Science.gov

Sample records for clay based drilling

  1. Clay-based geothermal drilling fluids

    SciTech Connect

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  2. Evaluation of past and future alterations in tuff at Yucca Mountain, Nevada, based on the clay mineralogy of drill cores USW G-1, G-2, and G-3

    SciTech Connect

    Bish, D.L.

    1989-03-01

    The tuffs at Yucca Mountain in south-central Nevada are being studied by the Yucca Mountain Project (YMP) to determine their suitability for a high-level radioactive waste repository. For predictive purposes, it is important to understand the alteration history of Yucca Mountain and to know how the minerals in Yucca Mountain tuffs respond to changing conditions such as elevated temperatures. The clay mineralogy of these tuffs has been examined using x-ray powder diffraction, and approximation temperatures of alteration have been determined using available clay mineral data and fluid inclusion analyses. Also, several illites from drill holes USW G-1 and G-2 have been dated using K/Ar techniques, yielding ages of about 11 Myr. The clay mineral in Yucca Mountain tuffs are predominantly interstratified illite/smectites, with minor amounts of chloride, kaolinite, and interstratified chlorite/smectite at depth in USW G-1 and G-2. The reactions observed for these illite/smectites are similar to those observed in pelitic rocks. With depths, the illite/smectites transform from random interstratifications (R = 0) through ordered intermediates (R = 1) to illite in USW G-2 and to Kalkberg (R {ge} 3) interstratifications in USW G-1. The illite/smectites in USW G-3 have not significantly transformed. It appears that the illites in deeper rock results from hydrothermal and diagenetic reactions of earlier-formed smectites. These data demonstrate that the rocks at depth in the northern end of Yucca Mountain were significantly altered about 11 Myr ago. Both clay mineralogy and fluid inclusions suggest that the rocks at depth in USW G-2 have been subjected to postdepositional temperatures of at least 275{degree}C, those in USW G-1 have reached 200{degree}C, and USW G-3 rocks probably have not exceeded 100{degree}C. 64 refs., 9 figs., 3 tabs.

  3. Laboratory modeling of laterally-loaded drilled shafts in clay

    SciTech Connect

    Mayne, P.W.; Kulhawy, F.H.; Trautmann, C.H.

    1995-12-01

    The behavior of free-head rigid drilled shafts under static and cyclic lateral and moment loading was investigated using laboratory models in relatively large test chambers. This testing program represents perhaps one of the first larger-scale laboratory test series to utilize cast-in-place concrete shafts in consolidated and prestressed cohesive soil deposits for realistic simulation of prototype drilled shafts in clays. The construction procedure incorporated the actual effects of concrete curing and soil/concrete interface roughness, and the soil-deposit preparation included the characteristic anisotropy and overconsolidation associated with natural clays. A total of 28 cylindrical shafts having diameters of 51, 89, and 175 mm (2.0, 3.5, and 6.9 in.) and depth-do-diameter (D/B) ratios of 3--8 were constructed and tested. Many of the shafts were instrumented with total stress cells and pore-water stress transducers to permit both total and effective stress measurements during the load testing. The results of the lateral and moment load tests indicated a high degree of nonlinearity in the monotonic static load-displacement response, but it can be represented adequately by a hyperbola. This hyperbola also provides a reference backbone curve for the cyclic loading behavior.

  4. Water based drilling mud additive

    SciTech Connect

    McCrary, J.L.

    1983-12-13

    A water based fluid additive useful in drilling mud used during drilling of an oil or gas well is disclosed, produced by reacting water at temperatures between 210/sup 0/-280/sup 0/ F. with a mixture comprising in percent by weight: gilsonite 25-30%, tannin 7-15%, lignite 25-35%, sulfonating compound 15-25%, water soluble base compound 5-15%, methylene-yielding compound 1-5%, and then removing substantially all of the remaining water to produce a dried product.

  5. Clay-based Nanocomposites Possibilities and Limitations

    NASA Astrophysics Data System (ADS)

    Papoulis, Dimitris

    2011-09-01

    In the last decades, clay mineral based nanocomposites and polymer-clay nanocomposites (PCNC) have been proposed as very useful materials for many uses including photocatalysis, medicinal uses as tissue engineering or modified drug delivery systems. Clay minerals and especially montmorillonite, kaolinite, halloysite palygorskite and sepiolite are the most used clay minerals because of their high surface areas, colloidal dimensions of their particles and other properties. This lecture aims at reporting on very recent developments in the use of clay minerals and PCNC as materials with photocatalytic and medical interest.

  6. Application of Ester based Drilling Fluid for Shale Gas Drilling

    NASA Astrophysics Data System (ADS)

    Sauki, Arina; Safwan Zazarli Shah, Mohamad; Bakar, Wan Zairani Wan

    2015-05-01

    Water based mud is the most commonly used mud in drilling operation. However, it is ineffective when dealing with water-sensitive shale that can lead to shale hydration, consequently wellbore instability is compromised. The alternative way to deal with this kind of shale is using synthetic-based mud (SBM) or oil-based mud (OBM). OBM is the best option in terms of technical requirement. Nevertheless, it is toxic and will create environmental problems when it is discharged to onshore or offshore environment. SBM is safer than the OBM. The aim of this research is to formulate a drilling mud system that can carry out its essential functions for shale gas drilling to avoid borehole instability. Ester based SBM has been chosen for the mud formulation. The ester used is methyl-ester C12-C14 derived from palm oil. The best formulation of ester-based drilling fluid was selected by manipulating the oil-water ratio content in the mud which are 70/30, 80/20 and 90/10 respectively. The feasibility of using this mud for shale gas drilling was investigated by measuring the rheological properties, shale reactivity and toxicity of the mud and the results were compared with a few types of OBM and WBM. The best rheological performance can be seen at 80/20 oil-water ratio of ester based mud. The findings revealed that the rheological performance of ester based mud is comparable with the excellent performance of sarapar based OBM and about 80% better than the WBM in terms of fluid loss. Apart from that, it is less toxic than other types of OBM which can maintain 60% prawn's survival even after 96 hours exposure in 100,000 ppm of mud concentration in artificial seawater.

  7. Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.

    PubMed

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option. PMID:15160901

  8. Glowing clay: Real time tracing using a suite of novel clay based fluorescent tracers

    NASA Astrophysics Data System (ADS)

    Hardy, Robert; Quinton, John; Pates, Jackie; Coogan, Mike

    2015-04-01

    Clay is one of the most mobile fractions of soil due to its small particle size. It is also known to sorb many chemicals, such as nutrients (notably phosphorus), agrochemicals and heavy metals. The movement of clay is therefore linked with the transport and fate of these substances. A novel fluorescent clay tracing suite has been produced, together with an imaging technique. This suite consists of qualitative clay tracers, using rhodamine based fluorophores, and quantitative clay tracers, using metal based fluorophores. Efforts have also been made to allow integration of commercially available tracers, which are silt and sand sized. The clay tracers exploit the high affinity that montmorillonite has for Rhodamine B and Ru(bpy)3. This allows for an extremely thin layer of the fluorophore to be sorbed onto the clay's surface, in much that same way as materials in the natural environment will bind to clay. The tracer that is produced retains key chemical and physical properties of clay, such as size, shape and density. The retention of these micro-properties results in the retention of macro-properties, such as tendency to aggregate and cracking on drying. Imaging techniques have been developed to analyse these tracers. The imaging system uses diffused laser light to excite the tracer and a modified DSLR camera to image the soil surface. The images have been compiled into a time lapse video showing the movement of clay over the course of a rainfall event. This is the first time that the quantitative movement of clay has been recorded over a soil surface in real time. 4D data can be extracted from the images allowing the spatial location and intensity of tracer to be monitored over time, with mm precision and on the timescale of seconds. As the system can also work with a commercial tracer it is possible to investigate the movement of particles of almost any size and over a range of scales from soil box to hillside. This allows users to access this technique without

  9. Water swellable clay composition and method to maintain stability in salt contaminated water

    SciTech Connect

    Alexander, W.

    1987-01-06

    A method is described of drilling comprising contacting an earthen formation with a rotary drilling bit to form a salt contaminated drill hole and circulating a drilling fluid in the drill hole to cool and lubricate the drill bit during rotation and to lift drill cuttings of the drill hole. The drilling fluid becomes contaminated with salt contaminated water. The improvement described here comprises adding a water swellable montmorillonite clay composition to the drilling fluid. The composition comprises a water swellable montmorillonite clay, xanthan gum in an amount of 0.1% to 20% based on the weight of water swellable montmorillonite clay, and at least one other, water soluble gum selected from the group consisting of guar gum, dextran gum, locust bean gum, and mixtures thereof in an amount of 4.0% to 10% based on the weight of water swellable clay.

  10. Overhead drilling: Comparing three bases for aligning a drilling jig to vertical

    PubMed Central

    Rempel, David; Star, Demetra; Barr, Alan; Janowitz, Ira

    2010-01-01

    Problem Drilling overhead into concrete or metal ceilings is a strenuous task done by construction workers to hang ductwork, piping, and electrical equipment. The task is associated with upper body pain and musculoskeletal disorders. Previously, we described a field usability evaluation of a foot lever and inverted drill press intervention devices that were compared to the usual method for overhead drilling. Both interventions were rated as inferior to the usual method based on poor setup time and mobility. Method Three new interventions, which differed on the design used for aligning the drilling column to vertical, were compared to the usual method for overhead drilling by commercial construction workers (n=16). Results The usual method was associated with the highest levels of regional body fatigue and the poorest usability ratings when compared to the three interventions. Conclusion Overall, the ‘Collar Base’ intervention design received the best usability ratings. Impact on Industry Intervention designs developed for overhead drilling may reduce shoulder fatigue and prevent subsequent musculoskeletal disorders. These designs may also be useful for other overhead work such as lifting and supporting materials (e.g., piping, ducts) that are installed near the ceiling. Workplace health and safety interventions may require multiple rounds of field-testing prior to achieving acceptable usability ratings by the end users. PMID:20630276

  11. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, four companies including H.C. Spinks Clay, Kentucky-Tennessee Clay, Old Hickory Clay and Unimin mined ball clay in four states. Based on a preliminary survey of the ball clay industry, production reached 1.32 Mt valued at $53.3 million. Tennessee was the leading ball clay producer state with 61% of domestic production, followed by Texas, Mississippi and Kentucky.

  12. Modification of clay-based waste containment materials

    SciTech Connect

    Adu-Wusu, K.; Whang, J.M.; McDevitt, M.F.

    1997-12-31

    Bentonite clays are used extensively for waste containment barriers to help impede the flow of water in the subsurface because of their low permeability characteristics. However, they do little to prevent diffusion of contaminants, which is the major transport mechanism at low water flows. A more effective way of minimizing contaminant migration in the subsurface is to modify the bentonite clay with highly sorptive materials. Batch sorption studies were conducted to evaluate the sorptive capabilities of organo-clays and humic- and iron-based materials. These materials proved to be effective sorbents for the organic contaminants 1,2,4-trichlorobenzene, nitrobenzene, and aniline in water, humic acid, and methanol solution media. The sorption capacities were several orders of magnitude greater than that of unmodified bentonite clay. Modeling results indicate that with small amounts of these materials used as additives in clay barriers, contaminant flux through walls could be kept very small for 100 years or more. The cost of such levels of additives can be small compared to overall construction costs.

  13. Clay-based polymer nanocomposites: research and commercial development.

    PubMed

    Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R

    2005-10-01

    This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials. PMID:16245517

  14. Experiencing Clay: Inquiry-Based Learning and Assessment for Learning

    ERIC Educational Resources Information Center

    Mui, Ma So

    2010-01-01

    This article presents an examination of the effects of using an inquiry-based learning pedagogy to teach ceramics to pre-service teachers (my students) at the Hong Kong Institute of Education. At the beginning of the study the students were asked to conduct experiments on the properties of clay. The results indicate that half of them were able to…

  15. Clay mineral analysis of the Hirabayashi NIED drill core on the Nojima fault that ruptured in the 1995 Kobe Earthquake, southwest Japan

    NASA Astrophysics Data System (ADS)

    Matsuda, T.; Omura, K.; Ikeda, R.; Awaji, D.

    2002-12-01

    A 1800-m-deep borehole was drilled at Nojima Hirabayashi and penetrated the Nojima fault that was activated at the time of the 1995 Hyogo-ken Nanbu Earthquake (Kobe Earthquake) in Japan. Three possible fracture zones were detected at depths of about 1140 m, 1300 m, and 1800 m. At first, we analyzed the mode of distribution of rocks, minerals and chemical elements in them. There is a foliated blue-gray gouge at a depth of 1140 m. So we infer that this is the central fault plane, and began our fracture zone analysis there, as follows. The degree of fracturing is evidently greater in the hanging wall than in the footwall. We estimated the relative amounts of minerals qualitatively, and we detected not only quartz, orthoclase, plagioclase, biotite and hornblende in the parent rock (granodiorite), but also kaolinite, smectite, laumontite, stilbite, calcite, ankerite and siderite, which are related to hydrothermal alteration. Biotite notably disappears in both the hanging wall and footwall across the central fault plane, although it disappears over a significantly greater distance in the hanging wall than in the footwall. Equally, we estimated the amounts of major chemical elements quantitatively. Al2O3, Fe2O3, MnO, TiO2, and P2O5 all decrease throughout this interval, except at a few points. H2O_{ and CO2 increase throughout the interval. Na2O increases in the region adjacent to the central fault plane, while MgO and CaO increase in the hanging wall and decrease in the footwall. SiO2 and K2O decrease in the hanging wall and increase in the footwall. Next, we particularly investigated about the clay minerals such as smectite. From the drill core, we separated the clay-size fraction and analyzed it by X-Ray Diffractometer (XRD). Incidentally, particle-size separations are based on Stokes_fs law. We prepared oriented samples for XRD and to make it, we used the glass slide method. We measured it both in the air-dried and ethylene glycol-solvated conditions. We analyzed the

  16. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  17. Polymer based nanocomposites with nanofibers and exfoliated clay

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Reneker, Darrell H.

    2005-01-01

    Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.

  18. Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Kontny, Agnes; Kohl, Thomas

    2014-10-01

    . Low magnetic susceptibility can also be attributed to primary low magnetite content, if the granite facies changes. In order to interpret magnetic susceptibility from cuttings, contaminations with iron from wear debris of the drilling tools must be eliminated. Provided that the magnetic mineralogy of the granite is known in detail, this method in combination with petrographic investigations is suited to indicate and characterize hydrothermal alteration and the appearance of clay.

  19. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  20. Epoxy nanocomposites based on high temperature pyridinium-modified clays.

    PubMed

    Zhang, Qingxin; Naito, Kimiyoshi; Qi, Ben; Kagawa, Yutaka

    2009-01-01

    Polymer/clay nanocomposites are generally fabricated by thermal curing or melt compounding at elevated temperatures, however the thermal stability of common alkyl ammonium treated clays is poor and decomposition occurs inevitably during high temperature processing. In this study, we modified clays with an aromatic pyridinium salt. Thermogravimetric analysis (TGA) showed that the onset degradation temperature (Td(onset)) and maximum decomposition temperature (Td(max)) of the pyridinium treatment clays was up to 310 and 457 degrees C respectively implying high thermal stability. The thermal decomposition behaviour of the pyridinium modified clays was discussed. A series of epoxy/clay nanocomposites were synthesized using a diglycidyl ether of bisphenol A (DGEBA) epoxy and diethyltoluene diamine (DETDA). The morphology of epoxy/clay nanocomposites was characterized with wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM), and intercalated structures were observed. The storage modulus of epoxy was increased but glass transition temperature was decreased with clay incorporation. The effects of clays on glass transition temperature (Tg) of epoxy were also discussed. PMID:19441298

  1. Compact fibre Bragg grating-based thermometer for on-line temperature monitoring of drill bits

    NASA Astrophysics Data System (ADS)

    Hey Tow, Kenny; Llera, Miguel; Le Floch, Sébastien; Salvadé, Yves; Thévenaz, Luc

    2016-05-01

    In this communication, a novel compact fibre Bragg grating-based thermometer for on-line temperature monitoring of drill bits is reported. Our proposed technique can potentially be used to optimize any drilling process, requiring the use of small drill bits, through direct temperature measurement at the drill bit instead of relying on indirect parameters (speed of rotation, applied force) in order to avoid an overheating as it is currently done nowadays.

  2. ARITHMETIC DRILLS AND REVIEW ON A COMPUTER-BASED TELETYPE.

    ERIC Educational Resources Information Center

    SUPPES, PATRICK; AND OTHERS

    FIFTEEN DAILY DRILLS EMPHASIZING MASTERY OF BASIC NUMBER FACTS, SUCH AS ARITHMETIC OPERATIONS AND UNITS OF MEASUREMENT WERE CONSTRUCTED TO ENCOMPASS 7 PREVIOUSLY REPORTED ATTRIBUTES OF AN EFFECTIVE DRILL. ATTRIBUTES ARE MIXED DRILL, TIME LIMIT, INCREASINGLY DIFFICULT EXAMPLES, THOROUGH COVERAGE, FREQUENT AND SMALL AMOUNTS, VERBAL PROBLEMS,…

  3. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  4. Induction of Fish Biomarkers by Synthetic-Based Drilling Muds

    PubMed Central

    Gagnon, Marthe Monique; Bakhtyar, Sajida

    2013-01-01

    The study investigated the effects of chronic exposure of pink snapper (Pagrus auratus Forster), to synthetic based drilling muds (SBMs). Fish were exposed to three mud systems comprised of three different types of synthetic based fluids (SBFs): an ester (E), an isomerized olefin (IO) and linear alpha olefin (LAO). Condition factor (CF), liver somatic index (LSI), hepatic detoxification (EROD activity), biliary metabolites, DNA damage and stress proteins (HSP-70) were determined. Exposure to E caused biologically significant effects by increasing CF and LSI, and triggered biliary metabolite accumulation. While ester-based SBFs have a rapid biodegradation rate in the environment, they caused the most pronounced effects on fish health. IO induced EROD activity and biliary metabolites and LAO induced EROD activity and stress protein levels. The results demonstrate that while acute toxicity of SBMs is generally low, chronic exposure to weathering cutting piles has the potential to affect fish health. The study illustrates the advantages of the Western Australian government case-by-case approach to drilling fluid management, and highlights the importance of considering the receiving environment in the selection of SBMs. PMID:23894492

  5. PAH composition of Water Based Drilling Mud and drill cuttings in the offshore region, east coast of India.

    PubMed

    Jagwani, Devaanshi; Kulkarni, Atul; Shukla, Parth; Ramteke, Dilip S; Juneja, Harjeet D

    2011-11-01

    As a consequence of offshore drilling, used Water Based Drilling Muds (WBMs) are typically disposed off, by discharging into the sea; such a disposal does not fully eliminate the environmental hazards. Hence, in this study, 2, 3, 4 and 5 ringed polycyclic aromatic hydrocarbons (PAHs i.e. naphthalene, fluorene, phenanthrene, fluoranthene, chrysene and benzo (a) pyrene) were determined from the WBMs and associated drill cuttings obtained from varying depths(viz. 150, 300 and 600 m) from three offshore wells present in East coast of India. In both WBMs and drill cuttings, concentration of naphthalene was maximum i.e. 81.59 ± 2.73 and 39.87 ± 2.40 mg/kg respectively, while benzo (a) pyrene was minimum i.e. 0.19 ± 0.07 and 0.12 ± 0.03 mg/kg respectively. The WBMs contained significantly (p < 0.05) higher PAH concentration than drill cuttings. The individual PAH concentration significantly (p < 0.01) increased with increasing depth in each well. PMID:21691860

  6. DRILL: a standardized radiology-teaching knowledge base

    NASA Astrophysics Data System (ADS)

    Rundle, Debra A.; Evers, K.; Seshadri, Sridhar B.; Arenson, Ronald L.

    1991-07-01

    Traditionally, radiologists have collected and saved interesting cases in their film formats to teach medical students, residents, and physicians. These cases are classified according to various coding schemes, although current schemes alone are insufficient to meet today's educational needs. Teaching methods and cases also vary among institutions, along with the manner in which instructors present information to their students. In order to address this problem, the authors developed a standardized radiology teaching knowledge database known as the Digital Radiology Image Learning Library (DRILL). DRILL is a relational image knowledge database providing access to standard mammography cases in digital image format along with a pool of clinical and radiological information on a per-case basis. The development platform chosen is a standard Apple Macintosh-II computer and the Oracle database environment. The data entry and query interfaces are implemented in HyperCard. Images are stored on magnetic disk but could be stored on optical media. Since the personal computer platform was chosen, a wide variety of course building tools are available through which a teacher can construct a course, such as authoring and multi-media systems for building computer based courses, or word processors for writing course outlines tests. The interface also provides image conversion tools which convert images into PC-compatible formats.

  7. High temperature drilling fluids

    SciTech Connect

    Stong, R.E.; Walinsky, S.W.

    1986-01-28

    This patent describes an aqueous drilling fluid suitable for high-temperature use. This fluid is composed of a water base. Clay is suspended in the base and from about 0.01-25 pounds per barrel total composition of a hydrolyzed terpolymer of maleic anhydride, styrene and a third monomer selected from acrylamide, methacrylamide, acrylic acid and metacrylic acid. The molar ratio of maleic anhydride to styrene to the third monomer is from about 30:10:60 to 50:40:10, and the alkali metal, ammonium and lower aliphatic amine salts thereof, the weight-average molecular weight of the hydrolyzed terpolymer is from about 500-10,000.

  8. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis; Black, Alan D.; Green, Sidney J.; Robertson, Homer A.; Bland, Ronald G.; Curry, David Alexander; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  9. Effect of a water-based drilling waste on receiving soil properties and plants growth.

    PubMed

    Saint-Fort, Roger; Ashtani, Sahar

    2014-01-01

    This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth. PMID:24117079

  10. Diffusion of radionuclides in clay-based ceramics

    SciTech Connect

    Ivanov, P.A.; Gulin, A.N.; Shatkov, V.M.; Shashukov, E.A.; Kuznetsov, B.S.

    1988-09-01

    The diffusion coefficients of sodium-22, strontium-90, and cesium-134 in clay-containing ceramics of three types are determined by the method of integral residual activity. It is found that at the investigated temperatures the diffusion coefficients of the radionuclides decrease in the order sodium-22, cesium-134, strontium-90. Migration of cesium-134 in comparison with sodium-22 is characterized by substantially lower values of the preexponential factor and diffusion activation energy. It is shown that in the case of ceramic made up of 89% by mass cambrian clay and 11% by mass perlite, increase in relative moisture content of the samples from0.05 to 0.3% leads to substantial (by 2-3 orders of magnitude) growth of the diffusion coefficients of the radionuclides. Further increase in the relative moisture content has practically no effect on their diffusive mobility.

  11. 76 FR 39885 - Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... SECURITY Coast Guard Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs) AGENCY... Drilling Units (MODUs). This policy letter announces changes to the Coast Guard's system used to prioritize inspections of foreign-flagged MODUs. DATES: This policy will become effective on July 7, 2011....

  12. Laser beam drilling of metal-based composites

    NASA Astrophysics Data System (ADS)

    Riegel, H.; Merkel, M.; Ã-chsner, A.

    2014-02-01

    Laser drilling is a highly efficient technique to generate holes in almost any material. The relatively small amount of heat being involved during the process results in a small heat affected zone. This characteristic makes laser processing interesting for composite materials. The drilling process has to be adapted to the special characteristics of the composite material. In this paper investigations were performed with an advanced composite material, that is a metallic hollow sphere structure (MHSS). Numerical simulation was used to predict heat flux and temperature levels for different geometric parameters of the spheres (diameter, wall thickness) in order to optimize the drilling process. The numerical simulation allows a detailed analysis of the physical process in the zone that is influenced by the laser beam, which can hardly be analyzed by any measuring technique. The models for transient numerical analysis consider heat conduction and convection. The experimental work was done by a CO2-laser. The percussion drilling method has been used as drilling technique. The pulse duration was in the millisecond time regime. Investigations have been done with a mean power of 100 W, 200 W and 400 W. Two focal lenses have been used with focal lengths of 5.0´´ and 7.5´´. The laser beam melts the hollow sphere structure inside the beam leaving a hole in the structure as well as in individual hollow spheres. An image processing technique was developed to determine the circularity on the spheres and the drilled diameter in the structure. The circularity declines with increasing drill depth. The diameter as function of depth can be well described with lines of constant intensity of the focussed laser beam, the isophotes.

  13. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    PubMed

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system. PMID:16290714

  14. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by a Retort Chamber (Derived From API Recommended Practice 13B-2) (EPA Method 1674) 7 Appendix 7 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  15. Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids.

    PubMed

    Kosynkin, Dmitry V; Ceriotti, Gabriel; Wilson, Kurt C; Lomeda, Jay R; Scorsone, Jason T; Patel, Arvind D; Friedheim, James E; Tour, James M

    2012-01-01

    Graphene oxide (GO) performs well as a filtration additive in water-based drilling fluids at concentrations as low as 0.2 % (w/w) by carbon content. Standard American Petroleum Institute (API) filtration tests were conducted on pH-adjusted, aqueous dispersions of GO and xanthan gum. It was found that a combination of large-flake GO and powdered GO in a 3:1 ratio performed best in the API tests, allowing an average fluid loss of 6.1 mL over 30 min and leaving a filter cake ~20 μm thick. In comparison, a standard suspension (~12 g/L) of clays and polymers used in the oil industry gave an average fluid loss of 7.2 mL and a filter cake ~280 μm thick. Scanning electron microscopy imaging revealed the extreme pliability of well-exfoliated GO, as the pressure due to filtration crumpled single GO sheets, forcing them to slide through pores with diameters much smaller than the flake's flattened size. GO solutions also exhibited greater shear thinning and higher temperature stability compared to clay-based fluid-loss additives, demonstrating potential for high-temperature well applications. PMID:22136134

  16. Effect of supercritical carbon dioxide as an exfoliation aid on bio-based polyethylene terephthalate glycol-modified/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Kwangho; Lee, Jae Wook; Hong, In-Kwon; Lee, Sangmook

    2013-08-01

    Bio-based PETG (bio-based glycol modified polyethylene terephthalate, Ecozen T95) / clay (organo-modified montmorillonite, OMMT, C10A) nanocomposites were prepared by co-rotating twin screw extruder attached with supercritical carbon dioxide (scCO2) injection system. The effects of nano-clay and scCO2 on the properties of PETG/clay nanocomposites were investigated by measuring thermal, rheological, tensile, impact, and barrier properties. The thermal and mechanical properties decreased with increasing nano-clay content, but they recovered or even exceeded the properties of neat PETG as scCO2 was added. It was verified due to a good dispersion of the nano-clay in PETG matrix for PETG/clay nanocomposites by XRD, SEM, and TEM. It was thought that scCO2 could be an effective exfoliation agent for many nanocomposites systems as well as for bio-based PET/clay nanocomposites.

  17. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  18. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  19. Drilling fluids based on a mixture of a sulfonated thermoplastic polymer and a sulfonated elastomeric polymer

    SciTech Connect

    Turner, S.R.; Lundberg, R.D.; Peiffer, D.G.; Thaler, W.A.; Walker, T.O.

    1984-01-10

    The present invention relates to mixtures of sulfonated thermoplastic polymers and sulfonated elastomeric polymers which function as viscosification agents when added to oil-based drilling muds which are the fluids used to maintain pressure, cool drill bits, and lift cuttings from the holes in the drilling operation for oil and gas wells. The sulfonated thermoplastic and elastomeric polymers both have about 5 to about 200 meq. of sulfonate groups per 100 grams of the sulfonated thermoplastic or elastomeric polymers, wherein the sulfonated groups are neutralized with a metallic cation or an amine or ammonium counterion. A polar cosolvent can optionally be added to the mixture of oil drilling mud and sulfonated thermoplastic and elastomeric polymers, wherein the polar cosolvent increases the solubility of the sulfonated thermoplastic and elastomeric polymer in the oil drilling mud by decreasing the strong ionic interactions between the sulfonate groups of the sulfonated polymers.

  20. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Five companies mined fire clay in four states in 2011. Production, based on a preliminary survey of the fire clay industry, was estimated to be 240 kt (265,000 st), valued at $7.68 million, an increase from 216 kt (238,000 st), valued at $6.12 million in 2010. Missouri was the leading producing state, followed by Texas, Washington and Ohio, in decreasing order by quantity.

  1. Rheologically stable, nontoxic, high-temperature, water-based drilling fluid

    SciTech Connect

    Elward-Berry, J.; Darby, J.B.

    1997-09-01

    An exceptionally stable, high-temperature, water-based drilling fluid has been developed based on a fundamental redesign of drilling fluid components and functions, while still using commercially available materials. Rheological stability was characterized by extensive Fann 50C low-shear-rate viscosity vs. temperature studies and supporting viscoelastic rheological data. The fluid has been used in offshore and land applications, at temperatures as high as 420 F and densities as high as 15.5 lbm/gal.

  2. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  3. Decision-fusion-based automated drill bit toolmark correlator

    NASA Astrophysics Data System (ADS)

    Jones, Brett C.; Press, Michael J.; Guerci, Joseph R.

    1999-02-01

    This paper describes a recent study conducted to investigate the reproducibility of toolmarks left by drill bits. This paper focuses on the automated analysis aspect of the study, and particularly the advantages of using decision fusion methods in the comparisons. To enable the study to encompass a large number of samples, existing technology was adapted to the task of automatically comparing the test impressions. Advanced forensic pattern recognition algorithms that had been developed for the comparison of ballistic evidence in the DRUGFIRETM system were modified for use in this test. The results of the decision fusion architecture closely matched those obtained by expert visual examination. The study, aided by the improved pattern recognition algorithm, showed that drill bit impressions do contain reproducible marks. In a blind test, the DRUGFIRE pattern recognition algorithm, enhanced with the decision fusion architecture, consistently identified the correct bit as the source of the test impressions.

  4. Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...

  5. Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

    NASA Astrophysics Data System (ADS)

    Kim, Soon Ki

    Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol

  6. Preliminary evaluation of galvanic sludge immobilization in clay-based matrix as an environmentally safe process.

    PubMed

    Karlovic, Elvira S; Dalmacija, Bozo D; Tamas, Zagorka S; Prica, Miljana Dj; Ranogajec, Jonjaua G

    2008-04-01

    This study attempts to determine the possibilities and limitations of the immobilization of galvanic wastes by their incorporation into clay-based materials. It focuses on the effects of several processing parameters such as the temperature of thermal treatment, the relative amount of sludge, and the physico-chemical aspects of the sample, on the fixing level of relevant metals (Zn, Ni, Fe, Mn, Pb, Cu, Cr) in thermally treated clay-based samples. The effectiveness of sludge inactivation was assessed by water-leaching test and conductivity measurements. In view of the potential use of the sludge stabilization products as construction materials, the linear shrinkage and bending strain of the fired samples was investigated. To characterize their morphology, mineralogy and composition, fired samples of clay and its mixtures with galvanic sludge were studied on a scanning electron microscope (SEM) coupled with an energy dispersive X-ray analyser (EDS) and X-ray diffractometer (XRD). It was found that the efficiency of metal immobilization is dependent on the clay composition and the temperature of the thermal treatment of the prepared mixtures. The thermal treatment of all samples at all temperatures resulted in the stabilization of all heavy metal ions (copper, nickel, iron, lead, manganese and zinc) with the exception of chromium. PMID:18324540

  7. Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Malusis, Michael A.; Shackelford, Charles D.; Maneval, James E.

    2012-09-01

    Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane

  8. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling.

    PubMed

    Zhang, Chunxi; Lin, Tie

    2016-01-01

    In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method. PMID:27483270

  9. Drill, Baby, Drill

    ERIC Educational Resources Information Center

    Kerkhoff, Todd

    2009-01-01

    School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

  10. ASSESSING THE IMPACT OF SYNTHETIC-BASED DRILLING FLUIDS ON BENTHIC ORGANISMS IN TEMPERATE WATERS

    EPA Science Inventory

    Efforts to enhance the efficiency of oil/gas drilling operations and to minimize hazards to marine ecosystems have resulted in the increased use of synthetic-based fluids (SBF). SBFs have performance characteristics closely related to oil-based fluids (OBF) however their lower PA...

  11. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  12. Long-term modeling of glass waste in portland cement- and clay-based matrices

    SciTech Connect

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  13. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  14. Hole-cleaning capabilities of an ester-based drilling fluid system

    SciTech Connect

    Kenny, P.; Hemphill, T.

    1996-03-01

    Well 33/9-C02, located in the Statfjord field in the Norwegian sector of the North Sea, held the world record in extended-reach drilling from 1993--95. To successfully drill a well of this type, an efficient drilling fluid is required to suspend the weighting material and provide good carrying capacity. The ester-based mud system used in the 12{1/4}- and 8{1/2}-in. hole sections of this well exhibited excellent hole-cleaning capabilities. This paper describes the fluid`s performance in the field and in the laboratory where the fluid was tested under down-hole conditions. Fluid rheological behavior is described with the more accurate yield-power law. (YPL) (Herschel-Bulkley) model.

  15. Transesterification reaction for synthesis of palm-based ethylhexyl ester and formulation as base oil for synthetic drilling fluid.

    PubMed

    Abdul Habib, Nor Saiful Hafiz; Yunus, Robiah; Rashid, Umer; Taufiq-Yap, Yun H; Abidin, Zurina Zainal; Syam, Azhari Muhammad; Irawan, Sonny

    2014-01-01

    The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives. PMID:24717547

  16. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  17. Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes

    NASA Astrophysics Data System (ADS)

    Herney-Ramírez, J.; Madeira, Luis M.

    Clays, both natural and physical-chemically modified, are attractive materials for the preparation of supported catalysts. In this chapter, a review is made regarding the use of pillared interlayered clays (PILCs) in heterogeneous Fenton-like advanced oxidation processes. Their applications in pollutants degradation is summarized, with particular emphasis on the effect of the main operating conditions (e.g., initial H2O2 or parent compound concentration, catalyst load, pH, or temperature) on oxidation efficiency. Special attention is also given to the type of catalyst or precursor used, to the importance and advantages of the heterogeneous versus homogeneous process, and to significant aspects like catalyst stability. Among the technological issues that are of concern, the importance of using continuous flow reactors (e.g., fixed-bed) is discussed. Finally, some mechanistic studies are reviewed as well as modeling works, based on phenomenological or semi-empiric models (e.g., using statistic tools like design of experiments).

  18. Bio-Based Nano Composites from Plant Oil and Nano Clay

    NASA Astrophysics Data System (ADS)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  19. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  20. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Seven companies mined fire clay in four states during 2003. From 1984 to 1992, production declined to 383 kt (422,000 st) from a high of 1.04 Mt (1.14 million st) as markets for clay-based refractories declined. Since 1992, production levels have been erratic, ranging from 383 kt (422,000 st) in 1992 and 2001 to 583 kt (642,000 st) in 1995. Production in 2003, based on preliminary data, was estimated to be around 450 kt (496,000 st) with a value of about $10.5 million. This was about the same as in 2002. Missouri remained the leading producer state, followed by South Carolina, Ohio and California.

  1. Synthesis and Characterization of the Hybrid Clay- Based Material Montmorillonite-Melanoidin: A Potential Soil Model

    SciTech Connect

    V Vilas; B Matthiasch; J Huth; J Kratz; S Rubert de la Rosa; P Michel; T Schäfer

    2011-12-31

    The study of the interactions among metals, minerals, and humic substances is essential in understanding the migration of inorganic pollutants in the geosphere. A considerable amount of organic matter in the environment is associated with clay minerals. To understand the role of organic matter in the environment and its association with clay minerals, a hybrid clay-based material (HCM), montmorillonite (STx-1)-melanoidin, was prepared from L-tyrosine and L-glutamic acid by the Maillard reaction. The HCM was characterized by elemental analysis, nuclear magnetic resonance, x-ray photoelectron spectroscopy (XPS), scanning transmission x-ray microscopy (STXM), and thermal analysis. The presence of organic materials on the surface was confirmed by XPS and STXM. The STXM results showed the presence of organic spots on the surface of the STx-1 and the characterization of the functional groups present in those spots. Thermal analysis confirmed the existence of organic materials in the montmorillonite interlayer, indicating the formation of a composite of melanoidin and montmorillonite. The melanoidin appeared to be located partially between the layers of montmorillonite and partially at the surface, forming a structure that resembles the way a cork sits on the top of a champagne bottle.

  2. Waste to Want: Polymer nanocomposites using nanoclays extracted from Oil based drilling mud waste

    NASA Astrophysics Data System (ADS)

    Adegbotolu, Urenna V.; Njuguna, James; Pollard, Pat; Yates, Kyari

    2014-08-01

    Due to the European Union (EU) waste frame work directive (WFD), legislations have been endorsed in EU member states such as UK for the Recycling of wastes with a vision to prevent and reduce landfilling of waste. Spent oil based drilling mud (drilling fluid) is a waste from the Oil and Gas industry with great potentials for recycling after appropriate clean-up and treatment processes. This research is the novel application of nanoclays extracted from spent oil based drilling mud (drilling fluid) clean-up as nanofiller in the manufacture of nanocomposite materials. Research and initial experiments have been undertaken which investigate the suitability of Polyamide 6 (PA6) as potential polymer of interest. SEM and EDAX were used to ascertain morphological and elemental characteristics of the nanofiller. ICPOES has been used to ascertain the metal concentration of the untreated nanofiller to be treated (by oil and heavy metal extraction) before the production of nanocomposite materials. The challenges faced and future works are also discussed.

  3. Spreading and deposition of drill cuttings in the Barents Sea - Plans of the Barents Sea drill cuttings research initiative (BARCUT) project

    NASA Astrophysics Data System (ADS)

    Junttila, Juho; Aagaard Sørensen, Steffen; Dijkstra, Noortje

    2016-04-01

    The increasing petroleum exploration activity in the Barents Sea will lead to increased release of drill cuttings onto the ocean bottom in the future. Drilling mud consists of both drilling fluid with contaminants and fine sediments. This increasing discharge of drill cuttings provides a need for further knowledge of ocean current transportation of both contaminants and fine sediment particles (clay and silt), their impact on microfauna and the prediction of their accumulation areas. The main object is to study the current status of the sediments and microfauna exposed to different types of drill cuttings in the proximity of drilled exploration wells. Detailed objectives are: 1) To identify the main physical and geochemical characteristics of the sediments near the drilled wells including main areas for drill cutting accumulation and the influence of ocean currents on sediments and drill cuttings; 2) To identify the influence of drill cutting discharge on benthic foraminifera; 3) Monitoring and prediction of future spreading, accumulation and distribution of drill cutting related pollutants. We have conducted two field sampling campaigns, and in total visited seven drilling sites, ranging in age from recently drilled (in 2015) to nearly 30 years since abandonment. In this project, we study mainly push cores taken with a remote operated underwater vehicle (ROV) in the close proximity of exploration wells in the SW Barents Sea. We will determine the modern sedimentation rates based on the ²¹°Pb dating method. We analyze sediment grain-size, heavy metal and polyaromatic hydrocarbon (PAH) contents. Additionally analysis on benthic foraminifera, smectite clay minerals and the total organic carbon (TOC) content will be performed.

  4. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  5. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  6. Strain monitoring of drilling riser in deepwater based on fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Jiang, Yajun; Yang, Dexing; Wang, Jun; Xu, Jian; Qin, Chuan; Liao, Wei; Zhao, Jianlin; Wang, Haiyan; Jiang, Shiquan

    2011-11-01

    It is very important to monitor the lateral and axial strains of drilling riser for evaluation its health in deepwater. An optical fiber strain sensing system based on optical fiber Bragg gratings (FBGs) used for monitoring the strain of drilling riser is presented. The optical fiber strain sensors are made by embedding FBGs into thin columned fiber reinforced polymer which protect FBGs from seawater corrosion. Four optical fiber strain sensors are installed parallel to the riser axis and arranged at 90° angles around the riser by a home-made metal belt, at the same time, twelve resistance strain gauges are pasted near the sensors around the drilling riser at 30° angles as reference sensors. A scaled drilling riser about 1 meter long and 0.245m diameter is pressed in the lateral and axial direction in the range of 0-400KN, the experimental results show that the relative error between optical fiber strain sensors and resistance strain gauges is less than 6%.

  7. Rheological investigations of water based drilling fluid system developed using synthesized nanocomposite

    NASA Astrophysics Data System (ADS)

    Jain, Rajat; Mahto, Triveni K.; Mahto, Vikas

    2016-02-01

    In the present study, polyacrylamide grafted xanthan gum/multiwalled carbon nanotubes (PA-g-XG/MWCNT) nanocomposite was synthesized by free radical polymerization technique using potassium persulfate as an initiator. The polyacrylamide was grafted on xanthan gum backbone in the presence of MWCNT. The synthesized nanocomposite was characterized by X-ray diffraction technique (XRD), and Fourier transform infrared spectroscopy analysis (FT-IR). The morphological characteristics of the nanocomposite were analyzed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) analyses. Also, its temperature resistance property was observed with Thermogravimetric analysis (TGA). The effect of nanocomposite on the rheological properties of the developed drilling fluid system was analyzed with a strain controlled rheometer and Fann viscometer. Flow curves were drawn for the developed water based drilling fluid system at elevated temperatures. The experimental data were fitted to Bingham, power-law, and Herschel Bulkley flow models. It was observed that the Herschel Bulkley flow model predict the flow behavior of the developed system more accurately. Further, nanocomposite exhibited non-Newtonian shear thinning flow behavior in the developed drilling fluid system. Nanocomposite showed high temperature stability and had a significant effect on the rheological properties of the developed drilling fluid system as compared to conventionally used partially hydrolyzed polyacrylamide (PHPA) polymer.

  8. Vital roles of nano silica in synthetic based mud for high temperature drilling operation

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Aslam Md; Hanafi, Nor Hazimastura

    2015-07-01

    At high temperature drilling, chemicals degradation occurs which reduce the effectiveness of the drilling fluid. There is a potential that by using nano sized particles which have thermal stability up to 2500°F to be used as a stabilizer to withstand the harsh condition. Therefore, this project aims to identify the performance of synthetic-based mud (SBM) with nano silica for high temperature drilling operation. A conventional SBM performance has been compared with additional percentages of nano silica. 20% and 40% of nano silica out of fluid loss weight has been added into the SBM and analyzed the rheological properties and other drilling fluid properties. The conventional SBM formulation has lost some amount of weighting material or solids in the mud and has been replaced by lighter and smaller size of nanoparticles. It has reduced the rheological properties of the mud but the gelation formed by nano silica material has given higher gel strength. Also, nano silica potentially plugs the porous media, resulted in lower filtration loss measurement and thinner mud cake ranged 20% to 50% respectively.

  9. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  10. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  11. Drilling tool

    SciTech Connect

    Baumann, O.; Dohse, H.P.; Reibetanz, W.; Wanner, K.

    1983-09-27

    A drilling tool is disclosed which has a drilling shaft member, a crown drilling member with an annular wall provided with a plurality of cutting edges and detachably mounted on the shaft member, a center drilling member detachably mounted on the shaft member inside the crown drilling member and having a further cutting edge, and elements for limiting a drilling depth of the tool when the center drilling member is mounted on the shaft member. Thereby, the operator of the drilling tool, after drilling a guiding groove in a rock, is forced to remove the center drilling member from the drilling tool and drill further without the center drilling member, which increases the drilling efficiency.

  12. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    SciTech Connect

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

  13. An analytical drilling force model and GPU-accelerated haptics-based simulation framework of the pilot drilling procedure for micro-implants surgery training.

    PubMed

    Zheng, Fei; Lu, Wen Feng; Wong, Yoke San; Foong, Kelvin Weng Chiong

    2012-12-01

    The placement of micro-implants is a common but relatively new surgical procedure in clinical dentistry. This paper presents a haptics-based simulation framework for the pilot drilling of micro-implants surgery to train orthodontists to successfully perform this essential procedure by tactile sensation, without damaging tooth roots. A voxel-based approach was employed to model the inhomogeneous oral tissues. A preprocessing pipeline was designed to reduce imaging noise, smooth segmentation results and construct an anatomically correct oral model from patient-specific data. In order to provide a physically based haptic feedback, an analytical drilling force model based on metal cutting principles was developed and adapted for the voxel-based approach. To improve the real-time response, the parallel computing power of Graphics Processing Units is exploited through extra efforts for data structure design, algorithms parallelization, and graphic memory utilization. A prototype system has been developed based on the proposed framework. Preliminary results show that, by using this framework, proper drilling force can be rendered at different tissue layers with reduced cycle time, while the visual display has also been enhanced. PMID:22749906

  14. Mechanical properties of materials obtained via alkaline activation of illite-based clays of Latvia

    NASA Astrophysics Data System (ADS)

    Sperberga, I.; Rundans, M.; Cimmers, A.; Krage, L.; Sidraba, I.

    2015-04-01

    Materials has been synthesized in the temperature range from 60-100 °C from two illite based clays of Latvia under activation of KOH and NaOH solutions (4-6 M). Compressive strength and apparent porosity were measured. The effect of concentration of KOH and NaOH solutions on the material mechanical properties was investigated by means of infrared spectroscopy (IR). Compressive strength data of the materials showed that via such activation could obtain building materials with good quality.

  15. Chemically-bonded brick production based on burned clay by means of semidry pressing

    NASA Astrophysics Data System (ADS)

    Voroshilov, Ivan; Endzhievskaya, Irina; Vasilovskaya, Nina

    2016-01-01

    We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg m3, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W m * °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.

  16. Chloride ions promoted the catalytic wet peroxide oxidation of phenol over clay-based catalysts.

    PubMed

    Zhou, Shiwei; Zhang, Changbo; Xu, Rui; Gu, Chuantao; Song, Zhengguo; Xu, Minggang

    2016-01-01

    Catalytic wet peroxide oxidation (CWPO) of phenol over clay-based catalysts in the presence and absence of NaCl was investigated. Changes in the H2O2, Cl(-), and dissolved metal ion concentration, as well as solution pH during phenol oxidation, were also studied. Additionally, the intermediates formed during phenol oxidation were detected by liquid chromatography-mass spectroscopy and the chemical bonding information of the catalyst surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The results showed that the presence of Cl(-) increased the oxidation rate of phenol to 155%, and this phenomenon was ubiquitous during the oxidation of phenolic compounds by H2O2 over clay-based catalysts. Cl(-)-assisted oxidation of phenol was evidenced by several analytical techniques such as mass spectroscopy (MS) and XPS, and it was hypothesized that the rate-limiting step was accelerated in the presence of Cl(-). Based on the results of this study, the CWPO technology appears to be promising for applications in actual saline phenolic wastewater treatment. PMID:26942523

  17. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    PubMed

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications. PMID:26609925

  18. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    PubMed Central

    Hashizume, Hideo

    2015-01-01

    Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components. PMID:25734235

  19. Electrical properties of multiphase composites based on carbon nanotubes and an optimized clay content

    NASA Astrophysics Data System (ADS)

    Egiziano, Luigi; Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi

    2016-05-01

    The experimental results concerning the characterization of a multiphase nanocomposite systems based on epoxy matrix, loaded with different amount of multi-walled carbon nanotubes (MWCNTs) and an optimized Hydrotalcite (HT) clay content (i.e. 0.6 wt%), duly identified by an our previous theoretical study based on Design of Experiment (DoE), are presented. Dynamic-mechanical analysis (DMA) reveal that even the introduction of higher HT loading (up to 1%wt) don't affect significantly the mechanical properties of the nanocomposites while morphological investigations show an effective synergy between clay and carbon nanotubes that leads to peculiar micro/nanostructures that favor the creation of the electrical conductive network inside the insulating resin. An electrical characterization is carried out in terms of DC electrical conductivity, percolation threshold (EPT) and frequency response in the range 10Hz-1MHz. In particular, the measurements of the DC conductivity allow to obtain the typical "percolation" curve also found for classical CNT-polymer mixtures and a value of about 2 S/m for the electrical conductivity is achieved at the highest considered CNTs concentration (i.e. 1 wt%). The results suggest that multiphase nanocomposites obtained incorporating dispersive nanofillers, in addition to the conductive one, may be a valid alternative to the polymer blends, to improve the properties of the polymeric materials thus able to meet high demands, particularly concerning their mechanical and thermal stability and electrical features required in the aircraft engineering.

  20. Multiscale Multiphysics-Based Modeling and Analysis on the Tool Wear in Micro Drilling

    NASA Astrophysics Data System (ADS)

    Niu, Zhichao; Cheng, Kai

    2016-02-01

    In micro-cutting processes, process variables including cutting force, cutting temperature and drill-workpiece interfacing conditions (lubrication and interaction, etc.) significantly affect the tool wear in a dynamic interactive in-process manner. The resultant tool life and cutting performance directly affect the component surface roughness, material removal rate and form accuracy control, etc. In this paper, a multiscale multiphysics oriented approach to modeling and analysis is presented particularly on tooling performance in micro drilling processes. The process optimization is also taken account based on establishing the intrinsic relationship between process parameters and cutting performance. The modeling and analysis are evaluated and validated through well-designed machining trials, and further supported by metrology measurements and simulations. The paper is concluded with a further discussion on the potential and application of the approach for broad micro manufacturing purposes.

  1. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  2. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  3. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  4. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  5. Clay Houses

    ERIC Educational Resources Information Center

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  6. Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films.

    PubMed

    Mishra, R K; Ramasamy, K; Lim, S M; Ismail, M F; Majeed, A B A

    2014-08-01

    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications. PMID:24831081

  7. Novel nanohybrids of cobalt(III) Schiff base complexes and clay: Synthesis and structural determinations

    NASA Astrophysics Data System (ADS)

    Kianfar, Ali Hossein; Mahmood, Wan Ahmad Kamil; Dinari, Mohammad; Azarian, Mohammad Hossein; Khafri, Fatemeh Zare

    2014-06-01

    The [Co(Me2Salen)(PBu3)(OH2)]BF4 and [Co(Me2Salen)(PPh3)(Solv)]BF4, complexes were synthesized and characterized by FT-IR, UV-Vis, 1H NMR spectroscopy and elemental analysis techniques. The coordination geometry of [Co(Me2Salen)(PPh3)(H2O)]BF4 was determined by X-ray crystallography. It has been found that the complex is containing [Co(Me2Salen)(PPh3)(H2O)]BF4 and [Co(Me2Salen)(PPh3)(EtOH)]BF4 hexacoordinate species in the solid state. Cobalt atom exhibits a distorted octahedral geometry and the Me2Salen ligand has the N2O2 coordinated environment in the equatorial plane. The [Co(Me2Salen)(PPh3)(H2O)]BF4 complex shows a dimeric structure via hydrogen bonding between the phenolate oxygen and hydrogens of coordinated H2O molecule. These complexes were incorporated into Montmorillonite-K10 nanoclay. The modified clays were identified by FT-IR, XRD, EDX, TGA/DTA, SEM and TEM techniques. According to the XRD results of the new nanohybrid materials, the Schiff base complexes are intercalated in the interlayer spaces of the clay. SEM and TEM micrographs show that the resulting hybrid nanomaterials have layer structures. Also, TGA/DTG results show that the intercalation reaction was taken place successfully.

  8. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Field tests have been performed in two underground coal mines in this quarter. It also found from the tests that the non-drilling thrust and torque should be deducted from the acquired drilling data. The non-drilling torque is actually higher than that is used to overcome the shear strength is proportional to the rotation rate.

  9. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays.

    PubMed

    Martynková, Grazyna Simha; Valásková, Marta

    2014-01-01

    The review is focused on the recent research and development of antimicrobial nanocomposites based on selected carbon nanomaterials and natural nanoclay minerals. The nanocomposites comprised of two or several components, where at least one presents antimicrobial properties, are discussed. Yet the most popular agent remains silver as nanoparticle or in ionic form. Second, broadly studied group, are organics as additives or polymeric matrices. Both carbons and clays in certain forms possess antimicrobial properties. A lot of interest is put on to research graphene oxide. The low-environmental impact technologies-based on sustainable biopolymers have been studied. Testing of antimicrobial properties of nanomaterials is performed most frequently on E. coli and S. aureus bacterias. PMID:24730289

  10. Factors Affecting the Design of Slow Release Formulations of Herbicides Based on Clay-Surfactant Systems. A Methodological Approach

    PubMed Central

    Galán-Jiménez, María del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás

    2013-01-01

    A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and

  11. Factors affecting the design of slow release formulations of herbicides based on clay-surfactant systems. A methodological approach.

    PubMed

    Galán-Jiménez, María Del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás

    2013-01-01

    A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and

  12. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. PMID:25922212

  13. Drill Presses.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to the drill press for use at the postsecondary level. The first of seven sections lists seven types of drill presses. The second section identifies 14 drill press parts. The third section lists 21 rules for safe use of drilling machines. The fourth section identifies the six procedures for…

  14. Toxicity assessment of individual ingredients of synthetic-based drilling muds (SBMs).

    PubMed

    Bakhtyar, Sajida; Gagnon, Marthe Monique

    2012-09-01

    Synthetic-based drilling muds (SBMs) offer excellent technical characteristics while providing improved environmental performance over other drilling muds. The low acute toxicity and high biodegradability of SBMs suggest their discharge at sea would cause minimal impacts on marine ecosystems, however, chronic toxicity testing has demonstrated adverse effects of SBMs on fish health. Sparse environmental monitoring data indicate effects of SBMs on bottom invertebrates. However, no environmental toxicity assessment has been performed on fish attracted to the cutting piles. SBM formulations are mostly composed of synthetic base oils, weighting agents, and drilling additives such as emulsifiers, fluid loss agents, wetting agents, and brine. The present study aimed to evaluate the impact of exposure to individual ingredients of SBMs on fish health. To do so, a suite of biomarkers [ethoxyresorufin-O-deethylase (EROD) activity, biliary metabolites, sorbitol dehydrogenase (SDH) activity, DNA damage, and heat shock protein] have been measured in pink snapper (Pagrus auratus) exposed for 21 days to individual ingredients of SBMs. The primary emulsifier (Emul S50) followed by the fluid loss agent (LSL 50) caused the strongest biochemical responses in fish. The synthetic base oil (Rheosyn) caused the least response in juvenile fish. The results suggest that the impact of Syndrill 80:20 on fish health might be reduced by replacement of the primary emulsifier Emul S50 with an alternative ingredient of less toxicity to aquatic biota. The research provides a basis for improving the environmental performance of SBMs by reducing the environmental risk of their discharge and providing environmental managers with information regarding the potential toxicity of individual ingredients. PMID:21928151

  15. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  16. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  17. Clay Mineralogy of a Pleistocene Barrier Island, Skidaway Island, GA

    NASA Astrophysics Data System (ADS)

    Shaffer, M.; Shackford, J. K.; Elliott, W. C.; Christensen, B. A.; Freile, D.; Hillier, C.; Horton, B. P.

    2005-05-01

    A dense blue clay underlies various marsh localities near the Skidaway Institute of Oceanography (SKIO). SKIO is located on a Pleistocene barrier island in Georgia. The clay is found in two cores drilled at the high marsh/maritime forest transition zone. It was recovered at a depth of one meter, below unconsolidated marsh sediment. A total of 12 clay samples were collected at 10cm intervals downcore beginning at 100cm, through the clay layer. The thickness of the clay layer is unknown due to core refusal at a heavily iron oxide mottled zone. Samples were examined for the presence of diatoms and foraminifera, neither of which were found to be present, thereby suggesting a non-marine environment, although dissolution may be a factor. Geochemical data also lacks a definite marine signature, thereby confirming the micropaleontological conclusions. Smectite, illite, and kaolinite were found throughout both cores with halloysite present only below a depth of roughly 120cm. These particular clay minerals have been identified in blue clays analyzed in the Carolina Bays of southern North Carolina. Halloysite is typically a metastable phase forming from the weathering of illite to kaolinite, thus the location of the halloysite found in these cores indicates more recent weathering of the parent illite at depth. This is unusual as weathering is normally thought to be more intense closer to the surface. Vermiculite, which is also part of the general weathering scheme of mica, was not identified in the cores based on the behavior of the samples after solvation in ethylene glycol and potassium-saturation. The observed clay assemblage is similar to that of North Carolina Carolina Bays. Carolina Bays are found from Virginia to Georgia, and are found to contain blue clays (Ingram et al., 1959). Morphologically, Carolina Bays are typically elliptical and while the study area is more rounded, this could be due to its modification by an active tidal system.

  18. Drilling method

    SciTech Connect

    Stokley, C.O.; Haas, R.C.

    1991-04-30

    This patent describes a drilling method. It includes: rotating a drill bit in a well head to drill a well in an earth formation while circulating drilling fluid consisting essentially of a liquid; conducting the returning drilling fluid, and oil and gas from the formation to a flow rate control valve and to a pressure control valve; and conducting fluid from the flow rate control valve and the pressure control valve to a separator vessel maintained under pressure.

  19. Comparative study of illite clay and illite-based geopolymer products

    NASA Astrophysics Data System (ADS)

    Sperberga, I.; Sedmale, G.; Stinkulis, G.; Zeila, K.; Ulme, D.

    2011-10-01

    Quaternary (Q-clay) clayey deposits are one of the dominating parts of mineral raw materials of the sedimentary cover at present area of Latvia. These clays can be characterised by illite content up to 75-80 %. Two ways for use of illite clays were studied: conventional and geopolymers method. Purpose of the second mentioned method was showing the influence of alkali (KOH) on the transformation of Q-clay/illite structure. Obtained products were investigated by IR-spectroscopy, DTA and XRD, pore size distribution was determined as well. Some ceramic properties and compressive strength were determined and compared. IR-spectrum showed the effect of alkali on the transformation of Q-clay/illite structure in three main absorption bands: 3620-3415 cm-1 which is related to the vibrational modes of adsorbed water between SiO4 and AlO6 layers; new stronger absorption bands at 1635 cm-1 and 1435 cm-1 indicate on the appearance of vibrations in Q-KOH and are related to the K-O-Si bonds; the most essential changes are vibrations at 850 cm-1 showing the changes in the coordination number of Al from 6 to 4 for Q-KOH. Investigations of the bulk density in dependence on temperature showed the small increase of bulk density for Q-clay while - the relatively remarkable decrease for Q-clay/KOH. Mentioned values correlate with the compressive strength of Q-clay and Q-KOH products.

  20. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  1. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    SciTech Connect

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting

  2. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  3. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    PubMed

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-01-01

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130

  4. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    PubMed Central

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-01-01

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130

  5. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  6. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  7. New magnetic organic inorganic composites based on hydrotalcite-like anionic clays for drug delivery

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Chiriac, Horia; Lupu, Nicoleta

    2007-04-01

    The structural "memory effect" of anionic clays was used to obtain layered double hydroxides (LDHs) with tailored magnetic properties, by loading iron oxides and/or spinel structures on iron partially substituted hydrotalcite-like materials. The obtained magnetic layered structures were further used as precursors for new hybrid nanostructures, such as aspirin-hydrotalcite-like anionic clays. Transmission electron microscopy (TEM) analysis shows that small iron oxide or spinel nanoparticles coexist with the fibrous drug particles on the surface of partially aggregated typical clay-like particles. The specific saturation magnetization of the loaded LDHs can be increased up to 70 emu/g by using specific post-synthesis treatments.

  8. Drilling on midway atoll, Hawaii

    USGS Publications Warehouse

    Ladd, H.S.; Tracey, J.I., Jr.; Gross, M.G.

    1967-01-01

    Two holes drilled through reef sediments into basalt have established a geologic section through the Miocene. Midway was built above the sea by flows that were weathered and partially truncated in pre-Miocene time. After submergence, volcanic clays were reworked and covered by limestones. Overall submergence was interrupted at least twice by emergence. The limestones have been leached, recrystallized, and partially dolomitized.

  9. Automated drilling draws interest

    SciTech Connect

    Not Available

    1985-05-01

    Interest in subsea technology includes recent purchase of both a British yard and Subsea Technology, a Houston-based BOP manufacturer. In France, key personnel from the former Comex Industries have been acquired and a base reinstalled in Marseille. ACB is also investing heavily, with the Norwegians, in automated drilling programs. These automated drilling programs are discussed.

  10. On the accuracy of a video-based drill-guidance solution for orthopedic and trauma surgery: preliminary results

    NASA Astrophysics Data System (ADS)

    Magaraggia, Jessica; Kleinszig, Gerhard; Wei, Wei; Weiten, Markus; Graumann, Rainer; Angelopoulou, Elli; Hornegger, Joachim

    2014-03-01

    Over the last years, several methods have been proposed to guide the physician during reduction and fixation of bone fractures. Available solutions often use bulky instrumentation inside the operating room (OR). The latter ones usually consist of a stereo camera, placed outside the operative field, and optical markers directly attached to both the patient and the surgical instrumentation, held by the surgeon. Recently proposed techniques try to reduce the required additional instrumentation as well as the radiation exposure to both patient and physician. In this paper, we present the adaptation and the first implementation of our recently proposed video camera-based solution for screw fixation guidance. Based on the simulations conducted in our previous work, we mounted a small camera on a drill in order to recover its tip position and axis orientation w.r.t our custom-made drill sleeve with attached markers. Since drill-position accuracy is critical, we thoroughly evaluated the accuracy of our implementation. We used an optical tracking system for ground truth data collection. For this purpose, we built a custom plate reference system and attached reflective markers to both the instrument and the plate. Free drilling was then performed 19 times. The position of the drill axis was continuously recovered using both our video camera solution and the tracking system for comparison. The recorded data covered targeting, perforation of the surface bone by the drill bit and bone drilling. The orientation of the instrument axis and the position of the instrument tip were recovered with an accuracy of 1:60 +/- 1:22° and 2:03 +/- 1:36 mm respectively.

  11. Geophysical investigations in deep horizontal holes drilled ahead of tunnelling

    USGS Publications Warehouse

    Carroll, R.D.; Cunningham, M.J.

    1980-01-01

    Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.

  12. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.

    2010-01-01

    The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.

  13. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-04-15

    In this quarter, the research effort is to develop the drill control unit (DCU) that acquire, store drilling parameters and control the drilling operation. The relevant publications have been reviewed and the methodology developed by previous researchers has been evaluated using the collected data in our laboratory and field tests conducted prior to the start of this project. Numerical modeling for exploring roof bolting mechanism has been started.

  14. Second Language Vocabulary Acquisition Using a Diglot Reader or a Computer-Based Drill and Practice Program

    ERIC Educational Resources Information Center

    Christensen, Elizabeth; Merrill, Paul; Yanchar, Stephen

    2007-01-01

    This research study compares the impact of a computer-based diglot reader with that of a sophisticated, computer-based, drill and practice program on second language acquisition. The affective benefits as well as depth and breadth of vocabulary development were examined. The diglot method, originally conceived by Burling, introduces second…

  15. Laboratory development and field application of a novel water-based drill-in fluid for geopressured horizontal wells

    SciTech Connect

    Dobson, J.W.; Harrison, J.C.; Hale, A.H.

    1996-12-31

    Research has identified a novel water-based drill-in fluid for drilling and completing geopressured horizontal wells. This fluid has a unique combination of properties which make it especially suitable for geopressured applications. They include the use of calcium and/or zinc bromide as a base brine, minimal concentration of calcium carbonate as bridging material, low plastic viscosity, tight fluid loss control, good filter cake properties, and excellent return permeability. This drill-in fluid has been used successfully to drill a 1,200 foot production interval, 4.75 inch diameter wellbore in the Gulf of Mexico with a system weight of 13.2 lbm/gal, bottom hole temperature of 185{degrees} F., and a 1400 to 1700 psi overbalance. The system functioned very well in both the drilling and completion operations. Fluid rheology was easily maintainable and the hole conditions were excellent without torque or drag problems. Initial production data suggests that the well is producing at expected rates with low drawdown pressure.

  16. Induction and Tunability of Self-Healing Property of Dendron Based Hydrogel Using Clay Nanocomposite.

    PubMed

    Vivek, Balachandran; Kumar, Prashant; Prasad, Edamana

    2016-06-16

    Low molecular weight gels have relatively poor self-healing capacity compared to that of polymeric gels. Induction and tuning of the healing capacity of low molecular weight gels to achieve desired applications are thus challenging tasks. The present work describes the achievement of remarkable tunability of self-healing property for a low molecular weight hybrid gel, based on poly(aryl ether) dendron derivative (PAD). The hybrid gel has been synthesized using PAD and poly(amido amine) {PAMAM} dendrimer derivative (QPD), which are intercalated in the montmorillonite clay (MMT) layers. The self-healing of the hybrid gel (QPD-MMT-PAD) was demonstrated through experiments where the distorted gel regained the initial value of storage modulus (G') within a few minutes. Further, the propensity of self-healing of the gel has been tuned as a function of QPD concentration. The mechanically stable QPD-MMT-PAD hybrid gel has been utilized for the adsorption of ppm level concentration of polycyclic aromatic hydrocarbons (PAHs) such as β-naphthol, pyrene, and phenenathrene from water with excellent efficiency (80-98%). PMID:27193239

  17. Hydrogenolysis of Glycerol to 1,2-Propanediol Over Clay Based Catalysts.

    PubMed

    Lee, Sang-Yong; Jung, Jae-Sun; Yang, Eun-Hyeok; Lee, Kwan-Young; Moon, Dong Ju

    2015-11-01

    1,2-propanediol (1,2-PDO) is one of the promising product among the valuable products derived from glycerol and it can be obtained by the catalytic hydrogenolysis of glycerol. Copper-supported clay-based catalysts were prepared with different pore sizes using various ratios of kaolin, Mg, and Al by coprecipitation and applied in the selective hydrogenolysis of glycerol to 1,2-PDO. In recent research, variations of pore volume and pore size could affect the diffusion of reagents within the catalyst due to the collision between reagents or pore wall and reagents. It changes selectivities of each product in hydrogenolysis of glycerol reaction. The physico-chemical properties of the catalysts were analyzed by XRD, N2 physisorption, TPR, CO2-TPD, SEM, and a mercury porosimeter. The Cu/TALCITE 4 catalyst showed 98% 1,2-PDO selectivity with 65% glycerol conversion under the optimized condition of 190 degrees C, 25 bar, and 20 wt% glycerol aqueous solution. It was found that the basic strength and meso-macro pore structure of the catalysts play an important role in glycerol conversion and 1,2-PDO selectivity. PMID:26726594

  18. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed. It is found that the drilling power can be used as a supplementary method for detecting voids/fractures and rock interfaces.

  19. Radiation-induced synthesis of vinyl copolymer based nanocomposites filled with reactive organic montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyum; Kwen, Hai-Doo; Choi, Seong-Ho

    2012-05-01

    Vinyl copolymer-clay nanocomposites were prepared by γ-irradiation-initiated radical polymerization using a mixture of styrene (St) and divinyl benzene (DVB) in the presence of reactive organic montmorillonite clay (OMMT) in methanol at room temperature. Reactive OMMT was synthesized by a cation exchange reaction of Na+-MMT and 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride as a reactive organic modifier in an aqueous solution. The microstructures of the nanocomposites were confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal stability was examined by thermo gravimetric analysis (TGA). As a result, the reactive OMMT was a good additive material for preparing vinyl copolymer-clay nanocomposites.

  20. The application of a neural network to map clay zones in crystalline rock

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Genter, Albert; Kohl, Thomas

    2014-02-01

    The appearance of clay in fractures is an important issue of applied geoscience as it not only affects the stability but also the flow paths through rocks. Forming a link between hydraulic, geochemical and mechanical processes, clay structures need to be thoroughly investigated. The growing importance of clay for waste disposal, petroleum research, geothermal exploration and geotechnical engineering necessitates tools to find and to characterize clay structures and clay minerals indirectly from geophysical measuring methods. Particularly, there is need for a technique enabling to map clay-rich zones from geophysical well logs acquired on-site in order to assess the mechanical and hydraulic properties of rocks. In this study, we present a neural network based method to map clay bearing fracture zones in crystalline facies. The study has been performed on the basis of geophysical and geological data acquired at the geothermal site of Soultz-sous-Forêts (France), in the granitic reservoir. A neural network was trained on geophysical logs from the fully cored exploration well EPS1. Calibration of the network was done on reference logs derived from the drill core. The effective calibration enabled the creation of synthetic clay content logs, which predict the clay amount in fractures along the well with >74 per cent accordance with a reference log. High clay contents could be located in faults, on which aseismic movements have been identified. The validation of this relationship destines the synthetic logs to help identifying potentially weak zones from geophysical logging methods. With application on non-cored wells, this tool can become a powerful means for assessing the probability of aseismic movements on faults caused by the presence of clay and estimating the hydraulic properties of fractures.

  1. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    PubMed

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids. PMID:21888313

  2. Numerical evaluation of sequential bone drilling strategies based on thermal damage.

    PubMed

    Tai, Bruce L; Palmisano, Andrew C; Belmont, Barry; Irwin, Todd A; Holmes, James; Shih, Albert J

    2015-09-01

    Sequentially drilling multiple holes in bone is used clinically for surface preparation to aid in fusion of a joint, typically under non-irrigated conditions. Drilling induces a significant amount of heat and accumulates after multiple passes, which can result in thermal osteonecrosis and various complications. To understand the heat propagation over time, a 3D finite element model was developed to simulate sequential bone drilling. By incorporating proper material properties and a modified bone necrosis criteria, this model can visualize the propagation of damaged areas. For this study, comparisons between a 2.0 mm Kirschner wire and 2.0 mm twist drill were conducted with their heat sources determined using an inverse method and experimentally measured bone temperatures. Three clinically viable solutions to reduce thermally-induced bone damage were evaluated using finite element analysis, including tool selection, time interval between passes, and different drilling sequences. Results show that the ideal solution would be using twist drills rather than Kirschner wires if the situation allows. A shorter time interval between passes was also found to be beneficial as it reduces the total heat exposure time. Lastly, optimizing the drilling sequence reduced the thermal damage of bone, but the effect may be limited. This study demonstrates the feasibility of using the proposed model to study clinical issues and find potential solutions prior to clinical trials. PMID:26163230

  3. Chemical Speciation of Chromium in Drilling Muds

    SciTech Connect

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-02-02

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

  4. Development of porous clay-based composites for the sorption of lead from water.

    PubMed

    Ake, C L; Mayura, K; Huebner, H; Bratton, G R; Phillips, T D

    2001-07-20

    Lead contamination of water is a major health hazard, as illustrated by the fact that exposure to this metal has been associated with death and disease in humans, birds, and animals. The present research was aimed at the development of a porous, solid-phase sorbent that can be used in the remediation of lead-contaminated water. A suitable sorbent was identified by screening various clays and other materials for their ability to effectively bind lead. The clay was adhered to a solid support using an aqueous solution of carboxymethyl cellulose. The binary composite was then tested for its ability to bind lead from solution, while providing void volume, increased surface area, and considerably enhanced hydraulic conductivity. The results suggested that a combination of sodium montmorillonite clay and carbon exhibited enhanced sorption of lead compared to carbon alone, and also supported the potential application of various combinations of sorbent materials. This value-added combination of clay, solid support, and adhesive will allow for the construction of column filtration systems that are multifunctional and capable of purifying large volumes of contaminated water. PMID:11482800

  5. Clay-based Formulations to Reduce the Environmental Impact of the Herbicide Terbuthylazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled release formulations of pesticides are receiving increasing attention as a way to reduce the environmental impact of pesticides after their application to agricultural soils. Natural and modified clay minerals have been proved to be efficient adsorbents for many pesticides and, accordingl...

  6. Clay-based affinity probes for selective cleanup and determination of aflatoxin B1 using nanostructured montmorillonite on quartz.

    PubMed

    Huebner, Henry J; Phillips, Timothy D

    2003-01-01

    A study was conducted to investigate the selective cleanup and determination of aflatoxin B1 (AfB1) from contaminated media. Composite adsorbents were formulated from calcium montmorillonite clay, which possesses a high affinity and enthalpy of adsorption for AfB1. Nanostructuring techniques were used to construct various formulations of the clay-based composite media. In AfB1 adsorption studies with prototypical affinity columns, these composites offered narrowly defined, reproducible capacity ranges. Composite recoveries of AfB1 from spiked grains exhibited linear trends that correlated well with the range of spike levels. Composite columns provided lower recoveries of AfB1 from naturally contaminated corn than did immunoaffinity columns; however, recoveries were consistent and purified extracts were free of interfering compounds, as determined by liquid chromatography with fluorescence detection. PMID:12852572

  7. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  8. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  9. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys Group, Old Hickory Clay Co., and Unimin Corp. — mined ball clay in four states in 2011. Production, on the basis of preliminary data, was 940 kt (1.04 million st) with an estimated value of $44.2 million. This is a 3-percent increase in tonnage from 912 kt (1.01 million st) with a value of $41.3 million that was produced in 2010. Tennessee was the leading producing state with 63 percent of domestic production, followed by Texas, Mississippi and Kentucky. About 69 percent of production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  10. Poly(N-isopropylacrylamide)-clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation.

    PubMed

    Strachota, Beata; Matějka, Libor; Zhigunov, Alexander; Konefał, Rafał; Spěváček, Jiří; Dybal, Jiří; Puffr, Rudolf

    2015-12-28

    The formation of the hydrogel poly(N-isopropylacrylamide)-clay (LAPONITE®) by redox polymerization was investigated, and the main factors governing the gel build-up were determined. The significant effect of the redox initiating system ammonium peroxodisulfate (APS) and tetramethylethylenediamine (TEMED) on gel formation and structure was established, making it possible to control the structure of the gel. Moreover, the pre-reaction stage involving the quality of the clay exfoliation in an aqueous suspension and the interaction of reaction components with the clay play a role in controlling the polymerization and gel structure. The molecular and phase structure evolution during polymerization was followed in situ by the following independent techniques: Fourier transform infrared spectroscopy (FTIR), chemorheology, small-angle X-ray scattering (SAXS) and ultraviolet-visible spectroscopy (UV/Vis). The combination of these methods enabled us to describe in detail particular progress stages during the gel formation and determine the correlation of the corresponding processes on a time and conversion scale. The mechanism of gel formation was refined based on these experimental results. PMID:26428943

  11. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-titania pillars-synthesis and characterization

    SciTech Connect

    Chmielarz, Lucjan; Gil, Barbara; Kustrowski, Piotr; Piwowarska, Zofia; Dudek, Barbara; Michalik, Marek

    2009-05-15

    Porous clay heterostructures (PCHs) were synthesized using natural montmorillonite as a raw material. Apart from pure silica pillars also silica-titania pillars were intercalated into the interlayer space of the parent clay. The detailed studies of the calcination process of the as-prepared PCH samples as well as thermal stability of the pillared structure of these materials were performed. The pillared structure of PCHs intercalated with both silica and silica-titania clusters was found to be thermally stable up to temperatures exceeding 600 deg. C. It was found that titanium incorporated into the silica pillars was present mainly in the form of separated tetracoordinated cations. For the samples with the higher Ti loading also small contribution of titanium in the form of the polymeric oxide species was detected. Titanium incorporated into the PCH materials significantly increased their surface acidity forming mainly Bronsted acid sites. - Graphical abstract: Synthesis of the montmorillonite based porous clay heterostructures (PCHs) intercalated with silica-titania pillars has been performed. The mechanism of the thermal degradation of organic templates in the pore system of PCHs was studied. PCHs were characterized with respect to structure, texture, composition, surface acidity, thermal stability and form of introduced titanium.

  12. Drilling disturbance and constraints on the onset of the Paleocene-Eocene boundary carbon isotope excursion in New Jersey

    NASA Astrophysics Data System (ADS)

    Pearson, P. N.; Thomas, E.

    2015-01-01

    The onset of the Paleocene-Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE; approx. 56 Mya) was geologically abrupt, but it is debated whether it took thousands of years or was effectively instantaneous. Wright and Schaller (2013) published a significant new record of the onset of the CIE, and claimed that it could be resolved across 13 annual layers in a drill core through the Marlboro clay at Millville, New Jersey (Ocean Drilling Program (ODP) Leg 174X). Supporting evidence for similar layering was reported from another New Jersey drill site, Wilson Lake B, and a photograph of the Marlboro clay in outcrop (Wright and Schaller, 2014). Such a short duration would imply an instantaneous perturbation of the atmosphere and surface ocean and the impact of a comet or asteroid as the likely cause. However, Pearson and Nicholas (2014) suggested, based on the published core photographs, that the layers in the Marlboro clay cores could be artifacts of drilling disturbance, so-called biscuiting, wherein the formation is fractured into layers or biscuits and drilling mud is injected in between the layers. (We now prefer the term core discing following Kidd, 1978.) Here we report new observations on the cores which support that interpretation, including concentric grooves on the surfaces of the core discs caused by spinning in the bit, micro-fracturing at their edges, and injected drilling mud. We re-interpret the limited outcrop evidence as showing joints rather than sedimentary layers. We argue that foraminifer concentrations in the sediments are far too high for the layers to have been annually deposited in turbid waters at depths of 40-70 m, indicating that the onset of the CIE in the Marlboro clay likely took on the order of millennia, not years (Zeebe et al., 2014). Re-coring of Millville aimed at minimizing drilling disturbance to allow a higher-resolution study of the carbon isotope excursion is highly desirable.

  13. Lockdown Drills

    ERIC Educational Resources Information Center

    North Dakota Department of Public Instruction, 2011

    2011-01-01

    As a result of House Bill 1215, introduced and passed during the 2011 North Dakota legislative session, every school building in North Dakota must conduct a lockdown drill. While no timeframe, tracking or penalty was identified in the state law, the North Dakota Department of Public Instruction (DPI) advocates annual drills, at a minimum, which…

  14. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications. PMID:26492498

  15. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More laboratory tests have been performed in this quarter. The analysis performed on the testing data showed: (1) abnormal rotational accelerations can be used as the indicator of the rock interfaces, and (2) the sharp drops of drilling thrust and torque agree well with the locations of fractures.

  16. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. A new mechanical approach to estimate rock strengths using the acquired drilling parameters has been proposed. This approach takes a number of important factors, that have never been studied in the previous researches, into the considerations. Good results have been shown using the new approach on the testing data.

  17. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, retrofitting work to build a dedicated roof bolter for this research has been started. A number of numerical methods have been developed to improve the quality of and to analyze the collected drilling parameters. Finite element modeling of roof bolting mechanism is continuing.

  18. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    NASA Astrophysics Data System (ADS)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  19. Characterization of mudstone, clayey rock and argillite towards stabilisation of boreholes by developing new drilling strategies for geothermal resources exploration

    NASA Astrophysics Data System (ADS)

    Witthaus, M.; Lempp, Ch.; Röckel, Th.; Hecht, Ch.; Herold, M.

    2009-04-01

    stones and clayey rocks up to argillite. Important for the manifestation of these instabilities are the differences between mudstones, clays and rocklike pelites. Mudstones and clays with low densities (2,0 - 2,3 g/cm³) and high moisture content (25 - 40 %) show a ductile and plastic deformation behaviour, so that the whole rock formation weakens and will be squeezed out of the borehole wall during drilling. Convergence of the borehole can be detected and the drilling bit will be forced to stop. On the other hand rocklike clay and argillites with higher densities (2,4 - 2,8 g/cm³) and lower moisture contents (0,5 - 8%) tend to show brittle behaviour during critical stress conditions around the borehole, indicated by cracks and borehole breakouts, so that the borehole becomes unstable as well. The pore pressure in these formations, increased by the induced drilling fluid, has a fundamental influence on the deformation process of these rocklike clays. Critical changes in the state of stress are caused by the sudden increase of pore pressure in the micro-structure of clays and pelites. As a consequence hydraulic tension cracks can be formed, which weaken the rocks especially when the drilling machine stops and the induced pressure decreases. Pore pressure effects creating hydraulic fracturing are the predominant cause for the instabilities in geothermal boreholes of the Upper Rhine region. In this study, the geomechanical behaviour of mudstone, clay, rocklike clay and argillite were determinated in laboratory tests by stress conditions according to the regional stress field around the borehole at a depth of about 2000 m. Compressive and extensive stress conditions as well as pore pressure could be simulated with the obtained rock samples in order to explain the reasons for borehole instabilities. Based on the experimental results, new drilling strategies will be developed to upgrade the stability of boreholes for enhanced geothermal systems.

  20. Drilling reorganizes

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  1. Water sites at a clay interface

    SciTech Connect

    Grandjean, J.

    1997-01-15

    Aqueous suspensions of swelling clays (smectites) find uses in many industrial applications including drilling fluids, suspending agents and water treatment. {sup 2}H NMR quadrupolar splittings of clay suspensions monitor the orientation of water molecules near the solid surface. Two limiting water interfacial sites explain the results on montmorillonite, hectorite, and saponite suspensions. The location of cation isomorphous substitution and the Ca{sup 2+}/Na{sup +} molar ratio of exchangeable cations modulate their relative importance. With beidellite suspensions, water orientation at the clay surface cannot be described within the above scheme.

  2. Results of exploratory drilling

    SciTech Connect

    Hildebrand, R.T.

    1987-01-01

    Eight exploratory holes were drilled in the Vermillion Creek basin, southern Sweetwater County, Wyoming, to aid in interpreting the subsurface stratigraphy of the Vermillion Creek coal bed. Lithologic logs based on cuttings and geophysical logs (natural gamma, density, and caliper) were made for each drill hole. Core samples of the Vermillion Creek coal bed and associated strata (roof rock, floor rock, and partings) were collected from three drill holes for geochemical and petrographic analysis. The geophysical logs indicate the presence of anomalous radioactive zones in the strata surrounding the Vermillion Creek coal bed.

  3. Clay for Little Fingers.

    ERIC Educational Resources Information Center

    Koster, Joan Bouza

    1999-01-01

    Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…

  4. Model-Based Hookload Monitoring and Prediction at Drilling Rigs using Neural Networks and Forward-Selection Algorithm

    NASA Astrophysics Data System (ADS)

    Arnaout, A.; Fruhwirth, R.; Winter, M.; Esmael, B.; Thonhauser, G.

    2012-04-01

    The use of neural networks and advanced machine learning techniques in the oil & gas industry is a growing trend in the market. Especially in drilling oil & gas wells, prediction and monitoring different drilling parameters is an essential task to prevent serious problems like "Kick", "Lost Circulation" or "Stuck Pipe" among others. The hookload represents the weight load of the drill string at the crane hook. It is one of the most important parameters. During drilling the parameter "Weight on Bit" is controlled by the driller whereby the hookload is the only measure to monitor how much weight on bit is applied to the bit to generate the hole. Any changes in weight on bit will be directly reflected at the hookload. Furthermore any unwanted contact between the drill string and the wellbore - potentially leading to stuck pipe problem - will appear directly in the measurements of the hookload. Therefore comparison of the measured to the predicted hookload will not only give a clear idea on what is happening down-hole, it also enables the prediction of a number of important events that may cause problems in the borehole and yield in some - fortunately rare - cases in catastrophes like blow-outs. Heuristic models using highly sophisticated neural networks were designed for the hookload prediction; the training data sets were prepared in cooperation with drilling experts. Sensor measurements as well as a set of derived feature channels were used as input to the models. The contents of the final data set can be separated into (1) features based on rig operation states, (2) real-time sensors features and (3) features based on physics. A combination of novel neural network architecture - the Completely Connected Perceptron and parallel learning techniques which avoid trapping into local error minima - was used for building the models. In addition automatic network growing algorithms and highly sophisticated stopping criterions offer robust and efficient estimation of the

  5. The effects of diesel oil-based drilling mud extracts on immune responses of rainbow trout.

    PubMed

    Tahir, A; Secombes, C J

    1995-07-01

    The potential suppressive effect of oil-pollution in the aquatic environment on fish immune responses was investigated by injecting rainbow trout (Oncorhychus mykiss) with an extract obtained from diesel oil-based drilling mud. To investigate the effect of the extract dose, 4 groups of 6 fish were exposed to 0, 0.6, 1.2, and 2.4 mL extract/Kg body weight (B.W.). To keep the injection volume constant, each extract dose was made up 2.4 mL/Kg B.W. with olive oil. Six weeks later the fish were sacrificed and a number of immmune parameters monitored. In a second experiment, the effect of exposure times was investigated. Fish wee exposed to 2.4 mL extract/Kg B.W., 2.4 mL olive oil/Kg B.W., or 2.4 mL saline/Kg B.W. and immune parameters were monitored 2, 4, 6 and 8 weeks post-injection. In the dose response experiment, there was no significant effect of the extract on serum immunoglobulin (Ig) levels and haemolytic complement (CH50) activity, but a suppressive effect on serum lysozyme level was found using the 0.6 mL/Kg dose. This dose also elevated proliferative activity of head kidney lymphocytes in response to the mitogen PHA. In the second experiment, investigating exposure time, again no significant overall effect on serum Ig or lysozyme level and CH50 activity was observed, although Ig levels were significantly lower at week two relative to the other groups. However, both extract- and olive oil-injected fish showed significantly lower lysozyme levels compared with the saline-injected (control) fish throughout the experiment. In contrast, at week six post-exposure, head kidney lymphocyte proliferation was significantly elevated in both the extract- and olive oil-exposed fish relative to the control fish. PMID:7605517

  6. Application of Taguchi based Response Surface Method (TRSM) for Optimization of Multi Responses in Drilling Al/SiC/Al2O3 Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Adalarasan, R.; Santhanakumar, M.

    2015-01-01

    The emerging industrial applications of second generation hybrid composites demand an organised study of their drilling characteristics as drilling is an essential metal removal process in the final fabrication stage. In the present work, surface finish and burr height were observed while drilling Al6061/SiC/Al2O3 composite for various combinations of drilling parameters like the feed rate, spindle speed and point angle of tool. The experimental trials were designed by L18 orthogonal array and Taguchi based response surface method was presented for optimizing the drilling parameters. The significant improvements in the responses observed for the optimal parameter setting has validated the TRSM approach permitting its application in other areas of manufacturing.

  7. Drilling choke

    SciTech Connect

    Lancaster, R.D.

    1984-09-11

    A drilling choke is disclosed for controlling flow of drilling fluids from a well comprising: a body having an inlet and outlet and an intermediate cavity therebetween; a seat member coaxially disposed in the body outlet; an operator assembly removably attached to the body; and a stem assembly connected to the operator assembly for axial movement thereof. A portion of the stem assembly is removable, upon removal of the operator assembly from the body, without otherwise disturbing the operator assembly.

  8. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    SciTech Connect

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  9. Digital Game-Based Learning: A Supplement for Medication Calculation Drills in Nurse Education

    ERIC Educational Resources Information Center

    Foss, Brynjar; Lokken, Atle; Leland, Arne; Stordalen, Jorn; Mordt, Petter; Oftedal, Bjorg F.

    2014-01-01

    Student nurses, globally, appear to struggle with medication calculations. In order to improve these skills among student nurses, the authors developed The Medication Game--an online computer game that aims to provide simple mathematical and medical calculation drills, and help students practise standard medical units and expressions. The aim of…

  10. Effect of heterocyclic based organoclays on the properties of polyimide-clay nanocomposites.

    PubMed

    Krishnan, P Santhana Gopala; Joshi, Mangala; Bhargava, Prachur; Valiyaveettil, Suresh; He, Chaobin

    2005-07-01

    Polyimide-clay nanocomposites were prepared from their precursor, namely, polyamic acid, by the solution-casting method. Organomodified montmorillonite (MMT) clay was prepared by treating Na+MMT (Kunipia F) with three different intercalating agents, namely, piperazine dihydrochloride, 1,3-bis(4-piperidinylpropane) dihydrochloride and 4,4'-bipiperidine dihydrochloride at 80 degrees C. Polyamic acid solutions containing various weight percentages of organomodified MMT were prepared by reacting 4,4'-(1,1'-biphenyl-4,4'-diyldioxy)dianiline with bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride in N-methyl-2-pyrrolidinone containing dispersed particles of organomodified MMT at 20 degrees C. Nanocomposite films were prepared from these solutions by solution casting and heated subsequently at a programmed heating rate. These films were transparent and brown in color. The extent of layer separation in nanocomposite films depends upon the chemical structure of the organoclay. These films were characterized by inherent viscosity, FT-IR, DSC, TMA, WAXD, TEM, UV, and TGA. The tensile behavior and surface energy studies were also investigated. The nanocomposite films had superior tensile properties, thermal behavior, and solvent resistance. Among the three organoclays, piperazine dihydrochloride was the best modifier. PMID:16108442

  11. Drilling fluid effects on crop growth and iron and zinc availability

    SciTech Connect

    Bauder, T.A.; Barbarick, K.A.; Ayers, P.D.; Chapman, P.L.; Shanahan, J.F.

    1999-05-01

    Waste drilling fluids are often land-farmed following completion of an oil or gas well in Colorado. This material usually contains production water, bentonitic clays, formation cuttings, barite, Na compounds, and synthetic organic polymers. The authors investigated the effects of 5 to 60 dry g drilling fluid kg{sup {minus}1} soil on the growth and trace metal concentration of sorghum-sudangrass (Sorghum bicolor L. Moench DeKalb ST-6-S sudanense) in the greenhouse. A nonlinear regression exponential-rise model fit the increased plant total dry matter yield response to increasing drilling fluid rates. Increased plant tissue Fe concentration and uptake indicated that increased plant-available Fe was primarily responsible for the yield response, but increased Zn availability was also suspected. Results from a second greenhouse study confirmed that drilling fluid can also correct Zn deficiency in corn (Zea mays L.). Soil SAR (sodium adsorption ratio) was higher with increasing drilling fluid, but was still < 1. Other trace-element concentrations in sudangrass tissue and soil pH and EC{sub sat} were not significantly increased due to application of drilling fluid. This study showed that application of controlled rates of water-based drilling fluid from operations in Weld County, Colorado, was beneficial to the growth of sorghum-sudangrass and provided evidence that land application is an acceptable method of disposal.

  12. Nanocomposites based on plasticized starch and rectorite clay: structure and properties.

    PubMed

    Chang, Peter R; Wu, Dongliang; Anderson, Debbie P; Ma, Xiaofei

    2012-06-20

    Sodium rectorite clay (REC) was attached to cationic guar gum (CGG) using a cationic-exchange reaction to obtain CGG modified-REC (CREC). It was found that CGG appeared on the surface of REC's layered structure and represented about 30.1% wt. in CREC. REC and CREC were, respectively, used as fillers in a plasticized starch (PS) matrix to prepare PS/REC and PS/CREC composites using the casting process. Rapid Visco Analyser and scanning electron microscopy revealed that an interaction existed between the REC (or CREC) filler and the matrix. Both REC and CREC had obvious reinforcing effects on the matrix. Compared to the neat matrix, REC or CREC improved the thermal stability of the composites. By increasing the filler content from 0 to 10 wt%, water vapor permeability (WVP) values of PS/REC composites obviously decreased, while WVP values of PS/CREC composites decreased slightly. PMID:24750774

  13. Unusual corrosion of a drill pipe in newly developed drilling mud during deep drilling

    SciTech Connect

    Tomoe, Y.; Shimizu, M.; Nagae, Y.

    1999-07-01

    In Japan, a newly developed drilling mud containing synthetic smectite is being used during deep drilling when the formation temperature exceeds 180 C. However, using this mud during long periods of drilling localized corrosion at the outer surface of the drill pipe becomes a serious problem. In the present study, a corrosion mechanism was postulated by inspection of corroded pipes at a drilling site and by thermal degradation and corrosion testing in a laboratory. Corrosion was initiated by the combined effects of dissolved oxygen and carbon dioxide generated by the thermal degradation of the mud. Corrosion damage further developed by the establishment of a differential aeration cell caused by buildup of clay minerals at anodic sites. The general nature of drilling muds are that they dissolve carbon dioxide at high concentrations and keep carbon dioxide in them even at high temperatures, such as 70 C-influenced corrosion in the present study. The unique nature of the new mud containing synthetic smectite (i.e., its weak passivating effect) also contributed to this corrosion. A conventional inhibition method, using a water-soluble amine, was not adequate to mitigate this corrosion.

  14. Universal scaling of the formation factor in clays: Example from the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Ghanbarian, Behzad; Henry, Pierre; Conin, Marianne

    2015-11-01

    Electrical conductivity is a fundamental characteristic describing how strongly a network opposes flow of electrical current. In fully water-saturated porous media the conductivity, represented by the formation factor, is mainly controlled by porosity, connectivity of the conducting phases, and the tortuosity of electrical current paths. Previous work has shown that universal scaling derived from percolation and effective medium theories accurately describes the relationship between formation factor and porosity when the percolation threshold is taken account, as well as the porosity value at which the scaling switches from percolation theory to effective medium theory. We determined the formation factor in clay-rich sediments based on cation exchange capacity measurements on samples from five scientific ocean drilling sites in the Nankai Trough. We then compared the results to predictions from universal scaling after determining the volume of clay-bound water and the percolation threshold. We found that the previously reported universal scaling relations hold in these clay-rich sediments once the corrections are made for the clay-bound water and that percolation scaling appears to be valid over the entire range of observed porosities, probably due to relatively broad pore size distributions or low pore system connectivity. Our results show that universal scaling can be applied to describe the porosity dependence of the formation factor in clay-rich sediments when appropriate corrections are made for the presence of clay-bound water.

  15. A review of conditions affecting the radiolysis due to 40K on nucleic acid bases and their derivatives adsorbed on clay minerals: implications in prebiotic chemistry.

    PubMed

    Mosqueira, F G; Albarran, G; Negron-Mendoza, A

    1996-02-01

    This paper describes the possible effects of ionizing radiation arising from long-lived soluble radionuclides within clays, in particular 40K, at the epoch of the emergence of life on Earth. The free dispersion of soluble radionuclides constitutes an effective in situ irradiation mechanism that might have acted upon adsorbed nucleic bases and their derivatives on clays, inducing chemical changes on these organic molecules. Several types of well documented reactions for radiolysis of nucleic acid bases and their derivatives are known, even at low doses (i.e., 0.1 Gy). For example, estimates with a dose rate calculated from 40K from deep sea clays at 3.8 Ga ago, indicates that over a period of 1000 years the amount of organic material transformated is 1.8 X 10(-7) moles/kg-clay. Although ionizing radiation may also induce synthetic reactions with prebiological interest, all in all these considerations indicate that nucleic acid bases and their derivatives adsorbed on clays were exposed for long periods to degradation conditions. Such situation promotes decomposition of organic molecules rather than protection of them and enhancement of farther polymerization, as it has been usually taken for granted. PMID:11536747

  16. 20. Detail, Furnace A, shows the drill used to tap ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail, Furnace A, shows the drill used to tap the furnace (at center left) and the 'mud gun' used to close it up with a clay plug (at lower right). Metal chute at center (next to drill) was used to clean out furnace prior to its abandonment. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  17. The Japanese approach to developing clay-based repository concepts An example of design studies for the assessment of sealing strategies

    NASA Astrophysics Data System (ADS)

    Sugita, Yutaka; Fujita, Tomoo; Takahashi, Yoshiaki; Kawakami, Susumu; Umeki, Hiroyuki; Yui, Mikazu; Uragami, Manabu; Kitayama, Kazumi

    The H12 repository concept for vitrified high-level radioactive waste was developed based on a multi-barrier system, with the emphasis on robust engineered barrier performance to ensure its feasibility for a wide range of geological conditions typically observed in Japan. The decision to use a volunteer siting process requires maximum flexibility of the repository concept to allow it to be adapted to potential sites and hence a wide range of variants of the basic H12 repository design has been developed. In order to evaluate the feasibility and applicability of different repository options to specific siting environments, NUMO has established a set of “design factors” which classify the aspects that need to be considered when evaluating the pros and cons of different repository options. The buffer in the repository concepts is clay-based. An Na-type bentonite from Japan is used as the reference material for all clay-based repository components (buffer, backfill, clay plug, etc.). The characteristics of this bentonite (thermal, mechanical, chemical, hydraulic) have been examined with consideration of various practical constraints (limitation on the repository footprint, the influence of saline water, the interaction of hyperalkaline leachates, practical working environment, etc.). Clay-based seals, which close off the tunnels after emplacement of the engineered barrier system (EBS), may also be key components for assessment of the performance of the repository. Full analyses considering all engineered barrier components (buffer, backfill, clay plug, concrete lining, tunnel, concrete plug) that may be used in a repository will be an essential future task. As a first step towards this goal, a numerical analysis focusing on hydraulic behaviour at the intersections of the disposal tunnels and the main tunnel is presented to illustrate how the design requirements of clay-based seals can be determined.

  18. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite. PMID:25439870

  19. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  20. Comparison of anxiety prevalence among based and offshore National Iranian Drilling Company staff's children in Ahvaz, 2013

    PubMed Central

    Zargham-Boroujeni, Ali; Shahba, Zohre; Abedi, Heidarali

    2015-01-01

    Background: Anxiety is one of the most common psychological issues among all age groups including children. The main role of parents has been known to support their children. Being far away from a source of support has been shown to be a potential trigger for childhood anxiety. Periodical jobs, including offshore work, are among the main reasons for absence of one of the parents. Therefore, this study aims to assess anxiety in children of National Iranian Drilling Company offshore staff. Materials and Methods: In this historical cohort study, 160 students including 80 boys and 80 girls were selected through convenient random sampling from the schools of National Iranian Drilling Company. Data were collected using Revised Children's Manifest Anxiety Inventory (by Reynolds and Richmond), consisting 37 items and a demographic questionnaire. The collected data were statistically analyzed by t-test and logistic regression tests through SPSS software. Results: The mean anxiety score was 12.80 among offshore staff's children and 11.67 among the children of the based staff. The ratio of manifest anxiety among the offshore workers’ children was significantly more than the based ones’. Conclusions: Based on the findings, offshore fathers’ job affects the anxiety of the children. PMID:26097851

  1. Aerosol Radiative Forcing Estimates from South Asian Clay Brick Production Based on Direct Emission Measurements

    NASA Astrophysics Data System (ADS)

    Weyant, C.; Athalye, V.; Ragavan, S.; Rajarathnam, U.; Kr, B.; Lalchandani, D.; Maithel, S.; Malhotra, G.; Bhanware, P.; Thoa, V.; Phuong, N.; Baum, E.; Bond, T. C.

    2012-12-01

    About 150-200 billion clay bricks are produced in India every year. Most of these bricks are fired in small-scale traditional kilns that burn coal or biomass without pollution controls. Reddy and Venkataraman (2001) estimated that 8% of fossil fuel related PM2.5 emissions and 23% of black carbon emissions in India are released from brick production. Few direct emissions measurements have been done in this industry and black carbon emissions, in particular, have not been previously measured. In this study, 9 kilns representing five common brick kiln technologies were tested for aerosol properties and gaseous pollutant emissions, including optical scattering and absorption and thermal-optical OC/EC. Simple relationships are then used to estimate the radiative-forcing impact. Kiln design and fuel quality greatly affect the overall emission profiles and relative climate warming. Batch production kilns, such as the Downdraft kiln, produce the most PM2.5 (0.97 gPM2.5/fired brick) with an OC/EC fraction of 0.3. Vertical Shaft Brick kilns using internally mixed fuels produce the least PM (0.09 gPM2.5/kg fired brick) with the least EC (OC/EC = 16.5), but these kilns are expensive to implement and their use throughout Southern Asia is minimal. The most popular kiln in India, the Bull's Trench kiln, had fewer emissions per brick than the Downdraft kiln, but an even higher EC fraction (OC/EC = 0.05). The Zig-zag kiln is similar in structure to the Bull's Trench kiln, but the emission factors are significantly lower: 50% reduction for CO, 17% for PM2.5 and 60% for black carbon. This difference in emissions suggests that converting traditional Bull's Trench kilns into less polluting Zig-zag kilns would result in reduced atmospheric warming from brick production.

  2. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  3. CLAY AND CLAY-SUPPORTED REAGENTS IN ORGANIC SYNTHESES

    EPA Science Inventory

    CLAY AND CLAY-SUPPORTED REAGENTS HAVE BEEN USED EXTENSIVELY FOR SYNTHETIC ORGANIC TRANSFORMATIONS. THIS OVERVIEW DESCRIBES THE SALIENT STRUCTURAL PROPERTIES OF VARIOUS CLAY MATERIALS AND EXTENDS THE DISCUSSION TO PILLARED CLAYS AND REAGENTS SUPPORTED ON CLAY MATERIALS. A VARIET...

  4. SOLID2: An Antibody Array-Based Life-Detector Instrument in a Mars Drilling Simulation Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A.; Moreno-Paz, Mercedes; Rivas, Luis A.; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C.; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  5. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    PubMed

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life. PMID:19105755

  6. Innovative additives can increase the drilling rates of water-based muds

    SciTech Connect

    Growcock, F.B.; Sinor, L.A.; Reece, A.R.; Powers, J.R.

    1994-12-31

    Several types of organic compounds were tested as rate of penetration (ROP) enhancers for a simple gel/water mud. Experiments conducted in a full-size drilling apparatus with both rollercone and PDC bits at wellbore pressures of 1,100 and 2,000 psi indicate that a paraffin/ester mixture, several terpenes and a mixture of insoluble poly(propylene glycols), or PPGs, can all increase the ROP by 5 to 20% when added at levels of 2--4% by volume. Complementary lubricity and shale recovery studies suggest that the paraffin and terpenes function by making the steel surfaces less water-wetting, thereby reducing the tendency of partially hydrated sticky shales to adhere. The PPG mixture, on the other hand, may function primarily by interacting directly with the shales to reduce their tendency to form a sticky mass. In either case, the additives increased ROP to levels comparable to the ROP observed with pure water.

  7. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2005-04-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) the relationship among feed pressure, penetration rate and rotation rate seems to be a good indicator for estimating rock strength when both penetration rate and rotation rate are controlled or kept constant, (4) the empirical equations for eliminating the machine effect on drilling parameters were developed and verified, and (5) a real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, performs very well in underground production condition.

  8. Pre-drilling calculation of geomechanical parameters for safe geothermal wells based on outcrop analogue samples

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Philipp, Sonja

    2014-05-01

    It is desirable to enlarge the profit margin of geothermal projects by reducing the total drilling costs considerably. Substantiated assumptions on uniaxial compressive strengths and failure criteria are important to avoid borehole instabilities and adapt the drilling plan to rock mechanical conditions to minimise non-productive time. Because core material is rare we aim at predicting in situ rock properties from outcrop analogue samples which are easy and cheap to provide. The comparability of properties determined from analogue samples with samples from depths is analysed by performing physical characterisation (P-wave velocities, densities), conventional triaxial tests, and uniaxial compressive strength tests of both quarry and equivalent core samples. "Equivalent" means that the quarry sample is of the same stratigraphic age and of comparable sedimentary facies and composition as the correspondent core sample. We determined the parameters uniaxial compressive strength (UCS) and Young's modulus for 35 rock samples from quarries and 14 equivalent core samples from the North German Basin. A subgroup of these samples was used for triaxial tests. For UCS versus Young's modulus, density and P-wave velocity, linear- and non-linear regression analyses were performed. We repeated regression separately for clastic rock samples or carbonate rock samples only as well as for quarry samples or core samples only. Empirical relations were used to calculate UCS values from existing logs of sampled wellbore. Calculated UCS values were then compared with measured UCS of core samples of the same wellbore. With triaxial tests we determined linearized Mohr-Coulomb failure criteria, expressed in both principal stresses and shear and normal stresses, for quarry samples. Comparison with samples from larger depths shows that it is possible to apply the obtained principal stress failure criteria to clastic and volcanic rocks, but less so for carbonates. Carbonate core samples have higher

  9. Permafrost Organic Matter Study in the Lower Kolyma Lowland (Eastern Siberia) Based on Drilling Record

    NASA Astrophysics Data System (ADS)

    Spektor, V.; Kholodov, A. L.; Spawn, S.; Schade, J. D.; Natali, S.; Davydov, S.; Bulygina, E.; Khokhlova, G.

    2013-12-01

    In 2012-2013, a complex study of perennially frozen mineral soils of MIS 3-2 and MIS 1 as well as soils of modern active layer was conducted on the Kolyma River Lowland (North-East Russia) in the vicinity of town Chersky (N68°44' E161°23'). For this investigation, five boreholes, ranging from 13 to 22 m in depths, were drilled on different elevations on yedoma surface, thermokarst depression (alas), and modern floodplain of the Kolyma River. The study focuses on reconstruction of environmental conditions during and after the formation of Pleistocene Ice complex (yedoma). Special attention is drawn to extent of transformation of organic matter by TOC, %N, C/N, d13C, d15N, and enzyme analysis corresponding to changes of climate established by spore and pollen analysis and AMS 14C dates. For instance, the deepest silt layers (15 m) from the BH 12/1 drilled in yedoma near Chersky are characterized by a pollen complex peculiar to open landscapes with domination of gramineous and mixed herbs associations, formed in the conditions of severe climate. AMS 14 C dates attest that its formation took place ca. 42 kyr (MIS 3). Along the profile of the BH 12/1, %N varies between 0.1-0.11, %C is 0.5-1.59, C/N ratio is 10-19.8, d13C/12C is -26.4...-41.7, d15N/14N is 2.3-4.5. Acknowledgements. The work is supported by The Polaris Project of National Science Foundation USA and Integrational Progam #9 of the Siberian and Far East Branches of the Russian Academy of Sciences.

  10. PDC bits find applications in Oklahoma drilling

    SciTech Connect

    Offenbacher, L.A.; McDermaid, J.D.; Patterson, C.R.

    1983-02-01

    Drilling in Oklahoma is difficult by any standards. Polycrystalline diamond cutter (PDC) bits, with proven success drilling soft, homogenous formations common in the North Sea and U.S. Gulf Coast regions, have found some significant ''spot'' applications in Oklahoma. Applications qualified by bit design and application development over the past two (2) years include slim hole drilling in the deep Anadarko Basin, deviation control in Southern Oklahoma, drilling on mud motors, drilling in oil base mud, drilling cement, sidetracking, coring and some rotary drilling in larger hole sizes. PDC bits are formation sensitive, and care must be taken in selecting where to run them in Oklahoma. Most of the successful runs have been in water base mud drilling hard shales and soft, unconsolidated sands and lime, although bit life is often extended in oil-base muds.

  11. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  12. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  13. Drill Press Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's interest in and to screen interested students into a training program in basic machine shop I. (The course is based on the entry level of the drill press operator.) Section 1 describes the assessment, correlates the work performed and worker traits required for…

  14. In-situ rock melting applied to lunar base construction and for exploration drilling and coring on the moon

    SciTech Connect

    Rowley, J.C.; Neudecker, J.W.

    1984-01-01

    An excavation technology based upon melting of rock and soil has been extensively developed at the prototype hardware and conceptual design levels for terrestrial conditions. Laboratory and field tests of rock-melting penetration have conclusively indicated that this excavation method is insensitive to rock, soil types, and conditions. Especially significant is the ability to form in-place glass linings or casings on the walls of boreholes, tunnels, and shafts. These factors indicate the unique potential for in situ construction of primary lunar base facilities. Drilling and coring equipment for resource exploration on the moon can also be devised that are largely automated and remotely operated. It is also very likely that lunar melt-glasses will have changed mechanical properties when formed in anhydrous and hard vacuum conditions. Rock melting experiments and prototype hardware designs for lunar rock-melting excavation applications are suggested.

  15. Advantages and limitations of the synchrotron based transmission X-ray microscopy in the study of the clay aggregate structure in aqueous suspensions.

    PubMed

    Zbik, Marek S; Frost, Ray L; Song, Yen-Fang

    2008-03-01

    This paper reports new application of new transmission X-ray microscopy powered by a synchrotron source for the study of aqueous based clay suspensions. This paper delineates the advantages and limitations of this method. The tested transmission X-ray microscopy (TXM) technique has shown good agreement with the cryo-stage SEM technique. The spacial resolution of this TXM technique is 60 nm and clay particles with diameter below 500 nm are clearly visible and their pseudohexagonal symmetry is recognizable in detail. It is clearly demonstrated the methodology of implementing TXM to study aqueous based clay suspensions that are close to approximately 60 nm tomographic resolution. The technique enables us to study discrete structure of clay suspensions in water and within aggregates. This has never been previously possible. Larger crystals, more compact aggregates and less colloidal fraction present in kaolinite from Georgia has impact on faster settling and gelling in denser suspension than for Birdwood kaolinite in which colloidal particles create gel-like networking in less dense aqueous suspension. PMID:18067907

  16. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes.

    PubMed

    Hosokawa, Hitoshi; Mochida, Tomoyuki

    2015-12-01

    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders. PMID:26542108

  17. Drilling fluid

    SciTech Connect

    Russell, J.A.; Patel, B.B.

    1987-11-03

    A drilling fluid additive mixture is described consisting essentially of a sulfoalkylated tannin in admixture with a non-sulfoalkylated alkali-solubilized lignite wherein the weight ratio of the sulfoalkylated tannin to the non-sulfoalkylated lignite is in the range from about 2:1 to about 1:1. The sulfoalkylated tannin has been sulfoalkylated with at least one -(C(R-)/sub 2/-SO/sub 3/M side chain, wherein each R is selected from the group consisting of hydrogen and alkyl radicals containing from 1 to about 5 carbon atoms, and M is selected from the group consisting of ammonium and the alkali metals.

  18. WRITING ORAL DRILLS.

    ERIC Educational Resources Information Center

    NEY, JAMES W.

    ALL ORAL LANGUAGE DRILLS MAY BE SEPARATED INTO TWO TYPES--(1) MIM-MEM OR MIMICRY MEMORIZATION DRILLS OR (2) PATTERN PRACTICE DRILLS. THESE TWO LARGER CATEGORIES CAN BE SUB-DIVIDED INTO A NUMBER OF OTHER TYPES, SUCH AS TRANSFORMATION AND SUBSTITUTION DRILLS. THE USE OF ANY PARTICULAR TYPE DEPENDS ON THE PURPOSE TO WHICH THE DRILL IS PUT. IN ANY…

  19. Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes.

    PubMed

    Coronado, M; Segadães, A M; Andrés, A

    2015-12-15

    This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature. PMID:26252997

  20. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications. PMID:18598141

  1. The ``Adopt A Microbe'' project: Web-based interactive education connected with scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party

    2010-12-01

    We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the

  2. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  3. Shaft drilling rig

    SciTech Connect

    Wada, M.; Ajiro, S.

    1986-06-17

    A shaft drilling rig is described which consists of: a supporting structure for a drill string having a plurality of components for drilling a shaft into the earth by imparting a turning and thrust for drilling at least to a drill bit on the drill string, the drilling being down to a predetermined depth, and then a further drill string component having at least at the bottom end thereof an inner wall extending substantially in the axial direction of the component being newly added to the drill string for further drilling; means for receiving at least the bottom end of the further drill string component and for supporting it, and having a member with the outer circumference engageable with the inner wall of the further component, the receiving means supporting the further drill string component in a free standing position; means for supporting the receiving means and having a guiding device for guiding the receiving means between a position where the further drill string component is to be added to the drill string and a parking position spaced laterally of the drill string from the first mentioned position; and means for holding a lower part of the drill string which has been separated from the upper part of the drill string preparatory to adding the further drill string component so that the axis of the lower part is substantially aligned with the drilling direction.

  4. Developers set drilling pace

    SciTech Connect

    McNally, R.

    1981-01-01

    Thums four man-made islands each have a rock perimeter - 160,000 tons of granite - and an inner core of 900,000 yards of hydraulically placed dredged-sand fill. Because of the shallow depths of Long Beach Harbor, islands were constructed instead of installing conventional drilling and production platforms. The majority of drilling rigs and their equipment - casing racks and mud tanks - are mounted on steel rails and moved by hydraulic jacks at a rate of 3/4 ft/min. Each island has a central plant supplying mud and kill fluid services. Logging and perforating are performed by conventional land-based equipment. Many of THUMS' wells are drilled at exceedingly high angles to reach reserves beneath the harbor or Long Beach's downtown area. All but six or seven of the more than 800 wells are deviated, at angles ranging from 0 to 80/degree/, with an average deviation of 65 to 70/degree/. Each well has an S-curve well program and is assigned a 100-ft cylindrical diameter course. A simulated drilling program is fed into a computer to make sure the proposed course does not come within 25 ft of any other well bore. Production procedures are outlined along with a discussion of auxiliary equipment.

  5. Clay-filled bio-based blends of poly(lactic acid) and polyamide 11

    NASA Astrophysics Data System (ADS)

    Nuzzo, Anna; Acierno, Domenico; Filippone, Giovanni

    2012-07-01

    We investigate the effect of small amounts of organoclay on the crystallinity and dynamic-mechanical properties of bio-based blends of poly(lactic acid) (PLA) and polyamide 11 (PA11). Virgin and filled blends were prepared by melt-compounding the constituents using a twin-screw extruder. Wettability considerations suggest that the filler unevenly distribute inside the material. This affect both the crystallinity of each phase and the blend microstructure. Controlling such phenomena can lead to highly "engineerized" materials with tailored properties. In particular, the typically poor mechanical performances of bio-based polymers can be overcame owing to the synergism among reinforcing action of the filler, its possible compatibilizing action and its impact on the crystallinity of the hosting phase.

  6. Clay at Nili Fossae

    NASA Technical Reports Server (NTRS)

    2006-01-01

    at the upper right, the small mesa -- a flat-topped hill -- at the center of the image is a remnant of an overlying rock layer that was eroded away. The greenish clay areas at the base of the hill were exposed by erosion of the overlying rock. The images at the upper right and lower left both show that the reddish-toned olivine occurs as sand dunes on top of the greenish clay deposits. The image at the lower right shows details of the clay-rich rock, including that they are extensively fractured into small, polygonal blocks just a few meters in size. Taken together, the CRISM and HiRISE data show that the clay-rich rocks are the oldest at the site, that they are exposed where overlying rock has been eroded away, and that the olivine is not part of the clay-rich rock. Rather it occurs in sand dunes blowing across the clay.

    Many more images of Nili Fossae and other clay-rich areas will be taken over the next two years. They will be used to try to understand the earliest climate of Mars that is recorded in the planet's rocks.

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

    CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials o leading to new understanding of the climate.

    NASA's Jet Propulsion Laboratory, a division of the Califonia Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor and built the spacecraft.

  7. Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti.

    PubMed

    Edge, Katelyn J; Johnston, Emma L; Dafforn, Katherine A; Simpson, Stuart L; Kutti, Tina; Bannister, Raymond J

    2016-05-01

    Offshore oil and gas activities can result in the discharge of large amounts of drilling muds. While these materials have generally been regarded as non-toxic to marine organisms, recent studies have demonstrated negative impacts to suspension feeding organisms. We exposed the arctic-boreal sponge Geodia barretti to the primary particulate components of two water-based drilling muds; barite and bentonite. Sponges were exposed to barite, bentonite and a natural reference sediment at a range of total suspended solid concentrations (TSS = 0, 10, 50 or 100 mg/L) for 12 h after which we measured a suite of biomarker responses (lysosomal membrane stability, lipid peroxidation and glutathione). In addition, we compared biomarker responses, organic energy content and metal accumulation in sponges, which had been continuously or intermittently exposed to suspended barite and natural sediment for 14 d at relevant concentrations (10 and 30 mg TSS/L). Lysosomal membrane stability was reduced in the sponges exposed to barite at 50 and 100 mg TSS/L after just 12 h and at 30 mg TSS/L for both continuous and intermittent exposures over 14 d. Evidence of compromised cellular viability was accompanied by barite analysis revealing concentrations of Cu and Pb well above reference sediments and Norwegian sediment quality guidelines. Metal bioaccumulation in sponge tissues was low and the total organic energy content (determined by the elemental composition of organic tissue) was not affected. Intermittent exposures to barite resulted in less toxicity than continuous exposure to barite. Short term exposures to bentonite did not alter any biomarker responses. This is the first time that these biomarkers have been used to indicate contaminant exposure in an arctic-boreal sponge. Our results illustrate the potential toxicity of barite and the importance of assessments that reflect the ways in which these contaminants are delivered under environmentally realistic conditions. PMID

  8. An evaluated list of Cenozic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs.

    PubMed

    Lazarus, David; Suzuki, Noritoshi; Caulet, Jean-Pierre; Nigrini, Catherine; Goll, Irina; Goll, Robert; Dolven, Jane K; Diver, Patrick; Sanfilippo, Annika

    2015-01-01

    A first reasonably comprehensive evaluated list of radiolarian names in current use is presented, covering Cenozoic fossil to Recent species of the primary fossilising subgroup Polycystinea. It is based on those species names that have appeared in the literature of the Deep Sea Drilling Project and its successor programs, the Ocean Drilling Program and Integrated Ocean Drilling Program, plus additional information from the published literature, and several unpublished taxonomic database projects. 1192 names are recognised as valid, and several hundred additional names including synonyms and mispellings are given as well. A brief list of valid names is provided in the main paper, while the full list, with synonyms, author, year of publication, family assignment, geologic age interval and notes is provided as a SOM spreadsheet table. PMID:26623580

  9. Aqueous drilling fluids containing fluid loss additives

    SciTech Connect

    Bardoliwalla, D.F.; Villa, J.L.

    1987-03-03

    This patent describes an aqueous clay containing drilling fluid having present in an amount sufficient to reduce fluid loss of the drilling fluid, a copolymer of (1) from about 80% to about 98% by weight of acrylic acid and (2) from about 2% to about 20% by weight of itaconic acid. The copolymer has a weight average molecular weight of between about 50,000 to about 1,000,000, being in its free acid or partially or completely neutralized salt form and being at least water dispersible.

  10. Large hole rotary drill performance

    SciTech Connect

    Workman, J.L.; Calder, P.N.

    1996-12-31

    Large hole rotary drilling is one of the most common methods of producing blastholes in open pit mining. Large hole drilling generally refers to diameters from 9 to 17 inch (229 to 432 mm), however a considerable amount of rotary drilling is done in diameters from 6{1/2} to 9 inch (165 to 229 mm). These smaller diameters are especially prevalent in gold mining and quarrying. Rotary drills are major mining machines having substantial capital cost. Drill bit costs can also be high, depending on the bit type and formation being drilled. To keep unit costs low the drills must perform at a high productivity level. The most important factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor is given for calculating the penetration rate based on rock strength, pulldown weight and the RPM. The importance of using modern drill performance monitoring systems to calibrate the penetration equation for specific rock formations is discussed. Adequate air delivered to the bottom of the hole is very important to achieving maximum penetration rates. If there is insufficient bailing velocity cuttings will not be transported from the bottom of the hole rapidly enough and the penetration rate is very likely to decrease. An expression for the balancing air velocity is given. The amount by which the air velocity must exceed the balancing velocity for effective operation is discussed. The effect of altitude on compressor size is also provided.

  11. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  12. Metal drilling with portable hand drills

    NASA Technical Reports Server (NTRS)

    Edmiston, W. B.; Harrison, H. W.; Morris, H. E.

    1970-01-01

    Study of metal drilling solves problems of excessive burring, oversized holes, and out-of-round holes. Recommendations deal with using the proper chemical coolants, applying the coolants effectively, employing cutting oils, and dissipating the heat caused by drilling.

  13. Successful application of drilling technology extends EPMI's directional drilling capability

    SciTech Connect

    Schroeter, D.R.; Chan, H.W. )

    1988-01-01

    This paper summarizes recent drilling performance on EPMI's Tabu, Palas, and Guntong platforms where a top-drive drilling system, PDC bits, MWD equipment, and low-toxicity oil base mud have been used to drill EPMI's deepest directional wells. These wells are as deep as 3750 meters (measured depth) with hole angles up to 73 degrees. More than two thirds of the wells are dual completions, each with two to three directional targets. The paper describes how this technology was used to overcome the usual problems in wells of this type, especially high torque and stuck pipe.

  14. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    PubMed

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. PMID:21945787

  15. Membrane behavior of clay liner materials

    NASA Astrophysics Data System (ADS)

    Kang, Jong Beom

    Membrane behavior represents the ability of porous media to restrict the migration of solutes, leading to the existence of chemico-osmosis, or the flow of liquid in response to a chemical concentration gradient. Membrane behavior is an important consideration with respect to clay soils with small pores and interactive electric diffuse double layers associated with individual particles, such as bentonite. The results of recent studies indicate the existence of membrane behavior in bentonite-based hydraulic barriers used in waste containment applications. Thus, measurement of the existence and magnitude of membrane behavior in such clay soils is becoming increasingly important. Accordingly, this research focused on evaluating the existence and magnitude of membrane behavior for three clay-based materials that typically are considered for use as liners for waste containment applications, such as landfills. The three clay-based liner materials included a commercially available geosynthetic clay liner (GCL) consisting of sodium bentonite sandwiched between two geotextiles, a compacted natural clay known locally as Nelson Farm Clay, and compacted NFC amended with 5% (dry wt.) of a sodium bentonite. The study also included the development and evaluation of a new flexible-wall cell for clay membrane testing that was used subsequently to measure the membrane behaviors of the three clay liner materials. The consolidation behavior of the GCL under isotropic states of stress also was evaluated as a preliminary step in the determination of the membrane behavior of the GCL under different effective consolidation stresses.

  16. Communicating with Clay.

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2000-01-01

    Presents a unit on clay that is centered around sign language in which students explore the slab method of working with clay. States that each student picks a letter of the sign language alphabet and fashions a clay hand to depict the letter. (CMK)

  17. Temperature Prediction Model for Bone Drilling Based on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation.

    PubMed

    Feldmann, Arne; Anso, Juan; Bell, Brett; Williamson, Tom; Gavaghan, Kate; Gerber, Nicolas; Rohrbach, Helene; Weber, Stefan; Zysset, Philippe

    2016-05-01

    Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and

  18. Corganiser: a web-based software tool for planning time-sensitive sampling of whole rounds during scientific drilling

    NASA Astrophysics Data System (ADS)

    Marshall, I. P. G.

    2014-12-01

    Corganiser is a software tool developed to simplify the process of preparing whole-round sampling plans for time-sensitive microbiology and geochemistry sampling during scientific drilling. It was developed during the Integrated Ocean Drilling Program (IODP) Expedition 347, but is designed to work with a wide range of core and section configurations and can thus be used in future drilling projects. Corganiser is written in the Python programming language and is implemented both as a graphical web interface and command-line interface. It can be accessed online at http://130.226.247.137/.

  19. Orbital evidence for clay and acidic sulfate assemblages on Mars based on mineralogical analogs from Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Kaplan, Hannah H.; Milliken, Ralph E.; Fernández-Remolar, David; Amils, Ricardo; Robertson, Kevin; Knoll, Andrew H.

    2016-09-01

    Outcrops of hydrated minerals are widespread across the surface of Mars, with clay minerals and sulfates being commonly identified phases. Orbitally-based reflectance spectra are often used to classify these hydrated components in terms of a single mineralogy, although most surfaces likely contain multiple minerals that have the potential to record local geochemical conditions and processes. Reflectance spectra for previously identified deposits in Ius and Melas Chasma within the Valles Marineris, Mars, exhibit an enigmatic feature with two distinct absorptions between 2.2 and 2.3 μm. This spectral 'doublet' feature is proposed to result from a mixture of hydrated minerals, although the identity of the minerals has remained ambiguous. Here we demonstrate that similar spectral doublet features are observed in airborne, field, and laboratory reflectance spectra of rock and sediment samples from Rio Tinto, Spain. Combined visible-near infrared reflectance spectra and X-ray diffraction measurements of these samples reveal that the doublet feature arises from a mixture of Al-phyllosilicate (illite or muscovite) and jarosite. Analyses of orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows that the martian spectral equivalents are also consistent with mixtures of Al-phyllosilicates and jarosite, where the Al-phyllosilicate may also include kaolinite and/or halloysite. A case study for a region within Ius Chasma demonstrates that the relative proportions of the Al-phyllosilicate(s) and jarosite vary within one stratigraphic unit as well as between stratigraphic units. The former observation suggests that the jarosite may be a diagenetic (authigenic) product and thus indicative of local pH and redox conditions, whereas the latter observation may be consistent with variations in sediment flux and/or fluid chemistry during sediment deposition.

  20. Mars, clays and the origins of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  1. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  2. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  3. Problem analysis of geotechnical well drilling in complex environment

    NASA Astrophysics Data System (ADS)

    Kasenov, A. K.; Biletskiy, M. T.; Ratov, B. T.; Korotchenko, T. V.

    2015-02-01

    The article examines primary causes of problems occurring during the drilling of geotechnical wells (injection, production and monitoring wells) for in-situ leaching to extract uranium in South Kazakhstan. Such a drilling problem as hole caving which is basically caused by various chemical and physical factors (hydraulic, mechanical, etc.) has been thoroughly investigated. The analysis of packing causes has revealed that this problem usually occurs because of insufficient amount of drilling mud being associated with small cross section downward flow and relatively large cross section upward flow. This is explained by the fact that when spear bores are used to drill clay rocks, cutting size is usually rather big and there is a risk for clay particles to coagulate.

  4. Evaluation of the Rulison drilling effluent pond as trout habitat

    SciTech Connect

    1998-06-23

    The Rulison Site is located in Section 25, township 7 South, Range 95 West, Garfield County, Colorado. The site is approximately 19 kilometers (km) (12 miles [mi]) southwest of Rifle Colorado, and approximately 65 km (40 mi) northeast of Grand Junction, Colorado. Project Ruhson was an experiment conducted jointly by the U.S. Atomic Energy Commission and Austral Oil Company to test the feasibility of using a nuclear device to increase natural gas production in low permeability geological formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 43-kiloton nuclear device at a depth of 2,568 meters (m) (8,426 feet [ft]) below the ground surface (DOE, 1994). The Rulison Drilling Effluent Pond (called `the pond`) is an engineered structure covering approximately 0.2 hectare (0.5 acre), which was excavated and used to store drilling fluids during drilling of the device emplacement well. The drilling fluids consisted of bentonitic drilling mud with additives such as diesel fuel and chrome lignosulfonate. Most of the drilling muds were removed from the pond when the site was decommissioned in 1976, and the pond was subsequently stocked with rainbow trout by the land owner and used as a fishing pond. In 1994 and 1995, the U.S. Department of Energy (DOE) conducted sampling of the pond to evaluate residual contamination from the drilling fluids. Based on the results of this sampling, the DOE conducted a voluntary cleanup action in order to reduce the levels of total petroleum hydrocarbons and chromium in pond sediments. The cleanup was conducted between August and mid-November of 1995. At the end of cleanup activities, the pond was lined with a clay geofabric and left dry. The geofabric was covered with sod to protect it. The pond has since been refilled by snowmelt and inflow from a spring. Prior to remediation, the pond apparently had sufficient water quality and food resources to support stocked rainbow trout. The purpose of this

  5. Drill Cuttings-based Methodology to Optimize Multi-stage Hydraulic Fracturing in Horizontal Wells and Unconventional Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Ortega Mercado, Camilo Ernesto

    Horizontal drilling and hydraulic fracturing techniques have become almost mandatory technologies for economic exploitation of unconventional gas reservoirs. Key to commercial success is minimizing the risk while drilling and hydraulic fracturing these wells. Data collection is expensive and as a result this is one of the first casualties during budget cuts. As a result complete data sets in horizontal wells are nearly always scarce. In order to minimize the data scarcity problem, the research addressed throughout this thesis concentrates on using drill cuttings, an inexpensive direct source of information, for developing: 1) A new methodology for multi-stage hydraulic fracturing optimization of horizontal wells without any significant increases in operational costs. 2) A new method for petrophysical evaluation in those wells with limited amount of log information. The methods are explained using drill cuttings from the Nikanassin Group collected in the Deep Basin of the Western Canada Sedimentary Basin (WCSB). Drill cuttings are the main source of information for the proposed methodology in Item 1, which involves the creation of three 'log tracks' containing the following parameters for improving design of hydraulic fracturing jobs: (a) Brittleness Index, (b) Measured Permeability and (c) An Indicator of Natural Fractures. The brittleness index is primarily a function of Poisson's ratio and Young Modulus, parameters that are obtained from drill cuttings and sonic logs formulations. Permeability is measured on drill cuttings in the laboratory. The indication of natural fractures is obtained from direct observations on drill cuttings under the microscope. Drill cuttings are also the main source of information for the new petrophysical evaluation method mentioned above in Item 2 when well logs are not available. This is important particularly in horizontal wells where the amount of log data is almost non-existent in the vast majority of the wells. By combining data

  6. An Adaptive Feedback and Review Paradigm for Computer-Based Drills.

    ERIC Educational Resources Information Center

    Siegel, Martin A.; Misselt, A. Lynn

    The Corrective Feedback Paradigm (CFP), which has been refined and expanded through use on the PLATO IV Computer-Based Education System, is based on instructional design strategies implied by stimulus-locus analyses, direct instruction, and instructional feedback methods. Features of the paradigm include adaptive feedback techniques with…

  7. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  8. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  9. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  10. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  11. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    SciTech Connect

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  12. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    NASA Astrophysics Data System (ADS)

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-02-01

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  13. Geothermal drilling technology update

    SciTech Connect

    Glowka, D.A.

    1997-04-01

    Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

  14. Stable isotopes of soil water are affected by clay minerals: A post correction approach for dry soils based on physicochemical soil properties

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; Kaufhold, Stephan; Koeniger, Paul; Matthias, Beyer; Himmelsbach, Thomas

    2016-04-01

    The cryogenic vacuum extraction is commonly used to access soil water that will be subsequently analyzed for stable isotopes (18O and 2H). However, the analytical error associated with this method is high compared to that of stable isotopes measured directly from water samples. Additionally, the accuracy of data derived from soil water extractions decreases with the increasing presence of fine compounds such as silt and clay. To overcome these limitations an extended applicability of the cryogenic vacuum extraction method is demonstrated. This study proposes two new methods to improve isotope values using the cryogenic vacuum extraction method. First, by showing that the extraction temperature of 205 ° C improves the precision and the accuracy for all tested soil types. Secondly, that the post correction of data based on physicochemical soil properties and common extraction temperature will reduce errors. Results show a reduction in error of d-values of soil water derived from soils with clay content between 0.1 to 48 %. The analytical error could be significantly reduced compared to previous studies by increasing the extraction temperature even for soils with high clay content. Soil water extractions from sandy soils are improved by halving the analytical error. If soil material is available, the proposed correction scheme can be applied to past isotope data and will improve comparability between studies and heterogeneous soils. It is recommended to conduct spike experiments prior to unsaturated zone isotope studies. We encourage future experiments with extraction temperatures above 205 ° C. If previously oven dried substrate is used for standard preparation old water might remain in soil with a fine texture (i.e., high clay content) after oven drying at 105 ° C and that this old water will enrich any added calibration water resulting in the enrichment of all samples normalized using it.

  15. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Su, Xilin; Yun, Feng

    2016-07-01

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ˜20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  16. Biodegradable pectin/clay aerogels.

    PubMed

    Chen, Hong-Bing; Chiou, Bor-Sen; Wang, Yu-Zhong; Schiraldi, David A

    2013-03-13

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. The addition of multivalent cations (Ca(2+) and Al(3+)) resulted in apparent cross-linking of the polymer and enhancement of aerogel properties. The compressive properties increased as the solid contents (both pectin and clay) increased; moduli in the range of 0.04-114 MPa were obtained for materials with bulk densities ranging from 0.03 g/cm(3) to 0.19 g/cm(3), accompanied by microstructural changes from a lamellar structure to a cellular structure. Biodegradability of the aerogels was investigated by detecting CO2 release for 4 weeks in compost media. The results revealed that pectin aerogels possess higher biodegradation rates than wheat starch, which is often used as a standard for effective biodegradation. The addition of clay and multivalent cations surprisingly increased the biodegradation rates. PMID:23406325

  17. The Development of Open Drills in the Context of Computer-Based Ear Training.

    ERIC Educational Resources Information Center

    Prevel, Martin

    1982-01-01

    Describes research in music education at Laval University in which students receive auditory training using a microprocessor-based hardware system. Topics include intervals, chord quality, scale degrees, diatonic tonal functions, rhythmic, melodic and harmonic dictation, jazz chord quality, microtones, and fundamentals. Students maintain full…

  18. Dispersant for water-based solids-containing fluids and a drilling fluid

    SciTech Connect

    Branch, H. III

    1986-04-08

    A dispersant is described for water-based, solids-containing fluids comprising a copolymer of a solufonated styrene monomer and a second monomer neutralized into having an amide substituent and being originally selected from the group consisting of maleic anhydride, maleimide and dimethyl maleate, the copolymer having from 2 to 100 monomer units.

  19. Research on Drill String Vibration based on the Cepstrum Analysis and Abstracting of SWD Bit Source Signals

    NASA Astrophysics Data System (ADS)

    Wu, H.; Lan, X.; Liu, Z.

    2014-12-01

    From the vibration drilling information of the surface, we can not only provide the drill bit source signal for the SWD(Seismic While Drilling)data interpretation, estimate the condition under the well, but also get such information as the stratum character, the attrited status of the aiguille and the rotating status of the drill string. In SWD pilot data preprocessing, it is very important that effective signals are abstracted from bit. Also, noises are abstracted from rigs and machines on ground. Source signal from bit, because of the broad range of frequencies and short time duration, can be easily affected by noises from rigs and machines. In order to avoid the affection and recover the bit source signals, the source function associated with the surface record is the key approach for processing the SWD signals. Cepstrum analysis is a nonlinear filtering technology, can change the convoluted signals in time domain to added signals in frequency domain. This method can remove the structural reverberation to abstract the source signals by selecting a window function. We discussed the cepstral filtering and abstracted the transient source signals according to the data of drill string simulated experiment. Indoor simulation experiment verifies reliability of cepstrum analysis technology, stifles reverberation of pipe string, and obtains source signal and transfer function. On the basis of noise elimination, analyze vibration signals received by the top of drilling string using cepstrum, stifles long time cycle reverberation, highlights periodic characteristics of signals, which supplies convenience for analysis of drill bit feeble vibration and spreading characteristics. Correlate extracted drill bit source signal with ground records, which improves signal-to-noise ratio of SWD data processing. Although cepstrum can not recover exact source signals, preliminary estimates can still be given for transient source signal in accordance with amplitude and width of the

  20. Biodegradable Pectin/clay Aerogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  1. Evaluation of saponite and saponite/sepiolite fluids for geothermal drilling

    SciTech Connect

    Guven, N.; Panfil, D.J.; Carney, L.L. . Dept. of Geosciences)

    1991-02-01

    The rheology and other properties of drilling fluids containing saponite and a saponite-sepiolite mixture as the main vicosifier have been systematically evaluated in the temperature range of 300-600{degree}F under appropriate confining pressures up to 16,000 psi. Saponite represents the magnesium analog of the clay mineral montmorillonite, which is the main constituent in conventional bentonite-based fluids. The fluid with 6% saponite exhibits a prominent viscosity enhancement at temperatures above 250{degree}F. This viscosity enhancement is easily controlled by salts and hydroxides of Na and K. The addition of Na-polyacrylates (low- and high-molecular weight polymers) eliminates the viscosity anomaly of pure saponite fluids. These polymers also increase the filtration control of saponite. The anomalous viscosity enhancement of saponite is significantly reduced by the addition of sepiolite (a clay mineral with a fibrous morphology). 12 refs., 31 figs., 26 tabs.

  2. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More field tests have been performed. A trendline analysis method has been developed. This method would improve the accuracy in detecting the locations of fractures and in determining the rock strength.

  3. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed in this quarter. The development of the data interpretation methodology and other related tasks are still continuing.

  4. A novel band-pass filter based on a periodically drilled SIW structure

    NASA Astrophysics Data System (ADS)

    Coves, A.; Torregrosa-Penalva, G.; San-Blas, A. A.; Sánchez-Soriano, M. A.; Martellosio, A.; Bronchalo, E.; Bozzi, M.

    2016-04-01

    The design and fabrication of a band-pass step impedance filter based on high and low dielectric constant sections has been realized on substrate integrated waveguide (SIW) technology. The overall process includes the design of the ideal band-pass prototype filter, where the implementation of the impedance inverters has been carried out by means of waveguide sections of lower permittivity. This can be practically achieved by implementing arrays of air holes along the waveguide. Several SIW structures with and without arrays of air holes have been simulated and fabricated in order to experimentally evaluate their relative permittivity. Additionally, the equivalent filter in SIW technology has been designed and optimized. Finally, a prototype of the designed filter has been fabricated and measured, showing a good agreement between measurements and simulations, which demonstrates the validity of the proposed design approach.

  5. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  6. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  7. Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using Nd: YAG laser

    NASA Astrophysics Data System (ADS)

    Mishra, Sanjay; Yadava, Vinod

    2013-06-01

    The creation of small diameter holes in thin sheets (<3 mm) of superalloys using a laser beam is a challenging task. Knowledge of the effect of laser related process variables on hole related responses with respect to variation of sheet thickness is essential to obtain a hole of requisite quality. Therefore, in this paper a coupled methodology comprising of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been used to develop a prediction model for the Laser Beam Percussion Drilling (LBPD) process. First, a 2D axisymmetric FEM-based thermal model for LBPD has been developed incorporating temperature-dependent thermal properties, optical properties and phase change phenomena of the sheet material. The developed FEM-based thermal model is validated with self-conducted experimental results in terms of hole taper which is further used to generate adequate input and output data for training and testing of the ANN model. Gray Relational Analysis (GRA) coupled with Principal Component Analysis (PCA) has been effectively used for the multi-objective optimization of the LBPD process utilizing the data predicted by the trained ANN model. The developed ANN model has been used to predict the performance characteristics of the LBPD process. The results predicted by the ANN model show that with the increase in pulse width and peak power the hole taper, material removal rate (MRR) and heat-affected zone (HAZ) increases. The acquired combination of optimal process variables produce a hole with good integral quality, i.e., a reduction of hole taper by 32.1%, increase of material removal rate by 28.9% and reduction of extent of HAZ by 4.5%.

  8. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The selected site and the field testing plan enabled us to test all three aspects of roof geological features. The development of the data interpretation methodologies and the geology mapping computer program have also been preceding well.

  9. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. The retrofitting works for a dedicated roof bolter for this research has been completed. The laboratory tests performed using this machine on simulated roof blocks have been conducted. The analysis performed on the testing data showed promising signs to detect the rock interface, fractures, as well as the rock types. The other tasks were progressing as planned.

  10. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  11. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  12. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  13. EFFECTS OF DRILLING FLUIDS ON 'THALASSIA TESTUDINUM' AND ITS EPIPHYTIC ALGAE

    EPA Science Inventory

    A flow-through microcosm system was developed to assess the potential influence of drilling fluids on Thalassia testudinum and its epiphytic algae. Two treatments (drilling fluid and a montmorillonite clay) and a control were used for seven tests: two 10-day, 200 microliter/l exp...

  14. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  15. Enrichment and activation of smectite-poor clay

    NASA Astrophysics Data System (ADS)

    Sarceviča, Inese; Kostjukovs, Juris; Actiņš, Andris

    2011-06-01

    A new method of smectite clay enrichment has been developed. The method is based on dispersing clay in a phosphate solution and sequential coagulation. The product of enrichment is characterized with X-ray powder diffraction, wavelength dispersive X-ray fluorescence spectrometry, differential thermal analysis and thermogravimetry. Sorption of methylene blue and hexadecylpyridinium bromide on raw and purified clays was studied.

  16. Characterization of clay scales forming in Philippine geothermal wells

    SciTech Connect

    Reyes, A.G. ); Cardile, C.M. )

    1989-01-01

    Smectite scales occur in 24 out of the 36 blocked wells located in Tongonan, Palinpinon and Bacon-Manito. These comprise 2-85% of the well scales and form at depths of 33-2620 m, where measured and fluid inclusion temperatures are 40-320{sup 0}C. Most, however, occur below the production casing show where temperatures are {ge}230{sup 0}C, often at depths coinciding with aquifers. The clay scales are compositionally and structurally different from the bentonite used in drilling, which is essentially sodium-rich montmorillonite. The clay deposits are expanding, generally disordered, and combine the characteristics of a montmorillonite, saponite and vermiculite in terms of reaction to cationic exchange treatments, structure and composition. Six types of clay scales are identified, but the predominant one, comprising 60-100% of the clay deposits in a well, is Mg- and Fe-rich and referred to as a vermiculitic species. The crystallinity, degree of disorder, textures, optical characteristics, structure and relative amounts of structural Al, Mg and Fe vary with time, temperature and fluid composition, but not with depth and measured pressure. Despite its variance from bentonite characteristics, one of the dominant suggested mechanisms of clay scale formation uses the drilling mud in the well as a substrate, from which the Mg- and Fe-rich clay evolves.

  17. Clay smear: Review of mechanisms and applications

    NASA Astrophysics Data System (ADS)

    Vrolijk, Peter J.; Urai, Janos L.; Kettermann, Michael

    2016-05-01

    Clay smear is a collection of fault processes and resulting fault structures that form when normal faults deform layered sedimentary sections. These elusive structures have attracted deep interest from researchers interested in subsurface fluid flow, particularly in the oil and gas industry. In the four decades since the association between clay-smear structures and oil and gas accumulations was introduced, there has been extensive research into the fault processes that create clay smear and the resulting effects of that clay smear on fluid flow. We undertake a critical review of the literature associated with outcrop studies, laboratory and numerical modeling, and subsurface field studies of clay smear and propose a comprehensive summary that encompasses all of these elements. Important fault processes that contribute to clay smear are defined in the context of the ratio of rock strength and in situ effective stresses, the geometric evolution of fault systems, and the composition of the faulted section. We find that although there has been progress in all avenues pursued, progress has been uneven, and the processes that disrupt clay smears are mostly overlooked. We highlight those research areas that we think will yield the greatest benefit and suggest that taking these emerging results within a more process-based framework presented here will lead to a new generation of clay smear models.

  18. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  19. Plug and drill template

    NASA Technical Reports Server (NTRS)

    Orella, S.

    1979-01-01

    Device installs plugs and then drills them after sandwich face sheets are in place. Template guides drill bit into center of each concealed plug thereby saving considerable time and fostering weight reduction with usage of smaller plugs.

  20. Archean spherule classification of CT3 drill core, Barberton Greenstone Belt (South Africa) based on petrography and mineral chemistry

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Koeberl, Christian; Mohr-Westheide, Tanja; Reimold, W. Uwe; Hofmann, Axel

    2016-04-01

    The impact history of the Early Archean Earth is not well documented. The oldest known impact structure is about 2 Ga years old; impact-related signatures in Precambrian rocks are scarce. The possible impact signature might be the Archean spherule layers that occur in the Barberton Greenstone Belt (BGB), Kaapvaal Craton, South Africa, and in the Pilbara Craton Western Australia, with ages of 3.2-3.4 and around 2.5 Ga [1]. These spherules were interpreted as impact-generated and ballistically emplaced silicate melt droplets [2]. This study is focused on petrographic and mineralogical characteristics from a set of newly drilled Archean spherule layers in drill core CT3 from the northeastern part of the BGB. The investigation of the three main intervals (A, B, and C, which include 2, 13, and 2 individual spherule layers, respectively) within CT3, contains the classification of spherules based on their shapes, textural features, deformation types, and mineral content. All of the intervals show spherule variation in those features. Therefore, the classification helps to understand if the spherules underwent processes such as tectonic deformation or if multiple impact events occurred in the area, which both might a reason of spherule layer duplications. The aim of the work is to differentiate various spherule types and the groundmasses in which they are embedded. The spherules within 17 identified spherule layers have been examined by optical microscopy (polarized and reflected) and secondary electron microscopy and were classified by shape and textural features. Subsequently, mineral phases and the chemical composition of the spherules and their matrices were investigated by using electron microprobe analysis. Regarding the shapes of the spherules they were divided into two main groups: undeformed and deformed. Undeformed spherules have spherical to ovoid as well as tear-drop shapes; deformed spherules were further subdivided into three main groups; flattened, crushed

  1. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  2. Clay Mineral: Radiological Characterization

    NASA Astrophysics Data System (ADS)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.

    2008-08-01

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  3. The Science of Clay

    ERIC Educational Resources Information Center

    Warwick, Sharon

    2005-01-01

    Students' natural curiosity provides a rich opportunity for teachers to make meaningful scientific connections between art and ceramics that will enhance the understanding of both natural forces and scientific aspects at work in the creation of clay artworks. This article discusses the scientific areas of study related to clay, which include…

  4. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  5. Finicky clay divers

    NASA Astrophysics Data System (ADS)

    Cordry, Sean M.

    1998-02-01

    Clay spheres dropped into a dilute vinegar/baking-soda solution accumulate CO2 bubbles on their surfaces. Spheres below a certain size will then float, otherwise they remain sunken. Students must determine the maximum size that will float by considering the net density of the clay/bubble system.

  6. Clay Portrait Boxes

    ERIC Educational Resources Information Center

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  7. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2003-01-01

    Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.

  8. Assessment of two thermally treated drill mud wastes for landfill containment applications.

    PubMed

    Carignan, Marie-Pierre; Lake, Craig B; Menzies, Todd

    2007-10-01

    Offshore oil and gas drilling operations generate significant amounts of drill mud waste, some of which is transported onshore for subsequent thermal treatment (i.e. via thermal remediation). This treatment process results in a mineral waste by-product (referred to as thermally treated drill mud waste; TTDMW). Bentonites are originally present in many of the drill mud products and it is hypothesized that TTDMW can be utilized in landfill containment applications (i.e. cover or base liner). The objective of this paper is to examine the feasibility of this application by performing various physical and chemical tests on two TTDMW samples. It is shown that the two TTDMW samples contained relatively small amounts of clay-sized minerals although hydraulic conductivity values are found to be less than 10(-8) m/s. Organic carbon contents of the samples were approximately 2%. Mineralogy characterization of the samples confirmed varying amounts of smectite, however, peak friction angles for a TTDMW sample was greater than 36 degrees. Chemical characterization of the TTDMW samples show potential leaching of barium and small amounts of other heavy metals. Discussion is provided in the paper on suggestions to assist in overcoming regulatory issues associated with utilization of TTDMW in landfill containment applications. PMID:17985664

  9. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  10. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.