of shear. Where observed, a shallowly dipping, ~15 m thick zone of cataclasite forms the lithologic contact and overprints the shear zone. Sills and dikes record ongoing but localized magmatism throughout deformation and steep NE striking brittle normal faults crosscut all features. Ongoing work will further constrain the protolith age of these rocks, the timing of

  12. Early Archaean rocks of Sarmatia

    NASA Astrophysics Data System (ADS)

    Shumlyanskyy, Leonid; Claesson, Stefan; Bibikova, Elena; Billström, Kjell

    2013-04-01

    Sarmatia, one of the three main crustal segments of the Precambrian East-European platform, comprises the Ukrainian shield and the Voronezh crystalline massif which are separated by the Late Palaeozoic Dnieper-Donets Depression. It is composed of a collage of terrains that were formed during over 2 billion years, from c. 3.8 to c. 1.7 Ga; some of these terrains can be traced across the Dnieper-Donets Depression. Geochronological and isotope-geochemical investigations have shown that significant portions of Sarmatia were formed already in the Early Archaean. In the Ukrainian shield Early Archaean rocks are known from the Dniester-Bug and Azov domains. Enderbites of the Dniester-Bug Series, which occur intercalated with mafic and ultramafic rocks, contain zircons as old as 3.75-3.78 Ga (Claesson et al., 2006; 2012) while initial Hf isotope ratios indicate derivation from mildly depleted sources. In the Azov domain the oldest rocks known belong to the Novopavlivka complex, which includes orthogneisses, enderbites, migmatites and related granites with up to 1 m thick enclaves of pyroxenite and peridotite, amphibolites, and schists. Zircons separated from two pyroxenite samples have yielded ages of 3633 ± 16 and 3640 ± 11 Ma, while zircons from enderbite gave 3609 ± 5 Ma (Bibikova and Williams, 1990). Zircons extracted from metasediments of the Soroki and Fedorivka greenstone belts, Azov domain, have yielded ages up to 3785 Ma (Bibikova et al, 2010) and ɛHf values of -1.6 to 1.8 for the oldest zircons. Finally, recent multigrain U-Pb dating of heavily deformed tonalitic gneisses of the Verkhnyotokmakska Stratum, Azov Domain, has given an age of 3560 ± 70 Ma (Scherbak et al., 2011). The oldest rocks of the Voronezh crystalline massif belong to the Oboyan Complex which is composed of mafic igneous rocks and sediments metamorphosed into amphibolites and gneisses. Most probably, this complex includes rocks of different ages and origins. Individual igneous zircons from

  13. Seismic response of rock joints and jointed rock mass

    SciTech Connect

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.

  14. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  15. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  16. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  17. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  18. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect

    Not Available

    1980-01-01

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  19. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  20. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  1. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  2. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  3. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  4. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  5. Authigenic K-feldspar in salt rock (Haselgebirge Formation, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph

    2015-04-01

    The crystallisation of authigenic quartz under low temperature, saline conditions is well known (Grimm, 1962). Also the growth of low temperature authigenic feldspar in sediments is a long known phenomenon (Kastner & Siever, 1979; Sandler et al., 2004). In this study we intend to show that halite (NaCl) is a major catalyser for authigenic mineral growth. During late Permian (c. 255-250 Ma), when the later Eastern Alps were located around north of the equator, the evaporites of the Haselgebirge Formation were deposited (Piller et al., 2004). The Haselgebirge Fm. consists in salt mines of a two-component tectonite of c. 50 % halite and 50 % sedimentary clastic and other evaporite rocks (Spötl 1998). Most of the clastic rocks are mud- to siltstones ("mudrock"). During this study, we investigated rare sandstones embedded in salt rock form four Alpine salt mines. Around 40 polished thin sections were prepared by dry grinding for thin section analysis and scanning electron microscopy. The sandstones consist mainly of quartz, K-feldspar, rock fragments, micas, accessory minerals and halite in the pore space. They are fine grained and well sorted. Mudrock clasts in sandstone were observed locally, and also coal was observed repeatedly. Asymmetric ripples were found only in the dimension of millimeters to centimeters. Euhedral halite crystals in pores indicate an early presence of halite. During early diagenesis, authigenic minerals crystallized in the following chronological order. (1) Where carbonate (mainly magnesite) occurred, it first filled the pore space. Plant remains were impregnated with carbonate. (2) Halite precipitated between the detritic sandstone grains. Carbonate grains can be completely embedded in halite. (3) K-feldspar and quartz grains usually expose a detritic core and a later grown euhedral inclusion free rim. Euhedral rims of K-feldspar often also enclose a halite core. K-feldspar replaced the pre-existing halite along former grain boundaries of

  6. Surface uplift, uplift of rocks, and exhumation of rocks

    SciTech Connect

    England, P. ); Molnar, P. )

    1990-12-01

    Uplift of the surface of mountain belts requires forces that are comparable in magnitude to those associated with plate motion, and therefore determination of rates of surface uplift could provide important information on the dynamics of mountain ranges. Rates of uplift of the surfaces of mountain ranges have not, however, been quantified sufficiently well that they provide useful constraints on those processes. Many reports of surface uplift in mountain ranges are based on mistaking exhumation of rocks or uplift of rocks for surface uplift, and provide no information whatsoever on the rates of surface uplift.

  7. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. PMID:24556272

  8. Fold-Related Fractures and Postfolding Fracturing, Rock Mass Condition Analyses and Geological Modelling in Turtle Mountain (Alberta Canada).

    NASA Astrophysics Data System (ADS)

    Humair, Florian; Epard, Jean-Luc; Jaboyedoff, Michel; Pedrazzini, Andrea; Froese, Corey

    2010-05-01

    Turtle Mountain is located in the Foothills in southwest Alberta and is formed by highly fractured Paleozoic carbonates rocks and Mesozoic clastic rocks. This area is mainly affected by two major geological structures that are the Turtle Mountain anticline and the Turtle Mountain thrust. This site has become famous after a 30 M m3 rock avalanche of massive limestone and dolostone affecting the eastern mountainside of Turtle Mountain on April 1903. This resulted in more than 70 casualties and buried part of the Frank village. A detailed analysis of predisposing factors leading to failure has been performed using a structural and rock mass condition field analysis (geological and geotechnical mapping, rock mass classification, Schmidt hammer). In addition remote sensing analyses have been provided (High Resolution Digital Elevation Model, Coltop 3D software). The local variations of discontinuity sets and rock mass conditions has been estimated in order to separate the study zone into homogenous structural domains and to correlate them with unstable areas (volumes and failure mechanisms). The aim of this study is to build a theoretical model that shows the relationship between the anticline geometry and the fracturating density. It should be able to determine the origin and the chronology of the discontinuity sets in relation to the tectonic phases (mainly the folding one). A 3D geological model based on several geological profiles performed perpendicular to the Turtle Mountain anticline is necessary to make a detailed analysis. The preliminary results indicate the role of discontinuity sets in the failure mechanisms of the mountain. Moreover if some sets only appear in one limb of the anticline, some others are present in both limbs indicating their posteriority compared with the first ones. Furthermore, a relation between the distance to the fold axis and the quality of the rock mass (Geological Strength Index) has been statistically pointed out, illustrating the

  9. Trace elements in corundum, chrysoberyl, and zircon: Application to mineral exploration and provenance study of the western Mamfe gem clastic deposits (SW Cameroon, Central Africa)

    NASA Astrophysics Data System (ADS)

    Kanouo, Nguo Sylvestre; Ekomane, Emile; Yongue, Rose Fouateu; Njonfang, Emmanuel; Zaw, Khin; Changqian, Ma; Ghogomu, Tanwi Richard; Lentz, David R.; Venkatesh, Akella Satya

    2016-01-01

    Trace element abundances in three indicator minerals (corundum, chrysoberyl, and zircon grains) from the western Mamfe gem placers, as determined by LA-ICP-MS analytical techniques, are shown to be sensitive to their crystallization conditions and source rock types. Corundum is dominantly composed of Al (standardized at 529,300 ppm), Fe (2496-12,899 ppm), and Ti (46-7070 ppm). Among element ratios, Fe/Mg (73-1107), Fe/Ti (0.5-245.0), Ti/Mg (1-175), and Ga/Mg (4-90) are generally higher whereas, Cr/Ga (<0.072) is low. The Fe (≤12,899), Ga (≤398), Mg (2-62), Cr (1.1-33.0), and V (3.0-93.0) contents (in ppm) mostly typify corundum grains formed in magmatic rocks, although some are metamorphic affiliated. A very higher Ti and significantly low Ga, Ta and Nb contents in some blue grains, suggest interesting concentrations of those high-tech metals in their source rocks. Chrysoberyl is dominantly composed of Al (standardized at 425,000 ppm) and Be (62701-64371 ppm). Iron (7605-9225 ppm), Sn (502-3394 ppm), and Ti (33-2251 ppm) contents are high, whereas Ga (333-608 ppm), Ta (<456.0 ppm), and Nb (<3.0 ppm) are significantly low. The high (Be and Sn) and significantly low Ga-Rb abundances, and Ta > Nb in the western Mamfe chrysoberyls show that they were crystallized in granitic pegmatites, with some of those source rocks being enriched in Ta and Sn. Zirconium oxide (ZrO2: standardized at 66.1 wt.%)) is the only major oxide in analysed coarse-grained zircons. Within the minor elementary suites: Hf (4576-12,565 ppm) and Y (48-2805 ppm) contents are significantly high. The trace element suites include: Th (7-1565 ppm), U (13-687 ppm), and ∑REE (50-2161 ppm), whose values are significantly low. The (Yb/Sm)N, Ce/Ce*, and Eu/Eu* anomalies range from 1.0 to 227.0, 0 to 308, and 0.08 to 1.7 respectively. They are Hf-Y-HREE enriched and depleted zircons mainly crystallized in magmatic oxidized environments. They were mainly sorted from granitoids, syenites and kimberlites.

  10. Lowstand versus highstand eustatic models for peat preservation: The coal-bearing rocks of the Breathitt Group, Eastern Kentucky

    SciTech Connect

    Chesnut, D.R. Jr.; Greb, S.F. . Kentucky Geological Survey)

    1992-01-01

    Stratigraphic and chronologic studies suggest that the alternation between major coal beds and clastic rocks of the Lower and Middle Pennsylvanian Breathitt Group (Central Appalachian Basin) resulted from glacial eustacy. The typical Coal-Clastic cycle starts at the top of a major coal bed and consists of a coarsening-upward sequence of marine or brackish-water strata which is commonly truncated and overlain by a fining-upward sequence. The fining-upward sequence is overlain by a rooted paleosol which is overlain by a coal bed. In one scenario, the peat is deposited during the stable highstand period. Because of subsidence, the highstand peat deposit is drowned and covered by marine sediments. During the subsequent lowstand the marine strata are eroded to varying degrees and bare channels are developed, causing an erosional unconformity surface on the marine strata. During transgression, the rise in base-level causes sediments to aggrade within the channels, creating fining-upward sequences above the marine strata. Paleosol development and peat deposition begin again at the next highstand. In another scenario peats are deposited in a coastal setting during lowstand. As transgression proceeds from lowstand, channels backfill and all low-lying areas including peat are covered by coarsening-upward sequences. Peats are then deposited on exposed platforms during highstand. During the subsequent drop in sea level, channels are incised and highstand peats and part of the coarsening-upward sediment package is eroded. The second scenario implies a preservation bias to cyclothems caused by eustatic rates being greater than subsidence rates. Peats are probably deposited during both lowstand and highstand, but lowstand peats are more likely to be preserved.

  11. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  12. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  13. 2012 Problem 10: Rocking Bottle

    NASA Astrophysics Data System (ADS)

    Li, Yaohua; Gao, Wenli; Wang, Sihui; Zhou, Huijun

    2015-10-01

    In this paper, the motion of a bottle partly filled with water is investigated. Two stages of motion showing different kinetic properties, named as "moving stage" and "rocking stage", can be clearly identified in the experiment. In the moving stage, the bottle moves forward with a short period vibration, while in the rocking stage, the bottle oscillates with a significantly longer period around a certain spot. Theoretical and numerical methods are employed to explain these phenomena. By simplifying the system into a rigid body model, it is found that in the moving stage, classical mechanical method gives results that fit our experiment well. And the rocking stage is thought to be the result of the asymmetric torque generated by the gravity of a liquid layer adhered to the inside wall of the bottle.

  14. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  15. Lubrication of rotary rock bits

    SciTech Connect

    MacPhail, J.; Gardner, H.

    1996-12-01

    The rotary rock bit is designed so that both the bearings and cutting structure work together as one unit. Should the bearings wear prematurely before the cutting structure is worn out, then the complete bit will rapidly deteriorate leading to a shortened bit life. The optimum bit run is when the bearings and cutting structure wear out simultaneously, having obtained a good footage and rate of penetration. This paper discusses reasons why users of rotary air blast hole bits encounter premature bit failure due to bearing failure. It also discusses a lubrication system designed for rotary rock bits to combat bearing failure.

  16. Sedimentary Rocks in Ladon Vallis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 January 2004 This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture of an outcrop of light-toned, layered, sedimentary rock exposed by erosion in Ladon Vallis. These rocks preserve clues to the martian past. However, like books in a library, one needs to go there and check them out if one wishes to read what the layers have to say. This November 2003 picture is located near 21.1oS, 29.8oW, and covers an area 3km (1.9 mi.) wide. Sunlight illuminates the scene from the left.

  17. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 February 2004 Aram Chaos is a large meteor impact crater that was nearly filled with sediment. Over time, this sediment was hardened to form sedimentary rock. Today, much of the eastern half of the crater has exposures of light-toned sedimentary rock, such as the outcrops shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The picture is located near 2.0oN, 20.3oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  18. A multidisciplinary methodology for the characterization of a large rock spread in the Northern Calcareous Alps (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Melzner, Sandra; Ottowitz, David; Pfeiler, Stefan; Moser, Michael; Motschka, Klaus; Lotter, Michael; Mandl, Gerhard Walter; Rohn, Joachim; Otter, Juergen; Wimmer-Frey, Ingeborg

    2015-04-01

    The Northern Calcareous Alps are characterized by complex lithological and tectonic settings, which are a consequence of the multiphase Alpine orogeny. Several tectonic events caused a varying structural anisotropy with a high susceptibility towards certain types of gravitational mass movement. Mt. Plassen is situated west of the Hallstatt village (Upper Austria). It is composed of Jurassic limestone, which overlies Permotriassic fine-grained clastic rocks and evaporites (mainly part of the so-called Haselgebirge). This geotechnical predisposition causes rock spreading of the more hard and rigid limestone on the weak, mainly clayey rocks. Associated to this large slope instability are secondary rockfall and sliding processes. Further common process chains include rockfall triggering slides and/or earth flows by undrained loading of the ductile clay material. Thus, such fast moving flows/slides may endanger the houses and infrastructures in the Salzberg high valley and Hallstatt village. Recent rockfall activity at Mt. Plassen provide evidences for greater, perhaps accelerating displacement rates of the rock spread. A multidisciplinary assessment strategy was chosen to analyse the ground conditions, to characterize the potential failure mechanisms in more detail and to evaluate the hazard potential of future events. Methods include field mapping (geologic, engineering geologic and geomorphologic), sampling and determination of soil parameters in active process areas, geophysical surveys (airborne geophysics and geoelectric measurements) and kinematic measurements (tape dilatometer and geodetic measurements over a period of 50 years). Results of this multidisciplinary approach form the basis for further decision making such as the installation of a monitoring system or other preventive measures.

  19. Rock Physical study on an Upper-Palaeozoic Chert and Carbonate Interval in Wells from the Eastern Norwegian Barents Sea.

    NASA Astrophysics Data System (ADS)

    Colpaert, A.; Mienert, J.; Fotland, B.

    2004-12-01

    Due to their general interest as hydrocarbon reservoir, the Upper Palaeozoic chert and carbonate interval in the Norwegian Barents Sea has been investigated from seismic data and well logs. We established a framework for geophysical well log analysis and reservoir characterization for the Finnmark Platform, an area situated in the South-Eastern part of the Norwegian Barents Sea. The interval is composed by approximately 600 m carbonate facies covered by a 60 m interval of spiculitic chert facies. The carbonate facies is characterized by lateral and vertical lithological variations including limestones, dolomites, evaporites and clastic material. The spiculitic interval exists in spiculitic chert and clay alternated with limestones. Data extends over an area with different palaeo environments from inner platform settings to continental slope and even basinal settings. Log curve data from four wells were processed through geophysical well log analysis using Powerlog and Matlab. Multi-well trend analysis was performed for a diagnostic modeling of the rock physical parameters. The examination of the variation of petrophysical properties, and how that variation transfers into the elastic domain is a key to the correlation of rock properties and the seismic attribute information. The final goal is to improve porosity and mineralogy predictions in pseudo-wells from 3D seismic data. The analyses of cross plots allow distinguishing several intervals which in certain cases correspond to individual stratigraphic units. The spiculite interval shows for example different rock types based on rock physics and these parameters can be linked with seismic. For the synthetic seismogram an s-wave velocity log has been modeled. We observed that for several lithological intervals such as the mixed limestone-dolomites and spiculites the Greenberg-Castagna model fitted the best, but for pure dolomite intervals the Krief model is more accurate. Furthermore, for the purest limestone the

  20. Rock physics properties of some lunar samples

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.

    1973-01-01

    Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.

  1. Magnetic fabric and paleomagnetism of the Middle Triassic siliciclastic rocks from the Nanpanjiang Basin, South China: Implications for sediment provenance and tectonic process

    NASA Astrophysics Data System (ADS)

    Cai, Jianxin; Tan, Xiaodong; Wu, Yi

    2014-02-01

    A combined magnetic fabric and paleomagnetic study has been carried out on the siliciclastic rocks gathered from a stratigraphic cross-section through the Nanpanjiang Basin, South China, in an attempt to extract the paleoflow information preserved in and, thus, constrain the possible origins of these clastic rocks. The sediments used for this study were formed by sediment-gravity flows along the southern margin of the South China block in the Middle Triassic time (ca. 245-228 Ma). The results show a normal distribution of both low field magnetic susceptibility values and natural remanent magnetization intensities, which along with the monotonic detrital framework mode, mainly comprising quartz and lithic particles, may suggest a single provenance involved in deposition of these clastic deposits. Anisotropy of magnetic susceptibility (AMS) analysis acquires primarily the sedimentary magnetic fabrics, which, in this study, reveal paleoflow directions ranging from NNW to ENE with an overall mean orientation of NE. Demagnetization on a part of samples isolates a characteristic remanent component averaged at D = 44.8°, I = 16.9°, κ = 9.7, α95 = 6. 5°, n = 55, corresponding to a paleolatitude N8.6° and a clockwise rotation of ca. 45° since the Middle Triassic for the studied cross-section. This mean direction passes fold tests and is consistent with the reference direction expected from the South China block at the 95% confidence level. Restoring this ˜45° declination renders an overall northward paleoflow, which, combined with other evidence, suggests a southern provenance for these sediments during deposition in the Middle Triassic time. In terms of the early Mesozoic plate framework of southeastern Asia, a tectonic scenario is proposed here, whereby the nearly N-S convergence of the Indochina and South China blocks and its related Indosinian orogeny in the Middle Triassic caused the formation of the Nanpanjiang foreland basin, which was filled by voluminous

  2. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas

    NASA Astrophysics Data System (ADS)

    Dou, Qifeng; Sun, Yuefeng; Sullivan, Charlotte

    2011-05-01

    In addition to mineral composition and pore fluid, pore type variations play an important role in affecting the complexity of velocity-porosity relationship and permeability heterogeneity of carbonate reservoirs. Without consideration of pore type diversity, most rock physics models applicable to clastic rocks for explaining the rock acoustic properties and reservoir parameters relationship may not work well for carbonate reservoirs. A frame flexibility factor ( γ) defined in a new carbonate rock physics model can quantify the effect of pore structure changes on seismic wave velocity and permeability heterogeneity in carbonate reservoirs. Our study of an Upper San Andres carbonate reservoir, Permian Basin, shows that for core samples of given porosity, the lower the frame flexibility factor ( γ), the higher the sonic wave velocity. For the studied reservoir, samples with frame flexibility factor ( γ) < 3.85 represent either visible vuggy pore space in a dolopackstone or intercrystalline pore space in dolowackstone. On the other hand, samples with frame flexibility factor ( γ) > 3.85 indicate either dominant interparticle pore space in dolopackstone or microcrack pore space in dolowackstone or dolomudstone. Using the frame flexibility factor ( γ), different porosity-impedance and porosity-permeability trends can be classified with clear geologic interpretation such as pore type and rock texture variations to improve porosity and permeability prediction accuracy. New porosity-permeability relations with γ classification help delineate permeability heterogeneity in the Upper San Andres reservoir, and could be useful for other similar carbonate reservoir studies. In addition, results from analysis of amplitude variation with offset (AVO) and impedance modeling indicate that by combining rock physics model and pre-stack seismic inversion, simultaneous estimation of porosity and frame flexibility factor ( γ) is quite feasible because of the strong influence of

  3. Rock 14068 - An unusual lunar breccia.

    NASA Technical Reports Server (NTRS)

    Helz, R. T.

    1972-01-01

    Rock 14068 is a walnut-sized clast of dark breccia from station C1 near Cone Crater. The rock's dominant component is an olivine-rich groundmass. Petrographic and chemical studies were made of polished sections of the rock. The origin of the material is discussed. It is thought possible that the melt was produced by remelting a preexisting lunar rock of the same composition. Another possibility considered is that the rock composition constitutes a mixture of several rock types of partly meteoritic origin.

  4. Plant Communities of Rough Rock.

    ERIC Educational Resources Information Center

    Jacobs, Linda

    A unit of study on plants grown in the Navajo community of Rough Rock, Arizona, is presented in sketches providing the common Navajo name for the plant, a literal English translation, the English name of the plant, and the Latin name. A brief description of each plant includes where the plant grows, how the Navajos use the plant, and the color and…

  5. Coal-rock interface detector

    NASA Technical Reports Server (NTRS)

    Rose, S. D.; Crouch, C. E.; Jones, E. W. (Inventor)

    1979-01-01

    A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid.

  6. The Alum Rock Voucher Program.

    ERIC Educational Resources Information Center

    Southwest Network, Hayward, CA.

    During the 1972-73 school year, the Alum Rock Voucher Program, an experimental program, was begun in 6 neighborhood schools in East San Jose, California. The program was designed to allow greater parent participation and choice in their children's education. This illustrated, bilingual pamphlet, written as a story told by 2 caricatures, discusses…

  7. Rock Music and Music Videos.

    PubMed

    Hendren; Strasburger

    1993-10-01

    Sex, violence, sexual violence, drugs, suicide, satanic worship, and racism are common themes in modern rock lyrics. The authors examine their effect on adolescent development and identity, concluding with a discussion of the roles of parents and health care professionals in addressing the problem. PMID:10356234

  8. Texture of Rock at 'Jibsheet'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A bulbous texture is evident in this rock target at the outcrop called 'Jibsheet' in this view from the microscopic imager on NASA's Mars Exploration Rover Spirit. Frames making up this mosaic image of a target dubbed 'Reef' were taken during the rover's 481st martian day, or sol (May 11, 2005).

  9. Relevance of Computational Rock Physics

    NASA Astrophysics Data System (ADS)

    Dvorkin, J. P.

    2014-12-01

    The advent of computational rock physics has brought to light the often ignored question: How applicable are controlled-experiment data acquired at one scale to interpreting measurements obtained at a different scale? An answer is not to use a single data point or even a few data points but rather find a trend that links two or more rock properties to each other in a selected rock type. In the physical laboratory, these trends are generated by measuring a significant number of samples. In contrast, in the computational laboratory, these trends are hidden inside a very small digital sample and can be derived by subsampling it. Often, the internal heterogeneity of measurable properties inside a small sample mimics the large-scale heterogeneity, making the tend applicable in a range of scales. Computational rock physics is uniquely tooled for finding such trends: Although it is virtually impossible to subsample a physical sample and consistently conduct the same laboratory experiments on each of the subsamples, it is straightforward to accomplish this task in the computer.

  10. Microwave dielectric spectrum of rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.

    1988-01-01

    A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).

  11. 'They of the Great Rocks'-3

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D perspective image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because it has a flat surface and is relatively free of dust - ideal conditions for grinding into the rock to expose fresh rock underneath. Clean surfaces also are better for examining a rock's top coating.Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.' Data from the panoramic camera's red, green and blue filters were combined to create this approximate true color image.

  12. Rock strength under confined shock conditions

    SciTech Connect

    Scholz, C.H.

    1982-10-01

    This report addresses the laboratory measurements of the static strength of rock needed to simulate the response of rock to an underground explosion. The approach is to identify the variables that affect the strength of rock and to discuss each effect in terms of the underlying processes that cause it. Most of the report is the result of a literature review, although some new analyses and concepts are presented. Attention is directed at three basic rock types: low porosity brittle rock such as granodiorite, high porosity brittle rock such as volcanic tuff, and a rock that may be ductile under the relevant conditions, salt. These three rock types are sufficiently different that somewhat different constitutive laws may have to be used to model their behavior.

  13. High-pressure mechanical instability in rocks

    USGS Publications Warehouse

    Byerlee, J.D.; Brace, W.F.

    1969-01-01

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  14. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  15. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  16. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  17. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  18. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  19. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  20. Fungal leaching of titanium from rock.

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.; Munoz, E. F.

    1971-01-01

    Penicillium simplicissimum is found to solubilize up to 80% of the titanium in granitic rocks but less than 2% of the titanium in basaltic rocks. These findings were made in investigating the interactions of microorganisms with rocks and minerals of the biosphere in studies aimed at developing experiments for the detection of extraterrestrial life.

  1. Feet injuries in rock climbers.

    PubMed

    Schöffl, Volker; Küpper, Thomas

    2013-01-01

    While injuries of the upper extremity are widely discussed in rock climbers, reports about the lower extremity are rare. Nevertheless almost 50 percent of acute injuries involve the leg and feet. Acute injuries are either caused by ground falls or rock hit trauma during a fall. Most frequently strains, contusions and fractures of the calcaneus and talus. More rare injuries, as e.g., osteochondral lesions of the talus demand a highly specialized care and case presentations with combined iliac crest graft and matrix associated autologous chondrocyte transplantation are given in this review. The chronic use of tight climbing shoes leads to overstrain injuries also. As the tight fit of the shoes changes the biomechanics of the foot an increased stress load is applied to the fore-foot. Thus chronic conditions as subungual hematoma, callosity and pain resolve. Also a high incidence of hallux valgus and hallux rigidus is described. PMID:24147257

  2. Layered Rocks in 'Columbia Hills'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This black-and-white image shows the first layered rocks scientists have seen close up in Gusev Crater, where NASA's Mars Exploration Rover Spirit landed Jan. 4, 2004. While Spirit's twin rover, Opportunity, reached the stadium-size Endurance Crater on the other side of Mars and began exploring its many layered outcrops in early May, Spirit traveled more than 3.5 kilometers (2.2 miles) to get to this layered bedrock in the 'Columbia Hills.' Scientists are planning to conduct a study of these rocks to determine if they are volcanic or sedimentary in origin, and if they have been chemically altered. Spirit's panoramic camera took this image on sol 217 (Aug. 13, 2004).

  3. Poroelasticity of rock. Progress report

    SciTech Connect

    Wang, H.F.

    1992-03-01

    The research program is an experimental study of static and dynamic poroelastic behavior of rocks. Measurements of Skempton`s coefficient and undrained Poisson`s ratio together with drained bulk modulus and shear modulus will provide a complete set of the four poroelastic moduli. Stress coupling to fluid flow in fractured rock can occur also through changes of fracture permeability due to fracture compressibility. Numerical models that include this effect will be compared with standard double porosity models of fluid extraction from oil reservoirs. Wave velocity and attenuation measurements will be made from seismic to ultrasonic frequencies to establish a phenomenological model of the effects of permeability, porosity and saturation for seismic exploration of oil and gas and for seismic characterization of an aquifer for environmental restoration and waste remediation.

  4. Virtual Rover Drives Toward Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows a screenshot from the software used by engineers to test and drive the Mars Exploration Rover Spirit. The software simulates the rover's movements across the martian terrain, helping to plot a safe course. Here, engineers simulated Spirit's first post-egress drive on Mars Sunday. The 3-meter (10-foot) drive totaled approximately 30 minutes, including time to stop and take images. The rover drove toward its first rock target, a mountain-shaped rock called Adirondack. The blue line denotes the path of the rover's 'belly button,' as engineers like to call it, as the rover drove toward Adirondack. The virtual 3-D world around the rover was built from images taken by Spirit's stereo navigation cameras. Regions for which the rover has not yet acquired 3-D data are represented in beige.

  5. Promoting research in rock deformation

    NASA Astrophysics Data System (ADS)

    Kirby, Steve

    In response to informal discussions at the 1988 AGU Spring Meeting in Baltimore, Md., a dinner colloquium was held December 5, 1988, in San Francisco. Our purpose was to explore ways of promoting basic research in rock deformation, for which no professional organization exists that spans the full range of research interests. In spite of an informal distribution of announcements of the meeting, 54 people attended.Rock deformation is the materials science of the crystalline and amorphous materials that make up the solid Earth. As such, it includes not only the physical processes responsible for brittle and ductile deformation but also the important chemical processes that influence time-dependent inelastic deformation. Consequently, there is a continuing need to engage interest and collaboration from materials scientists, mineral physicists, metallurgists, surface chemists, and geochemists in the study of the inelastic mechanical behavior of these complex materials.

  6. Origin of lunar feldspathic rocks

    NASA Technical Reports Server (NTRS)

    Walker, D.; Grove, T. L.; Longhi, J.; Stolper, E. M.; Hays, J. F.

    1973-01-01

    Melting experiments and petrographic studies of lunar feldspathic rocks reveal possible genetic relationships among several compositionally and mineralogically distinct groups of lunar rocks and soil fragments. Dry, low PO2 partial melting of crustal anorthositic norites of the anorthositic-noritic-troctolitic (ANT) suite produces liquids of the KREEP-Fra Mauro basalt type; dry, low PO2 partial melting of pink spinel troctolite (PST) produces liquids of the 'very high alumina basalt' or microtroctolite type. Both ANT and PST are probable components of the primitive terra crust. If crystal fractionation in a cooling basaltic liquid could have produced such a crust, it would also produce a mafic interior capable of yielding mare basalts by later remelting at depth.

  7. Sojourner Sits Near Rock Garden

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Mars Pathfinder Rover Sojourner is images by the Imager for Mars Pathfinder as it nears the rock 'Wedge.' Part of the Rock Garden is visible in the upper right of the image.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  8. Feet injuries in rock climbers

    PubMed Central

    Schöffl, Volker; Küpper, Thomas

    2013-01-01

    While injuries of the upper extremity are widely discussed in rock climbers, reports about the lower extremity are rare. Nevertheless almost 50 percent of acute injuries involve the leg and feet. Acute injuries are either caused by ground falls or rock hit trauma during a fall. Most frequently strains, contusions and fractures of the calcaneus and talus. More rare injuries, as e.g., osteochondral lesions of the talus demand a highly specialized care and case presentations with combined iliac crest graft and matrix associated autologous chondrocyte transplantation are given in this review. The chronic use of tight climbing shoes leads to overstrain injuries also. As the tight fit of the shoes changes the biomechanics of the foot an increased stress load is applied to the fore-foot. Thus chronic conditions as subungual hematoma, callosity and pain resolve. Also a high incidence of hallux valgus and hallux rigidus is described. PMID:24147257

  9. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  10. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of light-toned, layered, sedimentary rock within Aram Chaos, an ancient, partly-filled impact crater located near 3.2oN, 19.9oW. This 1.5 meters (5 feet) per pixel picture is illuminated by sunlight from the left and covers an area about 3 km (1.9 mi) across.

  11. Relative Permeability of Fractured Rock

    SciTech Connect

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  12. Thermal conductivity of carbonate rocks

    USGS Publications Warehouse

    Thomas, J., Jr.; Frost, R.R.; Harvey, R.D.

    1973-01-01

    The thermal conductivities of several well-defined carbonate rocks were determined near 40??C. Values range from 1.2 W m-1 C-1 for a highly porous chalk to 5.1 W m-1 C-1 for a dolomite. The thermal conductivity of magnesite (5.0) is at the high end of the range, and that for Iceland Spar Calcite (3.2) is near the middle. The values for limestones decrease linearly with increasing porosity. Dolomites of comparable porosity have greater thermal conductivities than limestones. Water-sorbed samples have expected greater thermal conductivities than air-saturated (dry) samples of the same rock. An anomalously large increase in the thermal conductivity of a water-sorbed clayey dolomite over that of the same sample when dry is attributed to the clay fraction, which swells during water inhibition, causing more solid-to-solid contacts within the dolomite framework. Measurements were made with a Colora Thermoconductometer. Chemical and mineralogical analyses were made and tabulated. Porosity of the rocks was determined by mercury porosimetry and also from density measurements. The Iceland Spar Calcite and magnesite were included for reference. ?? 1973.

  13. Rock strength reductions during incipient weathering

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Blum, A.

    2012-12-01

    Patrick Kelly, Suzanne Anderson, Alex Blum In rock below the surface, temperature swings are damped, water flow is limited, and biota are few. Yet rock weathers, presumably driven by these environmental parameters. We use rock strength as an indicator of rock weathering in Gordon Gulch in the Boulder Creek Critical Zone Observatory, a watershed at 2500 m underlain by Proterozoic gneiss intruded by the Boulder Creek granodiorite. Fresh rock is found at depths of 8-30 m in this area, and the thickness of the weathered rock zone imaged with shallow seismic refraction is greater on N-facing slopes than S-facing slopes (Befus et al., 2011, Vadose Zone J.). We use the Brazilian splitting test to determine tensile strength of cores collected with a portable drilling rig. Spatial variations in rock strength that we measure in the top 2 m of the weathered rock mantle can be connected to two specific environmental variables: slope aspect and the presence of a soil mantle. We find weaker rock on N-facing slopes and under soil. There is no clear correlation between rock strength and the degree of chemical alteration in these minimally weathered rocks. Denudation rates of 20-30 microns/yr imply residence times of 105-106 years within the weathered rock layers of the critical zone. Given these timescales, rock weathering is more likely to have occurred under glacial climate conditions, when periglacial processes prevailed in this non-glaciated watershed. Incipient weathering of rock appears to be controlled by water and frost cracking in Gordon Gulch. Water is more effectively delivered to the subsurface on N-facing slopes, and is more likely held against rock surfaces under soil than on outcrops. These moisture conditions, and the lower surface temperatures that prevail on N-facing slopes also favor frost cracking as an important weathering process.

  14. Dispersivity as an oil reservoir rock characteristic

    SciTech Connect

    Menzie, D.E.; Dutta, S.

    1989-12-01

    The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

  15. The Call of the Dark Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color rendering from NASA's Mars Exploration Rover Spirit shows a set of darker rocks dubbed 'Toltecs' lying southeast of the rover's current position. These rocks are believed to be basaltic, or volcanic, in composition, because their spectral properties match those of other basaltic rocks studied in Gusev Crater. Scientists hope to use these presumably unaltered rocks as a geologic standard for comparison to altered rocks in the area, such as 'Clovis.' This image was taken with the panoramic camera's 600-, 530-, and 480-nanometer filters on sol 220 (Aug. 15, 2004).

  16. The Call of the Dark Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the Mars Exploration Rover Spirit shows a group of darker rocks dubbed 'Toltecs,' lying to the southeast of the rover's current position. The rocks are believed to be basaltic, or volcanic, in composition because their color and spectral properties resemble those of basaltic rocks studied so far at Gusev Crater. Scientists hope to use these presumably unaltered rocks as a geologic standard for comparison to altered rocks in the area, such as 'Clovis.' This image was taken by the 750-, 530- and 430-nanometer filters of rover's panoramic camera on sol 220 (August 15, 2004).

  17. Petrology of unshocked crystalline rocks and shock effects in lunar rocks and minerals

    USGS Publications Warehouse

    Chao, E.C.T.; James, O.B.; Minkin, J.A.; Boreman, J.A.; Jackson, E.D.; Raleigh, C.B.

    1970-01-01

    On the basis of rock modes, textures, and mineralogy, unshocked crystalline rocks are classified into a dominant ilmenite-rich suite (subdivided into intersertal, ophitic, and hornfels types) and a subordinate feldspar-rich suite (subdivided into poikilitic and granular types). Weakly to moderately shocked rocks show high strain-rate deformation and solid-state transformation of minerals to glasses; intensely shocked rocks are converted to rock glasses. Data on an unknown calcium-bearing iron metasilicate are presented.

  18. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR AFTER REMODELING INTO OFFICE SPACE. DATED FEBRUARY 13, 1943. - Rock Island Arsenal, Building No. 67, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  19. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. LOOKING NORTH AFTER ADDITION OF CONICAL ROOF. ORIGINALLY PUBLISHED 1887. - Rock Island Arsenal, Building No. 53, North Avenue North of Midpoint, Rock Island, Rock Island County, IL

  20. 3. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION IN UNALTERED CONDITION. DATED MARCH 19, 1945. - Rock Island Arsenal, Building No. 61, Rodman Avenue & First Street, Rock Island, Rock Island County, IL

  1. 8. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATON IN UNALTERED CONDITION. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 68, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL

  2. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION IN UNALTERED CONDITION. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 109, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  3. 10. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR, LOOKING WEST. DATED OCTOBER 2, 1945. - Rock Island Arsenal, Building No. 138, Second Avenue between South Avenue & Ramsey Street, Rock Island, Rock Island County, IL

  4. 10. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND WEST ELEVATIONS IN UNALTERED CONDITION. DATED APRIL 18, 1941. - Rock Island Arsenal, Building No. 56, North Avenue & East Avenue, Rock Island, Rock Island County, IL

  5. 11. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ORIGINAL OPEN INTERIOR PLAN. DATED APRIL 7, 1942. - Rock Island Arsenal, Building No. 56, North Avenue & East Avenue, Rock Island, Rock Island County, IL

  6. 7. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS. DATED MARCH 19, 1945. - Rock Island Arsenal, Building No. 62, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL

  7. 3. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION IN UNALTERED CONDITION. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 103, Rodman Avenue & First Street, Rock Island, Rock Island County, IL

  8. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST ELEVATION IN UNALTERED CONDITION. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 280, Sylvan Drive, Rock Island, Rock Island County, IL

  9. 9. Photograph of photograph in possession of Rock Island Arsenal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of photograph in possession of Rock Island Arsenal Historical Office. WEST AND NORTH ELEVATIONS. ORIGINALLY PUBLISHED 1887. - Rock Island Arsenal, Building No. 90, East Avenue between North Avenue & King Drive, Rock Island, Rock Island County, IL

  10. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND WEST ELEVATIONS. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL

  11. Rock Magnetism: Successes and Mysteries

    NASA Astrophysics Data System (ADS)

    Dunlop, D. J.

    2011-12-01

    Louis Néel once proposed making ships "invisible" (i.e., magnetically undetectable) by giving them a permanent or remanent magnetism that would cancel the signal induced by the Earth's magnetic field. Like much of rock magnetism, this borders on the magical. Rocks possess a magnetic memory that verges on the phenomenal. An adequate magnetic lifetime for your credit card is until its expiry date and one must avoid exposure to magnetic fields and heat. But a rock's magnetic memory is forever, and the recipe for that durability includes, for igneous and metamorphic rocks, exposure to ancient fields while hot - near the Curie temperature in fact. The thermal remanent magnetism (TRM) thus produced is largely immune to later field changes at lower temperatures although luckily a fraction - a partial TRM overprint - does record later heating events, e.g., burial during major orogenies. When we lift the veil and look closely, on a microscale or nanoscale, it is perplexing to understand why paleomagnetism works so well when rocks seemingly contain so few of Néel's ideal recorders: single-domain grains with tightly coupled atomic spins. In larger grains with multiple domains, the walls between neighbouring domains move readily, like dislocations in crystals, enlarging some domains at the expense of others. This mutability makes any magnetic memory of multi-domain grains suspect. But around the threshold between single-domain and multi-domain structures - a specific grain size that varies widely from one magnetic mineral to another - there are recent predictions and observations of novel structures, including linked magnetic moments of nearby grains and interfacial moments of exsolved phases, that could go some way towards explaining why single-domain-like behaviour is so widespread. Many magnetic properties show an almost continuous variation with grain size, quite unlike the expected discontinuity at the single-domain threshold. Among these is initial susceptibility which

  12. Carbonate rock depositional models: A microfacies approach

    SciTech Connect

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  13. Siberian Origins of Neoproterozoic to Upper Triassic Rocks of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Clough, J. G.; Blodgett, R. B.

    2007-12-01

    found in the Canadian Arctic Islands Richly diverse Upper Triassic fauna (halobiid and monotid bivalves, brachiopods) are present in the both the Shublik Formation and Otuk Group. These show closer affinities with NE Siberia rather than to western or northern North America, suggesting close spatial relationships between Siberia and Arctic Alaska at least until Late Triassic time. Sedimentary provenance studies in eastern Brooks Range Precambrian rocks indicate age ranges that are dissimilar to Proterozoic detrital-zircon ages from clastic rocks of the northern Canadian Cordillera and Canadian Arctic Islands where a detrital source within the Grenville orogen is indicated. Paleocurrent directions for the Neoproterozoic Katakturuk Dolomite in the northeast Brooks Range and similar-age units in the adjacent Victoria Island and Amundsen Basin are in approximately 100 degree opposition for a counterclockwise rotational- restored Arctic Alaska. Upper Devonian clastics of northern Alaska are in 180 degree opposition to coeval units in the Canadian Arctic Islands when the Arctic Alaska plate is restored in the rotational model. Therefore, based on paleobiogeography, sediment provenance, stratigraphy and sedimentology, tectonic models for the opening of the Canada Basin must take into account that Triassic and older rocks in Arctic Alaska have Siberian origins or were deposited proximal to Siberia.

  14. Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma

    PubMed Central

    Zhang, Junbo; He, Xue; Ma, Yueying; Liu, Yanli; Shi, Huaiyin; Guo, Weiwei; Liu, Liangfa

    2015-01-01

    Rho-associated coiled-coil containing protein kinase (ROCK) over-expression has been implicated in the progression of many tumor types. The aim of this study was to explore the roles of ROCK1 and ROCK2 in human laryngeal squamous cell carcinoma (LSCC). ROCK1 and ROCK2 expression levels were examined in 50 cases of human LSCC samples by immunohistochemistry. Effects of ROCK1 and ROCK2 on LSCC cell proliferation and motility were investigated in the presence of the ROCK inhibitor Y-27632. The results showed that ROCK1 expression was positively correlated with tumor size and lymph node metastasis (P < 0.05); ROCK2 positively correlated with tumor size (P < 0.05). Inhibition of ROCK1 and ROCK2 by Y-27632 significantly inhibits proliferation, migration, and invasion of LSCC cells. Our data indicate that expression of ROCK1 and ROCK2 are closely associated with tumor growth and lymph node metastasis of LSCC. Thus, these two ROCK isoforms may be useful as molecular makers for LSCC diagnosis and may be useful therapeutic targets as well. PMID:25755711

  15. Palaeomagnetism and rock magnetism of the Permian redbeds from the Velebit Mt. (Karst Dinarides, Croatia): dating of the early Alpine tectonics in the Western Dinarides by a secondary magnetization

    NASA Astrophysics Data System (ADS)

    Werner, Tomasz; Lewandowski, Marek; Vlahović, Igor; Velić, Ivo; Sidorczuk, Magdalena

    2015-05-01

    The studied area of the Velebit Mt., a part of the Adria microplate, belonged to a NE margin of Gondwana during the Carboniferous and Permian. While the Carboniferous to the Early Permian was characterised by deposition of clastic rocks, younger sedimentation was dominated by a thick sequence of carbonate rocks. The Lower Permian deposits of the core part of the Velebit Mt. at Košna and Crne Grede localities were investigated using palaeomagnetic and rock magnetic measurements. The main remanence carriers were recognized as haematite with an increasing contribution of SP/SD magnetite in younger subsections. The AMS fabric with low anisotropy ratio (1-3%) is strongly oblate at Košna and weakly prolate at Crne Grede, reflecting differences in the contribution of magnetic phases. A significant remagnetization of the Permian rocks, as proved by results of a conglomerate test, probably caused by a combination of elevated temperatures and fluid migration, may be assigned to burial-related processes that affected the rocks before the final uplift of the Dinarides. Characteristic remanent magnetizations recorded in haematite are apparently similar to the Permian direction for Africa (shallow inclination with NNW declination), as expected for Velebit Mt. coordinates. Paradoxically, this orientation is observed in situ within the almost vertically dipping beds. We explain this relationship assuming a syn-folding Cretaceous remagnetization of the rocks at their subhorizontal position (ca. 30°S), in which a mean vector of the secondary remanence overlaps with the Cretaceous direction, expected for Africa at the Velebit Mt. geographical coordinates. Consequently, our results indirectly point to the Cretaceous time of incipient stages of the Dinaric tectonism, and suggest African geotectonic affinity of the Velebit rocks. No important vertical-axis rotation is implied by our results, in contrast to previously published data. The puzzling complete remagnetization carried by

  16. Lander and Mini Matterhorn rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the two forward cameras aboard the Sojourner rover took this image of the Sagan Memorial Station on Sol 26. The angular resolution of the camera is about three milliradians (.018 degrees) per pixel, which is why the image appears grainy. The field of view of each rover camera is about 127 degrees horizontally and 90 degrees vertically.

    Features seen on the lander include (from left to right): the Atmospheric Structure Instrument/Meteorology Package (ASI/MET) mast with windsocks; the low-gain antenna mast, the Imager for Mars Pathfinder (IMP) on its mast at center; the disc-shaped high-gain antenna at right, and areas of deflated airbags. The dark circle on the lander body is a filtered vent that allowed air to escape during launch, and allowed the lander to repressurize upon landing. The high-gain antenna is pointed at Earth. The large rock Yogi, which Sojourner has approached and studied, as at the far right of the image. Mini Matterhorn is the large rock situated in front of the lander at left.

    The horizontal line at the center of the image is due to differences in light-metering for different portions of the image. The shadow of Sojourner and its antenna are visible at the lower section of the image. The antenna's shadow falls across a light-colored rock.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. Mars Rocks Continue to Fascinate

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Proving once again that Mars is a complex and fascinating place, NASA's Opportunity rover has entered new terrain and is providing scientists with more discoveries and puzzles to solve. 'One of the things we've been wondering,' said principal investigator Steve Squyres, 'is whether the rounded concretions we call 'blueberries' are the same everywhere. It turns out they're not. The berries are more numerous here, and some seem to be smaller than any we've ever seen.'

    This microscopic image of a drill hole cut into a martian rock nicknamed 'Ice Cream' by the rover's rock abrasion tool shows cross sections of round concretions 1 to 2 millimeters (0.04 to 0.08 inches) wide. Science team members are debating whether the grayish-looking smudges that are not as round are concretions or some other feature.

    Opportunity is now almost 4 kilometers (2.5 miles) south of 'Endurance Crater,' where the rover spent from May through December of 2004 reading the story of a watery past recorded in the martian rocks. After exiting 'Endurance' on martian day, or sol, 316 (Dec. 13, 2004), Opportunity turned south and continued the trek across land where no human has trod, demonstrating that endurance is more than just a name.

    Opportunity took this mosaic of images with its microscopic imager on sol 546 (Aug. 6, 2005). The area shown is approximately 6 centimeters (2.4 inches) wide. The shaded portions on the left side of each quadrangle in the mosaic are silhouettes of the rover's robotic arm.

  18. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  19. Infiltration flux distributions in unsaturated rock deposits andtheir potential implications for fractured rock formations

    SciTech Connect

    Tokunaga, Tetsu K.; Olson, Keith R.; Wan, Jiamin

    2004-11-01

    Although water infiltration through unconsolidated rocks and fractured rock formations control flow and transport to groundwater, spatial distributions of flow paths are poorly understood. Infiltration experiments conducted on packs of rocks showed that a well-constrained distribution of fluxes develops despite differences in rock type (angular diabase and sandstone, and subangular serpentinite), rock size (30 to 200mm), and packing (up to 42 rock layers). Fluxes stabilize into a geometric (exponential) distribution that keeps about half of the system depleted of flow, retains a small fraction of high flow regions, and has a characteristic scale determined by the rock size. Modification of a statistical mechanical model shows that gravity-directed, random flowpaths evolve to the observed flux distribution, and that it represents the most probable distribution. Key similarities between infiltration in rock deposits and fractured rock formations indicate that the geometric flow distribution may also apply in the latter systems.

  20. Microscopic tubes in igneous rocks

    NASA Technical Reports Server (NTRS)

    Richter, D.; Simmons, G.

    1977-01-01

    Microscopic tubes have been observed in several igneous rocks and may be quite common. They occur in single crystals and have either elliptical or circular cross-sections 1 to 5 microns in diameter and are ten to hundreds of microns long. Microtubes may be hollow or partially or completely filled with another phase, but are distinct from acicular crystals of accessory minerals such as rutile. Microtubes can form by at least three processes: (1) the partial annealing of microcracks, (2) the natural etching of dislocations, or (3) the primary inclusion of fluid material during crystal growth.

  1. Big Bang Day : Physics Rocks

    ScienceCinema

    None

    2011-04-25

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  2. Big Bang Day : Physics Rocks

    SciTech Connect

    2009-10-07

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  3. Numerical study of rock blasting

    NASA Astrophysics Data System (ADS)

    Stefanov, Yu. P.; Bakeev, R. A.; Yudin, A. S.; Kuznetsova, N. S.

    2015-10-01

    The paper presents numerical simulation results on fracture of a concrete block due to dynamic explosive loads applied to the walls of a blast hole. Considered in the study is the influence of the pulse shape and rock properties on the pattern of irreversible deformation and cracking. It is found that a fractured zone bounded by a plastically deformed contour always arises around the explosion site. Comparison of elastoplastic deformation and fracture induced in the concrete block by explosion pulses of different durations and amplitudes shows that shorter pulses with higher amplitudes and steeper rise times provide a higher blasting efficiency.

  4. Ambient resonance of rock arches

    NASA Astrophysics Data System (ADS)

    Starr, Alison Margaret

    Resonant frequencies of structural elements are related to fundamental material properties of mass and stiffness, and monitoring over time can thus serve as an indirect indictor of internal mechanical change. Until now, however, this methodology has not been applied to natural rock structures such as arches and towers. We evaluated the resonance characteristics of four rock arches in southeastern Utah, combining in-situ ambient vibration measurements with numerical modal analysis. At each location, we measured the spectral and polarization attributes of ambient vibrations using up to two broadband seismometers. Ambient vibration spectra measured on the arches showed clear peaks at distinct frequencies (typically between 1-10 Hz), which we interpret as resonant frequencies, as opposed to the relatively flat spectra recorded on nearby bedrock. Polarization analysis helped us identify the orientations of vibration and explore resonant mode shapes. We then verified the measured resonant frequencies through 3D finite-element numerical modal analysis, and in most cases we were able to match the fundamental along with several higher-order modes. Repeat occupation and short-term continuous ambient vibration monitoring were aimed at assessing daily and seasonal changes in resonant frequencies, which in turn may provide evidence of internal mechanical change; Mesa Arch in Canyonlands National Park served as the main focus for our repeat measurements. Results revealed that minor, reversible changes in resonant frequencies can be created by thermal effects, i.e., changes in bulk material stiffness as the arch expands and contracts on daily and seasonal time scales. No irreversible change in the resonant frequency of Mesa Arch was detected over the period of this study. Our research provides the first step towards monitoring the long-term structural health of natural rock arches as they change through time or in the wake of a damaging event. We have shown that the resonance

  5. Microcraters on Apollo 15 and 16 rocks

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.; Mckay, D. S.; Fruland, R. M.; Moore, H. J.

    1973-01-01

    Microcrater frequency distributions, determined for 11 Apollo 16 rocks and three Apollo 15 rocks, fall into four categories. Category 1 rocks (68415, 68416, 62235) are angular, cratered on one side only, and have moderate crater densities. Category 2 rocks (60016, 66075, 61175) are subrounded, cratered on all sides, and have distributions suggestive of the steady state. Category 3 rocks (61015, 62295) are subangular and cratered on only one side, but the crater frequency distributions have some of the characteristics of category 2 rocks. Category 4 rocks (15015, 15017, 15076, 60335) are angular, cratered on only one side, and have moderated to very low crater densities. The crater frequency distributions of categories 1 and 4 have properties indicating the possibility of estimating the time they were exposed to micrometeor bombardment. Category 1 rocks appear to have been exposed for 2 to 3 m.y. These rocks, particularly 68415, 68416, and 69935, may be ejecta from South Ray Crater, indicating an age of 2 to 3 m.y. for South Ray Crater. Category 4 rocks have been exposed for much shorter periods.

  6. Infiltration Flow Path Distributions in Unsaturated Rocks

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Olson, K. R.; Wan, J.

    2004-12-01

    Spatial distributions of infiltration flow paths through rock formations are complex networks that determine flow velocities, control rates of natural geochemical reactions in the subsurface, as well as rates of contaminant transport to underlying groundwater. Despite these important consequences, distributions of infiltration paths and locally fast seepage rates through rocks are not well understood. Laboratory-based studies on fractured rocks cannot easily be conducted on systems large enough to include sufficient fracture network complexity, so that inferences of field-scale flux distributions cannot be reliably made. Field-based studies to date have permitted quantification of only a small fraction of the flow distribution, typically while imposing extremely high fluxes, and therefore have not allowed comprehensive delineation of flow distributions expected under natural recharge. Based on hydraulic scaling considerations, we hypothesize that unsaturated flow path distributions in rock deposits will be similar to those occurring in fractured rock formations under low overall infiltration rates. Talus rock deposits and mine waste rock piles control flow and transport into their respective underlying groundwaters. All of these reasons motivated infiltration experiments in rock packs. Experiments have been conducted on 4 different rock types and system scales ranging from 1 to 46 rock layers. Our experiments showed that infiltration through rocks conforms to no previously reported behavior in soils, and that flow paths do not progressively converge into fewer and fewer flow paths. Instead, a fundamentally different hydraulic structure develops, having an exponential (geometric) flux distribution, with the characteristic scale determined by the characteristic rock size. Although the phenomena are very different, the evolution of flow path distributions and local seepage rate distributions is predictable based on a statistical mechanical model for energy

  7. Rock Goes to School on Screen: A Model for Teaching Non-"Learned" Musics Derived from the Films "School of Rock" (2003) and "Rock School" (2005)

    ERIC Educational Resources Information Center

    Webb, Michael

    2007-01-01

    What can be learned from two films with "rock" and "school" in their titles, about rock in school and about music and schooling more broadly? "School of Rock" (2003), a "family comedy," and "Rock School" (2005), a documentary, provoke a range of questions, ideological and otherwise, surrounding the inclusion of rock in formal instructional…

  8. Electrical properties of dry rocks

    NASA Technical Reports Server (NTRS)

    Morrison, H.

    1973-01-01

    The mechanism by which atmospheric moisture affects the conductivity and dielectric constant of rock specimens was studied in time and frequency domains. It is suggested that adsorbed water molecules alter the surface conductivity in a manner similar to that observed in semiconductors and insulators. Powdered basalts show a low-frequency dispersion produced by the atmospheric moisture remaining in the pore system of the sample in a high vacuum; this effect is attributed to isolated adsorption centers. Simulated lunar permafrost at 100 K and a vacuum of 10 to the -8th power torr together with data on lunar samples contaminated with atmospheric moisture and the dielectric properties of ice at various temperatures indicate that, if permafrost exists in the moon it should present a relaxation peak at approximately 300 Hz; for temperatures up to 263 K it may go up to 20 KHz. It is concluded that in order to have electrical steady state conditions in rock samples it is necessary to have volume charge accumulations at interfaces within the sample and at the electrode sample interface. A method for measuring heterogeneous dielectrics with non-negligible ohmic and dielectric conductivities is proposed and experimentally verified.

  9. Multisensor classification of sedimentary rocks

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    1988-01-01

    A comparison is made between linear discriminant analysis and supervised classification results based on signatures from the Landsat TM, the Thermal Infrared Multispectral Scanner (TIMS), and airborne SAR, alone and combined into extended spectral signatures for seven sedimentary rock units exposed on the margin of the Wind River Basin, Wyoming. Results from a linear discriminant analysis showed that training-area classification accuracies based on the multisensor data were improved an average of 15 percent over TM alone, 24 percent over TIMS alone, and 46 percent over SAR alone, with similar improvement resulting when supervised multisensor classification maps were compared to supervised, individual sensor classification maps. When training area signatures were used to map spectrally similar materials in an adjacent area, the average classification accuracy improved 19 percent using the multisensor data over TM alone, 2 percent over TIMS alone, and 11 percent over SAR alone. It is concluded that certain sedimentary lithologies may be accurately mapped using a single sensor, but classification of a variety of rock types can be improved using multisensor data sets that are sensitive to different characteristics such as mineralogy and surface roughness.

  10. Recent progress in rock magnetism

    NASA Astrophysics Data System (ADS)

    Courtillot, Vincent

    Availability of affordable high-performance computers has spurred research into the mathematical modelling of magnetic domain structures, stability of magnetic remanences and their experimental verification. Further, a recently substantially increased amount of observations of magnetic minerals other than magnetite in natural rocks has intitiated studies of their fundamental magnetic properties. To provide a forum for discussion of the latest developments covering these important subjects, two symposia were organized at the XXI General Assembly of the International Union of Geodesy and Geophysics (Boulder, Colorado, USA, July 2-14, 1995): New Approaches in Rock Magnetism (convened by S.L. Halgedahl and F. Heider) and Properties of minor magnetic minerals (convened by MJ. Dekkers and E. McClelland). In total 62 contributions were presented. This special section of Geophysical Research Letters comprises 19 papers, meeting, hopefully some of the most significant. The four convenors assisted me as associate-editors in preparing this special issue, and I would like to thank them. The time taken by many reviewers is also appreciated. I hope the reader will get a feeling of the excitement that was evident during the Boulder meeting and will find this a useful collection of articles for later use.

  11. DOE hot dry rock program

    SciTech Connect

    Nunz, G.J.

    1980-01-01

    Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

  12. Petroleum geology of carbonate rocks

    SciTech Connect

    Billo, S.M.

    1995-09-01

    Where oil and gas supervene in reservoirs consisting of both limestone and dolomite, the dolomite and dolomitic rocks are usually the more prolific producers of petroleum. Even the dismissal by some oil explorers of primary or evaporitic dolostones from the category of reservoir rocks have recently been challenged; for example, by the discovery of more than 500 million barrels of oil in a primary dolomite and associated dolomitized portion of the Trenton (Ordovician) limestone of the Lima-Indiana field across the Cincinnati and Findlay arches. Permeability decreased updip where oil in the magnesian phase of the limestone disposed a stratigraphic trap. Oil geologists found that both porosity and permeability developed during dolomitization. Temperature and pressure, time, pH, Eh, and salinity are all important controls. Evaporation of sea water past the point of calcium sulphate precipitation suppresses the chemically inhibiting influence of calcium sulphate in solution on dolomite precipitation and increases the Mg/Ca ration from 1:1 at low salinities to over 5:1 or 10:1 in a hypersaline environment.

  13. Multiversos: Rock'n'Astronomy

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.; Arias, A.; García, N.

    2011-11-01

    Imagine that you can use your fingers only for typing target coordinates at thetelescope, reduce images and spectra with IRAF, or write papers for Astronomy &Astrophysics, but you would never be able to play an electric guitar.Imagine that you love music, work in front of the computer always withheadphones, and dream of playing with your favourite rock band in a tumultuousconcert.Imagine that you are an astronomer who, after a "cosmic fluke", share stagewith the band which themes you have always hummed since you were a teenager.Imagine that you were born for rock, played a main role in the best Spanishalbum of the 90s (Omega, with Enrique Morente), and your songs arerutinary played by Radio 3, but you would never be able to detect an exoplanetor a galaxy at a high redshift.Imagine that you love Astronomy, try to see the Moon craters and Andromeda withyour small telescope through the light pollution of your city, and explain yourdaughter that Pluto is not a planet any longer. Imagine that you are a musician who, after a "cosmic fluke", give a talk justafter a Nobel laureate that discovered the cosmic microwave backgroundradiation.Such "cosmic flukes" sometimes happen. If you were not at the dinner of the SEA meeting and do not believe us, visithttp://www.myspace.com/antonioariasmultiverso or open the proceedings DVD andlisten "El ordenador simula el nacimiento de las estrella...".

  14. 'Pot of Gold' and 'Rotten Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. Scientists are intrigued by this unusual-looking, nodule-covered rock and plan to investigate its detailed chemistry in coming sols. This picture was taken on sol 159 (June 14, 2004).

    To the right is a set of rocks referred to as 'Rotten Rocks' for their resemblance to rotting loaves of bread. The insides of these rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  15. 'They of the Great Rocks'-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and is interpreted by some to mean 'They of the great rocks.'

  16. Geochemistry and diagenesis of Miocene lacustrine siliceous sedimentary and pyroclastic rocks, Mytilinii basin, Samos Island, Greece

    USGS Publications Warehouse

    Stamatakis, M.G.; Hein, J.R.; Magganas, A.C.

    1989-01-01

    A Late Miocene non-marine stratigraphic sequence composed of limestone, opal-CT-bearing limestone, porcelanite, marlstone, diatomaceous marlstone, dolomite, and tuffite crops out on eastern Samos Island. This lacustrine sequence is subdivided into the Hora Beds and the underlying Pythagorion Formation. The Hora Beds is overlain by the clastic Mytilinii series which contains Turolian (Late Miocene) mammalian fossils. The lacustrine sequence contains volcanic glass and the silica polymorphs opal-A, opal-CT, and quartz. Volcanic glass predominantly occurs in tuffaceous rocks from the lower and upper parts of the lacustrine sequence. Opal-A (diatom frustules) is confined to layers in the upper part of the Hora Beds. Beds rich in opal-CT underlie those containing opal-A. The occurrence of opal-CT is extensive, encompassing the lower Hora Beds and the sedimentary rocks and tuffs of the Pythagorion Formation. A transition zone between the opal-A and opal-CT zones is identified by X-ray diffraction patterns that are intermediate between those of opal-CT and opal-A, perhaps due to a mixture of the two polymorphs. Diagenesis was not advanced enough for opal-CT to transform to quartz or for volcanic glass to transform to opal-C. Based on geochemical and mineralogical data, we suggest that the rate of diagenetic transformation of opal-A to opal-CT was mainly controlled by the chemistry of pore fluids. Pore fluids were characterized by high salinity, moderately high alkalinity, and high magnesium ion activity. These pore fluid characteristics are indicated by the presence of evaporitic salts (halite, sylvite, niter), high boron content in biogenic silica, and by dolomite in both the opal-A and opal-CT-bearing beds. The absence of authigenic K-feldspar, borosilicates, and zeolites also support these pore fluid characteristics. Additional factors that influenced the rate of silica diagenesis were host rock lithology and the relatively high heat flow in the Aegean region from

  17. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  18. Metamorphosed ultramafic rocks in east Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.; Dorais, M. J.

    1986-01-01

    The compositional and mineralogical characteristics of Archean ultramafic rocks in Kangerdlugssuaq Fjord are summarized: the first provides information important to understanding the primary character of the rock suite, whereas the latter provides data necessary to determine the conditions of their equilibrium during the latest metamorphism. This information will be of value in determining the affinity of the suite to similar Archean rocks in other areas of the North Atlantic craton.

  19. Reappraisal of hydrocarbon biomarkers in Archean rocks

    NASA Astrophysics Data System (ADS)

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-05-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  20. Reappraisal of hydrocarbon biomarkers in Archean rocks.

    PubMed

    French, Katherine L; Hallmann, Christian; Hope, Janet M; Schoon, Petra L; Zumberge, J Alex; Hoshino, Yosuke; Peters, Carl A; George, Simon C; Love, Gordon D; Brocks, Jochen J; Buick, Roger; Summons, Roger E

    2015-05-12

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼ 2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  1. Meteorite Linked to Rock at Meridiani

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This meteorite, a basalt lava rock nearly indistinguishable from many Earth rocks, provided the first strong proof that meteorites could come from Mars. Originally weighing nearly 8 kilograms (17.6 pounds), it was collected in 1979 in the Elephant Moraine area of Antarctica. The side of the cube at the lower left in this image measures 1 centimeter (0.4 inches).

    This picture shows a sawn face of this fine-grained gray rock. (The vertical stripes are saw marks.) The black patches in the rock are melted rock, or glass, formed when a large meteorite hit Mars near the rock. The meteorite impact probably threw this rock, dubbed 'EETA79001,' off Mars and toward Antarctica on Earth. The black glass contains traces of martian atmosphere gases.

    The Mars Exploration Rover Opportunity has discovered that a rock dubbed 'Bounce' at Meridiani Planum has a very similar mineral composition to this meteorite and likely shares common origins. Bounce itself is thought to have originated outside the area surrounding Opportunity's landing site; an impact or collision likely threw the rock away from its primary home.

  2. Evaluation of multiband photography for rock discrimination

    NASA Technical Reports Server (NTRS)

    Raines, G. L.

    1974-01-01

    An evaluation is presented of the multiband photography concept that tonal differences between rock formations on aerial photography can be improved through the selection of the appropriate bands. The concept involves: (1) acquiring band reference data for the rocks being considered; (2) selecting the best combination of bands to discriminate the rocks using these reference data; (3) acquiring aerial photography using these selected bands; and (4) extracting the desired geologic information in an optimum manner. The test site geology and rock reflectance are discussed in detail. The evaluation found that the differences in contrast ratios are not statistically significant, and the spectral information in different bands is not advantageous.

  3. Rock Art of the Greater Southwest

    NASA Astrophysics Data System (ADS)

    Krupp, Edwin C.

    Archaeoastronomical studies in the American Southwest began in 1955 with recognition of what seemed to be pictorial eyewitness records of the Crab supernova of 1054 AD In time, reports of seasonally significant light-and-shadow effects on rock art and associations of rock art with astronomical alignments also emerged. Most astronomical rock art studies remained problematic, however, because criteria for proof of ancient intent were elusive. Disciplined methods for assessing cultural function were difficult to develop, but review of ethnographically documented astronomical traditions of California Indians and of Indians in the American Southwest subsequently increased confidence in the value of some astronomical rock art initiatives.

  4. New eyes on eastern California rock varnish

    SciTech Connect

    Krinsley, D.H.; Dorn, R.I. )

    1991-05-01

    This article presents findings from recent investigations of how rock varnish forms and describes the manner in which this understanding can aid researchers. Rock varnish is typically a glossy-brown to black coating that commonly develops on rock surfaces in arid climates. It may take tens of thousands of years to form a complete coating over rock surfaces. A number of hypotheses have been proposed to explain the occurrence of rock varnish. The following explanations originated during examination of rock varnishes in the Mojave Desert: (1) the role of pollen in providing manganese, (2) the role of lichens in somehow catalyzing varnish accretion, (3) physical and chemical changes at the rock surface, and (4) the role of bacteria in concentrating manganese. Recent findings using backscatter electron microscopy are given researchers additional insights into this phenomenon. This technology permits researchers to view rock varnish chemistry and texture simultaneously and permits sources of varnish constituents, origin of manganese enhancement in varnish, reliable rock varnish dating, and new microscopic textures to be studied in great detail. It is now apparent that a number of varnish accretion processes occur other than deposition in even layers.

  5. Regulation of ROCK activity in cancer.

    PubMed

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-03-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)-loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  6. Dynamic tensile strength of lunar rock types

    NASA Technical Reports Server (NTRS)

    Cohn, S. N.; Ahrens, T. J.

    1981-01-01

    The dynamic tensile strength of four rocks are determined. A flat plate impact experiment is employed to generate approximately one-microsecond-duration tensile stress pulses in rock samples by superposing rarefaction waves to induce fracture. It is noted that the effect of chemical weathering and other factors has not been explicitly studied. The given tensile strengths are based on a series of experiments on each rock where determination of incipient spallation is made by terminal microscopic examination. The data are generally consistent with previous determinations, at least one of which was for a significantly chemically altered but physically coherent rock.

  7. Rayleigh wave studies in lunar rocks.

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1972-01-01

    An ultrasonic surface wave technique described by the author (1971) is used to verify a hypothesis that links the seismic wave propagation velocities in lunar crust, much too low as compared to those on earth, to the extensive fracturing of lunar rock in the absence of liquids and gases which changed drastically the elastic and inelastic properties of lunar rock. Measurements on lunar rock samples and synthetic analogs suggest that the presence of microfractures have influence on both the wave velocity and Q factor in lunar rocks.

  8. Spirit Discovers New Class of Igneous Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table.

    All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals.

    The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt

  9. A Jurassic Shock-Aftershock Earthquake Sequence Recorded by Small Clastic Pipes and Dikes within Dune Cross-Strata, Zion National Park, Utah

    NASA Astrophysics Data System (ADS)

    Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.

    2012-12-01

    dune lee slope through a pipe, the erupted sand dried and was buried by climbing wind-ripple strata as the large dune continued to advance downwind. The mapped cluster recording eight distinct seismic events lies within thin-laminated sediment that was deposited by wind ripples during 1 m (~ 1 year) of southeastward dune migration. We conclude that the small pipes and dikes of our study sites are products of numerous >MM 5 earthquakes, some of which recurred at intervals of less than 2 months. We interpret one small cluster of pipes and dikes with well-defined upward terminations as a distinct shock-aftershock sequence. Because the largest modern earthquakes can produce surface liquefaction only up to about 175 km from their epicenters, the Jurassic epicenters must have been well within that distance. The tendency of modern plate boundaries to produce high-frequency aftershocks suggests that the epicenter for this Jurassic sequence lay to the southwest, within the plate boundary zone (not within continental rocks to the east). As eolian dunes steadily migrate over interdune surfaces underlain by water-saturated dune cross-strata, the thin, distinct laminae produced by the wind ripples that occupy dune toes can faithfully record high-frequency seismic events.

  10. The circular Uneged Uul structure (East Gobi Basin, Mongolia) - Geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target?

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Seyfried, Hartmut; Gerel, Ochir

    2013-03-01

    geomorphic and structural features resembling those at some eroded complex impact structures on Earth. Morphologically similar central peaks are observed at the Spider and Matt Wilson impact structures in Australia; the central annular ridge reminds of that at Gosses Bluff in Australia; the outer domal ridges might correspond to ring-like features as known from Tin Bider in Algeria. We, therefore, cautiously propose that an impact may have produced the Uneged Uul feature causing structural uplift (˜1000 m) of basement rocks at its center. So far, no convincing evidence for shock metamorphism could be proven by field work and petrographic analyses. However, it is likely that at the time of the deformation event the unconsolidated conglomerates were highly porous and possibly immersed in groundwater buffering the propagation of sudden stress-reducing deformation. Further studies will be in order to unravel the nature of the Uneged Uul structure, which should be considered a promising possible impact structure.

  11. Kissing Mars Rocks with the Rover's RATs: An Educational Exercise to Understand Drilling Rocks on Mars

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Whelley, P. L.; Bleacher, J. E.; Cave, S. R.; Zabala-Aliberto, V. A.; Zabala, A. A.; Greeley, R.

    2007-03-01

    This abstract discusses an E/PO exercise we created for elementary school children that uses Hershey Kisses and straws to simulate the drilling of different rocks on Mars by the MER Rock Abrasion Tool.

  12. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2.

    PubMed

    Jerrell, Rachel J; Parekh, Aron

    2016-04-01

    ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis. PMID:26826790

  13. Thermal Inertia of Rocks and Rock Populations and Implications for Landing Hazards on Mars

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    Rocks represent an obvious potential hazard to a landing spacecraft. They also represent an impediment to rover travel and objects of prime scientific interest. Although Mars Orbiter Camera (MOC) images are of high enough resolution to distinguish the largest rocks (an extremely small population several meters diameter or larger), traditionally the abundance and distribution of rocks on Mars have been inferred from thermal inertia and radar measurements, our meager ground truth sampling of landing sites, and terrestrial rock populations. In this abstract, we explore the effective thermal inertia of rocks and rock populations, interpret the results in terms of abundances and populations of potentially hazardous rocks, and conclude with interpretations of rock hazards on the Martian surface and in extremely high thermal inertia areas.

  14. Elastic Properties of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Melendez Martinez, Jaime

    Sedimentary rocks are an important research topic since such rocks are associated to sources of ground water as well as oil, gas, and mineral reservoirs. In this work, elastic and physical properties of a variety of sedimentary samples that include glacial sediments, carbonates, shales, one evaporite, and one argillite from a variety of locations are investigated. Assuming vertical transverse isotropy, ultrasonic compressional- and shear-waves (at 1 MHz central frequency) were measured as a function of confining pressure on all samples with the exception of glacial samples which were tested assuming isotropy. Tensile strength tests (Brazilian test) were also carried out on selected glacial samples and, in addition, static-train measurements were conducted on shales and argillite samples. Lithological and textural features of samples were obtained through thin section techniques, scanning electron microscopy images and micro-tomography images. X-ray diffraction and X-Ray fluorescence provided the mineralogical oxides content information. Porosity, density, and pore structure were studied by using a mercury intrusion porosimeter and a helium pycnometer. The wide range of porosities of the studied samples (ranging from a minimum of 1% for shales to a maximum 45% for some glacial sediments) influence the measured velocities since high porosity sample shows an noticeable velocity increment as confining pressure increases as a consequence of closure of microcracks and pores, unlike low porosity samples where increment is quasi-lineal. Implementation of Gassmann's relation to ultrasonic velocities obtained from glacial samples has negligible impact on them when assuming water saturated samples, which suggests that state of saturation it is no so important in defining such velocities and instead they are mainly frame-controlled. On the other hand, velocities measured on carbonate and evaporite samples show that samples are at best weak anisotropic, thus the intrinsic

  15. Some influences of rock strength and strain rate on propagation of rock avalanches

    NASA Astrophysics Data System (ADS)

    Bowman, Elisabeth; Rait, Kim

    2016-04-01

    Rock avalanches are extreme and destructive mass movements in which large volumes of rock (typically >1 million cubic metres) travel at high speeds, covering large distances, and the occurrence of which is highly unpredictable. The "size effect" in rock avalanches, whereby those with larger volumes produce greater spreading efficiency (as defined by an increase in normalised runout) or lower farboschung angle (defined as the tangent of the ratio of fall height to runout length), is well known. Studies have shown that rock strength is a controlling factor in the mobility of rock avalanches - that is, mass movements involving lower strength rock are generally found to produce greater mobility as evidenced by the spread of deposits or low farboschung angle. However, there are conflicting ideas as to how and why this influence is manifested. This paper discusses different theories of rock comminution in light of numerical simulations of rock clasts undergoing normal and shear induced loading, experimental work on rock avalanche behaviour, and dynamic fracture mechanics. In doing so, we introduce the idea of thresholds of strain rate for the production of dynamic fragmentation (as opposed to pseudo-static clast crushing) that are based, inter alia, on static rock strength. To do this, we refer to data from physical models using rock analogue materials, field data on chalk cliff collapses, and field statistics from documented rock avalanches. The roles of normal and shear loading and loading rate within a rock avalanche are examined numerically using 3D Discrete Element Method models of rock clasts loaded to failure. Results may help to reconcile the observations that large rock avalanches in stronger materials tend not to fragment as much as those in weaker materials and also possess lower mobility, while small cliff collapses (typically > 1000 cubic metres) in weak chalk can exhibit rock avalanche-like behaviour at much smaller volumes.

  16. Abiogenic methanogenesis in crystalline rocks

    SciTech Connect

    Lollar, B.S.; Frape, S.K. ); Weise, S.M. , Neuherberg ); Fritz, P. ); Macko, S.A. ); Welhan, J.A. )

    1993-12-01

    Isotopically anomalous CH[sub 4]-rich gas deposits are found in mining sites on both the Canadian and Fennoscandian shields. With [delta][sup 13]C[sub CH4] values from -22.4 to -48.5% and [delta]D[sub CH4] values from -133 to -372%, these methane deposits cannot be accounted for by conventional processes for bacterial or thermogenic methanogenesis. Compositionally the gases are similar to other CH[sub 4]-rich gas occurrences found in Canadian and Fennoscandian shield rocks. However, the isotopically anomalous gases of this study are characterized by unexpectedly high concentrations of H[sub 2] gas, ranging from several volume percent up to 30 vol%. The H[sub 2] gases are consistently depleted in the heavy isotope, with [delta]D[sub H[sub 2

  17. Hydrologic imaging of fractured rock

    SciTech Connect

    Karasaki, Kenzi; Cohen, A.; Cook, P.; Freifeld, B.; Grossenbacher, K.; Peterson, J.; Vasco, D.

    1995-12-31

    Various geophysical and hydrologic tests were conducted in a cluster of nine wells to image the hydrologic connections of a fractured rock mass. Results of intra-borehole flow surveys and cross-hole radar and seismic tomography surveys correlated very well, and indicated that there is a major feature at a depth of 30m. Systematic injection tests were conducted in all nine wells. Three to four intervals in each well were isolated using pneumatic packers. Each interval was equipped with a high resolution pressure transducer. Some 130 injections tests were conducted, and more than 4,100 cross-hole transient pressure measurements were obtained. A computer algorithm was developed to analyze such massive interference data systematically. As a result of the analysis, an image of the fracture connections emerged which is consistent with the geophysical data.

  18. Manufactured caverns in carbonate rock

    DOEpatents

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  19. On wettability of shale rocks.

    PubMed

    Roshan, H; Al-Yaseri, A Z; Sarmadivaleh, M; Iglauer, S

    2016-08-01

    The low recovery of hydraulic fracturing fluid in unconventional shale reservoirs has been in the centre of attention from both technical and environmental perspectives in the last decade. One explanation for the loss of hydraulic fracturing fluid is fluid uptake by the shale matrix; where capillarity is the dominant process controlling this uptake. Detailed understanding of the rock wettability is thus an essential step in analysis of loss of the hydraulic fracturing fluid in shale reservoirs, especially at reservoir conditions. We therefore performed a suit of contact angle measurements on a shale sample with oil and aqueous ionic solutions, and tested the influence of different ion types (NaCl, KCl, MgCl2, CaCl2), concentrations (0.1, 0.5 and 1M), pressures (0.1, 10 and 20MPa) and temperatures (35 and 70°C). Furthermore, a physical model was developed based on the diffuse double layer theory to provide a framework for the observed experimental data. Our results show that the water contact angle for bivalent ions is larger than for monovalent ions; and that the contact angle (of both oil and different aqueous ionic solutions) increases with increase in pressure and/or temperature; these increases are more pronounced at higher ionic concentrations. Finally, the developed model correctly predicted the influence of each tested variable on contact angle. Knowing contact angle and therefore wettability, the contribution of the capillary process in terms of water uptake into shale rocks and the possible impairment of hydrocarbon production due to such uptake can be quantified. PMID:27156090

  20. Hydraulic conductivity of rock fractures

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs.