Science.gov

Sample records for clay based drilling

  1. Clay-based geothermal drilling fluids

    SciTech Connect

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  2. Evaluation of past and future alterations in tuff at Yucca Mountain, Nevada, based on the clay mineralogy of drill cores USW G-1, G-2, and G-3

    SciTech Connect

    Bish, D.L.

    1989-03-01

    The tuffs at Yucca Mountain in south-central Nevada are being studied by the Yucca Mountain Project (YMP) to determine their suitability for a high-level radioactive waste repository. For predictive purposes, it is important to understand the alteration history of Yucca Mountain and to know how the minerals in Yucca Mountain tuffs respond to changing conditions such as elevated temperatures. The clay mineralogy of these tuffs has been examined using x-ray powder diffraction, and approximation temperatures of alteration have been determined using available clay mineral data and fluid inclusion analyses. Also, several illites from drill holes USW G-1 and G-2 have been dated using K/Ar techniques, yielding ages of about 11 Myr. The clay mineral in Yucca Mountain tuffs are predominantly interstratified illite/smectites, with minor amounts of chloride, kaolinite, and interstratified chlorite/smectite at depth in USW G-1 and G-2. The reactions observed for these illite/smectites are similar to those observed in pelitic rocks. With depths, the illite/smectites transform from random interstratifications (R = 0) through ordered intermediates (R = 1) to illite in USW G-2 and to Kalkberg (R {ge} 3) interstratifications in USW G-1. The illite/smectites in USW G-3 have not significantly transformed. It appears that the illites in deeper rock results from hydrothermal and diagenetic reactions of earlier-formed smectites. These data demonstrate that the rocks at depth in the northern end of Yucca Mountain were significantly altered about 11 Myr ago. Both clay mineralogy and fluid inclusions suggest that the rocks at depth in USW G-2 have been subjected to postdepositional temperatures of at least 275{degree}C, those in USW G-1 have reached 200{degree}C, and USW G-3 rocks probably have not exceeded 100{degree}C. 64 refs., 9 figs., 3 tabs.

  3. Laboratory modeling of laterally-loaded drilled shafts in clay

    SciTech Connect

    Mayne, P.W.; Kulhawy, F.H.; Trautmann, C.H.

    1995-12-01

    The behavior of free-head rigid drilled shafts under static and cyclic lateral and moment loading was investigated using laboratory models in relatively large test chambers. This testing program represents perhaps one of the first larger-scale laboratory test series to utilize cast-in-place concrete shafts in consolidated and prestressed cohesive soil deposits for realistic simulation of prototype drilled shafts in clays. The construction procedure incorporated the actual effects of concrete curing and soil/concrete interface roughness, and the soil-deposit preparation included the characteristic anisotropy and overconsolidation associated with natural clays. A total of 28 cylindrical shafts having diameters of 51, 89, and 175 mm (2.0, 3.5, and 6.9 in.) and depth-do-diameter (D/B) ratios of 3--8 were constructed and tested. Many of the shafts were instrumented with total stress cells and pore-water stress transducers to permit both total and effective stress measurements during the load testing. The results of the lateral and moment load tests indicated a high degree of nonlinearity in the monotonic static load-displacement response, but it can be represented adequately by a hyperbola. This hyperbola also provides a reference backbone curve for the cyclic loading behavior.

  4. Water based drilling mud additive

    SciTech Connect

    McCrary, J.L.

    1983-12-13

    A water based fluid additive useful in drilling mud used during drilling of an oil or gas well is disclosed, produced by reacting water at temperatures between 210/sup 0/-280/sup 0/ F. with a mixture comprising in percent by weight: gilsonite 25-30%, tannin 7-15%, lignite 25-35%, sulfonating compound 15-25%, water soluble base compound 5-15%, methylene-yielding compound 1-5%, and then removing substantially all of the remaining water to produce a dried product.

  5. Clay-based Nanocomposites Possibilities and Limitations

    NASA Astrophysics Data System (ADS)

    Papoulis, Dimitris

    2011-09-01

    In the last decades, clay mineral based nanocomposites and polymer-clay nanocomposites (PCNC) have been proposed as very useful materials for many uses including photocatalysis, medicinal uses as tissue engineering or modified drug delivery systems. Clay minerals and especially montmorillonite, kaolinite, halloysite palygorskite and sepiolite are the most used clay minerals because of their high surface areas, colloidal dimensions of their particles and other properties. This lecture aims at reporting on very recent developments in the use of clay minerals and PCNC as materials with photocatalytic and medical interest.

  6. Application of Ester based Drilling Fluid for Shale Gas Drilling

    NASA Astrophysics Data System (ADS)

    Sauki, Arina; Safwan Zazarli Shah, Mohamad; Bakar, Wan Zairani Wan

    2015-05-01

    Water based mud is the most commonly used mud in drilling operation. However, it is ineffective when dealing with water-sensitive shale that can lead to shale hydration, consequently wellbore instability is compromised. The alternative way to deal with this kind of shale is using synthetic-based mud (SBM) or oil-based mud (OBM). OBM is the best option in terms of technical requirement. Nevertheless, it is toxic and will create environmental problems when it is discharged to onshore or offshore environment. SBM is safer than the OBM. The aim of this research is to formulate a drilling mud system that can carry out its essential functions for shale gas drilling to avoid borehole instability. Ester based SBM has been chosen for the mud formulation. The ester used is methyl-ester C12-C14 derived from palm oil. The best formulation of ester-based drilling fluid was selected by manipulating the oil-water ratio content in the mud which are 70/30, 80/20 and 90/10 respectively. The feasibility of using this mud for shale gas drilling was investigated by measuring the rheological properties, shale reactivity and toxicity of the mud and the results were compared with a few types of OBM and WBM. The best rheological performance can be seen at 80/20 oil-water ratio of ester based mud. The findings revealed that the rheological performance of ester based mud is comparable with the excellent performance of sarapar based OBM and about 80% better than the WBM in terms of fluid loss. Apart from that, it is less toxic than other types of OBM which can maintain 60% prawn's survival even after 96 hours exposure in 100,000 ppm of mud concentration in artificial seawater.

  7. Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.

    PubMed

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option. PMID:15160901

  8. Glowing clay: Real time tracing using a suite of novel clay based fluorescent tracers

    NASA Astrophysics Data System (ADS)

    Hardy, Robert; Quinton, John; Pates, Jackie; Coogan, Mike

    2015-04-01

    Clay is one of the most mobile fractions of soil due to its small particle size. It is also known to sorb many chemicals, such as nutrients (notably phosphorus), agrochemicals and heavy metals. The movement of clay is therefore linked with the transport and fate of these substances. A novel fluorescent clay tracing suite has been produced, together with an imaging technique. This suite consists of qualitative clay tracers, using rhodamine based fluorophores, and quantitative clay tracers, using metal based fluorophores. Efforts have also been made to allow integration of commercially available tracers, which are silt and sand sized. The clay tracers exploit the high affinity that montmorillonite has for Rhodamine B and Ru(bpy)3. This allows for an extremely thin layer of the fluorophore to be sorbed onto the clay's surface, in much that same way as materials in the natural environment will bind to clay. The tracer that is produced retains key chemical and physical properties of clay, such as size, shape and density. The retention of these micro-properties results in the retention of macro-properties, such as tendency to aggregate and cracking on drying. Imaging techniques have been developed to analyse these tracers. The imaging system uses diffused laser light to excite the tracer and a modified DSLR camera to image the soil surface. The images have been compiled into a time lapse video showing the movement of clay over the course of a rainfall event. This is the first time that the quantitative movement of clay has been recorded over a soil surface in real time. 4D data can be extracted from the images allowing the spatial location and intensity of tracer to be monitored over time, with mm precision and on the timescale of seconds. As the system can also work with a commercial tracer it is possible to investigate the movement of particles of almost any size and over a range of scales from soil box to hillside. This allows users to access this technique without

  9. Water swellable clay composition and method to maintain stability in salt contaminated water

    SciTech Connect

    Alexander, W.

    1987-01-06

    A method is described of drilling comprising contacting an earthen formation with a rotary drilling bit to form a salt contaminated drill hole and circulating a drilling fluid in the drill hole to cool and lubricate the drill bit during rotation and to lift drill cuttings of the drill hole. The drilling fluid becomes contaminated with salt contaminated water. The improvement described here comprises adding a water swellable montmorillonite clay composition to the drilling fluid. The composition comprises a water swellable montmorillonite clay, xanthan gum in an amount of 0.1% to 20% based on the weight of water swellable montmorillonite clay, and at least one other, water soluble gum selected from the group consisting of guar gum, dextran gum, locust bean gum, and mixtures thereof in an amount of 4.0% to 10% based on the weight of water swellable clay.

  10. Overhead drilling: Comparing three bases for aligning a drilling jig to vertical

    PubMed Central

    Rempel, David; Star, Demetra; Barr, Alan; Janowitz, Ira

    2010-01-01

    Problem Drilling overhead into concrete or metal ceilings is a strenuous task done by construction workers to hang ductwork, piping, and electrical equipment. The task is associated with upper body pain and musculoskeletal disorders. Previously, we described a field usability evaluation of a foot lever and inverted drill press intervention devices that were compared to the usual method for overhead drilling. Both interventions were rated as inferior to the usual method based on poor setup time and mobility. Method Three new interventions, which differed on the design used for aligning the drilling column to vertical, were compared to the usual method for overhead drilling by commercial construction workers (n=16). Results The usual method was associated with the highest levels of regional body fatigue and the poorest usability ratings when compared to the three interventions. Conclusion Overall, the ‘Collar Base’ intervention design received the best usability ratings. Impact on Industry Intervention designs developed for overhead drilling may reduce shoulder fatigue and prevent subsequent musculoskeletal disorders. These designs may also be useful for other overhead work such as lifting and supporting materials (e.g., piping, ducts) that are installed near the ceiling. Workplace health and safety interventions may require multiple rounds of field-testing prior to achieving acceptable usability ratings by the end users. PMID:20630276

  11. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, four companies including H.C. Spinks Clay, Kentucky-Tennessee Clay, Old Hickory Clay and Unimin mined ball clay in four states. Based on a preliminary survey of the ball clay industry, production reached 1.32 Mt valued at $53.3 million. Tennessee was the leading ball clay producer state with 61% of domestic production, followed by Texas, Mississippi and Kentucky.

  12. Modification of clay-based waste containment materials

    SciTech Connect

    Adu-Wusu, K.; Whang, J.M.; McDevitt, M.F.

    1997-12-31

    Bentonite clays are used extensively for waste containment barriers to help impede the flow of water in the subsurface because of their low permeability characteristics. However, they do little to prevent diffusion of contaminants, which is the major transport mechanism at low water flows. A more effective way of minimizing contaminant migration in the subsurface is to modify the bentonite clay with highly sorptive materials. Batch sorption studies were conducted to evaluate the sorptive capabilities of organo-clays and humic- and iron-based materials. These materials proved to be effective sorbents for the organic contaminants 1,2,4-trichlorobenzene, nitrobenzene, and aniline in water, humic acid, and methanol solution media. The sorption capacities were several orders of magnitude greater than that of unmodified bentonite clay. Modeling results indicate that with small amounts of these materials used as additives in clay barriers, contaminant flux through walls could be kept very small for 100 years or more. The cost of such levels of additives can be small compared to overall construction costs.

  13. Clay-based polymer nanocomposites: research and commercial development.

    PubMed

    Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R

    2005-10-01

    This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials. PMID:16245517

  14. Experiencing Clay: Inquiry-Based Learning and Assessment for Learning

    ERIC Educational Resources Information Center

    Mui, Ma So

    2010-01-01

    This article presents an examination of the effects of using an inquiry-based learning pedagogy to teach ceramics to pre-service teachers (my students) at the Hong Kong Institute of Education. At the beginning of the study the students were asked to conduct experiments on the properties of clay. The results indicate that half of them were able to…

  15. Clay mineral analysis of the Hirabayashi NIED drill core on the Nojima fault that ruptured in the 1995 Kobe Earthquake, southwest Japan

    NASA Astrophysics Data System (ADS)

    Matsuda, T.; Omura, K.; Ikeda, R.; Awaji, D.

    2002-12-01

    A 1800-m-deep borehole was drilled at Nojima Hirabayashi and penetrated the Nojima fault that was activated at the time of the 1995 Hyogo-ken Nanbu Earthquake (Kobe Earthquake) in Japan. Three possible fracture zones were detected at depths of about 1140 m, 1300 m, and 1800 m. At first, we analyzed the mode of distribution of rocks, minerals and chemical elements in them. There is a foliated blue-gray gouge at a depth of 1140 m. So we infer that this is the central fault plane, and began our fracture zone analysis there, as follows. The degree of fracturing is evidently greater in the hanging wall than in the footwall. We estimated the relative amounts of minerals qualitatively, and we detected not only quartz, orthoclase, plagioclase, biotite and hornblende in the parent rock (granodiorite), but also kaolinite, smectite, laumontite, stilbite, calcite, ankerite and siderite, which are related to hydrothermal alteration. Biotite notably disappears in both the hanging wall and footwall across the central fault plane, although it disappears over a significantly greater distance in the hanging wall than in the footwall. Equally, we estimated the amounts of major chemical elements quantitatively. Al2O3, Fe2O3, MnO, TiO2, and P2O5 all decrease throughout this interval, except at a few points. H2O_{ and CO2 increase throughout the interval. Na2O increases in the region adjacent to the central fault plane, while MgO and CaO increase in the hanging wall and decrease in the footwall. SiO2 and K2O decrease in the hanging wall and increase in the footwall. Next, we particularly investigated about the clay minerals such as smectite. From the drill core, we separated the clay-size fraction and analyzed it by X-Ray Diffractometer (XRD). Incidentally, particle-size separations are based on Stokes_fs law. We prepared oriented samples for XRD and to make it, we used the glass slide method. We measured it both in the air-dried and ethylene glycol-solvated conditions. We analyzed the

  16. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  17. Polymer based nanocomposites with nanofibers and exfoliated clay

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Reneker, Darrell H.

    2005-01-01

    Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.

  18. Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Kontny, Agnes; Kohl, Thomas

    2014-10-01

    . Low magnetic susceptibility can also be attributed to primary low magnetite content, if the granite facies changes. In order to interpret magnetic susceptibility from cuttings, contaminations with iron from wear debris of the drilling tools must be eliminated. Provided that the magnetic mineralogy of the granite is known in detail, this method in combination with petrographic investigations is suited to indicate and characterize hydrothermal alteration and the appearance of clay.

  19. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  20. Epoxy nanocomposites based on high temperature pyridinium-modified clays.

    PubMed

    Zhang, Qingxin; Naito, Kimiyoshi; Qi, Ben; Kagawa, Yutaka

    2009-01-01

    Polymer/clay nanocomposites are generally fabricated by thermal curing or melt compounding at elevated temperatures, however the thermal stability of common alkyl ammonium treated clays is poor and decomposition occurs inevitably during high temperature processing. In this study, we modified clays with an aromatic pyridinium salt. Thermogravimetric analysis (TGA) showed that the onset degradation temperature (Td(onset)) and maximum decomposition temperature (Td(max)) of the pyridinium treatment clays was up to 310 and 457 degrees C respectively implying high thermal stability. The thermal decomposition behaviour of the pyridinium modified clays was discussed. A series of epoxy/clay nanocomposites were synthesized using a diglycidyl ether of bisphenol A (DGEBA) epoxy and diethyltoluene diamine (DETDA). The morphology of epoxy/clay nanocomposites was characterized with wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM), and intercalated structures were observed. The storage modulus of epoxy was increased but glass transition temperature was decreased with clay incorporation. The effects of clays on glass transition temperature (Tg) of epoxy were also discussed. PMID:19441298

  1. Compact fibre Bragg grating-based thermometer for on-line temperature monitoring of drill bits

    NASA Astrophysics Data System (ADS)

    Hey Tow, Kenny; Llera, Miguel; Le Floch, Sébastien; Salvadé, Yves; Thévenaz, Luc

    2016-05-01

    In this communication, a novel compact fibre Bragg grating-based thermometer for on-line temperature monitoring of drill bits is reported. Our proposed technique can potentially be used to optimize any drilling process, requiring the use of small drill bits, through direct temperature measurement at the drill bit instead of relying on indirect parameters (speed of rotation, applied force) in order to avoid an overheating as it is currently done nowadays.

  2. ARITHMETIC DRILLS AND REVIEW ON A COMPUTER-BASED TELETYPE.

    ERIC Educational Resources Information Center

    SUPPES, PATRICK; AND OTHERS

    FIFTEEN DAILY DRILLS EMPHASIZING MASTERY OF BASIC NUMBER FACTS, SUCH AS ARITHMETIC OPERATIONS AND UNITS OF MEASUREMENT WERE CONSTRUCTED TO ENCOMPASS 7 PREVIOUSLY REPORTED ATTRIBUTES OF AN EFFECTIVE DRILL. ATTRIBUTES ARE MIXED DRILL, TIME LIMIT, INCREASINGLY DIFFICULT EXAMPLES, THOROUGH COVERAGE, FREQUENT AND SMALL AMOUNTS, VERBAL PROBLEMS,…

  3. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  4. Induction of Fish Biomarkers by Synthetic-Based Drilling Muds

    PubMed Central

    Gagnon, Marthe Monique; Bakhtyar, Sajida

    2013-01-01

    The study investigated the effects of chronic exposure of pink snapper (Pagrus auratus Forster), to synthetic based drilling muds (SBMs). Fish were exposed to three mud systems comprised of three different types of synthetic based fluids (SBFs): an ester (E), an isomerized olefin (IO) and linear alpha olefin (LAO). Condition factor (CF), liver somatic index (LSI), hepatic detoxification (EROD activity), biliary metabolites, DNA damage and stress proteins (HSP-70) were determined. Exposure to E caused biologically significant effects by increasing CF and LSI, and triggered biliary metabolite accumulation. While ester-based SBFs have a rapid biodegradation rate in the environment, they caused the most pronounced effects on fish health. IO induced EROD activity and biliary metabolites and LAO induced EROD activity and stress protein levels. The results demonstrate that while acute toxicity of SBMs is generally low, chronic exposure to weathering cutting piles has the potential to affect fish health. The study illustrates the advantages of the Western Australian government case-by-case approach to drilling fluid management, and highlights the importance of considering the receiving environment in the selection of SBMs. PMID:23894492

  5. PAH composition of Water Based Drilling Mud and drill cuttings in the offshore region, east coast of India.

    PubMed

    Jagwani, Devaanshi; Kulkarni, Atul; Shukla, Parth; Ramteke, Dilip S; Juneja, Harjeet D

    2011-11-01

    As a consequence of offshore drilling, used Water Based Drilling Muds (WBMs) are typically disposed off, by discharging into the sea; such a disposal does not fully eliminate the environmental hazards. Hence, in this study, 2, 3, 4 and 5 ringed polycyclic aromatic hydrocarbons (PAHs i.e. naphthalene, fluorene, phenanthrene, fluoranthene, chrysene and benzo (a) pyrene) were determined from the WBMs and associated drill cuttings obtained from varying depths(viz. 150, 300 and 600 m) from three offshore wells present in East coast of India. In both WBMs and drill cuttings, concentration of naphthalene was maximum i.e. 81.59 ± 2.73 and 39.87 ± 2.40 mg/kg respectively, while benzo (a) pyrene was minimum i.e. 0.19 ± 0.07 and 0.12 ± 0.03 mg/kg respectively. The WBMs contained significantly (p < 0.05) higher PAH concentration than drill cuttings. The individual PAH concentration significantly (p < 0.01) increased with increasing depth in each well. PMID:21691860

  6. DRILL: a standardized radiology-teaching knowledge base

    NASA Astrophysics Data System (ADS)

    Rundle, Debra A.; Evers, K.; Seshadri, Sridhar B.; Arenson, Ronald L.

    1991-07-01

    Traditionally, radiologists have collected and saved interesting cases in their film formats to teach medical students, residents, and physicians. These cases are classified according to various coding schemes, although current schemes alone are insufficient to meet today's educational needs. Teaching methods and cases also vary among institutions, along with the manner in which instructors present information to their students. In order to address this problem, the authors developed a standardized radiology teaching knowledge database known as the Digital Radiology Image Learning Library (DRILL). DRILL is a relational image knowledge database providing access to standard mammography cases in digital image format along with a pool of clinical and radiological information on a per-case basis. The development platform chosen is a standard Apple Macintosh-II computer and the Oracle database environment. The data entry and query interfaces are implemented in HyperCard. Images are stored on magnetic disk but could be stored on optical media. Since the personal computer platform was chosen, a wide variety of course building tools are available through which a teacher can construct a course, such as authoring and multi-media systems for building computer based courses, or word processors for writing course outlines tests. The interface also provides image conversion tools which convert images into PC-compatible formats.

  7. High temperature drilling fluids

    SciTech Connect

    Stong, R.E.; Walinsky, S.W.

    1986-01-28

    This patent describes an aqueous drilling fluid suitable for high-temperature use. This fluid is composed of a water base. Clay is suspended in the base and from about 0.01-25 pounds per barrel total composition of a hydrolyzed terpolymer of maleic anhydride, styrene and a third monomer selected from acrylamide, methacrylamide, acrylic acid and metacrylic acid. The molar ratio of maleic anhydride to styrene to the third monomer is from about 30:10:60 to 50:40:10, and the alkali metal, ammonium and lower aliphatic amine salts thereof, the weight-average molecular weight of the hydrolyzed terpolymer is from about 500-10,000.

  8. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis; Black, Alan D.; Green, Sidney J.; Robertson, Homer A.; Bland, Ronald G.; Curry, David Alexander; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  9. Effect of a water-based drilling waste on receiving soil properties and plants growth.

    PubMed

    Saint-Fort, Roger; Ashtani, Sahar

    2014-01-01

    This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth. PMID:24117079

  10. Diffusion of radionuclides in clay-based ceramics

    SciTech Connect

    Ivanov, P.A.; Gulin, A.N.; Shatkov, V.M.; Shashukov, E.A.; Kuznetsov, B.S.

    1988-09-01

    The diffusion coefficients of sodium-22, strontium-90, and cesium-134 in clay-containing ceramics of three types are determined by the method of integral residual activity. It is found that at the investigated temperatures the diffusion coefficients of the radionuclides decrease in the order sodium-22, cesium-134, strontium-90. Migration of cesium-134 in comparison with sodium-22 is characterized by substantially lower values of the preexponential factor and diffusion activation energy. It is shown that in the case of ceramic made up of 89% by mass cambrian clay and 11% by mass perlite, increase in relative moisture content of the samples from0.05 to 0.3% leads to substantial (by 2-3 orders of magnitude) growth of the diffusion coefficients of the radionuclides. Further increase in the relative moisture content has practically no effect on their diffusive mobility.

  11. 76 FR 39885 - Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... SECURITY Coast Guard Risk-Based Targeting of Foreign Flagged Mobile Offshore Drilling Units (MODUs) AGENCY... Drilling Units (MODUs). This policy letter announces changes to the Coast Guard's system used to prioritize inspections of foreign-flagged MODUs. DATES: This policy will become effective on July 7, 2011....

  12. Laser beam drilling of metal-based composites

    NASA Astrophysics Data System (ADS)

    Riegel, H.; Merkel, M.; Ã-chsner, A.

    2014-02-01

    Laser drilling is a highly efficient technique to generate holes in almost any material. The relatively small amount of heat being involved during the process results in a small heat affected zone. This characteristic makes laser processing interesting for composite materials. The drilling process has to be adapted to the special characteristics of the composite material. In this paper investigations were performed with an advanced composite material, that is a metallic hollow sphere structure (MHSS). Numerical simulation was used to predict heat flux and temperature levels for different geometric parameters of the spheres (diameter, wall thickness) in order to optimize the drilling process. The numerical simulation allows a detailed analysis of the physical process in the zone that is influenced by the laser beam, which can hardly be analyzed by any measuring technique. The models for transient numerical analysis consider heat conduction and convection. The experimental work was done by a CO2-laser. The percussion drilling method has been used as drilling technique. The pulse duration was in the millisecond time regime. Investigations have been done with a mean power of 100 W, 200 W and 400 W. Two focal lenses have been used with focal lengths of 5.0´´ and 7.5´´. The laser beam melts the hollow sphere structure inside the beam leaving a hole in the structure as well as in individual hollow spheres. An image processing technique was developed to determine the circularity on the spheres and the drilled diameter in the structure. The circularity declines with increasing drill depth. The diameter as function of depth can be well described with lines of constant intensity of the focussed laser beam, the isophotes.

  13. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    PubMed

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system. PMID:16290714

  14. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by a Retort Chamber (Derived From API Recommended Practice 13B-2) (EPA Method 1674) 7 Appendix 7 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  15. Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids.

    PubMed

    Kosynkin, Dmitry V; Ceriotti, Gabriel; Wilson, Kurt C; Lomeda, Jay R; Scorsone, Jason T; Patel, Arvind D; Friedheim, James E; Tour, James M

    2012-01-01

    Graphene oxide (GO) performs well as a filtration additive in water-based drilling fluids at concentrations as low as 0.2 % (w/w) by carbon content. Standard American Petroleum Institute (API) filtration tests were conducted on pH-adjusted, aqueous dispersions of GO and xanthan gum. It was found that a combination of large-flake GO and powdered GO in a 3:1 ratio performed best in the API tests, allowing an average fluid loss of 6.1 mL over 30 min and leaving a filter cake ~20 μm thick. In comparison, a standard suspension (~12 g/L) of clays and polymers used in the oil industry gave an average fluid loss of 7.2 mL and a filter cake ~280 μm thick. Scanning electron microscopy imaging revealed the extreme pliability of well-exfoliated GO, as the pressure due to filtration crumpled single GO sheets, forcing them to slide through pores with diameters much smaller than the flake's flattened size. GO solutions also exhibited greater shear thinning and higher temperature stability compared to clay-based fluid-loss additives, demonstrating potential for high-temperature well applications. PMID:22136134

  16. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  17. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  18. Effect of supercritical carbon dioxide as an exfoliation aid on bio-based polyethylene terephthalate glycol-modified/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Kwangho; Lee, Jae Wook; Hong, In-Kwon; Lee, Sangmook

    2013-08-01

    Bio-based PETG (bio-based glycol modified polyethylene terephthalate, Ecozen T95) / clay (organo-modified montmorillonite, OMMT, C10A) nanocomposites were prepared by co-rotating twin screw extruder attached with supercritical carbon dioxide (scCO2) injection system. The effects of nano-clay and scCO2 on the properties of PETG/clay nanocomposites were investigated by measuring thermal, rheological, tensile, impact, and barrier properties. The thermal and mechanical properties decreased with increasing nano-clay content, but they recovered or even exceeded the properties of neat PETG as scCO2 was added. It was verified due to a good dispersion of the nano-clay in PETG matrix for PETG/clay nanocomposites by XRD, SEM, and TEM. It was thought that scCO2 could be an effective exfoliation agent for many nanocomposites systems as well as for bio-based PET/clay nanocomposites.

  19. Drilling fluids based on a mixture of a sulfonated thermoplastic polymer and a sulfonated elastomeric polymer

    SciTech Connect

    Turner, S.R.; Lundberg, R.D.; Peiffer, D.G.; Thaler, W.A.; Walker, T.O.

    1984-01-10

    The present invention relates to mixtures of sulfonated thermoplastic polymers and sulfonated elastomeric polymers which function as viscosification agents when added to oil-based drilling muds which are the fluids used to maintain pressure, cool drill bits, and lift cuttings from the holes in the drilling operation for oil and gas wells. The sulfonated thermoplastic and elastomeric polymers both have about 5 to about 200 meq. of sulfonate groups per 100 grams of the sulfonated thermoplastic or elastomeric polymers, wherein the sulfonated groups are neutralized with a metallic cation or an amine or ammonium counterion. A polar cosolvent can optionally be added to the mixture of oil drilling mud and sulfonated thermoplastic and elastomeric polymers, wherein the polar cosolvent increases the solubility of the sulfonated thermoplastic and elastomeric polymer in the oil drilling mud by decreasing the strong ionic interactions between the sulfonate groups of the sulfonated polymers.

  20. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Five companies mined fire clay in four states in 2011. Production, based on a preliminary survey of the fire clay industry, was estimated to be 240 kt (265,000 st), valued at $7.68 million, an increase from 216 kt (238,000 st), valued at $6.12 million in 2010. Missouri was the leading producing state, followed by Texas, Washington and Ohio, in decreasing order by quantity.

  1. Rheologically stable, nontoxic, high-temperature, water-based drilling fluid

    SciTech Connect

    Elward-Berry, J.; Darby, J.B.

    1997-09-01

    An exceptionally stable, high-temperature, water-based drilling fluid has been developed based on a fundamental redesign of drilling fluid components and functions, while still using commercially available materials. Rheological stability was characterized by extensive Fann 50C low-shear-rate viscosity vs. temperature studies and supporting viscoelastic rheological data. The fluid has been used in offshore and land applications, at temperatures as high as 420 F and densities as high as 15.5 lbm/gal.

  2. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  3. Decision-fusion-based automated drill bit toolmark correlator

    NASA Astrophysics Data System (ADS)

    Jones, Brett C.; Press, Michael J.; Guerci, Joseph R.

    1999-02-01

    This paper describes a recent study conducted to investigate the reproducibility of toolmarks left by drill bits. This paper focuses on the automated analysis aspect of the study, and particularly the advantages of using decision fusion methods in the comparisons. To enable the study to encompass a large number of samples, existing technology was adapted to the task of automatically comparing the test impressions. Advanced forensic pattern recognition algorithms that had been developed for the comparison of ballistic evidence in the DRUGFIRETM system were modified for use in this test. The results of the decision fusion architecture closely matched those obtained by expert visual examination. The study, aided by the improved pattern recognition algorithm, showed that drill bit impressions do contain reproducible marks. In a blind test, the DRUGFIRE pattern recognition algorithm, enhanced with the decision fusion architecture, consistently identified the correct bit as the source of the test impressions.

  4. Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...

  5. Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

    NASA Astrophysics Data System (ADS)

    Kim, Soon Ki

    Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol

  6. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling.

    PubMed

    Zhang, Chunxi; Lin, Tie

    2016-01-01

    In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method. PMID:27483270

  7. Preliminary evaluation of galvanic sludge immobilization in clay-based matrix as an environmentally safe process.

    PubMed

    Karlovic, Elvira S; Dalmacija, Bozo D; Tamas, Zagorka S; Prica, Miljana Dj; Ranogajec, Jonjaua G

    2008-04-01

    This study attempts to determine the possibilities and limitations of the immobilization of galvanic wastes by their incorporation into clay-based materials. It focuses on the effects of several processing parameters such as the temperature of thermal treatment, the relative amount of sludge, and the physico-chemical aspects of the sample, on the fixing level of relevant metals (Zn, Ni, Fe, Mn, Pb, Cu, Cr) in thermally treated clay-based samples. The effectiveness of sludge inactivation was assessed by water-leaching test and conductivity measurements. In view of the potential use of the sludge stabilization products as construction materials, the linear shrinkage and bending strain of the fired samples was investigated. To characterize their morphology, mineralogy and composition, fired samples of clay and its mixtures with galvanic sludge were studied on a scanning electron microscope (SEM) coupled with an energy dispersive X-ray analyser (EDS) and X-ray diffractometer (XRD). It was found that the efficiency of metal immobilization is dependent on the clay composition and the temperature of the thermal treatment of the prepared mixtures. The thermal treatment of all samples at all temperatures resulted in the stabilization of all heavy metal ions (copper, nickel, iron, lead, manganese and zinc) with the exception of chromium. PMID:18324540

  8. Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Malusis, Michael A.; Shackelford, Charles D.; Maneval, James E.

    2012-09-01

    Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane

  9. Drill, Baby, Drill

    ERIC Educational Resources Information Center

    Kerkhoff, Todd

    2009-01-01

    School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

  10. ASSESSING THE IMPACT OF SYNTHETIC-BASED DRILLING FLUIDS ON BENTHIC ORGANISMS IN TEMPERATE WATERS

    EPA Science Inventory

    Efforts to enhance the efficiency of oil/gas drilling operations and to minimize hazards to marine ecosystems have resulted in the increased use of synthetic-based fluids (SBF). SBFs have performance characteristics closely related to oil-based fluids (OBF) however their lower PA...

  11. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  12. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  13. Long-term modeling of glass waste in portland cement- and clay-based matrices

    SciTech Connect

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  14. Hole-cleaning capabilities of an ester-based drilling fluid system

    SciTech Connect

    Kenny, P.; Hemphill, T.

    1996-03-01

    Well 33/9-C02, located in the Statfjord field in the Norwegian sector of the North Sea, held the world record in extended-reach drilling from 1993--95. To successfully drill a well of this type, an efficient drilling fluid is required to suspend the weighting material and provide good carrying capacity. The ester-based mud system used in the 12{1/4}- and 8{1/2}-in. hole sections of this well exhibited excellent hole-cleaning capabilities. This paper describes the fluid`s performance in the field and in the laboratory where the fluid was tested under down-hole conditions. Fluid rheological behavior is described with the more accurate yield-power law. (YPL) (Herschel-Bulkley) model.

  15. Transesterification reaction for synthesis of palm-based ethylhexyl ester and formulation as base oil for synthetic drilling fluid.

    PubMed

    Abdul Habib, Nor Saiful Hafiz; Yunus, Robiah; Rashid, Umer; Taufiq-Yap, Yun H; Abidin, Zurina Zainal; Syam, Azhari Muhammad; Irawan, Sonny

    2014-01-01

    The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives. PMID:24717547

  16. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  17. Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes

    NASA Astrophysics Data System (ADS)

    Herney-Ramírez, J.; Madeira, Luis M.

    Clays, both natural and physical-chemically modified, are attractive materials for the preparation of supported catalysts. In this chapter, a review is made regarding the use of pillared interlayered clays (PILCs) in heterogeneous Fenton-like advanced oxidation processes. Their applications in pollutants degradation is summarized, with particular emphasis on the effect of the main operating conditions (e.g., initial H2O2 or parent compound concentration, catalyst load, pH, or temperature) on oxidation efficiency. Special attention is also given to the type of catalyst or precursor used, to the importance and advantages of the heterogeneous versus homogeneous process, and to significant aspects like catalyst stability. Among the technological issues that are of concern, the importance of using continuous flow reactors (e.g., fixed-bed) is discussed. Finally, some mechanistic studies are reviewed as well as modeling works, based on phenomenological or semi-empiric models (e.g., using statistic tools like design of experiments).

  18. Bio-Based Nano Composites from Plant Oil and Nano Clay

    NASA Astrophysics Data System (ADS)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  19. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  20. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Seven companies mined fire clay in four states during 2003. From 1984 to 1992, production declined to 383 kt (422,000 st) from a high of 1.04 Mt (1.14 million st) as markets for clay-based refractories declined. Since 1992, production levels have been erratic, ranging from 383 kt (422,000 st) in 1992 and 2001 to 583 kt (642,000 st) in 1995. Production in 2003, based on preliminary data, was estimated to be around 450 kt (496,000 st) with a value of about $10.5 million. This was about the same as in 2002. Missouri remained the leading producer state, followed by South Carolina, Ohio and California.

  1. Waste to Want: Polymer nanocomposites using nanoclays extracted from Oil based drilling mud waste

    NASA Astrophysics Data System (ADS)

    Adegbotolu, Urenna V.; Njuguna, James; Pollard, Pat; Yates, Kyari

    2014-08-01

    Due to the European Union (EU) waste frame work directive (WFD), legislations have been endorsed in EU member states such as UK for the Recycling of wastes with a vision to prevent and reduce landfilling of waste. Spent oil based drilling mud (drilling fluid) is a waste from the Oil and Gas industry with great potentials for recycling after appropriate clean-up and treatment processes. This research is the novel application of nanoclays extracted from spent oil based drilling mud (drilling fluid) clean-up as nanofiller in the manufacture of nanocomposite materials. Research and initial experiments have been undertaken which investigate the suitability of Polyamide 6 (PA6) as potential polymer of interest. SEM and EDAX were used to ascertain morphological and elemental characteristics of the nanofiller. ICPOES has been used to ascertain the metal concentration of the untreated nanofiller to be treated (by oil and heavy metal extraction) before the production of nanocomposite materials. The challenges faced and future works are also discussed.

  2. Spreading and deposition of drill cuttings in the Barents Sea - Plans of the Barents Sea drill cuttings research initiative (BARCUT) project

    NASA Astrophysics Data System (ADS)

    Junttila, Juho; Aagaard Sørensen, Steffen; Dijkstra, Noortje

    2016-04-01

    The increasing petroleum exploration activity in the Barents Sea will lead to increased release of drill cuttings onto the ocean bottom in the future. Drilling mud consists of both drilling fluid with contaminants and fine sediments. This increasing discharge of drill cuttings provides a need for further knowledge of ocean current transportation of both contaminants and fine sediment particles (clay and silt), their impact on microfauna and the prediction of their accumulation areas. The main object is to study the current status of the sediments and microfauna exposed to different types of drill cuttings in the proximity of drilled exploration wells. Detailed objectives are: 1) To identify the main physical and geochemical characteristics of the sediments near the drilled wells including main areas for drill cutting accumulation and the influence of ocean currents on sediments and drill cuttings; 2) To identify the influence of drill cutting discharge on benthic foraminifera; 3) Monitoring and prediction of future spreading, accumulation and distribution of drill cutting related pollutants. We have conducted two field sampling campaigns, and in total visited seven drilling sites, ranging in age from recently drilled (in 2015) to nearly 30 years since abandonment. In this project, we study mainly push cores taken with a remote operated underwater vehicle (ROV) in the close proximity of exploration wells in the SW Barents Sea. We will determine the modern sedimentation rates based on the ²¹°Pb dating method. We analyze sediment grain-size, heavy metal and polyaromatic hydrocarbon (PAH) contents. Additionally analysis on benthic foraminifera, smectite clay minerals and the total organic carbon (TOC) content will be performed.

  3. Synthesis and Characterization of the Hybrid Clay- Based Material Montmorillonite-Melanoidin: A Potential Soil Model

    SciTech Connect

    V Vilas; B Matthiasch; J Huth; J Kratz; S Rubert de la Rosa; P Michel; T Schäfer

    2011-12-31

    The study of the interactions among metals, minerals, and humic substances is essential in understanding the migration of inorganic pollutants in the geosphere. A considerable amount of organic matter in the environment is associated with clay minerals. To understand the role of organic matter in the environment and its association with clay minerals, a hybrid clay-based material (HCM), montmorillonite (STx-1)-melanoidin, was prepared from L-tyrosine and L-glutamic acid by the Maillard reaction. The HCM was characterized by elemental analysis, nuclear magnetic resonance, x-ray photoelectron spectroscopy (XPS), scanning transmission x-ray microscopy (STXM), and thermal analysis. The presence of organic materials on the surface was confirmed by XPS and STXM. The STXM results showed the presence of organic spots on the surface of the STx-1 and the characterization of the functional groups present in those spots. Thermal analysis confirmed the existence of organic materials in the montmorillonite interlayer, indicating the formation of a composite of melanoidin and montmorillonite. The melanoidin appeared to be located partially between the layers of montmorillonite and partially at the surface, forming a structure that resembles the way a cork sits on the top of a champagne bottle.

  4. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  5. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  6. Strain monitoring of drilling riser in deepwater based on fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Jiang, Yajun; Yang, Dexing; Wang, Jun; Xu, Jian; Qin, Chuan; Liao, Wei; Zhao, Jianlin; Wang, Haiyan; Jiang, Shiquan

    2011-11-01

    It is very important to monitor the lateral and axial strains of drilling riser for evaluation its health in deepwater. An optical fiber strain sensing system based on optical fiber Bragg gratings (FBGs) used for monitoring the strain of drilling riser is presented. The optical fiber strain sensors are made by embedding FBGs into thin columned fiber reinforced polymer which protect FBGs from seawater corrosion. Four optical fiber strain sensors are installed parallel to the riser axis and arranged at 90° angles around the riser by a home-made metal belt, at the same time, twelve resistance strain gauges are pasted near the sensors around the drilling riser at 30° angles as reference sensors. A scaled drilling riser about 1 meter long and 0.245m diameter is pressed in the lateral and axial direction in the range of 0-400KN, the experimental results show that the relative error between optical fiber strain sensors and resistance strain gauges is less than 6%.

  7. Vital roles of nano silica in synthetic based mud for high temperature drilling operation

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Aslam Md; Hanafi, Nor Hazimastura

    2015-07-01

    At high temperature drilling, chemicals degradation occurs which reduce the effectiveness of the drilling fluid. There is a potential that by using nano sized particles which have thermal stability up to 2500°F to be used as a stabilizer to withstand the harsh condition. Therefore, this project aims to identify the performance of synthetic-based mud (SBM) with nano silica for high temperature drilling operation. A conventional SBM performance has been compared with additional percentages of nano silica. 20% and 40% of nano silica out of fluid loss weight has been added into the SBM and analyzed the rheological properties and other drilling fluid properties. The conventional SBM formulation has lost some amount of weighting material or solids in the mud and has been replaced by lighter and smaller size of nanoparticles. It has reduced the rheological properties of the mud but the gelation formed by nano silica material has given higher gel strength. Also, nano silica potentially plugs the porous media, resulted in lower filtration loss measurement and thinner mud cake ranged 20% to 50% respectively.

  8. Rheological investigations of water based drilling fluid system developed using synthesized nanocomposite

    NASA Astrophysics Data System (ADS)

    Jain, Rajat; Mahto, Triveni K.; Mahto, Vikas

    2016-02-01

    In the present study, polyacrylamide grafted xanthan gum/multiwalled carbon nanotubes (PA-g-XG/MWCNT) nanocomposite was synthesized by free radical polymerization technique using potassium persulfate as an initiator. The polyacrylamide was grafted on xanthan gum backbone in the presence of MWCNT. The synthesized nanocomposite was characterized by X-ray diffraction technique (XRD), and Fourier transform infrared spectroscopy analysis (FT-IR). The morphological characteristics of the nanocomposite were analyzed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) analyses. Also, its temperature resistance property was observed with Thermogravimetric analysis (TGA). The effect of nanocomposite on the rheological properties of the developed drilling fluid system was analyzed with a strain controlled rheometer and Fann viscometer. Flow curves were drawn for the developed water based drilling fluid system at elevated temperatures. The experimental data were fitted to Bingham, power-law, and Herschel Bulkley flow models. It was observed that the Herschel Bulkley flow model predict the flow behavior of the developed system more accurately. Further, nanocomposite exhibited non-Newtonian shear thinning flow behavior in the developed drilling fluid system. Nanocomposite showed high temperature stability and had a significant effect on the rheological properties of the developed drilling fluid system as compared to conventionally used partially hydrolyzed polyacrylamide (PHPA) polymer.

  9. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  10. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  11. Drilling tool

    SciTech Connect

    Baumann, O.; Dohse, H.P.; Reibetanz, W.; Wanner, K.

    1983-09-27

    A drilling tool is disclosed which has a drilling shaft member, a crown drilling member with an annular wall provided with a plurality of cutting edges and detachably mounted on the shaft member, a center drilling member detachably mounted on the shaft member inside the crown drilling member and having a further cutting edge, and elements for limiting a drilling depth of the tool when the center drilling member is mounted on the shaft member. Thereby, the operator of the drilling tool, after drilling a guiding groove in a rock, is forced to remove the center drilling member from the drilling tool and drill further without the center drilling member, which increases the drilling efficiency.

  12. An analytical drilling force model and GPU-accelerated haptics-based simulation framework of the pilot drilling procedure for micro-implants surgery training.

    PubMed

    Zheng, Fei; Lu, Wen Feng; Wong, Yoke San; Foong, Kelvin Weng Chiong

    2012-12-01

    The placement of micro-implants is a common but relatively new surgical procedure in clinical dentistry. This paper presents a haptics-based simulation framework for the pilot drilling of micro-implants surgery to train orthodontists to successfully perform this essential procedure by tactile sensation, without damaging tooth roots. A voxel-based approach was employed to model the inhomogeneous oral tissues. A preprocessing pipeline was designed to reduce imaging noise, smooth segmentation results and construct an anatomically correct oral model from patient-specific data. In order to provide a physically based haptic feedback, an analytical drilling force model based on metal cutting principles was developed and adapted for the voxel-based approach. To improve the real-time response, the parallel computing power of Graphics Processing Units is exploited through extra efforts for data structure design, algorithms parallelization, and graphic memory utilization. A prototype system has been developed based on the proposed framework. Preliminary results show that, by using this framework, proper drilling force can be rendered at different tissue layers with reduced cycle time, while the visual display has also been enhanced. PMID:22749906

  13. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    SciTech Connect

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

  14. Mechanical properties of materials obtained via alkaline activation of illite-based clays of Latvia

    NASA Astrophysics Data System (ADS)

    Sperberga, I.; Rundans, M.; Cimmers, A.; Krage, L.; Sidraba, I.

    2015-04-01

    Materials has been synthesized in the temperature range from 60-100 °C from two illite based clays of Latvia under activation of KOH and NaOH solutions (4-6 M). Compressive strength and apparent porosity were measured. The effect of concentration of KOH and NaOH solutions on the material mechanical properties was investigated by means of infrared spectroscopy (IR). Compressive strength data of the materials showed that via such activation could obtain building materials with good quality.

  15. Chemically-bonded brick production based on burned clay by means of semidry pressing

    NASA Astrophysics Data System (ADS)

    Voroshilov, Ivan; Endzhievskaya, Irina; Vasilovskaya, Nina

    2016-01-01

    We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg m3, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W m * °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.

  16. Chloride ions promoted the catalytic wet peroxide oxidation of phenol over clay-based catalysts.

    PubMed

    Zhou, Shiwei; Zhang, Changbo; Xu, Rui; Gu, Chuantao; Song, Zhengguo; Xu, Minggang

    2016-01-01

    Catalytic wet peroxide oxidation (CWPO) of phenol over clay-based catalysts in the presence and absence of NaCl was investigated. Changes in the H2O2, Cl(-), and dissolved metal ion concentration, as well as solution pH during phenol oxidation, were also studied. Additionally, the intermediates formed during phenol oxidation were detected by liquid chromatography-mass spectroscopy and the chemical bonding information of the catalyst surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The results showed that the presence of Cl(-) increased the oxidation rate of phenol to 155%, and this phenomenon was ubiquitous during the oxidation of phenolic compounds by H2O2 over clay-based catalysts. Cl(-)-assisted oxidation of phenol was evidenced by several analytical techniques such as mass spectroscopy (MS) and XPS, and it was hypothesized that the rate-limiting step was accelerated in the presence of Cl(-). Based on the results of this study, the CWPO technology appears to be promising for applications in actual saline phenolic wastewater treatment. PMID:26942523

  17. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    PubMed

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications. PMID:26609925

  18. Multiscale Multiphysics-Based Modeling and Analysis on the Tool Wear in Micro Drilling

    NASA Astrophysics Data System (ADS)

    Niu, Zhichao; Cheng, Kai

    2016-02-01

    In micro-cutting processes, process variables including cutting force, cutting temperature and drill-workpiece interfacing conditions (lubrication and interaction, etc.) significantly affect the tool wear in a dynamic interactive in-process manner. The resultant tool life and cutting performance directly affect the component surface roughness, material removal rate and form accuracy control, etc. In this paper, a multiscale multiphysics oriented approach to modeling and analysis is presented particularly on tooling performance in micro drilling processes. The process optimization is also taken account based on establishing the intrinsic relationship between process parameters and cutting performance. The modeling and analysis are evaluated and validated through well-designed machining trials, and further supported by metrology measurements and simulations. The paper is concluded with a further discussion on the potential and application of the approach for broad micro manufacturing purposes.

  19. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    PubMed Central

    Hashizume, Hideo

    2015-01-01

    Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components. PMID:25734235

  20. Electrical properties of multiphase composites based on carbon nanotubes and an optimized clay content

    NASA Astrophysics Data System (ADS)

    Egiziano, Luigi; Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi

    2016-05-01

    The experimental results concerning the characterization of a multiphase nanocomposite systems based on epoxy matrix, loaded with different amount of multi-walled carbon nanotubes (MWCNTs) and an optimized Hydrotalcite (HT) clay content (i.e. 0.6 wt%), duly identified by an our previous theoretical study based on Design of Experiment (DoE), are presented. Dynamic-mechanical analysis (DMA) reveal that even the introduction of higher HT loading (up to 1%wt) don't affect significantly the mechanical properties of the nanocomposites while morphological investigations show an effective synergy between clay and carbon nanotubes that leads to peculiar micro/nanostructures that favor the creation of the electrical conductive network inside the insulating resin. An electrical characterization is carried out in terms of DC electrical conductivity, percolation threshold (EPT) and frequency response in the range 10Hz-1MHz. In particular, the measurements of the DC conductivity allow to obtain the typical "percolation" curve also found for classical CNT-polymer mixtures and a value of about 2 S/m for the electrical conductivity is achieved at the highest considered CNTs concentration (i.e. 1 wt%). The results suggest that multiphase nanocomposites obtained incorporating dispersive nanofillers, in addition to the conductive one, may be a valid alternative to the polymer blends, to improve the properties of the polymeric materials thus able to meet high demands, particularly concerning their mechanical and thermal stability and electrical features required in the aircraft engineering.

  1. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  2. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  3. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  4. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  5. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Field tests have been performed in two underground coal mines in this quarter. It also found from the tests that the non-drilling thrust and torque should be deducted from the acquired drilling data. The non-drilling torque is actually higher than that is used to overcome the shear strength is proportional to the rotation rate.

  6. Clay Houses

    ERIC Educational Resources Information Center

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  7. Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films.

    PubMed

    Mishra, R K; Ramasamy, K; Lim, S M; Ismail, M F; Majeed, A B A

    2014-08-01

    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications. PMID:24831081

  8. Novel nanohybrids of cobalt(III) Schiff base complexes and clay: Synthesis and structural determinations

    NASA Astrophysics Data System (ADS)

    Kianfar, Ali Hossein; Mahmood, Wan Ahmad Kamil; Dinari, Mohammad; Azarian, Mohammad Hossein; Khafri, Fatemeh Zare

    2014-06-01

    The [Co(Me2Salen)(PBu3)(OH2)]BF4 and [Co(Me2Salen)(PPh3)(Solv)]BF4, complexes were synthesized and characterized by FT-IR, UV-Vis, 1H NMR spectroscopy and elemental analysis techniques. The coordination geometry of [Co(Me2Salen)(PPh3)(H2O)]BF4 was determined by X-ray crystallography. It has been found that the complex is containing [Co(Me2Salen)(PPh3)(H2O)]BF4 and [Co(Me2Salen)(PPh3)(EtOH)]BF4 hexacoordinate species in the solid state. Cobalt atom exhibits a distorted octahedral geometry and the Me2Salen ligand has the N2O2 coordinated environment in the equatorial plane. The [Co(Me2Salen)(PPh3)(H2O)]BF4 complex shows a dimeric structure via hydrogen bonding between the phenolate oxygen and hydrogens of coordinated H2O molecule. These complexes were incorporated into Montmorillonite-K10 nanoclay. The modified clays were identified by FT-IR, XRD, EDX, TGA/DTA, SEM and TEM techniques. According to the XRD results of the new nanohybrid materials, the Schiff base complexes are intercalated in the interlayer spaces of the clay. SEM and TEM micrographs show that the resulting hybrid nanomaterials have layer structures. Also, TGA/DTG results show that the intercalation reaction was taken place successfully.

  9. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays.

    PubMed

    Martynková, Grazyna Simha; Valásková, Marta

    2014-01-01

    The review is focused on the recent research and development of antimicrobial nanocomposites based on selected carbon nanomaterials and natural nanoclay minerals. The nanocomposites comprised of two or several components, where at least one presents antimicrobial properties, are discussed. Yet the most popular agent remains silver as nanoparticle or in ionic form. Second, broadly studied group, are organics as additives or polymeric matrices. Both carbons and clays in certain forms possess antimicrobial properties. A lot of interest is put on to research graphene oxide. The low-environmental impact technologies-based on sustainable biopolymers have been studied. Testing of antimicrobial properties of nanomaterials is performed most frequently on E. coli and S. aureus bacterias. PMID:24730289

  10. Factors Affecting the Design of Slow Release Formulations of Herbicides Based on Clay-Surfactant Systems. A Methodological Approach

    PubMed Central

    Galán-Jiménez, María del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás

    2013-01-01

    A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and

  11. Factors affecting the design of slow release formulations of herbicides based on clay-surfactant systems. A methodological approach.

    PubMed

    Galán-Jiménez, María Del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás

    2013-01-01

    A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and

  12. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. PMID:25922212

  13. Drill Presses.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to the drill press for use at the postsecondary level. The first of seven sections lists seven types of drill presses. The second section identifies 14 drill press parts. The third section lists 21 rules for safe use of drilling machines. The fourth section identifies the six procedures for…

  14. Toxicity assessment of individual ingredients of synthetic-based drilling muds (SBMs).

    PubMed

    Bakhtyar, Sajida; Gagnon, Marthe Monique

    2012-09-01

    Synthetic-based drilling muds (SBMs) offer excellent technical characteristics while providing improved environmental performance over other drilling muds. The low acute toxicity and high biodegradability of SBMs suggest their discharge at sea would cause minimal impacts on marine ecosystems, however, chronic toxicity testing has demonstrated adverse effects of SBMs on fish health. Sparse environmental monitoring data indicate effects of SBMs on bottom invertebrates. However, no environmental toxicity assessment has been performed on fish attracted to the cutting piles. SBM formulations are mostly composed of synthetic base oils, weighting agents, and drilling additives such as emulsifiers, fluid loss agents, wetting agents, and brine. The present study aimed to evaluate the impact of exposure to individual ingredients of SBMs on fish health. To do so, a suite of biomarkers [ethoxyresorufin-O-deethylase (EROD) activity, biliary metabolites, sorbitol dehydrogenase (SDH) activity, DNA damage, and heat shock protein] have been measured in pink snapper (Pagrus auratus) exposed for 21 days to individual ingredients of SBMs. The primary emulsifier (Emul S50) followed by the fluid loss agent (LSL 50) caused the strongest biochemical responses in fish. The synthetic base oil (Rheosyn) caused the least response in juvenile fish. The results suggest that the impact of Syndrill 80:20 on fish health might be reduced by replacement of the primary emulsifier Emul S50 with an alternative ingredient of less toxicity to aquatic biota. The research provides a basis for improving the environmental performance of SBMs by reducing the environmental risk of their discharge and providing environmental managers with information regarding the potential toxicity of individual ingredients. PMID:21928151

  15. Drilling method

    SciTech Connect

    Stokley, C.O.; Haas, R.C.

    1991-04-30

    This patent describes a drilling method. It includes: rotating a drill bit in a well head to drill a well in an earth formation while circulating drilling fluid consisting essentially of a liquid; conducting the returning drilling fluid, and oil and gas from the formation to a flow rate control valve and to a pressure control valve; and conducting fluid from the flow rate control valve and the pressure control valve to a separator vessel maintained under pressure.

  16. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  17. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  18. Clay Mineralogy of a Pleistocene Barrier Island, Skidaway Island, GA

    NASA Astrophysics Data System (ADS)

    Shaffer, M.; Shackford, J. K.; Elliott, W. C.; Christensen, B. A.; Freile, D.; Hillier, C.; Horton, B. P.

    2005-05-01

    A dense blue clay underlies various marsh localities near the Skidaway Institute of Oceanography (SKIO). SKIO is located on a Pleistocene barrier island in Georgia. The clay is found in two cores drilled at the high marsh/maritime forest transition zone. It was recovered at a depth of one meter, below unconsolidated marsh sediment. A total of 12 clay samples were collected at 10cm intervals downcore beginning at 100cm, through the clay layer. The thickness of the clay layer is unknown due to core refusal at a heavily iron oxide mottled zone. Samples were examined for the presence of diatoms and foraminifera, neither of which were found to be present, thereby suggesting a non-marine environment, although dissolution may be a factor. Geochemical data also lacks a definite marine signature, thereby confirming the micropaleontological conclusions. Smectite, illite, and kaolinite were found throughout both cores with halloysite present only below a depth of roughly 120cm. These particular clay minerals have been identified in blue clays analyzed in the Carolina Bays of southern North Carolina. Halloysite is typically a metastable phase forming from the weathering of illite to kaolinite, thus the location of the halloysite found in these cores indicates more recent weathering of the parent illite at depth. This is unusual as weathering is normally thought to be more intense closer to the surface. Vermiculite, which is also part of the general weathering scheme of mica, was not identified in the cores based on the behavior of the samples after solvation in ethylene glycol and potassium-saturation. The observed clay assemblage is similar to that of North Carolina Carolina Bays. Carolina Bays are found from Virginia to Georgia, and are found to contain blue clays (Ingram et al., 1959). Morphologically, Carolina Bays are typically elliptical and while the study area is more rounded, this could be due to its modification by an active tidal system.

  19. Comparative study of illite clay and illite-based geopolymer products

    NASA Astrophysics Data System (ADS)

    Sperberga, I.; Sedmale, G.; Stinkulis, G.; Zeila, K.; Ulme, D.

    2011-10-01

    Quaternary (Q-clay) clayey deposits are one of the dominating parts of mineral raw materials of the sedimentary cover at present area of Latvia. These clays can be characterised by illite content up to 75-80 %. Two ways for use of illite clays were studied: conventional and geopolymers method. Purpose of the second mentioned method was showing the influence of alkali (KOH) on the transformation of Q-clay/illite structure. Obtained products were investigated by IR-spectroscopy, DTA and XRD, pore size distribution was determined as well. Some ceramic properties and compressive strength were determined and compared. IR-spectrum showed the effect of alkali on the transformation of Q-clay/illite structure in three main absorption bands: 3620-3415 cm-1 which is related to the vibrational modes of adsorbed water between SiO4 and AlO6 layers; new stronger absorption bands at 1635 cm-1 and 1435 cm-1 indicate on the appearance of vibrations in Q-KOH and are related to the K-O-Si bonds; the most essential changes are vibrations at 850 cm-1 showing the changes in the coordination number of Al from 6 to 4 for Q-KOH. Investigations of the bulk density in dependence on temperature showed the small increase of bulk density for Q-clay while - the relatively remarkable decrease for Q-clay/KOH. Mentioned values correlate with the compressive strength of Q-clay and Q-KOH products.

  20. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    SciTech Connect

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting

  1. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  2. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  3. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    PubMed Central

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-01-01

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130

  4. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    PubMed

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-01-01

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130

  5. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  6. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  7. New magnetic organic inorganic composites based on hydrotalcite-like anionic clays for drug delivery

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Chiriac, Horia; Lupu, Nicoleta

    2007-04-01

    The structural "memory effect" of anionic clays was used to obtain layered double hydroxides (LDHs) with tailored magnetic properties, by loading iron oxides and/or spinel structures on iron partially substituted hydrotalcite-like materials. The obtained magnetic layered structures were further used as precursors for new hybrid nanostructures, such as aspirin-hydrotalcite-like anionic clays. Transmission electron microscopy (TEM) analysis shows that small iron oxide or spinel nanoparticles coexist with the fibrous drug particles on the surface of partially aggregated typical clay-like particles. The specific saturation magnetization of the loaded LDHs can be increased up to 70 emu/g by using specific post-synthesis treatments.

  8. Automated drilling draws interest

    SciTech Connect

    Not Available

    1985-05-01

    Interest in subsea technology includes recent purchase of both a British yard and Subsea Technology, a Houston-based BOP manufacturer. In France, key personnel from the former Comex Industries have been acquired and a base reinstalled in Marseille. ACB is also investing heavily, with the Norwegians, in automated drilling programs. These automated drilling programs are discussed.

  9. Drilling on midway atoll, Hawaii

    USGS Publications Warehouse

    Ladd, H.S.; Tracey, J.I., Jr.; Gross, M.G.

    1967-01-01

    Two holes drilled through reef sediments into basalt have established a geologic section through the Miocene. Midway was built above the sea by flows that were weathered and partially truncated in pre-Miocene time. After submergence, volcanic clays were reworked and covered by limestones. Overall submergence was interrupted at least twice by emergence. The limestones have been leached, recrystallized, and partially dolomitized.

  10. On the accuracy of a video-based drill-guidance solution for orthopedic and trauma surgery: preliminary results

    NASA Astrophysics Data System (ADS)

    Magaraggia, Jessica; Kleinszig, Gerhard; Wei, Wei; Weiten, Markus; Graumann, Rainer; Angelopoulou, Elli; Hornegger, Joachim

    2014-03-01

    Over the last years, several methods have been proposed to guide the physician during reduction and fixation of bone fractures. Available solutions often use bulky instrumentation inside the operating room (OR). The latter ones usually consist of a stereo camera, placed outside the operative field, and optical markers directly attached to both the patient and the surgical instrumentation, held by the surgeon. Recently proposed techniques try to reduce the required additional instrumentation as well as the radiation exposure to both patient and physician. In this paper, we present the adaptation and the first implementation of our recently proposed video camera-based solution for screw fixation guidance. Based on the simulations conducted in our previous work, we mounted a small camera on a drill in order to recover its tip position and axis orientation w.r.t our custom-made drill sleeve with attached markers. Since drill-position accuracy is critical, we thoroughly evaluated the accuracy of our implementation. We used an optical tracking system for ground truth data collection. For this purpose, we built a custom plate reference system and attached reflective markers to both the instrument and the plate. Free drilling was then performed 19 times. The position of the drill axis was continuously recovered using both our video camera solution and the tracking system for comparison. The recorded data covered targeting, perforation of the surface bone by the drill bit and bone drilling. The orientation of the instrument axis and the position of the instrument tip were recovered with an accuracy of 1:60 +/- 1:22° and 2:03 +/- 1:36 mm respectively.

  11. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.

    2010-01-01

    The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.

  12. Geophysical investigations in deep horizontal holes drilled ahead of tunnelling

    USGS Publications Warehouse

    Carroll, R.D.; Cunningham, M.J.

    1980-01-01

    Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.

  13. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-04-15

    In this quarter, the research effort is to develop the drill control unit (DCU) that acquire, store drilling parameters and control the drilling operation. The relevant publications have been reviewed and the methodology developed by previous researchers has been evaluated using the collected data in our laboratory and field tests conducted prior to the start of this project. Numerical modeling for exploring roof bolting mechanism has been started.

  14. Second Language Vocabulary Acquisition Using a Diglot Reader or a Computer-Based Drill and Practice Program

    ERIC Educational Resources Information Center

    Christensen, Elizabeth; Merrill, Paul; Yanchar, Stephen

    2007-01-01

    This research study compares the impact of a computer-based diglot reader with that of a sophisticated, computer-based, drill and practice program on second language acquisition. The affective benefits as well as depth and breadth of vocabulary development were examined. The diglot method, originally conceived by Burling, introduces second…

  15. Laboratory development and field application of a novel water-based drill-in fluid for geopressured horizontal wells

    SciTech Connect

    Dobson, J.W.; Harrison, J.C.; Hale, A.H.

    1996-12-31

    Research has identified a novel water-based drill-in fluid for drilling and completing geopressured horizontal wells. This fluid has a unique combination of properties which make it especially suitable for geopressured applications. They include the use of calcium and/or zinc bromide as a base brine, minimal concentration of calcium carbonate as bridging material, low plastic viscosity, tight fluid loss control, good filter cake properties, and excellent return permeability. This drill-in fluid has been used successfully to drill a 1,200 foot production interval, 4.75 inch diameter wellbore in the Gulf of Mexico with a system weight of 13.2 lbm/gal, bottom hole temperature of 185{degrees} F., and a 1400 to 1700 psi overbalance. The system functioned very well in both the drilling and completion operations. Fluid rheology was easily maintainable and the hole conditions were excellent without torque or drag problems. Initial production data suggests that the well is producing at expected rates with low drawdown pressure.

  16. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed. It is found that the drilling power can be used as a supplementary method for detecting voids/fractures and rock interfaces.

  17. Induction and Tunability of Self-Healing Property of Dendron Based Hydrogel Using Clay Nanocomposite.

    PubMed

    Vivek, Balachandran; Kumar, Prashant; Prasad, Edamana

    2016-06-16

    Low molecular weight gels have relatively poor self-healing capacity compared to that of polymeric gels. Induction and tuning of the healing capacity of low molecular weight gels to achieve desired applications are thus challenging tasks. The present work describes the achievement of remarkable tunability of self-healing property for a low molecular weight hybrid gel, based on poly(aryl ether) dendron derivative (PAD). The hybrid gel has been synthesized using PAD and poly(amido amine) {PAMAM} dendrimer derivative (QPD), which are intercalated in the montmorillonite clay (MMT) layers. The self-healing of the hybrid gel (QPD-MMT-PAD) was demonstrated through experiments where the distorted gel regained the initial value of storage modulus (G') within a few minutes. Further, the propensity of self-healing of the gel has been tuned as a function of QPD concentration. The mechanically stable QPD-MMT-PAD hybrid gel has been utilized for the adsorption of ppm level concentration of polycyclic aromatic hydrocarbons (PAHs) such as β-naphthol, pyrene, and phenenathrene from water with excellent efficiency (80-98%). PMID:27193239

  18. Hydrogenolysis of Glycerol to 1,2-Propanediol Over Clay Based Catalysts.

    PubMed

    Lee, Sang-Yong; Jung, Jae-Sun; Yang, Eun-Hyeok; Lee, Kwan-Young; Moon, Dong Ju

    2015-11-01

    1,2-propanediol (1,2-PDO) is one of the promising product among the valuable products derived from glycerol and it can be obtained by the catalytic hydrogenolysis of glycerol. Copper-supported clay-based catalysts were prepared with different pore sizes using various ratios of kaolin, Mg, and Al by coprecipitation and applied in the selective hydrogenolysis of glycerol to 1,2-PDO. In recent research, variations of pore volume and pore size could affect the diffusion of reagents within the catalyst due to the collision between reagents or pore wall and reagents. It changes selectivities of each product in hydrogenolysis of glycerol reaction. The physico-chemical properties of the catalysts were analyzed by XRD, N2 physisorption, TPR, CO2-TPD, SEM, and a mercury porosimeter. The Cu/TALCITE 4 catalyst showed 98% 1,2-PDO selectivity with 65% glycerol conversion under the optimized condition of 190 degrees C, 25 bar, and 20 wt% glycerol aqueous solution. It was found that the basic strength and meso-macro pore structure of the catalysts play an important role in glycerol conversion and 1,2-PDO selectivity. PMID:26726594

  19. Radiation-induced synthesis of vinyl copolymer based nanocomposites filled with reactive organic montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyum; Kwen, Hai-Doo; Choi, Seong-Ho

    2012-05-01

    Vinyl copolymer-clay nanocomposites were prepared by γ-irradiation-initiated radical polymerization using a mixture of styrene (St) and divinyl benzene (DVB) in the presence of reactive organic montmorillonite clay (OMMT) in methanol at room temperature. Reactive OMMT was synthesized by a cation exchange reaction of Na+-MMT and 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride as a reactive organic modifier in an aqueous solution. The microstructures of the nanocomposites were confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal stability was examined by thermo gravimetric analysis (TGA). As a result, the reactive OMMT was a good additive material for preparing vinyl copolymer-clay nanocomposites.

  20. The application of a neural network to map clay zones in crystalline rock

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Genter, Albert; Kohl, Thomas

    2014-02-01

    The appearance of clay in fractures is an important issue of applied geoscience as it not only affects the stability but also the flow paths through rocks. Forming a link between hydraulic, geochemical and mechanical processes, clay structures need to be thoroughly investigated. The growing importance of clay for waste disposal, petroleum research, geothermal exploration and geotechnical engineering necessitates tools to find and to characterize clay structures and clay minerals indirectly from geophysical measuring methods. Particularly, there is need for a technique enabling to map clay-rich zones from geophysical well logs acquired on-site in order to assess the mechanical and hydraulic properties of rocks. In this study, we present a neural network based method to map clay bearing fracture zones in crystalline facies. The study has been performed on the basis of geophysical and geological data acquired at the geothermal site of Soultz-sous-Forêts (France), in the granitic reservoir. A neural network was trained on geophysical logs from the fully cored exploration well EPS1. Calibration of the network was done on reference logs derived from the drill core. The effective calibration enabled the creation of synthetic clay content logs, which predict the clay amount in fractures along the well with >74 per cent accordance with a reference log. High clay contents could be located in faults, on which aseismic movements have been identified. The validation of this relationship destines the synthetic logs to help identifying potentially weak zones from geophysical logging methods. With application on non-cored wells, this tool can become a powerful means for assessing the probability of aseismic movements on faults caused by the presence of clay and estimating the hydraulic properties of fractures.

  1. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    PubMed

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids. PMID:21888313

  2. Numerical evaluation of sequential bone drilling strategies based on thermal damage.

    PubMed

    Tai, Bruce L; Palmisano, Andrew C; Belmont, Barry; Irwin, Todd A; Holmes, James; Shih, Albert J

    2015-09-01

    Sequentially drilling multiple holes in bone is used clinically for surface preparation to aid in fusion of a joint, typically under non-irrigated conditions. Drilling induces a significant amount of heat and accumulates after multiple passes, which can result in thermal osteonecrosis and various complications. To understand the heat propagation over time, a 3D finite element model was developed to simulate sequential bone drilling. By incorporating proper material properties and a modified bone necrosis criteria, this model can visualize the propagation of damaged areas. For this study, comparisons between a 2.0 mm Kirschner wire and 2.0 mm twist drill were conducted with their heat sources determined using an inverse method and experimentally measured bone temperatures. Three clinically viable solutions to reduce thermally-induced bone damage were evaluated using finite element analysis, including tool selection, time interval between passes, and different drilling sequences. Results show that the ideal solution would be using twist drills rather than Kirschner wires if the situation allows. A shorter time interval between passes was also found to be beneficial as it reduces the total heat exposure time. Lastly, optimizing the drilling sequence reduced the thermal damage of bone, but the effect may be limited. This study demonstrates the feasibility of using the proposed model to study clinical issues and find potential solutions prior to clinical trials. PMID:26163230

  3. Chemical Speciation of Chromium in Drilling Muds

    SciTech Connect

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-02-02

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

  4. Development of porous clay-based composites for the sorption of lead from water.

    PubMed

    Ake, C L; Mayura, K; Huebner, H; Bratton, G R; Phillips, T D

    2001-07-20

    Lead contamination of water is a major health hazard, as illustrated by the fact that exposure to this metal has been associated with death and disease in humans, birds, and animals. The present research was aimed at the development of a porous, solid-phase sorbent that can be used in the remediation of lead-contaminated water. A suitable sorbent was identified by screening various clays and other materials for their ability to effectively bind lead. The clay was adhered to a solid support using an aqueous solution of carboxymethyl cellulose. The binary composite was then tested for its ability to bind lead from solution, while providing void volume, increased surface area, and considerably enhanced hydraulic conductivity. The results suggested that a combination of sodium montmorillonite clay and carbon exhibited enhanced sorption of lead compared to carbon alone, and also supported the potential application of various combinations of sorbent materials. This value-added combination of clay, solid support, and adhesive will allow for the construction of column filtration systems that are multifunctional and capable of purifying large volumes of contaminated water. PMID:11482800

  5. Clay-based Formulations to Reduce the Environmental Impact of the Herbicide Terbuthylazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled release formulations of pesticides are receiving increasing attention as a way to reduce the environmental impact of pesticides after their application to agricultural soils. Natural and modified clay minerals have been proved to be efficient adsorbents for many pesticides and, accordingl...

  6. Clay-based affinity probes for selective cleanup and determination of aflatoxin B1 using nanostructured montmorillonite on quartz.

    PubMed

    Huebner, Henry J; Phillips, Timothy D

    2003-01-01

    A study was conducted to investigate the selective cleanup and determination of aflatoxin B1 (AfB1) from contaminated media. Composite adsorbents were formulated from calcium montmorillonite clay, which possesses a high affinity and enthalpy of adsorption for AfB1. Nanostructuring techniques were used to construct various formulations of the clay-based composite media. In AfB1 adsorption studies with prototypical affinity columns, these composites offered narrowly defined, reproducible capacity ranges. Composite recoveries of AfB1 from spiked grains exhibited linear trends that correlated well with the range of spike levels. Composite columns provided lower recoveries of AfB1 from naturally contaminated corn than did immunoaffinity columns; however, recoveries were consistent and purified extracts were free of interfering compounds, as determined by liquid chromatography with fluorescence detection. PMID:12852572

  7. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  8. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  9. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys Group, Old Hickory Clay Co., and Unimin Corp. — mined ball clay in four states in 2011. Production, on the basis of preliminary data, was 940 kt (1.04 million st) with an estimated value of $44.2 million. This is a 3-percent increase in tonnage from 912 kt (1.01 million st) with a value of $41.3 million that was produced in 2010. Tennessee was the leading producing state with 63 percent of domestic production, followed by Texas, Mississippi and Kentucky. About 69 percent of production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  10. Lockdown Drills

    ERIC Educational Resources Information Center

    North Dakota Department of Public Instruction, 2011

    2011-01-01

    As a result of House Bill 1215, introduced and passed during the 2011 North Dakota legislative session, every school building in North Dakota must conduct a lockdown drill. While no timeframe, tracking or penalty was identified in the state law, the North Dakota Department of Public Instruction (DPI) advocates annual drills, at a minimum, which…

  11. Drilling disturbance and constraints on the onset of the Paleocene-Eocene boundary carbon isotope excursion in New Jersey

    NASA Astrophysics Data System (ADS)

    Pearson, P. N.; Thomas, E.

    2015-01-01

    The onset of the Paleocene-Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE; approx. 56 Mya) was geologically abrupt, but it is debated whether it took thousands of years or was effectively instantaneous. Wright and Schaller (2013) published a significant new record of the onset of the CIE, and claimed that it could be resolved across 13 annual layers in a drill core through the Marlboro clay at Millville, New Jersey (Ocean Drilling Program (ODP) Leg 174X). Supporting evidence for similar layering was reported from another New Jersey drill site, Wilson Lake B, and a photograph of the Marlboro clay in outcrop (Wright and Schaller, 2014). Such a short duration would imply an instantaneous perturbation of the atmosphere and surface ocean and the impact of a comet or asteroid as the likely cause. However, Pearson and Nicholas (2014) suggested, based on the published core photographs, that the layers in the Marlboro clay cores could be artifacts of drilling disturbance, so-called biscuiting, wherein the formation is fractured into layers or biscuits and drilling mud is injected in between the layers. (We now prefer the term core discing following Kidd, 1978.) Here we report new observations on the cores which support that interpretation, including concentric grooves on the surfaces of the core discs caused by spinning in the bit, micro-fracturing at their edges, and injected drilling mud. We re-interpret the limited outcrop evidence as showing joints rather than sedimentary layers. We argue that foraminifer concentrations in the sediments are far too high for the layers to have been annually deposited in turbid waters at depths of 40-70 m, indicating that the onset of the CIE in the Marlboro clay likely took on the order of millennia, not years (Zeebe et al., 2014). Re-coring of Millville aimed at minimizing drilling disturbance to allow a higher-resolution study of the carbon isotope excursion is highly desirable.

  12. Poly(N-isopropylacrylamide)-clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation.

    PubMed

    Strachota, Beata; Matějka, Libor; Zhigunov, Alexander; Konefał, Rafał; Spěváček, Jiří; Dybal, Jiří; Puffr, Rudolf

    2015-12-28

    The formation of the hydrogel poly(N-isopropylacrylamide)-clay (LAPONITE®) by redox polymerization was investigated, and the main factors governing the gel build-up were determined. The significant effect of the redox initiating system ammonium peroxodisulfate (APS) and tetramethylethylenediamine (TEMED) on gel formation and structure was established, making it possible to control the structure of the gel. Moreover, the pre-reaction stage involving the quality of the clay exfoliation in an aqueous suspension and the interaction of reaction components with the clay play a role in controlling the polymerization and gel structure. The molecular and phase structure evolution during polymerization was followed in situ by the following independent techniques: Fourier transform infrared spectroscopy (FTIR), chemorheology, small-angle X-ray scattering (SAXS) and ultraviolet-visible spectroscopy (UV/Vis). The combination of these methods enabled us to describe in detail particular progress stages during the gel formation and determine the correlation of the corresponding processes on a time and conversion scale. The mechanism of gel formation was refined based on these experimental results. PMID:26428943

  13. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-titania pillars-synthesis and characterization

    SciTech Connect

    Chmielarz, Lucjan; Gil, Barbara; Kustrowski, Piotr; Piwowarska, Zofia; Dudek, Barbara; Michalik, Marek

    2009-05-15

    Porous clay heterostructures (PCHs) were synthesized using natural montmorillonite as a raw material. Apart from pure silica pillars also silica-titania pillars were intercalated into the interlayer space of the parent clay. The detailed studies of the calcination process of the as-prepared PCH samples as well as thermal stability of the pillared structure of these materials were performed. The pillared structure of PCHs intercalated with both silica and silica-titania clusters was found to be thermally stable up to temperatures exceeding 600 deg. C. It was found that titanium incorporated into the silica pillars was present mainly in the form of separated tetracoordinated cations. For the samples with the higher Ti loading also small contribution of titanium in the form of the polymeric oxide species was detected. Titanium incorporated into the PCH materials significantly increased their surface acidity forming mainly Bronsted acid sites. - Graphical abstract: Synthesis of the montmorillonite based porous clay heterostructures (PCHs) intercalated with silica-titania pillars has been performed. The mechanism of the thermal degradation of organic templates in the pore system of PCHs was studied. PCHs were characterized with respect to structure, texture, composition, surface acidity, thermal stability and form of introduced titanium.

  14. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More laboratory tests have been performed in this quarter. The analysis performed on the testing data showed: (1) abnormal rotational accelerations can be used as the indicator of the rock interfaces, and (2) the sharp drops of drilling thrust and torque agree well with the locations of fractures.

  15. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. A new mechanical approach to estimate rock strengths using the acquired drilling parameters has been proposed. This approach takes a number of important factors, that have never been studied in the previous researches, into the considerations. Good results have been shown using the new approach on the testing data.

  16. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, retrofitting work to build a dedicated roof bolter for this research has been started. A number of numerical methods have been developed to improve the quality of and to analyze the collected drilling parameters. Finite element modeling of roof bolting mechanism is continuing.

  17. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications. PMID:26492498

  18. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    NASA Astrophysics Data System (ADS)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  19. Characterization of mudstone, clayey rock and argillite towards stabilisation of boreholes by developing new drilling strategies for geothermal resources exploration

    NASA Astrophysics Data System (ADS)

    Witthaus, M.; Lempp, Ch.; Röckel, Th.; Hecht, Ch.; Herold, M.

    2009-04-01

    stones and clayey rocks up to argillite. Important for the manifestation of these instabilities are the differences between mudstones, clays and rocklike pelites. Mudstones and clays with low densities (2,0 - 2,3 g/cm³) and high moisture content (25 - 40 %) show a ductile and plastic deformation behaviour, so that the whole rock formation weakens and will be squeezed out of the borehole wall during drilling. Convergence of the borehole can be detected and the drilling bit will be forced to stop. On the other hand rocklike clay and argillites with higher densities (2,4 - 2,8 g/cm³) and lower moisture contents (0,5 - 8%) tend to show brittle behaviour during critical stress conditions around the borehole, indicated by cracks and borehole breakouts, so that the borehole becomes unstable as well. The pore pressure in these formations, increased by the induced drilling fluid, has a fundamental influence on the deformation process of these rocklike clays. Critical changes in the state of stress are caused by the sudden increase of pore pressure in the micro-structure of clays and pelites. As a consequence hydraulic tension cracks can be formed, which weaken the rocks especially when the drilling machine stops and the induced pressure decreases. Pore pressure effects creating hydraulic fracturing are the predominant cause for the instabilities in geothermal boreholes of the Upper Rhine region. In this study, the geomechanical behaviour of mudstone, clay, rocklike clay and argillite were determinated in laboratory tests by stress conditions according to the regional stress field around the borehole at a depth of about 2000 m. Compressive and extensive stress conditions as well as pore pressure could be simulated with the obtained rock samples in order to explain the reasons for borehole instabilities. Based on the experimental results, new drilling strategies will be developed to upgrade the stability of boreholes for enhanced geothermal systems.

  20. Drilling reorganizes

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  1. Results of exploratory drilling

    SciTech Connect

    Hildebrand, R.T.

    1987-01-01

    Eight exploratory holes were drilled in the Vermillion Creek basin, southern Sweetwater County, Wyoming, to aid in interpreting the subsurface stratigraphy of the Vermillion Creek coal bed. Lithologic logs based on cuttings and geophysical logs (natural gamma, density, and caliper) were made for each drill hole. Core samples of the Vermillion Creek coal bed and associated strata (roof rock, floor rock, and partings) were collected from three drill holes for geochemical and petrographic analysis. The geophysical logs indicate the presence of anomalous radioactive zones in the strata surrounding the Vermillion Creek coal bed.

  2. Water sites at a clay interface

    SciTech Connect

    Grandjean, J.

    1997-01-15

    Aqueous suspensions of swelling clays (smectites) find uses in many industrial applications including drilling fluids, suspending agents and water treatment. {sup 2}H NMR quadrupolar splittings of clay suspensions monitor the orientation of water molecules near the solid surface. Two limiting water interfacial sites explain the results on montmorillonite, hectorite, and saponite suspensions. The location of cation isomorphous substitution and the Ca{sup 2+}/Na{sup +} molar ratio of exchangeable cations modulate their relative importance. With beidellite suspensions, water orientation at the clay surface cannot be described within the above scheme.

  3. Clay for Little Fingers.

    ERIC Educational Resources Information Center

    Koster, Joan Bouza

    1999-01-01

    Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…

  4. Drilling choke

    SciTech Connect

    Lancaster, R.D.

    1984-09-11

    A drilling choke is disclosed for controlling flow of drilling fluids from a well comprising: a body having an inlet and outlet and an intermediate cavity therebetween; a seat member coaxially disposed in the body outlet; an operator assembly removably attached to the body; and a stem assembly connected to the operator assembly for axial movement thereof. A portion of the stem assembly is removable, upon removal of the operator assembly from the body, without otherwise disturbing the operator assembly.

  5. The effects of diesel oil-based drilling mud extracts on immune responses of rainbow trout.

    PubMed

    Tahir, A; Secombes, C J

    1995-07-01

    The potential suppressive effect of oil-pollution in the aquatic environment on fish immune responses was investigated by injecting rainbow trout (Oncorhychus mykiss) with an extract obtained from diesel oil-based drilling mud. To investigate the effect of the extract dose, 4 groups of 6 fish were exposed to 0, 0.6, 1.2, and 2.4 mL extract/Kg body weight (B.W.). To keep the injection volume constant, each extract dose was made up 2.4 mL/Kg B.W. with olive oil. Six weeks later the fish were sacrificed and a number of immmune parameters monitored. In a second experiment, the effect of exposure times was investigated. Fish wee exposed to 2.4 mL extract/Kg B.W., 2.4 mL olive oil/Kg B.W., or 2.4 mL saline/Kg B.W. and immune parameters were monitored 2, 4, 6 and 8 weeks post-injection. In the dose response experiment, there was no significant effect of the extract on serum immunoglobulin (Ig) levels and haemolytic complement (CH50) activity, but a suppressive effect on serum lysozyme level was found using the 0.6 mL/Kg dose. This dose also elevated proliferative activity of head kidney lymphocytes in response to the mitogen PHA. In the second experiment, investigating exposure time, again no significant overall effect on serum Ig or lysozyme level and CH50 activity was observed, although Ig levels were significantly lower at week two relative to the other groups. However, both extract- and olive oil-injected fish showed significantly lower lysozyme levels compared with the saline-injected (control) fish throughout the experiment. In contrast, at week six post-exposure, head kidney lymphocyte proliferation was significantly elevated in both the extract- and olive oil-exposed fish relative to the control fish. PMID:7605517

  6. Model-Based Hookload Monitoring and Prediction at Drilling Rigs using Neural Networks and Forward-Selection Algorithm

    NASA Astrophysics Data System (ADS)

    Arnaout, A.; Fruhwirth, R.; Winter, M.; Esmael, B.; Thonhauser, G.

    2012-04-01

    The use of neural networks and advanced machine learning techniques in the oil & gas industry is a growing trend in the market. Especially in drilling oil & gas wells, prediction and monitoring different drilling parameters is an essential task to prevent serious problems like "Kick", "Lost Circulation" or "Stuck Pipe" among others. The hookload represents the weight load of the drill string at the crane hook. It is one of the most important parameters. During drilling the parameter "Weight on Bit" is controlled by the driller whereby the hookload is the only measure to monitor how much weight on bit is applied to the bit to generate the hole. Any changes in weight on bit will be directly reflected at the hookload. Furthermore any unwanted contact between the drill string and the wellbore - potentially leading to stuck pipe problem - will appear directly in the measurements of the hookload. Therefore comparison of the measured to the predicted hookload will not only give a clear idea on what is happening down-hole, it also enables the prediction of a number of important events that may cause problems in the borehole and yield in some - fortunately rare - cases in catastrophes like blow-outs. Heuristic models using highly sophisticated neural networks were designed for the hookload prediction; the training data sets were prepared in cooperation with drilling experts. Sensor measurements as well as a set of derived feature channels were used as input to the models. The contents of the final data set can be separated into (1) features based on rig operation states, (2) real-time sensors features and (3) features based on physics. A combination of novel neural network architecture - the Completely Connected Perceptron and parallel learning techniques which avoid trapping into local error minima - was used for building the models. In addition automatic network growing algorithms and highly sophisticated stopping criterions offer robust and efficient estimation of the

  7. Application of Taguchi based Response Surface Method (TRSM) for Optimization of Multi Responses in Drilling Al/SiC/Al2O3 Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Adalarasan, R.; Santhanakumar, M.

    2015-01-01

    The emerging industrial applications of second generation hybrid composites demand an organised study of their drilling characteristics as drilling is an essential metal removal process in the final fabrication stage. In the present work, surface finish and burr height were observed while drilling Al6061/SiC/Al2O3 composite for various combinations of drilling parameters like the feed rate, spindle speed and point angle of tool. The experimental trials were designed by L18 orthogonal array and Taguchi based response surface method was presented for optimizing the drilling parameters. The significant improvements in the responses observed for the optimal parameter setting has validated the TRSM approach permitting its application in other areas of manufacturing.

  8. Digital Game-Based Learning: A Supplement for Medication Calculation Drills in Nurse Education

    ERIC Educational Resources Information Center

    Foss, Brynjar; Lokken, Atle; Leland, Arne; Stordalen, Jorn; Mordt, Petter; Oftedal, Bjorg F.

    2014-01-01

    Student nurses, globally, appear to struggle with medication calculations. In order to improve these skills among student nurses, the authors developed The Medication Game--an online computer game that aims to provide simple mathematical and medical calculation drills, and help students practise standard medical units and expressions. The aim of…

  9. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    SciTech Connect

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  10. Effect of heterocyclic based organoclays on the properties of polyimide-clay nanocomposites.

    PubMed

    Krishnan, P Santhana Gopala; Joshi, Mangala; Bhargava, Prachur; Valiyaveettil, Suresh; He, Chaobin

    2005-07-01

    Polyimide-clay nanocomposites were prepared from their precursor, namely, polyamic acid, by the solution-casting method. Organomodified montmorillonite (MMT) clay was prepared by treating Na+MMT (Kunipia F) with three different intercalating agents, namely, piperazine dihydrochloride, 1,3-bis(4-piperidinylpropane) dihydrochloride and 4,4'-bipiperidine dihydrochloride at 80 degrees C. Polyamic acid solutions containing various weight percentages of organomodified MMT were prepared by reacting 4,4'-(1,1'-biphenyl-4,4'-diyldioxy)dianiline with bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride in N-methyl-2-pyrrolidinone containing dispersed particles of organomodified MMT at 20 degrees C. Nanocomposite films were prepared from these solutions by solution casting and heated subsequently at a programmed heating rate. These films were transparent and brown in color. The extent of layer separation in nanocomposite films depends upon the chemical structure of the organoclay. These films were characterized by inherent viscosity, FT-IR, DSC, TMA, WAXD, TEM, UV, and TGA. The tensile behavior and surface energy studies were also investigated. The nanocomposite films had superior tensile properties, thermal behavior, and solvent resistance. Among the three organoclays, piperazine dihydrochloride was the best modifier. PMID:16108442

  11. Drilling fluid effects on crop growth and iron and zinc availability

    SciTech Connect

    Bauder, T.A.; Barbarick, K.A.; Ayers, P.D.; Chapman, P.L.; Shanahan, J.F.

    1999-05-01

    Waste drilling fluids are often land-farmed following completion of an oil or gas well in Colorado. This material usually contains production water, bentonitic clays, formation cuttings, barite, Na compounds, and synthetic organic polymers. The authors investigated the effects of 5 to 60 dry g drilling fluid kg{sup {minus}1} soil on the growth and trace metal concentration of sorghum-sudangrass (Sorghum bicolor L. Moench DeKalb ST-6-S sudanense) in the greenhouse. A nonlinear regression exponential-rise model fit the increased plant total dry matter yield response to increasing drilling fluid rates. Increased plant tissue Fe concentration and uptake indicated that increased plant-available Fe was primarily responsible for the yield response, but increased Zn availability was also suspected. Results from a second greenhouse study confirmed that drilling fluid can also correct Zn deficiency in corn (Zea mays L.). Soil SAR (sodium adsorption ratio) was higher with increasing drilling fluid, but was still < 1. Other trace-element concentrations in sudangrass tissue and soil pH and EC{sub sat} were not significantly increased due to application of drilling fluid. This study showed that application of controlled rates of water-based drilling fluid from operations in Weld County, Colorado, was beneficial to the growth of sorghum-sudangrass and provided evidence that land application is an acceptable method of disposal.

  12. Unusual corrosion of a drill pipe in newly developed drilling mud during deep drilling

    SciTech Connect

    Tomoe, Y.; Shimizu, M.; Nagae, Y.

    1999-07-01

    In Japan, a newly developed drilling mud containing synthetic smectite is being used during deep drilling when the formation temperature exceeds 180 C. However, using this mud during long periods of drilling localized corrosion at the outer surface of the drill pipe becomes a serious problem. In the present study, a corrosion mechanism was postulated by inspection of corroded pipes at a drilling site and by thermal degradation and corrosion testing in a laboratory. Corrosion was initiated by the combined effects of dissolved oxygen and carbon dioxide generated by the thermal degradation of the mud. Corrosion damage further developed by the establishment of a differential aeration cell caused by buildup of clay minerals at anodic sites. The general nature of drilling muds are that they dissolve carbon dioxide at high concentrations and keep carbon dioxide in them even at high temperatures, such as 70 C-influenced corrosion in the present study. The unique nature of the new mud containing synthetic smectite (i.e., its weak passivating effect) also contributed to this corrosion. A conventional inhibition method, using a water-soluble amine, was not adequate to mitigate this corrosion.

  13. Nanocomposites based on plasticized starch and rectorite clay: structure and properties.

    PubMed

    Chang, Peter R; Wu, Dongliang; Anderson, Debbie P; Ma, Xiaofei

    2012-06-20

    Sodium rectorite clay (REC) was attached to cationic guar gum (CGG) using a cationic-exchange reaction to obtain CGG modified-REC (CREC). It was found that CGG appeared on the surface of REC's layered structure and represented about 30.1% wt. in CREC. REC and CREC were, respectively, used as fillers in a plasticized starch (PS) matrix to prepare PS/REC and PS/CREC composites using the casting process. Rapid Visco Analyser and scanning electron microscopy revealed that an interaction existed between the REC (or CREC) filler and the matrix. Both REC and CREC had obvious reinforcing effects on the matrix. Compared to the neat matrix, REC or CREC improved the thermal stability of the composites. By increasing the filler content from 0 to 10 wt%, water vapor permeability (WVP) values of PS/REC composites obviously decreased, while WVP values of PS/CREC composites decreased slightly. PMID:24750774

  14. Universal scaling of the formation factor in clays: Example from the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Ghanbarian, Behzad; Henry, Pierre; Conin, Marianne

    2015-11-01

    Electrical conductivity is a fundamental characteristic describing how strongly a network opposes flow of electrical current. In fully water-saturated porous media the conductivity, represented by the formation factor, is mainly controlled by porosity, connectivity of the conducting phases, and the tortuosity of electrical current paths. Previous work has shown that universal scaling derived from percolation and effective medium theories accurately describes the relationship between formation factor and porosity when the percolation threshold is taken account, as well as the porosity value at which the scaling switches from percolation theory to effective medium theory. We determined the formation factor in clay-rich sediments based on cation exchange capacity measurements on samples from five scientific ocean drilling sites in the Nankai Trough. We then compared the results to predictions from universal scaling after determining the volume of clay-bound water and the percolation threshold. We found that the previously reported universal scaling relations hold in these clay-rich sediments once the corrections are made for the clay-bound water and that percolation scaling appears to be valid over the entire range of observed porosities, probably due to relatively broad pore size distributions or low pore system connectivity. Our results show that universal scaling can be applied to describe the porosity dependence of the formation factor in clay-rich sediments when appropriate corrections are made for the presence of clay-bound water.

  15. 20. Detail, Furnace A, shows the drill used to tap ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail, Furnace A, shows the drill used to tap the furnace (at center left) and the 'mud gun' used to close it up with a clay plug (at lower right). Metal chute at center (next to drill) was used to clean out furnace prior to its abandonment. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  16. A review of conditions affecting the radiolysis due to 40K on nucleic acid bases and their derivatives adsorbed on clay minerals: implications in prebiotic chemistry.

    PubMed

    Mosqueira, F G; Albarran, G; Negron-Mendoza, A

    1996-02-01

    This paper describes the possible effects of ionizing radiation arising from long-lived soluble radionuclides within clays, in particular 40K, at the epoch of the emergence of life on Earth. The free dispersion of soluble radionuclides constitutes an effective in situ irradiation mechanism that might have acted upon adsorbed nucleic bases and their derivatives on clays, inducing chemical changes on these organic molecules. Several types of well documented reactions for radiolysis of nucleic acid bases and their derivatives are known, even at low doses (i.e., 0.1 Gy). For example, estimates with a dose rate calculated from 40K from deep sea clays at 3.8 Ga ago, indicates that over a period of 1000 years the amount of organic material transformated is 1.8 X 10(-7) moles/kg-clay. Although ionizing radiation may also induce synthetic reactions with prebiological interest, all in all these considerations indicate that nucleic acid bases and their derivatives adsorbed on clays were exposed for long periods to degradation conditions. Such situation promotes decomposition of organic molecules rather than protection of them and enhancement of farther polymerization, as it has been usually taken for granted. PMID:11536747

  17. The Japanese approach to developing clay-based repository concepts An example of design studies for the assessment of sealing strategies

    NASA Astrophysics Data System (ADS)

    Sugita, Yutaka; Fujita, Tomoo; Takahashi, Yoshiaki; Kawakami, Susumu; Umeki, Hiroyuki; Yui, Mikazu; Uragami, Manabu; Kitayama, Kazumi

    The H12 repository concept for vitrified high-level radioactive waste was developed based on a multi-barrier system, with the emphasis on robust engineered barrier performance to ensure its feasibility for a wide range of geological conditions typically observed in Japan. The decision to use a volunteer siting process requires maximum flexibility of the repository concept to allow it to be adapted to potential sites and hence a wide range of variants of the basic H12 repository design has been developed. In order to evaluate the feasibility and applicability of different repository options to specific siting environments, NUMO has established a set of “design factors” which classify the aspects that need to be considered when evaluating the pros and cons of different repository options. The buffer in the repository concepts is clay-based. An Na-type bentonite from Japan is used as the reference material for all clay-based repository components (buffer, backfill, clay plug, etc.). The characteristics of this bentonite (thermal, mechanical, chemical, hydraulic) have been examined with consideration of various practical constraints (limitation on the repository footprint, the influence of saline water, the interaction of hyperalkaline leachates, practical working environment, etc.). Clay-based seals, which close off the tunnels after emplacement of the engineered barrier system (EBS), may also be key components for assessment of the performance of the repository. Full analyses considering all engineered barrier components (buffer, backfill, clay plug, concrete lining, tunnel, concrete plug) that may be used in a repository will be an essential future task. As a first step towards this goal, a numerical analysis focusing on hydraulic behaviour at the intersections of the disposal tunnels and the main tunnel is presented to illustrate how the design requirements of clay-based seals can be determined.

  18. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite. PMID:25439870

  19. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  20. Comparison of anxiety prevalence among based and offshore National Iranian Drilling Company staff's children in Ahvaz, 2013

    PubMed Central

    Zargham-Boroujeni, Ali; Shahba, Zohre; Abedi, Heidarali

    2015-01-01

    Background: Anxiety is one of the most common psychological issues among all age groups including children. The main role of parents has been known to support their children. Being far away from a source of support has been shown to be a potential trigger for childhood anxiety. Periodical jobs, including offshore work, are among the main reasons for absence of one of the parents. Therefore, this study aims to assess anxiety in children of National Iranian Drilling Company offshore staff. Materials and Methods: In this historical cohort study, 160 students including 80 boys and 80 girls were selected through convenient random sampling from the schools of National Iranian Drilling Company. Data were collected using Revised Children's Manifest Anxiety Inventory (by Reynolds and Richmond), consisting 37 items and a demographic questionnaire. The collected data were statistically analyzed by t-test and logistic regression tests through SPSS software. Results: The mean anxiety score was 12.80 among offshore staff's children and 11.67 among the children of the based staff. The ratio of manifest anxiety among the offshore workers’ children was significantly more than the based ones’. Conclusions: Based on the findings, offshore fathers’ job affects the anxiety of the children. PMID:26097851

  1. Aerosol Radiative Forcing Estimates from South Asian Clay Brick Production Based on Direct Emission Measurements

    NASA Astrophysics Data System (ADS)

    Weyant, C.; Athalye, V.; Ragavan, S.; Rajarathnam, U.; Kr, B.; Lalchandani, D.; Maithel, S.; Malhotra, G.; Bhanware, P.; Thoa, V.; Phuong, N.; Baum, E.; Bond, T. C.

    2012-12-01

    About 150-200 billion clay bricks are produced in India every year. Most of these bricks are fired in small-scale traditional kilns that burn coal or biomass without pollution controls. Reddy and Venkataraman (2001) estimated that 8% of fossil fuel related PM2.5 emissions and 23% of black carbon emissions in India are released from brick production. Few direct emissions measurements have been done in this industry and black carbon emissions, in particular, have not been previously measured. In this study, 9 kilns representing five common brick kiln technologies were tested for aerosol properties and gaseous pollutant emissions, including optical scattering and absorption and thermal-optical OC/EC. Simple relationships are then used to estimate the radiative-forcing impact. Kiln design and fuel quality greatly affect the overall emission profiles and relative climate warming. Batch production kilns, such as the Downdraft kiln, produce the most PM2.5 (0.97 gPM2.5/fired brick) with an OC/EC fraction of 0.3. Vertical Shaft Brick kilns using internally mixed fuels produce the least PM (0.09 gPM2.5/kg fired brick) with the least EC (OC/EC = 16.5), but these kilns are expensive to implement and their use throughout Southern Asia is minimal. The most popular kiln in India, the Bull's Trench kiln, had fewer emissions per brick than the Downdraft kiln, but an even higher EC fraction (OC/EC = 0.05). The Zig-zag kiln is similar in structure to the Bull's Trench kiln, but the emission factors are significantly lower: 50% reduction for CO, 17% for PM2.5 and 60% for black carbon. This difference in emissions suggests that converting traditional Bull's Trench kilns into less polluting Zig-zag kilns would result in reduced atmospheric warming from brick production.

  2. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  3. SOLID2: An Antibody Array-Based Life-Detector Instrument in a Mars Drilling Simulation Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A.; Moreno-Paz, Mercedes; Rivas, Luis A.; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C.; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  4. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    PubMed

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life. PMID:19105755

  5. CLAY AND CLAY-SUPPORTED REAGENTS IN ORGANIC SYNTHESES

    EPA Science Inventory

    CLAY AND CLAY-SUPPORTED REAGENTS HAVE BEEN USED EXTENSIVELY FOR SYNTHETIC ORGANIC TRANSFORMATIONS. THIS OVERVIEW DESCRIBES THE SALIENT STRUCTURAL PROPERTIES OF VARIOUS CLAY MATERIALS AND EXTENDS THE DISCUSSION TO PILLARED CLAYS AND REAGENTS SUPPORTED ON CLAY MATERIALS. A VARIET...

  6. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2005-04-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) the relationship among feed pressure, penetration rate and rotation rate seems to be a good indicator for estimating rock strength when both penetration rate and rotation rate are controlled or kept constant, (4) the empirical equations for eliminating the machine effect on drilling parameters were developed and verified, and (5) a real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, performs very well in underground production condition.

  7. Innovative additives can increase the drilling rates of water-based muds

    SciTech Connect

    Growcock, F.B.; Sinor, L.A.; Reece, A.R.; Powers, J.R.

    1994-12-31

    Several types of organic compounds were tested as rate of penetration (ROP) enhancers for a simple gel/water mud. Experiments conducted in a full-size drilling apparatus with both rollercone and PDC bits at wellbore pressures of 1,100 and 2,000 psi indicate that a paraffin/ester mixture, several terpenes and a mixture of insoluble poly(propylene glycols), or PPGs, can all increase the ROP by 5 to 20% when added at levels of 2--4% by volume. Complementary lubricity and shale recovery studies suggest that the paraffin and terpenes function by making the steel surfaces less water-wetting, thereby reducing the tendency of partially hydrated sticky shales to adhere. The PPG mixture, on the other hand, may function primarily by interacting directly with the shales to reduce their tendency to form a sticky mass. In either case, the additives increased ROP to levels comparable to the ROP observed with pure water.

  8. Pre-drilling calculation of geomechanical parameters for safe geothermal wells based on outcrop analogue samples

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Philipp, Sonja

    2014-05-01

    It is desirable to enlarge the profit margin of geothermal projects by reducing the total drilling costs considerably. Substantiated assumptions on uniaxial compressive strengths and failure criteria are important to avoid borehole instabilities and adapt the drilling plan to rock mechanical conditions to minimise non-productive time. Because core material is rare we aim at predicting in situ rock properties from outcrop analogue samples which are easy and cheap to provide. The comparability of properties determined from analogue samples with samples from depths is analysed by performing physical characterisation (P-wave velocities, densities), conventional triaxial tests, and uniaxial compressive strength tests of both quarry and equivalent core samples. "Equivalent" means that the quarry sample is of the same stratigraphic age and of comparable sedimentary facies and composition as the correspondent core sample. We determined the parameters uniaxial compressive strength (UCS) and Young's modulus for 35 rock samples from quarries and 14 equivalent core samples from the North German Basin. A subgroup of these samples was used for triaxial tests. For UCS versus Young's modulus, density and P-wave velocity, linear- and non-linear regression analyses were performed. We repeated regression separately for clastic rock samples or carbonate rock samples only as well as for quarry samples or core samples only. Empirical relations were used to calculate UCS values from existing logs of sampled wellbore. Calculated UCS values were then compared with measured UCS of core samples of the same wellbore. With triaxial tests we determined linearized Mohr-Coulomb failure criteria, expressed in both principal stresses and shear and normal stresses, for quarry samples. Comparison with samples from larger depths shows that it is possible to apply the obtained principal stress failure criteria to clastic and volcanic rocks, but less so for carbonates. Carbonate core samples have higher

  9. Permafrost Organic Matter Study in the Lower Kolyma Lowland (Eastern Siberia) Based on Drilling Record

    NASA Astrophysics Data System (ADS)

    Spektor, V.; Kholodov, A. L.; Spawn, S.; Schade, J. D.; Natali, S.; Davydov, S.; Bulygina, E.; Khokhlova, G.

    2013-12-01

    In 2012-2013, a complex study of perennially frozen mineral soils of MIS 3-2 and MIS 1 as well as soils of modern active layer was conducted on the Kolyma River Lowland (North-East Russia) in the vicinity of town Chersky (N68°44' E161°23'). For this investigation, five boreholes, ranging from 13 to 22 m in depths, were drilled on different elevations on yedoma surface, thermokarst depression (alas), and modern floodplain of the Kolyma River. The study focuses on reconstruction of environmental conditions during and after the formation of Pleistocene Ice complex (yedoma). Special attention is drawn to extent of transformation of organic matter by TOC, %N, C/N, d13C, d15N, and enzyme analysis corresponding to changes of climate established by spore and pollen analysis and AMS 14C dates. For instance, the deepest silt layers (15 m) from the BH 12/1 drilled in yedoma near Chersky are characterized by a pollen complex peculiar to open landscapes with domination of gramineous and mixed herbs associations, formed in the conditions of severe climate. AMS 14 C dates attest that its formation took place ca. 42 kyr (MIS 3). Along the profile of the BH 12/1, %N varies between 0.1-0.11, %C is 0.5-1.59, C/N ratio is 10-19.8, d13C/12C is -26.4...-41.7, d15N/14N is 2.3-4.5. Acknowledgements. The work is supported by The Polaris Project of National Science Foundation USA and Integrational Progam #9 of the Siberian and Far East Branches of the Russian Academy of Sciences.

  10. PDC bits find applications in Oklahoma drilling

    SciTech Connect

    Offenbacher, L.A.; McDermaid, J.D.; Patterson, C.R.

    1983-02-01

    Drilling in Oklahoma is difficult by any standards. Polycrystalline diamond cutter (PDC) bits, with proven success drilling soft, homogenous formations common in the North Sea and U.S. Gulf Coast regions, have found some significant ''spot'' applications in Oklahoma. Applications qualified by bit design and application development over the past two (2) years include slim hole drilling in the deep Anadarko Basin, deviation control in Southern Oklahoma, drilling on mud motors, drilling in oil base mud, drilling cement, sidetracking, coring and some rotary drilling in larger hole sizes. PDC bits are formation sensitive, and care must be taken in selecting where to run them in Oklahoma. Most of the successful runs have been in water base mud drilling hard shales and soft, unconsolidated sands and lime, although bit life is often extended in oil-base muds.

  11. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  12. Drill Press Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's interest in and to screen interested students into a training program in basic machine shop I. (The course is based on the entry level of the drill press operator.) Section 1 describes the assessment, correlates the work performed and worker traits required for…

  13. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  14. In-situ rock melting applied to lunar base construction and for exploration drilling and coring on the moon

    SciTech Connect

    Rowley, J.C.; Neudecker, J.W.

    1984-01-01

    An excavation technology based upon melting of rock and soil has been extensively developed at the prototype hardware and conceptual design levels for terrestrial conditions. Laboratory and field tests of rock-melting penetration have conclusively indicated that this excavation method is insensitive to rock, soil types, and conditions. Especially significant is the ability to form in-place glass linings or casings on the walls of boreholes, tunnels, and shafts. These factors indicate the unique potential for in situ construction of primary lunar base facilities. Drilling and coring equipment for resource exploration on the moon can also be devised that are largely automated and remotely operated. It is also very likely that lunar melt-glasses will have changed mechanical properties when formed in anhydrous and hard vacuum conditions. Rock melting experiments and prototype hardware designs for lunar rock-melting excavation applications are suggested.

  15. Drilling fluid

    SciTech Connect

    Russell, J.A.; Patel, B.B.

    1987-11-03

    A drilling fluid additive mixture is described consisting essentially of a sulfoalkylated tannin in admixture with a non-sulfoalkylated alkali-solubilized lignite wherein the weight ratio of the sulfoalkylated tannin to the non-sulfoalkylated lignite is in the range from about 2:1 to about 1:1. The sulfoalkylated tannin has been sulfoalkylated with at least one -(C(R-)/sub 2/-SO/sub 3/M side chain, wherein each R is selected from the group consisting of hydrogen and alkyl radicals containing from 1 to about 5 carbon atoms, and M is selected from the group consisting of ammonium and the alkali metals.

  16. Advantages and limitations of the synchrotron based transmission X-ray microscopy in the study of the clay aggregate structure in aqueous suspensions.

    PubMed

    Zbik, Marek S; Frost, Ray L; Song, Yen-Fang

    2008-03-01

    This paper reports new application of new transmission X-ray microscopy powered by a synchrotron source for the study of aqueous based clay suspensions. This paper delineates the advantages and limitations of this method. The tested transmission X-ray microscopy (TXM) technique has shown good agreement with the cryo-stage SEM technique. The spacial resolution of this TXM technique is 60 nm and clay particles with diameter below 500 nm are clearly visible and their pseudohexagonal symmetry is recognizable in detail. It is clearly demonstrated the methodology of implementing TXM to study aqueous based clay suspensions that are close to approximately 60 nm tomographic resolution. The technique enables us to study discrete structure of clay suspensions in water and within aggregates. This has never been previously possible. Larger crystals, more compact aggregates and less colloidal fraction present in kaolinite from Georgia has impact on faster settling and gelling in denser suspension than for Birdwood kaolinite in which colloidal particles create gel-like networking in less dense aqueous suspension. PMID:18067907

  17. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes.

    PubMed

    Hosokawa, Hitoshi; Mochida, Tomoyuki

    2015-12-01

    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders. PMID:26542108

  18. WRITING ORAL DRILLS.

    ERIC Educational Resources Information Center

    NEY, JAMES W.

    ALL ORAL LANGUAGE DRILLS MAY BE SEPARATED INTO TWO TYPES--(1) MIM-MEM OR MIMICRY MEMORIZATION DRILLS OR (2) PATTERN PRACTICE DRILLS. THESE TWO LARGER CATEGORIES CAN BE SUB-DIVIDED INTO A NUMBER OF OTHER TYPES, SUCH AS TRANSFORMATION AND SUBSTITUTION DRILLS. THE USE OF ANY PARTICULAR TYPE DEPENDS ON THE PURPOSE TO WHICH THE DRILL IS PUT. IN ANY…

  19. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications. PMID:18598141

  20. The ``Adopt A Microbe'' project: Web-based interactive education connected with scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party

    2010-12-01

    We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the

  1. Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes.

    PubMed

    Coronado, M; Segadães, A M; Andrés, A

    2015-12-15

    This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature. PMID:26252997

  2. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  3. Shaft drilling rig

    SciTech Connect

    Wada, M.; Ajiro, S.

    1986-06-17

    A shaft drilling rig is described which consists of: a supporting structure for a drill string having a plurality of components for drilling a shaft into the earth by imparting a turning and thrust for drilling at least to a drill bit on the drill string, the drilling being down to a predetermined depth, and then a further drill string component having at least at the bottom end thereof an inner wall extending substantially in the axial direction of the component being newly added to the drill string for further drilling; means for receiving at least the bottom end of the further drill string component and for supporting it, and having a member with the outer circumference engageable with the inner wall of the further component, the receiving means supporting the further drill string component in a free standing position; means for supporting the receiving means and having a guiding device for guiding the receiving means between a position where the further drill string component is to be added to the drill string and a parking position spaced laterally of the drill string from the first mentioned position; and means for holding a lower part of the drill string which has been separated from the upper part of the drill string preparatory to adding the further drill string component so that the axis of the lower part is substantially aligned with the drilling direction.

  4. Developers set drilling pace

    SciTech Connect

    McNally, R.

    1981-01-01

    Thums four man-made islands each have a rock perimeter - 160,000 tons of granite - and an inner core of 900,000 yards of hydraulically placed dredged-sand fill. Because of the shallow depths of Long Beach Harbor, islands were constructed instead of installing conventional drilling and production platforms. The majority of drilling rigs and their equipment - casing racks and mud tanks - are mounted on steel rails and moved by hydraulic jacks at a rate of 3/4 ft/min. Each island has a central plant supplying mud and kill fluid services. Logging and perforating are performed by conventional land-based equipment. Many of THUMS' wells are drilled at exceedingly high angles to reach reserves beneath the harbor or Long Beach's downtown area. All but six or seven of the more than 800 wells are deviated, at angles ranging from 0 to 80/degree/, with an average deviation of 65 to 70/degree/. Each well has an S-curve well program and is assigned a 100-ft cylindrical diameter course. A simulated drilling program is fed into a computer to make sure the proposed course does not come within 25 ft of any other well bore. Production procedures are outlined along with a discussion of auxiliary equipment.

  5. Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti.

    PubMed

    Edge, Katelyn J; Johnston, Emma L; Dafforn, Katherine A; Simpson, Stuart L; Kutti, Tina; Bannister, Raymond J

    2016-05-01

    Offshore oil and gas activities can result in the discharge of large amounts of drilling muds. While these materials have generally been regarded as non-toxic to marine organisms, recent studies have demonstrated negative impacts to suspension feeding organisms. We exposed the arctic-boreal sponge Geodia barretti to the primary particulate components of two water-based drilling muds; barite and bentonite. Sponges were exposed to barite, bentonite and a natural reference sediment at a range of total suspended solid concentrations (TSS = 0, 10, 50 or 100 mg/L) for 12 h after which we measured a suite of biomarker responses (lysosomal membrane stability, lipid peroxidation and glutathione). In addition, we compared biomarker responses, organic energy content and metal accumulation in sponges, which had been continuously or intermittently exposed to suspended barite and natural sediment for 14 d at relevant concentrations (10 and 30 mg TSS/L). Lysosomal membrane stability was reduced in the sponges exposed to barite at 50 and 100 mg TSS/L after just 12 h and at 30 mg TSS/L for both continuous and intermittent exposures over 14 d. Evidence of compromised cellular viability was accompanied by barite analysis revealing concentrations of Cu and Pb well above reference sediments and Norwegian sediment quality guidelines. Metal bioaccumulation in sponge tissues was low and the total organic energy content (determined by the elemental composition of organic tissue) was not affected. Intermittent exposures to barite resulted in less toxicity than continuous exposure to barite. Short term exposures to bentonite did not alter any biomarker responses. This is the first time that these biomarkers have been used to indicate contaminant exposure in an arctic-boreal sponge. Our results illustrate the potential toxicity of barite and the importance of assessments that reflect the ways in which these contaminants are delivered under environmentally realistic conditions. PMID

  6. An evaluated list of Cenozic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs.

    PubMed

    Lazarus, David; Suzuki, Noritoshi; Caulet, Jean-Pierre; Nigrini, Catherine; Goll, Irina; Goll, Robert; Dolven, Jane K; Diver, Patrick; Sanfilippo, Annika

    2015-01-01

    A first reasonably comprehensive evaluated list of radiolarian names in current use is presented, covering Cenozoic fossil to Recent species of the primary fossilising subgroup Polycystinea. It is based on those species names that have appeared in the literature of the Deep Sea Drilling Project and its successor programs, the Ocean Drilling Program and Integrated Ocean Drilling Program, plus additional information from the published literature, and several unpublished taxonomic database projects. 1192 names are recognised as valid, and several hundred additional names including synonyms and mispellings are given as well. A brief list of valid names is provided in the main paper, while the full list, with synonyms, author, year of publication, family assignment, geologic age interval and notes is provided as a SOM spreadsheet table. PMID:26623580

  7. Clay-filled bio-based blends of poly(lactic acid) and polyamide 11

    NASA Astrophysics Data System (ADS)

    Nuzzo, Anna; Acierno, Domenico; Filippone, Giovanni

    2012-07-01

    We investigate the effect of small amounts of organoclay on the crystallinity and dynamic-mechanical properties of bio-based blends of poly(lactic acid) (PLA) and polyamide 11 (PA11). Virgin and filled blends were prepared by melt-compounding the constituents using a twin-screw extruder. Wettability considerations suggest that the filler unevenly distribute inside the material. This affect both the crystallinity of each phase and the blend microstructure. Controlling such phenomena can lead to highly "engineerized" materials with tailored properties. In particular, the typically poor mechanical performances of bio-based polymers can be overcame owing to the synergism among reinforcing action of the filler, its possible compatibilizing action and its impact on the crystallinity of the hosting phase.

  8. Large hole rotary drill performance

    SciTech Connect

    Workman, J.L.; Calder, P.N.

    1996-12-31

    Large hole rotary drilling is one of the most common methods of producing blastholes in open pit mining. Large hole drilling generally refers to diameters from 9 to 17 inch (229 to 432 mm), however a considerable amount of rotary drilling is done in diameters from 6{1/2} to 9 inch (165 to 229 mm). These smaller diameters are especially prevalent in gold mining and quarrying. Rotary drills are major mining machines having substantial capital cost. Drill bit costs can also be high, depending on the bit type and formation being drilled. To keep unit costs low the drills must perform at a high productivity level. The most important factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor is given for calculating the penetration rate based on rock strength, pulldown weight and the RPM. The importance of using modern drill performance monitoring systems to calibrate the penetration equation for specific rock formations is discussed. Adequate air delivered to the bottom of the hole is very important to achieving maximum penetration rates. If there is insufficient bailing velocity cuttings will not be transported from the bottom of the hole rapidly enough and the penetration rate is very likely to decrease. An expression for the balancing air velocity is given. The amount by which the air velocity must exceed the balancing velocity for effective operation is discussed. The effect of altitude on compressor size is also provided.

  9. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  10. Metal drilling with portable hand drills

    NASA Technical Reports Server (NTRS)

    Edmiston, W. B.; Harrison, H. W.; Morris, H. E.

    1970-01-01

    Study of metal drilling solves problems of excessive burring, oversized holes, and out-of-round holes. Recommendations deal with using the proper chemical coolants, applying the coolants effectively, employing cutting oils, and dissipating the heat caused by drilling.

  11. Aqueous drilling fluids containing fluid loss additives

    SciTech Connect

    Bardoliwalla, D.F.; Villa, J.L.

    1987-03-03

    This patent describes an aqueous clay containing drilling fluid having present in an amount sufficient to reduce fluid loss of the drilling fluid, a copolymer of (1) from about 80% to about 98% by weight of acrylic acid and (2) from about 2% to about 20% by weight of itaconic acid. The copolymer has a weight average molecular weight of between about 50,000 to about 1,000,000, being in its free acid or partially or completely neutralized salt form and being at least water dispersible.

  12. Clay at Nili Fossae

    NASA Technical Reports Server (NTRS)

    2006-01-01

    at the upper right, the small mesa -- a flat-topped hill -- at the center of the image is a remnant of an overlying rock layer that was eroded away. The greenish clay areas at the base of the hill were exposed by erosion of the overlying rock. The images at the upper right and lower left both show that the reddish-toned olivine occurs as sand dunes on top of the greenish clay deposits. The image at the lower right shows details of the clay-rich rock, including that they are extensively fractured into small, polygonal blocks just a few meters in size. Taken together, the CRISM and HiRISE data show that the clay-rich rocks are the oldest at the site, that they are exposed where overlying rock has been eroded away, and that the olivine is not part of the clay-rich rock. Rather it occurs in sand dunes blowing across the clay.

    Many more images of Nili Fossae and other clay-rich areas will be taken over the next two years. They will be used to try to understand the earliest climate of Mars that is recorded in the planet's rocks.

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

    CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials o leading to new understanding of the climate.

    NASA's Jet Propulsion Laboratory, a division of the Califonia Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor and built the spacecraft.

  13. Successful application of drilling technology extends EPMI's directional drilling capability

    SciTech Connect

    Schroeter, D.R.; Chan, H.W. )

    1988-01-01

    This paper summarizes recent drilling performance on EPMI's Tabu, Palas, and Guntong platforms where a top-drive drilling system, PDC bits, MWD equipment, and low-toxicity oil base mud have been used to drill EPMI's deepest directional wells. These wells are as deep as 3750 meters (measured depth) with hole angles up to 73 degrees. More than two thirds of the wells are dual completions, each with two to three directional targets. The paper describes how this technology was used to overcome the usual problems in wells of this type, especially high torque and stuck pipe.

  14. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    PubMed

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. PMID:21945787

  15. Membrane behavior of clay liner materials

    NASA Astrophysics Data System (ADS)

    Kang, Jong Beom

    Membrane behavior represents the ability of porous media to restrict the migration of solutes, leading to the existence of chemico-osmosis, or the flow of liquid in response to a chemical concentration gradient. Membrane behavior is an important consideration with respect to clay soils with small pores and interactive electric diffuse double layers associated with individual particles, such as bentonite. The results of recent studies indicate the existence of membrane behavior in bentonite-based hydraulic barriers used in waste containment applications. Thus, measurement of the existence and magnitude of membrane behavior in such clay soils is becoming increasingly important. Accordingly, this research focused on evaluating the existence and magnitude of membrane behavior for three clay-based materials that typically are considered for use as liners for waste containment applications, such as landfills. The three clay-based liner materials included a commercially available geosynthetic clay liner (GCL) consisting of sodium bentonite sandwiched between two geotextiles, a compacted natural clay known locally as Nelson Farm Clay, and compacted NFC amended with 5% (dry wt.) of a sodium bentonite. The study also included the development and evaluation of a new flexible-wall cell for clay membrane testing that was used subsequently to measure the membrane behaviors of the three clay liner materials. The consolidation behavior of the GCL under isotropic states of stress also was evaluated as a preliminary step in the determination of the membrane behavior of the GCL under different effective consolidation stresses.

  16. Corganiser: a web-based software tool for planning time-sensitive sampling of whole rounds during scientific drilling

    NASA Astrophysics Data System (ADS)

    Marshall, I. P. G.

    2014-12-01

    Corganiser is a software tool developed to simplify the process of preparing whole-round sampling plans for time-sensitive microbiology and geochemistry sampling during scientific drilling. It was developed during the Integrated Ocean Drilling Program (IODP) Expedition 347, but is designed to work with a wide range of core and section configurations and can thus be used in future drilling projects. Corganiser is written in the Python programming language and is implemented both as a graphical web interface and command-line interface. It can be accessed online at http://130.226.247.137/.

  17. Temperature Prediction Model for Bone Drilling Based on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation.

    PubMed

    Feldmann, Arne; Anso, Juan; Bell, Brett; Williamson, Tom; Gavaghan, Kate; Gerber, Nicolas; Rohrbach, Helene; Weber, Stefan; Zysset, Philippe

    2016-05-01

    Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and

  18. Communicating with Clay.

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2000-01-01

    Presents a unit on clay that is centered around sign language in which students explore the slab method of working with clay. States that each student picks a letter of the sign language alphabet and fashions a clay hand to depict the letter. (CMK)

  19. Orbital evidence for clay and acidic sulfate assemblages on Mars based on mineralogical analogs from Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Kaplan, Hannah H.; Milliken, Ralph E.; Fernández-Remolar, David; Amils, Ricardo; Robertson, Kevin; Knoll, Andrew H.

    2016-09-01

    Outcrops of hydrated minerals are widespread across the surface of Mars, with clay minerals and sulfates being commonly identified phases. Orbitally-based reflectance spectra are often used to classify these hydrated components in terms of a single mineralogy, although most surfaces likely contain multiple minerals that have the potential to record local geochemical conditions and processes. Reflectance spectra for previously identified deposits in Ius and Melas Chasma within the Valles Marineris, Mars, exhibit an enigmatic feature with two distinct absorptions between 2.2 and 2.3 μm. This spectral 'doublet' feature is proposed to result from a mixture of hydrated minerals, although the identity of the minerals has remained ambiguous. Here we demonstrate that similar spectral doublet features are observed in airborne, field, and laboratory reflectance spectra of rock and sediment samples from Rio Tinto, Spain. Combined visible-near infrared reflectance spectra and X-ray diffraction measurements of these samples reveal that the doublet feature arises from a mixture of Al-phyllosilicate (illite or muscovite) and jarosite. Analyses of orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows that the martian spectral equivalents are also consistent with mixtures of Al-phyllosilicates and jarosite, where the Al-phyllosilicate may also include kaolinite and/or halloysite. A case study for a region within Ius Chasma demonstrates that the relative proportions of the Al-phyllosilicate(s) and jarosite vary within one stratigraphic unit as well as between stratigraphic units. The former observation suggests that the jarosite may be a diagenetic (authigenic) product and thus indicative of local pH and redox conditions, whereas the latter observation may be consistent with variations in sediment flux and/or fluid chemistry during sediment deposition.

  20. Problem analysis of geotechnical well drilling in complex environment

    NASA Astrophysics Data System (ADS)

    Kasenov, A. K.; Biletskiy, M. T.; Ratov, B. T.; Korotchenko, T. V.

    2015-02-01

    The article examines primary causes of problems occurring during the drilling of geotechnical wells (injection, production and monitoring wells) for in-situ leaching to extract uranium in South Kazakhstan. Such a drilling problem as hole caving which is basically caused by various chemical and physical factors (hydraulic, mechanical, etc.) has been thoroughly investigated. The analysis of packing causes has revealed that this problem usually occurs because of insufficient amount of drilling mud being associated with small cross section downward flow and relatively large cross section upward flow. This is explained by the fact that when spear bores are used to drill clay rocks, cutting size is usually rather big and there is a risk for clay particles to coagulate.

  1. Evaluation of the Rulison drilling effluent pond as trout habitat

    SciTech Connect

    1998-06-23

    The Rulison Site is located in Section 25, township 7 South, Range 95 West, Garfield County, Colorado. The site is approximately 19 kilometers (km) (12 miles [mi]) southwest of Rifle Colorado, and approximately 65 km (40 mi) northeast of Grand Junction, Colorado. Project Ruhson was an experiment conducted jointly by the U.S. Atomic Energy Commission and Austral Oil Company to test the feasibility of using a nuclear device to increase natural gas production in low permeability geological formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 43-kiloton nuclear device at a depth of 2,568 meters (m) (8,426 feet [ft]) below the ground surface (DOE, 1994). The Rulison Drilling Effluent Pond (called `the pond`) is an engineered structure covering approximately 0.2 hectare (0.5 acre), which was excavated and used to store drilling fluids during drilling of the device emplacement well. The drilling fluids consisted of bentonitic drilling mud with additives such as diesel fuel and chrome lignosulfonate. Most of the drilling muds were removed from the pond when the site was decommissioned in 1976, and the pond was subsequently stocked with rainbow trout by the land owner and used as a fishing pond. In 1994 and 1995, the U.S. Department of Energy (DOE) conducted sampling of the pond to evaluate residual contamination from the drilling fluids. Based on the results of this sampling, the DOE conducted a voluntary cleanup action in order to reduce the levels of total petroleum hydrocarbons and chromium in pond sediments. The cleanup was conducted between August and mid-November of 1995. At the end of cleanup activities, the pond was lined with a clay geofabric and left dry. The geofabric was covered with sod to protect it. The pond has since been refilled by snowmelt and inflow from a spring. Prior to remediation, the pond apparently had sufficient water quality and food resources to support stocked rainbow trout. The purpose of this

  2. Mars, clays and the origins of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  3. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  4. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  5. Drill Cuttings-based Methodology to Optimize Multi-stage Hydraulic Fracturing in Horizontal Wells and Unconventional Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Ortega Mercado, Camilo Ernesto

    Horizontal drilling and hydraulic fracturing techniques have become almost mandatory technologies for economic exploitation of unconventional gas reservoirs. Key to commercial success is minimizing the risk while drilling and hydraulic fracturing these wells. Data collection is expensive and as a result this is one of the first casualties during budget cuts. As a result complete data sets in horizontal wells are nearly always scarce. In order to minimize the data scarcity problem, the research addressed throughout this thesis concentrates on using drill cuttings, an inexpensive direct source of information, for developing: 1) A new methodology for multi-stage hydraulic fracturing optimization of horizontal wells without any significant increases in operational costs. 2) A new method for petrophysical evaluation in those wells with limited amount of log information. The methods are explained using drill cuttings from the Nikanassin Group collected in the Deep Basin of the Western Canada Sedimentary Basin (WCSB). Drill cuttings are the main source of information for the proposed methodology in Item 1, which involves the creation of three 'log tracks' containing the following parameters for improving design of hydraulic fracturing jobs: (a) Brittleness Index, (b) Measured Permeability and (c) An Indicator of Natural Fractures. The brittleness index is primarily a function of Poisson's ratio and Young Modulus, parameters that are obtained from drill cuttings and sonic logs formulations. Permeability is measured on drill cuttings in the laboratory. The indication of natural fractures is obtained from direct observations on drill cuttings under the microscope. Drill cuttings are also the main source of information for the new petrophysical evaluation method mentioned above in Item 2 when well logs are not available. This is important particularly in horizontal wells where the amount of log data is almost non-existent in the vast majority of the wells. By combining data

  6. An Adaptive Feedback and Review Paradigm for Computer-Based Drills.

    ERIC Educational Resources Information Center

    Siegel, Martin A.; Misselt, A. Lynn

    The Corrective Feedback Paradigm (CFP), which has been refined and expanded through use on the PLATO IV Computer-Based Education System, is based on instructional design strategies implied by stimulus-locus analyses, direct instruction, and instructional feedback methods. Features of the paradigm include adaptive feedback techniques with…

  7. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  8. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  9. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  10. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  11. Geothermal drilling technology update

    SciTech Connect

    Glowka, D.A.

    1997-04-01

    Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

  12. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Su, Xilin; Yun, Feng

    2016-07-01

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ˜20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  13. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    SciTech Connect

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  14. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    NASA Astrophysics Data System (ADS)

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-02-01

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  15. Stable isotopes of soil water are affected by clay minerals: A post correction approach for dry soils based on physicochemical soil properties

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; Kaufhold, Stephan; Koeniger, Paul; Matthias, Beyer; Himmelsbach, Thomas

    2016-04-01

    The cryogenic vacuum extraction is commonly used to access soil water that will be subsequently analyzed for stable isotopes (18O and 2H). However, the analytical error associated with this method is high compared to that of stable isotopes measured directly from water samples. Additionally, the accuracy of data derived from soil water extractions decreases with the increasing presence of fine compounds such as silt and clay. To overcome these limitations an extended applicability of the cryogenic vacuum extraction method is demonstrated. This study proposes two new methods to improve isotope values using the cryogenic vacuum extraction method. First, by showing that the extraction temperature of 205 ° C improves the precision and the accuracy for all tested soil types. Secondly, that the post correction of data based on physicochemical soil properties and common extraction temperature will reduce errors. Results show a reduction in error of d-values of soil water derived from soils with clay content between 0.1 to 48 %. The analytical error could be significantly reduced compared to previous studies by increasing the extraction temperature even for soils with high clay content. Soil water extractions from sandy soils are improved by halving the analytical error. If soil material is available, the proposed correction scheme can be applied to past isotope data and will improve comparability between studies and heterogeneous soils. It is recommended to conduct spike experiments prior to unsaturated zone isotope studies. We encourage future experiments with extraction temperatures above 205 ° C. If previously oven dried substrate is used for standard preparation old water might remain in soil with a fine texture (i.e., high clay content) after oven drying at 105 ° C and that this old water will enrich any added calibration water resulting in the enrichment of all samples normalized using it.

  16. Dispersant for water-based solids-containing fluids and a drilling fluid

    SciTech Connect

    Branch, H. III

    1986-04-08

    A dispersant is described for water-based, solids-containing fluids comprising a copolymer of a solufonated styrene monomer and a second monomer neutralized into having an amide substituent and being originally selected from the group consisting of maleic anhydride, maleimide and dimethyl maleate, the copolymer having from 2 to 100 monomer units.

  17. The Development of Open Drills in the Context of Computer-Based Ear Training.

    ERIC Educational Resources Information Center

    Prevel, Martin

    1982-01-01

    Describes research in music education at Laval University in which students receive auditory training using a microprocessor-based hardware system. Topics include intervals, chord quality, scale degrees, diatonic tonal functions, rhythmic, melodic and harmonic dictation, jazz chord quality, microtones, and fundamentals. Students maintain full…

  18. Research on Drill String Vibration based on the Cepstrum Analysis and Abstracting of SWD Bit Source Signals

    NASA Astrophysics Data System (ADS)

    Wu, H.; Lan, X.; Liu, Z.

    2014-12-01

    From the vibration drilling information of the surface, we can not only provide the drill bit source signal for the SWD(Seismic While Drilling)data interpretation, estimate the condition under the well, but also get such information as the stratum character, the attrited status of the aiguille and the rotating status of the drill string. In SWD pilot data preprocessing, it is very important that effective signals are abstracted from bit. Also, noises are abstracted from rigs and machines on ground. Source signal from bit, because of the broad range of frequencies and short time duration, can be easily affected by noises from rigs and machines. In order to avoid the affection and recover the bit source signals, the source function associated with the surface record is the key approach for processing the SWD signals. Cepstrum analysis is a nonlinear filtering technology, can change the convoluted signals in time domain to added signals in frequency domain. This method can remove the structural reverberation to abstract the source signals by selecting a window function. We discussed the cepstral filtering and abstracted the transient source signals according to the data of drill string simulated experiment. Indoor simulation experiment verifies reliability of cepstrum analysis technology, stifles reverberation of pipe string, and obtains source signal and transfer function. On the basis of noise elimination, analyze vibration signals received by the top of drilling string using cepstrum, stifles long time cycle reverberation, highlights periodic characteristics of signals, which supplies convenience for analysis of drill bit feeble vibration and spreading characteristics. Correlate extracted drill bit source signal with ground records, which improves signal-to-noise ratio of SWD data processing. Although cepstrum can not recover exact source signals, preliminary estimates can still be given for transient source signal in accordance with amplitude and width of the

  19. Biodegradable pectin/clay aerogels.

    PubMed

    Chen, Hong-Bing; Chiou, Bor-Sen; Wang, Yu-Zhong; Schiraldi, David A

    2013-03-13

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. The addition of multivalent cations (Ca(2+) and Al(3+)) resulted in apparent cross-linking of the polymer and enhancement of aerogel properties. The compressive properties increased as the solid contents (both pectin and clay) increased; moduli in the range of 0.04-114 MPa were obtained for materials with bulk densities ranging from 0.03 g/cm(3) to 0.19 g/cm(3), accompanied by microstructural changes from a lamellar structure to a cellular structure. Biodegradability of the aerogels was investigated by detecting CO2 release for 4 weeks in compost media. The results revealed that pectin aerogels possess higher biodegradation rates than wheat starch, which is often used as a standard for effective biodegradation. The addition of clay and multivalent cations surprisingly increased the biodegradation rates. PMID:23406325

  20. Evaluation of saponite and saponite/sepiolite fluids for geothermal drilling

    SciTech Connect

    Guven, N.; Panfil, D.J.; Carney, L.L. . Dept. of Geosciences)

    1991-02-01

    The rheology and other properties of drilling fluids containing saponite and a saponite-sepiolite mixture as the main vicosifier have been systematically evaluated in the temperature range of 300-600{degree}F under appropriate confining pressures up to 16,000 psi. Saponite represents the magnesium analog of the clay mineral montmorillonite, which is the main constituent in conventional bentonite-based fluids. The fluid with 6% saponite exhibits a prominent viscosity enhancement at temperatures above 250{degree}F. This viscosity enhancement is easily controlled by salts and hydroxides of Na and K. The addition of Na-polyacrylates (low- and high-molecular weight polymers) eliminates the viscosity anomaly of pure saponite fluids. These polymers also increase the filtration control of saponite. The anomalous viscosity enhancement of saponite is significantly reduced by the addition of sepiolite (a clay mineral with a fibrous morphology). 12 refs., 31 figs., 26 tabs.

  1. Biodegradable Pectin/clay Aerogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  2. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More field tests have been performed. A trendline analysis method has been developed. This method would improve the accuracy in detecting the locations of fractures and in determining the rock strength.

  3. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed in this quarter. The development of the data interpretation methodology and other related tasks are still continuing.

  4. A novel band-pass filter based on a periodically drilled SIW structure

    NASA Astrophysics Data System (ADS)

    Coves, A.; Torregrosa-Penalva, G.; San-Blas, A. A.; Sánchez-Soriano, M. A.; Martellosio, A.; Bronchalo, E.; Bozzi, M.

    2016-04-01

    The design and fabrication of a band-pass step impedance filter based on high and low dielectric constant sections has been realized on substrate integrated waveguide (SIW) technology. The overall process includes the design of the ideal band-pass prototype filter, where the implementation of the impedance inverters has been carried out by means of waveguide sections of lower permittivity. This can be practically achieved by implementing arrays of air holes along the waveguide. Several SIW structures with and without arrays of air holes have been simulated and fabricated in order to experimentally evaluate their relative permittivity. Additionally, the equivalent filter in SIW technology has been designed and optimized. Finally, a prototype of the designed filter has been fabricated and measured, showing a good agreement between measurements and simulations, which demonstrates the validity of the proposed design approach.

  5. Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using Nd: YAG laser

    NASA Astrophysics Data System (ADS)

    Mishra, Sanjay; Yadava, Vinod

    2013-06-01

    The creation of small diameter holes in thin sheets (<3 mm) of superalloys using a laser beam is a challenging task. Knowledge of the effect of laser related process variables on hole related responses with respect to variation of sheet thickness is essential to obtain a hole of requisite quality. Therefore, in this paper a coupled methodology comprising of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been used to develop a prediction model for the Laser Beam Percussion Drilling (LBPD) process. First, a 2D axisymmetric FEM-based thermal model for LBPD has been developed incorporating temperature-dependent thermal properties, optical properties and phase change phenomena of the sheet material. The developed FEM-based thermal model is validated with self-conducted experimental results in terms of hole taper which is further used to generate adequate input and output data for training and testing of the ANN model. Gray Relational Analysis (GRA) coupled with Principal Component Analysis (PCA) has been effectively used for the multi-objective optimization of the LBPD process utilizing the data predicted by the trained ANN model. The developed ANN model has been used to predict the performance characteristics of the LBPD process. The results predicted by the ANN model show that with the increase in pulse width and peak power the hole taper, material removal rate (MRR) and heat-affected zone (HAZ) increases. The acquired combination of optimal process variables produce a hole with good integral quality, i.e., a reduction of hole taper by 32.1%, increase of material removal rate by 28.9% and reduction of extent of HAZ by 4.5%.

  6. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The selected site and the field testing plan enabled us to test all three aspects of roof geological features. The development of the data interpretation methodologies and the geology mapping computer program have also been preceding well.

  7. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. The retrofitting works for a dedicated roof bolter for this research has been completed. The laboratory tests performed using this machine on simulated roof blocks have been conducted. The analysis performed on the testing data showed promising signs to detect the rock interface, fractures, as well as the rock types. The other tasks were progressing as planned.

  8. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  9. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  10. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  11. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  12. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  13. EFFECTS OF DRILLING FLUIDS ON 'THALASSIA TESTUDINUM' AND ITS EPIPHYTIC ALGAE

    EPA Science Inventory

    A flow-through microcosm system was developed to assess the potential influence of drilling fluids on Thalassia testudinum and its epiphytic algae. Two treatments (drilling fluid and a montmorillonite clay) and a control were used for seven tests: two 10-day, 200 microliter/l exp...

  14. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  15. Characterization of clay scales forming in Philippine geothermal wells

    SciTech Connect

    Reyes, A.G. ); Cardile, C.M. )

    1989-01-01

    Smectite scales occur in 24 out of the 36 blocked wells located in Tongonan, Palinpinon and Bacon-Manito. These comprise 2-85% of the well scales and form at depths of 33-2620 m, where measured and fluid inclusion temperatures are 40-320{sup 0}C. Most, however, occur below the production casing show where temperatures are {ge}230{sup 0}C, often at depths coinciding with aquifers. The clay scales are compositionally and structurally different from the bentonite used in drilling, which is essentially sodium-rich montmorillonite. The clay deposits are expanding, generally disordered, and combine the characteristics of a montmorillonite, saponite and vermiculite in terms of reaction to cationic exchange treatments, structure and composition. Six types of clay scales are identified, but the predominant one, comprising 60-100% of the clay deposits in a well, is Mg- and Fe-rich and referred to as a vermiculitic species. The crystallinity, degree of disorder, textures, optical characteristics, structure and relative amounts of structural Al, Mg and Fe vary with time, temperature and fluid composition, but not with depth and measured pressure. Despite its variance from bentonite characteristics, one of the dominant suggested mechanisms of clay scale formation uses the drilling mud in the well as a substrate, from which the Mg- and Fe-rich clay evolves.

  16. Enrichment and activation of smectite-poor clay

    NASA Astrophysics Data System (ADS)

    Sarceviča, Inese; Kostjukovs, Juris; Actiņš, Andris

    2011-06-01

    A new method of smectite clay enrichment has been developed. The method is based on dispersing clay in a phosphate solution and sequential coagulation. The product of enrichment is characterized with X-ray powder diffraction, wavelength dispersive X-ray fluorescence spectrometry, differential thermal analysis and thermogravimetry. Sorption of methylene blue and hexadecylpyridinium bromide on raw and purified clays was studied.

  17. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  18. Plug and drill template

    NASA Technical Reports Server (NTRS)

    Orella, S.

    1979-01-01

    Device installs plugs and then drills them after sandwich face sheets are in place. Template guides drill bit into center of each concealed plug thereby saving considerable time and fostering weight reduction with usage of smaller plugs.

  19. Clay smear: Review of mechanisms and applications

    NASA Astrophysics Data System (ADS)

    Vrolijk, Peter J.; Urai, Janos L.; Kettermann, Michael

    2016-05-01

    Clay smear is a collection of fault processes and resulting fault structures that form when normal faults deform layered sedimentary sections. These elusive structures have attracted deep interest from researchers interested in subsurface fluid flow, particularly in the oil and gas industry. In the four decades since the association between clay-smear structures and oil and gas accumulations was introduced, there has been extensive research into the fault processes that create clay smear and the resulting effects of that clay smear on fluid flow. We undertake a critical review of the literature associated with outcrop studies, laboratory and numerical modeling, and subsurface field studies of clay smear and propose a comprehensive summary that encompasses all of these elements. Important fault processes that contribute to clay smear are defined in the context of the ratio of rock strength and in situ effective stresses, the geometric evolution of fault systems, and the composition of the faulted section. We find that although there has been progress in all avenues pursued, progress has been uneven, and the processes that disrupt clay smears are mostly overlooked. We highlight those research areas that we think will yield the greatest benefit and suggest that taking these emerging results within a more process-based framework presented here will lead to a new generation of clay smear models.

  20. Archean spherule classification of CT3 drill core, Barberton Greenstone Belt (South Africa) based on petrography and mineral chemistry

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Koeberl, Christian; Mohr-Westheide, Tanja; Reimold, W. Uwe; Hofmann, Axel

    2016-04-01

    The impact history of the Early Archean Earth is not well documented. The oldest known impact structure is about 2 Ga years old; impact-related signatures in Precambrian rocks are scarce. The possible impact signature might be the Archean spherule layers that occur in the Barberton Greenstone Belt (BGB), Kaapvaal Craton, South Africa, and in the Pilbara Craton Western Australia, with ages of 3.2-3.4 and around 2.5 Ga [1]. These spherules were interpreted as impact-generated and ballistically emplaced silicate melt droplets [2]. This study is focused on petrographic and mineralogical characteristics from a set of newly drilled Archean spherule layers in drill core CT3 from the northeastern part of the BGB. The investigation of the three main intervals (A, B, and C, which include 2, 13, and 2 individual spherule layers, respectively) within CT3, contains the classification of spherules based on their shapes, textural features, deformation types, and mineral content. All of the intervals show spherule variation in those features. Therefore, the classification helps to understand if the spherules underwent processes such as tectonic deformation or if multiple impact events occurred in the area, which both might a reason of spherule layer duplications. The aim of the work is to differentiate various spherule types and the groundmasses in which they are embedded. The spherules within 17 identified spherule layers have been examined by optical microscopy (polarized and reflected) and secondary electron microscopy and were classified by shape and textural features. Subsequently, mineral phases and the chemical composition of the spherules and their matrices were investigated by using electron microprobe analysis. Regarding the shapes of the spherules they were divided into two main groups: undeformed and deformed. Undeformed spherules have spherical to ovoid as well as tear-drop shapes; deformed spherules were further subdivided into three main groups; flattened, crushed

  1. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  2. Assessment of two thermally treated drill mud wastes for landfill containment applications.

    PubMed

    Carignan, Marie-Pierre; Lake, Craig B; Menzies, Todd

    2007-10-01

    Offshore oil and gas drilling operations generate significant amounts of drill mud waste, some of which is transported onshore for subsequent thermal treatment (i.e. via thermal remediation). This treatment process results in a mineral waste by-product (referred to as thermally treated drill mud waste; TTDMW). Bentonites are originally present in many of the drill mud products and it is hypothesized that TTDMW can be utilized in landfill containment applications (i.e. cover or base liner). The objective of this paper is to examine the feasibility of this application by performing various physical and chemical tests on two TTDMW samples. It is shown that the two TTDMW samples contained relatively small amounts of clay-sized minerals although hydraulic conductivity values are found to be less than 10(-8) m/s. Organic carbon contents of the samples were approximately 2%. Mineralogy characterization of the samples confirmed varying amounts of smectite, however, peak friction angles for a TTDMW sample was greater than 36 degrees. Chemical characterization of the TTDMW samples show potential leaching of barium and small amounts of other heavy metals. Discussion is provided in the paper on suggestions to assist in overcoming regulatory issues associated with utilization of TTDMW in landfill containment applications. PMID:17985664

  3. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  4. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  5. Clay Mineral: Radiological Characterization

    NASA Astrophysics Data System (ADS)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.

    2008-08-01

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  6. The Science of Clay

    ERIC Educational Resources Information Center

    Warwick, Sharon

    2005-01-01

    Students' natural curiosity provides a rich opportunity for teachers to make meaningful scientific connections between art and ceramics that will enhance the understanding of both natural forces and scientific aspects at work in the creation of clay artworks. This article discusses the scientific areas of study related to clay, which include…

  7. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2003-01-01

    Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.

  8. Finicky clay divers

    NASA Astrophysics Data System (ADS)

    Cordry, Sean M.

    1998-02-01

    Clay spheres dropped into a dilute vinegar/baking-soda solution accumulate CO2 bubbles on their surfaces. Spheres below a certain size will then float, otherwise they remain sunken. Students must determine the maximum size that will float by considering the net density of the clay/bubble system.

  9. Clay Portrait Boxes

    ERIC Educational Resources Information Center

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  10. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  11. Techdrill`s Drill Soft Pack One

    SciTech Connect

    Prieur, J.M.

    1993-12-01

    This article presents the main features of Drill Soft Pack One (DSP-One) version 1.4 developed by Techdrill (Paris, France). DSP-One is an integrated drilling engineering package that covers most aspects of drilling engineering. The package has been used for 6 months to prepare drilling programs and monitor wells. DSP-One is a PC-based, fully menu-driven program that runs on any IBM PC compatible. The program requires 550 KB of memory and 6 MB of hard-disk space. The software manufacture recommends a math coprocessor for speed and a VGA color monitor to achieve full benefit from the color graphic displays.

  12. Magnetic theoretical and experimental study of clays for petroleum reservoir clay typing

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Makarova, Maria; Telman, Meruert

    2013-04-01

    This study describes theoretical and experimental magnetic analysis of different clay types for petroleum reservoir characterisation by using low and high field magnetic susceptibility. Most clays for example, saponite, clay loam and bentonite are paramagnetic, whereas some clays (kaolinite) and matrix minerals such as quartz and calcite are diamagnetic. Model magnetic susceptibility and magnetic hysteresis plots for various concentrations of different clays in quartz matrix were initially calculated. Experimental magnetic measurements were undertaken for comparison on a series of synthetic reservoir samples comprising various concentrations of dispersed clays in a quartz matrix. The experimental magnetic measurements showed substantial agreement with the model magnetic values, and with estimates of the magnetic susceptibility based on low and high field magnetic susceptibility for derived mineral contents. Importantly different magnetic parameters, including IRM (isothermal remnant magnetisation) were determined for the different clay types and their mixtures with the sandstone rock matrix, together with given permeability variations in the samples. Results demonstrate that these magnetic measurements potentially provide a sensitive, rapid, quantitative technique which can be used for petrophysical analysis of clay-rich rocks and clay typing.

  13. Chew Bahir: A Key Site within the Hominin Sites and Paleolakes Drilling Project, towards a Half Million-Year Climate Record from Southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Schaebitz, F.; Asrat, A.; Lamb, H. F.; Trauth, M. H.; Foerster, V. E.; Junginger, A.; Raub, T. D.; Gromig, R.; Viehberg, F. A.; Roberts, H. M.; Cohen, A.

    2015-12-01

    Chew Bahir, a saline mudflat today, is one of the five sites in East Africa, drilled within the framework of HSPDP (Hominin Site and Paleolakes Drilling Project). It is also one of the key sites of the Collaborative Research Centre (CRC-806) "Our way to Europe" aiming at the reconstruction of environmental conditions in the source region of modern man (H. sapiens). It is suggested that a changing environment could have triggered the mobility and dispersal of modern man. The oldest known fossils of anatomical modern humans (~195 ka BP) were found in the Omo basin, not more than 90km westwards of our drill site. The deposits in the tectonic basin of Chew Bahir in southern Ethiopia were cored in Nov. 2014 in two boreholes down to 280 m and 260 m below surface respectively. The overlapping long cores (drilled ~20 m apart from each other), were opened, scanned, described and sampled in low resolution in April 2015. The recovered sediments mostly contain green-greyish to light coloured and brown to reddish clays and silty clays, interbedded with some laminated mica-rich sand layers and occurrences of carbonate concretions and nodules, which decrease upcore. Here we will present a first set of results on the composite core, comprising mainly lithology and magnetic susceptibility (MS). Based on known sedimentation rates from pre-studies performed on short cores across the basin, we anticipate the deep drilled cores to cover at least 500 ka BP. Moreover, new insights into the role of post-depositional alteration, especially of clay minerals and zeolites, will be presented as a contribution to an improved understanding of formation processes. The results support the identification of wet and dry climate periods in the past. Those pronounced variations of moisture availability, are thought to have influenced the evolution and mobility of Homo sapiens sapiens.

  14. Evaluation of commercial drilling and geological software for deep drilling applications

    NASA Astrophysics Data System (ADS)

    Pierdominici, Simona; Prevedel, Bernhard; Conze, Ronald; Tridec Team

    2013-04-01

    risks and costs. This procedure enables a timely, efficient and accurate data access and exchange among the rig site data acquisition system, office-based software applications and data storage. The loading of real-time data has to be quick and efficient in order to refine the model and learn the lessons for the next drilling operations.

  15. Optimizing the preventive maintenance scheduling by genetic algorithm based on cost and reliability in National Iranian Drilling Company

    NASA Astrophysics Data System (ADS)

    Javanmard, Habibollah; Koraeizadeh, Abd al-Wahhab

    2016-06-01

    The present research aims at predicting the required activities for preventive maintenance in terms of equipment optimal cost and reliability. The research sample includes all offshore drilling equipment of FATH 59 Derrick Site affiliated with National Iranian Drilling Company. Regarding the method, the research uses a field methodology and in terms of its objectives, it is classified as an applied research. Some of the data are extracted from the documents available in the equipment and maintenance department of FATH 59 Derrick site, and other needed data are resulted from experts' estimates through genetic algorithm method. The research result is provided as the prediction of downtimes, costs, and reliability in a predetermined time interval. The findings of the method are applicable for all manufacturing and non-manufacturing equipment.

  16. Single-pulse femtosecond laser Bessel beams drilling of high-aspect-ratio microholes based on electron dynamics control

    NASA Astrophysics Data System (ADS)

    Zhao, Weiwei; Li, Xiaowei; Xia, Bo; Yan, Xueliang; Han, Weina; Lu, Yongfeng; Jiang, Lan

    2014-11-01

    Microholes drilling has attracted extensive research efforts for its broad applications in photonics, microfluidics, optical fibers and many other fields. A femtosecond (fs) laser is a promising tool for high-precision materials processing with reduced recast/microcracks and minimized heat affected zones. But there remain many challenges in hole drilling using conventional fs laser with Gaussian beams, such as low aspect ratio and taper effects. We report small-diameter and high-aspect-ratio microholes with taper free drilling in PMMA (polymethyl methacrylate) using single-pulse fs laser Bessel beams. Axicon is used to transform Gaussian beams into Bessel beams, which then irradiate in the sample by a telescope consisting of plano-convex lens and microscope objective. Using this technique, we enhance the aspect ratio of microholes by 55 times as compared with Gaussian beams. We attribute this high aspect ratio and high quality microholes formation to the unique spatial intensity distribution and propagation stability of Bessel beams, which can effectively adjust the transient localized electron density distribution leading to a long and uniform localized-interacted zone. By using the optimized pulse energy and focal depth position, the microholes diameter ranges between 1.4-2.1 μm and the aspect ratio can exceed 460. This efficient technique is of great potentials for fabrication of microphotonics devices and microfluidics.

  17. Drilling bits optimized for the Paris basin

    SciTech Connect

    Vennin, H.C. Pouyastruc )

    1989-07-31

    Paris basin wells have been successfully drilled using steel-body bits with stud-type cutters. These bits offer the possibility of optimizing the bit-face based on the strata to be drilled, as well as allowing replacement of worn cutters. This article discusses: bit manufacturing; bit repair; optimizing bits; hydraulics.

  18. Environmental rock-magnetism of Cenozoic red clay in the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Shimono, Takaya; Yamazaki, Toshitsugu

    2016-04-01

    Nonfossiliferous red clay can be used for elucidating long-range environmental changes, although such studies were limited so far because of the difficulty in precise age estimation and extremely low sedimentation rates. We conducted an environmental rock-magnetic study of Cenozoic red clay at the Integrated Ocean Drilling Program Site U1365 in the South Pacific Gyre. Magnetostratigraphy could be established only above ˜6 m below the seafloor (mbsf) (˜5 Ma). Below ˜6 mbsf, the ages of the cores were transferred from the published ages of nearby Deep Sea Drilling Project Site 596, which is based mainly on a constant Cobalt flux model, by intercore correlation using magnetic susceptibility and rare earth element content variation patterns. Rock-magnetic analyses including first-order reversal curve diagrams, the ratio of anhysteretic remanent magnetization susceptibility to saturation isothermal remanent magnetization (SIRM), and IRM component analyses revealed that magnetic minerals consist mainly of biogenic magnetite and terrigenous maghemite, and that the proportion of the terrigenous component increased since ˜23 Ma. We consider that the increase reflects a growth of eolian dust flux associated with a northward shift of Australia and the site to an arid region of the middle latitudes. The increase of the terrigenous component accelerated after ˜5 Ma, which may be associated with a further growth of the Antarctic glaciation at that time. This is coeval with the onset of the preservation of magnetostratigraphy, suggesting that the primary remanent magnetization is carried by the terrigenous component.

  19. Clays as prebiotic photocatalysts

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Lawless, J.; Lahav, N.; Sutton, S.; Sweeney, M.

    1981-01-01

    Clay minerals catalyze peptide bond formation in fluctuating environments. A number of plausible mechanisms have been proposed and tested. The possibility that clays may actually be energizing the reaction by means of electronic excitation, creating mobile or trapped holes and electrons in the lattice, is explored. It has been discovered that clays emit light upon dehydration. The correlation between dehydration-induced, or thermoluminescent, processes and the yield of glycine oligomers after treatments known to affect the luminescent yields is being tested, in an effort to understand the catalytic mechanism

  20. Advanced drilling systems study

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1995-03-01

    This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

  1. A review of exposure conditions and possible health effects associated with aerosol and vapour from low-aromatic oil-based drilling fluids.

    PubMed

    Eide, I

    1990-04-01

    This paper reviews investigations on possible health effects after inhalation of aerosol and vapour from the low-aromatic oil-based drilling fluids which have replaced the diesel-based fluids. The main advantage of the low-aromatic base oils with respect to health hazard is their lower volatility. However, some aliphatic and naphthenic hydrocarbons are distributed more efficiently to the brain than are the corresponding aromatic ones. Reducing the content of aromatic hydrocarbons becomes particularly important when the upper end of the boiling point range is sufficiently high for the base oil to contain carcinogenic polycyclic aromatic hydrocarbons (PAH). As a result of enclosure and local extract ventilation it has been possible to reduce time-weighted average concentrations of aerosol and vapour to below 100 mg m-3. Effects on the central nervous system have only been observed at higher concentrations of the actual hydrocarbons, and male rat hydrocarbon nephropathy is not considered predictive of a normal human response. Insufficient information is available on possible long-term effects of exposure to the low-aromatic oil-based drilling fluids, especially regarding carcinogenicity and changes in the lungs. PMID:2205144

  2. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Part of the 2003 industrial minerals review. The legislation, production, and consumption of common clay and shale are discussed. The average prices of the material and outlook for the market are provided.

  3. Downhole geophysical data from recent deep drilling in the center of the Thuringian Basin, Germany

    NASA Astrophysics Data System (ADS)

    Methe, Pascal; Goepel, Andreas; Kukowski, Nina

    2014-05-01

    In the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary Basins) project, a 1.179 meter deep scientific borehole was drilled in summer 2013. The drill site is situated in the north of Erfurt, in the center of the Thuringian Basin on the crossing point of two seismic reflection profiles, which were acquired in 2011. An almost complete sequence from Keuper to the base of the Buntsandstein was drilled. Drilling, geophysical measurements and well construction were conducted for three depth intervals. First, drilling was undertaken to a depth of 313 m down to the top of the Middle Muschelkalk. Then, the Middle and Upper Muschelkalk were drilled to a depth of 515 m and the third part of the drilling campaign was finished at a depth of 1.179 m at the base of the Lower Buntsandstein. Coring was done in the depth intervals of 285 m to 420 m and 520 m to 914 m. With the help of the borehole geophysical measurements, which were done along the entire depth, stratigraphic information obtained through core samples can be extrapolated from cored sections into those depth sections, where no coring was done. Immediately after finishing drilling through a certain depth interval, borehole geophysical measurements were conducted in the open hole. Using the caliper and inclination instruments, the geometry of the well was determined. In addition, milieu, gamma-ray, spectral gamma-ray, acoustic borehole television, sonic, susceptibility, dipmeter, gamma-gamma, neutron-neutron and the dual latero-log were measured to get information about rock properties. Within rock-salt bearing depth intervals, embedded cm-thin layers of clay can be geophysically resolved. This will e.g. enable to determine and contrast the physical properties of these alternating sequences with high accuracy. Besides the in-situ well measurements rock-physical parameters of the core samples were acquired with a Multi-Sensor Core Logger (MSCL). Here, we present the new data set and discuss some

  4. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    At present, 150 companies produce common clay and shale in 41 US states. According to the United States Geological Survey (USGS), domestic production in 2005 reached 24.8 Mt valued at $176 million. In decreasing order by tonnage, the leading producer states include North Carolina, Texas, Alabama, Georgia and Ohio. For the whole year, residential and commercial building construction remained the major market for common clay and shale products such as brick, drain tile, lightweight aggregate, quarry tile and structural tile.

  5. Clay Mineral: Radiological Characterization

    SciTech Connect

    Cotomacio, J. G.; Silva, P. S. C.; Mazzilli, B. P

    2008-08-07

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and {sup 40}K in these clay minerals.The objective of this work is to determine the concentrations of {sup 238}U, {sup 232}Th, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 40}K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay.Measurement for the determination of {sup 238}U and {sup 232}Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 40}K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906{+-}340 Bq kg{sup -1} for {sup 40}K, 40{+-}9 Bq kg{sup -1} for {sup 226}Ra, 75{+-}9 Bq kg{sup -1} for {sup 228}Ra, 197{+-}38 Bq kg{sup -1} for {sup 210}Pb, 51{+-}26 Bq kg{sup -1} for {sup 238}U and 55{+-}24 Bq kg{sup -1} for {sup 232}Th, considering both kinds of clay.

  6. Designing in Clay

    ERIC Educational Resources Information Center

    Nigrosh, Leon I.

    1977-01-01

    What can be done to transform a lump of wet clay into something more than a lump of glaze-fired clay? It is at this point when forming techniques have been mastered that good design becomes most important. Discusses six criteria involved in the search for good design so that students can discover what good design is and how important it is.…

  7. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  8. Active Suppression of Drilling System Vibrations For Deep Drilling

    SciTech Connect

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  9. Drilling cost-cutting

    SciTech Connect

    Capuano, L.E. Jr.

    1996-12-31

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  10. Horizontal drilling developments

    SciTech Connect

    Gust, D.

    1997-05-01

    The advantages of horizontal drilling are discussed. Use of horizontal drilling has climbed in the past half decade as technology and familiarity offset higher costs with higher production rates and greater recoveries from new and existing wells. In essence, all types of horizontal wells expose a larger section of the reservoir to the wellbore with a resulting increase in flow rates. (A horizontal well may also be drilled to provide coning control or to intersect vertical fractures.) Thus, drilling horizontally, both onshore and offshore, reduces the number of wells necessary to develop a field.

  11. Remote drill bit loader

    SciTech Connect

    Dokos, James A.

    1997-01-01

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

  12. Remote drill bit loader

    DOEpatents

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  13. Advances in drilling with fiber lasers

    NASA Astrophysics Data System (ADS)

    Naeem, Mohammed

    2015-07-01

    High brightness quasi- continuous wave (QCW) and continuous wave (CW) fiber lasers are routinely being used for cutting and welding for a range of industrial applications. However, to date very little work has been carried out or has been reported on laser drilling with these laser sources. This work describes laser drilling ((trepan and percussion) of nickel based superalloys (thermal barrier coated and uncoated) with a high power QCW fiber laser. This presentation will highlight some of the most significant aspect of laser drilling, i.e. SmartPierceTM, deep hole drilling and small hole drilling. These advances in processing also demonstrate the potential for fiber laser processing when an advanced interface between laser and an open architecture controller are used.

  14. Cohesive Strength of Clay-Rich Sediment and Implications for Accretionary Wedge Deformation

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Huepers, A.; Kopf, A.

    2011-12-01

    While studies of rock and sediment friction are common, cohesion is a component of the shear strength that is often ignored despite its potential importance for faulting and the structure of accretionary wedges. We directly measure the cohesion of clay-rich sediment by measuring its shear strength in a direct-shear apparatus with no applied effective normal stress (σn' = 0). We present measurements of cohesion for two cases: (1) After vertical consolidation only, and (2) after vertical consolidation followed by shear under applied normal stress. Under consolidation stresses of 90 kPa to 2 MPa, cohesion of both the unsheared and sheared cases depends linearly on the (previously) applied load. We interpret the cohesion measured after shearing under load to be the cohesive strength that exists throughout the shearing process, suggesting that for clay-rich materials the coefficient of internal friction should be used rather than the coefficient of sliding friction. In both sheared and unsheared cases, cohesion depends positively on clay mineral content. Cohesion is low in room-dry sediment, suggesting that it is controlled by the presence of water and may be related to the atomic charge imbalance of clays, which results in hydrogen bonding between adsorbed water molecules and the clay mineral surfaces. Coulomb wedge theory dictates that the taper angle of accretionary wedges depends on the internal friction of the wedge, the basal sliding friction of the décollement, and the amount of excess pore pressure in these locations. Cohesion is typically neglected in such analyses. In the case of the Nankai subduction zone, the accretionary wedge and décollement are composed of clay-rich sediments, meaning that cohesion should not negligible based on our experimental results. This is the case even along the décollement where active slip occurs, because sheared sediment exhibits significant cohesion that is actually higher compared to sediment that experienced only

  15. Drilling technology -- 1994. PD-Volume 56

    SciTech Connect

    Vizniak, J.P.

    1994-12-31

    The drilling technology division of the ASME focuses on various aspects of drilling technology under research and development that is advanced in nature and may not yet have reached the commercial stage. Tools or processes that have reached commercialization are still in a proving stage but have shown promising results to date which can expand the state of the art in the oil and gas industry. The 1994 Conference consists of papers on a wide variety of topics ranging from drilling bits to slim-hole and coiled tubing drilling. Advanced topics such as laser water jet drilling, rock melting drilling, and automatic closed-loop steering for directional drilling will be presented. A new session on Environmental Drilling will be held for the first time this year. The authors belong to academia as well as industry and come from the US, France, Brazil, and China. The papers will provide a forum for discussion of a good mix of both fundamental and applied research. Thirty papers from this conference have been prepared for inclusion on the data base.

  16. Log-derived cation exchange capacity of shaly sands: Application to hydrocarbon detection and drilling optimization

    NASA Astrophysics Data System (ADS)

    Ipek, Gamze

    Researchers at Louisiana State University, LSU, have introduced several petrophysical models expressing the electric properties of shaly sands. These models, to be used for hydrocarbon detection, are based on the Waxman and Smits concept of supplementing the water conductivity with a clay counterions conductivity. The LSU models also utilize the Dual Water theory, which relates each conductivity term to a particular type of water, free and bound, each occupying a specific volume of the total pore space. The main difference between these models and the other shaly sand models is that the counterion conductivity is represented by a hypothetical sodium chloride electrolyte. This study introduces a modified version of early LSU models. This modified model eliminates a questionable assumption incorporated in all previous shaly sand models. Previous models use same formation resistivity factor for all terms in the model. The proposed model considers that the electric current follows the effective porosity path in the term representing the free electrolyte and follows the clay porosity path in the term representing bound water. The differentiation between the two paths is accomplished by using two different formation factors one in the free water and another in the bound water term of the model. It also used two different cementation exponents to express formation factors in terms of porosity. The validity of the new model was checked using cation exchange capacities measured on core samples and drill cuttings. Calculated cation exchange capacities display good agreement with the measured cation exchange capacities. The water saturation calculated using the new model are more representative of hydrocarbon potential of the zones of interest. In addition, cation exchange capacity calculated using this modified model and log data acquired during drilling has shown potential for diagnosis of pending bit balling of PDC bits drilled with water based mud in overpressured shale.

  17. Innovative hyperspectral imaging (HSI) based techniques applied to end-of-life concrete drill core characterization for optimal dismantling and materials recovery

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2015-02-01

    The reduction of EOL concrete disposal in landfills, together with a lower exploitation of primary raw materials, generates a strong interest to develop, set-up and apply innovative technologies to maximize Construction and Demolition Waste (C&DW) conversion into useful secondary raw materials. Such a goal can be reached starting from a punctual in-situ efficient characterization of the objects to dismantle in order to develop demolition actions aimed to set up innovative mechanical-physical processes to recover the different materials and products to recycle. In this paper an innovative recycling-oriented characterization strategy based on HyperSpectral Imaging (HSI) is described in order to identify aggregates and mortar in drill core samples from end-of-life concrete. To reach this goal, concrete drill cores from a demolition site were systematically investigated by HSI in the short wave infrared field (1000-2500 nm). Results obtained by the adoption of the HSI approach showed as this technology can be successfully applied to analyze quality and characteristics of C&DW before dismantling and as final product to reutilise after demolition-milling-classification actions. The proposed technique and the related recognition logics, through the spectral signature detection of finite physical domains (i.e. concrete slice and/or particle) of different nature and composition, allows; i) to develop characterization procedures able to quantitatively assess end-of-life concrete compositional/textural characteristics and ii) to set up innovative sorting strategies to qualify the different materials constituting drill core samples.

  18. Drilling Fluid Contamination during Riser Drilling Quantified by Chemical and Molecular Tracers

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; Lever, M. A.; Morono, Y.; Hoshino, T.

    2012-12-01

    Stringent contamination controls are essential to any type of microbiological investigation, and are particularly challenging in ocean drilling, where samples are retrieved from hundreds of meters below the seafloor. In summer 2012, Integrated Ocean Drilling Expedition 337 aboard the Japanese vessel Chikyu pioneered the use of chemical tracers in riser drilling while exploring the microbial ecosystem of coalbeds 2 km below the seafloor off Shimokita, Japan. Contamination tests involving a perfluorocarbon tracer that had been successfully used during past riserless drilling expeditions were complemented by DNA-based contamination tests. In the latter, likely microbial contaminants were targeted via quantitative polymerase chain reaction assays using newly designed, group-specific primers. Target groups included potential indicators of (a) drilling mud viscosifiers (Xanthomonas, Halomonas), (b) anthropogenic wastewater (Bifidobacterium, Blautia, Methanobrevibacter), and (c) surface seawater (SAR 11, Marine Group I Archaea). These target groups were selected based on past evidence suggesting viscosifiers, wastewater, and seawater as the main sources of microbial contamination in cores retrieved by ocean drilling. Analyses of chemical and molecular tracers are in good agreement, and indicate microorganisms associated with mud viscosifiers as the main contaminants during riser drilling. These same molecular analyses are then extended to subseafloor samples obtained during riserless drilling operations. General strategies to further reduce the risk of microbial contamination during riser and riserless drilling operations are discussed.

  19. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  20. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  1. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    Harvey, Jill (Editor)

    1989-01-01

    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

  2. Drilling Square Holes.

    ERIC Educational Resources Information Center

    Smith, Scott G.

    1993-01-01

    A Reuleaux triangle is constructed by drawing an arc connecting each pair of vertices of an equilateral triangle with radius equal to the side of the triangle. Investigates the application of drilling a square hole using a drill bit in the shape of a Reuleaux triangle. (MDH)

  3. Horizontal drilling technology advances

    SciTech Connect

    Not Available

    1991-03-04

    Horizontal drilling technology is making further advances in the Texas Austin chalk play as such drilling continues to spread in many U.S. land areas. One company has completed a Cretaceous Austin chalk oil well with the longest horizontal well bore in Texas and what at 1 1/6 miles is believed to be the world's longest medium radius horizontal displacement.

  4. Geothermal Drilling in Cerro Prieto

    SciTech Connect

    Aguirre, B. D.; Garcia, G. S.

    1981-01-01

    To date, 71 geothermal wells have been drilled in Cerro Prieto. The activity has been divided into several stages, and, in each stage, attempts have been made to correct deficiencies that were gradually detected. Some of these problems have been solved; others, such as those pertaining to well casing, cement, and cementing jobs, have persisted. The procedures for well completion--the most important aspect for the success of a well--that were based on conventional oil well criteria have been improved to meet the conditions of the geothermal reservoir. Several technical aspects that have improved should be further optimized, even though the resolutions are considered to be reasonably satisfactory. Particular attention has been given to the development of a high-temperature drilling fluid capable of being used in drilling through lost circulation zones. Conventional oil well drilling techniques have been used except where hole-sloughing is a problem. Sulfonate lignitic mud systems have been used with good results. When temperatures exceed 300 C (572 F), it has been necessary to use an organic polymer to stabilize the mud properties.

  5. Continuous coring drill bit

    SciTech Connect

    Ford, G.A.

    1987-09-22

    A continuous coring drill bit is described comprising: (a) body means defining a vertical axis and adapted for connection to drill pipe and forming an internal body cavity disposed in eccentric relation with the vertical axis and a generally circular throat in communication with the body cavity for conducting drilling fluid. The throat defining a throat axis coincident with the vertical axis and being of a configuration permitting passage of a formation core into the body cavity; (b) a generally cylindrical tubular core breaker being rotatably mounted within the body cavity and defining a vertical axis of rotation of generally parallel and offset relation with the vertical axis of the body means; and (c) a buttress element extending inwardly from the core breaker and adapted to contact the formation core. Upon each rotation of the drill bit the buttress element applying transverse force to the core for fracturing of the core into sections sufficiently small for transport by the drilling fluid.

  6. Distributed downhole drilling network

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  7. Drilling and producing offshore

    SciTech Connect

    Hall, R.S.

    1983-01-01

    Hall and his team of authors share technically detailed state-of-the-art designs, equipment and techniques, focusing on fixed-platform operations. This book provides explicit data on offshore equipment and procedures. Contents: Development drilling structures -- template, concrete gravity, and other platforms; Development drilling systems -- through-the-leg drilling, floating drilling, tension-leg platform drilling, template utilization, and mud-line casing suspension and casing support systems; Completion systems -- platform completions, through-the-leg completions, tension-leg completions, multiwell subsea completions, and subsea satellite completion systems; Production control -- wellhead control systems and subsea production control systems; Offshore oil-field diving operations and equipment -- commercial diving, history of diving, international offshore oil-field diving, physiological constraints in diving, diving capabilities and equipment, future trends.

  8. Bacterial diversity in a deep-subsurface clay environment.

    PubMed Central

    Boivin-Jahns, V; Ruimy, R; Bianchi, A; Daumas, S; Christen, R

    1996-01-01

    The presence of bacteria in a deep clay sediment was analyzed in a 20-m-long core horizontally drilled from a mine gallery at a depth of 224 m in the Boom clay formation (Mol, Belgium). This clay deposit is the result of a marine sedimentary process that occurred 35 million years ago. Bacterial activities were estimated by measuring respiration on [14C]glucose. Using the same samples, universal primers for the genes coding for eubacterial 16S rRNA were used to amplify extracted DNA. PCR products were then cloned, sequenced, and analyzed by molecular phylogeny. Our data showed a decrease in bacterial densities as a function of distance from the gallery, with few bacteria detectable by culture at more than 80 cm from the gallery wall. PCR experiments showed the presence of bacteria in all samples, and phylogenetic analyses were then used to tentatively identify these organisms. Because of low bacterial densities in deep clay samples, direct counts and enumeration of viable bacteria on diverse culture media remained negative. All experiments, both cultures and PCR, demonstrated the difficulty of analyzing samples that contain only a few poorly active bacteria as it is difficult to avoid a small contamination by active bacteria during sampling. Since the porosity of the Boom clay formation is less than the expected size of bacteria, it is possible that some of the bacteria present in this 35-million-year-old deep clay deposit derive from cells initially trapped during the sedimentation process. PMID:8795233

  9. A Miniature Surgical Drill Using Ultrasonic/Sonic Frequency Vibration

    NASA Astrophysics Data System (ADS)

    Li, Li; Mathieson, Andrew; Lucas, Margaret

    A study is presented of a miniature ultrasonic surgical drill designed for bone biopsy, based on an ultrasonic/sonic drill which converts high frequency to low frequency vibrations through a freely vibrating mass between an ultrasonic transducer-horn and a drill bit. For conventional surgical drilling using a rotary drill or an ultrasonic drill, considerable power is required to penetrate into bone and the efficiency is low. However, for ultrasonic/sonic drilling, sufficient acoustic energy is accumulated and then released through each impact to achieve precise drilling with a lower power requirement. The ultrasonic/sonic drill was originally invented for rock drilling in low gravity environments. In this study it is incorporated in a miniature ultrasonic surgical drill and the effective impulse delivered to the bone is used to evaluate the drilling performance. To develop a miniature surgical device based on maximising the effective impulse, optimisation of the ultrasonic horn and free-mass is first demonstrated. The shape and dimensions of the ultrasonic horn and free-mass are determined through FEA, which focuses on maximising the post-collision velocity of the free-mass. Then, the entire dynamic stack constituting the surgical drill device is modelled as a mass-spring-damper system to analyse the dynamic behaviour. The numerical model is validated through experiments, using a prototype drill, which record the velocity of the free-mass and the drilling force. The results of the numerical models and experiments indicate this miniature ultrasonic surgical drill can deliver sufficient impulse to penetrate bone and form the basis of an ultrasonically activated bone biopsy device.

  10. Drill-motor holding fixture

    NASA Technical Reports Server (NTRS)

    Chartier, E. N.; Culp, L. N.

    1980-01-01

    Guide improves accuracy and reduces likelihood of bit breakage in drilling large work pieces. Drill motor is mounted on pipe that slides on furniture clamp. Drill is driven into work piece by turning furniture-clamp handle.

  11. Preliminary Results of the Permafrost Carbon Study in the Lower Kolyma Lowland (Eastern Siberia) Based on Drilling Record

    NASA Astrophysics Data System (ADS)

    Spektor, V. V.; Kholodov, A. L.; Bulygina, E. B.; Andreeva, V.; Broderick, D.; Spawn, S.; Natali, S.; Davydova, A.

    2012-12-01

    In 2012, the Polaris Project (thepolarisproject.org, Director R.M. Holmes) has conducted the permafrost drilling on the Kolyma Lowland for a complex study of permafrost carbon as a potential source for microbial decomposition. In July 2012, the first two boreholes, 15.1 and 13.4 m in depth, were drilled. The first borehole (BH 12/1) was drilled in the stratum of ice complex (yedoma) on the local watershed near the Schuch'e lake in the vicinity of the town Chersky (N68°44.7' E161°23'). The depth of active layer is 45 cm. The permafrost to the depth of 15.1 m represents grey and brown silts with predominant homogeneous structure. Silts contain numerous thread-like roots, scarce plant macrofossils, and in places are colored with unclear spots of ferrugination. Cryostructure is mainly pore ice or thin lense-like ice layers. Wedge ice is observed in the interval 12.5-12.9 m. The moisture volumetric percentage of silts varies along the stratum, mainly, between 40-50%. The organic content, defined in every 20 cm of the core as a loss on ignition, varies between 2-4%. The second borehole (BH 12/2), located in the Pleistocene Park (N68°30.8' E161°30') was drilled through modern floodplain sediments (0-0.6 m) of the Kolyma River with polygonal network at the surface, underlain by peat (0.6-1.3 m), silt deposits of thermokarst lake (1.3-12.0 m), and river grey sands (12.0-13.4 m). The active layer thickness is 65 cm. The cryostructure is predominantly lattice-like. Silts contain modern wedge ice at the depth of 2.5-2.7 m. Mollusk shells and large amount of plant macrofossils are observed in the interval 5.7-8.0 m. The organic content in the thermokarst deposits varies in average within 2-3 %, but is about 1% in the underlying river sands. To investigate permafrost carbon, samples for microbial and enzyme activities, as well as samples of trapped gases were collected from different horizons of frozen cores. Samples for palynological, diatom, and lithological analyses, as

  12. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  13. Improvement of the casing cementation of deep and ultradeep wells. Part 1: Drilling muds and washing fluids

    NASA Astrophysics Data System (ADS)

    Arens, K. H.; Akstinat, M.

    1982-07-01

    Drilling muds, washers, and washing fluids were investigated in order to improve the casing cementation of deep and ultradeep wells. Rheological requirements, the temperature stability of mud systems and the properties of nondamaging drilling muds were studied. For washing fluids, two test methods were developed and the necessity of filter cake removal was shown. The efficiency of several washing fluids was compared and evaluated for various mud systems (drilling muds with and without clays).

  14. Age depth model construction of the upper section of ICDP Dead Sea Deep Drilling Project based on the high-resolution 14C dating

    NASA Astrophysics Data System (ADS)

    Kitagawa, H.; Nakamura, T.; Neugebauer, I.; Schwab, M. J.; Brauer, A.; Goldstein, S. L.; Stein, M.

    2014-12-01

    To reconstruct environmental, climatic and tectonic histories of the Levant, a deep drilling has been accomplished in the northern basin of the Dead Sea during the fall winter of 2010-2011 by the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. The sediment cores from site 5017-1 (water depth of ~300 m) recorded the paleoenvironmental and paleohydrological changes in the Dead Sea and the Levant during the last two glacial-interglacial cycles (Neugebauer et al., QSR in press). To provide precise timing of sedimentological - limnological events in the lake and its watershed, and more critically the relative timing of these events, radiocarbon dating of >70 well-preserved terrestrial plants and some carbonate deposits from the upper 150 m long section of the sediment core were performed. Based on the high-resolution radiocarbon dating, a statistical age-depth model was constructed with assumptions on the deposition condition and the radiocarbon age offset of carbonate samples. We discuss the practicality and the limitation of the age-depth model toward interpreting the high-resolution records of environmental, climatic and tectonic events recorded in the long sediment cores from site 5017-1.

  15. A Ship for Scientific Drilling.

    ERIC Educational Resources Information Center

    Peterson, M. N. A.; MacTernan, F. C.

    1982-01-01

    Traces the history and development of the Deep Sea Drilling Project, focusing on the Glomar Challenger, drilling improvements, and international significance. Includes photographs, illustrations, and tables. (DC)

  16. The rock melting approach to drilling

    SciTech Connect

    Cort, G.E.; Goff, S.J.; Rowley, J.C.; Neudecker, J.W. Jr.; Dreesen, D.S.; Winchester, W.

    1993-09-01

    During the early and mid-1970`s the Los Alamos National Laboratory demonstrated practical applications of drilling and coring using an electrically-heated graphite, tungsten, or molybdenum penetrator that melts a hole as it is slowly pushed through the rock or soil. The molten material consolidates into a rugged glass lining that prevents hole collapse; minimizes the potential for cross-flow, lost circulation, or the release of hazardous materials without casing operations; and produces no cuttings in porous or low density (<1.7 g/cc) formations. Because there are no drilling fluids required, the rock melting approach reduces waste handling, treatment and disposal. Drilling by rock melting has been demonstrated to depths up to 30 m in caliche, clay, alluvium, cobbles, sand, basalt, granite, and other materials. Penetrating large cobbles without debris removal was achieved by thermal stress fracturing and lateral extrusion of portions of the rock melt into the resulting cracks. Both horizontal and vertical holes in a variety of diameters were drilled in these materials using modular, self-contained field units that operate in remote areas. Because the penetrator does not need to rotate, steering by several simple approaches is considered quite feasible. Melting is ideal for obtaining core samples in alluvium and other poorly consolidated soils since the formed-in-place glass liner stabilizes the hole, encapsulates volatile or hazardous material, and recovers an undisturbed core. Because of the relatively low thermal conductivity of rock and soil materials, the heat-affected zone beyond the melt layer is very small, <1 inch thick. Los Alamos has begun to update the technology and this paper will report on the current status of applications and designs for improved drills.

  17. Adsorption of dyes using different types of clay: a review

    NASA Astrophysics Data System (ADS)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2015-09-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  18. Rapid and Quiet Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    This describes aspects of the rapid and quiet drill (RAQD), which is a prototype apparatus for drilling concrete or bricks. The design and basic principle of operation of the RAQD overlap, in several respects, with those of ultrasonic/ sonic drilling and coring apparatuses described in a number of previous NASA Tech Briefs articles. The main difference is that whereas the actuation scheme of the prior apparatuses is partly ultrasonic and partly sonic, the actuation scheme of the RAQD is purely ultrasonic. Hence, even though the RAQD generates considerable sound, it is characterized as quiet because most or all of the sound is above the frequency range of human hearing.

  19. Rattles of Clay.

    ERIC Educational Resources Information Center

    Banning, Donna

    1983-01-01

    Using the rattles of Native American cultures as inspiration, students used pinching, coiling, and slab and molding techniques to form the bodies of rattles and clay pellets for sound. Surface decoration included glazed and unglazed areas as well as added handles, feathers, and leather. (IS)

  20. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the common clay and shale industry is provided. In 2000, U.S. production increased by 5 percent, while sales or use declined to 23.6 Mt. Despite the slowdown in the economy, no major changes are expected for the market.

  1. Clay Mineral Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Day-Stirrat, R. J.

    2014-12-01

    Anisotropy of the orientation of clay minerals, often referred to as texture, may be unique to sediments' deposition, composition, deformation or diagenetic history. The literature is rich with studies that include preferred orientation generation in fault gouge, low-grade metamorphic rocks, sediments with variable clay content and during the smectite-to-illite transformation. Untangling the interplay between many competing factors in any one geologic situation has proven a significant challenge over many years. Understanding how, where and when clay minerals develop a preferred orientation has significant implications for permeability anisotropy in shallow burial, the way mechanical properties are projected from shallower to deeper settings in basin modeling packages and the way velocity anisotropy is accounted for in seismic data processing. The assessment of the anisotropic properties of fine-grained siliciclastic rocks is gaining significant momentum in rock physics research. Therefore, a fundamental understanding of how clay minerals develop a preferred orientation in space and time is crucial to the understanding of anisotropy of physical properties. The current study brings together a wealth of data that may be used in a predictive sense to account for fabric anisotropy that may impact any number of rock properties.

  2. Modified drill permits one-step drilling operation

    NASA Technical Reports Server (NTRS)

    Libertone, C.

    1966-01-01

    Drill with modified cutting faces permits one-step drilling operation without chatter upon contact and premature wear. The modification of the drill, which has the same diameter as that of the desired hole, consists of a groove across the bottom of each of the cutting faces of the drill flutes.

  3. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... publishing the notice in the Federal Register of January 6, 2010 (75 FR 877). The conference was held in... COMMISSION Drill Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings...

  4. A Model of the Chicxulub Impact Basin Based on Evaluation of Geophysical Data, Well Logs, and Drill Core Samples

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.

    1996-01-01

    Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.

  5. Drill pipe protector development

    SciTech Connect

    Thomerson, C.; Kenne, R.; Wemple, R.P.

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  6. Geothermal drilling technology

    SciTech Connect

    Dunn, J.C.; Livesay, B.J.

    1986-01-01

    The report discusses the current state of geothermal drilling technology with reference to how individual technology items are influenced by the following problem areas: high temperature; lost circulation; abrasive rocks; and corrosive gases. (ACR)

  7. Sub-Ocean Drilling

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

  8. Drilling Productivity Report

    EIA Publications

    2016-01-01

    Energy Information Administration’s (EIA) new Drilling Productivity Report (DPR) takes a fresh look at oil and natural gas production, starting with an assessment of how and where drilling for hydrocarbons is taking place. The DPR uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells produce both.

  9. Ocean drilling ship chosen

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The Sedco/BP 471, owned jointly by Sedco, Inc., of Dallas, Tex., and British Petroleum, has been selected as the drill ship for the Ocean Drilling Program (ODP). The contract, with a specified initial term of 4 years with 10 1-year options after that, is expected to be signed by mid March by Texas A&M University, the ODP science operator, and Sedco, Inc. Texas A&M will develop the design for scientific and laboratory spaces aboard the Sedco/BP 471 and will oversee the ship conversion. Testing and shakedown of the ship is scheduled for the coming autumn; the first scientific cruise is scheduled for next January.One year ago, the commercial drilling market sagged, opening up the option for leasing a commercial drill ship (Eos, February 22, 1983, p. 73). Previously, the ship of choice had been the Glomar Explorer; rehabilitating the former CIA salvage ship would have been extremely expensive, however.

  10. Subsurface drill string

    DOEpatents

    Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  11. Deep-Sea Drilling.

    ERIC Educational Resources Information Center

    White, Stan M.

    1979-01-01

    Drilling during 1978 focused on three major geologic problems: the nature and origin of the oceanic crust, the nature and geologic history of the active continental margins, and the oceanic paleoenvironment. (Author/BB)

  12. Drilling fluid filter

    DOEpatents

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  13. Clay Animals and Their Habitats

    ERIC Educational Resources Information Center

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  14. Microhole Drilling Tractor Technology Development

    SciTech Connect

    Western Well Tool

    2007-07-09

    In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly

  15. HYDROTHERMAL MINERALOGY OF RESEARCH DRILL HOLE Y-3, YELLOWSTONE NATIONAL PARK, WYOMING.

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1984-01-01

    The approximate paragenetic sequence of hydrothermal minerals in the Y-3 U. S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, is: hydrothermal chalcedony, hematite, pyrite, quartz, clay minerals (smectite and mixed-layer illite-smectite), calcite, chlorite, fluorite, pyrite, quartz, zeolite minerals (analcime, dachiardite, laumontite, stilbite, and yugawaralite), and clay minerals (smectite and mixed-layer illite-smectite). A few hydrothermal minerals that were identified in drill core Y-3 (lepidolite, aegirine, pectolite, and truscottite) are rarely found in modern geothermal areas. The alteration minerals occur primarily as vug and fracture fillings that were deposited from cooling thermal water. Refs.

  16. Micro borehole drilling platform

    SciTech Connect

    1996-10-01

    This study by CTES, L.C. meets two main objectives. First, evaluate the feasibility of using coiled tubing (CT) to drill 1.0 inches-2.5 inches diameter directional holes in hard rocks. Second, develop a conceptual design for a micro borehole drilling platform (MBDP) meeting specific size, weight, and performance requirements. The Statement of Work (SOW) in Appendix A contains detailed specifications for the feasibility study and conceptual design.

  17. Directional drilling pipelay

    SciTech Connect

    Langner, C.G.

    1987-10-20

    A method is described for laying a pipeline beneath a seabottom subject to ice gouging, comprising: forming a borehole with drilling means; gripping the inside of the borehole with at least one tractor; applying thrust from at least one tractor to propel the drilling means forward until a deep arcuate borehole is formed beneath the seabottom sufficiently deep to avoid ice gouging and inserting a pipeline into the borehole.

  18. Update on slimhole drilling

    SciTech Connect

    Finger, J.T.

    1996-01-01

    Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research.

  19. Chevron tackles urban drilling

    SciTech Connect

    Moore, S.

    1984-01-01

    Chevron USA transformed a landfill in Pacioma, Calif., into an urban drill site for a field expected to produce 2,400 b/d of oil and 24 MMcfd of natural gas within 3 years. Chevron's foremost challenges in developing the Paxton drill site were to drill and produce oil and gas within a limited, 2.7-acre spacing and with minimum impact to the immediate environment. To meet these goals, Chevron: Used offshore technology for the well cellar layout and rig design and construction. Performed extensive research in soil mechanics, noise abatement, and safety. Employed state-of-the-art computer technology for monitoring and controlling different operating systems. Concealed the drilling derrick in a 10-story tower that resembles a Spanish mission. Hid other structures, including offices, a computerized control room, and gas processing facilities, behind a 12-ft fence. The Paxton site, located a few miles north of Los Angeles, is Chevron's fifth compressed urban drill site. The other sites, all in the Los Angeles area, are San Vicente, Packard, Broadway, and Garey. Chevron's experience in drilling 173 wells at these four facilities was beneficial, since the same engineering and technology were applied to the Paxton site.

  20. MACHINERY RESONANCE AND DRILLING

    SciTech Connect

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  1. Integrated hydrogeological and geochemical processes in swelling clay-sulfate rocks

    NASA Astrophysics Data System (ADS)

    Schweizer, Daniel; Butscher, Christoph; Blum, Philipp

    2015-04-01

    human activities (drillings), as well as (4) the reaction kinetics of the anhydrite-gypsum-water system at the field scale. It incorporates 3D geological modelling, reactive transport modelling and model validation, with a focus on the reactive transport model. The models are based on the case study of Staufen, which provides an excellent data set for model development and comparison of the model results to the actual observed swelling processes in the field. Forward modelling with validation via iterative calibration is chosen as a methodological approach. The validated models represent the geological, hydrological and geochemical conditions which cause the swelling of the clay-sulfate rocks. They also quantify the reaction kinetics, characterizing the anhydrite dissolution and gypsum precipitation during the swelling process under field conditions. In this contribution, the extensive datasets from the test site of town Staufen and their relevance for the individual model development steps are presented. They comprise geological, geophysical, hydrological, geochemical, geomechanical and geodetic information providing an excellent data basis. Furthermore, a conceptual overview of the methodology for the geological and reactive transport model, as well as model validation using the presented data, is outlined. The expected results of the study will lead to a better understanding of the hydrological and geological processes that trigger the swelling of clay-sulfate rocks.

  2. Modeling pellet impact drilling process

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  3. Innovations aid frontier offshore drilling

    SciTech Connect

    Hewlett, C.

    1986-04-14

    In the past 3 years, new water-depth records have been established for the drilling of exploration wells and for the installation of subsea completion systems. In addition, development of equipment for drilling and completing wells in harsh environments has been accelerating. Three significant systems, manufactured and installed during this time, have enabled the industry to expand its capabilities and extend its frontiers. The three developments, with the points that will be discussed, are: A riser system used in world-record water depth off the U.S. East Coast (major system components, computer analysis of flanged riser coupling, and modifications based on field input); A caisson drilling system installed off the East Coast of Canada designed for iceberg scouring conditions (design philosophy, unique design); Further riser system developments for deep-water and severe environmental conditions (design of riser tensioning ring that eliminates goosenecks and does not require removal of drape hoses when running/retrieving riser). Primary among the conclusions drawn from these and other developments is the solid technological base being developed for use in further extending industry hardware capabilities.

  4. Potassium/lime muds reduce drilling costs through troublesome Dubai shales

    SciTech Connect

    Tipton, J.; Gaudin, D.

    1986-06-16

    Shale problems in the Arabian Gulf, offshore U.A.E., occur in two troublesome formations. The main problems occur in the 9 7/8-in. interval through the Aruma shales. Significant reductions in cost have been achieved by substituting water-based, potassium, lime, modified-deflocculant-polymer systems (called KLM muds) for oil-based systems in directional wells of less than 45/sup 0/. Additionally, laboratory tests have shown KLM muds to be equally inhibitive in comparison to KCI systems at significantly lower potassium concentrations. Excellent well stabilization has been maintained with the KLM systems, drilling near-gauge holes at improved penetration rates. This article presents a chronological development of inhibitive systems, clay chemistry, and laboratory research. It then gives field performance data from the five wells. The key technical points are that calcium and potassium work together synergistically, and that cheaper calcium can do much of the inhibition.

  5. While drilling system and method

    DOEpatents

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  6. Quaternary paleoceanography of the central Arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages

    USGS Publications Warehouse

    Cronin, T. M.; Smith, S.A.; Eynaud, F.; O'Regan, M.; King, J.

    2008-01-01

    The Integrated Ocean Drilling Program (IODP) Arctic Coring Expedition (ACEX) Hole 4C from the Lomonosov Ridge in the central Arctic Ocean recovered a continuous 18 in record of Quaternary foraminifera yielding evidence for seasonally ice-free interglacials during the Matuyama, progressive development of large glacials during the mid-Pleistocene transition (MPT) ???1.2-0.9 Ma, and the onset of high-amplitude 100-ka orbital cycles ???500 ka. Foraminiferal preservation in sediments from the Arctic is influenced by primary (sea ice, organic input, and other environmental conditions) and secondary factors (syndepositional, long-term pore water dissolution). Taking these into account, the ACEX 4C record shows distinct maxima in agglutinated foraminiferal abundance corresponding to several interglacials and deglacials between marine isotope stages (MIS) 13-37, and although less precise dating is available for older sediments, these trends appear to continue through the Matuyama. The MPT is characterized by nearly barren intervals during major glacials (MIS 12, 16, and 22-24) and faunal turnover (MIS 12-24). Abundant calcareous planktonic (mainly Neogloboquadrina pachyderma sin.) and benthic foraminifers occur mainly in interglacial intervals during the Brunhes and very rarely in the Matuyama. A distinct faunal transition from calcareous to agglutinated foraminifers 200-300 ka in ACEX 4C is comparable to that found in Arctic sediments from the Lomonosov, Alpha, and Northwind ridges and the Morris Jesup Rise. Down-core disappearance of calcareous taxa is probably related to either reduced sea ice cover prior to the last few 100-ka cycles, pore water dissolution, or both. Copyright 2008 by the American Geophysical Union.

  7. A new scientific drilling infrastructure in Sweden

    NASA Astrophysics Data System (ADS)

    Rosberg, J.-E.; Lorenz, H.

    2012-04-01

    A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer

  8. Impacts on seafloor geology of drilling disturbance in shallow waters.

    PubMed

    Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L

    2010-08-01

    This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place. PMID:20532617

  9. Distance learning on the Web supported by Javascript: a critical appraisal with examples from clay mineralogy and knowledge-based tests

    NASA Astrophysics Data System (ADS)

    Krumm, S.; Thum, I.

    1998-08-01

    The hypertext mark-up language (HTML) is used to create hypertext documents in use on the World-Wide Web (WWW), built up as a client/server model. In this paper we discuss the enhancement of HTML documents with JavaScript, a script language understood by most common browsers. JavaScript is considered an easy means for bringing interactivity and answer checking to educational Web pages. It is faster to learn compared to using a programming language like PERL and has the advantage of high portability between different operating systems. Because all actions are performed on the client side, it reduces net traffic and pages can be used off-line. Educational usage, including tests and operations in future distance learning are outlined. Examples of JavaScript supported documents are given using clay mineralogy and knowledge-based tests as examples. A critical review of this relatively new technology reveals some compatibility problems but these seem to be offset by the possibility to make Web pages more attractive.

  10. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  11. Organic or organometallic template mediated clay synthesis

    SciTech Connect

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1992-12-31

    A method is given for incorporating diverse varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and LiF for 2 days with an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by US patent No. 3,887,454 issued to Hickson, June 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have water-solubility, positive charge, and thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  12. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  13. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  14. Geology of the "20-foot" clay and Gardiners clay in southern Nassau and southwestern Suffolk counties, Long Island, New York

    USGS Publications Warehouse

    Doriski, T.P.; Wilde-Katz, Franceska

    1983-01-01

    Data from 1978-79 drilling was compiled with information from previous reports and historical records to prepare surface contour and isopach maps of the ' 20-foot ' clay and Gardiners Clay in southern Nassau and southwestern Suffolk Counties. These units are major confining layers in the upper part of the groundwater reservoir along Long Island 's south shore. Where present, they influence the groundwater flow patterns locally. The ' 20-foot ' clay, previously mapped in Nassau County only, was found in test borings in Suffolk County also. Its surface altitude ranges from 20 to 40 ft below NGVD (National Geodetic Vertical Datum of 1929); thickness ranges from 0 to 30 ft. The surface altitude of the Gardiners Clay ranges from 40 to 120 ft below NGVD; thickness ranges from 0 to 90 ft. Previously known discontinuities in both formations are more accurately delineated, and several new discontinuities have been inferred from the new data. The Matawan Group-Magothy Formation undifferentiated the Monmouth Group, and the Jameco Gravel directly underlie the Gardiners Clay. Revised surface altitudes of these formations are depicted on maps and cross sections of the south-shore area. (Author 's abstract)

  15. In situ interaction between different concretes and Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Jenni, A.; Mäder, U.; Lerouge, C.; Gaboreau, S.; Schwyn, B.

    Interactions between cementitious materials and claystone are driven by chemical gradients in pore water and might lead to mineralogical modifications in both materials. In the context of a radioactive waste repository, this alteration might influence safety-relevant clay properties like swelling pressure, permeability, or specific retention. In this study, interfaces of Opalinus Clay, a potential host-rock in Switzerland, and three concrete formulations emplaced in the Cement-Clay Interaction (CI) Experiment at the Mont Terri Underground Laboratory (St. Ursanne, Switzerland) were analysed after 2.2 years of interaction. Sampling techniques with interface stabilisation followed by inclined intersection drilling were developed. Element distribution maps of the concrete-clay interfaces show complex zonations like sulphur enrichment, zones depleted in Ca but enriched in Mg, strong Mg enrichment adjacent to the interface, or carbonation. Consistently, the carbonated zone shows a reduced porosity. Properties of the complex zonation strongly depend on cement properties like water content and pH (ordinary Portland cement vs. low-pH cement). An increased Ca or Mg content in the first 100 μm next to the interface is observed in Opalinus Clay. The cation occupancy of clay exchanger phases next to the ordinary Portland cement interface is depleted in Mg, but enriched in Na, whereas porosity shows no changes at all. The current data suggests migration of CO2/HCO3-, SO42-, and Mg species from clay into cement. pH decrease in the cement next to the interface leads to instability of ettringite, and the sulphate liberated diffuses towards higher pH regions (away from the interface), where additional ettringite can form.

  16. Correction to “Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2”

    USGS Publications Warehouse

    Tembe, Sheryl; Lockner, David; Wong, Teng-Fong

    2010-01-01

    This article corrects: Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2. Vol. 114, Issue B11, Article first published online: 5 NOV 2009.

  17. Optimizing rotary drill performance

    SciTech Connect

    Schivley, G.P. Jr.

    1995-12-31

    Data is presented showing Penetration Rate (PR) versus Force-on-the-Bit (FB) and Bit Angular Speed (N). Using this data, it is shown how FB and N each uniquely contribute to the PR for any particular drilling situation. This data represents many mining situations; including coal, copper, gold, iron ore and limestone quarrying. The important relationship between Penetration per Revolution (P/R) and the height of the cutting elements of the bit (CH) is discussed. Drill performance is then reviewed, considering the effect of FB and N on bit life. All this leads to recommendations for the operating values of FB and N for drilling situations where the rock is not highly abrasive and bit replacements are because of catastrophic failure of the bit cone bearings. The contribution of compressed air to the drilling process is discussed. It is suggested that if the air issuing from the bit jets is supersonic that may enhance the sweeping of the hole bottom. Also, it is shown that not just uphole air velocity is enough to provide adequate transport of the rock cuttings up the annulus of a drilled hole. In addition, air volume flow rate must be considered to assure there is adequate particle spacing so the mechanism of aerodynamic drag can effectively lift the cuttings up and out of the hole annulus.

  18. How clays weaken faults.

    NASA Astrophysics Data System (ADS)

    van der Pluijm, Ben A.; Schleicher, Anja M.; Warr, Laurence N.

    2010-05-01

    The weakness of upper crustal faults has been variably attributed to (i) low values of normal stress, (ii) elevated pore-fluid pressure, and (iii) low frictional strength. Direct observations on natural faults rocks provide new evidence for the role of frictional properties on fault strength, as illustrated by our recent work on samples from the San Andreas Fault Observatory at Depth (SAFOD) drillhole at Parkfield, California. Mudrock samples from fault zones at ~3066 m and ~3296 m measured depth show variably spaced and interconnected networks of displacement surfaces that consist of host rock particles that are abundantly coated by polished films with occasional striations. Transmission electron microscopy and X-ray diffraction study of the surfaces reveal the occurrence of neocrystallized thin-film clay coatings containing illite-smectite (I-S) and chlorite-smectite (C-S) phases. X-ray texture goniometry shows that the crystallographic fabric of these faults rocks is characteristically low, in spite of an abundance of clay phases. 40Ar/39Ar dating of the illitic mix-layered coatings demonstrate recent crystallization and reveal the initiation of an "older" fault strand (~8 Ma) at 3066 m measured depth, and a "younger" fault strand (~4 Ma) at 3296 m measured depth. Today, the younger strand is the site of active creep behavior, reflecting continued activation of these clay-weakened zones. We propose that the majority of slow fault creep is controlled by the high density of thin (< 100nm thick) nano-coatings on fracture surfaces, which become sufficiently smectite-rich and interconnected at low angles to allow slip with minimal breakage of stronger matrix clasts. Displacements are accommodated by localized frictional slip along coated particle surfaces and hydrated smectitic phases, in combination with intracrystalline deformation of the clay lattice, associated with extensive mineral dissolution, mass transfer and continued growth of expandable layers. The

  19. Numerical Modelling of Embankment on Soft Clay

    NASA Astrophysics Data System (ADS)

    Nujid, M. M.; Taha, M. R.

    2016-07-01

    This paper aims to predict deformation of embankment on soft clay of Muar. The prediction performance focusing on displacement at critical fill height of 5.5 m. The study was based on reported result in 1992. With the aid of computer intelligence, the advanced constitutive soil models could be adopted to analyze the soft clay behavior. The COMSOL Multiphysics (v4.4) has been used to simulate the problem with coupled physics available in the software. The vertical displacements are in good agreement close to published result.

  20. Rotary Steerable Horizontal Directional Drilling: Red River Formation

    NASA Astrophysics Data System (ADS)

    Cherukupally, A.; Bergevin, M.; Jones, J.

    2011-12-01

    Sperry-Sun Drilling, a Halliburton company provides engineering solutions and sets new records for Horizontal and Vertical Displacement Drilling (HVDD). Halliburton Sperry Drilling, Casper, WY, allowed one student to participate in 12-week experiential learning program this summer as HVDD engineer. HVDD is the science of drilling non-vertical wells and can be differentiated into three main groups; Oilfield Directional Drilling (ODD), Utility Installation Directional Drilling (UIDD) and in-seam directional Drilling. Sperry-Sun prior experience with rotary drilling established a number of principles for the configuration of Bottom Hole Assembly (BHA) that would be prone to drilling crooked hole [1]. Combining Measurement While Drilling survey tools (MWD tools) and BHA designs made HVDD possible. Geologists use the MWD survey data to determine the well placement in the stratigraphic sequence. Through the analysis of this data, an apparent dip of the formation can be calculated, and the bit is directed to stay in the target zone of production. Geological modeling assists in directing the well by creating a map of the target zone surface, an Isopach map. The Isopach map provides contour intervals and changes in formation dip. When the inclination of the formation changes the geologist informs the directional drillers to adjust the drill bits. HVDD provides Halliburton the opportunity to reach more production intervals in a given formation sequence [1]. The Down hole motors powered by fluid flow through the drill string create horsepower and rotation of the bit which enables the use of a bend element in the BHA to create the tilt necessary to deviate the wellbore from vertical displacement drilling path. The rotation of Down hole motors is influenced by temperature and aromatics found in water, oil and diesel based mud. The development of HVDD Rotary Steerable tools hold promise to have almost a complete automated process for drilling highly deviated production well

  1. Layer Charge of Clay Minerals; Selected papers from the Symposium on Current Knowledge on the Layer Charge of Clay Minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Special issue contains papers based on the contributions presented during the workshop “Current Knowledge on the Layer Charge of Clay Minerals”, held on September 18 and 19, 2004, in the Smolenice Castle, Slovakia. Layer charge is one of the most important characteristics of clay minerals as it...

  2. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  3. Offshore drilling and production structure

    SciTech Connect

    Crockett, R.K.; Palmer, H.E.; Stenning, D.G.

    1982-02-09

    The invention relates to an off-shore marine structure that provides an elevated support for a drilling and/or production platform. A structure comprised of three interlocking components is provided, the first component being a large foundation base installed on the sea bed; the second being a conical shaped support component which is engagable with the foundation base and which, releasably carries the third platform supporting component. In the preferred form, the platform supporting component comprises a centrally-disposed vertical column, means being provided to facilitate engagement of the column with the platform and the second component and to subsequently elevate the platform to an operating height above sea level.

  4. Elastic Properties of Clay Minerals

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Prasad, M.; Nur, A.

    2001-12-01

    We present ultrasonic P- and S-waves velocity measurements on pure clay samples using three different experiment setups. These experiments provided petrophysical and acoustic properties of clay minerals as a function both of mineralogy and compaction. In the first experiment, acoustic measurements were performed on cold-pressed clay aggregates at ambient and at hydrostatic pressure conditions. Porosity and grain density values of the different clay mineralogy aggregates ranged from 4 to 43% and 2.13 to 2.83 g cm-3, respectively. In the second experiment, we measured P-wave velocity and attenuation in a kaolinite-water suspension in which clay concentration was increased up to 60%. In the third experiment, P- and S- wave velocities were measured during uniaxial stress compaction of clay powders. Results from all three experiments revealed low bulk (K) and shear (μ ) moduli for kaolinite, montmorillonite, and smectite; the values range between 6-12 GPa for K and 4-6 GPa for μ , respectively. Using these clay moduli values in effective medium and granular porous media models, velocity is predicted in saturated pure kaolinite samples, kaolinite suspension and shaly sandstones fairly well. Experimental results also showed that water interlayers play an important role in the compaction and strength of clay aggregates. Clay minerals carrying on water interlayers in their structure showed high compaction and strength. This study is relevant for a more reliable assessment of the seismic response in reservoirs and/or basins characterized by clay-bearing formations.

  5. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Inoue, T.; Ishiwata, J.

    2015-12-01

    Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.

  6. Novel drilling technology and reduction in drilling costs

    SciTech Connect

    Enger, T.; Torvund, T.; Mikkelsen, J.

    1995-12-31

    Historically offshore drilling costs represent a large part of Norsk Hydro`s E and P investments. Thus a reduction in drilling costs is a major issue. Consequently an aggressive approach to drilling has taken place focusing upon: (1) Reduction in conventional drilling costs, both in exploration and production drilling. An ambitious program to reduce drilling costs by 50% has been introduced. The main improvement potentials include rapid drilling, improved contracts and more selective data gathering. (2) Drilling of long reach wells up to approximately 9 km to reduce the number of subsea wells and fixed platforms, and thus improving the total field economy. Norsk Hydro has also been aggressive in pursuing drilling techniques which could improve the total oil recovery. Horizontal drilling has made possible the development of the giant Troll oil field, even though the oil leg is only 0--26 m thick. Oil reserves in the order of up to 650 mill bbl will be recovered solely due to introduction of horizontal wells. Recently, offshore tests of techniques such as coiled tubing drilling and conventional slim hole drilling have been carried out. The aim is to qualify a concept which could enable them to use a light vessel for exploration drilling, and not the large semi submersible rigs presently used. Potential future savings could be substantial.

  7. Drilling technology/GDO

    SciTech Connect

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  8. Mars Drilling Status

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  9. Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)–layered clay nanocomposite fibrous membranes for lithium ion batteries

    SciTech Connect

    Shubha, Nageswaran; Prasanth, Raghavan; Hoon, Hng Huey; Srinivasan, Madhavi

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► P(VdF-co-HFP)–clay nanocomposite based electrospun membranes are prepared. ► The membranes are used as polymer gel electrolyte (PGE) in lithium ion batteries. ► The composite PGE shows ionic conductivity of 5.5 mS cm{sup −1} at room temperature. ► Li/PGE/LiFePO{sub 4} cell delivers initial discharge capacity of 160 mAh g{sup −1}. ► The use of prepared electrolyte significantly improved the cell performance. -- Abstract: A new approach for fabricating polymer gel electrolytes (PGEs) based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) incorporated with layered nanoclay has been employed to enhance the ionic conductivity and electrochemical properties of P(VdF-co-HFP) without compromising its mechanical strength. The effect of layered nanoclay on properties of membranes has been evaluated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Surface morphology of the membranes has been studied using field-emission scanning electron microscopy (FE-SEM). Polymer gel electrolytes are prepared by soaking the fibrous membrane into 1 M LiPF{sub 6} in EC/DEC. The electrochemical studies show that incorporation of layered nanoclay into the polymer matrix greatly enhanced the ionic conductivity and compatibility with lithium electrodes. The charge–discharge properties and cycling performance of Li/LiFePO{sub 4} cells comprising nanocomposite polymer gel electrolytes have been evaluated at room temperature.

  10. Encapsulation of clay by ad-miniemulsion polymerization: the influence of clay size and modifier reactivity on latex morphology and physical properties.

    PubMed

    Zengeni, Eddson; Hartmann, Patrice C; Pasch, Harald

    2012-12-01

    The influence of clay platelet size and type of organic modifier (reactive or nonreactive) on highly filled hybrid latex morphology and physical properties of the resultant polymer/clay nanocomposites (PCNs) were investigated. The hybrid latexes, containing clay loadings between 30 and 50 wt % clay, were prepared using ad-miniemulsion polymerization. These materials have potential use in the packaging and coating industry since clay platelets are well-known for barrier property improvements. Comparative studies on the use of montmorillonite (MMT), a large clay platelet (average size: 50-500 nm), and Laponite (Lap), small-sized clay platelets (average size: 25-40 nm), were conducted. Two different clay modifiers were used to modify the clays, i.e., a conventional nonreactive modifier (cetyltrimethylammonium bromide (CTAB)) and a reactive modifier (vinylbenzyldodecyldimethylammonium chloride (VBDAC)). Transmission electron microscopy (TEM) imaging of the hybrid latexes clearly showed strong morphological dependency on both the type of modifier and the clay platelet size. Furthermore, TEM together with small-angle X-ray scattering (SAXS) showed that the extent of clay exfoliation was strongly dependent on the reactivity of the clay modifier, irrespective of the clay platelet size. Both the type of modifier and clay platelets size were found to have an influence on different physical properties of the resultant PCNs. The influence of clay size was clearly indicated by storage modulus and thermal stability behaviors, while that of the clay modifier was indicated by the T(g). Lap-based PCNs exhibited constant or increasing storage modulus and no change in thermal stability with increasing clay content, while MMT-based PCNs showed a decreasing trend in both storage modulus and thermal stability. PCNs based on clay modified with CTAB showed a decreasing T(g) with increasing clay content, while those based on clay modified with VBDAC showed an increasing trend. It was

  11. Portable top drive cuts horizontal drilling costs

    SciTech Connect

    Jackson, B.; Yager, D.

    1993-11-01

    Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

  12. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Proposed as a baseline configuration, this rotary drill apparatus is designed to produce 100-mm diameter holes in the lunar surface at depths up to 50 meters. The drill is intended to acquire samples for scientific analysis, mineral resource location, calibration of electronic exploration devices, and foundation analysis at construction sites. It is also intended to prepare holes for emplacement of scientific instruments, the setting of structural anchors, and explosive methods in excavation and mining activities. Defined as a deep drill because of the modular drill string, it incorporates an automatic rod changer. The apparatus is teleoperated from a remote location, such as earth, utilizing supervisory control techniques. It is thus suitable for unmanned and man-tended operation. Proven terrestrial drilling technology is used to the extent it is compatible with the lunar environment. Augers and drive tubes form holes in the regolith and may be used to acquire loose samples. An inertial cutting removal system operates intermittently while rock core drilling is in progress. The apparatus is carried to the work site by a three-legged mobile platform which also provides a 2-meter feed along the hole centerline, an off-hole movement of approximately .5 meters, an angular alignment of up to 20 deg. from gravity vertical, and other dexterity required in handling rods and samples. The technology can also be applied using other carriers which incorporate similar motion capabilities. The apparatus also includes storage racks for augers, rods, and ancillary devices such as the foot-plate that holds the down-hole tooling during rod changing operations.

  13. The Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Matter, J.; Kelemen, P. B.; Teagle, D. A. H.

    2014-12-01

    With seed funds from the Sloan Foundation, the International Continental Drilling Program (ICDP) approved a proposal by 39 international proponents for scientific drilling in the Oman ophiolite. Via observations on core, geophysical logging, fluid sampling, hydrological measurements, and microbiological sampling in a series of boreholes, we will address long-standing, unresolved questions regarding melt and solid transport in the mantle beneath oceanic spreading ridges, igneous accretion of oceanic crust, mass transfer between the oceans and the crust via hydrothermal alteration, and recycling of volatile components in subduction zones. We will undertake frontier exploration of subsurface weathering processes in mantle peridotite, including natural mechanisms of carbon dioxide uptake from surface waters and the atmosphere, and the nature of the subsurface biosphere. Societally relevant aspects include involvement and training of university students, including numerous students from Sultan Qaboos University in Oman. Studies of natural mineral carbonation will contribute to design of engineered systems for geological carbon dioxide capture and storage. Studies of alteration will contribute to fundamental understanding of the mechanisms of reaction-driven cracking, which could enhance geothermal power generation and extraction of unconventional hydrocarbon resources. We hope to begin drilling in late 2015. Meanwhile, we are seeking an additional $2M to match the combined Sloan and ICDP funding from national and international funding agencies. Matching funds are needed for operational costs of drilling, geophysical logging, downhole fluid sampling, and core description. Information on becoming part of the named investigator pool is in Appendix 14 (page 70) of the ICDP proposal, available at https://www.ldeo.columbia.edu/gpg/projects/icdp-workshop-oman-drilling-project. This formal process should begin at about the time of the 2014 Fall AGU Meeting. Meanwhile, potential

  14. Built-up edge investigation in vibration drilling of Al2024-T6.

    PubMed

    Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A

    2014-07-01

    Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling. PMID:24582556

  15. Green Clay Minerals

    NASA Astrophysics Data System (ADS)

    Velde, B.

    2003-12-01

    Color is a problem for scientific study. One aspect is the vocabulary one used to describe color. Mint green, bottle green, and Kelly green are nice names but not of great utility in that people's physical perception of color is not always the same. In some industries, such as colored fabric manufacture, current use is to send a set of standard colors which are matched by the producer. This is similar to the use of the Munsell color charts in geology. None of these processes makes use of physical optical spectral studies. The reason is that they are difficult to obtain and interpret. For a geologist, color is very important but we rarely have the possibility to standardize the method of our color perception. One reason is that color is both a reflective and transmission phenomenon. The thickness of the sample is critical to any transmission characteristics. Hence, a field color determination is different from one made by using a petrographic microscope. Green glauconite in a hand specimen is not the same color in 30 μm thick thin section seen with a microscope using transmitted light.A second problem is that color in a spectral identification is the result of several absorption emissions,with overlapping signal, forming a complicated spectrum. Interpretation depends very greatly on the spectrum of the light source and the conditions of transmission-reflection of the sample. As a result, for this text, we will not attempt to analyze the physical aspect of green in green clays. In the discussion which follows, reference is made concerning color, to thin section microscopic perception.Very briefly, green clay minerals are green, because they contain iron. This is perhaps not a great revelation to mineralogists, but it is the key to understanding the origin and stability of green clay minerals. In fact, iron can color minerals either red or green or in various shades of orange and brown. The color most likely depends upon the relative abundance of the iron ion valence

  16. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.

    2013-01-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures < 500 C, and an evolution peak at higher temperatures near approx 750 C. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection

  17. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Franz, H.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, A.; Sutter, B.; Archer, P. D.; Ming, D. W.; Morris, R. V.; Atreya, S. K.; Team, M.

    2013-12-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise ~20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000oC and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures <500oC, and an evolution peak at higher temperatures near ~750oC. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the ~20% observed in the mudstone samples. This potential detection underscores the

  18. Novel semi-IPN based on crosslinked carboxymethyl starch and clay for the in vitro release of theophylline.

    PubMed

    Anirudhan, T S; Parvathy, J

    2014-06-01

    A novel semi-interpenetrating polymer network (IPN) based on crosslinked carboxymethyl starch (CL-CMS) and montmorillonite (MMT) was prepared, where carboxymethylation occurs as a result of the reaction between native starch and monochloroacetic acid in isopropanol/water medium at 60°C. The carboxymethyl starch is further crosslinked and made into a semi-IPN with MMT for the release of theophylline. The drug carrier was characterized using FTIR, XRD and surface analysis using SEM. Studies including physio-chemical analysis, swelling behavior, encapsulation efficiency, effect of MMT content, effect of ionic strength and in vitro drug release were carried out. Theophylline encapsulation of up to 74% was achieved and drug release was monitored in SGF (pH 1.2) and SIF (pH 7.4). Results show that the matrix releases drug at a much faster rate in the basic medium than in the acidic medium, thereby holding the promise of developing the semi-IPN system as a potential candidate for the release of theophylline. PMID:24685463

  19. 13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L TO R)-LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  20. 31. VIEW OF DRILL HALL FROM NORTH END OF DRILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF DRILL HALL FROM NORTH END OF DRILL FLOOR FACING SOUTH. SHOWS EAST AND WEST BALCONIES, VEHICLE ENTRANCE AT THE SOUTHWEST CORNER OF THE DRILL FLOOR, THE CONCESSION STAND IN THE SOUTHEAST CORNER OF THE DRILL FLOOR AND THE FOUR WINDOWS IN THE SOUTH TRUSS SPACE. NOTE CRACKS IN THE UPPER RIGHT CORNER (WEST) OF THE SOUTH WALL. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA

  1. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    SciTech Connect

    Carden, R.S.

    1993-08-18

    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  2. Modified Hydra Bioassay to Evaluate the Toxicity of Multiple Mycotoxins and Predict the Detoxification Efficacy of a Clay-Based Sorbent

    PubMed Central

    Brown, KA; Mays, T; Romoser, A; Marroquin-Cardona, A; Mitchell, NJ; Elmore, SE; Phillips, TD

    2013-01-01

    Food shortages and lack of food supply regulation in developing countries often leads to chronic exposure of vulnerable populations to hazardous mixtures of mycotoxins, including aflatoxin B1 (AFB1) and fumonisin B1 (FB1). A refined calcium montmorillonite clay (i.e. UPSN) has been reported to tightly bind these toxins, thereby decreasing bioavailability in humans and animals. Hence, our objectives in the present work were to examine the ability of UPSN to bind mixtures of AFB1 and FB1at gastrointestinally relevant pH in vitro, and to utilize a rapid in vivo bioassay to evaluate AFB1 and FB1 toxicity and UPSN efficacy. Isothermal sorption data indicated tight AFB1 binding to UPSN surfaces at both pH 2.0 and 6.5, but substantially more FB1 bound at pH 2.0 than 6.5. Site-specific competition occurred between the toxins when exposed to UPSN in combination. Importantly, treatment with UPSN resulted in significant protection to mycotoxin-exposed hydra maintained at pH 6.9-7.0. Hydra were exposed to FB1, AFB1 and FB1/AFB1 combinations with and without UPSN. Toxic response over 92 hours was rated based on morphology and mortality. Hydra assay results indicated a minimum effective concentration (MEC) of 20 μg/mLfor AFB1, while the MEC for FB1 was not reached. The MEC for co-exposure was 400 μg/mL FB1 + 10 μg/mL AFB1. This study demonstrates that UPSN sorbs both mycotoxins tightly at physiologically relevant pH levels, resulting in decreased bioavailability, and that a modified hydra bioassay can be used as an initial screen in vivo to predict efficacy of toxin binding agents. PMID:23047854

  3. A performance-based method for calculating the design thickness of compacted clay liners exposed to high strength leachate under simulated landfill conditions.

    PubMed

    Safari, Edwin; Jalili Ghazizade, Mahdi; Abdoli, Mohammad Ali

    2012-09-01

    Compacted clay liners (CCLs) when feasible, are preferred to composite geosynthetic liners. The thickness of CCLs is typically prescribed by each country's environmental protection regulations. However, considering the fact that construction of CCLs represents a significant portion of overall landfill construction costs; a performance based design of liner thickness would be preferable to 'one size fits all' prescriptive standards. In this study researchers analyzed the hydraulic behaviour of a compacted clayey soil in three laboratory pilot scale columns exposed to high strength leachate under simulated landfill conditions. The temperature of the simulated CCL at the surface was maintained at 40 ± 2 °C and a vertical pressure of 250 kPa was applied to the soil through a gravel layer on top of the 50 cm thick CCL where high strength fresh leachate was circulated at heads of 15 and 30 cm simulating the flow over the CCL. Inverse modelling using HYDRUS-1D indicated that the hydraulic conductivity after 180 days was decreased about three orders of magnitude in comparison with the values measured prior to the experiment. A number of scenarios of different leachate heads and persistence time were considered and saturation depth of the CCL was predicted through modelling. Under a typical leachate head of 30 cm, the saturation depth was predicted to be less than 60 cm for a persistence time of 3 years. This approach can be generalized to estimate an effective thickness of a CCL instead of using prescribed values, which may be conservatively overdesigned and thus unduly costly. PMID:22617473

  4. Modified hydra bioassay to evaluate the toxicity of multiple mycotoxins and predict the detoxification efficacy of a clay-based sorbent.

    PubMed

    Brown, K A; Mays, T; Romoser, A; Marroquin-Cardona, A; Mitchell, N J; Elmore, S E; Phillips, T D

    2014-01-01

    Food shortages and a lack of food supply regulation in developing countries often leads to chronic exposure of vulnerable populations to hazardous mixtures of mycotoxins, including aflatoxin B(1) (AFB(1)) and fumonisin B(1) (FB(1)). A refined calcium montmorillonite clay [i.e. uniform particle size NovaSil (UPSN)] has been reported to tightly bind these toxins, thereby decreasing bioavailability in humans and animals. Hence, our objectives in the present study were to examine the ability of UPSN to bind mixtures of AFB(1) and FB(1) at gastrointestinally relevant pH in vitro, and to utilize a rapid in vivo bioassay to evaluate AFB(1) and FB(1) toxicity and UPSN efficacy. Isothermal sorption data indicated tight AFB(1) binding to UPSN surfaces at both pH 2.0 and 6.5, but substantially more FB(1) bound at pH 2.0 than 6.5. Site-specific competition occurred between the toxins when exposed to UPSN in combination. Importantly, treatment with UPSN resulted in significant protection to mycotoxin-exposed hydra maintained at pH 6.9-7.0. Hydra were exposed to FB(1), AFB(1) and FB(1) /AFB(1) combinations with and without UPSN. A toxic response over 92 h was rated based on morphology and mortality. Hydra assay results indicated a minimum effective concentration (MEC) of 20 µg ml(-1) for AFB(1), whereas the MEC for FB(1) was not reached. The MEC for co-exposure was 400 µg ml(-1) FB(1) + 10 µg ml(-1) AFB(1). This study demonstrates that UPSN sorbs both mycotoxins tightly at physiologically relevant pH levels, resulting in decreased bioavailability, and that a modified hydra bioassay can be used as an initial screen in vivo to predict efficacy of toxin-binding agents. PMID:23047854

  5. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  6. Qualification of a computer program for drill string dynamics

    SciTech Connect

    Stone, C.M.; Carne, T.G.; Caskey, B.C.

    1985-01-01

    A four point plan for the qualification of the GEODYN drill string dynamics computer program is described. The qualification plan investigates both modal response and transient response of a short drill string subjected to simulated cutting loads applied through a polycrystalline diamond compact (PDC) bit. The experimentally based qualification shows that the analytical techniques included in Phase 1 GEODYN correctly simulate the dynamic response of the bit-drill string system. 6 refs., 8 figs.

  7. New insights into the radiocarbon calibration based on 14C and U-Th dating of corals drilled offshore Tahiti (IODP Expedition #310)

    NASA Astrophysics Data System (ADS)

    Durand, Nicolas; Deschamps, Pierre; Bard, Edouard; Hamelin, Bruno; Camoin, Gilbert; Thomas, Alexander L.; Henderson, Gideon M.; Yokoyama, Yusuke

    2010-05-01

    Beyond the high-precision tree-ring calibration, the fossil corals are the most reliable archive that can be used to calibrate the radiocarbon time scale. In this contribution, we present a new radiocarbon dataset based on paired 14C and U-Th dating of fossil shallow-water tropical corals drilled offshore Tahiti during the IODP Expedition 310 'Tahiti Sea-Level'. Before 14C and U-Th analyses, rigorous screening criteria have been applied in order to select pristine aragonitic coral skeletons and avoid those displaying any post-mortem diagenesis that alters original ages. In particular, we made a significant effort to improve detection and quantification of very small amount of secondary calcite in the aragonitic coral lattice using X-ray diffraction measurements [1]. In addition, we apply a strict screening criterion based on δ234U. However, the new Tahiti dataset allow to refine the previous tolerance ranges previously adopted. More than 60 radiocarbon dates were processed at the Laboratoire de Mesure du Carbone 14 (Saclay, France) with the ARTEMIS AMS facility. This new Tahiti record provides new data to the radiocarbon calibration for two distinct time windows: for the interval between 29,200 and 36,200 years BP and for the last deglaciation period, with especially, a higher resolution (40 data) for the 14,000 - 16,000 years BP time interval. These new data extend the previous Tahiti record beyond 13,900 years BP which was the oldest U-Th age obtained on cores drilled onshore in the modern Tahiti barrier reef [2, 3]. These new results are compared with 14C chronologies from other corals, those of Barbados [4, 5] and those from other Pacific islands (Mururoa, Vanuatu, Marquesas, Christmas), and from the Cariaco Basin sediment [6, 7], the Iberian Margin sediment [8, 9] and the Bahamian speleothem [10] records. The new 14C dataset from the corals drilled offshore Tahiti allows to validate the precision and accuracy of other records either directly dated by U-Th or

  8. The Austin Chalk--Drilling and completion techniques-Marcelina Creek Field study

    SciTech Connect

    Betz, C.A.

    1982-09-01

    Exxon Company, U.S.A. has spent considerable time and effort learning how to minimize formation damage in the lost returns prone and clay sensitive Austin Chalk formation. To date, Exxon has successfully drilled 24 Austin Chalk wells in the Marcelina Creek Field in Wilson County, Texas, utilizing a variety of drilling and completion techniques in an effort to determine the optimum method of drilling and completing Austin Chalk wells. This paper describes these different techniques and reviews actual results. Although Exxon has not concluded which drilling and completion technique yields optimum Austin Chalk wells in this field, this paper attempts to develop a correlation between well productivity and the type of drilling and completion technique used.

  9. Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression

    NASA Astrophysics Data System (ADS)

    Amann, Florian; Button, Edward Alan; Evans, Keith Frederick; Gischig, Valentin Samuel; Blümel, Manfred

    2011-07-01

    The mechanical behavior of clay shales is of great interest in many branches of geo-engineering, including nuclear waste disposal, underground excavations, and deep well drilling. Observations from test galleries (Mont Terri, Switzerland and Bure, France) in these materials have shown that the rock mass response near the excavation is associated with brittle failure processes combined with bedding parallel shearing. To investigate the brittle failure characteristics of the Opalinus Clay recovered from the Mont Terri Underground Research Laboratory, a series of 19 unconfined uniaxial compression tests were performed utilizing servo-controlled testing procedures. All specimens were tested at their natural water content with loading approximately normal to the bedding. Acoustic emission (AE) measurements were utilized to help quantify stress levels associated with crack initiation and propagation. The unconfined compression strength of the tested specimens averaged 6.9 MPa. The crack initiation threshold occurred at approximately 30% of the rupture stress based on analyzing both the acoustic emission measurements and the stress-strain behavior. The crack damage threshold showed large variability and occurred at approximately 70% of the rupture stress.

  10. Drilling fluid thinner

    SciTech Connect

    Patel, B.

    1989-06-27

    A drilling fluid additive is described comprising a mixture of: (a) a sulfoalkylated tannin and (b) chromium acetate selected from the group consisting of chromium (III) acetate and chromium (II) acetate, wherein the chromium acetate is present in a weight ratio of the chromium acetate to the sulfoalkylated tannin in the range of from about 1:20 to about 1:1.

  11. Ocean Drilling Simulation Activity.

    ERIC Educational Resources Information Center

    Telese, James A.; Jordan, Kathy

    The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…

  12. Combination drilling and skiving tool

    DOEpatents

    Stone, William J.

    1989-01-01

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  13. High temperature drilling mud composition

    SciTech Connect

    Alexander, W.

    1988-10-18

    This patent describes a composition having improved rheological properties and improved stability at high temperatures and pressure for use in a water-based drilling mud comprising a high-yield bentonite, a low-yield bentonite and leonardite, wherein the weight ratio of the high-yield bentonite to the low-yield bentonites in the range of about 10:1 to about 1:1, and the leonardite is present in the amount of about 0.1% to 1.0% by total dry weight of the composition.

  14. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Astrophysics Data System (ADS)

    Bristow, T.; Blake, D.; Bish, D. L.; Vaniman, D.; Ming, D. W.; Morris, R. V.; Chipera, S.; Rampe, E. B.; Farmer, J. D.; Treiman, A. H.; Downs, R.; Morrison, S.; Achilles, C.; Des Marais, D. J.; Crisp, J. A.; Sarrazin, P.; Morookian, J.; Grotzinger, J. P.; Team, M.

    2013-12-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent ~150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (~3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of ~20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at ~10A with a slight inflexion at ~12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating >60°C in the presence of water

  15. Organic-inorganic hybrids from renewable plant oils and clay.

    PubMed

    Uyama, Hiroshi; Kuwabara, Mai; Tsujimoto, Takashi; Nakano, Mitsuru; Usuki, Arimitsu; Kobayashi, Shiro

    2004-03-15

    This study deals with the preparation and properties of a new class of organic-inorganic hybrids from renewable resources. The hybrids were synthesized by an acid-catalyzed curing of epoxidized triglycerides in the presence of an organophilic montmorillonite (a modified clay). The mechanical properties were improved by the incorporation of clay in the oil-based polymer matrix. The reinforcement effect due to the addition of clay was confirmed by dynamic viscoelasticity analysis. The hybrids showed relatively high thermal stability. The co-curing of epoxidized soybean and linseed oils in the presence of clay produced hybrids with controlled mechanical and coating properties. The barrier property of the hybrid towards water vapor was superior to that of the oil polymer. The development of the present hybrids consisting of inexpensive renewable resources, triglyceride and clay is expected to contribute to global sustainability. PMID:15468227

  16. Horizontal drilling in the Austin Chalk: Stratigraphic factors

    SciTech Connect

    Durham, C.O. Jr. ); Bobigian, R.A. )

    1990-05-01

    Horizontal drilling has renewed interest in the Austin chalk in south-central Texas. Large fields on opposite sides of the San Marcos arch Giddings to the northeast and Pearsall to the southwest were active with vertical drilling 10 years ago. Giddings' 4,500 Austin wells produced 209 million BO and 934 bcfg of gas through 1988; Pearsall's 1,440 wells produced 57 million BO and 35 bcfg of gas. Most vertical wells were completed, 20% were economic successes, 40% were marginal, 40% were uneconomic due to uneven areal distribution of near-vertical fractures and small faults, which provide reservoirs in otherwise tight chalk. Horizontal drilling, led by Amoco in Giddings and Oryx in Pearsall, enhances the chances of encountering the fractures by drilling perpendicular to the fracture trend. Horizontal drilling requires preselection of the stratigraphic horizon to be penetrated. One must understand the variable Austin stratigraphy to choose the zone with the most brittle character and best matrix porosity, both reduced by increased clay content. Chalk 130 ft thick on the San Marcos arch thickens to 600 to 800 ft in central Giddings field where middle marl separates lower and upper chalk Northeastward only lower chalk is preserved beneath a post-Austin submarine channel. The Austin thickens to 300-500 ft in Pearsall field where middle member ash beds separate lower and upper chalk inhibiting vertical reservoir communication. Locally, on the Pearsall arch, ash is missing, lower chalk thickens, and upper chalk thins.

  17. Using an admittance algorithm for bone drilling procedures.

    PubMed

    Accini, Fernando; Díaz, Iñaki; Gil, Jorge Juan

    2016-01-01

    Bone drilling is a common procedure in many types of surgeries, including orthopedic, neurological and otologic surgeries. Several technologies and control algorithms have been developed to help the surgeon automatically stop the drill before it goes through the boundary of the tissue being drilled. However, most of them rely on thrust force and cutting torque to detect bone layer transitions which has many drawbacks that affect the reliability of the process. This paper describes in detail a bone-drilling algorithm based only on the position control of the drill bit that overcomes such problems and presents additional advantages. The implication of each component of the algorithm in the drilling procedure is analyzed and the efficacy of the algorithm is experimentally validated with two types of bones. PMID:26516110

  18. Modified Cobalt Drills With Oil Passages

    NASA Technical Reports Server (NTRS)

    Hutchison, E.; Richardson, D.

    1986-01-01

    Oil forced through drill shanks to lubricate cutting edges. Drill bits cooled and lubricated by oil forced through drill shanks and out holes adjacent to bits. This cooling technique increases drillbit life and allows increased drill feed rates.

  19. Clay deposits of the Tierra Colorado district, southern Orange County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    The clay of this district is being mined for fire brick by the Vitrofrax Corporation. Much of the clay contains 35 percent or more of alumina and between 1 and 2 percent of iron oxide. Production is largely from an underground mine as the best clay deposit known in the district occurs on the side of a steep hill with more than 100 feet of sandstone overlying most of it. The good clay deposits occur at the base of an Eocene sandstone formation, and overlie mottled clays with a high iron content that are residual deposits formed on an old weathered surface. Mapping indicates that the clay deposits are very lenticular, though all occur at the same stratigraphic position, and they grade laterally into sandy clay and quartz sand. Topographic relief and the dip of the strata preclude finding large areas where the clay strata have relatively little overburden.

  20. Major and Trace Element Variations in Impact Crater Clay from Chicxulub, Lonar, and Mistastin, Implications for the Martian Soil

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Rietmeijer, F. J. M.; Gakin, R.; Lee, K.

    2004-01-01

    The catastrophic Chicxulub event should have generated a large hydrothermal system with volatile element mobilization, producing interesting alteration materials and clays. The Yaxcopoil-1 (YAX) drill hole is located in the annular trough, about 70 km southwest of the crater center, in an area where the impactite layers are relatively thin (approx. 100 m thick). We have analyzed samples from the YAX drill core and from other impact craters including Mistastin and Lonar to determine the nature of alteration and trace element mobilization.

  1. Clay Mineral Assemblages as Proxies for Reconstructing Messinian Paleoenvironments in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Martinez-Ruiz, Francisca; Comas, Menchu; Vasconcelos, Crisogono

    2014-05-01

    Significant tectonic and climate changes at time of the Messinian Salinity Crisis (MSC) led to a complex sedimentation involving marked changes in sediment composition, particularly in clay mineral assemblages. One of the noticeable mineralogical changes across this time interval is the strong smectite increase in Messinian deposits in comparison to the underlying Tortonian and overlaying Pliocene sediments. As no break in the clay mineralogy is recognized in the open ocean (Chamley et al., 1978), such changes are also distinctive of the Mediterranean basins. Since the early discoveries of the giant Messinian evaporite formation (DSDP Legs 13 and 42A), a vast literature contributed, during the last decades, to the continuous debate and re-examination of the actual Messinian paleoenvironment. Drilled records in the westernmost Mediterranean (Alboran Sea) have shown significant changes in the mineralogical assemblages associated to the Messinian events. This basin is depleted of significant salt deposits. Site 976 (ODP Leg 161) recovered a 670-m-thick, middle Miocene (Serravallian) to Pleistocene/Holocene sedimentary sequence, including a thin interval of Messinian sediment, lying directly upon the metamorphic basement. Analysis of clay mineral assemblages from the sedimentary cover of Hole 976B revealed an homogeneous clay association composed of illite, smectite, chlorite and kaolinite with no major changes in clay mineral abundances except for the sediment interval dated as Messinian, which is characterized by a sharp smectite increase (Martinez-Ruiz et al., 1999). Transmission Electron Microscope analyses of clay minerals revealed that smectite composition corresponds to Al-rich beidellites, which supports the existence of such smectites in peri-Mediterranean soils. Smectite formation was favored by the climate conditions at that time, comprising progressive aridification and the alternation of wet and dry climatic episodes. Diagenesis in these smectites is

  2. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates. PMID:16091622

  3. Cost effectiveness of sonic drilling

    SciTech Connect

    Masten, D.; Booth, S.R.

    1996-03-01

    Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

  4. Horizontal drilling in shallow reservoirs

    SciTech Connect

    Murray, W.F. Jr.; Schrider, L.A.; McCallister, J.V.; Mazza, R.L.

    1993-12-31

    Belden & Blake and the US DOE will cofund a horizontal well to be drilled in the Clinton Sandstone as part of the DOE`s multi well program titled ``Horizontal Drilling in Shallow Geologic Complex Reservoirs.`` This well will be located in Mahoning County, Ohio in an area which has demonstrated above average Clinton gas production. To the best of our knowledge, this will be the first horizontal well drilled to the Clinton Sand formation in Ohio. Since many of the remaining Clinton Sand drilling sites are of poorer reservoir quality, they may not be developed unless technology such as horizontal drilling can be successfully demonstrated.

  5. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  6. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  7. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  8. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  9. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  10. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  11. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  12. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a...

  13. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  14. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  15. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  16. Mineral resource of the Month: Clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.

  17. Real Time Seismic Prediction while Drilling

    NASA Astrophysics Data System (ADS)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    operation. First experiments indicate that parts of the ISIS system can be used for smaller diameters e.g. in vertical drilling. In unconsolidated rocks S-waves are strongly attenuated. For the Sonic Softground Probing (SSP) system P-waves are used. A vibration-seismic correlation positioning system was developed. One transmitter and several receiver are placed within the cutting wheel. During drilling, a specially coded transmitter signal is sent directly from the cutterhead via the face support medium in the direction of tunneling. With this geometry, boulders can be detected 50 m ahead of the working face. Fracture zones and other discontinuities can be localized, and the physical properties of the upcoming rocks can be partly determined nearly in real time, while using sound velocity and attenuation as indicators. All evaluation is based on real time 3D velocity models which are determined during the drilling operation. Different technologies allow a seismic prediction while drilling in various rock types and geologies. Seismic prediction during vertical drilling will significantly profit from the lesson learned from state of the art tunneling systems.

  18. OIL WELL REMEDIATION IN CLAY AND WAYNE COUNTIES, IL

    SciTech Connect

    Peter L. Dakuras; Larry Stieber; Dick Young

    2003-07-09

    This is the second progress and final technical report of the remediation of abandoned wells in Clay and Wayne Counties in Illinois. The wells will be identified as the Routt No.3 and No.4 and the Bates Hosselton 1 and 2. Both sites have met all legal, financial and environmental requirements to drill and/or pump oil on both leases. We have also obtained all available information about both leases. All steps were taken to improve access roads, dig the necessary pits, and build the necessary firewalls. This progress and final technical report will address the remediation efforts as well as our results and conclusions.

  19. Drilling mud dispersants

    SciTech Connect

    Gleason, P. A.; Brase, I. E.

    1985-05-21

    Dispersants useful in aqueous drilling mud formulations employed in the drilling of subterranean wells where high temperature and high pressure environments are encountered are disclosed. The dispersants, when used in amounts of about 0.1 to 25 ppb provide muds containing colloidal material suspended in an aqueous medium with improved high temperature and high pressure stability. The dispersants are water soluble sulfonated vinyl toluene-maleic anhydride copolymers which have a molar ratio of vinyl toluene to maleic anhydride of about 1:1 to less than about 2:1, a molecular weight of 1,000 to 25,000 and at least about 0.7 sulfonic acid groups per vinyl toluene unit.

  20. Horizontal drilling spurs optimism

    SciTech Connect

    Crouse, P.C. )

    1991-02-01

    1990 proved to be an exciting year for horizontal wells. This budding procedure appears to be heading for the mainstream oil and gas market, because it can more efficiently recover hydrocarbons from many reservoirs throughout the world. This paper reports on an estimated 1,000 wells that were drilled horizontally (all laterals) in 1990, with the Austin Chalk formation of Texas accounting for about 65% of all world activity. The Bakken Shale play in Montana and North Dakota proved to be the second most active area, with an estimated 90 wells drilled. Many operators in this play have indicated the bloom may be off the Bakken because of poor results outside the nose of the formation, further complicated by some of the harshest rock, reservoir and completion problems posed to horizontal technology.

  1. Blasthole drilling technology

    SciTech Connect

    Zink, C.

    2006-09-15

    Drilling in Appalachian coal overburdens presents challenges to conventional tricone bit operations due to the high rates of advance. In 2005, design engineers Atlas Copco BHMT (formerly Baker Hughes Mining Tools) began creating and testing a new lug design for bits used in these coalfields. The design was aided by use of computational flow dynamics. The article describes the design development and testing. Average footage drilled per bit by the new streamlined lug increased an average of 32.3% at Coal Mine No. 1 and 34.5% at Coal Mine No. 2 over the standard lug previously used. Average bit life increased by 32.3% at Coal Mine No.1 and 34.5% at Coal Mine No. 2. 3 figs., 2 photos.

  2. Elastic Properties of Clay Minerals

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Prasad, M.; Nur, A.

    We present ultrasonic P- and S-waves velocity measurements on pure clay samples us- ing three different experiment setups. These experiments provided petrophysical and acoustic properties of clay minerals as a function both of mineralogy and compaction. In the first experiment, acoustic measurements were performed on cold-pressed clay aggregates at ambient and at hydrostatic pressure conditions. Porosity and grain den- sity values of the different clay mineralogy aggregates ranged from 4 to 43% and 2.13 to 2.83 g cm-3, respectively. In the second experiment, we measured P-wave velocity and attenuation in a kaolinite-water suspension in which clay concentration was in- creased up to 60%. In the third experiment, P- and S- wave velocities were measured during uniaxial stress compaction of clay powders. Results from all three experiments revealed low bulk (K) and shear (µ) moduli for kaolinite, montmorillonite, and smec- tite; the values range between 6-12 GPa for K and 4-6 GPa for µ, respectively. Using these clay moduli values in effective medium and granular porous media (theories) models, velocity is predicted in saturated pure kaolinite samples, kaolinite suspension and shaly sandstone fairly well. Experimental results also showed that water interlay- ers play an important role in the compaction and strength of clay aggregates. Clay minerals carrying on water interlayers in their structure showed high compaction and strength. This study is relevant for a more reliable assessment of the seismic response in reservoirs and/or basins characterized by clay-bearing formations.

  3. Steerable percussion air drilling system

    SciTech Connect

    Bui, H.D.; Meyers, J.A.; Yost, A.B. II

    1998-12-31

    By increasing penetration rates and bit life, especially in hard formations, the use of down-hole air hammers in the oil field has significantly reduced drilling costs in the Northeast US and West Texas. Unfortunately, drilling by this percussion method has been limited mostly to straight hole applications. This paper presents a new concept of a percussion drilling tool which performs both the function of a down-hole hammer as well as that of a down-hole motor. Such a drilling tool, being introduced here as Steerable Percussion Air Drilling System (SPADS), eliminates the necessity to rotate the drill string and, consequently, enables the use of down-hole air hammers to drill directional wells.

  4. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  5. Laser drilling for improving circuit board manufacturing

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Zhang, Jincheng; Gao, Chunlin; Wang, Honcai; Li, Ping; An, Yongqiang; Zhang, Guiqiu

    1998-08-01

    We reported here a novel technique for laser high speed drillings on Printed Circuit Boards (PCBs). A CNC solid laser based system is developed to drill through and blind vias as an alternative to mechanical drilling. The system employs an Acousto-Optic Q-switched Nd:YAG laser, a computer control system and an X-Y moving table which can handle up to 400 X 400 mm PCB. With a special designed cavity the laser system works in a pulsed operation in order to generate pulses with width down to 0.5 microseconds and maximum peak power over 10 kW at 10 k repetition rate. Delivered by an improved optical beam transforming system, the focused laser beam can drill holes including blind vias on PCBs with diameter in the range of 0.1 - 0.4 mm and at up to 300 - 500 vias per second (depending on the construction of PCBs). By means of a CNC X-Y moving system, laser pulses with pulse-to-pulse superior repeatability can be fired at desired location on a PCBs with high accuracy. This alternative technology for drilling through or blind vias on PCBs or PWBs (printed wiring boards) will obviously enhance the capability to printed boards manufacturing.

  6. Unique microbial community in drilling fluids from Chinese continental scientific drilling

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Jiang, H.; Xu, Z.; Eberl, D.D.

    2006-01-01

    Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50-68??C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.

  7. Potential environmental benefits from regulatory consideration of synthetic drilling muds

    SciTech Connect

    Burke, C.J.; Veil, J.A.

    1995-02-01

    When drilling exploration and production wells for oil and gas, drillers use specialized drilling fluids, referred to as muds, to help maintain well control and to remove drill cuttings from the hole. Historically, either water-based muds (WBMs) or oil-based muds (OBMs) have been used for offshore wells. Recently, in response to US Environmental Protection Agency (EPA) regulations and drilling-waste discharge requirements imposed by North Sea nations, the drilling industry has developed several types of synthetic-based muds (SBMs) that combine the desirable operating qualities of OBMs with the lower toxicity and environmental impact qualities of WBMs. This report describes the operational, environmental, and economic features of all three types of muds and discusses potential EPA regulatory barriers to wider use of SBMs.

  8. Molecular interactions alter clay and polymer structure in polymer clay nanocomposites.

    PubMed

    Sikdar, Debashis; Katti, Kalpana S; Katti, Dinesh R

    2008-04-01

    In this work, using photoacoustic Fourier transform infrared spectroscopy (FTIR) we have studied the structural distortion of clay crystal structure in organically modified montmorillonite (OMMT) and polymer clay nanocomposites (PCN). To study the effect of organic modifiers on the distortion of crystal structure of clay, we have synthesized OMMTs and PCNs containing same polymer and clay but with three different organic modifiers (12-aminolauric acid, n-dodecylamine, and 1,12-diaminododecane), and conducted the FTIR study on these PCNs. Our previous molecular dynamics (MD) study on these PCNs reveals that significant nonbonded interactions (van der Waals, electrostatic interactions) exist between the different constituents (polymer, organic modifier, and clay) of nanocomposites. Previous work based on X-ray diffraction (XRD) and differential scanning calorimetry (DSC) on the same set of PCNs shows that crystallinity of polymer in PCNs have changed significantly in comparison to those in pristine polymer; and, the nonbonded interactions between different constituents of PCN are responsible for the change in crystal structure of polymer in PCN. In this work to evaluate the structural distortion of crystal structure of clay in OMMTs and PCNs, the positions of bands corresponding to different modes of vibration of Si-O bonds are determined from the deconvolution of broad Si-O bands in OMMTs and PCNs obtained from FTIR spectra. Intensity and area under the Si-O bands are indicative of orientation of clay crystal structures in OMMTs and PCNs. Significant changes in the Si-O bands are observed from each vibration mode in OMMTs and PCNs containing three different organic modifiers indicating that organic modifiers influence the structural orientation of silica tetrahedra in OMMTs and PCNs. Deconvolution of Si-O bands in OMMTs indicate a band at approximately 1200 cm(-1) that is orientation-dependent Si-O band. The specific changes in intensity and area under this band for

  9. Precision micro drilling with copper vapor lasers

    SciTech Connect

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-09-02

    The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

  10. Drill hole logging with infrared spectroscopy

    USGS Publications Warehouse

    Calvin, W.M.; Solum, J.G.

    2005-01-01

    Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

  11. Drop pressure optimization in oil well drilling

    NASA Astrophysics Data System (ADS)

    Mellak, Abderrahmane; Benyounes, Khaled; Djeridi, Adel

    2014-10-01

    In this research work, we are interested in minimizing losses, existing when drilling an oil well. This would essentially improve the load losses by acting on the rheological parameters of the hydraulic and drilling mud. For this, rheological tests were performed using a six-speed rotary viscometer (FANN 35). We used several rheological models to accurately describe the actual rheological behavior of drilling mud oil-based, according to the Pearson's coefficient and to the standard deviation. To model the problem, we established a system of equations that describe the essential to highlight purpose and various constraints that allow for achieving this goal. To solve the problem, we developed a computer program that solves the obtained equations in Visual Basic language system. Hydraulic and rheological calculation was made for in situ application. This allowed us to estimate the distribution of losses in the well.

  12. Role of organic modifiers on the enhancement of nanochemical properties of clay-based nanocomposites: A nanoscale experimental and multiscale modeling study

    NASA Astrophysics Data System (ADS)

    Sikdar, Debashis

    Polymer clay nanocomposite (PCN) is a novel composite material which is synthesized by mixing expansive clay minerals with polymeric materials in the nanometer length scale. In this research, we have found the mechanisms responsible for enhanced mechanical properties in PCN in comparison to pristine polymer. Photoacoustic (PA) Fourier transform infrared spectroscopy (FTIR) of PCN shows that there are only nonbonded interactions between constituents of PCN. Interaction energies are a measure of interactions between different constituents of composite materials. For quantitative evaluation of nonbonded interactions between constituents of PCN, molecular dynamics (MD) simulations using representative intercalated models of PCN are constructed in an innovative way by combining experimental (X-ray diffraction (XRD) and FTIR) and modeling results. The resulting PCN models are used to calculate interaction energies between the constituents of PCN using MD simulation. The results show that the organic modifier has a significant role on the interactions between different constituents of PCN. Results obtained from nanomechanical experiments of those PCN samples synthesized with identical polymer and clay but different organic modifiers show that the organic modifier has a major influence on the crystallinity and nanomechanical properties of PCN, and lower the crystallinity of polymer, the higher is the elastic modulus of PCNs. MD simulations on these PCN samples show that interactions between intercalated polymer and organic modifiers are key for altering crystallinity and nanomechanical properties of PCNs. PA-FTIR tests on PCNs show that organic modifiers alter the crystal structure of clay. This work has led us proposing a new "altered phase" model for PCNs. Further MD-result, and nanomechanical experiments shows that crystallinity and interactions between constituents of PCN can be tailored to a significant extent by varying the backbone chain length of modifier. To

  13. Frictional Temperature of Chelungpu Seismic Faulting Estimated from the Taiwan Chelungpu-fault Drilling Project (TCDP)

    NASA Astrophysics Data System (ADS)

    Song, S.; Kuo, L.; Chou, Y.

    2012-12-01

    Two holes, named Hole-A and Hole-B with the depths of 2,003 m and 1,350 m, respectively, were raised by the Taiwan Chelungpu-fault Drilling Project (TCDP) which recovered continuous fresh core samples across the rupture zone of the 1999 Chi-Chi earthquake (Mw7.6). To investigate the coseismic frictional temperature in seismogenic fault zones, we examine the characteristics of core materials including clay, carbonate and magnetic minerals and carbonaceous materials with optical, SEM, TEM and TXM for mineral identifications, and chemical analyses by ICP-MS for geochemical modeling in the Chelungpu-fault zones. The primary slip zone (PSZ), characterized by the isotropic layer in black gouge of those two holes can be recognized at the depth around 1,111 m and 1,136 m with ~20 mm and ~3 mm in thickness, respectively. For the Hole-A, the frictional temperature was calculated from the clay mineral assemblages of FZ1111, which show evidence of melting, and the temperature in a ~2 cm band within the black gouge zone is estimated to be from 900 °C to 1100 °C by comparing the SEM images of in situ natural samples with those of heated materials, and the finding of no recrystallization of kaolinite-amorphous aluminosilicates-spinel in the fault samples. For the Hole-B, the frictional temperature in the FZ1136 was calculated as 400 °C to 900 °C, based on the magnetic mineral variations, de-carbonation of calcite, clay mineral assemblages, and geochemical modeling on trace element variations.

  14. Clay energetics in chemical evolution

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.

    1986-01-01

    Clays have been implicated in the origin of terrestrial life since the 1950's. Originally they were considered agents which aid in selecting, concentrating and promoting oligomerization of the organic monomeric substituents of cellular life forms. However, more recently, it has been suggested that minerals, with particular emphasis on clays, may have played a yet more fundamental role. It has been suggested that clays are prototypic life forms in themselves and that they served as a template which directed the self-assembly of cellular life. If the clay-life theory is to have other than conceptual credibility, clays must be shown by experiment to execute the operations of cellular life, not only individually, but also in a sufficiently concerted manner as to produce some semblance of the functional attributes of living cells. Current studies are focussed on the ability of clays to absorb, store and transfer energy under plausible prebiotic conditions and to use this energy to drive chemistry of prebiotic relevance. Conclusions of the work are applicable to the role of clays either as substrates for organic chemistry, or in fueling their own life-mimetic processes.

  15. Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.

    PubMed

    Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A

    2015-10-01

    Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery. PMID:26356212

  16. Development of a drilling and coring test-bed for lunar subsurface exploration and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng; Deng, Zongquan; Quan, Qiquan; Tang, Dewei; Hou, Xuyan; Jiang, Shengyuan

    2014-07-01

    Drill sampling has been widely employed as an effective way to acquire deep samples in extraterrestrial exploration. A novel sampling method, namely, flexible-tube coring, was adopted for the Chang'e mission to acquire drilling cores without damaging stratification information. Since the extraterrestrial environment is uncertain and different from the terrestrial environment, automated drill sampling missions are at risk of failure. The principles of drilling and coring for the lunar subsurface should be fully tested and verified on earth before launch. This paper proposes a test-bed for conducting the aforementioned experiments on earth. The test-bed comprises a rotary-percussive drilling mechanism, penetrating mechanism, drilling medium container, and signal acquisition and control system. For granular soil, coring experiments indicate that the sampling method has a high coring rate greater than 80%. For hard rock, drilling experiments indicate that the percussive frequency greatly affects the drilling efficiency. A multi-layered simulant composed of granular soil and hard rock is built to test the adaptability of drilling and coring. To tackle complex drilling media, an intelligent drilling strategy based on online recognition is proposed to improve the adaptability of the sampling drill. The primary features of this research are the proposal of a scheme for drilling and coring a test-bed for validation on earth and the execution of drilling experiments in complex media.

  17. Drill bit assembly for releasably retaining a drill bit cutter

    SciTech Connect

    Glowka, David A.; Raymond, David W.

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  18. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-01-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC's existing electromagnetic (e-m) CABLELESS''{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  19. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-06-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  20. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Harrison, W.H.; Rubin, L.A.

    1992-05-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low- pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) {open_quotes}Cableless{close_quotes} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  1. A Fast Inspection of Tool Electrode and Drilling Depth in EDM Drilling by Detection Line Algorithm

    PubMed Central

    Huang, Kuo-Yi

    2008-01-01

    The purpose of this study was to develop a novel measurement method using a machine vision system. Besides using image processing techniques, the proposed system employs a detection line algorithm that detects the tool electrode length and drilling depth of a workpiece accurately and effectively. Different boundaries of areas on the tool electrode are defined: a baseline between base and normal areas, a ND-line between normal and drilling areas (accumulating carbon area), and a DD-line between drilling area and dielectric fluid droplet on the electrode tip. Accordingly, image processing techniques are employed to extract a tool electrode image, and the centroid, eigenvector, and principle axis of the tool electrode are determined. The developed detection line algorithm (DLA) is then used to detect the baseline, ND-line, and DD-line along the direction of the principle axis. Finally, the tool electrode length and drilling depth of the workpiece are estimated via detected baseline, ND-line, and DD-line. Experimental results show good accuracy and efficiency in estimation of the tool electrode length and drilling depth under different conditions. Hence, this research may provide a reference for industrial application in EDM drilling measurement.

  2. Microbe-Clay Mineral Reactions and Characterization Techniques

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, G.; Ji, S.; Jaisi, D.; Kim, J.

    2008-12-01

    Clays and clay minerals are ubiquitous in soils, sediments, and sedimentary rocks. They play an important role in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. The changes in the oxidation state of the structural iron in clay minerals, in part, control their physical and chemical properties in natural environments, such as clay particle flocculation, dispersion, swelling, hydraulic conductivity, surface area, cation and anion exchange capacity, and reactivity towards organic and inorganic contaminants. The structural ferric iron [Fe(III)] in clay minerals can be reduced either chemically or biologically. Many different chemical reductants have been tried, but the most commonly used agent is dithionite. Biological reductants are bacteria, including dissimilatory iron reducing prokaryotes (DIRP) and sulfate-reducing bacteria (SRB). A wide variety of DIRP have been used to reduce ferric iron in clay minerals, including mesophilic, thermophilic, and hyperthermophilic prokaryotes. Multiple clay minerals have been used for microbial reduction studies, including smectite, nontronite (iron-rich smectite variety), illite, illite/smectite, chlorite, and their various mixtures. All these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible. The reduction extent and rate of ferric iron in clay minerals are measured by wet chemistry, and the reduced clay mineral products are typically characterized with chemical methods, X-ray diffraction, scanning and transmission electron microscopy, Mössbauer spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-vis spectroscopy, and synchrotron-based techniques (such as EXAFS). Microbially reduced smectites (nontronites) have been found to be reactive in reducing a variety of organic and inorganic contaminants. Degradable organic contaminants include pesticides

  3. Fault imprint in clay units: magnetic fabric, structural and mineralogical signature

    NASA Astrophysics Data System (ADS)

    Moreno, Eva; Homberg, Catherine; Schnyder, Johann; Person, Alain; du Peloux1, Arthur; Dick, Pierre

    2014-05-01

    Fault-induced deformations in clay units can be difficult to decipher because strain markers are not always visible at outcrop scale or using geophysical methods. Previous studies have indicated that the anisotropy of magnetic susceptibility (ASM) provides a powerful and rapid technique to investigate tectonic deformation in clay units even when they appear quite homogenous and undeformed at the outcrop scale (Lee et al. 1990, Mattei et al. 1997). We report here a study based on ASM, structural analysis and magnetic and clay mineralogy from two boreholes (TF1 and ASM1)drilled horizontally in the Experimental Station of Tournemire of the Institute for Radiological Protection and Nuclear Safety (IRSN) in Aveyron (France). The boreholes intersect a N-S trending strike-slip fault from west to east. The ASM study indicates the evolution of the magnetic fabric from the undeformed host rock to the fault core. Also, all the fractures cutting the studied interval of the core have been measured as well as the slip vectors which are generally well preserved. In the two boreholes, the undeformed sediments outside the fault zone are characterized by an oblate fabric, a sub-vertical minimum susceptibility axis (k3) perpendicular to the bedding plane and without magnetic lineation. Within the fault zone, a tilt in the bedding plane has been observed in two boreholes TF1 and ASM1. In addition, in the TF1 core, the fault area presents a tectonic fabric characterized by a triaxial AMS ellipsoid. Moreover, the magnetic lineation increases and k3 switches from a vertical to a sub-horizontal plane. This kind of fabric has not been observed in borehole ASM1. The structural analysis of the individual fractures making the fault zone indicates a complex tectonic history with different imprint in the two fault segments cut by the two boreholes. The large majority of fractures correspond to dextral strike-slip faults but normal and reverse movements were observed and are more or less

  4. Investigating thickness and physical properties of forest soil along headwater hillslopes by hole drilling method

    NASA Astrophysics Data System (ADS)

    Han, Xiaole; Liu, Jintao

    2015-04-01

    Mountain torrents along headwater hillslopes usually occur during heavy rainfall and bring damage to people's lives and properties. Thus, the mechanism for flood generation process in mountain areas must be well studied. Soil acts as an important factor controlling this process. However, systematic studies the spatial distribution of soil properties, including soil thickness, bulky density, texture and infiltration rate along headwater hillslopes are rarely obtained. Therefore, the objective of this study is to explore the variation trend of these soil properties in a 3-D perspective. To do this, a total of 39 probe measurements were made by using a 70-mm-diameter gasoline vibrating drill in a small catchment (0.42 hectare). Measurements were made by push the gasoline drill into the soil until the bedrock was encounted. Then, the drill was pushed out from the soil and the undisturbed soil was obtained. The main results of the experiment show that: (a) soil thickness decreased significantly from the valley to the ridge (e.g., the maximum soil thickness in the valley and ridge are 164cm and 81 cm, respectively). (b)Vertically, taking borehole #1 as an example (148cm deep), the saturated hydraulic conductivity decreased significantly from 1.5 mm/min (0cm deep) to 0.01 mm/min (140cm deep). Spatially, the saturated hydraulic conductivity at same depth increased with the elevation increasing. (c) Particle size analysis indicated that the soil clay content increased with increasing sampling depth. To conclude, our study reveals the spatial distribution of soil properties which can help us to explore flowpaths and store in three-dimensional at hillslope scale and develop a parsimonious 3-D physics-based model to simulate hillslope hydrological response.

  5. SAXS Study of Reversibly Crosslinked Isotactic Polypropylene/clay Nanocomposites

    SciTech Connect

    Bouhelal, S.; Cagiao, M; Benachour, D; Djellouli, B; Rong, L; Hsiao, B; Baltá-Calleja, F

    2010-01-01

    A new route based on reversibly crosslinking reactive extrusion is applied for the development of iPP/clay nanocomposites. Analysis of small-angle X-ray scattering (SAXS) reflections of isotactic polypropylene (iPP)/clay nanocomposites, prepared by two different mixing and chemical crosslinking methods (i.e., conventional and in situ), is presented and results are compared with preceding wide-angle X-ray diffraction (WAXD) results. It is shown that the presence of clay significantly affects the value of long spacing in iPP, as well as the coherence length of lamellar stacks. Results show that the size of the coherently diffracting nanodomains decreases in two stages, first rapidly and then slowly as a function of increasing clay content. This can be attributed to the influence of confined iPP lamellae under the effect of rising number of clay particles. The appearance of the {gamma}-crystalline form in the crosslinked iPP/clay nanocomposites is related with the difficulty in chain folding of iPP chains introduced by the chemical crosslinking process, as well as by the presence of clay particles.

  6. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud

  7. Smart Clays: SAFOD Samples Confirm the Key Role of Newly-formed Clays in Shallow Fault Zones

    NASA Astrophysics Data System (ADS)

    Schleicher, A.; van der Pluijm, B.; Warr, L. N.

    2013-12-01

    Analysis of fault rocks from drill-cores of the San Andreas Fault Observatory at Depth (SAFOD) project in Parkfield (CA) confirm our original hypothesis that active clay growth can occur locally at shallow conditions and that such clay localization affect fault mechanics and fault creep in particular. SAFOD fault rocks contain a variety of newly formed clay minerals including smectite, illite-smectite and chlorite-smectite, as well as illite and chlorite. Brecciated host rock fragments are abundantly coated by polished and/or striated thin-films of hydrated clay minerals, creating an interconnected and pervasive network of displacement surfaces. Ar encapsulation dating of mixed-layer nanocoatings demonstrates recent crystallization and reveal an 'older' fault strand (~8 Ma) at 3066 m measured depth and a 'younger' fault strand (~4 Ma) at 3296 m measured depth. Today, the younger strand is the site of active creep behavior, demonstrating continued (re)activation of clay-weakened zones. Recent experimental work on aseismically creeping segments of SAFOD samples showed frictional strengths that are significantly weaker than neighboring wall rocks, offering independent validation of our model. Using a range of analytical methods that include X-ray diffraction, X-ray goniometry, elemental analysis and electron microscopy, we determined the location and nature of smectitic clay minerals in borehole samples, to assess the extent of smectitic phases in space and depth, any fault zone fabric development, and the swelling behavior of smectitic phases within the fault zone. Beyond the occurrence of illite-smectite in these relatively shallow fault rocks, the localized concentration of chlorite-smectite can extend the role of smectitic clays to depths down to ~10 km. We conclude that ultrathin hydrous clay films, or nanocoatings, on displacement surfaces play a key role in influencing weak fault and creep behavior along the San Andreas Fault at Parkfield, and likely in shallow

  8. Apparatus in a drill string

    DOEpatents

    Hall, David R.; Dahlgren, Scott; Hall, Jr., Tracy H.; Fox, Joe; Pixton, David S.

    2007-07-17

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

  9. A simple approach for calculating pile skin friction in clays

    SciTech Connect

    Mirza, U.A.A.

    1995-12-31

    A simple method is presented for calculating static shaft resistance of a pile driven into clay. The method is based on correlations established for North Sea clays between index properties and strengths. Application of the method to half a dozen full scale pile load tests which are part of the API RP2A`s data base and include a wide range of plasticity properties, overconsolidation ratios and strengths, is described. Except for short piles in very stiff to hard clays, the predictions agree very well with the measurements. The correlations presented allows an assessment of residual skin friction and indicate the importance of the liquidity index of the clay in static capacity calculations.

  10. An innovative drilling system

    SciTech Connect

    Nees, J.; Dickinson, E.; Dickinson, W.; Dykstra, H.

    1991-05-01

    The principal project objectives were the following: To demonstrate the capability of the Ultrashort Radius Radial System to drill and complete multiple horizontal radials in a heavy oil formation which had a production history of thermal operations. To study the effects that horizontal radials have on steam placement at specific elevations and on reducing gravity override. To demonstrate that horizontal radials could be utilized for cyclic production, i.e. for purposes of oil production as well as for steam injection. Each of these objectives was successfully achieved in the project. Early production results indicate that radials positively influenced cyclic performance. This report documents those results. 15 refs., 29 figs., 1 tab.

  11. Measurement-While-Drilling (MWD) development for air drilling

    SciTech Connect

    Harrison, W.A.; Rubin, L.A.

    1993-12-31

    When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

  12. Tool for Taking Clay Impressions

    NASA Technical Reports Server (NTRS)

    Duncan, R. S.

    1984-01-01

    Clay impression of small parts taken with tool consisting of hollow tube closed at one end. Slots at other end admit part short distance into tube. Impression used to make silicone rubber mold for examination.

  13. Portable rapid and quiet drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mireca (Inventor); Bao, Xiaoqi (Inventor); Chang, Zenshea (Inventor); Sherrit, Stewart (Inventor)

    2010-01-01

    A hand-held drilling device, and method for drilling using the device, has a housing, a transducer within the housing, with the transducer effectively operating at ultrasonic frequencies, a rotating motor component within the housing and rigid cutting end-effector rotationally connected to the rotating motor component and vibrationally connected to the transducer. The hand-held drilling device of the present invention operates at a noise level of from about 50 decibels or less.

  14. Horizontal drilling in shallow reservoirs

    SciTech Connect

    Murray, W.F. Jr.; Schrider, L.A.; Haynes, C.D.; Mazza, R.L.

    1992-06-01

    The objectives of this joint horizontal drilling effort by the US DOE and Belden & Blake in the complex, low permeability Clinton Sandstone will focus on the following objectives: (1) apply horizontal drilling technology in hard, abrasive, and tight Clinton Sandstone; (2) evaluate effects of multiple hydraulic fracturing in a low permeability horizontal wellbore; (3) assess economic viability of horizontal drilling in the Clinton and similar tight gas sands.

  15. Horizontal drilling in shallow reservoirs

    SciTech Connect

    Murray, W.F. Jr.; Schrider, L.A.; Haynes, C.D.; Mazza, R.L.

    1992-01-01

    The objectives of this joint horizontal drilling effort by the US DOE and Belden Blake in the complex, low permeability Clinton Sandstone will focus on the following objectives: (1) apply horizontal drilling technology in hard, abrasive, and tight Clinton Sandstone; (2) evaluate effects of multiple hydraulic fracturing in a low permeability horizontal wellbore; (3) assess economic viability of horizontal drilling in the Clinton and similar tight gas sands.

  16. The thermal spallation drilling process

    SciTech Connect

    Williams, R.E.

    1986-01-01

    Holes can be produced in very hard rock more easily and less expensively by thermal spallation than by conventional means. This drilling process has been used for producing blast holes in the taconite iron mines and for quarrying granite. It is potentially valuable for drilling holes in very hard rock for the exploitation of geothermal energy and the storage of various commodities. However, investigation and development of the thermal spallation drilling process is proceeding slowly.

  17. Effects of shock metamorphism on clay mineralogy: Implications for remote sensing of martian clays

    NASA Astrophysics Data System (ADS)

    Michalski, J. R.; Glotch, T. D.; Friedlander, L.; Bish, D. L.; Sharp, T. G.; Dyar, M. D.

    2012-12-01

    One of the most important discoveries in recent exploration of Mars has been the detection of clay minerals within materials exhumed by meteor impact, which point to ancient subsurface alteration and possible habitable conditions at depth. These "crustal clays" occur within central peaks, ejecta, and uplifted rims of many large craters (Ehlmann et al., Nature 2011). The geologic context of phyllosilicates in these settings suggests that most of these deposits represent clays that formed in the subsurface and were later exhumed by impact, rather than clays that formed as a consequence of impact. Therefore, crustal clays exposed at the surface are likely to have experienced some effects of shock metamorphism and/or thermal alteration related to meteor impact. We are investigating the effects of shock metamorphism on the mineralogy of phyllosilicates in the laboratory. Purified, size-separated clay mineral samples were pressed into pellets to decrease internal porosity and were subsequently shocked using the Flat Plate Accelerator at NASA Johnson Space Center. Five minerals (nontronite, saponite, serpentine, chlorite, and kaolinite) were shocked to six pressure steps (10, 20, 25, 30, 35, and 40 GPa). The recovered, shocked samples are being analyzed by thermal infrared emission, visible/near-infrared reflectance, X-ray diffraction (XRD), Mossbauer spectroscopy, and transmission electron microscopy (TEM). Results thus far suggest that shock metamorphism has little effect on the structure or infrared signature of the clay minerals at pressures <20 GPa. One exception is the decrease in 3-D ordering in chlorite at 10 GPa, which steadily decreases until it is essentially lost at 30 GPa. At shock pressures of 20 GPa and higher, all minerals show evidence for broadening of the basal 001 reflection, indicative of progressive decrease in crystallite size. Above 30 GPa, the structures are intensely altered and by 40 GPa, most structural order is lost, based on both XRD and TEM

  18. Optimisation of EDM fast hole drilling for aerospace applications

    NASA Astrophysics Data System (ADS)

    Leao, F. N.

    Electrical discharge machining (EDM) fast hole drilling is a thermo-electric manufacturing process in which material removal is achieved by sparks taking place between a tool electrode and the workpiece being drilled; both covered in dielectric fluid and connected to a generator delivering periodic pulses of energy at very high frequencies. There is no physical contact between the workpiece and the electrode, and the small gap separating them is maintained under servo control. EDM fast hole drilling plays a vital role in the aerospace industry. The operating temperatures of aero-engine often exceed the melting point of the materials used in its components. Hence, it is required to artificially cool different types of components including turbine blades. This is accomplished by directing bypass air into internal passages of the blade; the air flows continuality through small holes, having diameters ranging from 0.4 to 3mm and are drilled at steep angles to the baled surfaces. With EDM it is possible to drill these holes. The EDM drilling, however, operates with very high levels of relative electrode wear and high variations in cycle times making the process rather inconsistent. Using the DOE (Design of Experiments) approach, a series of studies have been carried out with the purpose of optimising the drilling process through the evaluation of water-based dielectric fluids and electrode materials, via analysis of drilling time, electrode wear, surface integrity, dimensional accuracy and costs. Factors such as the electrode length, geometry and dielectric flushing have also been studied. This work has shown that drilling times and electrode wear can be reduced by 50% and 35% respectively depending on the type of dielectric fluid/electrode material used and on the optimisation criteria employed. Significant reductions in the variations of drilling times have also been observed. Moreover, drilling time and electrode wear can be decreased by 165% and 25% respectively

  19. High temperature drilling MUD stabilizer

    SciTech Connect

    Block, J.

    1985-10-15

    Aqueous drilling fluids containing a hydroxy containing alumina component such as AlO(OH) and a polyvinyl alcohol (PVA) reaction product such as an aldehyde reacted PVA are stabilized for use at temperatures as high as 350/sup 0/ F. (177/sup 0/ C.) by adding stabilizer anions such as sulfate, tartrate and citrate to the resulting drilling fluid. The anions can be added as an acid or in the salt form with sodium and potassium salts being preferred. The salts are preferably added in 0.2 to 10% by weight of the drilling fluid. These stabilized drilling fluids can also be used in seawater.

  20. Precision Drilling Of Sugar Beet

    NASA Astrophysics Data System (ADS)

    Kalina, Jaroslav

    1983-03-01

    The paper describes the features of the precision drilling of sugar beet, methods of measurements, mathematical relations, procedure and results. The use of a high-speed camera and of a computer with an investigation of the drilling mechanisms enabled to achieve the shortening of the procedure by one half, an accurate assessment of the principles of drilling mechanisms without implication of other influences arising in field tests and the availability of more data for decision making. The result of the experiments was a considerably simpler assessment of the principles of drill mechanisms.

  1. Apparatus for washing drill cuttings

    SciTech Connect

    Lott, W. G.

    1985-10-15

    An apparatus for cleansing a stream of drilling fluid fouled drill cuttings having a housing divided into a plurality of compartments each designed to retain cleansing fluid. A spinning force is imparted into the incoming fouled drill cuttings in an inlet chamber wherein cleansing fluid is intimately mixed with the fouled drill cuttings. A decanting chamber removes liberated drilling fluid from the cuttings and disposes of such drilling fluid from the apparatus via a drain trough assembly. The underflow from the decanter is passed through a solids concentrating assembly wherein the coarse solids are deposited in a concentrating assembly bottoms chamber wherein the settled drill cuttings are removed from the apparatus. The overhead stream from the solids concentrating assembly is driected to a second decanter for removal of any remaining drilling fluid and fine drill cuttings entrained therein from the apparatus via the drain trough assembly. The remaining fluid in the concentrating assembly bottoms chamber is recirculated to the second decanting chamber and the inlet chamber.

  2. Lunar drill and test apparatus

    NASA Technical Reports Server (NTRS)

    Norrington, David W.; Ardoin, Didier C.; Alexander, Stephen G.; Rowland, Philip N.; Vastakis, Frank N.; Linsey, Steven L.

    1988-01-01

    The design of an experimental lunar drill and a facility to test the drill under simulated lunar conditions is described. The drill utilizes a polycrystalline diamond compact drag bit and an auger to mechanically remove cuttings from the hole. The drill will be tested in a vacuum chamber and powered through a vacuum seal by a drive mechanism located above the chamber. A general description of the design is provided followed by a detailed description and analysis of each component. Recommendations for the further development of the design are included.

  3. Transducer for downhole drilling components

    DOEpatents

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  4. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    SciTech Connect

    Jones, E.; Latham, T.; McConnell, D.; Frye, M.; Hunt, J.; Shedd, W.; Shelander, D.; Boswell, R.M.; Rose, K.K.; Ruppel, C.; Hutchinson, D.; Collett, T.; Dugan, B.; Wood, W.

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  5. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    SciTech Connect

    Staller, George E.; Whitlow, Gary

    1999-04-27

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  6. Spills, drills, and accountability

    SciTech Connect

    1993-12-31

    NRDC seeks preventive approaches to oil pollution on U.S. coasts. The recent oil spills in Spain and Scotland have highlighted a fact too easy to forget in a society that uses petroleum every minute of every day: oil is profoundly toxic. One tiny drop on a bald eagle`s egg has been known to kill the embryo inside. Every activity involving oil-drilling for it, piping it, shipping it-poses risks that must be taken with utmost caution. Moreover, oil production is highly polluting. It emits substantial air pollution, such as nitrogen oxides that can form smog and acid rain. The wells bring up great quantities of toxic waste: solids, liquids and sludges often contaminated by oil, toxic metals, or even radioactivity. This article examines the following topics focusing on oil pollution control and prevention in coastal regions of the USA: alternate energy sources and accountability of pollutor; ban on offshore drilling as exemplified by the energy policy act; tanker free zones; accurate damage evaluations. Policy of the National Resource Defence Council is articulated.

  7. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  8. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Longo, Simona; Mauro, Marco; Daniel, Christophe; Galimberti, Maurizio; Guerra, Gaetano

    2013-11-01

    Supercritical carbon dioxide (scCO2) treatments of a montmorillonite (MMT) intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT) led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS), have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals.

  9. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    PubMed Central

    Longo, Simona; Mauro, Marco; Daniel, Christophe; Galimberti, Maurizio; Guerra, Gaetano

    2013-01-01

    Supercritical carbon dioxide (scCO2) treatments of a montmorillonite (MMT) intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT) led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS), have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals. PMID:24790956

  10. Gulf Canada moves ahead with unique drilling system

    SciTech Connect

    Moore, S.D.

    1982-12-01

    Describes a system developed for Gulf's Beaufort Sea exploration program, which consists of a mobile arctic caisson (MAC), conical drilling unit (CDU), 2 icebreakers, and 2 supply boats, all designed for heavy ice conditions. The MAC will operate in water depths between 60 and 110 ft, while the CDU is destined for deeper waters. The CDU, a circular barge with a special ice-deflecting hull, has a main hull angle sloping at 31 degrees to deflect ice downward. The MAC will replace conventional artificial islands. The 2 icebreakers' primary function is to manage the ice surrounding the drilling units, protecting the drilling system and providing an escort to new well sites. In addition to moving bulk materials and equipment from the northern supply base to the drilling units, the vessels will help in anchoring or setting the drilling units.

  11. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes,...

  12. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  13. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  14. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  15. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  16. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  17. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  18. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  19. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  20. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  1. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  2. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  3. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which...

  4. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  5. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation...

  6. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is...

  7. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes,...

  8. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes,...

  9. Activity plan: Directional drilling and environmental measurements while drilling

    SciTech Connect

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  10. Development of a Mine Rescue Drilling System (MRDS) :

    SciTech Connect

    Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom; Knudsen, Steven D.; Broome, Scott Thomas; Su, Jiann-Cherng; Blankenship, Douglas A.; Costin, Laurence S.

    2014-06-01

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  11. Drilling disturbance and constraints on the onset of the Paleocene/Eocene boundary carbon isotope excursion in New Jersey

    NASA Astrophysics Data System (ADS)

    Pearson, P. N.; Thomas, E.

    2014-08-01

    The onset of the Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE; about 56 million years ago) was geologically abrupt but it is debated whether it took thousands of years or was effectively instantaneous. A significant new record of the onset of the CIE was published by Wright and Schaller (2013) who claimed that it could be resolved across 13 annual layers in a drill core through the Marlboro Clay at Millville, New Jersey (Ocean Drilling Program Leg 174X). Supporting evidence of similar layering was also reported from another New Jersey drill site, Wilson Lake B, and a photograph of the Marlboro Clay in outcrop. Such a short duration would imply an instantaneous perturbation of the atmosphere and surface ocean, and the impact of a comet or asteroid as the likely cause. However it was suggested by Pearson and Nicholas (2014) from the published photographs that the layers in the Marlboro Clay could be artifacts of drilling disturbance (so-called "biscuiting", wherein the formation is fractured into layers or "biscuits" and drilling mud is injected in between). Here we report new observations on the cores which support that interpretation, including concentric grooves on the surfaces of the biscuits caused by spinning in the bit, micro-fracturing at their edges, and injected drilling mud. We re-interpret the outcrop evidence as showing joints rather than sedimentary layers. We argue that foraminifer concentrations in the sediments are far too high for the layers to be annually deposited in turbid waters at depths of 40-70 m, indicating that the onset of the CIE in the Marlboro Clay likely took on the order of millennia, not years. Re-coring of Millville to minimize drilling disturbance and allow a higher resolution study of the carbon isotope excursion is highly desirable.

  12. Energy week `96: Conference papers. Book 3: Drilling and production economics

    SciTech Connect

    1996-09-01

    The papers of Section 1, Drilling Technology, relate to advanced materials for downhole tools, underbalanced drilling, horizontal drilling technology/new trajectory control device, horizontal drilling HP/HT well control, advances in drill bits, slim-hole drill bits and tubulars, novel/scientific drilling, and coiled tubing/slim-hole drilling/short radius. The topics of Section 2, Ocean Engineering, include marine pollution and diving equipment. Section 3, Petroleum Production Technology, relate to what`s new in regulations and standards in petroleum production. Papers in Section 4, Offshore and Arctic Operations, cover offshore platforms, floating production systems, offshore pipelines, offshore construction and installation, offshore facilities, and environmental and safety issues. Most papers have been processed separately for inclusion on the data base.

  13. Assessing the potential impact of water-based drill cuttings on deep-water calcareous red algae using species specific impact categories and measured oceanographic and discharge data.

    PubMed

    Nilssen, Ingunn; dos Santos, Francisco; Coutinho, Ricardo; Gomes, Natalia; Cabral, Marcelo Montenegro; Eide, Ingvar; Figueiredo, Marcia A O; Johnsen, Geir; Johnsen, Ståle

    2015-12-01

    The potential impact of drill cuttings on the two deep water calcareous red algae Mesophyllum engelhartii and Lithothamnion sp. from the Peregrino oil field was assessed. Dispersion modelling of drill cuttings was performed for a two year period using measured oceanographic and discharge data with 24 h resolution. The model was also used to assess the impact on the two algae species using four species specific impact categories: No, minor, medium and severe impact. The corresponding intervals for photosynthetic efficiency (ΦPSIImax) and sediment coverage were obtained from exposure-response relationship for photosynthetic efficiency as function of sediment coverage for the two algae species. The temporal resolution enabled more accurate model predictions as short-term changes in discharges and environmental conditions could be detected. The assessment shows that there is a patchy risk for severe impact on the calcareous algae stretching across the transitional zone and into the calcareous algae bed at Peregrino. PMID:26412110

  14. Imaging the SE1 reflector near the Continental Deep Drilling Site (KTB, Germany) with coherence-based prestack-depth migration

    NASA Astrophysics Data System (ADS)

    Hellwig, O.; Hlousek, F.; Buske, S.

    2013-12-01

    Kirchhoff prestack depth migration algorithms are widely used to image geological structures. There are a variety of Kirchhoff-type methods, such as Fresnel-Volume-Migration (FVM), that try to overcome the incapability of standard Kirchhoff migration to image steeply dipping reflectors or to produce clear and artifact-free seismic images if only a small number of seismic traces is available. All of these modified Kirchhoff migration algorithms employ additional weighting factors to confine the migration operator and to limit the seismic image to the actual position along the two-way travel time isochrone where diffractions and reflections originate. Coherence-based prestack-depth migration (CBM) uses a weighting factor obtained directly from the input data by evaluating a normalized coherence measure defined over neighboring traces and a time window around the particular time sample to be imaged. This coherence measure and the corresponding weighting factor are high if the differences in the arrival times of a coherent event at nearby receivers can be explained by the differences in the travel times along the ray paths from the source position to a certain image point on the two-way travel time isochrone, and from there to the receiver group. In turn, a small weighting factor is obtained if the travel time differences cannot be explained by a certain combination of source, image point and the selected receiver group. Thereby it is possible to suppress random noise and to obtain artifact-free seismic images even with a small number of seismic traces. This method is applied to a single shot from the Instruct-93 data recorded at the Continental Deep Drilling Site (KTB) near Windischeschenbach (Germany). This seismic experiment was designed to illuminate the steeply dipping SE1-reflector, that was known from earlier seismic investigations, at a target depth of about 8 to 9 km. For this purpose the shot point and the 120 receivers were placed approximately 10 km away

  15. Hydraulic straight hole drill collar

    SciTech Connect

    Townson, J. D.

    1985-01-15

    An improved drill collar for forming relatively straight holes in crooked hole type formations. One or more hydraulic drill collars are connected in series relationship within a drill string above a rotary bit at the point of tangency. Each drill collar includes at least one outwardly opening, longitudinally extending slot formed on the exterior thereof. The slot includes a back wall connected to confronting sidewalls and opposed end walls. One lower end of a slot commences in spaced relationship to the lower pin end of the collar. As the drill string is rotated, drilling fluid forms a cushion between the slot and the nearest sidewall of the borehole, thereby kicking or forcing the drill collar away from the borehole sidewall, which in turn forces the drill bit to penetrate in a downwardly direction back towards a vertical position. The borehole meanders a very small amount, as for example 3-4 degrees, rather than uncontrollably leaving the vertical and forming an excessively crooked hole. Various configurations and arrangements of slots are disclosed in the collar.

  16. Ultrasonic/Sonic Rotary-Hammer Drills

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  17. Drill-rig noise suppression using the Karhunen-Loéve transform for seismic-while-drilling experiment at Brukunga, South Australia

    NASA Astrophysics Data System (ADS)

    Sun, Baichun; Bóna, Andrej; Zhou, Binzhong; King, Andrew; Dupuis, Christian; Kepic, Anton

    2016-02-01

    Diamond-impregnated drill bits are known to be low energy vibration seismic sources. With the strong interference from the drill rig, it is difficult to obtain the drill-bit wavefield with a surface receiver array. To overcome the challenge of surface wave interference generated from the rig for seismic-while-drilling (SWD), we need to separate the rig- and bit-generated signals. To this end, we apply two wavefield separation methods, the Karhunen-Loéve (KL) transform and the f - k filter, and compare their performance. The applicability of these methods is based on the drill rig and drill bit having different spatial positions. While the drill-bit spatial position changes during the process of drilling, the drill rig remains stationary. This results in the source wavefields from the drill rig and the drill-bit having different characteristics, and allows us to separate and extract the drill-bit signal. We use a synthetic model to compare the KL transform and f - k filter. Both techniques are robust when the noise wavefield has consistent amplitude moveout. However, for changing amplitudes, such as the rig noise, which has an unrepeatable wavefield due to power amplitude variation, we show that the KL transform performs better in such situations. We also show the results of signal analysis of the SWD experiment data acquired from Brukunga, South Australia. We demonstrate the feasibility of the KL transform in separating the coherent noises from the stationary drill rig in a hard rock drilling environment, particularly emphasising the suppression of the surface and direct waves from the rig. The results show that drill-rig noise can be effectively suppressed in the correlation domain.

  18. Workshop on Requirements for Robotic Underwater Drills in U.S. Marine Geoscience Research

    NASA Astrophysics Data System (ADS)

    Sager, W. W.; Johnson, H. P.; Dick, H.; Fryer, P.

    2001-05-01

    At present, subsurface hard rock samples and sediment cores deeper than ~30 m must be acquired using a drill ship, but a drill ship has severe limitations: high cost, limited availability, and poor performance in some lithologies. Many marine geoscience studies require more sampling than can be provided by the drill ship, samples from those problem lithologies, or samples from locations where the drill ship cannot go. Robotic underwater drills may help satisfy this need. Twenty-five scientists and engineers, representing a variety of academic institutions and scientific interests, met on November 3 and 4, 2000, to discuss how to bring about the ready access to robotic underwater drills for scientists engaged in academic research. The workshop considered what science programs would benefit from robotic drills, how many drills of what specifications are needed, and how such drills should be supported. The consensus was that there is a widespread need for a several drills. Most scientists wish for a Robotic Ocean-Bottom drill (ROBO-drill) that can core 50-100 m below the seafloor, with either rotary diamond bits or hydraulic corer, and retrieve cores >5 cm diameter from water depths up to ~4500 m. Although this big ROBO-drill has the widest application, attendees also favored three "niche" drills with different configurations. On the smaller end, there is a need for mini-ROBO-drill that is simple, can work in deeper water, is easily shipped and maintained, and would likely have a single core barrel 1-2 m in length. This drill would be for projects in which small penetration is adequate but cost is a primary concern. An ROV-based drill is also needed, attached to a widely available platform. With high maneuverability and excellent imaging capability, the ROV-drill would be the equivalent of a geologist roaming the seafloor with a rock hammer. There also may be a need for a slightly larger, single-barrel drill that can core up to ~5 m depth to reach below small sediment

  19. Designer drilling increases recovery

    SciTech Connect

    Eck-Olsen, J.; Drevdal, K.E.

    1995-04-01

    Implementation of a new designer-well profile has resulted in increased recovery and production rates. The geologically complex Gullfaks field, located in the Norwegian sector of the North Sea, required a new type of well profile to increase total recovery and production rates from Gullfaks A, B and C platforms. Advances in steerable technology and directional drilling performance enabled a 3-D horizontal, extended-reach well profile, now designated as a designer well, to penetrate multiple targets. This article presents the concept, implementation and conclusions drawn from designer well application. Gullfaks field, in Norwegian North Sea Block 34/10, is the first license ever run by a fully Norwegian joint venture corporation. The license group consists of Statoil (operator), Norsk Hydro and Saga Petroleum. The field currently produces more than 535,000 bopd from three main Jurassic reservoirs.

  20. Development of a Piezoelectric Rotary Hammer Drill

    NASA Technical Reports Server (NTRS)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  1. Drilling of Arun gas field

    SciTech Connect

    Bolt, L.H.; Soepardi, M.; Suherman, D.

    1984-05-01

    The Arun gas field was discovered in late 1971 when the discovery Well Arun A-1 penetrated the thick Arun limestone reef. During the following 3 years, 12 delineation wells were drilled. Three of these delineation wells are used for observation wells, five for dry gas injection, one for condensate water disposal, and three are abandoned. Clustered development well drilling started in Sept. 1976. At this writing 40 wells have been drilled to delineate and develop the field. Drilling continues so that the growing demand from the expanding liquefied natural gas (LNG) plant is met. The problems of high temperatures, abnormally highpressured shales, and saltwater sands overlying the lower-pressured Arun limestone have been conquered by numerous technique changes. The current techniques include the use of inverted oil emulsion muds, cements containing 35% silica flour, high-strength heavyweight tubulars, and clear packer fluids. The evolution of drilling and completion practices are discussed in the paper.

  2. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  3. Ultrasonic rotary-hammer drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  4. Benthic foraminiferal responses to operational drill cutting discharge in the SW Barents Sea - a case study.

    NASA Astrophysics Data System (ADS)

    Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje

    2016-04-01

    Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to <125 meters from the drill site with drill waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at

  5. Jack-up rig for marine drilling

    SciTech Connect

    Mueller, S. R.

    1981-05-26

    This invention relates to a mobile drilling platform of the jack -up type equipped with a special system which allows the said drilling platform to work as a drilling derrick and alternatively as a hoisting crane rig for marine service.

  6. Proceedings of the drilling technology symposium 1990

    SciTech Connect

    Weiner, P.D.; Kastor, R.L. )

    1990-01-01

    This book contains the proceedings of a symposium on drilling technology. Topics covered include: Improvement in rock bit performance; Coring the horizontal hole; Drill pipe failures; and Slim drill horizontal workover system.

  7. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving stem or auger. (e) In the event of power failure, drill controls...

  8. Clay minerals in Alpine Fault gouge: First results from the DFDP-1B pilot hole

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B. A.; Schleicher, A. M.

    2012-12-01

    Clay mineralization is increasingly recognized as a key process along fault systems in the upper crust. The Alpine Fault in New Zealand is a major active fault zone with locally large earthquakes. Samples from this fault zone offer excellent opportunity to investigate recent and ancient rupture zones, and the mechanical role of clay mineral transformations and fluid-rock interactions in particular. The Alpine Fault drilling project (DFDP-project) on the South Island of New Zealand sampled two shallow pilot holes; DFDP-1A was drilled down to 100.6 m and DFDP-1B drilled down to 151.4 m. Five samples from borehole DFDP-1B have been investigated by X-ray diffraction, X-ray texture goniometry and electron microscopy. These samples were taken at ~143.3 m (sections 69_2 to 69_2) and ~128.1 m depth (sections 59_1 to 59_1); the latter is the area of principal slip. The bulk rock mineralogy shows similar compositions in all samples with quartz, phyllosilicates (muscovite, chlorite), calcite, zeolite and clay minerals; the dominant clay phases in all samples are illite and chlorite. Importantly, abundant discrete smectite is uniquely present in gouge zones at sections 69_2 (~143.4 m) and 59_1 (~128.1 m). Smectite was likely formed by dissolution-precipitation reactions during displacement and movement of aqueous fluids along permeable fractures, at the expense of host rock minerals. Electron microscopy of fault gouge at section 69_2 shows small illite and smectite particles with pseudo-hexagonal shapes and variable amounts of K, Ca, Mg and Fe, growing adjacent to each other. Some distinct illite and smectite mineral veins form epitaxially on quartz-feldspar mineral surfaces. Clay fabric intensity, measured by X-ray goniometry, is higher outside the gouge zones (true cataclasite, section 69_1) with average fabric intensities of m.r.d. 3.5. Both gouge zones at sections 59_2 and 69_1 exhibit uniformly weak fabrics for illite and chlorite (m.r.d. ~2.5 on average). The weak

  9. MAX--An Interactive Computer Program for Teaching Identification of Clay Minerals by X-ray Diffraction.

    ERIC Educational Resources Information Center

    Kohut, Connie K.; And Others

    1993-01-01

    Discusses MAX, an interactive computer program for teaching identification of clay minerals based on standard x-ray diffraction characteristics. The program provides tutorial-type exercises for identification of 16 clay standards, self-evaluation exercises, diffractograms of 28 soil clay minerals, and identification of nonclay minerals. (MDH)

  10. The research of sapropels as the drilling fluids in dispersed phase (Lake Kirek)

    NASA Astrophysics Data System (ADS)

    Sagitov, R. R.; Minaev, K. M.

    2015-11-01

    This research describes the application of Kirek Lake sapropel as a drilling fluid in dispersed phase which could replace traditionally used clay powders in drilling fluids. Sapropel is century-old bed silt of freshwater lakes of more than 12 000 years, i.e. Holocene. It consists of natural organic and inorganic substances and chemically is a complex multicomponent biogenic genesis system. Humic complexes and wulfonic acids, polysaccharides, carbonic and protein polymers comprise sapropel suspension texture. This article introduces formulations and laboratory research of sapropel suspensions and thermal activation.

  11. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  12. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.

    PubMed

    da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares

    2016-08-01

    A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay. PMID:27112858

  13. The composition and origin of Ghana medicine clays

    PubMed Central

    van Dongen, Bart E.; Fraser, Sharon E.; Insoll, Timothy

    2011-01-01

    The mineral, organic and elemental composition of medicine clays from three shrines in the Tong Hills in northern Ghana (Gbankil, Kusanaab, and Yaane) are assessed to ascertain what additives they might contain and the implications for their recognition, for example in archaeological contexts. These are clays that are widely used for healing purposes being perceived efficacious in curing multiple ailments and which are given a divine provenance, but their collection is ascribed human agency. The Yaane clay is also supplied as part of the process of obtaining the right to operate the shrine elsewhere making it widely dispersed. Organic geochemical analyses revealed a predominance of plant-derived material with a substantial contribution of microbial origin. Based on these (supported by elemental and mineral analyses), no unnatural organic material could be detected, making an exogenous contribution to these clays unlikely. The implications are that these are wholly natural medicinal substances with no anthropogenic input into their preparation, as the traditions suggest. The very similar mineralogy of all the clays, including a non-medicine clay sampled, suggests that, unless the geology radically differed, differentiating between them analytically in an archaeological contexts would be doubtful. PMID:21810043

  14. The composition and origin of Ghana medicine clays.

    PubMed

    van Dongen, Bart E; Fraser, Sharon E; Insoll, Timothy

    2011-08-01

    The mineral, organic and elemental composition of medicine clays from three shrines in the Tong Hills in northern Ghana (Gbankil, Kusanaab, and Yaane) are assessed to ascertain what additives they might contain and the implications for their recognition, for example in archaeological contexts. These are clays that are widely used for healing purposes being perceived efficacious in curing multiple ailments and which are given a divine provenance, but their collection is ascribed human agency. The Yaane clay is also supplied as part of the process of obtaining the right to operate the shrine elsewhere making it widely dispersed. Organic geochemical analyses revealed a predominance of plant-derived material with a substantial contribution of microbial origin. Based on these (supported by elemental and mineral analyses), no unnatural organic material could be detected, making an exogenous contribution to these clays unlikely. The implications are that these are wholly natural medicinal substances with no anthropogenic input into their preparation, as the traditions suggest. The very similar mineralogy of all the clays, including a non-medicine clay sampled, suggests that, unless the geology radically differed, differentiating between them analytically in an archaeological contexts would be doubtful. PMID:21810043

  15. Recent Developments in Geothermal Drilling Fluids

    SciTech Connect

    Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

    1981-01-01

    In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

  16. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.

  17. Establishing nuclear facility drill programs

    SciTech Connect

    1996-03-01

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  18. Boron Enrichment in Martian Clay

    PubMed Central

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  19. Boron enrichment in martian clay.

    PubMed

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  20. Successful application of drilling technology extends directional capability

    SciTech Connect

    Schroeter, D.R.; Chan, H.W. )

    1989-09-01

    This paper presents an operational overview of the application of measurement-while-drilling (MWD) directional equipment, polycrystalline-diamond-compact (PDC) bits, a top-drive drilling system (TDS), and low-toxicity oil-based-mud (LTOBM) technology for cost reductions in the drilling of long-reach directional wells in the South China Sea offshore Malaysia. Guidelines are provided for improved hole cleaning, for monitoring oil mud properties, and for drillstem tripping practices to minimize hole problems and costly stuck-pipe incidents.