Science.gov

Sample records for clay host rocks

  1. Reactive transport simulations of the evolution of a cementitious repository in clay-rich host rocks

    NASA Astrophysics Data System (ADS)

    Kosakowski, Georg; Berner, Urs; Kulik, Dmitrii A.

    2010-05-01

    that the clay mineral is represented by a X- '(solute) ligand' initially occupied with e.g. Na+. Our representation of cation exchange is based on a multi end-member ideal solid solution model for the clay which at the same time considers the chemical reactivity of the clay phase in the high pH cement environment. As a first application, we will present the results of calculations of the interaction between a cement compartment in contact with a clay-rich host rock. References: Bradbury, M. & Baeyens, B. (2002). Porewater chemistry in compacted re-saturated MX-80 bentonite: Physico-chemical characterisation and geochemical modelling. PSI-Report 02-10, Paul Scherrer Institut, Villigen, Switzerland. Lothenbach, B. & Wieland, E. (2006). A thermodynamic approach to the hydration of sulphate-resisting Portland cement. Waste Management, 26, 706-719. Shao, H., Dmytrieva, S.V., Kolditz, O., Kulik, D.A., Pfingsten, W. & Kosakowski, G. (2009). Modeling reactive transport in non-ideal aqueous-solid solution system. Applied Geochemistry, 24(7), 1287-1300.

  2. Evaluating the geochemically induced swelling/shrinkage of the near-field host clay rock using a THC model and the diffuse double layer theory

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Liu, H.; Birkholzer, J. T.; Houseworth, J. E.; Sonnenthal, E. L.

    2011-12-01

    One advantage of emplacing nuclear waste in a clay formation is the potential self-sealing capability due to clay swelling. The swelling properties of the near-field host clay rock can be altered due to geochemical factors, including changes in groundwater geochemistry, proportions of exchangeable cations, and swelling clay mineral abundances. The clay host rock can also undergo geochemical changes due to the interaction with the engineered barrier system (EBS) materials. In this paper, coupled thermal, hydrological, and chemical (THC) models are linked with a swelling model based on diffuse double layer (DDL) theory and changes in the swelling properties of clay host rocks in the near field area are evaluated. Findings based on THC simulations using the reaction-transport code TOUGHREACT include: 1) Significant changes in the swelling pressure could be expected depending on various hydrogeologic and geochemical conditions. The change of hydration rate of the EBS (via the adjustment of tortuosity) could have significant effect on the swelling pressure. 2) Geochemically-induced swelling/shrinkage only occurs in the near-field area, within a few meters from the EBS interface. 3) Swelling/shrinkage induced porosity change is generally much smaller than that caused by mineral precipitation/dissolution. 4) The geochemically-induced swelling/shrinkage of host clay rock is the combined effect of variation in the pore water geochemistry, exchangeable cations, and smectite abundance. Neglecting any of these three latter factors might lead to a miscalculation of the geochemically-induced swelling pressure.

  3. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    SciTech Connect

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  4. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    SciTech Connect

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.; Zheng, Liange; Rutqvist, Jonny; Steefel, Carl I.; Kim, Kunhwi; Nakagawa, Seiji; Houseworth, James; Birkholzer, Jens; Caporuscio, Florie A.; Cheshire, Michael; Rearick, Michael S.; McCarney, Mary K.; Zavarin, Mavrik; Benedicto, Ana; Kersting, Annie B.; Sutton, Mark; Jerden, James; Frey, Kurt E.; Copple, Jacqueline M.; Ebert, William

    2014-08-01

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale

  5. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  6. Processes and controls in swelling anhydritic clay rocks

    NASA Astrophysics Data System (ADS)

    Mutschler, Thomas; Blum, Philipp; Butscher, Christoph

    2015-04-01

    Referring to the swelling of anhydritic clay rocks in tunneling, Leopold Müller-Salzburg noted in the third volume on tunneling of his fundamental text book on rock engineering that "a truly coherent explanation of these phenomena is still owing" (Müller-Salzburg 1978, p. 306). This valuation is still true after more than three decades of research in the field of swelling anhydritic clay rocks. One of the reasons is our limited knowledge of the processes involved in the swelling of such rocks, and of the geological, mineralogical, hydraulic, chemical and mechanical controls of the swelling. In this contribution, a review of processes in swelling anhydritic clay rocks and of associated controls is presented. Also numerical models that aim at simulating the swelling processes and controls are included in this review, and some of the remaining open questions are pointed out. By focusing on process-oriented work in this review, the presentation intends to stimulate further research across disciplines in the field of swelling anhydritic clay rocks to finally get a step further in managing the swelling problem in geotechnical engineering projects. Keywords: swelling; anhydritic clay rocks; review

  7. A clay grouting technique for granitic rock adjacent to clay bulkhead

    NASA Astrophysics Data System (ADS)

    Masumoto, K.; Sugita, Y.; Fujita, T.; Martino, J. B.; Kozak, E. T.; Dixon, D. A.

    Excavation and re-distribution of the stress around the tunnel lead to the development of an excavation damage zone (EDZ). While the bulkheads are keyed into the rock wall of the tunnel to act as cut-offs for the EDZ of the tunnel, clay grouting was conducted around the clay bulkhead as an additional measure to interrupt the connectivity of EDZ at the bulkhead. Clay grouting is being tested to determine if it is an effective method to reduce the permeability of fractured rock. The grouting into the EDZ is difficult because many of the fractures in the EDZ are connected with the excavation surface and cannot be filled efficiently by pressurizing the grout slurry. Therefore, the in situ injection tests of the clay grouting technique for the EDZ adjacent to the clay bulkhead were conducted to demonstrate the clay grouting technique and to estimate the ability of clay grouting to reduce permeability in the EDZ. This paper presents the results of these tests. Three in situ tests of clay grouting were performed during the Tunnel Sealing Experiment (TSX), conducted at Canada’s Underground Research Laboratory (URL) in the granitic rock to demonstrate technologies for tunnel sealing at full-scale. First, a clay grouting trial was conducted at a trial key in the tunnel about 25 m above the TSX tunnel. Secondly, the two series of clay grouting were performed in the TSX tunnel, on the upstream face of the key prior to the installation of the seal material of the clay key and later on the downstream side of the bulkhead. The results of these tests indicated a reduction in the permeability of granitic rock around the holes after grouting.

  8. Fault Rock Variation as a Function of Host Rock Lithology

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Diener, J.

    2013-12-01

    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  9. Clay-shoveler's fracture during indoor rock climbing.

    PubMed

    Kaloostian, Paul E; Kim, Jennifer E; Calabresi, Peter A; Bydon, Ali; Witham, Timothy

    2013-03-01

    Indoor rock climbing is becoming more popular for people of all ages. Despite the tremendous interest in this competitive sport, participants are made aware of the dangers associated with participating. The authors present the first reported case of a clay-shoveler's fracture at the T1 spinous process during indoor rock climbing. They describe the management and natural history of this fracture and discuss management strategies for this increasingly popular recreational sport.A 14-year-old competitive indoor rock climber presented with acute-onset midline thoracic pain at T1 while indoor rock climbing. He reported no recent falls or trauma but stated that the pain came on abruptly while rock climbing. On examination, he was neurologically intact except for significant tenderness to palpation at the T1 spinous process. Magnetic resonance imaging demonstrated a minimally displaced T1 spinous process fracture with evidence of significant surrounding muscular edema, suggesting an acute fracture. He was treated conservatively with anti-inflammatory drugs, complete climbing restriction, and rest. He continued to have focal upper back pain at the level of the fracture over the next 4 months. He was unable to climb for 4 months until his pain resolved after conservative treatment of climbing restriction, pain control, and rest.This is the first documented case of a clay-shoveler's fracture sustained in a pediatric patient directly attributable to indoor rock climbing. PMID:23464962

  10. The evolution of clay rock/cement interfaces in a cementitious repository for low- and intermediate level radioactive waste

    NASA Astrophysics Data System (ADS)

    Kosakowski, Georg; Berner, Urs

    In Switzerland, deep geological storage in clay rich host rocks is the preferred option for low- and intermediate-level radioactive waste. For these waste types cementitious materials are used for tunnel support and backfill, waste containers and waste matrixes. The different geochemical characteristics of clay and cementitious materials may induce mineralogical and pore water changes which might affect the barrier functionality of host rocks and concretes. We present numerical reactive transport calculations that systematically compare the geochemical evolution at cement/clay interfaces for the proposed host rocks in Switzerland for different transport scenarios. We developed a consistent set of thermodynamic data, simultaneously valid for cementitious (concrete) and clay materials. With our setup we successfully reproduced mineralogies, water contents and pore water compositions of the proposed host rocks and of a reference concrete. Our calculations show that the effects of geochemical gradients between concrete and clay materials are very similar for all investigated host rocks. The mineralogical changes at material interfaces are restricted to narrow zones for all host rocks. The extent of strong pH increase in the host rocks is limited, although a slight increase of pH over greater distances seems possible in advective transport scenarios. Our diffusive and partially also the advective calculations show massive porosity changes due to precipitation/dissolution of mineral phases near the interface, in line with many other reported transport calculations on cement/clay interactions. For all investigated transport scenarios the degradation of concrete materials in emplacement caverns due to diffusive and advective transport of clay pore water into the caverns is limited to narrow zones. A specific effort has been made to improve the geochemical setup and the extensive use of solid solution phases demonstrated the successful application of a thermodynamically

  11. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    SciTech Connect

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  12. Self-sealing barriers of clay/mineral mixtures The SB project at the Mont Terri Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Rothfuchs, Tilmann; Jockwer, Norbert; Zhang, Chun-Liang

    Moderately compacted clay/mineral mixtures may represent a reasonable alternative to highly compacted bentonite buffers currently studied and considered in some concepts of underground repositories for high-level radioactive wastes. In contrast to highly compacted buffers clay/sand mixtures exhibit a high permeability to gas in the unsaturated state and a comparably low gas entry/break through pressure in the saturated state while providing an adequate self-sealing potential due to swelling of the clay minerals after water uptake from the host rock. By using optimized material mixtures, the evolution of high gas pressure in the repository near-field due to corrosion of the waste containers will be avoided and possible migration of radionuclides from the waste matrix in the liquid phase through the buffer will be diffusion controlled just like in the host rock. On basis of promising laboratory results gained in GRS’ geotechnical laboratory it was decided to test and demonstrate the sealing properties of clay/mineral mixtures under realistic in situ conditions at the Mont Terri Underground Rock Laboratory (MTRL). The paper presents details about the envisaged in situ experiments and material data obtained from laboratory investigations. First results of full-scale mock-up tests are presented as well. In addition, information is given about further laboratory investigations and scoping calculations that have been performed to analyze whether it would be possible to achieve and demonstrate the required sealing properties within the comparably short run time of the project. It has been found that clay/sand mixtures with clay contents between 35% and 50% are suitable for the envisaged in situ tests at the MTRL (and most likely also for adequate sealing of disposal rooms in repositories). The SB project is part of the Integrated Project ESDRED [ANDRA, 2005. www.esred.info] funded by the Commission of the European Commission.

  13. Swelling and osmotic flow in a potential host rock

    NASA Astrophysics Data System (ADS)

    Horseman, S. T.; Harrington, J. F.; Noy, D. J.

    material. When immersed in distilled water, the cube swelled preferentially in a direction normal to bedding. Swelling was accompanied by visible opening of cracks. Volumetric strains of the clayshale during the swelling test were of the same order of magnitude as those during permeability testing. The presence of dilated cracks could explain the low membrane efficiency, since the dissociated ions of the salt would be able to diffuse through the crack network relatively unimpeded by electrostatic interactions with the clay mineral surfaces. The high compressibility and low membrane efficiency revealed by these experiments may be a consequence of fabric damage during sampling and specimen preparation or may actually be representative of the rock characteristics within the engineering disturbed zone (EDZ) of the tunnel niches. It is entirely possible that undisturbed rock remote from the excavations displays significantly lower compressibility and higher membrane efficiency. Even though the clayshale membrane in these experiments is inefficient, the results clearly demonstrate that Opalinus Clay is capable of supporting an osmotic flow of water. This has important implications in the specification, operation and interpretation of borehole tests aimed at the hydrogeological characterisation of this potential host rock. In addition the osmotic coupling term modifies the effective diffusion coefficient which should be accounted for when undertaking safety assessments.

  14. Discrete fracture hydromechanical model for the disturbed rock zone in a clay rock

    NASA Astrophysics Data System (ADS)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2013-12-01

    We have developed a coupled thermal-hydrological-mechanical (THM) fracture damage model, TOUGH-RBSN, to investigate the behavior of fracture generation and evolution in rock in the presence of perturbations to THM conditions. This model combines the capabilities of the TOUGH2 simulator to represent thermal-hydrological processes with a rigid-body-spring-network (RBSN) model, a type of discrete modeling, to treat geomechanical and fracture-damage processes. In particular, the development and evolution of fractures in the excavation damaged zone (EDZ) of a clay rock, with application to high-level nuclear waste disposal, is a focus for this model development. Previously, the TOUGH-RBSN approach has been used to model fracture damage under tensile conditions as a result of desiccation shrinkage. The next phase of model testing will be application to the HG-A test being conducted at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. This test is being conducted in a 13-m long, 1-m diameter microtunnel in the Opalinus clay rock in which a test section at the far end of the microtunnel is isolated using a packer. The test is specifically targeted to observe how fluids injected into the test section penetrate into the rock, with particular emphasis on the EDZ. The HG-A microtunnel was excavated in 2005 and subsequent mapping of the tunnel surface shows preferential fracturing and tunnel breakouts along zones where bedding planes are tangential to the tunnel wall and where faults intercept the tunnel. It appears that the EDZ fracture damage can be attributed to both tensile and shear fracturing mechanisms. A series of injection tests with water and gas have been performed which also show preferential invasion of the fluid pressure along the observed damage zones, as well as fracture self-sealing over time. The TOUGH-RBSN approach has been successfully applied to modeling fracture driven by predominately tensile loading, whereas only

  15. Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory)

    NASA Astrophysics Data System (ADS)

    Mauclaire, L.; McKenzie, J. A.; Schwyn, B.; Bossart, P.

    Although microorganisms have been isolated from various deep-subsurface environments, the persistence of microbial activity in claystones buried to great depths and on geological time scales has been poorly studied. The presence of in-situ microbial life in the Opalinus Clay Formation (Mesozoic claystone, 170 million years old) at the Mont Terri Rock Laboratory, Canton Jura, Switzerland was investigated. Opalinus Clay is a host rock candidate for a radioactive waste repository. Particle tracer tests demonstrated the uncontaminated nature of the cored samples, showing their suitability for microbiological investigations. To determine whether microorganisms are a consistent and characteristic component of the Opalinus Clay Formation, two approaches were used: (i) the cultivation of indigenous micoorganisms focusing mainly on the cultivation of sulfate-reducing bacteria, and (ii) the direct detection of molecular biomarkers of bacteria. The goal of the first set of experiments was to assess the presence of cultivable microorganisms within the Opalinus Clay Formation. After few months of incubation, the number of cell ranged from 0.1 to 2 × 10 3 cells ml -1 media. The microorganisms were actively growing as confirmed by the observation of dividing cells, and detection of traces of sulfide. To avoid cultivation bias, quantification of molecular biomarkers (phospholipid fatty acids) was used to assess the presence of autochthonous microorganisms. These molecules are good indicators of the presence of living cells. The Opalinus Clay contained on average 64 ng of PLFA g -1 dry claystone. The detected microbial community comprises mainly Gram-negative anaerobic bacteria as indicated by the ratio of iso/anteiso phospholipids (about 2) and the detection of large amount of β-hydroxy substituted fatty acids. The PLFA composition reveals the presence of specific functional groups of microorganisms in particular sulfate-reducing bacteria ( Desulfovibrio, Desulfobulbus, and

  16. Thermal impact on host rock of geologic repository; Final report

    SciTech Connect

    Mou, Ching-Hua

    1986-03-01

    The initial stress of rock was estimated and analyzed based on the geological survey information collected during the site visits. Change in stress and its distribution in the rock due to excavation was investigated and predicted according to the repository geometry. Thermal effects on the magnitude and distribution of stress in rock was also investigated and predicted according to the repository geometry. Thermal effects on the magnitude and distribution of rock stresses were investigated under two different temperature conditions. Emphasis was placed on the development of fractures due to stress concentration at or near the repository openings. Permeability characteristics of host rock were evaluated at three temperature levels. Series of permeability tests were conducted for determining the thermal effect on the hydrological characteristics of rock. The following goals were achieved from this investigation: (1) Better understanding of stress changes in host rock due to repository excavation and thermal impact. (2) Better understanding of the development of rock fractures and its effect on the hydrological characteristics of host rock. (3) To provide the technical information obtained from this study to the Office of Civilian Radioactive Wastes Management (OCRWM) with a hope that it may assist OCRWM in the decision making of selecting a repository site. Due to limited time for this research, only one type of host media, granite, was included in the study.

  17. Compressional wave dispersion due to rock matrix stiffening by clay squirt flow

    NASA Astrophysics Data System (ADS)

    Ba, Jing; Zhao, Jianguo; Carcione, José M.; Huang, Xingxing

    2016-06-01

    The standard Biot-Gassmann theory of poroelasticity fails to explain strong compressional wave velocity dispersion experimentally observed in 12 tight siltstone with clay-filled pores. In order to analyze and understand the results, we developed a new double-porosity model of clay squirt flow where wave-induced local fluid flow occurs between the micropores in clay aggregates and intergranular macropores. The model is validated based on the combined study of ultrasonic experiments on specimens at different saturation conditions and theoretical predictions. The presence of a sub-pore-scale structure of clay micropores contained in intergranular macropores, where the fluid does not have enough time to achieve mechanical equilibrium at ultrasonic frequencies and thus stiffens the rock matrix, provides a suitable explanation of the experimental data. Moreover, the model provides a new bound for estimating the compressional wave velocity of tight rocks saturated with two immiscible liquids. The theoretical predictions indicate that the velocity variation between gas- and liquid-saturated specimens is predominantly induced by the clay squirt stiffening effect on the rock matrix and not by fluid substitution. The effect contributes more than 90% to the variation in the porosity range of 0-5%. Thus, clay squirt flow dominates the relationships between compressional wave velocity and pore fluid in tight rocks.

  18. The application of a neural network to map clay zones in crystalline rock

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Genter, Albert; Kohl, Thomas

    2014-02-01

    The appearance of clay in fractures is an important issue of applied geoscience as it not only affects the stability but also the flow paths through rocks. Forming a link between hydraulic, geochemical and mechanical processes, clay structures need to be thoroughly investigated. The growing importance of clay for waste disposal, petroleum research, geothermal exploration and geotechnical engineering necessitates tools to find and to characterize clay structures and clay minerals indirectly from geophysical measuring methods. Particularly, there is need for a technique enabling to map clay-rich zones from geophysical well logs acquired on-site in order to assess the mechanical and hydraulic properties of rocks. In this study, we present a neural network based method to map clay bearing fracture zones in crystalline facies. The study has been performed on the basis of geophysical and geological data acquired at the geothermal site of Soultz-sous-Forêts (France), in the granitic reservoir. A neural network was trained on geophysical logs from the fully cored exploration well EPS1. Calibration of the network was done on reference logs derived from the drill core. The effective calibration enabled the creation of synthetic clay content logs, which predict the clay amount in fractures along the well with >74 per cent accordance with a reference log. High clay contents could be located in faults, on which aseismic movements have been identified. The validation of this relationship destines the synthetic logs to help identifying potentially weak zones from geophysical logging methods. With application on non-cored wells, this tool can become a powerful means for assessing the probability of aseismic movements on faults caused by the presence of clay and estimating the hydraulic properties of fractures.

  19. A minimalistic microbial food web in an excavated deep subsurface clay rock.

    PubMed

    Bagnoud, Alexandre; de Bruijn, Ino; Andersson, Anders F; Diomidis, Nikitas; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    Clay rocks are being considered for radioactive waste disposal, but relatively little is known about the impact of microbes on the long-term safety of geological repositories. Thus, a more complete understanding of microbial community structure and function in these environments would provide further detail for the evaluation of the safety of geological disposal of radioactive waste in clay rocks. It would also provide a unique glimpse into a poorly studied deep subsurface microbial ecosystem. Previous studies concluded that microorganisms were present in pristine Opalinus Clay, but inactive. In this work, we describe the microbial community and assess the metabolic activities taking place within borehole water. Metagenomic sequencing and genome-binning of a porewater sample containing suspended clay particles revealed a remarkably simple heterotrophic microbial community, fueled by sedimentary organic carbon, mainly composed of two organisms: a Pseudomonas sp. fermenting bacterium growing on organic macromolecules and releasing organic acids and H2, and a sulfate-reducing Peptococcaceae able to oxidize organic molecules to CO(2). In Opalinus Clay, this microbial system likely thrives where pore space allows it. In a repository, this may occur where the clay rock has been locally damaged by excavation or in engineered backfills. PMID:26542073

  20. Thermo-osmosis coupled-flow characterization in clay-rocks: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Tremosa, J.; Goncalves, J.; Matray, J.; Violette, S.

    2009-12-01

    Water flow in clay-rocks is not only driven by a hydraulic gradient but also by chemical, thermal or electrical gradients. It implies a re-evaluation of the Darcy law by considering all gradients occurring in the clay-rock and their associated coupling coefficients (e.g. the osmotic efficiency to link a chemical gradient to a water flow). The occurrence of such processes in clay-rocks is due to the low hydraulic conductivity of this media and because of electrical charges at the clay minerals surface. Here, we focused on the thermo-osmosis process, a water flow under a temperature gradient, which is poorly characterized in spite of its implications in nuclear waste storage in clay-rocks. A set of thermo-osmotic experiments was performed in an equipped borehole installed in a Toarcian compacted clay at the IRSN’s Underground Research Laboratory in the south of France. The water flow induced by a temperature gradient (from the hotter towards the colder zone) was reproduced by the help of a numerical model, including coupled-flow processes, mass conservation laws and hydro-thermo-mechanical changes (see Figure). A range of thermo-osmotic permeability (kT), between 6.10-12 and 2.10-10 m2.K-1.s-2, was obtained during the experiments depending on the temperature gradient and uncertainties on the model parameters. Values obtained for the Tournemire’s argillite are in the high range of thermo-osmotic permeabilities for argillaceous materials and suggest an effect of pore size on the thermo-osmotic permeability of a clay-rock (kT being higher with little pore size). Another dependence of thermo-osmotic permeability with temperature is observed, with kT decreasing when the temperature increases. These experiments and modeling indicate thermo-osmosis will have an influence on water flow in presence of a temperature gradient and this process is to consider in water flow studies in clay-rocks. Reference: Tremosa et al. Estimating thermo-osmotic coefficients in clay-rocks

  1. Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays

    SciTech Connect

    Tsang, Chin-Fu; Bernier, Frederic; Davies, Christophe

    2004-06-20

    The creation of an excavation disturbed zone or excavation damaged zone is expected around all man-made openings in geologic formations. Macro- and micro-fracturing, and in general a redistribution of in situ stresses and rearrangement of rock structures, will occur in this zone, resulting in drastic changes of permeability to flow, mainly through the fractures and cracks induced by excavation. Such an EDZ may have significant implications for the operation and long-term performance of an underground nuclear waste repository. Various issues of concern need to be evaluated, such as processes creating fractures in the excavation damaged zone, the degree of permeability increase, and the potential for sealing or healing (with permeability reduction) in the zone. In recent years, efforts along these lines have been made for a potential repository in four rock types-crystalline rock, salt, indurated clay, and plastic clay-and these efforts have involved field, laboratory, and theoretical studies. The present work involves a synthesis of the ideas and issues that emerged from presentations and discussions on EDZ in these four rock types at a CLUSTER Conference and Workshop held in Luxembourg in November, 2003. First, definitions of excavation disturbed and excavation damaged zones are proposed. Then, an approach is suggested for the synthesis and intercomparison of geohydromechanical processes in the EDZ for the four rock types (crystalline rock, salt, indurated clay, and plastic clay). Comparison tables of relevant processes, associated factors, and modeling and testing techniques are developed. A discussion of the general state-of-the-art and outstanding issues are also presented. A substantial bibliography of relevant papers on the subject is supplied at the end of the paper.

  2. Coupled hydro-mechanical processes in crytalline rock and ininduratedand plastic clays: A comparative discussion

    SciTech Connect

    Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

    2006-02-15

    This paper provides a comparative discussion of coupledhydromechanical processes in three different geological formations:crystalline rock, plastic clay, and indurated clay. First, the importantprocesses and associated property characteristics in the three rock typesare discussed. Then, one particular hydromechanical coupling is broughtup for detailed consideration, that of pore pressure changes in nearbyrock during tunnel excavation. Three field experiments in the three rocktypes are presented and their results are discussed. It is shown that themain physical processes are common to all three rock types, but with verydifferent time constants. The different issues raised by these cases arepointed out, and the transferable lessons learned are identified. Suchcross fertilization and simultaneous understanding of coupled processesin three very different rock types help to greatly enhance confidence inthe state of science in this field.

  3. Mineralogical Characteristics of Carbonate Rock-Hosted Naturally Occurring Asbestos

    NASA Astrophysics Data System (ADS)

    Shin, E.; Roh, Y.

    2012-12-01

    Naturally Occurring Asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. The parent rocks of asbestos have been associated with ultramafic and mafic rocks, and carbonate rock. The previous studies on naturally occurring asbestos were mainly limited to ultramafic and mafic rock-hosted asbestos and studies on carbonate rock-hosted asbestos are relatively rare in South Korea. Therefore, this study was aimed to characterize mineralogy of carbonate rock-hosted NOA at Muju and Jangsu, Jeonbuk province and Seosan and Asan, Chungnam province. The rock types at the four sites are consisting mainly of Precambrian metasedimentary rock. XRD and PLM analyses showed fibrous minerals in the sites were tremolite and actinolite of acicular and columnar forms. SEM-EDS analyses showed that asbestiform tremolite and actinolite had various ratios of length and diameters over 12:1, and needle and columnar forms. A columnar forms of tremolite and actinolite were showed small acicular at the edge of the particle. Its main chemical compositions are mainly Si, O, Mg, Ca, which were identical to tremolite. Actinolite contains Fe in addition to Si, O, Mg, Ca. EPMA analyses of asbestos occurred at Muju indicated that chemical composition are 55% SiO2, 23.2% MgO, 13.1 % CaO, and 0.61 % FeO and the chemical formula calculated as (K0.01Na0.01)Ca2.01(Mg4.94Fe0.05) (Al0.004Si7.98)O22(OH)2, which is close to ideal tremolite. In addition to tremolite, actinolite was also occurred at Seosan, Chungnam. XRD analyses showed that antigorite was existed at Muju, but PLM and SEM analyses showed the antigorite was platy structure, not asbestiform. These results indicate that asbestiform tremolite and actinolite with acicular forms contains in carbonate rocks at Muju and Jangsu, Jeonbuk and Seosan and Asan, Chungnam province South Korea.

  4. Swelling of Clay-Sulfate Rocks: A Review of Processes and Controls

    NASA Astrophysics Data System (ADS)

    Butscher, Christoph; Mutschler, Thomas; Blum, Philipp

    2016-04-01

    The swelling of clay-sulfate rocks is a major threat in tunnel engineering, causing serious damage to tunnels and producing high additional costs during tunnel construction and operation. The swelling problem is also known from other geotechnical fields, such as road and bridge construction, and in conjunction with geothermal drillings. The planning of counter measures that would stop or minimize the swelling is extremely difficult, and it is currently impossible to predict the swelling behavior of an actual geotechnical project. One of the reasons is our limited knowledge of the processes involved in the swelling of clay-sulfate rocks, and of the geological, mineralogical, chemical, hydraulic and mechanical controls of the swelling. This article presents a literature review of processes in swelling clay-sulfate rocks and associated controls. Numerical models that aim at simulating the processes and controls are also included in this review, and some of the remaining open questions are pointed out. By focusing on process-related work in this review, the article intends to stimulate further research across disciplines in the field of swelling clay-sulfate rocks to finally get a step further in managing the swelling problem in geotechnical projects.

  5. Stress-strain relations for swelling anhydritic clay rocks – A review

    NASA Astrophysics Data System (ADS)

    Breuer, Simon; Blum, Philipp; Butscher, Christoph

    2015-04-01

    The swelling of clay-sulfate rocks is a major threat in tunnel engineering, causing serious damage to tunnels and producing high additional costs during tunnel construction and operation. The swelling leads to geomechanical processes that may result in heave of the tunnel invert, destruction of the lining or uplift of the entire tunnel section. Heave-pressure-time relations are needed when predictions should be made about the mechanical behavior of swelling rock. For pure clay rocks, there is a linear relation between the swelling heave (strain) and the logarithm of pressure (Grob 1972). A generally accepted relation for clay-sulfate rocks, however, is still lacking to date. Therefore, finding appropriate and sustainable counter measures for an actual tunneling project affected by swelling remains extremely difficult. Grob (1972) proposed the linear relation between heave and the logarithm of pressure ("semi-logarithmic swelling law") not only for clay rocks, but also for clay-sulfate rocks. Pimentel (2007), however, presented laboratory experiments indicating that the semi-logarithmic swelling law may be inadequate for describing the swelling of clay-sulfate rocks. The laboratory tests revealed three different stages in the swelling process, including minimal deformation and prevented gypsum crystallization at high pressures (> 6 MPa); large deformation and gypsum crystallization at medium pressures; and only small deformation, possibly along with gypsum dissolution, at low pressures (< 4 MPa). He pointed at a "tri-linear" relation to describe the different stages. Kirschke (1995) generally doubts the existence of a fixed relation between swelling strain and (final) pressure. According to him, swelling pressures and their temporal development are controlled by water inflow into the rock, which cannot be reflected by general strain-stress relations. The present study critically reviews stress-strain relations for swelling anhydritic clay rocks proposed by various

  6. Microstructure and porosity of Opalinus Clay at the Mont Terri rock laboratory (Switzerland)

    NASA Astrophysics Data System (ADS)

    Houben, M. E.; Laurich, B.; Desbois, G.; Urai, J. L.

    2012-04-01

    The Mont Terri rock laboratory (Canton Jura, Switzerland) is an international scientific platform of research on radioactive waste disposal in Opalinus Clay and results provide input for assessing the feasibility and safety of deep geological disposal of radioactive waste in argillaceous formations [1]. A main safety issue is to accurately investigate mass transport rates. To date several methods analyzed bulk permeability and porosity of Opalinus Clay. However, detailed quantitative investigation of microstructure and pore morphology is necessary to understand sealing capacity, coupled flow, capillary processes and associated deformation. To produce high quality cross-sections without microstructural damage that enable investigation of microstructure and porosity down the nm scale a combination of Broad Ion Beam (BIB) milling and SEM imaging has been used [2]. This method allowed direct imaging of the clay fabric and porosity on ca. 1 mm2 areas. The lateral variability of Opalinus Clay is low on the regional scale [1], whereas vertically the Opalinus Clay can be subdivided into six different lithological subfacies [3] based on variable silt layers, sandstone layers and siderite concretions present, where the end-members are the Shaly and Sandy facies. In this contribution microstructures and pore space in Opalinus Clay from the undisturbed Shaly and Sandy facies are studied and compared to disturbed samples from the "Main fault" within the Mont Terri rock laboratory. The Shaly facies in the lower half of the sequence constitutes of dark grey silty calcerous shales and argillaceous marls, whereas the Sandy facies comprises silty to sandy marls with sandstone lenses cemented with carbonate [3]. The qualitative mineralogical composition of all Opalinus Clay facies is similar, whereas the "Main Fault" shows calcite, celestite and pyrite veins. Although the overall microfabric differs per layer and per facies we observe low variability of microstructure and porosity in

  7. Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA

    NASA Astrophysics Data System (ADS)

    Haines, Samuel H.; van der Pluijm, Ben A.

    2012-10-01

    Neoformed minerals in shallow fault rocks are increasingly recognized as key to the behavior of faults in the elasto-frictional regime, but neither the conditions nor the processes which wall-rock is transformed into clay minerals are well understood. Yet, understanding of these mineral transformations is required to predict the mechanical and seismogenic behavior of faults. We therefore present a systematic study of clay gouge mineralogy from 30 outcrops of 17 low-angle normal faults (LANF's) in the American Cordillera to demonstrate the range and type of clay transformations in natural fault gouges. The sampled faults juxtapose a wide and representative range of wall rock types, including sedimentary, metamorphic and igneous rocks under shallow-crustal conditions. Clay mineral transformations were observed in all but one of 28 faults; one fault contains only mechanically derived clay-rich gouge, which formed entirely by cataclasis. Clay mineral transformations observed in gouges show four general patterns: 1) growth of authigenic 1Md illite, either by transformation of fragmental 2M1 illite or muscovite, or growth after the dissolution of K-feldspar. Illitization of fragmental illite-smectite is observed in LANF gouges, but is less common than reported from faults with sedimentary wall rocks; 2) 'retrograde diagenesis' of an early mechanically derived chlorite-rich gouge to authigenic chlorite-smectite and saponite (Mg-rich tri-octahedral smectite); 3) reaction of mechanically derived chlorite-rich gouges with Mg-rich fluids at low temperatures (50-150 °C) to produce localized lenses of one of two assemblages: sepiolite + saponite + talc + lizardite or palygorskite +/- chlorite +/- quartz; and 4) growth of authigenic di-octahedral smectite from alteration of acidic volcanic wall rocks. These transformation groups are consistent with patterns observed in fault rocks elsewhere. The main controls for the type of neoformed clay in gouge appear to be wall-rock

  8. Integrated hydrogeological and geochemical processes in swelling clay-sulfate rocks

    NASA Astrophysics Data System (ADS)

    Schweizer, Daniel; Butscher, Christoph; Blum, Philipp

    2015-04-01

    The swelling of clay-sulfate rocks is a well-known problem in tunnel engineering where it poses a severe threat to important infrastructure. However, recently it was also encountered in an entirely different setting: The inaccurate implementation of geothermal installations in the town Staufen, Germany, led to water inflow into clay-sulfate rocks, resulting in heavy swelling. The swelling caused uplift rates of the ground surface exceeding 1 cm month-1, and severely damaged over 250 houses. The underlying processes of clay-sulfate rock swelling are complex and not yet sufficiently understood. In particular, hydraulic and geochemical processes in the zone of swelling are difficult to assess and the additional impact of constructional measures, such as borehole drilling, remains mostly unknown. The transformation of anhydrite into gypsum as a result of water influx is considered to be the main mechanism contributing to the swelling process, leading to an increase in volume of up to 60 %. This transformation process is decoupled: Anhydrite is dissolved and the pore-water concentration of sulfate increases; the dissolved sulfate may be transported with groundwater flow and finally precipitates as gypsum. Hence, groundwater flow and geochemistry of the pore-water play an essential role in the swelling processes. In fact, the swelling of clay-sulfate rocks is likely initiated by a change in geochemistry brought about by a change in hydraulic conditions. Thus, the main objective of this project is to quantify groundwater flux and geochemical reactions within swelling zones influenced by engineering activities, such as geothermal drillings. Additionally, reaction rates of anhydrite dissolution and gypsum precipitation at the field scale are to be compared with reaction rates determined in laboratory experiments. This study investigates the significance of (1) the local geological setting, (2) hydrology and geochemistry of the swelling zone and (3) their modification upon

  9. Lithophysal Rock Mass Mechanical Properties of the Repository Host Horizon

    SciTech Connect

    D. Rigby

    2004-11-10

    The purpose of this calculation is to develop estimates of key mechanical properties for the lithophysal rock masses of the Topopah Spring Tuff (Tpt) within the repository host horizon, including their uncertainties and spatial variability. The mechanical properties to be characterized include an elastic parameter, Young's modulus, and a strength parameter, uniaxial compressive strength. Since lithophysal porosity is used as a surrogate property to develop the distributions of the mechanical properties, an estimate of the distribution of lithophysal porosity is also developed. The resulting characterizations of rock parameters are important for supporting the subsurface design, developing the preclosure safety analysis, and assessing the postclosure performance of the repository (e.g., drift degradation and modeling of rockfall impacts on engineered barrier system components).

  10. Environmental rock-magnetism of Cenozoic red clay in the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Shimono, Takaya; Yamazaki, Toshitsugu

    2016-04-01

    Nonfossiliferous red clay can be used for elucidating long-range environmental changes, although such studies were limited so far because of the difficulty in precise age estimation and extremely low sedimentation rates. We conducted an environmental rock-magnetic study of Cenozoic red clay at the Integrated Ocean Drilling Program Site U1365 in the South Pacific Gyre. Magnetostratigraphy could be established only above ˜6 m below the seafloor (mbsf) (˜5 Ma). Below ˜6 mbsf, the ages of the cores were transferred from the published ages of nearby Deep Sea Drilling Project Site 596, which is based mainly on a constant Cobalt flux model, by intercore correlation using magnetic susceptibility and rare earth element content variation patterns. Rock-magnetic analyses including first-order reversal curve diagrams, the ratio of anhysteretic remanent magnetization susceptibility to saturation isothermal remanent magnetization (SIRM), and IRM component analyses revealed that magnetic minerals consist mainly of biogenic magnetite and terrigenous maghemite, and that the proportion of the terrigenous component increased since ˜23 Ma. We consider that the increase reflects a growth of eolian dust flux associated with a northward shift of Australia and the site to an arid region of the middle latitudes. The increase of the terrigenous component accelerated after ˜5 Ma, which may be associated with a further growth of the Antarctic glaciation at that time. This is coeval with the onset of the preservation of magnetostratigraphy, suggesting that the primary remanent magnetization is carried by the terrigenous component.

  11. DRIFT spectroscopic study of diagenetic organic-clay interactions in argillaceous source rocks.

    PubMed

    Li, Yingli; Cai, Jingong; Song, Guoqi; Ji, Junfeng

    2015-09-01

    Thermo diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to study the diagenetic organic-clay interactions in argillaceous source rocks from the Dongying Depression, Bohai Bay Basin, China. The results indicated that aliphatic organic matter (OM) represented the most prominent organic functional groups in the spectra, with two CH2 stretching vibrations at approximately 2926 cm(-1) and 2852 cm(-1). The peak areas of these vibrations correlated well with the amount of total organic carbon (TOC), indicating that the OM evolution may be represented by the variation in CH2 with depth. Infrared spectra obtained from samples that were heated to 105 °C, 250 °C and 550 °C suggest that the aliphatic OM consists of two fractions: combined OM and free OM. The former was more stable between 250 °C and 550 °C. This phenomenon was correlated with the H2O stretching vibration near 3300 cm(-1), indicating that this OM was bonded to the clay via H2O bridges. The location of the broad H2O stretching band gradually shifted with depth from 3298 cm(-1) to a higher wavenumber of 3305 cm(-1), whereas the corresponding bending band shifted rapidly from 1640 cm(-1) to 1605 cm(-1), indicating a weakening of the hydrogen bond and a decrease in the combined OM fraction. The correlation between the diagenetic smectite illitization and the decrease in the amount of combined OM leads to the conclusion that the smectite illitization may be a driving force for the OM desorption. This study demonstrates the usefulness of the thermo-DRIFT approach for exploring diagenetic OM-clay interactions in argillaceous source rocks. PMID:25879983

  12. DRIFT spectroscopic study of diagenetic organic-clay interactions in argillaceous source rocks

    NASA Astrophysics Data System (ADS)

    Li, Yingli; Cai, Jingong; Song, Guoqi; Ji, Junfeng

    2015-09-01

    Thermo diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to study the diagenetic organic-clay interactions in argillaceous source rocks from the Dongying Depression, Bohai Bay Basin, China. The results indicated that aliphatic organic matter (OM) represented the most prominent organic functional groups in the spectra, with two CH2 stretching vibrations at approximately 2926 cm-1 and 2852 cm-1. The peak areas of these vibrations correlated well with the amount of total organic carbon (TOC), indicating that the OM evolution may be represented by the variation in CH2 with depth. Infrared spectra obtained from samples that were heated to 105 °C, 250 °C and 550 °C suggest that the aliphatic OM consists of two fractions: combined OM and free OM. The former was more stable between 250 °C and 550 °C. This phenomenon was correlated with the H2O stretching vibration near 3300 cm-1, indicating that this OM was bonded to the clay via H2O bridges. The location of the broad H2O stretching band gradually shifted with depth from 3298 cm-1 to a higher wavenumber of 3305 cm-1, whereas the corresponding bending band shifted rapidly from 1640 cm-1 to 1605 cm-1, indicating a weakening of the hydrogen bond and a decrease in the combined OM fraction. The correlation between the diagenetic smectite illitization and the decrease in the amount of combined OM leads to the conclusion that the smectite illitization may be a driving force for the OM desorption. This study demonstrates the usefulness of the thermo-DRIFT approach for exploring diagenetic OM-clay interactions in argillaceous source rocks.

  13. Analyses of geochemical samples and descriptions of rock samples, Adams Gap and Shinbone Creek Roadless Areas, Clay County, Alabama

    USGS Publications Warehouse

    Erickson, M.S.; Hanley, J.T.; Kelley, D.L.; Sherlock, L.J.

    1983-01-01

    Semiquantitative spectrographic analyses for 31 elements on 105 rocks, 47 stream-sediment, and 70 soil samples from the Adams Gap and Shinbone Creek Roadless Areas and vicinity, Talladega National Forest, Clay County, Alabama are reported here in detail. Atomic-absorption analyses for zinc in all samples and for gold in 5 selected rock samples are also reported. Localities for all sables are given in Universal Transverse Mercator (UTM) coordinates. A brief description of each rock sample is included. Rocks analyzed include quartzite, phyllite, vein quartz, and schist.

  14. Porous clay heterostructures: A new inorganic host for 5-fluorouracil encapsulation.

    PubMed

    Gârea, S A; Mihai, A I; Ghebaur, A; Nistor, C; Sârbu, A

    2015-08-01

    This study proposed a new inorganic host for drug encapsulation. Porous clay heterostructure (PCH), synthesized using modified montmorillonite with hexadecyltrimethylammonium bromide, was used as host material and 5-fluorouracil (5-FU) as guest drug. Drug encapsulation within PCH in different conditions (soaking time, temperature and pH value) was investigated. Possible interactions of 5-FU with PCH were pointed out using different characterization methods like spectroscopic techniques (FT-IR, UV-vis, XPS), thermogravimetrical and BET analysis. The obtained results suggested that PCH host exhibits a high drug encapsulation efficiency which was influenced by factors like soaking time and pH value. PCH zeta potential value was strongly influenced by pH value. The PCH zeta potential significantly varies at acid pH, while a pH value higher than 7 provides a less variation. UV-vis analysis showed that after 30 min PCH host registered a maximum encapsulation efficiency value (44%) at room temperature using an incubation solution with a pH of 11. The soaking temperature does not substantially affect the loading of drug in PCH host. Thermogravimetrical analysis highlighted that drug encapsulation efficiency of PCH was mainly influenced by pH values. BET results confirmed the PCH synthesis and drug loading capacity. PMID:26022890

  15. Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling

    USGS Publications Warehouse

    Srodon, J.; Clauer, Norbert; Eberl, D.D.D.

    2002-01-01

    K-Ar dates of illitic clays from sedimentary rocks may contain "mixed ages," i.e., may have ages that are intermediate between the ages of end-member events. Two phenomena that may cause mixed ages are: (1) long-lasting reaction during the burial illitization of smectite: and (2) physical mixing of detrital and diagenetic components. The first phenomenon was investigated by simulation of illitization reactions using a nucleation and growth mechanism. These calculations indicate that values for mixed ages are related to burial history: for an equivalent length of reaction time, fast burial followed by slow burial produces much older mixed ages than slow burial followed by fast. The type of reaction that occured in a rock can be determined from the distribution of ages with respect to the thickness of illite crystals. Dating of artificial mixtures confirms a non-linear relation between mixed ages and the proportions of the components. Vertical variation of K-Ar age dates from Gulf Coast shales can be modeled by assuming diagenetic illitization that overprints a subtle vertical trend (presumably of sedimentary origin) in detrital mineral content.

  16. Lithium, a preliminary survey of its mineral occurrence in flint clay and related rock types in the United States

    USGS Publications Warehouse

    Tourtelot, H.A.; Brenner-Tourtelot, E. F.

    1978-01-01

    Maximum concentrations of lithium found in samples of flint clay and associated rocks of Pennsylvanian age in different States, in parts per million (ppm), are: Missouri, 5100; Pennsylvania-Maryland, 2100; Kentucky, 890; Ohio, 660; Alabama, 750; and Illinois, 160. Lithium-bearing kaolin deposits are distributed in the Coastal Plain province from New Jersey to Texas, and one occurs in Idaho; maximum lithium concentrations in samples from these deposits range from 64 to 180 ppm. The maximum concentration found in the Arkansas bauxite region is 460 ppm and that in flint clay in Colorado is 370 ppm. Samples from areas other than Pennsylvania, Maryland, Kentucky and Missouri are relatively few in number, represent mostly commercially valuable clays, and represent only a part of the refractory clay deposits in the United States. Data are not available on the clays associated with these deposits that may be unusable because they contain too much lithium as well as other deleterious elements. In both Pennsylvania and Missouri, lithium contents vary regionally between districts and locally between deposits. In samples containing more than 2000 ppm lithium, the lithium occurs in a dioctahedral chlorite mineral very similar to cookeite, which previously has not been recognized in sedimentary clays. The associated clays consist chiefly of well-crystallized kaolinite. The dioctahedral chlorite, however, seems to be most abundant where diaspore and boehmite occur along with the kaolinite. Barium, chromium, copper, phosphorus and strontium are present in some samples in amounts of several hundred pans per million or more, and may contribute to the failure of some clays to perform satisfactorily in firing tests. Lithium-rich clays could serve as a significant lithium resource in the very distant future. Clays that contain as much as 1% lithium may be common enough in Missouri or in Pennsylvania to be produced as a by-product to help support benefication costs for refractory clays

  17. Investigation of the spectroscopic features of clay-rich rocks in terms of geo-mechanical evaluations

    NASA Astrophysics Data System (ADS)

    Nefeslioglu, Hakan A.

    2013-04-01

    The main purpose of this study is to investigate the spectroscopic features of clay-rich rocks in terms of geo-mechanical evaluations. For the purpose, different types of sedimentary rocks including claystones and mudstones were used. Ultra sonic pulse velocity (Vp) measurements and Uniaxial Compressive Strength (UCS) tests were carried out by using the core samples of these clay-rich rocks, and moduli of elasticity (Ei) values of the samples were calculated. Spectroscopic measurements were also done by using the failed core samples. According to the spectral feature search analyses of the samples 7 spectral bands were differentiated depending on crystal filed effects and charge transfer absorptions of transition elements and water and OH vibrational features. Considering these 7 spectral bands, 8 different genetic rock types were defined. The regression equations of Vp-UCS and Vp-Ei were evaluated for the unclassified and genetic rock types, respectively. The coefficients of correlations of the equations became considerably higher when the genetic rock types were considered, and the equations were found to be statistically significant.

  18. Estimating thermo-osmotic coefficients in clay-rocks: II. In situ experimental approach.

    PubMed

    Trémosa, J; Gonçalvès, J; Matray, J M; Violette, S

    2010-02-01

    Water flow in compacted shales is expected to be modified by thermo-osmosis when a thermal gradient exists. However this coupled-flow process is poorly characterized since no experiments on non-remoulded clay-rocks are found in the literature. This paper presents a set of thermo-osmosis experiments carried out in an equipped borehole installed in the Liassic argillite at the Institut for Radiological protection and Nuclear Safety (IRSN) underground research laboratory (URL) of Tournemire (southeastern France). A numerical model - including coupled-flow equations, mass conservation laws, thermal expansion and changes of water properties with temperature - was developed for the interpretation of these experiments. A thermo-osmotic response was deduced from the pressure evolution in the test interval after temperature pulses (+2.5, +5.1, and +9 degrees C). The values of thermo-osmotic permeability determined during the experiments range between 6x10(-12) and 2x10(-10)m(2)K(-1)s(-1), depending on the pulse temperature and uncertainties on the model parameters. A sensitivity analysis on several model parameters was performed to constrain these uncertainties. PMID:19861223

  19. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    PubMed Central

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  20. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  1. Shock experiments in support of the Lithopanspermia theory: The influence of host rock composition, temperature, and shock pressure on the survival rate of endolithic and epilithic microorganisms

    NASA Astrophysics Data System (ADS)

    Meyer, Cornelia; Fritz, Jörg; Misgaiski, Martin; Stäffler, Dieter; Artemieva, Natalia A.; Hornemann, Ulrich; Moeller, Ralf; de Vera, Jean-Pierre; Cockell, Charles; Horneck, Gerda; Ott, Sieglinde; Rabbow, Elke

    2011-05-01

    Shock recovery experiments were performed with an explosive set-up in which three types of microorganisms embedded in various types of host rocks were exposed to strong shock waves with pressure pulse lengths of lower than 0.5 μs: spores of the bacterium Bacillus subtilis, Xanthoria elegans lichens, and cells of the cyanobacterium Chroococcidiopsis sp. 029. In these experiments, three fundamental parameters were systematically varied (1) shock pressures ranging from 5 to 50 GPa, (2) preshock ambient temperature of 293, 233 and 193 K, and (3) the type of host rock, including nonporous igneous rocks (gabbro and dunite as analogs for the Martian shergottites and chassignites, respectively), porous sandstone, rock salt (halite), and a clay-rich mineral mixture as porous analogs for dry and water-saturated Martian regolith. The results show that the three parameters have a strong influence on the survival rates of the microorganisms. The most favorable conditions for the impact ejection from Mars for microorganisms would be (1) low porosity host rocks, (2) pressures <10-20 GPa, and (3) low ambient temperature of target rocks during impact. All tested microorganisms were capable of surviving to a certain extent impact ejection in different geological materials under distinct conditions.

  2. Internal structure of fault zones in geothermal reservoirs: Examples from palaeogeothermal fields and potential host rocks

    NASA Astrophysics Data System (ADS)

    Leonie Philipp, Sonja; Reyer, Dorothea; Meier, Silke; Bauer, Johanna F.; Afşar, Filiz

    2014-05-01

    characterized by increased fracture densities and higher percentages of fractures with large apertures. In the Upper Rhine Graben (2) damage zones in Muschelkalk limestones (Middle Triassic) are well developed even in fault zones with dm-scale displacements. Their fault cores, however, are narrow compared with that of fault zones with larger displacements and comprise brecciated material, clay smear, host rock lenses or zones of mineralization. Fracture apertures are larger parallel or subparallel to fault zone strike. A large fault zone footwall in Triassic Bunter sandstone shows a clearly developed fault core with fault gouge, slip zones, deformation bands and host rock lenses, a distal fault core with disturbed layering and high fracture density and a damage zone with increased fracture density compared with the host rock. In the study areas of palaeogeothermal fields in the Bristol Channel (3), all the mineral veins are clearly related to the faults and occur almost exclusively in the damage zones, indicating that geothermal water was transported along the then-active faults into the host rocks. Field measurements indicate that in all the localities, a large majority of the fractures in the fault damage zones are extension fractures, fewer are shear fractures. In the Jurassic Blue Lias there is evidence that the veins were injected as hydrofractures from fault planes into the limestone layers. In the Triassic Mercia Mudstone most veins were arrested during their propagation by layers with contrasting mechanical properties (stress barriers). Some veins, however, propagated through the barriers along faults to shallower levels. Our studies contribute to understanding and modelling of hydromechanical behaviour of fault zones and fluid transport in geothermal reservoirs. For successful exploration and exploitation, fault zones must be studied in detail regarding their likely internal structure, fracture parameters and orientation in relation to the current stress field. We show

  3. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    NASA Astrophysics Data System (ADS)

    Solum, John G.; Davatzes, Nicholas C.; Lockner, David A.

    2010-12-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ˜1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon.

  4. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  5. Fluid-rock interaction controlling clay-mineral crystallization in quartz-rich rocks and its influence on the seismicity of the Carboneras fault area (SE Spain)

    NASA Astrophysics Data System (ADS)

    Jimenez-Espinosa, R.; Abad, I.; Jimenez-Millan, J.; Lorite-Herrera, M.

    2009-04-01

    The Carboneras Fault zone is one of the longest fault in the Betic Cordillera (SE Spain) and it would be a good candidate to generate large magnitude earthquakes (Gracia et al., 2006). Seismicity in the region is characterised by low to moderate magnitude events, although large destructive earthquakes have occurred, which reveals significant earthquake and tsunami hazards (Masana et al., 2004). Due to the internal architecture of the fault zone, shear lenses of post-orogenic sediments of Miocene and Pliocene age including marls and sandstones sequences are juxtaposed to the predominant slaty gouges of the Alpine basement. Microcataclasites and gouges of the quartz-rich post-orogenic sediments are also developed as cm- to m-scale bands, allowing the comparison between the deformed materials and their protoliths. Red, yellow and white sandstones and their respective cataclasites can be identified. This communication is concerned with the clay mineral crystallization events in these materials and its possible influence on the seismicity model of the region. The presence of phyllosilicates in fault zones as either neoformed or inherited clays is commonly related with fluid circulation and a mechanically weak fault behaviour (e.g., Wang, 1984). A critical factor for the understanding of the mechanical role of clays in fault rocks is to determine the timing of formation of mineral assemblages and microstructure of fault rocks and protolith. The effects of post-faulting alteration limit inferences about fault behaviour that can be made from exhumed rocks. The Carboneras fault zone provides good opportunities to study mineral processes enhanced by deformation, given that it is located in a region of arid climate and shows outcroppings of quartzitic rocks included in slaty rocks. Combined XRD, optical microscopy and SEM analyses reveal that deformed quartzitic rocks are enriched in phyllosilicates, increasing especially the amount of chlorite. The samples strongly damaged

  6. Effect of Clay Nanoparticle Transport, Desorption Kinetics and Redox Equilibrium on Radionuclide Mobility in Fractured Rock investigated at the Grimsel Test Site (Switzerland)

    NASA Astrophysics Data System (ADS)

    Schaefer, T.; Huber, F. M.; Lagos, M.; Quinto, F.; Heck, S.; Martin, A. J.; Blechschmidt, I.; Lanyon, G. W.; Reiche, T.; Noseck, U.

    2015-12-01

    Transport of contaminants in crystalline environments might occur through dissolved species or attached to colloidal or nanoparticulate phases being mobile in water conducting features of the host rock. In this presentation we will discuss the mobility of clay nanoparticles as detected by laser-induced breakdown detection (LIBD) as a function of fracture surface roughness and groundwater chemistry. The on site observed Tc-99, U-233, Np-237, Pu-242 and Am-243 sorption/desorption kinetics with and without natural or synthetic clay minerals (smectites) are compared to laboratory studies under similar groundwater conditions. The desorption or redox kinetics were monitored over a duration of up to 426 days using natural fracture filling material as a concurrence ligand and monitoring the colloid attachment via detection of Al, Si, Ni and Zn as smectite structural elements. For trivalent actinides smectite desorption rates in the range of 1.2-3.7E-3 per hour could be determined and significantly lower desorption rates for tetravalent actinides were found. This results will be compared with field data of migration experiments performed at the Grimsel Test Site (GTS, Switzerland) using the same radionuclides and clay colloidal phases varying the fracture residence time by flow rate adjustment. Furthermore, the long-term actinide mobility will be addressed by presenting AMS/RIMS measurements of (a) samples collected several months into the tailing of the breakthrough curves not any longer detectable by HR-ICP-MS and (b) background samples of different GTS ground waters showing fallout U-236, whereas fallout Pu could not be detected indicating a much lower mobility under the given conditions.

  7. Variability of rock texture and morphology correlated with the clay-bearing units at Mawrth Vallis, Mars

    NASA Astrophysics Data System (ADS)

    McKeown, Nancy K.; Bishop, Janice L.; Silver, Eli A.

    2013-06-01

    The clay units at Mawrth Vallis have been well-characterized in hyperspectral data; however, a similar study of high spatial resolution High Resolution Imaging Science Experiment (HiRISE) data has not been previously conducted. Here the textures of the clay units are described and related to mineralogy across the central Mawrth Vallis region. The nontronite-bearing rocks appear tan in HiRISE COLOR data and are polygonally fractured with polygons 2-5 m across. In some cases, the fractures appear wider and/or have darker fill or the rocks are a darker brown. The montmorillonite-bearing rocks appear blue with regular polygons 0.5-1.5 m across; sometimes, there are larger polygons surrounded by regular polygons, a square fracture pattern, or the color appears yellow or mottled blue-yellow. Kaolinite-rich rocks are the brightest outcrops and are nonpolygonally fractured. Regions with spectra consistent with hydrated silica or the ferrous mineral component do not have unique textures. Hydrated silica-bearing rocks appear yellow or mottled with a regular polygonal texture or yellow with hummocky appearance with no polygons. It is also possible that dust/sand on the surface alters the montmorillonite spectrum to appear like that of hydrated silica. The ferrous component may be expressed as mottled coloring or as a bright fracture fill. The nontronite- and montmorillonite-bearing units have remarkably consistent textures in this region, allowing them to be uniquely identified in the Mawrth Vallis region in nonhyperspectral data sets such as CTX and HiRISE. The morphology of the polygons in these two units suggests that their formation is likely dominated by desiccation and controlled by composition.

  8. Organic tissues, graphite, and hydrocarbons in host rocks of the Rum Jungle Uranium Field, northern Australia

    USGS Publications Warehouse

    Foster, C.B.; Robbins, E.I.; Bone, Y.

    1990-01-01

    The Rum Jungle Uranium field consists of at least six early Proterozoic deposits that have been mined either for uranium and/or the associated base and precious metals. Organic matter in the host rocks of the Whites Formation and Coomalie Dolomite is now predominantly graphite, consistent with the metamorphic history of these rocks. For nine samples, the mean total organic carbon content is high (3.9 wt%) and ranged from 0.33 to 10.44 wt%. Palynological extracts from the host rocks include black, filamentous, stellate (Eoastrion-like), and spherical morphotypes, which are typical of early Proterozoic microbiota. The colour, abundance, and shapes of these morphotypes reflect the thermal history, organic richness, and probable lacustrine biofacies of the host rocks. Routine analysis of rock thin sections and of palynological residues shows that mineral grains in some of the host rocks are coated with graphitized organic matter. The grain coating is presumed to result from ultimate thermal degradation of a petroleum phase that existed prior to metamorphism. Hydrocarbons are, however, still present in fluid inclusions within carbonates of the Coomalie Dolomite and lower Whites Formation. The fluid inclusions fluoresce dull orange in blue-light excitation and their hydrocarbon content is confirmed by gas chromatography of whole-rock extracts. Preliminary analysis of the oil suggests that it is migrated, and because it has escaped graphitization through metamorphism it is probably not of early Proterozoic age. The presence of live oil is consistent with fluid inclusion data that suggest subsequent, low-temperature brine migration through the rocks. The present observations support earlier suggestions that organic matter in the host formations trapped uranium to form protore. Subsequent fluid migrations probably brought additional uranium and other metals to these formations, and the organic matter provided a reducing environment for entrapment. ?? 1990.

  9. Block Slides on Extremely Weak Tectonic Clay Seams in Openly Folded Tertiary Mud-Rocks at Auckland and the Rangitikei Valley, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Prebble, Warwick M.; Williams, Ann L.

    2016-06-01

    Block slides have developed on extremely weak, thin clay seams of tectonic origin, parallel to bedding in gently dipping sandstones and mudstones of Tertiary age. Two areas of noted instability are investigated at Auckland and the Rangitikei valley. Dimensions range from 100 m across × 100 m long for short displacement block slides up to 4 km across × 3 km long for large landslide complexes in which block slides are a major component. Displacements of blocks range from incipient (cm) through short (30 m) to 2 or 3 km for large slides. Many of the Auckland slides are dormant but likely to move in a 2000 year return period earthquake or 100 year high intensity rain storm. At Rangitikei there are many active, younger slides. Sliding rates for active failures vary from a few cm/year to 50 m in 30 min. Host rocks are weak to very weak clayey sandstones and sandy mudstones. The seams are rich in smectite. They have polished and crushed walls, may have slickensides and some contain rounded rock fragments. Laboratory shear strength of the seams is 13 kPa cohesion and 13° friction, with a lower bound of 8° at zero cohesion. Strength is increased at the field scale by waviness, steps and splays. Continuity can be demonstrated over distances of hundreds of metres. Key investigation methods were mapping, shafts and trenches. Tectonic uplift, folding and faulting of the weak Tertiary strata and river down-cutting are perpetuating block slide development.

  10. Clay and Magnetite Formation at Yellowknife Bay, Mars

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2014-09-01

    Sheepbed mudstone contains a clay-magnetite assemblage formed by dissolution of approximately 70% amorphous phase, 20% olivine, 10% host rock mixture, by a pore fluid at moderate W/R ratio. The clay is similar to Lafayette's ferric saponite and gel.

  11. Geology, Geochemistry and Geophysics of Sedimentary Rock-Hosted Au Deposits in P.R. China

    USGS Publications Warehouse

    Peters, Stephen G.

    2002-01-01

    This is the second report concerning results of a joint project between the U.S. Geological Survey and the Tianjin Geological Academy to study sedimentary rock-hosted Au deposits in P.R. China. Since the 1980s, Chinese geologists have devoted a large-scale exploration and research effort to the deposits. As a result, there are more than 20 million oz of proven Au reserves in sedimentary rock-hosted Au deposits in P.R. China. Additional estimated and inferred resources are present in over 160 deposits and occurrences, which are undergoing exploration. This makes China second to Nevada in contained ounces of Au in Carlin-type deposits. It is likely that many of the Carlin-type Au ore districts in China, when fully developed, could have resource potential comparable to the multi-1,000-tonne Au resource in northern Nevada. The six chapters of this report describe sedimentary rock-hosted Au deposits that were visited during the project. Chapters 1 and 2 provide an overview of sedimentary rock-hosted Au deposits and Carlin-type Au deposits and also provide a working classification for the sedimentary rock-hosted Au deposits. Chapters 3, 4, and 5 provide descriptions that were compiled from the literature in China in three main areas: the Dian-Qian-Gui, the Qinling fold belt, and Middle-Lower Yangtze River areas. Chapter 6 contains a weights-of-evidence (WofE), GIS-based mineral assessment of sedimentary rock-hosted Au deposits in the Qinling fold belt and Dian-Qian-Gui areas. Appendices contain scanned aeromagnetic (Appendix I) and gravity (Appendix II) geophysical maps of south and central China. Data tables of the deposits (Appendix III) also are available in the first report as an interactive database at http://geopubs.wr.usgs.gov/open-file/of98-466/. Geochemical analysis of ore samples from the deposits visited are contained in Appendix IV.

  12. Siliceous sedimentary rock-hosted ores and petroleum

    SciTech Connect

    Hein, J.R.

    1987-01-01

    Geological, biological, oceanographic, and geochemical principles involved in forming mineral deposits associated with siliceous rocks are integrated in this collection. The book emerged from a decade of research by 142 scientists from 33 countries who worked with the International Geological Correlations Project under editor James R. Hein. It reveals how several economic ores and petroleum were formed in siliceous sediments in coastal ocean basins. This collection places each ore-deposit type into a genetic model emphasizing coastal upwelling; displays all chert occurrences on paleographic maps for each period of the Phanerozoic; covers phosphate, uranium, diatomite, manganese, iron, barite, and petroleum deposits; and gives the first evidence of a bacterially mediated, diagenetic origin for manganese deposits.

  13. 3D surface roughness recreation and data processing of granitic rocks and claystones, potential host rocks for radioactive waste disposal

    NASA Astrophysics Data System (ADS)

    Buocz, Ildikó; Török, Ákos; Rozgonyi-Boissinot, Nikoletta

    2015-04-01

    The determination and modelling of the stability of rock slopes, tunnels, or underground spaces, i.e. radioactive waste disposal facilities, is an important task in engineering. The appropriate estimation of the mechanical parameters for a realistic description of the behaviour of rocks results in higher safety and more economic design. The failure of stability is primarily due to the shear failure of the rock masses along fractures and joints: therefore the correct determination of the shear strength is crucial. One of the most important parameters influencing the shear strength along rock joints is their surface roughness. Although the quantification of surface roughness has been an open question during the past century, several attempts have been made, starting with 2D and continuing with 3D measurements, to provide engineers with a method for determining shear strength numerically. As technology evolved, the 3D methods became more popular and several scientists started to investigate the surface properties through laser scanning and different photogrammetrical methods. This paper shows a photogrammetric method for the 3D digital recreation of joint surfaces of granitic rock and claystone, both potential host rocks for radioactive waste disposal. The rocks derived from Bátaapáti (South Hungary) and Mont Terri (North Switzerland) respectively. The samples are laboratory scaled specimens with an areal size of 50x50 mm. The software used is called ShapeMetrix3D, developed by 3GSM GmbH in Austria. The major steps of the creation of the 3D picture are presented, as well as the following data processing which leads to the quantification of the 3D surface roughness.

  14. Contrasting diagenetic histories of concretions vs. host rocks, Lion Mountain Member, Riley formation (upper Cambrian), Texas

    SciTech Connect

    McBride, E.F.

    1988-02-01

    White, elliptical, calcite-cemented concretion nuclei up to 1 m long contrast markedly in color, composition, and diagenetic history from more glauconite-rich concretion rinds and from dark-green glaucarenite host rocks. Concretion nuclei are loosely packed deposits of trilobite carapaces and minor quartz and glauconite that have intergranular volumes of 58%. The nuclei are shell-lag deposits that were cemented by calcite at the sea floor or after burial of a few meters. Concretion rinds, composed of subequal amounts of quartz and compactionally deformed glauconite, have an intergranular volume of only 32% and minor quartz overgrowths that preceded pore-occluding calcite cement. The rinds underwent burial for several million years to tens of millions of years to depths of several hundred meters before they were cemented. The host rock is predominately glauconite with very minor quartz and calcite cement. Strontium isotopic ratios of host-rock calcite cement are variable (0.7084 to 0.7093), but the lowest value suggests precipitation during the Middle Ordovician. In the absence of significant amounts of carbonate cement, the host rock underwent complete dissolution of trilobite carapaces and maximum compaction with total loss of porosity through squashing of glauconite grains. Maximum burial during this stage was completed by the end of Ordovician time.

  15. Oxygen isotopic composition of quartz veins and host rocks at the Sukhoi Log deposit, Russia

    NASA Astrophysics Data System (ADS)

    Ikonnikova, T. A.; Dubinina, E. O.; Saroyan, M. R.; Chugaev, A. V.

    2009-12-01

    The relationships between the δ18O of quartz veins and veinlets pertaining to the main stage of gold mineralization at the Sukhoi Log deposit and metasomatically altered host slates are estimated. The oxygen isotopic composition of veined quartz and host slates is not uniform. The δ18O of quartz veins from the Western, Central, and Sukhoi Log areas of the deposit vary from +16 to + 18 ‰. The δ18O range of metasomatically altered slates in the Western and Sukhoi Log areas attains 6 ‰. The δ18O of quartz veins are always higher than those of host slates by 3-7‰. The regular difference in the δ18O between quartz veins and host slates indicates that the oxygen isotopic composition of the ore-bearing fluid forming the system of quartz veins and veinlets at the Sukhoi Log deposit could have formed as a result of interaction with silicate rocks, for instance, terrigenous slates enriched in δ18O. Such interaction, however, took place at deeper levels of the Sukhoi Log deposit. It is suggested that the fluid phase participating in the formation of the vein and veinlet system had initially high δ18O(>+10‰) due to interaction with the rocks enriched in δ18O at a low fluid/rock ratio. The oxygen isotope data indicate that the fluid participating in the formation of gold mineralization at the Sukhoi Log deposit was not in equilibrium with igneous rocks at high temperatures.

  16. Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.

    2006-12-01

    Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.

  17. Air and groundwater flow at the interface between fractured host rock and a bentonite buffer

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Jarsjo, J.; Frampton, A.

    2014-12-01

    Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.

  18. Clay sized fraction and powdered whole-rock X-ray analyses from alluvial basin deposits in central and southern New Mexico

    USGS Publications Warehouse

    Anderholm, S.K.

    1985-01-01

    As part of the study of the water quality and geochemistry of Southwest Alluvial Basins (SWAB) in parts of Colorado, New Mexico, and Texas, which is a Regional Aquifer-System Analysis (RASA) program, whole rock x-ray analysis and clay-size fraction mineralogy (x-ray) analysis of selected samples from alluvial basin deposits were done to investigate the types of minerals and clay types present in the aquifers. This was done to determine the plausible minerals and clay types in the aquifers that may be reacting with groundwater and affecting the water quality. The purpose of this report is only to present the whole rock x-ray and clay-fraction mineralogy data. Nineteen surface samples or samples from outcrop of Tertiary and Quaternary alluvial basin deposits in the central and southern Rio Grande rift were collected and analyzed. The analysis of the samples consisted of grain size analysis, and clay-size fraction mineralogy and semiquantitative analysis of the relative abundance of different clay mineral groups present. (USGS)

  19. Cement degradation and the alteration of host rocks. Studies within the Grimsel Test Site Project.

    NASA Astrophysics Data System (ADS)

    Soler, J. M.

    2009-04-01

    Cement is a major component of the engineered barrier system in proposed underground repositories for low- and intermediate-level radioactive waste. Cement grouting of highly-conductive fractures in the vicinity of such repositories is also planned. The interaction between the hyperalkaline solutions derived from the degradation of cement and the rocks hosting such repositories may change the physical and chemical properties of the host rocks. The HPF project (Hyperalkaline Plume in Fractured Rock; ANDRA-FR-, DOE-USA-, JAEA-JP-, NAGRA-CH-, POSIVA-FI-, SKB-SE-) studied the alteration of a fractured granite due to the circulation of a synthetic high-pH solution. A significant decrease in fracture permeability was observed both in the laboratory (core infiltration experiment; decimeter scale) and in the Grimsel Test Site (circulation along a fracture; meter scale), despite the relatively minor mineralogical alteration. Coupling of mineralogical alteration and permeability changes was incorporated into reactive transport modeling of the experiments. The hydration and degradation of cement are being explicitly incorporated into the new LCS (Long-Term Cement Studies; JAEA-JP-, NAGRA-CH-, NDA-GB-, POSIVA-FI-) project at Grimsel. New laboratory and field experiments including a cement source are being designed. Reactive transport modeling of the degradation of cement, causing the formation of hyperalkaline solutions and the alteration of the host rock, will be an essential part of the experiment.

  20. Experimental Study on the Shear Strength of Sandy Clay Infilled Regular Rough Rock Joints

    NASA Astrophysics Data System (ADS)

    Jahanian, Homayoun; Sadaghiani, Mohammad Hosein

    2015-05-01

    Infill materials in rock joints usually cause a reduction in the joint shear strength. The shear behavior of rock discontinuities depends upon whether they are clean and unfilled or filled, so this concern invites accurate understanding of the shear behavior and strength of infilled joints. A series of constant normal load direct shear tests was performed to investigate the shear strength of artificial samples with infilled rough joint surfaces having different asperity and infill characteristics. The current study focuses on the effects of factors that influence the shear strength of infilled rock joints samples, with emphasis on forward and reverse shearing. In the forward cycle, the front joint wall is compressed and possibly sheared, and the back side fill is unbonded from the joint surface and slightly disturbed. In the reverse cycle, the disturbed and weakened back side fill is under shearing. The effect of the normal stress on the joint is studied, as this factor plays an important role on the shear behavior of infilled rock joint samples. The results show that joints with low asperity angle exhibit higher shear strength during the forward shearing cycle than the reverse cycle, but in joints with steeper asperity angle, the reverse cycle exhibits greater shear strength. In the reverse cycle, the joint infill has less influence compared to the effect of the rougher surface and higher asperity inclination, even in higher normal stress.

  1. Experiments in a Deep Underground Science and Engineering Laboratory (DUSEL) Hosted in Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.; Kimballton, M. O.; Science Team

    2004-12-01

    Sedimentary-rock environments, particularly those dominated by carbonate rock, provide unique opportunities for geoscientists, geobiologists, and geophysicists, to perform revolutionary experiments aimed at answering fundamental science questions and satisfying our societal demands for resources and environmental stewardship. As part of the National Science Foundation's DUSEL initiative, the selected site should offer structurally and biologically diverse environments. At the same time, the site should offer host rock capable of providing safely engineered hallways and laboratories at depths as great as 2,200 m for numerous deep underground physics, engineering, and earth science experiments. An ideal sedimentary-rock environment offers the prospect of highly folded, thrusted, and fractured rocks that allow opportunities to study the 3-D behavior of thrusts that propagate parallel to bedding as well as those that ramp across bedding. Flow dynamics along and across deeply buried faults is poorly understood. Experiments will be developed at various scales to assess flow and transport processes to better quantify hydrogeological mechanisms influencing flow and possible aquifer compartmentalization. Seismic reflection images, vertical seismic profiles, and tomograms will provide details of the fault properties and geometry, which can be verified in-situ. Repeated overthrusted sequences provide opportunities for geobiologists to investigate how microbes in rocks of similar age are affected by differences in pressure, temperature, and depth. Carbonate rocks provide opportunities to study energy sources and adaptations for nutrient acquisition, reproduction, stability, survival, and repair under extreme conditions. Results from these investigations will permit comparisons with other foreland fold-thrust belts worldwide. Fossil fuels remain the world's main energy resource and the large majority of these are hosted in sedimentary rocks. Improved methods for reservoir

  2. Shale, mudstone, and claystone as potential host rocks for underground emplacement of waste

    USGS Publications Warehouse

    Merewether, E.A.; Sharps, J.A.; Gill, J.R.; Cooley, M.E.

    1973-01-01

    In this report, the suitability of the argillaceous formations in the conterminous United States as host rocks for underground waste emplacement is reviewed in terms of available geologic information. The strata are considered mainly according to their dimensions, Depth, composition, permeability, structural and seismic history, and to the extent of drilling in the area. Shale, mudstone, and claystone of marine origin in areas of little structural deformation and seismic risks are generally the most promising. These include the Ohio Shale of Devonian age in northern Ohio and the Devonian-Mississippian Ellsworth Shale and Mississippian Coldwater Shale in Michigan. In-the Rocky Mountain states, the Pierre Shale and other thick shales of Late Cretaceous age are also potential host rocks.

  3. An evaluation of near-field host rock temperatures for a spent fuel repository

    SciTech Connect

    Altenhofen, M.K.; Lowery, P.S.

    1988-11-01

    A repository heat transfer analysis has been performed by the Pacific Northwest Laboratory (PNL) for the US Department of Energy's Performance Assessment Scientific Support Program. The objective of this study was to evaluate the near-field thermal environmental conditions for a spent fuel repository system. A spent fuel logistics analysis was performed using a waste management system simulation model, WASTES-II, to evaluate the thermal characteristics of spent fuel received at the repository. A repository-scale thermal analysis was performed using a finite difference heat transfer code, TEMPEST, to evaluate the near-field host rock temperature. The calculated temporal and spatial distributions of near-field host rock temperatures provide input to the repository source term model in evaluations of engineered barrier system performance. 9 refs., 10 figs., 2 tabs.

  4. Vein morphology, host rock deformation and the origin of the fabrics of echelon mineral veins

    NASA Astrophysics Data System (ADS)

    Nicholson, R.

    A system of sigmoidal echelon veins from a sample of sandstone from the Upper Carboniferous Culm sequence of southwest England is described. Veins are separated from one another by strips of sandstone, and divided internally by thin seams with crack—seal fabrics. The latter extend as thin veins into the sandstone host rock without change of fabric. Seams appear to be merely parts of crack—seal veins formed in a first phase of deposition in only minutely opened fractures. This phase ended as rates of fracture opening greatly increased. To allow for this widespread opening host rock between dilatating fractures (sandstone strips and seams) had to be deformed. This deformation was limited, however, to rotation, bending and fracture. Shear displacement was a function of dilatation, not zone-parallel ductile shear strain. The textures of the quartz and carbonate aggregates filling the sigmoidal veins show that second-phase crystallization took place into cavities opening more rapidly than growth was able to fill them. Growth for the greater part took place from fibres in seams and not off vein walls of the sandstone host rock. Coarsest aggregates fill the arcs of folds in seams, where rates of vein opening might be expected to have been highest and the scope for competitive cavity growth greatest.

  5. The role of clay content during earthquake propagation in carbonate-hosted faults

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Bullock, R. J.; Holdsworth, R.

    2014-12-01

    Carbonate faults often contain small amounts of phyllosilicate in their slip zone. To assess the effect of phyllosilicate content on earthquake propagation in carbonate faults, we performed friction experiments at seismic slip rate (v = 1.3 m/s) on gouges of calcite, phyllosilicate (montmorillonite and illite-smectite) and mixed calcite/phyllosilicate compositions. Experiments were carried out at 9 MPa normal load and under both room-humidity (dry) and water-saturated (wet) conditions. All dry gouges, regardless of clay content, plus the wet calcite, produce a friction evolution curve, comprising an initial slip-hardening phase, during which friction evolves to peak values f = 0.60-0.76, followed by a dramatic slip-weakening phase, during which f decreases to a constant steady-state value of 0.19-0.33 over a distance which ranges from 0.2 m for clay-bearing gouges up to 0.6 m for pure calcite. Conversely, wet gouges with phyllosilicate content ≥ 10 wt.% show negligible slip-hardening, and the attainment of steady-state sliding almost immediately at the onset of slip, with f = 0.05-0.26. Dry gouges show slip localization and grain size reduction within a narrow (<65 microns) principal slip zone, accompanied by microstructural evidence for thermal decomposition of calcite (although only when clay content is ≤ 50 wt.%). Wet gouges are characterized by distributed deformation and grain size reduction, with no microstructural evidence for thermal decomposition of calcite. We interpret that slip initiates within the wet gouges along interconnected networks of weak phyllosilicates, formed during axial loading compaction prior to shear. This can explain the: 1) measured lack of slip-hardening and peak friction; 2) observed distributed nature of deformation and grain size reduction; 3) lack of evidence for thermally activated processes, due to low frictional heating in accord with small values of friction and lack of slip localization. Our findings imply that small

  6. Mineralogy and petrology of the Cretaceous- Tertiary boundary clay bed and adjacent clay-rich rocks, Raton Basin, New Mexico and Colorado.

    USGS Publications Warehouse

    Pollastro, R.M.; Pillmore, C.L.

    1987-01-01

    The K-T boundary occurs at the top of a kaolinitic claystone layer, commonly referred to as the 'boundary clay layer', in an interval of coal and carbonaceous shale. The boundary is defined by the disappearance of certain fossil-pollen taxa. The boundary clay layer also contains shocked quartz grains and abundance anomalies of iridium, chromium, and other elements. Each of these characteristics support the hypothesis of an asteroid impact at the end of the Cretaceous. -from Authors

  7. The CO2seals project: Investigation of the CO2 capillary sealing efficiency of low-permeable clay-bearing rocks and potential alteration mechanisms

    NASA Astrophysics Data System (ADS)

    Amann, Alexandra; Bertier, Pieter; Busch, Andreas; Waschbüsch, Margret; Krooss, Bernhard

    2010-05-01

    The safe long-term storage of gas/CO2 in spatially limited underground volumes requires the combination of a structural trap with intact structural integrity and a suitable low permeability cap rock (seal). The occurrence of natural gas reservoirs proves that certain lithotypes do provide efficient seals which can prevent leakage of gas to the atmosphere over long geological time periods (millions of years). In order to assess the risk of CO2 leakage through caprocks above potential storage sites to the surface one has to consider both, the present sealing capacity of the rock and its likelihood to alter in contact with CO2. In the CO2seals project the prominent (coupled) processes associated with the transport and retention of CO2 in caprocks are being investigated, comprising capillary sealing, viscous flow, diffusion and adsorption. As shown in a study by Wollenweber et al. (in press), exposure to CO2 can significantly reduce the capillary sealing efficiency of clay-rich rocks. On the other hand, sorption of CO2 on clay minerals may "slow down" the process of leakage, by acting as an additional storing barrier (Busch et al., 2006). To investigate the processes of CO2-water-clay interactions, batch and flow reactor experiments on single clay minerals and synthetic mineral assemblages are being performed. First results suggest that CO2 leads to a shrinkage of the clay minerals (loss if interlayer water) and that iron (Fe) may be released from smectites. Additionally, first results of permeability studies and adsorption measurements will be presented. Literature BUSCH, A., ALLES, S., GENSTERBLUM, Y., PRINZ, D., DEWHURST, D.N., RAVEN, M.D., STANJEK, H., KROOSS, B.M., (2006): Carbon dioxide storage potential of shales. Int. J. Greenhouse Gas Control 2, 297-308. WOLLENWEBER J., ALLES, A., BUSCH, A., KROOSS, B.M., STANJEK, H., LITTKE, R. (in press). Experimental investigation of the CO2 sealing efficiency of caprocks. Int. J. Greenhouse Gas Control

  8. Comparing the Slaking of Clay-Bearing Rocks Under Laboratory Conditions to Slaking Under Natural Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Gautam, T. P.; Shakoor, A.

    2016-01-01

    The objective of this study was to compare the laboratory slaking behavior of common clay-bearing rocks to their slaking behavior under natural climatic conditions observed during a 1-year experimental study. Five-cycle slake durability tests were performed in the laboratory on five claystones, five mudstones, five siltstones, and five shales. Twelve replicate specimens of each of these 20 rocks were also exposed to natural climatic conditions for 12 months. After each month of exposure, one replicate specimen of each rock was removed from natural exposure and its grain size distribution was determined. The results of laboratory tests and field experiment were compared in terms of 1st, 2nd, 3rd, 4th, and 5th cycle slake durability indices (Id1, Id2, Id3, Id4, Id5), grain size distribution of slaked material, and disintegration ratio ( D R), where D R is the ratio of the area under the grain size distribution curve of slaked material for a given specimen to the total area encompassing all grain size distribution curves of the specimens tested. Correlations of Id1, Id2, Id3, Id4, and Id5 with D R values for laboratory specimens exhibit R 2 values of 0.87, 0.88, 0.83, 0.75, and 0.70, respectively. However, the relationship between Id2 and D R, determined after 1, 3, 6, and 12 months of natural exposure, becomes weaker with increasing time of exposure, with R 2 values of 0.65, 0.63, 0.63, and 0.25, respectively. The fifth-cycle slake durability index (Id5) for laboratory tested specimens shows a better correlation with D R values for naturally exposed specimens ( R 2 up to 0.80). A comparison of grain size distribution curves of slaked material for laboratory specimens, after the 2nd cycle slake durability test, with those of specimens exposed to natural climatic conditions shows that the laboratory test underestimates the field durability for claystones, and overestimates it for siltstones.

  9. Formation conditions of paleovalley uranium deposits hosted in upper Eocene-lower Oligocene rocks of Bulgaria

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Strelkova, E. A.

    2016-03-01

    The uranium deposits of Bulgaria related to the Late Alpine tectonomagmatic reactivation are subdivided into two groups: exogenic-epigenetic paleovalley deposits related to the basins filled with upper Eocene-lower Oligocene volcanic-sedimentary rocks and the hydrothermal deposits hosted in the coeval depressions. The geological and lithofacies conditions of their localization, the epigenetic alteration of rocks, mineralogy and geochemistry of uranium ore are exemplified in thoroughly studied paleovalley deposits of the Maritsa ore district. Argumentation of the genetic concepts providing insights into both sedimentation-diagenetic and exogenic-epigenetic mineralization with development of stratal oxidation zones is discussed. A new exfiltration model has been proposed to explain the origin of the aforementioned deposits on the basis of additional analysis with consideration of archival factual data and possible causes of specific ningyoite uranium ore composition.

  10. Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength.

    PubMed

    Krumbholz, Michael; Hieronymus, Christoph F; Burchardt, Steffi; Troll, Valentin R; Tanner, David C; Friese, Nadine

    2014-01-01

    Magmatic sheet intrusions (dykes) constitute the main form of magma transport in the Earth's crust. The size distribution of dykes is a crucial parameter that controls volcanic surface deformation and eruption rates and is required to realistically model volcano deformation for eruption forecasting. Here we present statistical analyses of 3,676 dyke thickness measurements from different tectonic settings and show that dyke thickness consistently follows the Weibull distribution. Known from materials science, power law-distributed flaws in brittle materials lead to Weibull-distributed failure stress. We therefore propose a dynamic model in which dyke thickness is determined by variable magma pressure that exploits differently sized host-rock weaknesses. The observed dyke thickness distributions are thus site-specific because rock strength, rather than magma viscosity and composition, exerts the dominant control on dyke emplacement. Fundamentally, the strength of geomaterials is scale-dependent and should be approximated by a probability distribution. PMID:24513695

  11. Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength

    PubMed Central

    Krumbholz, Michael; Hieronymus, Christoph F.; Burchardt, Steffi; Troll, Valentin R.; Tanner, David C.; Friese, Nadine

    2014-01-01

    Magmatic sheet intrusions (dykes) constitute the main form of magma transport in the Earth’s crust. The size distribution of dykes is a crucial parameter that controls volcanic surface deformation and eruption rates and is required to realistically model volcano deformation for eruption forecasting. Here we present statistical analyses of 3,676 dyke thickness measurements from different tectonic settings and show that dyke thickness consistently follows the Weibull distribution. Known from materials science, power law-distributed flaws in brittle materials lead to Weibull-distributed failure stress. We therefore propose a dynamic model in which dyke thickness is determined by variable magma pressure that exploits differently sized host-rock weaknesses. The observed dyke thickness distributions are thus site-specific because rock strength, rather than magma viscosity and composition, exerts the dominant control on dyke emplacement. Fundamentally, the strength of geomaterials is scale-dependent and should be approximated by a probability distribution. PMID:24513695

  12. Diffusion of ionic tracers in the Callovo-Oxfordian clay-rock using the Donnan equilibrium model and the formation factor

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Revil, A.; Leroy, P.

    2009-05-01

    The transient diffusion of cationic and anionic tracers through clay-rocks is usually modeled with parameters like porosity, tortuosity (and/or constrictivity), sorption coefficients, and anionic exclusion. Recently, a new pore scale model has been developed by Revil and Linde [Revil A. and Linde N. (2006) Chemico-electromechanical coupling in microporous media. J. Colloid Interface Sci.302, 682-694]. This model is based on a volume-averaging approach of the Nernst-Planck equation. The influence of the electrical diffuse layer is accounted for by a generalized Donnan equilibrium model through the whole connected pore space that is valid for a multicomponent electrolyte. This new model can be used to determine the composition of the pore water of the Callovo-Oxfordian clay-rock, the osmotic efficiency of bentonite as a function of salinity, the osmotic pressure, and the streaming potential coupling coefficient of clay-rocks. This pore scale model is used here to model the transient diffusion of ionic tracers ( 22Na +, 36Cl -, and 35SO42-) through the Callovo-Oxfordian clay-rock. Speciation of SO42- shows that ˜1/3 of the SO 4 is tied-up in different complexes. Some of these complexes are neutral and are therefore only influence by the tortuosity of the pore space. Using experimental data from the literature, we show that all the parameters required to model the flux of ionic tracers (especially the mean electrical potential of the pore space and the formation factor) are in agreement with independent evaluations of these parameters using the osmotic pressure determined from in situ pressure measurements and HTO diffusion experiments.

  13. Hypogene speleogenesis in dolomite host rock by CO2-rich fluids, Kozak Cave (southern Austria)

    NASA Astrophysics Data System (ADS)

    Spötl, Christoph; Desch, Angelika; Dublyansky, Yuri; Plan, Lukas; Mangini, Augusto

    2016-02-01

    A growing number of studies suggest that cave formation by deep-seated groundwater (hypogene) is a more common process of subsurface water-rock interaction than previously thought. Fossil hypogene caves are identified by a characteristic suite of morphological features on different spatial scales. In addition, mineral deposits (speleothems) may provide clues about the chemical composition of the paleowater, which range from CO2-rich to sulfuric acid-bearing waters. This is one of the first studies to examine hypogene cave formation in dolomite. Kozak Cave is a fossil cave near the Periadriatic Lineament, an area known for its abundance of CO2-rich springs. The cave displays a number of macro-, meso- and micromorphological elements found also in other hypogene caves hosted in limestone, marble or gypsum, including cupolas, cusps, Laughöhle-type chambers and notches. The existance of cupolas and cusps suggests a thermal gradient capable of sustaining free convection during a first phase of speleogenesis, while triangular cross sections (Laughöhle morphology) indicate subsequent density-driven convection close to the paleowater table. Notches mark the final emergence of the cave due to continued rock uplift and valley incision. Very narrow shafts near the end of the cave may be part of the initial feeder system, but an epigene (vadose) overprint cannot be ruled out. Vadose speleothems indicate that the phreatic phase ended at least about half a million years ago. Drill cores show no evidence of carbon or oxygen isotope alteration of the wall rock. This is in contrast to similar studies in limestone caves, and highlights the need for further wall-rock studies of caves hosted in limestone and dolomite.

  14. Newly discovered sediment rock-hosted disseminated gold deposits in the People's Republic of China

    USGS Publications Warehouse

    Cunningham, Charles G.; Ashley, Roger P.; Chou, I. -Ming; Huang, Zushu; Chaoyuan, Wan; Li, Wenkang

    1988-01-01

    Five deposits discovered in Guizhou Province, Yata, Getang, Sanchahe, Ceyang, and Banqi are described for the first time in Western literature. The deposits have geologic features and geochemical signatures that are remarkably similar to those of sedimentary rock-hosted precious metal deposits in the United States. The sizes of the deposits are as yet undetermined, but they each contain significant reserves at average grades of 4 to 5 g of gold per metric ton. Exploration and drilling are in progress at all of the deposits, and other areas where the geologic setting and geochemical anomalies are similar are being tested.

  15. Effects of Host-rock Fracturing on Deflation-related Volcano Deformation Sources

    NASA Astrophysics Data System (ADS)

    Holohan, Eoghan; Sudhaus, Henriette; Schöpfer, Martin; Walter, Thomas; Walsh, John

    2015-04-01

    Insights into the plumbing systems of active volcanoes are commonly gained by using continuum-based elastic modeling to resolve sources of volcano deformation. The geometries and depths of such deformation sources are commonly equated with those of volcano plumbing system elements, such as sills, dykes or magma chambers. We here examine how fracturing of the host rock - i.e. discontinuous inelastic deformation - may affect deformation source geometry and depth. We use two-dimensional Distinct Element Method (DEM) models to explicitly simulate fracture nucleation and development around a deflating magma body, and we then 'blindly' run the DEM model surface displacements through a typical elastic modelling scheme. The results show that host-rock fracturing may induce an asymmetric surface displacement profile that gives rise to an inclined deformation source geometry, even if the original magma body itself was not inclined. In addition, upward propagation of deformation toward the surface can, under certain conditions, cause a related upward movement of the deformation source. Consequently, the true magma body depth may be increasingly underestimated. These results may help explain upward migration and shape change in volcano deformation sources, as for example inferred for the March-April 2007 activity at Piton de la Fournaise volcano, La Reunion.

  16. A tree diagram for compiling a methodology to evaluate suitability of host rock for geological disposal

    NASA Astrophysics Data System (ADS)

    Hayano, A.; Sawada, A.; Goto, J.; Ishii, E.; Moriya, T.; Inagaki, M.; Kubota, S.; Ebashi, T.

    2012-12-01

    In Japan, the Specified Radioactive Waste Final Disposal Act states that the siting process of geological repository for vitrified high-level radioactive waste (HLW) and low-level radioactive waste containing long-lived nuclides (TRU waste) shall consist of three stages. In the first stage, the Preliminary Investigation Areas (PIAs) will be selected by excluding these areas where future significant impacts of natural phenomena such as volcanism and rock deformation are expected based on literature information. The Detailed Investigation Areas (DIAs) will be then selected in the second stage among PIAs focusing on suitability of the host rock where the underground facility is constructed, as well as confirming the results of the first stage through a series of surface-based field activities such as regional geophysics and borehole investigations. The suitability of the host rock is evaluated taking account of thermal, hydrologic, mechanical and geochemical conditions and the volume of host rock, based on the site descriptive models which are constructed by integrating geoscientific information obtained from step-wise investigations. However, due to the limitation of such information in particular in the early stages of investigation, the relatively large uncertainties are associated with the developed site descriptive models. In addition, the integration of above-mentioned multi-disciplinary site investigation information into a site descriptive model is very complex task. It is therefore essential to clarify relationships between the important factors for both safety assessment (SA) and repository design (Design) and the information obtained by the site investigations via site descriptive models. Taking this into account, we have developed a method for evaluating the suitability of the host rock by linking site investigations, SA and Design. In this method, special attention has been paid to uncertainties associated with the site descriptive models and the degree

  17. Damage-plasticity model of the host rock in a nuclear waste repository

    NASA Astrophysics Data System (ADS)

    Koudelka, Tomáš; Kruis, Jaroslav

    2016-06-01

    The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented in the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.

  18. Critical elements in sediment-hosted deposits (clastic-dominated Zn-Pb-Ag, Mississippi Valley-type Zn-Pb, sedimentary rock-hosted Stratiform Cu, and carbonate-hosted Polymetallic Deposits): A review: Chapter 12

    USGS Publications Warehouse

    Marsh, Erin; Hitzman, Murray W.; Leach, David L.

    2016-01-01

    Some sediment-hosted base metal deposits, specifically the clastic-dominated (CD) Zn-Pb deposits, carbonate-hosted Mississippi Valley-type (MVT) deposits, sedimentary-rock hosted stratiform copper deposits, and carbonate-hosted polymetallic (“Kipushi type”) deposits, are or have been important sources of critical elements including Co, Ga, Ge, and Re. The generally poor data concerning trace element concentrations in these types of sediment-hosted ores suggest that there may be economically important concentrations of critical elements yet to be recognized.

  19. Effect of Callovo-Oxfordian clay rock on the dissolution rate of the SON68 simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Neeway, James J.; Abdelouas, Abdesselam; Ribet, Solange; El Mendili, Yassine; Schumacher, Stéphan; Grambow, Bernd

    2015-04-01

    Long-term storage of high-level nuclear waste glass in France is expected to occur in an engineered barrier system (EBS) located in a subsurface Callovo-Oxfordian (COx) clay rock formation in the Paris Basin in northeastern France. Understanding the behavior of glass dissolution in the complex system is critical to be able to reliably model the performance of the glass in this complex environment. To simulate this multi-barrier repository scenario in the laboratory, several tests have been performed to measure glass dissolution rates of the simulated high-level nuclear waste glass, SON68, in the presence of COx claystone at 90 °C. Experiments utilized a High-Performance Liquid Chromatography (HPLC) pump to pass simulated Bure site COx pore water through a reaction cell containing SON68 placed between two COx claystone cores for durations up to 200 days. Silicon concentrations at the outlet were similar in all experiments, even the blank experiment with only the COx claystone (∼4 mg/L at 25 °C and ∼15 mg/L at 90 °C). The steady-state pH of the effluent, measured at room temperature, was roughly 7.1 for the blank and 7.3-7.6 for the glass-containing experiments demonstrating the pH buffering capacity of the COx claystone. Dissolution rates for SON68 in the presence of the claystone were elevated compared to those obtained from flow-through experiments conducted with SON68 without claystone in silica-saturated solutions at the same temperature and similar pH values. Additionally, through surface examination of the monoliths, the side of the monolith in direct contact with the claystone was seen to have a corrosion thickness 2.5× greater than the side in contact with the bulk glass powder. Results from one experiment containing 32Si-doped SON68 also suggest that the movement of Si through the claystone is controlled by a chemically coupled transport with a Si retention factor, Kd, of 900 mL/g.

  20. The influence of igneous intrusions on the peak temperatures of host rocks: Finite-time emplacement, evaporation, dehydration, and decarbonation

    NASA Astrophysics Data System (ADS)

    Wang, Dayong; Song, Yongchen; Liu, Yu; Zhao, Minglong; Qi, Tian; Liu, Weiguo

    2012-01-01

    Using a 13-m-thick basic sill and its limestone host rocks of the Permian Irati Formation from the Parana Basin, South America, as an example, this paper presents a numerical investigation based on heat conduction models on the effect of the emplacement mechanism of igneous intrusions, pore-water evaporation, and dehydration and decarbonation of host rocks on the peak temperature ( Tpeak) of host rocks. Our results demonstrate that: (1) the finite-time intrusion mechanism of magma can lower the predicted Tpeak of host rocks by up to 100 °C relative to the instantaneous intrusion mechanism, and although pore-water evaporation together with dehydration and decarbonation reactions can also depress the thermal effect of the sill on its host rocks, the maximum effect of these mechanisms on Tpeak only reaches approximately 50 °C. (2) The effect of pore-water evaporation on Tpeak is obviously greater than that of the dehydration and decarbonation reactions: the former can cause a maximum deviation of 40 °C in the predicted Tpeak, whereas the deviation due to the latter is less than 20 °C. Further, the effect of the dehydration and decarbonation reactions on Tpeak is less than 10 °C if pore-water evaporation is allowed simultaneously in the models and can hence be ignored in thermal modeling. (3) The finite-time intrusion mechanism of magma probably represents the natural condition of the sill. Pore-water evaporation and dehydration and decarbonation of host rocks are also likely to play important roles in lowering the thermal effect of the sill.

  1. How clays weaken faults.

    NASA Astrophysics Data System (ADS)

    van der Pluijm, Ben A.; Schleicher, Anja M.; Warr, Laurence N.

    2010-05-01

    The weakness of upper crustal faults has been variably attributed to (i) low values of normal stress, (ii) elevated pore-fluid pressure, and (iii) low frictional strength. Direct observations on natural faults rocks provide new evidence for the role of frictional properties on fault strength, as illustrated by our recent work on samples from the San Andreas Fault Observatory at Depth (SAFOD) drillhole at Parkfield, California. Mudrock samples from fault zones at ~3066 m and ~3296 m measured depth show variably spaced and interconnected networks of displacement surfaces that consist of host rock particles that are abundantly coated by polished films with occasional striations. Transmission electron microscopy and X-ray diffraction study of the surfaces reveal the occurrence of neocrystallized thin-film clay coatings containing illite-smectite (I-S) and chlorite-smectite (C-S) phases. X-ray texture goniometry shows that the crystallographic fabric of these faults rocks is characteristically low, in spite of an abundance of clay phases. 40Ar/39Ar dating of the illitic mix-layered coatings demonstrate recent crystallization and reveal the initiation of an "older" fault strand (~8 Ma) at 3066 m measured depth, and a "younger" fault strand (~4 Ma) at 3296 m measured depth. Today, the younger strand is the site of active creep behavior, reflecting continued activation of these clay-weakened zones. We propose that the majority of slow fault creep is controlled by the high density of thin (< 100nm thick) nano-coatings on fracture surfaces, which become sufficiently smectite-rich and interconnected at low angles to allow slip with minimal breakage of stronger matrix clasts. Displacements are accommodated by localized frictional slip along coated particle surfaces and hydrated smectitic phases, in combination with intracrystalline deformation of the clay lattice, associated with extensive mineral dissolution, mass transfer and continued growth of expandable layers. The

  2. Geology and geochemistry of three sedimentary-rock-hosted disseminated gold deposits in Guizhou Province, People's Republic of China

    USGS Publications Warehouse

    Ashley, R.P.; Cunningham, C.G.; Bostick, N.H.; Dean, W.E.; Chou, I.-Ming

    1991-01-01

    Five sedimentary-rock-hosted disseminated gold deposits have been discovered since 1980 in southwestern Guizhou Province (PRC). Submicron-sized gold is disseminated in silty carbonate and carbonaceous shale host rocks of Permian and Triassic age. Arsenic, antimony, mercury, and thallium accompany the gold. Associated hydrothermal alteration resulted in decarbonatization of limestone, silicification, and argillization, and depletion of base metals, barium, and many other elements. Organic material occurs in most host rocks and ores. It was apparently devolatilized during a regional heating event that preceded hydrothermal activity, and thus was not mobilized during mineralization, and did not affect gold deposition. The geologic setting of the Guizhou deposits includes many features that are similar to those of sedimentary-rock-hosted deposits of the Great Basin, western United States. The heavy-element suite that accompanies gold is the same, but base metals are even scarcer in the Guizhou deposits than they are in U.S. deposits. The Guizhou deposits discovered to date are smaller than most U.S. deposits and have no known spatially associated igneous rocks. ?? 1991.

  3. Low Temperature Geomicrobiology Follows Host Rock Composition Along a Geochemical Gradient in Lau Basin

    PubMed Central

    Sylvan, Jason B.; Sia, Tiffany Y.; Haddad, Amanda G.; Briscoe, Lindsey J.; Toner, Brandy M.; Girguis, Peter R.; Edwards, Katrina J.

    2013-01-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila, and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria, and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity) to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria, and ε-proteobacteria, while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis. PMID:23543862

  4. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in lau basin.

    PubMed

    Sylvan, Jason B; Sia, Tiffany Y; Haddad, Amanda G; Briscoe, Lindsey J; Toner, Brandy M; Girguis, Peter R; Edwards, Katrina J

    2013-01-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila, and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria, and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity) to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria, and ε-proteobacteria, while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis. PMID:23543862

  5. Carbonate/clay-mineral relationships and the origin of protodolomite in L-2 and L-3 carbonate reservoir rocks of the Bombay high field, India

    NASA Astrophysics Data System (ADS)

    Gundu Rao, C.

    1981-07-01

    This paper consists of two parts. The first deals with carbonate/clay-mineral relationships and the second with the origin of protodolomite in L-2 and L-3 carbonate reservoir rocks of the Bombay High Oil Field, India. Six carbonate/clay-mineral assemblages, viz. (1) calcite-protodolomite-chlorite-kaolinite, (2) calcite-protodolomite-montmorillonite-kaolinite, (3) calcite-montmorillonite-kaolinite, (4) calcite-protodolomite-montmorillonite, (5) calcite-protodolomite-vermiculite, and (6) calcite-montmorillonite-chlorite-kaolinite are recognized among the L-2 and L-3 carbonate reservoir rocks of the offshore Bombay High Oil Field, India. These form disequilibrium assemblages on a Al 2O 3 (kaolinite), CaO (calcite) and MgO (magnesite) facies diagram. Therefore, the clay minerals are terrigenous in origin and have at least contributed the magnesium needed for the formation of protodolomite. The protodolomite seen in L-2 and L-3 rocks is limpid, water-clear, non-zoned, and inclusion-free with an average grain diameter of 7-10 μm and on the X-ray chart shows a consistent (104) peak between 2.93 Å to 2.90 Å ' d' spacing, reading 30-40 mole% MgCO 3 solid solution in calcite. By comparison with other types of dolomite, viz (1) replacement, (2) evaporite, (3) sabkha, and (4) schizohaline, the present protodolomite seems to be of biogenic origin and in all probability appears to be a new form of dolomite to be reported from an ancient subsurface carbonate formation.

  6. Phosphates in some missouri refractory clays

    USGS Publications Warehouse

    Hall, R.B.; Foord, E.E.; Keller, D.J.; Keller, W.D.

    1997-01-01

    This paper describes in detail phosphate minerals occurring in refractory clays of Missouri and their effect on the refractory degree of the clays. The minerals identified include carbonate-fluorapatite (francolite), crandallite, goyazite, wavellite, variscite and strengite. It is emphasized that these phosphates occur only in local isolated concentrations, and not generally in Missouri refractory clays. The Missouri fireclay region comprises 2 districts, northern and southern, separated by the Missouri River In this region, clay constitutes a major part of the Lower Pennsylvanian Cheltenham Formation. The original Cheltenham mud was an argillic residue derived from leaching and dissolution of pre-Pennsylvanian carbonates. The mud accumulated on a karstic erosion surface truncating the pre-Cheltenham rocks. Fireclays of the northern district consist mainly of poorly ordered kaolinite, with variable but minor amounts of illite, chlorite and fine-grained detrital quartz. Clays of the southern district were subjected to extreme leaching that produced well-ordered kaolinite flint clays. Local desilication formed pockets of diaspora, or more commonly, kaolinite, with oolite-like nubs or burls of diaspore ("burley" clay). The phosphate-bearing materials have been studied by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectral analysis (SEM-EDS) and chemical analysis. Calcian goyazite was identified in a sample of diaspore, and francolite in a sample of flint clay. A veinlet of wavellite occurs in flint clay at one locality, and a veinlet of variscite-strengite at another locality. The Missouri flint-clay-hosted francolite could not have formed in the same manner as marine francolite The evidence suggests that the Cheltenham francolite precipitated from ion complexes in pore water nearly simultaneously with crystallization of kaolinite flint clay from an alumina-silica gel. Calcian goyazite is an early diagenetic addition to its diaspore host

  7. A study on chemical interactions between waste fluid, formation water, and host rock during deep well injection

    SciTech Connect

    Spycher, Nicolas; Larkin, Randy

    2004-05-14

    A new disposal well was drilled in the vicinity of an injection well that had been in operation for 12 years. The drilling activities provided an opportunity to assess the fate and transport of waste products injected in the nearby well, and the impact, if any, on the host geologic formation. The origin of the fluid collected while drilling the new well and the interaction between injected waste and the formation were investigated using analyses of formation waters, waste, and formation minerals, by applying traditional graphical methods and sophisticated numerical models. This approach can be used to solve a wide range of geochemical problems related to deep well injection of waste. Trilinear Piper diagrams, Stiff diagrams, and correlation plots show that the chemical characteristics of recovered fluid at the new well are similar to those of formation water. The concentrations of most major constituents in the fluid appear diluted when compared to formation water sampled at other locations. This could be explained by mixing with waste, which is less saline than formation water. However, the waste injected near the new well consists primarily of ammonia and sulfate, and these waste constituents are not found at concentrations elevated enough to suggest that significant mixing of formation water with waste has occurred. To determine whether chemical interactions between injected waste and formation could explain the chemistry of fluid recovered from the new well, we simulated the chemical reaction between waste, formation water, and the formation rock by numerical modeling. Initial modeling calculations were done using a multicomponent geochemical reaction-path model to simulate fresh waste reacting with the formation. A more complex simulation coupling flow, transport, and reaction was then run using a multicomponent geochemical reactive transport model. These numerical simulations were carried out to calculate porosity changes and evaluate chemical processes

  8. Meteoric water-rock interaction and clay-gouge formation during higher temperature brittle faulting on the Silltal-Brenner Fault Zone, Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil; Zwingmann, Horst; Campani, Marion; Fügenschuh, Bernhard; Mulch, Andreas

    2015-04-01

    The Silltal Fault is the northern brittle continuation of the Brenner Fault Zone, with a normal, down-to-west sense of movement. It is marked by a narrow zone of cataclasis and, in three sampled locations, clay-rich fault gouges. The clay mineral composition of these gouges is dominated by higher temperature 2M1 polytype illite/muscovite, with no 1M/1Md illite or mixed layer illite/smectite detected. Smectite is limited to the northern samples from the Stephansbrücke location, whereas chlorite is present in all samples. New growth of 2M1 polytype illite in the finest size fractions indicates temperatures > 200-250° C and therefore fault gouge development at depths and temperatures close to the ductile-brittle transition in quartz rich rocks (~280-300° C). Hydrogen stable isotope (δD) analyses show that gouge formation was associated with the influx of meteoric water, which was strongly focused within the fault zone itself, without significant interchange with the adjacent footwall and hanging wall rocks. K-Ar ages from the different sample grain size fractions (< 0.1 to 6-10 μm and 'whole rock gouge') show a wide spread, from ca. 115 to 12 Ma, with ages consistently decreasing with grain size. Although the ranges overlap, ages from the northern Stephansbrücke samples are generally older (115-36 Ma) than those from the south near Matrei (55-12 Ma), possibly reflecting increasing regional metamorphic temperatures to the south. The well-defined linear relationship between apparent age and hydrogen stable isotope (δD) values establishes a direct correlation between rejuvenation of the K-Ar system and increased interaction with meteoric water. The dependence of both apparent age and δD on grain size also indicates that radiogenic and stable isotope exchange was controlled by grain size, reflecting new 2M1 illite growth, mechanical grinding of protolith muscovite during cataclastic faulting, or both. The results demonstrate the advantages of combining radiogenic

  9. On site measurements of the redox and carbonate system parameters in the low-permeability Opalinus Clay formation at the Mont Terri Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Fernández, A. M. a.; Turrero, M. J.; Sánchez, D. M.; Yllera, A.; Melón, A. M.; Sánchez, M.; Peña, J.; Garralón, A.; Rivas, P.; Bossart, P.; Hernán, P.

    An in situ water sampling experiment was performed in the Opalinus Clay formation (Switzerland), with the aim of obtaining undisturbed pore water samples for its characterization. The study was made from a dedicated borehole, named BDI-B1, drilled in March 2002 in the DI niche of the Mont Terri Rock Laboratory, located at the north-western part of the formation, a few meters away of the underlying Jurensis Marl formation. Five water sampling campaigns have been completed, and on site measurements of the key parameters of the water, such as pH, Eh, Fe(II), S 2- and alkalinity, were performed under controlled conditions inside an anoxic glove box. The chemical composition of the seepage waters obtained from the borehole is Na-Cl type, with an ionic strength of about 0.4 M. The Cl concentrations fit the concentration profile of the Opalinus Clay pore water obtained in previous experiments from boreholes and squeezed water samples. The highest salinity is found in this zone of the Opalinus Clay, with around 12 g/L of chloride. A perturbation of the rock system was produced during the first stages of the experiment due to a packer failure. As a consequence, the borehole was exposed to air during the first phase of the experiment. The main perturbations induced were: (1) pyrite oxidation that caused an increase of sulphate, calcium, magnesium and bicarbonate content in the waters; and (2) the inflow of 3H-bearing water vapour that could penetrate the EDZ. This fresh water infiltration could have mixed with the original formation water, and tritium contents of up to 3.8 TU were measured in the first water sampling campaigns. Nevertheless, after some time the hydrogeochemical conditions of the formation were recovered, and the long-term instrumentation and monitoring of the borehole made possible to obtain different parameters of the formation. Successive water sampling campaigns show a tendency to the stabilization of the main parameters of the water, such as sulphate and

  10. Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah

    USGS Publications Warehouse

    Jackson, M.D.; Pollard, D.D.

    1990-01-01

    A sequence of sedimentary rocks about 4 km thick was bent, stretched and uplifted during the growth of three igneous domes in the southern Henry Mountains. Mount Holmes, Mount Ellsworth and Mount Hillers are all about 12 km in diameter, but the amplitudes of their domes are about 1.2, 1.85 and 3.0 km, respectively. These mountains record successive stages in the inflation of near-surface diorite intrusions that are probably laccolithic in origin. The host rocks deformed along networks of outcrop-scale faults, or deformation bands, marked by crushed grains, consolidation of the porous sandstone and small displacements of sedimentary beds. Zones of deformation bands oriented parallel to the beds and formation contacts subdivided the overburden into thin mechanical layers that slipped over one another during doming. Measurements of outcrop-scale fault populations at the three mountains reveal a network of faults that strikes at high angles to sedimentary beds which themselves strike tangentially about the domes. These faults have normal and reverse components of slip that accommodated bending and stretching strains within the strata. An early stage of this deformation is displayed at Mount Holmes, where states of stress computed from three fault samples correlate with the theoretical distribution of stresses resulting from bending of thin, circular, elastic plates. Field observations and analysis of frictional driving stresses acting on horizontal planes above an opening-mode dislocation, as well as the paleostress analysis of faulting, indicate that bedding-plane slip and layer flexure were important components of the early deformation. As the amplitude of doming increased, radial and circumferential stretching of the strata and rotation of the older faults in the steepening limbs of the domes increased the complexity of the fault patterns. Steeply-dipping, map-scale faults with dip-slip displacements indicate a late-stage jostling of major blocks over the central

  11. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  12. Clay sedimentation in the Japan Sea since the Early Miocene: influence of source-rock and hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Fagel, N.; André, L.; Chamley, H.; Debrabant, P.; Jolivet, L.

    1992-09-01

    X-ray diffraction analyses have been carried out on 128 samples of Miocene to Quaternary sediments from ODP Sites 794, 795 and 797. Some clay fractions of samples from Site 797 have also been studied for rare earth elements and by Nd isotopic analyses. These three sites display similar lithological and clay assemblages (with dominant chlorite, illite and smectite) showing that the sedimentation was homogeneous throughout the whole Japan Sea Basin. Three mineralogical zones are recognized. The first zone (Lower Miocene sandy clay of Sites 794 and 797) is mainly composed of chlorite resulting from hydrothermal transformation of arc-derived smectite, due to sill injections during the initial oceanic spreading stage. The second zone (Lower Miocene to Lower Pliocene siliceous claystone and diatomaceous silty clay) is dominated by arc-derived smectite; the abundance of this mineral decreases upwards while illite and chlorite increase. This trend reflects a change of detrital source, from an eastern arc-derived source ( ɛNdt > -3.3; variable LREE enrichment) to a western continental crust source ( ɛ Ndt < -9.4 ; shale-like REE patterns); climatic modifications in the current dynamics are proposed as a cause for this change. The third zone (Upper Pliocene to Recent silty clay with minor diatom oozes) is characterized at Site 797 by increasing amounts of illite and chlorite. This reflects a more and more important western supply which is assumed to be related to tectonic rejuvenations of the Asian margin or climatic modifications affecting the alteration conditions or the current dynamics. At Sites 794 and 795, the more or less sharp supply of chlorite seems to be driven by the incipient subduction zone on the eastern margin of the Japan Sea.

  13. Influence of host lithofacies on fault rock variation in carbonate fault zones: A case study from the Island of Malta

    NASA Astrophysics Data System (ADS)

    Michie, E. A. H.

    2015-07-01

    Relatively few studies have examined fault rock microstructures in carbonates. Understanding fault core production helps predict the hydraulic behaviour of faults and the potential for reservoir compartmentalisation. Normal faults on Malta, ranging from <1 m to 90 m displacement, cut two carbonate lithofacies, micrite-dominated and grain-dominated carbonates, allowing the investigation of fault rock evolution with increasing displacement in differing lithofacies. Lithological heterogeneity leads to a variety of deformation mechanisms. Nine different fault rock types have been identified, with a range of deformation microstructures along an individual slip surface. The deformation style, and hence type of fault rock produced, is a function of host rock texture, specifically grain size and sorting, porosity and uniaxial compressive strength. Homogeneously fine-grained micrtie-dominated carbonates are characterised by dispersed deformation with large fracture networks that develop into breccias. Alternatively, this lithofacies is commonly recrystallised. In contrast, in the coarse-grained, heterogeneous grain-dominated carbonates the development of faulting is characterised by localised deformation, creating protocataclasite and cataclasite fault rocks. Cementation also occurs within some grain-dominated carbonates close to and on slip surfaces. Fault rock variation is a function of displacement as well as juxtaposed lithofacies. An increase in fault rock variability is observed at higher displacements, potentially creating a more transmissible fault, which opposes what may be expected in siliciclastic and crystalline faults. Significant heterogeneity in the fault rock types formed is likely to create variable permeability along fault-strike, potentially allowing across-fault fluid flow. However, areas with homogeneous fault rocks may generate barriers to fluid flow.

  14. Clay alteration and gold deposition in the genesis and blue star deposits, Eureka County, Nevada

    USGS Publications Warehouse

    Drews-Armitage, S. P.; Romberger, S.B.; Whitney, C.G.

    1996-01-01

    The Genesis and Blue Star sedimentary rock-hosted gold deposits occur within the 40-mile-long Carlin trend and are located in Eureka County, Nevada. The deposits are hosted within the Devonian calcareous Popovich Formation, the siliciclastic Rodeo Creek unit and the siliciclastic Vinini Formation. The host rocks have undergone contact metamorphism, decalcification, silicification, argillization, and supergene oxidation. Detailed characterization of the alteration patterns, mineralogy, modes of occurrence, and associated geochemistry of clay minerals resulted in the following classifications: least altered rocks, found distal to the orebody, consisting of both metamorphosed and unmetamorphosed host rock that has not been completely decalcified; and altered rocks, found proximal to the orebody that have been decalcified. Altered rocks are classified further into the following groups based on clay mineral content: silicic, 1 to 10 percent clay; silicicargillic, 10 to 35 percent clay; and argillic, 35 to 80 percent clay. Clay species identified are 1M illite, 2M1 illite, kaolinite, halloysite, and dioctahedral smectite. An early hydrothermal event resulted in the precipitation of euhedral kaolinite and at least one generation of silica. This event occurred contemporaneously with decalcification which increased rock permeability and porosity. A second clay alteration event resulted in the precipitation of hydrothermal 1M illite which replaced hydrothermal kaolinite and is associated with gold deposition. Silver and silica deposition is also associated with this phase of hydrothermal alteration. Hydrothermal alteration was followed by supergene alteration which resulted in the formation of supergene kaolinite, halloysite, and smectite as well as the oxidation of iron-bearing minerals. Supergene clays are concentrated along faults, dike margins, and within rocks containing carbonate. Gold mineralization is not associated with supergene clay minerals within the Genesis and

  15. Alteration of national glass in radioactive waste repository host rocks: A conceptional review

    SciTech Connect

    Apps, J.A.

    1987-01-01

    The storage of high-level radioactive wastes in host rocks containing natural glass has potential chemical advantages, especially if the initial waste temperatures are as high as 250/sup 0/C. However, it is not certain how natural glasses will decompose when exposed to an aqueous phase in a repository environment. The hydration and devitrification of both rhyolitic and natural basaltic natural glasses are reviewed in the context of hypothetical thermodynamic phase relations, infrared spectroscopic data and laboratory studies of synthetic glasses exposed to steam. The findings are compared with field observations and laboratory studies of hydrating and devitrifying natural glasses. The peculiarities of the dependence of hydration and devitrification behavior on compositional variation is noted. There is substantial circumstantial evidence to support the belief that rhyolitic glasses differ from basaltic glasses in their thermodynamic stability and their lattice structure, and that this is manifested by a tendency of the former to hydrate rather than devitrify when exposed to water. Further research remains to be done to confirm the differences in glass structure, and to determine both physically and chemically dependent properties of natural glasses as a function of composition.

  16. Chemistry of inner piedmont metamorphic rocks hosting a stratiform tin occurrence near Forest City, NC

    SciTech Connect

    Moore, W.J.; Rowe, W.D. Jr.; Eckert, J.R.

    1985-01-01

    Concordant, leucocratic lenses in regionally persistent upper amphibolite-grade biotite-amphibole gneiss have been identified by Carr and others (1984) as the bedrock source of alluvial cassiterite in the Inner Piedmont Belt of North and South Carolina. The lenses are composed of quartz, microcline, and dravitic tourmaline plus minor biotite, muscovite, and spessartine garnet; most are barren. Partial major-element analyses of drillcore samples from the gneiss suggest a protolith intermediate in composition between graywacke and arkose. Sill-like, two-mica granitoid bodies interlayered with the metasediments are corundum-normative and are granodioritic in composition. Variation plots of selected trace-element abundances discriminate effectively among (1) biotite-amphibole gneiss enriched in Mn, Zn, and V; (2) granitoids enriched in Ba, Sr, and Zr; and (3) laminated gneisses below the tin zone containing elevated levels of Ni and Cr that suggest an addition of mafic (volcanic.) material to the protolith. Lithium contents are as high as 860 ppm in 5 of 9 gneiss samples and in all 4 granitoids are 3-10 times the average abundance in common igneous and sedimentary rocks; biotite and amphibole are the probably host minerals. Lithium-charged fluids generated during metamorphism may have aided local partial melting and remobilization of tin dispersed (as detrital cassiterite.) in the sedimentary protolith. Li may prove useful in locating other stratiform tin occurrences in metamorphic terranes and in understanding processes of localization. Carr, R.S., III, and others, 1984.

  17. Estimation of host rock thermal conductivities using thetemperature data from the drift-scale test at Yucca Mountain,Nevada

    SciTech Connect

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2003-11-25

    A large volume of temperature data has been collected from a very large, underground heater test, the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST was designed to obtain thermal, hydrological, mechanical, and chemical (THMC) data in the unsaturated fractured rock of Yucca Mountain. Sophisticated numerical models have been developed to analyze the collected THMC data. In these analyses, thermal conductivities measured from core samples have been used as input parameters to the model. However, it was not known whether these core measurements represented the true field-scale thermal conductivity of the host rock. Realizing these difficulties, elaborate, computationally intensive geostatistical simulations have also been performed to obtain field-scale thermal conductivity of the host rock from the core measurements. In this paper, we use the temperature data from the DST as the input (instead of the measured core-scale thermal conductivity values) to develop an estimate of the field-scale thermal conductivity values. Assuming a conductive thermal regime, we develop an analytical solution for the temperature rise in the host rock of the DST; and using a nonlinear fitting routine, we obtain a best-fit estimate of field-scale thermal conductivity for the DST host rock. The temperature data collected from the DST shows clear evidence of two distinct thermal regimes: a zone below boiling (wet) and a zone above boiling (dry). We obtain estimates of thermal conductivity for both the wet and dry zones. We also analyze the sensitivity of these estimates to the input heating power of the DST.

  18. Electrical geophysical investigations of massive sulfide deposits and their host rocks, West Shasta copper-zinc district.

    USGS Publications Warehouse

    Horton, R.J.; Smith, B.D.; Washburne, J.C.

    1985-01-01

    Galvanic and induction electrical geophysical methods are described, and applied to characterize the electrical properties of selected West Shasta massive sulphide deposits and their host rocks at scales less than and greater than 25 ft. The measurements are analysed for their use in differentiating the various rocks and for their correlation with petrographic and geomorphological/climate attributes, and they are compared with other massive sulphide districts of contrasting geological ages. The integrated use of different methods is recommended for effective exploration of the complex West Shasta geology.-G.J.N.

  19. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  20. Mineralogical, chemical and K-Ar isotopic changes in Kreyenhagen Shale whole rocks and <2 µm clay fractions during natural burial and hydrous-pyrolysis experimental maturation

    USGS Publications Warehouse

    Clauer, Norbert; Lewan, Michael D.; Dolan, Michael P.; Chaudhuri, Sambhudas; Curtis, John B.

    2014-01-01

    Large amounts of smectite layers in the illite–smectite mixed layers of the pyrolyzed outcrop <2 μm fraction remain during thermal experiments, especially above 310 °C. With no illitization detected above 310 °C, smectite appears to have inhibited rather than promoted generation of expelled oil from decomposition of bitumen. This hindrance is interpreted to result from bitumen impregnating the smectite interlayer sites and rock matrix. Bitumen remains in the <2 μm fraction despite leaching with H2O2. Its presence in the smectite interlayers is apparent by the inability of the clay fraction to fully expand or collapse once bitumen generation from the thermal decomposition of the kerogen is completed, and by almost invariable K–Ar ages confirming for the lack of any K supply and/or radiogenic 40Ar removal. This suggests that once bitumen impregnates the porosity of a progressively maturing source rock, the pore system is no longer wetted by water and smectite to illite conversion ceases. Experimental attempts to evaluate the smectite conversion to illite should preferentially use low-TOC rocks to avoid inhibition of the reaction by bitumen impregnation.

  1. Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Kontny, Agnes; Kohl, Thomas

    2014-10-01

    Clay minerals as products of hydrothermal alteration significantly influence the hydraulic and mechanical properties of crystalline rock. Therefore, the localization and characterization of alteration zones by downhole measurements is a great challenge for the development of geothermal reservoirs. The magnetite bearing granite of the geothermal site in Soultz-sous-Forêts (France) experienced hydrothermal alteration during several tectonic events and clay mineral formation is especially observed in alteration halos around fracture zones. During the formation of clay minerals, magnetite was oxidized into hematite, which significantly reduces the magnetic susceptibility of the granite from ferrimagnetic to mostly paramagnetic values. The aim of this study was to find out if there exists a correlation between synthetic clay content logs (SCCLs) and measurements of magnetic susceptibility on cuttings in the granite in order to characterize their alteration mineralogy. Such a correlation has been proven for core samples of the EPS1 reference well. SCCLs were created from gamma ray and fracture density logs using a neural network. These logs can localize altered fracture zones in the GPK1-4 wells, where no core material is available. Mass susceptibility from 261 cutting samples of the wells GPK1-GPK4 was compared with the neural network derived synthetic logs. We applied a combination of temperature dependent magnetic susceptibility measurements with optical and electron microscopy, and energy dispersive X-ray spectroscopy to discriminate different stages of alteration. We found, that also in the granite cuttings an increasing alteration grade is characterized by an advancing oxidation of magnetite into hematite and a reduction of magnetic susceptibility. A challenge to face for the interpretation of magnetic susceptibility data from cuttings material is that extreme alteration grades can also display increased susceptibilities due to the formation of secondary magnetite

  2. Efficient singlet-singlet energy transfer in a novel host-guest assembly composed of an organic cavitand, aromatic molecules, and a clay nanosheet.

    PubMed

    Ishida, Yohei; Kulasekharan, Revathy; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, V

    2013-02-12

    A supramolecular host-guest assembly composed of a cationic organic cavitand (host), neutral aromatic molecules (guests), and an anionic clay nanosheet has been prepared and demonstrated that in this arrangement efficient singlet-singlet energy transfer could take place. The novelty of this system is the use of a cationic organic cavitand that enabled neutral organic molecules to be placed on an anionic saponite nanosheet. Efficient singlet-singlet energy transfer between neutral pyrene and 2-acetylanthracene enclosed within a cationic organic cavitand (octa amine) arranged on a saponite nanosheet was demonstrated through steady-state and time-resolved emission studies. The high efficiency was realized from the suppression of aggregation, segregation, and self-fluorescence quenching. We believe that the studies presented here using a novel supramolecular assembly have expanded the types of molecules that could serve as candidates for efficient energy-transfer systems, such as in an artificial light-harvesting system. PMID:23360204

  3. Fossil micrometeorites from Finland — Basic features, scientific potential, and characteristics of the mesoproterozoic host rocks

    NASA Astrophysics Data System (ADS)

    Kettrup, Dirk; Deutsch, Alexander; Pihlaja, Pekka; Pesonen, Lauri J.

    The oldest known micrometeorites occur in the up to 1800 m thick Mesoproterozoic Satakunta sandstone in SW-Finland. This typical red bed formation covers a graben with the dimensions of about 15 × 100 km2. The Satakunta formation correlates with the Jotnian sandstone, overlaying at several locations in Fennoscandia basement rocks, which are part of the about 1.8 to 1.9 Ga old Svecofennian orogenic belt. The age of the Satakunta formation s.s. is not well constrained: Sedimentation may have already begun 1.65 Ga ago, and ended prior to the intrusion of the post-Jotnian diabases (1.26 Ga). The depositional environment of the Satakunta sediments was primarily mostly fluvial. In arkose sandstones of this formation, over 60 cosmic spherules (melted micrometeorites) have been identified. They belong to different mineralogical types, and display unaltered mineralogical and chemical features, including the presence of a still glassy matrix. Moreover, this cosmic dust lacks clear signs of mechanical transport. So far, the reasons for the excellent preservation of the micrometeorites are enigmatic. Conceivable factors that generally may have influenced the relatively high abundance of the micrometeorites in the Satakunta formation are (i) distinct concentrations mechanisms acting prior to the embedding into the host sediment, (ii) settling of the spherules at low energy, and lack of further transport in the sedimentological environment, (iii) only minor diagenetic compaction of the host sediments at rather reducing conditions, and (iv) a quite specific time-integrated temperature history for over a billion years. In this contribution, we outline sedimentological characteristics of both, barren, and spherule-carrying Satakunta lithologies. In addition, we discuss possible scenarios for deposition, and survival of this ancient cosmic dust. Understanding of these processes is of prime importance as red beds are quite common lithologies in the Earth's history, and hence, may

  4. Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico

    USGS Publications Warehouse

    Delaney, Paul T.; Pollard, David D.

    1981-01-01

    We have studied a small group of minette dikes and plugs that crop out within a flat-lying sequence of siltstone and shale near Ship Rock, a prominent volcanic throat of tuff breccia in northwestern New Mexico. Seven dikes form a radial pattern about Ship Rock we describe in detail the northeastern dike, which has an outcrop length of about 2,900 m, an average thickness of 2.3 m, and a maximum thickness of 7.2 m. The dike is composed of 35 discrete segments arranged in echelon; orientation. of dike segments ranges systematically from N. 52? E. to N. 66? E. A prominent joint set strikes parallel to the segments and is localized within several tens of meters of the dike. Regional joint patterns display no obvious relation to dike orientation. Small offsets of segment contacts, as well as wedge-shaped bodies of crumpled host rock within segments mark the sites of coalescence of smaller segments during dike growth. Bulges in the dike contact, which represent a nondilational component of growth, indicate that wall rocks were brecciated and eroded during the flow of magma. Breccias make up about 9 percent of the 7,176-m 2 area of the dike, are concentrated in its southwest half, and are commonly associated with its thickest parts. We also describe three subcircular plugs; each plug is smaller than 30 m in diameter, is laterally associated with a dike, and contains abundant breccias. Field evidence indicates that these plugs grew from the dikes by brecciation and erosion of wallrocks and that the bulges in the contact of the northeastern dike represent an initial stage of this process. From continuum-mechanical models of host-rock deformation, we conclude that dike propagation was the dominant mechanism for creating conduits for magma ascent where the host rock was brittle and elastic. At a given driving pressure, dikes dilate to accept greater volumes of magma than plugs, and for a given dilation, less work is done on the host rocks. In addition, the pressure required

  5. Hydrothermal zeolitisation controlled by host-rock lithofacies in the Periadriatic (Oligocene) Smrekovec submarine composite stratovolcano, Slovenia

    NASA Astrophysics Data System (ADS)

    Kralj, Polona

    2016-05-01

    Hydrothermal zeolites (laumontite, yugawaralite, analcime, heulandite, clinoptilolite), prehnite and pumpellyite have been recognised in a succession of volcanic, autoclastic, pyroclastic, resedimented volcaniclastic and mixed siliciclastic-volcaniclastic deposits. In cone-building lithofacies association attaining 310 m, the alteration minerals commonly change within a single normally graded depositional unit or alternate in the section on a dm- to m-scale, according to the host-rock lithofacies. Fine-grained deposits rich in juvenile glassy pyroclasts are altered to heulandite and clinoptilolite or analcime, and laumontite widely occurs in coarse-grained host-rocks (lapilli tuff, hyaloclastite breccia, volcaniclastic breccia, hyaloclastites) and fracture systems. In near-vent lithofacies association attaining 420 m, prehnite-laumontite, laumontite-analcime, and laumontite-heulandite-clinoptilolite zones developed as a result of superimposed thermal regime generated by the emplacement of an over 200 m thick sill. The recognised dependence of alteration on porosity, permeability and fracturing of the host-rock is closely related to hydrological conditions in the stratovolcano-hosted hydrothermal system with convective-advective flow regime. After separation of steam and gases from convecting hydrothermal fluids, denser liquids outflowed intermittently, preferentially through steeply inclined (20-30°) high-permeability layers in the stratovolcano edifice. In low-permeability layers the flow was slow and thermal conditions were mainly attained by conduction. Zeolites developed only in coarse- and fine-grained vitroclastic tuffs, presumably by the dissolution of volcanic glass. The interstratified siliciclastic siltstones, tuffites and resedimented deposits with low content of glassy particles are devoid of zeolites and indicate compositional constraint on zeolitisation. Lava flows, cooling in a submarine environment and undergoing disintegration and mingling with

  6. Stoping & Screen Formation In The Wooley Creek Batholith And Andalshatten Pluton: Complex Pluton - Host Rock Interactions During Magma Emplacement

    NASA Astrophysics Data System (ADS)

    Yoshinobu, A. S.; Hargrove, B.

    2010-12-01

    The presence of xenoliths in plutons is often assumed to either be due to stoping or the formation of screens. Stoped blocks are defined as having undergone significant translation, rotation, and/or internal deformation while incorporated in the magma, while screens are considered to be relatively in situ. However, there remains much controversy as to 1) the relative spatial distribution of xenoliths/screens in plutons; 2) the degree to which xenoliths/screens may or may not have moved within the magma; 3) the extent of melting and assimilation xenoliths undergo; and 4) the mechanism by which xenoliths and screens are incorporated into plutons. We describe field and structural relations from the tilted Wooley Creek batholith (WCb) and the mid-crustal Andalshatten pluton (AHp). Both intrusions preserve xenoliths/screens of a variety of lithologies that correspond to the host rocks. The WCb is a 158-155 MA tilted intrusion emplaced into a series of accreted terranes in the Marble Mountains Wilderness, Klamath Mountains, CA. Previous work has demonstrated that the WCb is complexly zoned, and can be divided into three distinct structural units: a structurally deep unit ranging from gabbro to tonalite, a structurally shallow unit ranging from diorite to granite, and an intermediate unit of intensely deformed quartz diorite and tonalite. Numerous xenoliths of metric to centimetric scale occur in this intermediate zone, as well as in proximity to the pluton roof as exposed along the southern contact. While many of these xenoliths have internal structures that are discordant to those found in the host rock, others seem to maintain concordance with the regional bedding, and are identified as screens. In nearly all cases, xenoliths appear partially migmatitic, and veining of the host magma into them is common. The 442 Ma AHp is a large, predominantly granodioritic pluton in the Bindal Batholith. It intrudes four lithologically distinct and structurally complex nappes of the

  7. Rock deformation in hydrothermal systems: the nature of fractures in plutons and their host rocks. Technical progress report

    SciTech Connect

    Norton, D.

    1981-11-01

    The purpose of this program is to accumulate the types of field data which are important for the analysis of magma-hydrothermal systems. The structural effects of thermal processes were identified in order to distinguish the thermally induced deformations from the deformations that occurred subsequent to complete cooling of the system. Mapping techniques were developed to record the structural data on the ground from local domains characteristic of larger areas in the magma chamber, and in the air from low-angle oblique aerial photography of the entire region. The ground system is complete and preliminary testing is currently being carried out to verify the method. The results indicate that granitic crystalline rocks have no structural resistance to thermal perturbations. If nuclear wastes are to be stored in granite, precautionary buffers would have to be incorporated into the system. A total of 30 fossil magma chambers have been studied over the past 2 years. An extensive set of fracture imagery has been collected, together with information related to the geological history of the plutons. Fossil magma chambers in Arizona, Utah, California, Washington, Montana, and British Columbia have been studied.

  8. Heterogeneity in friction strength of an active fault by incorporation of fragments of the surrounding host rock

    NASA Astrophysics Data System (ADS)

    Kato, Naoki; Hirono, Tetsuro

    2016-07-01

    To understand the correlation between the mesoscale structure and the frictional strength of an active fault, we performed a field investigation of the Atera fault at Tase, central Japan, and made laboratory-based determinations of its mineral assemblages and friction coefficients. The fault zone contains a light gray fault gouge, a brown fault gouge, and a black fault breccia. Samples of the two gouges contained large amounts of clay minerals such as smectite and had low friction coefficients of approximately 0.2-0.4 under the condition of 0.01 m s-1 slip velocity and 0.5-2.5 MP confining pressure, whereas the breccia contained large amounts of angular quartz and feldspar and had a friction coefficient of 0.7 under the same condition. Because the fault breccia closely resembles the granitic rock of the hangingwall in composition, texture, and friction coefficient, we interpret the breccia as having originated from this protolith. If the mechanical incorporation of wall rocks of high friction coefficient into fault zones is widespread at the mesoscale, it causes the heterogeneity in friction strength of fault zones and might contribute to the evolution of fault-zone architectures.

  9. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  10. Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing

    NASA Astrophysics Data System (ADS)

    Moore, D. E.; Morrow, C. A.; Byerlee, J. D.

    1982-09-01

    The injection of swelling-clay slurries into joints or faults at a deep-burial nuclear waste disposal site may result in significant permeability reductions for the effective containment of radioactive wastes. In an experiment conducted to illustrate the permeability change accompanying clay swelling, a coarse stone with interconnected pore spaces was injected with a clay-electrolyte slurry, modelling the pressure-grouting of a fractured repository rock. Subsequently, solutions with lower electrolyte concentrations were driven through the clay-filled stone, corresponding to migration of lower salinity ground-waters through the clay-grouted fracture. The initial injection procedure reduced the permeability of the stone from 1-10 darcies to 700 nanodarcies; the changes in solution composition decreased permeability by more than 2 additional orders of magnitude to 3 nanodarcies. For application at a nuclear waste repository, the electrolyte concentration of the injected clay slurry should be made higher than that of the ground-water in the host rock. Subsequent interaction of the ground-water with the clays would initiate swelling and create the additional, post-injection permeability reductions that may be important in preventing the escape of buried radioactive wastes. The measured permeability of the clay filling is considerably lower than that of cement tested for borehole plugging. Clays also have the advantage over cement and chemical grouts in that they are geologically stable at relatively low temperatures and have a high capacity for radionuclide adsorption.

  11. Geochemistry of banded iron formation (BIF) host rocks, Yishui county, North China : major element, REE and other trace element analyses

    NASA Astrophysics Data System (ADS)

    Moon, I.; Lee, I.; Yang, X.

    2013-12-01

    Banded iron formation (BIF) in Yishui area, Western Shangdong Province in North China was formed from late Archean to early Paleoproterizoic (2.6Ga-2.5Ga). Amphibolite, metasediment (schist, gneiss) and migmatitic granite consist of host rocks of the BIF in North China. To find characteristics of BIF host rocks, major element, rare earth element and trace element analyses of whole rocks were conducted. Major elements are analyzed using X-ray Fluorescene Spectrometer (XRF) and REE and trace elements are analyzed by Inductively Coupled Plazma Mass Spectrometer (ICP-MS). Amphibolites show large negative Eu anomalies ([Eu]/[Eu*]=0.91~0.99) and ranges of REE are ∑REE=305~380 ppm. LREE/HREE ratios are (La/Lu)cn=21.07~26.12. SiO2 contents are 35.1~44.2 wt% and some samples have high Loss On Ignition values ([LOI]=8.35-10.06 wt%) compared to other amphibolites. LOI value is related to water and volatile contents in the rocks and it reflects amphibolite got high degree of alteration. The Fe and Mg mobility effects are shown by Fe2O3/MgO ratios which are 4.7~5.7. The Mg# varies from 25.6 to 29.3. Migmatitic granites have various range of ∑REE=21~241 ppm. They show both Eu negative anomalies ([Eu]/[Eu*]=0.53~0.71) and positive Eu anomalies ([Eu]/[Eu*]=1.95). Migmatitic granites have high SiO2 contents (68.8~72.2 wt%) and Al2O3 (13.4~14.2 wt%) contents. They have relatively low TiO2 (<0.5 wt%), MgO ( <0.6 wt%) and P2O5 (<0.2 wt%) contents. Gneiss samples were collected either from core or from mine pit. Core samples have negative Eu anomalies ([Eu]/[Eu*]=0.27~0.62) and show enriched LREE than HREE ((La/Lu)cn=45.60~62.32). Mine pit samples have positive Eu anomalies ([Eu]/[Eu*]=1.64~2.87) and almost flatten pattern except Eu anomalies ((La/Lu)cn=2.19~2.37). Core samples have higher Al2O3, TiO2, Na2O and K2O contents than mine pit samples. But remarkably mine pit samples have high contents of Fe2O3 (>40.4 wt%). Schists are divided into two types following REE patterns. Some

  12. Speciation of neptunium during sorption and diffusion in natural clay

    NASA Astrophysics Data System (ADS)

    Reich, T.; Amayri, S.; Bӧrner, P. J. B.; Drebert, J.; Frӧhlich, D. R.; Grolimund, D.; Kaplan, U.

    2016-05-01

    In argillaceous rocks, which are considered as a potential host rock for nuclear waste repositories, sorption and diffusion processes govern the migration behaviour of actinides like neptunium. For the safety analysis of such a repository, a molecular-level understanding of the transport and retardation phenomena of radioactive contaminants in the host rock is mandatory. The speciation of Np during sorption and diffusion in Opalinus Clay was studied at near neutral pH using a combination of spatially resolved synchrotron radiation techniques. During the sorption and diffusion experiments, the interaction of 8 μM Np(V) solutions with the clay lead to the formation of spots at the clay-water interface with increased Np concentrations as determined by μ-XRF. Several of these spots are correlated with areas of increased Fe concentration. Np L3-edge μ-XANES spectra revealed that up to 85% of the initial Np(V) was reduced to Np(IV). Pyrite could be identified by μ-XRD as a redox-active mineral phase responsible for the formation of Np(IV). The analysis of the diffusion profile within the clay matrix after an in-diffusion experiment for two months showed that Np(V) is progressively reduced with diffusion distance, i.e. Np(IV) amounted to ≈12% and ≈26% at 30 μm and 525 μm, respectively.

  13. Review of potential host rocks for radioactive waste disposal in the Piedmont Province of Georgia

    SciTech Connect

    Wenner, D.B.; Gillon, K.A.

    1980-10-01

    A literature study was conducted on the Piedmont province of Georgia to designate areas that may be favorable for field exploration for consideration of a repository for storage of radioactive waste. The criteria utilized in such a designation was based upon consideration of the rock unit having favorable geological, geotechnical, and geohydrological features. The most important are that the rock unit have: (1) satisfactory unit dimensions (> 100 km/sup 2/ outcrop area and at least 1500 meters (approx. 5000 feet) depth of a continuous rock type); and (2) acceptable geohydrological conditions. Among all rock types, it is concluded that the granites of the large post-metamorphic plutons and large, homogeneous orthogneissic units offer the most favorable geologic settings for exploration for siting a radioactive waste repository. Virtually all other rock types, including most metavolcanic and metasedimentary lithologies have unacceptable unit dimensions, generally unfavorable geohydrologic settings, and deleterious mechanical and physical geotechnical properties. After consideration of all major lithologies that comprise the Georgia Piedmont, the following units were deemed favorable: (1) the Elberton Pluton; (2) the Siloam Pluton; (3) the Sparta Pluton; (4) two unnamed plutons adjacent to the Snelson body of S.W. Georgia; (5) the Lithonia Gneiss; (6) basement orthogneisses and charnockites of the Pine Mountain Belt.

  14. Review of potential host rocks for radioactive waste disposal in the southern Piedmont

    SciTech Connect

    Marine, I W; Bledsoe, H W

    1982-01-01

    A federal geologic repository is being considered for the disposal of radioactive waste. The geological literature on the Southern Piedmont was studied to identify rock bodies worthy of field exploration for site selection. The study was geotechnical in nature and no consideration was given to socioeconomic factors. There were 13 geotechnical criteria applied in this study of the Southern Piedmont to arrive at a recommendation for further studies on 29 rock bodies. In general, information from the literature included the geometry and depth of the rock body, the lithology and mineralogy of the body, mineral resources, and seismicity of the area. Some rock properties, such as physical, chemical, and thermal characteristics, can be inferred from the lithology and mineralogy of the rock. The subjects on which information from the literature was generally lacking were hydrology and in situ stress. This study was unable to infer the gross hydrologic characteristics from the abundant data in the literature on lithology and structure because few geologic studies report the hydrologic characteristics.

  15. Maine Pseudotachylyte Localities and the Role of Host Rock Anisotropy in Fault Zone Development and Frictional Melting

    NASA Astrophysics Data System (ADS)

    Swanson, M. T.

    2004-12-01

    Three brittle strike-slip fault localities in coastal Maine have developed pseudotachylyte fault veins, injection veins and other reservoir structures in a variety of host rocks where the pre-existing layering can serve as a controlling fabric for brittle strike-slip reactivation. Host rocks with a poorly-oriented planar anisotropy at high angles to the shear direction will favor the development of R-shears in initial en echelon arrays as seen in the Two Lights and Richmond Island Fault Zones of Cape Elizabeth that cut gently-dipping phyllitic quartzites. These en echelon R-shears grow to through-going faults with the development of P-shear linkages across the dominantly contractional stepovers in the initial arrays. Pseudotachylyte on these faults is very localized, typically up to 1-2 mm in thickness and is restricted to through-going fault segments, P-shear linkages and some sidewall ripouts. Overall melt production is limited by the complex geometry of the multi-fault array. Host rocks with a favorably-oriented planar anisotropy for reactivation in brittle shear, however, preferentially develop a multitude of longer, non-coplanar layer-parallel fault segments. Pseudotachylyte in the newly-discovered Harbor Island Fault Zone in Muscongus Bay is developed within vertical bedding on regional upright folds with over 50 individual layer-parallel single-slip fault veins, some of which can be traced for over 40 meters along strike. Many faults show clear crosscuts of pre-existing quartz veins that indicate a range of coseismic displacements of 0.23-0.53 meters yielding fault vein widths of a few mm and dilatant reservoirs up to 2 cm thick. Both vertical and rare horizontal lateral injection veins can be found in the adjoining wall rock up to 0.7 cm thick and 80 cm in length. The structure of these faults is simple with minor development of splay faults, sidewall ripouts and strike-slip duplexes. The prominent vertical flow layering within the mylonite gneisses of

  16. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, four companies including H.C. Spinks Clay, Kentucky-Tennessee Clay, Old Hickory Clay and Unimin mined ball clay in four states. Based on a preliminary survey of the ball clay industry, production reached 1.32 Mt valued at $53.3 million. Tennessee was the leading ball clay producer state with 61% of domestic production, followed by Texas, Mississippi and Kentucky.

  17. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  18. Importance of thermo-osmosis for fluid flow and transport in clay formations hosting a nuclear waste repository

    NASA Astrophysics Data System (ADS)

    Gonçalvès, Julio; de Marsily, Ghislain; Tremosa, Joachim

    2012-07-01

    Three osmotic processes have been identified in clay-rich media. Electro- and chemo-osmosis - flows of water caused by salinity and electrical potential gradients - have so far attracted almost exclusive attention. But, despite the recurring concern about the importance of thermo-osmosis - a flow of water driven by a temperature gradient - in argillaceous media, it remains largely neglected. Here we propose a new formalism for estimating the thermo-osmotic permeability based on a theoretical analysis at the molecular and pore scale, then upscaled. We show that the thermo-osmotic permeability can be estimated only from surface-charge density, temperature, pore size and salinity. The possible prominent role of thermo-osmosis in compacted shale layers with a temperature gradient is then exemplified. This first general estimate of the thermo-osmotic permeability can be used to improve our understanding of the influence on fluid flow and pressure fields of the natural geothermal gradient in sedimentary basins, which is required, e.g., for safety assessments of nuclear-waste repositories in shale layers.

  19. Experimental device for chemical osmosis measurement on natural clay-rock samples maintained at in situ conditions: implications for formation pressure interpretations.

    PubMed

    Rousseau-Gueutin, Pauline; de Greef, Vincent; Gonçalvès, Julio; Violette, Sophie; Chanchole, Serge

    2009-09-01

    In order to characterize the so-called coupled processes occurring in compacted clay rocks, the coupling coefficients must be identified. For this purpose, an original device which allows such measurement for undisturbed (natural) samples in their in situ conditions was developed. The present experimental device minimizes the fluid leaks improving the accuracy of the coupling parameter determination. Three chemical osmotic tests were performed on a cylindrical sample of Callovo-Oxfordian argilite. Room temperature variations during the chemical osmosis experiments required the implementation of temperature effects in the numerical model used for the interpretations. These variations offered the opportunity of an alternative method to estimate the compressibility of the fluid in the circuit connected to a measurement chamber located in the center of the sample. An osmotic efficiency of almost 0.2 for a concentration of 0.094 mol L(-1) is obtained for the Callovo-Oxfordian argilite. This value would explain only some part (approximately 0.10-0.15 MPa) of the overpressures (0.5-0.6 MPa) relative to the surrounding reservoirs measured in this formation. Others processes, such as thermo-osmosis, hydrodynamic boundary condition changes due to climate variations or creep behavior of the shale, could explain the remainder of the overpressures. PMID:19527907

  20. Vein deposits hosted by plutonic rocks in the Croesus Stock and Hailey gold belt mineralized areas, Blaine County, Idaho

    USGS Publications Warehouse

    Worl, Ronald G.; Lewis, Reed S.

    2001-01-01

    Mineral deposits in the Croesus and Hailey gold belt mineralized areas in Blaine County, south-central Idaho, are preciousand base-metal quartz veins that are part of a family of vein deposits spatially and temporally associated with the Idaho batholith. Historic production from these veins has been mainly gold and silver. Host rocks are older border phase plutons of the Idaho batholith that are characterized by more potassium and less sodium as compared to rocks from the main body of the batholith to the west. Host structures are reverse faults that have moderate to shallow dips to the northeast and high-angle normal faults that also strike northwest. The veins are characterized by several generations of quartz and generally sparse sulfide minerals; gold is associated with late-stage comb quartz. The precious-metal ore bodies are in a series of shoots, each of which is as much as 8 ft in width, 400 ft in breadth, and 1,000 ft in pitch length.

  1. Diagenesis and clay mineral formation at Gale Crater, Mars

    SciTech Connect

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  2. Diagenesis and clay mineral formation at Gale Crater, Mars

    DOE PAGESBeta

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water)more » in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.« less

  3. Diagenesis and clay mineral formation at Gale Crater, Mars

    PubMed Central

    Bridges, J C; Schwenzer, S P; Leveille, R; Westall, F; Wiens, R C; Mangold, N; Bristow, T; Edwards, P; Berger, G

    2015-01-01

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ∽7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component. PMID:26213668

  4. Diagenesis and clay mineral formation at Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-01

    Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100-1000, pH of ~7.5-12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  5. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    NASA Astrophysics Data System (ADS)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of

  6. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  7. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  8. Metamorphism of the host and associated rocks at the Rajpura Dariba massive sulfide deposit, Northwestern India

    NASA Astrophysics Data System (ADS)

    Mishra, Biswajit; Upadhyay, Dewashish; Bernhardt, Heinz-Juergen

    2006-01-01

    Field and detailed petrographic studies of rocks exposed around the Rajpura-Dariba massive sulfide deposit led to the identification of three distinct, broad SUITS of rocks, namely calc-silicate rocks, calc-pelite schist and pelites. Although the pelites constitute various litho units, they are broadly classified into two types, i.e. garnet-bearing (kyanite-absent) and garnet-absent (kyanite-bearing) sub-units. The calc-silicate rocks show the formation of amphibole as the peak metamorphic mineral while the calc-pelite schist contains garnets at the highest grade. The pelites, on the other hand, extend up to kyanite grade. The garnets in pelites are prograde garnets as manifested by strong growth zoning with a typical bell shaped XMn profile. Using several calibrations, the garnet-biotite Fe-Mg exchange thermometer furnished temperatures in the range of 530-555 °C for pelites and 500-625 °C for the calc-biotite schist. Thus these rocks have been metamorphosed to mid-amphibolite facies, attaining peak metamorphic conditions within the temperature range 580-600 °C and corresponding pressure ˜5.5-6.1 kbar, inside the kyanite stability field. The fluid composition was constrained within a narrow range of XH2O≈0.85-1.0 during peak metamorphism. Considering relevant univariant equilibria in the assemblage garnet+staurolite+muscovite+biotite+chlorite in pelites and constraints from fluid inclusion studies, a clockwise P- T- t path is proposed by the intersection of relevant reactions. The proposed path corroborates the results of earlier fluid inclusion studies and accounts for the metamorphic evolution of the Rajpura-Dariba sulfide deposit. Laser Raman micro-spectroscopic studies on graphite flakes in pyrite-bearing graphite-mica schist indicate the presence of graphites from chlorite-biotite to staurolite-kyanite grades. Although such a wide variation implies graphite formation both in the prograde and retrograde sequences, consideration of some pertinent spectral

  9. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  10. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  11. NMR imaging and cryoporometry of swelling clays

    NASA Astrophysics Data System (ADS)

    Dvinskikh, Sergey V.; Szutkowski, Kosma; Petrov, Oleg V.; Furó, István.

    2010-05-01

    Compacted bentonite clay is currently attracting attention as a promising "self-sealing" buffer material to build in-ground barriers for the encapsulation of radioactive waste. It is expected to fill up the space between waste canister and surrounding ground by swelling and thus delay flow and migration from the host rock to the canister. In environmental sciences, evaluation and understanding of the swelling properties of pre-compacted clay are of uttermost importance for designing such buffers. Major goal of present study was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during different physical processes in an aqueous environment such as swelling, dissolution, and sedimentation on the time scale from minutes to years. The propagation of the swelling front during clay expansion depending on the geometry of the confining space was also studied. Magnetic resonance imaging and nuclear magnetic resonance spectroscopy were adapted and used as main experimental techniques. With this approach, spatially resolved movement of the clay/water interface as well as clay particle distributions in gel phase can be monitored [1]. Bulk samples with swelling in a vertical tube and in a horizontal channel were investigated and clay content distribution profiles in the concentration range over five orders of magnitude and with sub-millimetre spatial resolution were obtained. Expansion rates for bulk swelling and swelling in narrow slits were compared. For sodium-exchanged montmorillonite in contact with de-ionised water, we observed a remarkable acceleration of expansion as compared to that obtained in the bulk. To characterize the porosity of the clay a cryoporometric study [2] has been performed. Our results have important implications to waste repository designs and for the assessment of its long-term performance. Further research exploring clay-water interaction over a wide variety of clay composition and water ionic

  12. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  13. Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks

    NASA Astrophysics Data System (ADS)

    Sun, Vivian Z.; Milliken, Ralph E.

    2015-12-01

    Clay minerals on Mars have commonly been interpreted as the remnants of pervasive water-rock interaction during the Noachian period (>3.7 Ga). This history has been partly inferred by observations of clays in central peaks of impact craters, which often are presumed uplifted from depth. However, combined mineralogical and morphological analyses of individual craters have shown that some central peak clays may represent post-impact, possibly authigenic processes. Here we present a global survey of 633 central peaks to assess their hydrous minerals and the prevalence of uplifted, detrital, and authigenic clays. Central peak regions are examined using high-resolution Compact Reconnaissance Imaging Spectrometer for Mars and High Resolution Imaging Science Experiment data to identify hydrous minerals and place their detections in a stratigraphic and geologic context. We find that many occurrences of Fe/Mg clays and hydrated silica are associated with potential impact melt deposits. Over 35% of central peak clays are not associated with uplifted rocks; thus, caution must be used when inferring deeper crustal compositions from surface mineralogy of central peaks. Uplifted clay-bearing rocks suggest the Martian crust hosts clays to depths of at least 7 km. We also observe evidence for increasing chloritization with depth, implying the presence of fluids in the upper portions of the crust. Our observations are consistent with widespread Noachian/Early Hesperian clay formation, but a number of central peak clays are also suggestive of clay formation during the Amazonian. These results broadly support current paradigms of Mars' aqueous history while adding insight to global crustal and diagenetic processes associated with clay mineral formation and stability.

  14. Hydrothermal alteration in metasedimentary rock-hosted orogenic gold deposits, Reefton goldfield, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Christie, Anthony B.; Brathwaite, Robert L.

    2003-01-01

    Orogenic or mesothermal quartz lodes in lower Palaeozoic Greenland Group metasedimentary rocks of the Reefton area have produced 67 tonnes (t) of gold prior to 1951, and recent exploration has identified new gold resources in several deposits, including the largest past producers, Blackwater and Globe-Progress. The metasedimentary rocks consist of alternating sandstone and mudstone beds that were metamorphosed to lower greenschist facies prior to being hydrothermally altered adjacent to the quartz lodes. The sandstones are feldspathic litharenites averaging Q65-F10-R25, with detrital grains of quartz, rock fragments, muscovite, and plagioclase and biotite that were altered to albite and chlorite, respectively, during metamorphism. Accessory minerals are graphite, apatite, zircon, tourmaline and titanite. Hydrothermal alteration of the sandstones has developed a mineral assemblage of K-mica, carbonate (dolomite, ankerite, ferroan magnesite and magnesian siderite), chlorite, pyrite and arsenopyrite. The abundance of hydrothermal chlorite is greater at Blackwater than at the other prospects studied. Hydrothermal alteration associated with the quartz lodes is marked by bleaching, magnesian siderite spots, disseminated arsenopyrite and pyrite and thin carbonate, quartz and sulphide veins. These trends are accompanied by increasing concentrations of S, As and Sb and decreasing Na, and a decrease of Fe and Mg in K-mica. The alkali alteration indices 3K/Al (representing K-mica) and Na/Al (representing albite) generally show antipathetic trends, with 3K/Al increasing near the lodes and Na/Al decreasing. These trends reflect the replacement of albite by K-mica. Carbonate alteration indices CO2/(Ca + Mg +Fe) and CO2/[Ca + Mg + Fe -0.5(S + As)] quantify the abundance of hydrothermal carbonates, but they show variable correlation with the lodes. They increase the width of the alteration halo in the hanging wall of the lodes at the Globe-Progress and General Gordon prospects

  15. Mechanisms of clay smear formation in 3D - a field study

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven

    2016-04-01

    Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears

  16. Clay Mineral Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Day-Stirrat, R. J.

    2014-12-01

    Anisotropy of the orientation of clay minerals, often referred to as texture, may be unique to sediments' deposition, composition, deformation or diagenetic history. The literature is rich with studies that include preferred orientation generation in fault gouge, low-grade metamorphic rocks, sediments with variable clay content and during the smectite-to-illite transformation. Untangling the interplay between many competing factors in any one geologic situation has proven a significant challenge over many years. Understanding how, where and when clay minerals develop a preferred orientation has significant implications for permeability anisotropy in shallow burial, the way mechanical properties are projected from shallower to deeper settings in basin modeling packages and the way velocity anisotropy is accounted for in seismic data processing. The assessment of the anisotropic properties of fine-grained siliciclastic rocks is gaining significant momentum in rock physics research. Therefore, a fundamental understanding of how clay minerals develop a preferred orientation in space and time is crucial to the understanding of anisotropy of physical properties. The current study brings together a wealth of data that may be used in a predictive sense to account for fabric anisotropy that may impact any number of rock properties.

  17. Infectious microbial diseases and host defense responses in Sydney rock oysters

    PubMed Central

    Raftos, David A.; Kuchel, Rhiannon; Aladaileh, Saleem; Butt, Daniel

    2014-01-01

    Aquaculture has long been seen as a sustainable solution to some of the world's growing food shortages. However, experience over the past 50 years indicates that infectious diseases caused by viruses, bacteria, and eukaryotes limit the productivity of aquaculture. In extreme cases, these types of infectious agents threaten the viability of entire aquaculture industries. This article describes the threats from infectious diseases in aquaculture and then focuses on one example (QX disease in Sydney rock oysters) as a case study. QX appears to be typical of many emerging diseases in aquaculture, particularly because environmental factors seem to play a crucial role in disease outbreaks. Evidence is presented that modulation of a generic subcellular stress response pathway in oysters is responsible for both resistance and susceptibility to infectious microbes. Understanding and being able to manipulate this pathway may be the key to sustainable aquaculture. PMID:24795701

  18. Petrology of the Crystalline Rocks Hosting the Santa Fe Impact Structure

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Cohen, B. A.

    2010-01-01

    We collected samples from within the area of shatter cone occurrence and for approximately 8 kilometers (map distance) along the roadway. Our primary goal is to date the impact. Our secondary goal is to use the petrology and Ar systematics to provide further insight into size and scale of the impact. Our approach is to: Conduct a detailed petrology study to identify lithologies that share petrologic characteristics and tectonic histories but with differing degrees of shock. Obtain micro-cores of K-bearing minerals from multiple samples for Ar-40/Ar-39 analysis. Examine the Ar diffusion patterns for multiple minerals in multiple shocked and control samples. This will help us to better understand outcrop and regional scale relationships among rocks and their responses to the impact event.

  19. Track of fluid paleocirculation in dolomite host rock at regional scale by the Anisotropy of Magnetic Susceptibility (AMS): An example from Aptian carbonates of La Florida, Northern Spain

    NASA Astrophysics Data System (ADS)

    Essalhi, Mourad; Sizaret, Stanislas; Barbanson, Luc; Chen, Yan; Branquet, Yannick; Panis, Dominique; Camps, Pierre; Rochette, Pierre; Canals, Angels

    2009-01-01

    The present study aims to apply the AMS method (Anisotropy of Magnetic Susceptibility) at a regional scale to track the fluid circulation direction that has produced an iron metasomatism within pre-existing dolomite host rock. The Urgonian formations hosting the Zn-Pb mineralizations in La Florida (Cantabria, northern Spain) have been taken as target for this purpose. Sampling was carried out, in addition to ferroan dolomite host rock enclosing the Zn-Pb mineralizations, in dolomite host rock and limestone to make the comparison possible between magnetic signals from mineralized rocks, where fluid circulation occurred, and their surrounding formations. AMS study was coupled with petrofabric analysis carried out by texture goniometry, Scanning Electron Microscopy (SEM) observations and also Shape Preferred Orientation (SPO) statistics. SEM observations of ferroan dolomite host rock illustrate both bright and dark grey ribbons corresponding respectively to Fe enriched and pure dolomites. SPO statistics applied on four images from ferroan dolomite host rock give a well-defined orientation of ribbons related to the intermediate axis of magnetic susceptibility K2. For AMS data, two magnetic fabrics are observed. The first one is observed in ferroan dolomite host rock and characterized by a prolate ellipsoid of magnetic susceptibility with a vertical magnetic lineation. The magnetic susceptibility carrier is Fe-rich dolomite. These features are probably acquired during metasomatic fluid circulations. In Fe-rich dolomite host rock, ‹ c› axes are vertical. As a rule, (0001) planes (i.e. planes perpendicular to ‹ c› axes) are isotropic with respect to crystallographic properties. So, the magnetic anisotropy measured in this plane should reflect crystallographic modification due to fluid circulation. This is confirmed by the texture observed using the SEM. Consequently, AMS results show a dominant NE-SW elongation interpreted as the global circulation direction and a

  20. A Tree Diagram: Compilation of Methods for Evaluating Host Rock Suitability Taking Account of Uncertainties in Hydrogeological Modeling

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Hayano, A.; Goto, J.; Inagaki, M.

    2014-12-01

    In Japan, the siting process of geological repositories for vitrified high-level radioactive waste and low-level radioactive waste containing long-lived nuclides shall comprise step-wise site investigations and evaluations. The Detailed Investigation Areas will be selected focusing on the suitability for the host rock where the underground facility is constructed, after a series of surface-based investigations at Preliminary Investigation Areas. The suitability shall be judged by considering multi-disciplinary performances of the rock mass, such as thermal, hydrologic, mechanical and geochemical conditions and the volume of rock mass, based on the site models. However, the limited geoscientific information yields relatively large uncertainties of the site models, especially the hydrogeological models due to a wider variability of hydraulic properties. The uncertainties make it difficult to clarify the relationship among the site investigation, repository design (Design) and safety assessment (SA). In this study, groundwater travel time is identified as one of the important evaluation factors relevant for SA in terms of hydrology. In addition, the various options for evaluating the groundwater travel time are put together into a tree diagram. The highest level of the tree diagram is defined by the evaluation factor (groundwater travel time), and evaluation methods are systematically classified into multi-levels that comprise analytical methods/models in one dimension and three dimensions, parameters, datasets, data and investigation methods. Multiple options, such as alternative cases and/or models caused by uncertainties in data, analytical methods and models, are incorporated at each level of the tree diagrams. The feasibility of the tree diagram was examined by tracing both analytical options. Through this examination, the importance of interaction among the site investigation, SA and Design was also demonstrated.

  1. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  2. Late Paleoproterozoic sedimentary rock-hosted stratiform copper deposits in South China: their possible link to the supercontinent cycle

    NASA Astrophysics Data System (ADS)

    Zhao, Xin-Fu; Zhou, Mei-Fu; Li, Jian-Wei; Qi, Liang

    2013-01-01

    Giant sedimentary rock-hosted stratiform copper (SSC) deposits commonly occur in rift environments, temporally coincident with the breakup of the Rodinia and Pangea supercontinents. However, whether or not such deposits have also formed during the breakup of the Paleoproterozoic Columbia supercontinent is not well known. A group of dolostone-hosted Cu deposits in late Paleoproterozoic rift-related sedimentary sequences of the Dongchuan Group, South China, form one of the largest SSC districts in the world. Being one of the largest SSC deposits in the region, the Yinmin deposit has stratiform Cu orebodies intruded by dolerite dykes. One dyke has a SIMS zircon U-Pb age of 1,701 ± 28 Ma, slightly younger than the ore-hosting strata with a zircon U-Pb age of 1,742 ± 13 Ma for a tuff unit. Six chalcopyrite and bornite separates from stratiform orebodies contain highly radiogenic Os and extremely low common Os and yield a weighted mean Re-Os model age of 1,666 ± 82 Ma and a 187Os-187Re errorchron age of 1,585 ± 100 Ma. The present zircon U-Pb and sulfide Re-Os ages thus constrain the timing of the mineralization at ~1,700 Ma. The Yinmin deposit and, by inference, other SSC deposits in the region, arguably represent a large-scale SSC mineralization event during the late Paleoproterozoic. The formation of these deposits was coeval with the initial breakup/fragmentation of the Columbia supercontinent. This study highlights the temporal and likely genetic links between large-sized SSC deposits and the supercontinent cycle.

  3. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  4. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  5. Clay Houses

    ERIC Educational Resources Information Center

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  6. Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust-mantle boundary zone

    NASA Astrophysics Data System (ADS)

    Tamura, Akihiro; Morishita, Tomoaki; Ishimaru, Satoko; Hara, Kaori; Sanfilippo, Alessio; Arai, Shoji

    2016-05-01

    The crust-mantle boundary zone of the oceanic lithosphere is composed mainly of olivine-rich rocks represented by dunite and troctolite. However, we still do not fully understand the global variations in the boundary zone, and an effective classification of the boundary rocks, in terms of their petrographical features and origin, is an essential step in achieving such an understanding. In this paper, to highlight variations in olivine-rich rocks from the crust-mantle boundary, we describe the compositional variations in spinel-hosted hydrous silicate mineral inclusions in rock samples from the ocean floor near a mid-ocean ridge and trench. Pargasite is the dominant mineral among the inclusions, and all of them are exceptionally rich in incompatible elements. The host spinel grains are considered to be products of melt-peridotite reactions, because their origin cannot be ascribed to simple fractional crystallization of a melt. Trace-element compositions of pargasite inclusions are characteristically different between olivine-rich rock samples, in terms of the degree of Eu and Zr anomalies in the trace-element pattern. When considering the nature of the reaction that produced the inclusion-hosting spinel, the compositional differences between samples were found to reflect a diversity in the origin of the olivine-rich rocks, as for example in whether or not a reaction was accompanied by the fractional crystallization of plagioclase. The differences also reflect the fact that the melt flow system (porous or focused flow) controlled the melt/rock ratios during reaction. The pargasite inclusions provide useful data for constraining the history and origin of the olivine-rich rocks and therefore assist in our understanding of the crust-mantle boundary of the oceanic lithosphere.

  7. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which

  8. Smart Clays: SAFOD Samples Confirm the Key Role of Newly-formed Clays in Shallow Fault Zones

    NASA Astrophysics Data System (ADS)

    Schleicher, A.; van der Pluijm, B.; Warr, L. N.

    2013-12-01

    Analysis of fault rocks from drill-cores of the San Andreas Fault Observatory at Depth (SAFOD) project in Parkfield (CA) confirm our original hypothesis that active clay growth can occur locally at shallow conditions and that such clay localization affect fault mechanics and fault creep in particular. SAFOD fault rocks contain a variety of newly formed clay minerals including smectite, illite-smectite and chlorite-smectite, as well as illite and chlorite. Brecciated host rock fragments are abundantly coated by polished and/or striated thin-films of hydrated clay minerals, creating an interconnected and pervasive network of displacement surfaces. Ar encapsulation dating of mixed-layer nanocoatings demonstrates recent crystallization and reveal an 'older' fault strand (~8 Ma) at 3066 m measured depth and a 'younger' fault strand (~4 Ma) at 3296 m measured depth. Today, the younger strand is the site of active creep behavior, demonstrating continued (re)activation of clay-weakened zones. Recent experimental work on aseismically creeping segments of SAFOD samples showed frictional strengths that are significantly weaker than neighboring wall rocks, offering independent validation of our model. Using a range of analytical methods that include X-ray diffraction, X-ray goniometry, elemental analysis and electron microscopy, we determined the location and nature of smectitic clay minerals in borehole samples, to assess the extent of smectitic phases in space and depth, any fault zone fabric development, and the swelling behavior of smectitic phases within the fault zone. Beyond the occurrence of illite-smectite in these relatively shallow fault rocks, the localized concentration of chlorite-smectite can extend the role of smectitic clays to depths down to ~10 km. We conclude that ultrathin hydrous clay films, or nanocoatings, on displacement surfaces play a key role in influencing weak fault and creep behavior along the San Andreas Fault at Parkfield, and likely in shallow

  9. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  10. The Kipushi Cu-Zn deposit (DR Congo) and its host rocks: A petrographical, stable isotope (O, C) and radiogenic isotope (Sr, Nd) study

    NASA Astrophysics Data System (ADS)

    Van Wilderode, J.; Heijlen, W.; De Muynck, D.; Schneider, J.; Vanhaecke, F.; Muchez, Ph.

    2013-03-01

    Near the city of Kipushi, located in the southern part of the Central African Copperbelt, a major vein-type Cu-Zn ore deposit occurs. A combination of petrographic techniques and both stable (O, C) and radiogenic (Sr, Nd) isotope analysis is used to investigate the influence of the mineralisation on the Neoproterozoic dolomite host rocks. A quantification of the abundance and size of the different host rock constituents (dolomite types, quartz, phyllosilicates) revealed a lithostratigraphical controlled variation, without trends towards the ore body. The bulk oxygen isotopic composition of the host rock varies between -2.54‰ and -9.64‰ V-PDB, with most values within the range of Neoproterozoic marine dolomite. Samples with more positive δ18O all originate from the same stratigraphic interval and are interpreted as the result of reflux dolomitisation by an evaporated brine. Few samples with depleted δ18O signatures could indicate the influence of a depleted or high temperature fluid, but are not related to the ore deposit. Moreover, the presence of the ore body cannot be traced through the host rock oxygen isotopic composition. δ18O of gangue dolomite is significantly depleted in comparison with the host rocks and ranges between -7.67‰ and -12.46‰ V-PDB. For an estimated mineralisation temperature of 310 °C, this implies a δ18Ofluid between 10.7‰ and 15.6‰ V-SMOW. This is a significant enrichment compared to Neoproterozoic seawater, indicating that the mineralising fluid underwent significant fluid-rock interactions. δ13C of both host rock and gangue dolomite are in range of Neoproterozoic marine dolomites. However, a limited stratigraphic interval has clearly more negative δ13C signatures, due to in situ maturation of carbonaceous material. At the time of mineralisation (450 Ma), the host rock dolomite has a strontium isotopic composition partly more radiogenic than Neoproterozoic marine carbonates (0.70793 < 87Sr/86Sr < 0.71167). Nevertheless

  11. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features

    NASA Astrophysics Data System (ADS)

    da Costa, I. Ribeiro; Mourão, C.; Récio, C.; Guimarães, F.; Antunes, I. M.; Ramos, J. Farinha; Barriga, F. J. A. S.; Palmer, M. R.; Milton, J. A.

    2014-04-01

    Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl-oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17-57 %) and Mg/(Mg + Fe) ratios (0.19-0.50 in two-mica granitic rocks, and 0.05-0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (-78.2 ± 4.7 ‰) and δ11B (-10.7 to -9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31-0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = -29.5 ‰, and δ11B = -9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26-0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1-13.3 ‰), though wider-ranging δD (-58.5 to -36.5 ‰) and δ11B (-10.2 to -8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35-0.78] and oxydravite [Mg/(Mg + Fe) = 0.51-0.58], respectively. Boron contents of the granitic rocks are low (<650 ppm) compared to the minimum B contents normally required for tourmaline saturation in

  12. Mineral resource of the month: clays

    USGS Publications Warehouse

    Virta, Robert

    2004-01-01

    Clays represent one of the largest mineral commodities in the world in terms of mineral and rock production and use. Many people, however, do not recognize that clays are used in an amazingly wide variety of applications. Use continues to increase worldwide as populations and their associated needs increase. Robert Virta, clay and shale commodity specialist for the U.S. Geological Survey, has prepared the following information about clays.

  13. Geochemical Considerations Regarding the Processes Involved in Mineral Deposition in Sedimentary Rock-Hosted Veins

    NASA Astrophysics Data System (ADS)

    Morse, J. W.; Gledhill, D. K.

    2005-12-01

    In order for mineral deposition to take place in a vein, first the opposite reaction-dissolution of the mineral must occur from some source rock to place the requisite dissolved components into solution. Then the dissolved components must be transported to the vein either by advective or diffusive means before deposition can ensue. Finally conditions must be such in the vein that a supersaturated solution is produced and conditions are favorable for the nucleation and precipitation of the vein filling mineral. Although these general principles are widely accepted, there are many fundamental questions remaining regarding the chemistry that controls these processes. The controlling parameters are far more complex than simple temperature and pressure variations that are readily dealt with by equilibrium thermodynamic models. Answers for many questions reside, at least in a substantial part, in a better understanding of mineral solubility behavior, and precipitation and dissolution kinetics in high ionic strength solutions (brines) typically found in the subsurface. (Fluid inclusions commonly indicate that vein-filling minerals have precipitated from high ionic strength solutions.) We give as an example of the chemical complexities involving mineral reactions in brines the dissolution of calcite. The good news is that the calcite dissolution reaction is close to first order at high ionic strengths. In addition, common inhibitors, such as magnesium, are not very effective in influencing the rate constant, probably as a result of surface site competition. However, the bad news is that the sensitivity of the rate constant to composition increases with increasing carbon dioxide partial pressure and becomes most strongly influenced by total ionic strength. It is hypothesized that this is the result of a depressed water activity in brines that decreases the rate of cation hydration. We also observed that the inhibitory influence of anionic brine components, such as sulfate

  14. Nanometer-size P/K-rich silica glass (former melt) inclusions in microdiamond from the gneisses of Kokchetav and Erzgebirge massifs: Diversified characteristics of the formation media of metamorphic microdiamond in UHP rocks due to host-rock buffering

    NASA Astrophysics Data System (ADS)

    Hwang, Shyh-Lung; Chu, Hao-Tsu; Yui, Tzen-Fu; Shen, Pouyan; Schertl, Hans-Peter; Liou, Juhn G.; Sobolev, Nikolai V.

    2006-03-01

    Nanometer-size P/K-rich silica glass (former melt) inclusions were identified within metamorphic microdiamonds from garnets of ultrahigh-pressure (UHP) gneisses of the Kokchetav and the Erzgebirge massifs by analytical electron microscopy (AEM). The chemical characteristics of these inclusions within microdiamonds are surprisingly similar among various gneissic rocks from both Kokchetav and Erzgebirge, but are significantly different from the Si-poor ultrapotassic fluid inclusions within microdiamonds from garnets of the Kokchetav UHP marble. These contrasting findings not only provide constraints on the characteristics/compositions of the formation media of metamorphic microdiamonds, but also imply that the formation media must have been buffered by the hosting rocks, resulting in the observed diversities as reported here. In addition, depending on the rock types and thus on the nature of the formation media from which metamorphic microdiamonds were formed, the respective characteristic morphologies of the microdiamonds differ. The P/K-rich silica melt tends to form octahedral or cubo-octahedral microdiamonds within garnet in gneissic rocks, whereas the Si-poor ultrapotassic fluid tends to form spheroids/cuboid microdiamonds with rugged surfaces within garnet in marble. Consequently, the buffered media in hosting rocks played a decisive role in determining the different morphologies and growth rates/mechanisms of metamorphic microdiamonds in general.

  15. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  16. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  17. In situ determination of anisotropic permeability of clay

    NASA Astrophysics Data System (ADS)

    Shao, H.; Sönnke, J.; Morel, J.; Krug, S.

    Argillaceous formations are being considered as potential host rocks for repositories of radioactive waste in many countries. For this purpose, the thermal, hydraulic, mechanical, and chemical properties of the clay stone are being widely investigated in the laboratories and in situ. However, clay stone behaves, due to its tectonic evolution of the formation, hydraulically and mechanically transversal isotropic. Argillite bedding or layering structure has been observed in the underground laboratories Mont Terri in the Switzerland and Meuse/Haute-Marne at Bure site in France. Conventional packer systems used for the borehole hydraulic characterisation cannot distinguish the difference between the properties parallel and perpendicular to the bedding. For this purpose, a new ‘slot packer’ system has been developed by the BGR. This type of new packer system is intensively tested in the BGR laboratory and the Mont Terri Rock Laboratory to judge the feasibility. The anisotropic ratio of the Opalinus clay defined by permeability value parallel to the bedding/permeability value perpendicular to the bedding is evaluated up to eight times to one order of magnitude within the HG-B experiment in the Mont Terri Rock Laboratory. Within the cooperation between BGR and ANDRA, the ‘slot packer’ will be used for the measurement of anisotropic permeability of the Callovo-Oxfordien formation at the Bure site.

  18. Mineralogical, chemical and K-Ar isotopic changes in Kreyenhagen Shale whole rocks and <2 μm clay fractions during natural burial and hydrous-pyrolysis experimental maturation

    NASA Astrophysics Data System (ADS)

    Clauer, N.; Lewan, M. D.; Dolan, M. P.; Chaudhuri, S.; Curtis, J. B.

    2014-04-01

    Progressive maturation of the Eocene Kreyenhagen Shale from the San Joaquin Basin of California was studied by combining mineralogical and chemical analyses with K-Ar dating of whole rocks and <2 μm clay fractions from naturally buried samples and laboratory induced maturation by hydrous pyrolysis of an immature outcrop sample. The K-Ar age decreases from 89.9 ± 3.9 and 72.4 ± 4.2 Ma for the outcrop whole rock and its <2 μm fraction, respectively, to 29.7 ± 1.5 and 21.0 ± 0.7 Ma for the equivalent materials buried to 5167 m. The natural maturation does not produce K-Ar ages in the historical sense, but rather K/Ar ratios of relative K and radiogenic 40Ar amounts resulting from a combined crystallization of authigenic and alteration of initial detrital K-bearing minerals of the rocks. The Al/K ratio of the naturally matured rocks is essentially constant for the entire depth sequence, indicating that there is no detectable variation in the crystallo-chemical organization of the K-bearing alumino-silicates with depth. No supply of K from outside of the rock volumes occurred, which indicates a closed-system behavior for it. Conversely, the content of the total organic carbon (TOC) content decreases significantly with burial, based on the progressive increasing Al/TOC ratio of the whole rocks. The initial varied mineralogy and chemistry of the rocks and their <2 μm fractions resulting from differences in detrital sources and depositional settings give scattered results that homogenize progressively during burial due to increased authigenesis, and concomitant increased alteration of the detrital material. Hydrous pyrolysis was intended to alleviate the problem of mineral and chemical variations in initially deposited rocks of naturally matured sequences. However, experiments on aliquots from thermally immature Kreyenhagen Shale outcrop sample did not mimic the results from naturally buried samples. Experiments conducted for 72 h at temperatures from 270 to 365

  19. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    NASA Astrophysics Data System (ADS)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  20. I. Fundamental Practicum: Temperature Measurements of Falling Droplets, July, 1989. II. Industrial Practicum: Interaction and Effect of Adsorbed Organics on Reference Clays and Reservoir Rock, April, 1988. III. Apprenticeship Practicum: Studies of Group XIII Metal Inclusion Complexes, March, 1987

    NASA Astrophysics Data System (ADS)

    Wells, Mark Richard

    The temperature of 225 μm decane droplets falling through a hot, quiescent, oxygen -free environment were measured using laser-induced exciplex fluorescence thermometry. The temperature of the droplets was found to increase approximately 0.42^ circC/^circC increase in the environment temperature as the environment temperature was increased to 250^circ C. Less than 10% evaporation of the droplets was observed at the highest environment temperatures. This represents one of the first successful applications of a remote-sensing technique for the temperature determination of droplets in a dynamic system. Industrial practicum. The industrial practicum report, entitled "Interaction and Effect of Adsorbed Organics on Reference Clays and Reservoir Rock," is a discussion of the measurement of the effect adsorbed organic material, especially from crude petroleum, has on the surface area, cation exchange capacity, and zeta potential of reference clay material and reservoir rock. In addition, the energetics of adsorption of a petroleum extract onto several reference clays and reservoir rock were measured using both flow and batch microcalorimetry. These results are very important in evaluating and understanding the wettability of reservoir rock and its impact on the recovery of crude oil from a petroleum reservoir. Apprenticeship practicum. "Studies of Group XIII Metal Inclusion Complexes" investigates the structure and dynamics of liquid inclusion complexes having the general formula (R_4N) (Al_2 Me_6I) cdot (C_6H_6) _{rm x}. ^1H and ^{13}C spin-lattice relaxation times, nuclear Overhauser enhancements, and molecular correlation times were measured as well as diffusion coefficients of the various species in solution. The dynamics of transfer between "guest" and free solvent molecules were measured using a variety of techniques. The inherent structure of liquid inclusion complexes as an ordered medium for homogeneous catalysis was studied using hydrogenation catalyzed by

  1. Reconstruction of a multi-vent kimberlite eruption from deposit and host rock characteristics: Jericho kimberlite, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Hayman, P. C.; Cas, R. A. F.

    2011-03-01

    The Jericho kimberlite (173.1 ± 1.3 Ma) is a small (~ 130 × 70 m), multi-vent system that preserves products from deep (> 1 km?) portions of kimberlite vents. Pit mapping, drill core examination, petrographic study, image analysis of olivine crystals (grain size distributions and shape studies), and compositional and mineralogical studies, are used to reconstruct processes from near-surface magma ascent to kimberlite emplacement and alteration. The Jericho kimberlite formed by multiple eruptions through an Archean granodiorite batholith that was overlain by mid-Devonian limestones ~ 1 km in thickness. Kimberlite magma ascended through granodiorite basement by dyke propagation but ascended through limestone, at least in part, by locally brecciating the host rocks. After the first explosive breakthrough to surface, vent deepening and widening occurred by the erosive forces of the waxing phase of the eruption, by gravitationally induced failures as portions of the vent margins slid into the vent and, in the deeper portions of the vent (> 1 km), by scaling, as thin slabs burst from the walls into the vent. At currently exposed levels, coherent kimberlite (CK) dykes (< 40 cm thick) are found to the north and south of the vent complex and represent the earliest preserved in-situ products of Jericho magmatism. Timing of CK emplacement on the eastern side of the vent complex is unclear; some thick CK (15-20 m) may have been emplaced after the central vent was formed. Explosive eruptive products are preserved in four partially overlapping vents that are roughly aligned along strike with the coherent kimberlite dyke. The volcaniclastic kimberlite (VK) facies are massive and poorly sorted, with matrix- to clast-supported textures. The VK facies fragmented by dry, volatile-driven processes and were emplaced by eruption column collapse back into the volcanic vents. The first explosive products, poorly preserved because of partial destruction by later eruptions, are found in

  2. In situ interaction between different concretes and Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Jenni, A.; Mäder, U.; Lerouge, C.; Gaboreau, S.; Schwyn, B.

    Interactions between cementitious materials and claystone are driven by chemical gradients in pore water and might lead to mineralogical modifications in both materials. In the context of a radioactive waste repository, this alteration might influence safety-relevant clay properties like swelling pressure, permeability, or specific retention. In this study, interfaces of Opalinus Clay, a potential host-rock in Switzerland, and three concrete formulations emplaced in the Cement-Clay Interaction (CI) Experiment at the Mont Terri Underground Laboratory (St. Ursanne, Switzerland) were analysed after 2.2 years of interaction. Sampling techniques with interface stabilisation followed by inclined intersection drilling were developed. Element distribution maps of the concrete-clay interfaces show complex zonations like sulphur enrichment, zones depleted in Ca but enriched in Mg, strong Mg enrichment adjacent to the interface, or carbonation. Consistently, the carbonated zone shows a reduced porosity. Properties of the complex zonation strongly depend on cement properties like water content and pH (ordinary Portland cement vs. low-pH cement). An increased Ca or Mg content in the first 100 μm next to the interface is observed in Opalinus Clay. The cation occupancy of clay exchanger phases next to the ordinary Portland cement interface is depleted in Mg, but enriched in Na, whereas porosity shows no changes at all. The current data suggests migration of CO2/HCO3-, SO42-, and Mg species from clay into cement. pH decrease in the cement next to the interface leads to instability of ettringite, and the sulphate liberated diffuses towards higher pH regions (away from the interface), where additional ettringite can form.

  3. Clay at Nili Fossae

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image of the Nili Fossae region of Mars was compiled from separate images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and the High-Resolution Imaging Science Experiment (HiRISE), two instruments on NASA's Mars Reconnaissance Orbiter. The images were taken at 0730 UTC (2:30 a.m. EDT) on Oct. 4, 2006, near 20.4 degrees north latitude, 78.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36 to 3.92 micrometers, and shows features as small as 18 meters (60 feet) across. HiRISE's image was taken in three colors, but its much higher resolution shows features as small as 30 centimeters (1 foot) across.

    CRISM's sister instrument on the Mars Express spacecraft, OMEGA, discovered that some of the most ancient regions of Mars are rich in clay minerals, formed when water altered the planet's volcanic rocks. From the OMEGA data it was unclear whether the clays formed at the surface during Mars' earliest history of if they formed at depth and were later exposed by impact craters or erosion of the overlying rocks. Clays are an indicator of wet, benign environments possibly suitable for biological processes, making Nili Fossae and comparable regions important targets for both CRISM and HiRISE.

    In this visualization of the combined data from the two instruments, the CRISM data were used to calculate the strengths of spectral absorption bands due to minerals present in the scene. The two major minerals detected by the instrument are olivine, a mineral characteristic of primitive igneous rocks, and clay. Areas rich in olivine are shown in red, and minerals rich in clay are shown in green. The derived colors were then overlayed on the HiRISE image.

    The area where the CRISM and HiRISE data overlap is shown at the upper left, and is about 5 kilometers (3 miles) across. The three boxes outlined in blue are enlarged to show how the different minerals in the scene match up with different landforms. In the image

  4. Nanostructured multifunctional electromagnetic materials from the guest-host inorganic-organic hybrid ternary system of a polyaniline-clay-polyhydroxy iron composite: preparation and properties.

    PubMed

    Reena, Viswan L; Pavithran, Chorappan; Verma, Vivek; Sudha, Janardhanan D

    2010-03-01

    A nanostructured electromagnetic polyaniline-polyhydroxy iron-clay composite (PPIC) was prepared by oxidative radical emulsion polymerization of aniline in the presence of polyhydroxy iron cation (PIC) intercalated clays. Morphological observation through SEM, TEM, and AFM suggested the formation of self-assembled nanospheres of PIC with self-assembled PANI engulfed over PIC, and the presence of iron in PPIC was confirmed by the EDS analysis. XRD studies revealed that PPIC are comprised of exfoliated clay layers with PIC in the distorted spinel structure. Magnetic property measurements showed that saturation magnetization increased from 7.3 x 10(-3) to 2.5 emu/g upon varying the amount of PHIC content from 0 to 10%. Electrical conductivity measurements with the same composition were observed to be in the range of 3.0 x 10(-2) to 1.1 S/cm. Thermal stability studies using TGA in combination with DTG suggested that PPICs were thermally stable up to 350 degrees C. The interaction among clay layers, PIC, and PANI chains in PPIC were manifested from the studies made by FTIR and DSC analysis. The prospects for the direct application of this material are developing low-cost chemical sensors and also processable electromagnetic interference shielding materials for high technological applications. PMID:20136090

  5. A new approach to the selection of materials for engineered barriers and appropriate host rocks for high level waste disposal

    SciTech Connect

    Omelianenko, B.I.; Nikonov, B.S.; Ryzhov, B.I.; Shikina, N.D.; Yudintsev, S.V.

    1995-12-31

    Sorptive properties of weathered dunites, gabbro-diabases and basic volcanic rocks for Sr and Cs were studied. The results show that the sorptive capacities of these rocks are equivalent to or, in some cases, superior to the industrial sorptive materials. Results of a uranium distribution study by fission-track radiography suggest that material from weathered basic rocks is characterized by high sorptive properties for uranium also. One can assume that other radionuclides of the transuranic group will be intensely sorbed by the residuum of weathered basic rocks. Low-temperature hydrothermal transformation leads to sealing fissures of the basic rocks with highly sorptive minerals, for example, smectite, chlorite, serpentine, in talc, zeolite, hydroxides of Fe, Ti, Mn. The process results in contemporaneous decreasing hydraulic conductivity and increasing sorptive capacity of the rocks. HLW disposal at the radiochemical plant Mayak is expected to be produced in deep wells situated in basaltic rocks. The safety of disposal is based on high sorptive properties of the crust of weathering and protective capacities of volcanic rocks. This method is not expensive and may allow the disposal of HLW in the near future.

  6. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Five companies mined fire clay in four states in 2011. Production, based on a preliminary survey of the fire clay industry, was estimated to be 240 kt (265,000 st), valued at $7.68 million, an increase from 216 kt (238,000 st), valued at $6.12 million in 2010. Missouri was the leading producing state, followed by Texas, Washington and Ohio, in decreasing order by quantity.

  7. Geochronology and geochemistry of a dyke host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Siebel, Wolfgang; Blaha, Ulrich; Chen, Fukun; Rohrmüller, Johann

    2005-02-01

    To place constraints on the formation and deformation history of the major Variscan shear zone in the Bavarian Forest, Bavarian Pfahl zone, SW Bohemian Massif, granitic dykes and their feldspar-phyric massive host rock (so-called “palite”), zircons were dated by the U Pb isotope dilution and Pb-evaporation methods. The dated samples comprise two host rocks and four dykes from a K-rich calc-alkaline complex adjoining the SW part of the Bavarian Pfahl shear zone. The palites, which appear to be the oldest magmatic rocks emplaced in the shear zone, yield ages of 334±3, 334.5±1.1 Ma (average 207Pb/206Pb-evaporation zircon ages) and 327 342 Ma (range of U/Pb zircon ages) suggesting a Lower Carboniferous age for the initiation of the Pfahl zone. Absence of inherited older cores in all investigated zircons indicates that incorporation of crustal zircon material has played virtually no role or that the melting temperature was very high. Determination of the dyke emplacement age is complicated by partial Pb-loss in most of the fractions analysed. This Pb-loss can be ascribed to higher U content of the dyke zircons compared to those from host rock. Upper discordia intercept ages of the different dykes range from 322±5 to 331±9 Ma. The dykes are pre- to synkinematic with respect to penetrative regional mylonitisation along the Pfahl zone, and the upper intercept ages provide a maximum age for this tectonic event.

  8. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  9. Modeling of Coupled Thermo-Hydro-Mechanical Processes with Links to Geochemistry Associated with Bentonite-Backfilled Repository Tunnels in Clay Formations

    NASA Astrophysics Data System (ADS)

    Rutqvist, Jonny; Zheng, Liange; Chen, Fei; Liu, Hui-Hai; Birkholzer, Jens

    2014-01-01

    This paper presents simulation results related to coupled thermal-hydraulic-mechanical (THM) processes in engineered barrier systems (EBS) and clay host rock, in one case considering a possible link to geochemistry. This study is part of the US DOE Office of Nuclear Energy's used fuel disposition campaign, to investigate current modeling capabilities and to identify issues and knowledge gaps associated with coupled THMC processes and EBS-rock interactions associated with repositories hosted in clay rock. In this study, we simulated a generic repository case assuming an EBS design with waste emplacement in horizontal tunnels that are back-filled with bentonite-based swelling clay as a protective buffer and heat load, derived for one type of US reactor spent fuel. We adopted the Barcelona basic model (BBM) for modeling of the geomechanical behavior of the bentonite, using properties corresponding to the FEBEX bentonite, and we used clay host rock properties derived from the Opalinus clay at Mont Terri, Switzerland. We present results related to EBS host-rock interactions and geomechanical performance in general, as well as studies related to peak temperature, buffer resaturation and thermally induced pressurization of host rock pore water, and swelling pressure change owing to variation of chemical composition in the EBS. Our initial THM modeling results show strong THM-driven interactions between the bentonite buffer and the low-permeability host rock. The resaturation of the buffer is delayed as a result of the low rock permeability, and the fluid pressure in the host rock is strongly coupled with the temperature changes, which under certain circumstances could result in a significant increase in pore pressure. Moreover, using the BBM, the bentonite buffer was found to have a rather complex geomechanical behavior that eventually leads to a slightly nonuniform density distribution. Nevertheless, the simulation shows that the swelling of the buffer is functioning to

  10. Desert varnish: the importance of clay minerals.

    PubMed

    Potter, R M; Rossman, G R

    1977-06-24

    Desert varnish has been characterized by infrared spectroscopy, x-ray diffraction, and electron microscopy. It is a distinct morphological entity having an abrupt boundary with the underlying rock. Clay minerals comprise more than 70 percent of the varnish. Iron and manganese oxides constitute the bulk of the remainder and are dispersed throughout the clay layer. PMID:17776923

  11. Petrology of the Renard igneous bodies: host rocks for diamond in the northern Otish Mountains region, Quebec

    NASA Astrophysics Data System (ADS)

    Birkett, T. C.; McCandless, T. E.; Hood, C. T.

    2004-09-01

    The Renard igneous bodies were discovered in late 2001 as part of a regional diamond exploration program launched by Ashton Mining of Canada and SOQUEM. Nine bodies have been discovered within a 2-km-diameter area, and are comprised of root zone to lower diatreme facies rocks including kimberlitic breccia, olivine macrocrystic hypabyssal material, and brecciated country rock with minor amounts of kimberlitic material. Many mineralogical and petrographic features are common to both kimberlite and melnoite, and strict assignment of the rocks as kimberlite is not possible with these criteria alone. Whole rock trace element compositions suggest a closer affinity to Group I kimberlite, with derivation from a garnet-bearing mantle. Exceptions to conventional classification of the rocks along petrographic or mineralogical lines may be due in part to assimilation of felsic country rock into the Renard magmas at the time of emplacement. The Renard magmas were emplaced into northeastern Laurentia at 630 Ma, when the supercontinent was undergoing a change from convergent margin magmatism to rifting, the latter being associated ultimately with the opening of the Iapetus ocean.

  12. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  13. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys Group, Old Hickory Clay Co., and Unimin Corp. — mined ball clay in four states in 2011. Production, on the basis of preliminary data, was 940 kt (1.04 million st) with an estimated value of $44.2 million. This is a 3-percent increase in tonnage from 912 kt (1.01 million st) with a value of $41.3 million that was produced in 2010. Tennessee was the leading producing state with 63 percent of domestic production, followed by Texas, Mississippi and Kentucky. About 69 percent of production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  14. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of ~ 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a ~ 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc

  15. The study of abiotic reduction of nitrate and nitrite in Boom Clay

    NASA Astrophysics Data System (ADS)

    Mariën, A.; Bleyen, N.; Aerts, S.; Valcke, E.

    In Belgium, Boom Clay is studied as a reference host rock for the geological disposal of high-level and intermediate-level radioactive waste. Compatibility studies at the SCK•CEN aim at investigating a perturbation of the capacity of Boom Clay to retard the migration of radionuclides to the biosphere, after disposal of Eurobitum bituminized radioactive waste in the clay ( Valcke et al., 2009; Aertsens et al., 2009; Bleyen et al., 2010). One of the geo-chemical perturbations is the possible oxidation of Boom Clay by the large amounts of nitrate that will be released by Eurobitum. A more oxidised Boom Clay could have a lower reducing capacity towards redox sensitive radionuclides, possibly enhancing their migration. As the conditions in the Boom Clay formation around a disposal gallery for Eurobitum are far from optimal for the growth of prokaryotes (limited space in the far-field, high pH in the near-field, gamma radiation by the waste during the first ∼300 years (effect limited to the primary and secondary waste package)), the impact of microbially mediated reduction of nitrate and nitrite is unclear. Therefore, batch tests are performed at the SCK•CEN to study whether nitrate and nitrite can directly oxidise the main redoxactive components of Boom Clay (dissolved organic matter, kerogen, pyrite) without the mediation of prokaryotes. In a first series of batch tests, which are reported in this paper, the activity of denitrifying and nitrate reducing prokaryotes was inhibited by the addition of NaN 3. NaN 3 revealed to be an efficient inhibitor for these prokaryotes without affecting considerably the geochemistry of Boom Clay and/or Boom Clay pore water. Neither in batch tests with the Boom Clay slurries (with NaNO 3 (0.1 and 1 M) or NaNO 2 (0.1 M)) and with Boom Clay water (with 0.05 and 0.2 M NaNO 3) a pure chemical nitrate or nitrite reduction was observed after respectively 3, 7 and 17 weeks and 1 year (Boom Clay slurries) and about 2 years (Boom Clay

  16. TEM/AEM characterization of fine-grained clay minerals in very-low-grade rocks: Evaluation of contamination by EMPA involving celadonite family minerals

    SciTech Connect

    Li, Gejing; Peacor, D.R.; Coombs, D.S.; Kawachi, Y.

    1996-12-31

    Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very fine-grained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.

  17. Clay cortex in epikarst forms as an indicator of age and morphogenesis-case studies from Lublin-Volhynia chalkland (East Poland, West Ukraine)

    NASA Astrophysics Data System (ADS)

    Dobrowolski, Radosław; Mroczek, Przemysław

    2015-10-01

    Clay cortex from the contact zone between the host rock (chalk) and infilling deposits were examined in paleokarst forms (pockets, pipes, and dolines of different age) from the Lublin-Volhynia chalk karst region. In light of the sedimentological and micromorphological analyses, it seems possible to work out a model as the basis for genetic and stratigraphic discussions. (1) Dolines with the Paleogene or Neogene mineral infills are characterized by (a) homogeneous, residual type of massive clay gradually passing into the chalk monolith, and at the same time (b) relatively thick weathered zone. (2) Pipes with glacigenic mineral infill from the Saalian Glacial are characterized by (a) sharp contact between host rock and clay, (b) narrow weathering zone of chalk, (c) diffuse nature of the contact zone between residual clay and mineral infill, and (d) contamination of clay by clastic material. (3) Pockets with glacigenic mineral infill and traces of the Weichselian periglacial transformation are characterized by (a) strong contamination of chalk by quartz grains, (b) diffuse transition between clay and infill: from clayey matrix with single quartz grains (at the contact with chalk) to clayey coatings and intergranular bridges (in the infill), (c) intensive weathering (cracking) of mineral grains in the infill.

  18. Primary uranium sources for sedimentary-hosted uranium deposits in NE China: insight from basement igneous rocks of the Erlian Basin

    NASA Astrophysics Data System (ADS)

    Bonnetti, Christophe; Cuney, Michel; Bourlange, Sylvain; Deloule, Etienne; Poujol, Marc; Liu, Xiaodong; Peng, Yunbiao; Yang, Jianxing

    2016-05-01

    Carboniferous-Permian, Triassic and Jurassic igneous basement rocks around the Erlian Basin in northeast China have been investigated through detailed mineralogical, whole-rock geochemistry, geochronological data and Sm-Nd isotope studies. Carboniferous-Permian biotite granites and volcanic rocks belong to a calc-alkaline association and were emplaced during the Late Carboniferous-Early Permian (313 ± 1-286 ± 2 Ma). These rocks are characterised by positive ɛNd(t) (3.3-5.3) and fairly young T DM model ages (485-726 Ma), suggesting a dominant derivation from partial melting of earlier emplaced juvenile source rocks. Triassic biotite granites belong to a high-K calc-alkaline association and were emplaced during the Middle Triassic (243 ± 3-233 ± 2 Ma). Their negative ɛNd(t) (-2 to -0.1) and higher T DM model ages (703-893 Ma) suggest a contribution from Precambrian crust during the magma generation processes, leading to a strong enrichment in K and incompatible elements such as Th and U. Highly fractionated magmas crystallised in U-rich biotite (up to 21 ppm U) and two-mica granites. In biotite granite, the major U-bearing minerals are uranothorite and allanite. They are strongly metamict and the major part of their uranium (90 %) has been released from the mineral structure and was available for leaching. Mass balance calculations show that the Triassic biotite granites may have, at least, liberated ˜14,000 t U/km3 and thus correspond to a major primary uranium source for the U deposits hosted in the Erlian Basin.

  19. Parasites of QX-resistant and wild-type Sydney rock oysters (Saccostrea glomerata) in Moreton Bay, SE Queensland, Australia: diversity and host response.

    PubMed

    Dang, Cécile; Cribb, Thomas H; Cutmore, Scott C; Chan, Janlin; Hénault, Olivier; Barnes, Andrew C

    2013-03-01

    Wild caught (WC) and QX resistant (QXR) Sydney rock oysters were introduced at North Stradbroke Island and Pimpama River, SE Queensland, Australia, and sampled monthly during 1 year. Three groups of parasites/diseases were identified by observation of histological sections: (1) Marteilia sydneyi (Queensland unknown (QX) disease) and Steinhausia sp. (Microsporidia) characterized by a high prevalence and deleterious impact on the host; (2) disseminated neoplasia and the trematode Proctoeces sp. characterized by low prevalence but deleterious effects on the host; (3) parasites or symbionts with no detectable effect on the host: trematodes, ciliates, turbellarians and metacestodes. Mortality rates were similar between both oyster lines but higher at Pimpama River (reaching around 90%) than Stradbroke Island, mostly because of QX disease and, to a lesser extent, to the unfavourable environmental conditions of the summer 2010-2011. Lower prevalences of QX disease at Stradbroke Island probably related to the relative lack of intermediate hosts of the parasite and to lower freshwater input. Surprisingly, no difference in prevalence of QX disease was observed between the two oyster lines. PMID:23274078

  20. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    SciTech Connect

    Not Available

    1980-10-01

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnical characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia.

  1. Can clays ensure nuclear waste repositories?

    PubMed

    Zaoui, A; Sekkal, W

    2015-01-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation. PMID:25742950

  2. Can clays ensure nuclear waste repositories?

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Sekkal, W.

    2015-03-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation.

  3. Can clays ensure nuclear waste repositories?

    PubMed Central

    Zaoui, A.; Sekkal, W.

    2015-01-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation. PMID:25742950

  4. Diagenesis of the Machar Field (British North Sea) chalk: Evidence for decoupling of diagenesis in fractures and the host rock

    SciTech Connect

    Maliva, R.G.; Dickson, J.A.D.; Smalley, P.C.; Oxtoby, N.H.

    1995-01-02

    The Chalk Group (Cretaceous/Tertiary) in the Machar Field (British North Sea) contains both fracture-filling and microcrystalline calcite cements. Modeling of fluid-rock interaction using data on light stable isotopes obtained by whole rock analyses and laser ablation analyses of calcite cements reveal that the fracture and matrix diagenetic systems were largely decoupled. The calcium and carbonate of the fracture-filling calcite cements were derived largely from the adjacent chalk matrix. The fracture diagenetic system had a high water-rock ratio, which maintained a relatively stable water {delta}{sup 18}O ratio during calcite dissolution and precipitation. The chalk matrix, on the contrary, had a low molar water-rock ratio during recrystallization, which resulted in increases in the pore-water {delta}{sup 18}O value during recrystallization at elevated temperatures. This evolution of the pore-water {delta}{sup 18}O value is manifested by highly variable cement {delta}{sup 18}O values. The present-day formation waters of the Machar Field have {sup 87}Sr/{sup 86}Sr ratios significantly higher than the whole rock and fracture-filling cement calcite values, evidence that the chemical composition of the formation waters is not representative of that of the pore waters during chalk recrystallization. Little diagenesis is therefore now occurring in the Machar Field. The diagenetic systems of the chalk matrix and fractures both had a high degree of openness with respect to carbon, because of the introduction of organically derived bicarbonate rather than advection of water through the chalk. The bulk of calcite cementation in fractures and the recrystallization and cementation of the chalk matrix occurred at temperatures in the 80--100 C range, at or just below the present-day reservoir temperature of 97 C.

  5. Contact micromechanics in granular media with clay

    SciTech Connect

    Ita, S.L.

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  6. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    USGS Publications Warehouse

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  7. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    SciTech Connect

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables.

  8. Clay for Little Fingers.

    ERIC Educational Resources Information Center

    Koster, Joan Bouza

    1999-01-01

    Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…

  9. Anionic clays as hosts for anchored synthesis: Interlayer bromination of maleate and fumarate ions in nickel zinc layered hydroxy double salt

    NASA Astrophysics Data System (ADS)

    Arulraj, James; Rajamathi, Jacqueline T.; Prabhu, Kandikere R.; Rajamathi, Michael

    2007-09-01

    Anionic clay-like nickel zinc hydroxyacetate, Ni 3Zn 2(OH) 8(OAc) 2·2H 2O was ion exchanged with maleate and fumarate ions. While the maleate enters as monoanion, fumarate enters as dianion. Also these anions take up different orientations in the interlayer region. The intercalated organic species could be reacted with bromine water in such a way that the brominated product remains intercalated making the reaction a true intracrystalline reaction. The stereochemistry of the reaction of the intercalated fumarate was identical to that of the free fumarate ion - both yielding only the anti addition product. While free maleate ion yielded only the anti addition product, the intercalated maleate ion yielded a small percentage of the syn addition product along with the anti addition product. The organic products could be quantitatively recovered by anion exchange with oxalate ions.

  10. Non-disturbing characterization of natural organic matter (NOM) contained in clay rock pore water by mass spectrometry using electrospray and atmospheric pressure chemical ionization modes.

    PubMed

    Huclier-Markai, Sandrine; Landesman, Catherine; Rogniaux, Hélène; Monteau, Fabrice; Vinsot, Agnes; Grambow, Bernd

    2010-01-01

    We have investigated the composition of the mobile natural organic matter (NOM) present in Callovo-Oxfodian pore water using electrospray ionization mass spectrometry (ESI-MS), atmospheric pressure chemical ionization mass spectrometry (APCI-MS) and emission-excitation matrix (EEM) spectroscopy. The generation of knowledge of the composition, structure and size of mobile NOM is necessary if one wants to understand the interactions of these compounds with heavy metals/radionuclides, in the context of environmental studies, and particularly how the mobility of these trace elements is affected by mobile NOM. The proposed methodology is very sensitive in unambiguously identifying the in situ composition of dissolved NOM in water even at very low NOM concentration, due to innovative non-disturbing water sampling and ionization (ESI/APCI-MS) techniques. It was possible to analyze a quite exhaustive inventory of the small organic compounds of clay pore water without proceeding to any chemical treatment at naturally occurring concentration levels. The structural features observed were mainly acidic compounds and fatty acids as well as aldehydes and amino acids. PMID:20013952

  11. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Seven companies mined fire clay in four states during 2003. From 1984 to 1992, production declined to 383 kt (422,000 st) from a high of 1.04 Mt (1.14 million st) as markets for clay-based refractories declined. Since 1992, production levels have been erratic, ranging from 383 kt (422,000 st) in 1992 and 2001 to 583 kt (642,000 st) in 1995. Production in 2003, based on preliminary data, was estimated to be around 450 kt (496,000 st) with a value of about $10.5 million. This was about the same as in 2002. Missouri remained the leading producer state, followed by South Carolina, Ohio and California.

  12. Gas and water flow in an excavation-induced fracture network around an underground drift: A case study for a radioactive waste repository in clay rock

    NASA Astrophysics Data System (ADS)

    de La Vaissière, Rémi; Armand, Gilles; Talandier, Jean

    2015-02-01

    The Excavation Damaged Zone (EDZ) surrounding a drift, and in particular its evolution, is being studied for the performance assessment of a radioactive waste underground repository. A specific experiment (called CDZ) was designed and implemented in the Meuse/Haute-Marne Underground Research Laboratory (URL) in France to investigate the EDZ. This experiment is dedicated to study the evolution of the EDZ hydrogeological properties (conductivity and specific storage) of the Callovo-Oxfordian claystone under mechanical compression and artificial hydration. Firstly, a loading cycle applied on a drift wall was performed to simulate the compression effect from bentonite swelling in a repository drift (bentonite is a clay material to be used to seal drifts and shafts for repository closure purpose). Gas tests (permeability tests with nitrogen and tracer tests with helium) were conducted during the first phase of the experiment. The results showed that the fracture network within the EDZ was initially interconnected and opened for gas flow (particularly along the drift) and then progressively closed with the increasing mechanical stress applied on the drift wall. Moreover, the evolution of the EDZ after unloading indicated a self-sealing process. Secondly, the remaining fracture network was resaturated to demonstrate the ability to self-seal of the COx claystone without mechanical loading by conducting from 11 to 15 repetitive hydraulic tests with monitoring of the hydraulic parameters. During this hydration process, the EDZ effective transmissivity dropped due to the swelling of the clay materials near the fracture network. The hydraulic conductivity evolution was relatively fast during the first few days. Low conductivities ranging at 10-10 m/s were observed after four months. Conversely, the specific storage showed an erratic evolution during the first phase of hydration (up to 60 days). Some uncertainty remains on this parameter due to volumetric strain during the

  13. Fluid-rock interactions in CO2-saturated, granite-hosted geothermal systems: Implications for natural and engineered systems from geochemical experiments and models

    NASA Astrophysics Data System (ADS)

    Lo Ré, Caroline; Kaszuba, John P.; Moore, Joseph N.; McPherson, Brian J.

    2014-09-01

    Hydrothermal experiments were conducted and geochemical models constructed to evaluate the geochemical and mineralogical response of fractured granite and granite + epidote in contact with thermal water, with and without supercritical CO2, at 250 °C and 25-45 MPa. Illite ± smectite ± zeolite(?) precipitate as secondary minerals at the expense of K-feldspar, oligoclase, and epidote. Illite precipitates in experiments reacting granite and granite + epidote with water; metastable smectite forms in the experiments injected with supercritical CO2. Waters are supersaturated with respect to quartz and saturated with respect to chalcedony in CO2-charged experiments, but neither mineral formed. Carbonate formation is predicted for experiments injected with supercritical CO2, but carbonate only formed during cooling and degassing of the granite + epidote + CO2 experiment. Experimental results provide insight into the buffering capacity of granites as well as the drivers of clay formation. Metastable smectite in the experiments is attributed to high water-rock ratios, high silica activities, and high CO2 and magnesium-iron concentrations. Smectite precipitation in supercritical CO2-bearing geothermal systems may affect reservoir permeability. Silicate formation may create or thicken caps within or on the edges of geothermal reservoirs. Carbonate formation, as desired for carbon sequestration projects coinciding with geothermal systems, may require extended periods of time; cooling and degassing of CO2-saturated waters leads to carbonate precipitation, potentially plugging near-surface production pathways.

  14. Alterations in the non-clay-mineral fraction of pelitic rocks the diagenetic to low-grade metamorphic transition, Ouachita Mountains, Oklahoma and Arkansas

    SciTech Connect

    Totten, M.W.; Blatt, H. . School of Geology and Geophysics)

    1993-09-01

    The transformation of smectite to illite has been cited by many authors as a source of silica during diagenesis of mudrocks. Illites themselves, however, undergo chemical changes as they recrystallize into micas during high-grade diagenesis/low-grade metamorphism. Average compositions of phyllosilicates from the literature suggest that an equivalent amount of silica is available from transformation of illite to muscovite as from illitization of smectites. The fate of silica released by this process has not been reported, but could be a major contributor to the silt-size quartz population. The quartz and feldspar fraction of pelites from the Stanley Shale (Mississippian) in the Ouachita Mountains of Oklahoma and Arkansas was separated using sodium bisulfate fusions. The mineralogy and the grain-size distribution of this fraction were determined using standard petro-graphic and X-ray diffraction (XRD) techniques. Bulk rock samples were analyzed using X-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) methods. The data obtained were related to illite crystallinity and vitrinite reflectance as reported by Guthrie el al. (1986) and Houseknecht and Matthews (1985). The authors results are consistent with reported differences between quartz in schists and their shale precursors, and suggest that release of silica during diagenesis of phyllosilicates continues after the smectite-illite transformation. This silica precipitates as quartz within the pelite, consistent with the suggestion by Blatt (1987) that metapelites are the source of abundant silt-size quartz. The lack of whole-rock chemical variation with thermal maturity implies closed-system behavior across much of the pelite-to-metapelite transition.

  15. The Fluid Memory of Clays in Faults and Folds

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B.; Fitz-Diaz, E.; Haines, S. H.

    2013-12-01

    Constraining fluid sources is key to understanding crustal-scale fluid circulation, rock mechanics, mineral reactions and the origin of economic deposits. The role of meteoric fluids in exhumed fault rocks has been proposed in a few recent studies, notably in mylonites in low-angle normal fault (LANF) systems. However, the extent of meteoric influx and fluid pathways, and a mechanism for infiltration of surface waters up to 10+km depth remains mostly unknown. The occurrence of clay neomineralization in fault rocks and folds has the potential to resolve this question, as clay (trans)formation preserves host fluid information in its isotopic signatures, particularly H. New stable isotope studies of clays in normal faults and folds in the SW US and Mexico show major meteoric input, based on which we propose a mechanism for downward fluid infiltration and upper-crustal circulation. We obtained paired δ18O and δ2H (‰ wrt SMOW) isotopic measurements from neo-formed clays in fault gouge that formed above major LANF detachments in the SW US, which show that clays in brittle fault rocks formed from exchange with pristine to only weakly evolved meteoric fluids. Illite δ18O measurements range from -2.0‰ to +11.5‰, while illite δ2H measurements range from -142‰ to -107‰. Smectite δ18O values are +3.6‰ to 17.9‰, while smectite δ2H measurements are -147‰ to -95‰. The isotopic signature of clays at multiple depths in LANFs indicates that crustal-scale normal fault systems are highly permeable over geologic time scales, and that they are dominated by downward fluid flow of surface waters, instead of buoyancy-driven flow from deeper levels. Clay grain size fractions from folded rocks of the Mexican fold-thrust belt containing chlorite and smectite show very low values in δ2H (-75.9 to -53.9‰), while samples containing illite and kaolinite or pure illite show slightly higher δ2H values (-33.1 to -50.1‰). In these samples the discriminating potential of

  16. CO2/clay interactions and the significance for geological storage of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Wentinck, Rick; Bertier, Pieter

    2015-04-01

    For the characterization of CO2 storage reservoirs a number of critical parameters need to be assessed, like storage capacity or injection rate, where a straight-forward work flow based on existing experience in the oil and gas industry is available. Added complexity is in the identification of (potential) leakage pathways along wellbores, faults/fractures or even capillary seal networks. The critical aspects are mechanisms and rates of potential leakage. Over the past few years an improved understanding of the interaction of CO2 with clay minerals was generated, with a major focus on swelling clays, such as montmorillonite. Especially in relatively young and / or low maturity sedimentary basins, smectite contents of the seal lithologies can be high (e.g. North Sea). It was found that for CO2 storage and storage containment non-negligible physical effects result from clays in contact with CO2 and water under pressure, temperature and stress conditions representative for geological reservoirs. It was shown that all clay minerals are able to adsorb significant amounts of CO2, while only smectite swells in the presence of CO2, thereby creating a swelling force that is potentially large and may affect local stress fields. Several cases where this interaction might become important are discussed in this contribution: (1) clay swelling between wellbore cement and host rock, (2) CO2 adsorption of clays in the storage reservoir, (3) clay swelling and the impact on fractures and faults, potentially acting as pathways, for fluid leakage and (4) shrinkage of swelling clays due to dehydration by CO2 and the possible creation of dehydration cracks. This contribution aims at summarizing these effects, increasing awareness and discussing its significance for the geological storage of CO2.

  17. Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin

    USGS Publications Warehouse

    Phan, Thai T.; Capo, Rosemary C; Stewart, Brian W.; Macpherson, Gwen; Rowan, Elisabeth L.; Hammack, Richard W.

    2015-01-01

    In Greene Co., southwest Pennsylvania, the Upper Devonian sandstone formation waters have δ7Li values of + 14.6 ± 1.2 (2SD, n = 25), and are distinct from Marcellus Shale formation waters which have δ7Li of + 10.0 ± 0.8 (2SD, n = 12). These two formation waters also maintain distinctive 87Sr/86Sr ratios suggesting hydrologic separation between these units. Applying temperature-dependent illitilization model to Marcellus Shale, we found that Li concentration in clay minerals increased with Li concentration in pore fluid during diagenetic illite-smectite transition. Samples from north central PA show a much smaller range in both δ7Li and 87Sr/86Sr than in southwest Pennsylvania. Spatial variations in Li and δ7Li values show that Marcellus formation waters are not homogeneous across the Appalachian Basin. Marcellus formation waters in the northeastern Pennsylvania portion of the basin show a much smaller range in both δ7Li and 87Sr/86Sr, suggesting long term, cross-formational fluid migration in this region. Assessing the impact of potential mixing of fresh water with deep formation water requires establishment of a geochemical and isotopic baseline in the shallow, fresh water aquifers, and site specific characterization of formation water, followed by long-term monitoring, particularly in regions of future shale gas development.

  18. Excavation Induced Hydraulic Response of Opalinus Clay - Investigations of the FE-Experiment at the Mont Terri URL in Switzerland

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Müller, H. R.; Garitte, B.; Sakaki, T.; Vietor, T.

    2013-12-01

    The Full-Scale Emplacement (FE) Experiment at the Mont Terri underground research laboratory in Switzerland is a full-scale heater test in a clay-rich formation (Opalinus Clay). Based on the Swiss disposal concept it simulates the construction, emplacement, backfilling, and post-closure thermo-hydro-mechanical (THM) evolution of a spent fuel / vitrified high-level waste (SF / HLW) repository tunnel in a realistic manner. The main aim of this experiment is to investigate SF / HLW repository-induced THM coupled effects mainly in the host rock but also in the engineered barrier system (EBS), which consists of bentonite pellets and blocks. A further aim is to gather experience with full-scale tunnel construction and associated hydro-mechanical (HM) processes in the host rock. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors (state-of-the-art sensors and measurement systems as well as fiber-optic sensors). The sensors are distributed in the host rock's near- and far-field, the tunnel lining, the EBS, and on the heaters. The heater emplacement and backfilling has not started yet, therefore only the host rock instrumentation is installed at the moment and is currently generating data. We will present the instrumentation concept and rationale as well as the first monitoring results of the excavation and ventilation phase. In particular, we investigated the excavation induced hydraulic response of the host rock. Therefore, the spatiotemporal evolution of porewater-pressure time series was analyzed to get a better understanding of HM coupled processes during and after the excavation phase as well as the impact of anisotropic geomechanic and hydraulic properties of the clay-rich formation on its hydraulic behavior. Excavation related investigations were completed by means of inclinometer data to characterize the non-elastic and time

  19. Clay minerals in Alpine Fault gouge: First results from the DFDP-1B pilot hole

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B. A.; Schleicher, A. M.

    2012-12-01

    Clay mineralization is increasingly recognized as a key process along fault systems in the upper crust. The Alpine Fault in New Zealand is a major active fault zone with locally large earthquakes. Samples from this fault zone offer excellent opportunity to investigate recent and ancient rupture zones, and the mechanical role of clay mineral transformations and fluid-rock interactions in particular. The Alpine Fault drilling project (DFDP-project) on the South Island of New Zealand sampled two shallow pilot holes; DFDP-1A was drilled down to 100.6 m and DFDP-1B drilled down to 151.4 m. Five samples from borehole DFDP-1B have been investigated by X-ray diffraction, X-ray texture goniometry and electron microscopy. These samples were taken at ~143.3 m (sections 69_2 to 69_2) and ~128.1 m depth (sections 59_1 to 59_1); the latter is the area of principal slip. The bulk rock mineralogy shows similar compositions in all samples with quartz, phyllosilicates (muscovite, chlorite), calcite, zeolite and clay minerals; the dominant clay phases in all samples are illite and chlorite. Importantly, abundant discrete smectite is uniquely present in gouge zones at sections 69_2 (~143.4 m) and 59_1 (~128.1 m). Smectite was likely formed by dissolution-precipitation reactions during displacement and movement of aqueous fluids along permeable fractures, at the expense of host rock minerals. Electron microscopy of fault gouge at section 69_2 shows small illite and smectite particles with pseudo-hexagonal shapes and variable amounts of K, Ca, Mg and Fe, growing adjacent to each other. Some distinct illite and smectite mineral veins form epitaxially on quartz-feldspar mineral surfaces. Clay fabric intensity, measured by X-ray goniometry, is higher outside the gouge zones (true cataclasite, section 69_1) with average fabric intensities of m.r.d. 3.5. Both gouge zones at sections 59_2 and 69_1 exhibit uniformly weak fabrics for illite and chlorite (m.r.d. ~2.5 on average). The weak

  20. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested.

    PubMed

    Horneck, Gerda; Stöffler, Dieter; Ott, Sieglinde; Hornemann, Ulrich; Cockell, Charles S; Moeller, Ralf; Meyer, Cornelia; de Vera, Jean-Pierre; Fritz, Jörg; Schade, Sara; Artemieva, Natalia A

    2008-02-01

    The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms. PMID:18237257

  1. Monazite geochronology and geothermobarometry in polymetamorphic host rocks of volcanic-hosted massive sulphide mineralizations in the Mesoproterozoic Areachap Terrane, South Africa

    NASA Astrophysics Data System (ADS)

    Bachmann, Kai; Schulz, Bernhard; Bailie, Russell; Gutzmer, Jens

    2015-11-01

    The Areachap Terrane represents the medium-to high-grade metamorphic and deformed remnants of a Mesoproterozoic (ca. 1240-1300 Ma) volcanic arc bound to the margin of the Archean Kaapvaal Craton in the east, and the polydeformed and metamorphosed Proterozoic Namaqua Province in the west. There has been protracted debate as to the exact nature, origin, age and tectonic evolution of this terrane, adjacent to an important Mesoproterozoic crustal suture between the Archean Kaapvaal Craton and the Namaqua Province, which developed during the ∼1200-1000 Ma Namaquan Orogeny. The Areachap Terrane comprises highly deformed bimodal volcanic and volcano sedimentary successions that host a number of massive sulphide base metal orebodies. Samples from three of these orebodies at different locations were analysed to determine the age and P-T conditions of metamorphism along the Areachap Terrane. Metamorphic ages were determined by electron microprobe chemical dating of monazite. Garnet- and amphibole-bearing mineral assemblages were used for geothermobarometry at the Areachap Mine, located in the northern sector of the Areachap Terrane, monazite geochronology yields evidence for two populations of Th-U-Pb-ages at 1432 ± 30 Ma - a possible protolith age - and a metamorphic age of 1153 ± 21 Ma. Kantienpan and Copperton, representing the central and southern sector of the Areachap Terrane respectively, yield monazite ages for a younger metamorphic event with U-Th-Pb-ages of 1108 ± 19 Ma and 1104 ± 17 Ma, respectively. Geothermobarometric data give a differentiated view on the metamorphic evolution of the Areachap Terrane. An arc consistent clockwise P-T evolution path and upper amphibolite-facies peak metamorphic conditions are consistent at the three locations. The Areachap site shows a short prograde development with 8.0 kbar maximum pressure at circa 700 °C maximum temperature and a subsequent retrograde metamorphism. At Kantienpan, on the other hand, maximum metamorphic

  2. Status of LANL investigations of temperature constraints on clay in repository environments

    SciTech Connect

    Caporuscio, Florie A; Cheshire, Michael C; Newell, Dennis L; McCarney, Mary Kate

    2012-08-22

    The Used Fuel Disposition (UFD) Campaign is presently evaluating various generic options for disposal of used fuel. The focus of this experimental work is to characterize and bound Engineered Barrier Systems (EBS) conditions in high heat load repositories. The UFD now has the ability to evaluate multiple EBS materials, waste containers, and rock types at higher heat loads and pressures (including deep boreholes). The geologic conditions now available to the U.S.A. and the international community for repositories include saturated and reduced water conditions, along with higher pressure and temperature (P, T) regimes. Chemical and structural changes to the clays, in either backfill/buffer or clay-rich host rock, may have significant effects on repository evolution. Reduction of smectite expansion capacity and rehydration potential due to heating could affect the isolation provided by EBS. Processes such as cementation by silica precipitation and authigenic illite could change the hydraulic and mechanical properties of clay-rich materials. Experimental studies of these repository conditions at high P,T have not been performed in the U.S. for decades and little has been done by the international community at high P,T. The experiments to be performed by LANL will focus on the importance of repository chemical and mineralogical conditions at elevated P,T conditions. This will provide input to the assessment of scientific basis for elevating the temperature limits in clay barriers.

  3. The dynamics of magma ascent in the crust: Characterising fluid flow and host-rock deformation using scaled analogue experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine; Dennis, David

    2015-04-01

    We present the results from a series of analogue experiments that use gelatine injected by water to study magma ascent dynamics in the crust. Gelatine is a viscoelastic material that displays predominantly elastic deformation when used at low temperatures (5-10 °C) and mid-to-low concentrations (2-5 wt%). To study dyke propagation we have used a combination of Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) to characterise the dynamics of fluid flow within the intrusion and contemporaneous deformation of the host gelatine. Experiments are prepared by filling a 40 cm x 40 cm x 30 cm clear-Perspex tank with a gelatine mixture that has been seeded with neutrally buoyant fluorescent particles. Water, also seeded with tracer particles, is then injected into the solid gelatine from below under a constant flux or constant head pressure. This causes a vertical penny-shaped crack (dyke) to propagate through the gelatine and erupt at the surface. During the experiment, a vertical high-power laser sheet positioned along the centre of the tank is triggered to illuminate the seeding particles with short intense pulses, and two Dantec CCD cameras record successive images. Using PIV and DIC, vector fields of fluid flow within the intrusion and strain within the gelatine host is calculated by cross-correlation between successive images at a defined time interval. The experiments indicate that, prior to eruption, dyke propagation is characterised by rapid centralised and upwards fluid flow with accompanying downwards motion at the intrusion margin. Deformation of the gelatine solid is focused at a small head region, with the tail remaining relatively static as the dyke grows. Upon eruption, rapid centralised fluid evacuation occurs with contemporaneous contraction of the dyke and relaxation of the host gelatine. Models that can couple fluid dynamics and host deformation during magma ascent and eruption will make an important step towards improving our

  4. Coupled THMC models for bentonite in clay repository for nuclear waste

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Li, Y.; Anguiano, H. H.

    2015-12-01

    Illitization, the transformation of smectite to illite, could compromise some beneficiary features of an engineered barrier system (EBS) that is composed primarily of bentonite and clay host rock. It is a major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC and thus significantly lower the sorption and swelling capacity of bentonite and clay rock. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present fully coupled THMC simulations of a generic nuclear waste repository in a clay formation with bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant at higher temperatures. We also compared the chemical changes and the resulting swelling stress change for two types of bentonite: Kunigel-VI and FEBEX bentonite. Higher temperatures also lead to much higher stress in the near field, caused by thermal pressurization and vapor pressure buildup in the EBS bentonite and clay host rock. Chemical changes lead to a reduction in swelling stress, which is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite.

  5. Magnetic theoretical and experimental study of clays for petroleum reservoir clay typing

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Makarova, Maria; Telman, Meruert

    2013-04-01

    This study describes theoretical and experimental magnetic analysis of different clay types for petroleum reservoir characterisation by using low and high field magnetic susceptibility. Most clays for example, saponite, clay loam and bentonite are paramagnetic, whereas some clays (kaolinite) and matrix minerals such as quartz and calcite are diamagnetic. Model magnetic susceptibility and magnetic hysteresis plots for various concentrations of different clays in quartz matrix were initially calculated. Experimental magnetic measurements were undertaken for comparison on a series of synthetic reservoir samples comprising various concentrations of dispersed clays in a quartz matrix. The experimental magnetic measurements showed substantial agreement with the model magnetic values, and with estimates of the magnetic susceptibility based on low and high field magnetic susceptibility for derived mineral contents. Importantly different magnetic parameters, including IRM (isothermal remnant magnetisation) were determined for the different clay types and their mixtures with the sandstone rock matrix, together with given permeability variations in the samples. Results demonstrate that these magnetic measurements potentially provide a sensitive, rapid, quantitative technique which can be used for petrophysical analysis of clay-rich rocks and clay typing.

  6. Radiation Sensitivity of Natural Organic Matter: Clay Mineral Association Effects in the Callovo-Oxfordian Argillite

    SciTech Connect

    Schäfer, T.; Michel, P; Claret, F; Beetz, T; Wirick, S; Jacobsen, C

    2009-01-01

    Clay-rich low-organic carbon formations (e.g., Callovo-Oxfordian argillite in France and Opalinus Clay in Switzerland) are considered as host rocks for radioactive waste disposal. The clay-organic carbon has a strong impact on the chemical stability of the clays. For this reason, the nature of the clay-organic carbon, the release of hydrophilic organic compounds, namely, humic (HA) and fulvic acids (FA) and the radiation sensitivity of the undisturbed host rock organics was investigated. The clay sample originates from Oxfordian argillite (447 m depth, borehole EST 104). HA and FA were extracted following the standard International Humic Substance Society (IHSS) isolation procedure. Synchrotron based (C-, K-, Ca-, O- and Fe-edge XANES) scanning transmission X-ray microscopy (STXM) and FT-IR microspectroscopy was used to identify under high spatial resolution the distribution of clay-organic matter with different functionality using principal component and cluster analysis. The results show that in this old (Jurassic) geological formation, small parts of the organic inventory (1-5%) keeps the structure/functionality and can be mobilized as hydrophilic humic substance type material (HA and FA). Target spectra analysis shows best correlation for isolated humic acids with organics found in smectite-rich regions, whereas the extractable FA has better spectral similarities with the illite mixed layer minerals (MLM) regions. After radiation of 1.7 GGy under helium atmosphere the same rock sample area was investigated for radiation damage. Radiation damage in the smectite and illite-MLM associated organic matter is comparably low with 20-30% total oxygen mass loss and 13-18% total carbon mass loss. A critical dose dc of 2.5 GGy and a optical density after infinite radiation (OD?) of 54% was calculated under room temperature conditions. C(1s) XANES show a clear increase in Cdouble bond; length as m-dashC bonds especially in the illite-MLM associated organics. This results

  7. Host rock geology and geochemistry of the Zona uranium occurrence, Peta Gulf Syncline (Upper Benue Trough), northeast Nigeria

    NASA Astrophysics Data System (ADS)

    Suh, C. E.; Dada, S. S.; Matheis, G.

    2000-11-01

    The Peta Gulf Syncline (Upper Benue Trough, northeast Nigeria) is a fault-bounded pull-apart sub-basin. The boundary faults are mainly northeast-southwest-trending en echelon strike-slip faults, truncated along their lengths by normal and tear faults with stepovers. The eastern marginal faults underwent rotation during sedimentation, whereas the steeply dipping western marginal faults were inactive. The Peta Gulf Sub-basin is filled by the Bima Sandstone Formation (Lower Cretaceous) which has three siliciclastic members: (i) B 1: medial fan coarse-grained to microconglomeratic sandstones; (ii) B 2: full fluvial medium-grained sandstones with minimal fines; and (iii) B 3: lacustrine and flood basin deposits comprising alternating fine-grained sandstones and siltstones/claystones. Sediment supply was from east to west and facies changes show a general fining in this direction. B 3 offers the most favourable environment/lithology for U concentration. The only significant U occurrence in the Peta Gulf Syncline is the Zona U anomaly, which occurs within transitional B 2-B 3 brecciated sandstones with wall rock alterations zones. The mineralised zone has elevated SiO 2, Fe, As, Ba and W levels but is depleted in the alkalis, Zr, Rb and Sr. This chemical zonation supports the epigenetic orgin of this anomaly.

  8. How clays affect fault strength and slip behavior: Lessons from SAFOD

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B. A.; Schleicher, A. M.; Warr, L.

    2010-12-01

    The strength and slip behavior of upper crustal faults has been attributed to (i) values of normal stress, (ii) pore-fluid pressure, and (iii) frictional properties. Direct observations on natural fault rocks provide compelling evidence for the role of localized neomineralization, as demonstrated by our work on samples from the San Andreas Fault Observatory at Depth (SAFOD) drillhole at Parkfield, California. Mudrock samples from fault zones at ~3066 m and ~3296 m measured depth (MD) show variably spaced and interconnected networks of displacement surfaces that consist of host rock particles that are abundantly coated by polished films with occasional striations. Transmission electron microscopy and X-ray diffraction study of the surfaces reveal the occurrence of neocrystallized thin-film clay coatings containing illite-smectite (I-S) and chlorite-smectite (C-S) phases. X-ray texture goniometry shows that the clay crystallographic fabric of these faults rocks is characteristically low, in spite of an abundance of clay phases. 40Ar/39Ar dating of the illitic coatings demonstrate recent crystallization and reveals the initiation of an “older” fault strand (~8 Ma) at 3066 m MD, and a “younger” fault strand (~4 Ma) at 3296 m MD. Today, the younger strand is the site of active creep behavior, reflecting continued activation of clay-weakened zones. We propose that fault creep is controlled by the localization of thin (< 100nm thick) nanocoatings on fracture surfaces that are sufficiently smectite-rich and interconnected to allow slip with minimal breakage of stronger matrix clasts. Displacements are accommodated by frictional slip along coated particle surfaces, in combination with intracrystalline deformation of the mineral lattice, resulting from crystal dissolution, mass transfer and growth of expandable clays. The highly localized concentration of both I-S and C-S minerals does not require volumetrically large mass transfer. A scenario is proposed where

  9. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  10. Mars, clays and the origins of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  11. Mineralogical assemblages forming at hyperalkaline warm springs hosted on ultramafic rocks: A case study of Oman and Ligurian ophiolites

    NASA Astrophysics Data System (ADS)

    Chavagnac, ValéRie; Ceuleneer, Georges; Monnin, Christophe; Lansac, Benjamin; Hoareau, Guilhem; Boulart, CéDric

    2013-07-01

    We report on the mineralogical assemblages found in the hyperalkaline springs hosted on Liguria and Oman ophiolites based on exhaustive X-ray diffraction and scanning electron microprobe analyses. In Liguria, hyperalkaline springs produce a thin brownish calcite precipitate that covers the bedrock due to the concomitant atmospheric CO2 uptake and neutralization of the hyperalkaline waters. No brucite and portlandite minerals are observed. The discharge of alkaline waters in Oman ophiolite forms white-orange precipitates. Calcium carbonate minerals (calcite and/or aragonite) are the most abundant and ubiquitous precipitates and are produced by the same mechanism as in Liguria. This process is observed as a thin surface crust made of rhombohedral calcite. Morphological features of aragonite vary from needle-, bouquet-, dumbbell-, spheroidal-like habitus according to the origin of carbon, temperature, and ionic composition of the hyperalkaline springs, and the biochemical and organic compounds. Brucite is observed both at hyperalkaline springs located at the thrust plane and at the paleo-Moho. The varying mixing proportions between the surface runoff waters and the hyperalkaline ones control brucite precipitation. The layered double hydroxide minerals occur solely in the vicinity of hyperalkaline springs emerging within the bedded gabbros. Finally, the dominant mineralogical associations we found in Oman (Ca-bearing carbonates and brucite) in a serpentinizing environment driven by the meteoric waters are surprisingly the same as those observed at the Lost City hydrothermal site in a totally marine environment.

  12. CLAY AND CLAY-SUPPORTED REAGENTS IN ORGANIC SYNTHESES

    EPA Science Inventory

    CLAY AND CLAY-SUPPORTED REAGENTS HAVE BEEN USED EXTENSIVELY FOR SYNTHETIC ORGANIC TRANSFORMATIONS. THIS OVERVIEW DESCRIBES THE SALIENT STRUCTURAL PROPERTIES OF VARIOUS CLAY MATERIALS AND EXTENDS THE DISCUSSION TO PILLARED CLAYS AND REAGENTS SUPPORTED ON CLAY MATERIALS. A VARIET...

  13. The genesis of emeralds and their host rocks from Swat, northwestern Pakistan: a stable-isotope investigation

    NASA Astrophysics Data System (ADS)

    Arif, M.; Fallick, A. E.; Moon, C. J.

    1996-05-01

    previously serpentinized ultramafic rocks by a CO2-bearing fluid of metamorphic origin.

  14. Phengite-hosted LILE enrichment in eclogite and related rocks: Implications for fluid-mediated mass transfer in subduction zones and arc magma genesis

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, J.N.; Perfit, M.R.

    1997-01-01

    Geochemical differences between island arc basalts (LAB) and ocean-floor basalts (mid-ocean ridge basalts; MORB) suggest that the large-ion lithophile elements (LILE) K, Ba, Rb and Cs are probably mobilized in subduction zone fluids and melts. This study documents LILE enrichment of eclogite, amphibolite, and epidote ?? garnet blueschist tectonic blocks and related rocks from melanges of two subduction complexes. The samples are from six localities of the Franciscan Complex, California, and related terranes of Oregon and Baja California, and from the Samana Metamorphic Complex, Samana Peninsula, Dominican Republic. Most Franciscan blocks are MORB-like in their contents of rare earth elements (REE) and high field strength elements (HFSE); in contrast, most Samana blocks show an LAB signature of these elements. The whole-rock K2O contents of both groups range from 1 to 3 wt %; K, Ba, Rb, and Cs are all strongly intercorrelated. Many blocks display K/Ba similar to melasomatized transition zones and rinds at their outer margins. Some transition zones and rinds are enriched in LILE compared with host blocks; others are relatively depleted in these elements. Some LILE-rich blocks contain 'early' coarse-grained muscovite that is aligned in the foliation defined by coarse-grained omphacite or amphibole grains. Others display 'late' muscovite in veins and as a partial replacement of garnet; many contain both textural types. The muscovite is phengite that contains ???3??25-3??55 Si per 11 oxygens, and ???0??25-0??50 Mgper 11 oxygens. Lower-Si phengite has a significant paragonite component: Na per 11 oxygens ranges to ???0??12. Ba contents of phengite range to over 1 wt % (0??027 per 11 oxygens). Ba in phengite does not covary strongly with either Na or K. Ba contents of phengite increase from some blocks to their transition zones or rinds, or from blocks to their veins. Averaged KlBa ratios for phengite and host samples define an array which describes other subsamples of

  15. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REEFe-Nb ore deposit, Inner Mongolia, P.R.C.

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Yinchen, R.

    1992-01-01

    Bayan Obo, a complex rare earth element (REE)FeNb ore deposit, located in Inner Mongolia, P.R.C. is the world's largest known REE deposit. The deposit is chiefly in a marble unit (H8), but extends into an overlying unit of black shale, slate and schist unit (H9), both of which are in the upper part of the Middle Proterozoic Bayan Obo Group. Based on sedimentary structures, the presence of detrital quartz and algal fossil remains, and the 16-km long geographic extent, the H8 marble is a sedimentary deposit, and not a carbonatite of magmatic origin, as proposed by some previous investigators. The unit was weakly regionally metamorphosed (most probably the lower part of the green schist facies) into marble and quartzite prior to mineralization. Tectonically, the deposit is located on the northern flank of the Sino-Korean craton. Many hypotheses have been proposed for the origin of the Bayan Obo deposit; the studies reported here support an epigenetic, hydrothermal, metasomatic origin. Such an origin is supported by field and laboratory textural evidence; 232Th/208Pb internal isochron mineral ages of selected monazite and bastnaesite samples; 40Ar/39Ar incremental heating minimum mineral ages of selected alkali amphiboles; chemical compositions of different generations of both REE ore minerals and alkali amphiboles; and evidence of host-rock influence on the various types of Bayan Obo ores. The internal isochron ages of the REE minerals indicate Caledonian ages for various episodes of REE and Fe mineralization. No evidence was found to indicate a genetic relation between the extensive biotite granitic rocks of Hercynian age in the mine region and the Bayan Obo are deposit, as suggested by previous workers. ?? 1992.

  16. Geology and geochemistry of high-grade, volcanic rock-hosted, mercury mineralisation in the Nuevo Entredicho deposit, Almadén district, Spain

    NASA Astrophysics Data System (ADS)

    Jébrak, Michel; Higueras, Pablo L.; Marcoux, Éric; Lorenzo, Saturnino

    2002-06-01

    The Nuevo Entredicho deposit contains the richest concentration of mercury in the Almadén district, locally grading as much as 45% Hg. This ore deposit is hosted within an alkaline, conically shaped diatreme, about 150 m in diameter, which was subsequently filled with phreatomagmatic breccias. The diatreme cuts an Ordovician to Silurian clastic sedimentary rock sequence that is intercalated with basaltic sills. Structural analysis reveals a complex tectonic history with three main phases of Hercynian deformation. Mineralisation occurs as cinnabar replacements in volcanic tuffs and breccias and as recrystallised veins in tensions cracks associated with pyrophyllite and hydrothermal pyrite, which is strongly enriched in Cu, Pb and Hg. Lead isotopes in pyrite are characterised by high 207Pb/204Pb ratios (15.70-15.75), suggesting a contribution of ancient upper continental crust remobilised by Silurian-Devonian volcanism, with no mantle involvement. Sulphur isotopes of epigenetic cinnabar and pyrite range from +10.3 to +10.8‰ and from +10.6 to +11.9‰ respectively, suggesting a uniform sulphur source or a constant mixing ratio in the ore fluids. These isotopic compositions differ from those measured in the syngenetic deposits of the Almadén district; they suggest a higher temperature of ore formation of about 300 °C, and a genesis related to a distinct hydrothermal flow path at the Nuevo Entredicho deposit. Deposition of anomalously high-grade mercury ore at Nuevo Entredicho is related to a combination of (1) an abundance of black shale that provided sulphur and increasingly reducing conditions with high sulphide/sulphate ratios, (2) explosive Silurian-Devonian mafic magmatism that provided an initial source of mercury, (3) tectonic activity that lead to structurally favourable sites for ore deposition, and (4) replacement of secondary, carbonate-rich volcanic rocks.

  17. Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early geodynamo

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin P.; Maloof, Adam C.; Tailby, Nicholas; Ramezani, Jahandar; Fu, Roger R.; Hanus, Veronica; Trail, Dustin; Bruce Watson, E.; Harrison, T. Mark; Bowring, Samuel A.; Kirschvink, Joseph L.; Swanson-Hysell, Nicholas L.; Coe, Robert S.

    2015-11-01

    It currently is unknown when Earth's dynamo magnetic field originated. Paleomagnetic studies indicate that a field with an intensity similar to that of the present day existed 3.5 billion years ago (Ga). Detrital zircon crystals found in the Jack Hills of Western Australia are some of the very few samples known to substantially predate this time. With crystallization ages ranging from 3.0-4.38 Ga, these zircons might preserve a record of the missing first billion years of Earth's magnetic field history. However, a key unknown is the age and origin of magnetization in the Jack Hills zircons. The identification of >3.9 Ga (i.e., Hadean) field records requires first establishing that the zircons have avoided remagnetization since being deposited in quartz-rich conglomerates at 2.65-3.05 Ga. To address this issue, we have conducted paleomagnetic conglomerate, baked contact, and fold tests in combination with U-Pb geochronology to establish the timing of the metamorphic and alteration events and the peak temperatures experienced by the zircon host rocks. These tests include the first conglomerate test directly on the Hadean-zircon bearing conglomerate at Erawandoo Hill. Although we observed little evidence for remagnetization by recent lightning strikes, we found that the Hadean zircon-bearing rocks and surrounding region have been pervasively remagnetized, with the final major overprinting likely due to thermal and/or aqueous effects from the emplacement of the Warakurna large igneous province at ∼1070 million years ago (Ma). Although localized regions of the Jack Hills might have escaped complete remagnetization, there currently is no robust evidence for pre-depositional (>3.0 Ga) magnetization in the Jack Hills detrital zircons.

  18. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    USGS Publications Warehouse

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps

  19. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect

    Gary Mavko

    2003-06-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Elastic properties of clay minerals using Pulse Transmission experiments. We show measurements of elastic moduli and strain in clay minerals.

  20. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  1. Clay smear: Review of mechanisms and applications

    NASA Astrophysics Data System (ADS)

    Vrolijk, Peter J.; Urai, Janos L.; Kettermann, Michael

    2016-05-01

    Clay smear is a collection of fault processes and resulting fault structures that form when normal faults deform layered sedimentary sections. These elusive structures have attracted deep interest from researchers interested in subsurface fluid flow, particularly in the oil and gas industry. In the four decades since the association between clay-smear structures and oil and gas accumulations was introduced, there has been extensive research into the fault processes that create clay smear and the resulting effects of that clay smear on fluid flow. We undertake a critical review of the literature associated with outcrop studies, laboratory and numerical modeling, and subsurface field studies of clay smear and propose a comprehensive summary that encompasses all of these elements. Important fault processes that contribute to clay smear are defined in the context of the ratio of rock strength and in situ effective stresses, the geometric evolution of fault systems, and the composition of the faulted section. We find that although there has been progress in all avenues pursued, progress has been uneven, and the processes that disrupt clay smears are mostly overlooked. We highlight those research areas that we think will yield the greatest benefit and suggest that taking these emerging results within a more process-based framework presented here will lead to a new generation of clay smear models.

  2. Reaction zone between pre-UHP titanite and host rock: insights into fluid-rock interaction and deformation mechanisms during exhumation of deeply subducted continental crust (Dabie Shan UHP unit, China)

    NASA Astrophysics Data System (ADS)

    Wawrzenitz, N.; Romer, R. L.; Grasemann, B.; Morales, L. F. G.

    2012-04-01

    Exhumed crustal UHP rocks may occur as relict blocks in strongly metasomatized matrix rocks. Due to variations in competence between the mm to km sized blocks and their ductile matrix, the largely undeformed blocks may preserve the pre-subduction and the prograde history, whereas the matrix rocks have been ductilely deformed to high magnitudes and record successive stages of deformation. The reaction zones between blocks and matrix, however, provide insights into the fluid-rock interaction, deformation and the deformation mechanisms active during the exhumation of deeply subducted continental crust in the subduction channel. We investigate a titanite megacryst (3 cm in diameter) in a calc-silicate marble from the UHP unit in the Dabie Shan, China. The core of the titanite megacryst grew prograde during subduction. Its U-Pb system remained closed and yields a maximum age for UHP metamorphism. Sr and Nd isotope compositions in the core demonstrate that the titanite megacryst precipitated from a homogeneous fluid source. During metamorphism in the subduction zone, infiltration of external fluids resulted first in Sr-loss from the marbles and then introduction of Sr with unusually low 87Sr/86S values (Romer et al., 2003), leading to the contrasting 87Sr/86Sr values in the titanite megacryst and the hosting UHP marbles (Wawrzenitz et al., 2006). Related to deformation in the calc-silicate marble matrix, the rim of the titanite megacryst has been replaced during the following dissolution-precipitation reactions: (i) Pseudomorphic replacement of the old titanite megacryst by coupled dissolution-reprecipitation. Fluid migrated into the old grain producing a sharp boundary of the replacement front. (ii) New small titanite grains grew with their long axes parallel to the foliation of the marble matrix, reflecting the activation of dissolution precipitation creep. In the matrix, the foliation is defined by the orientation of the basal planes of phengitic white mica. The new

  3. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  4. Mineralogical comparisons of experimental results investigating the biological impacts on rock transport processes.

    PubMed

    Wagner, Doris; Milodowski, Antoni E; West, Julia M; Wragg, Joanna; Yoshikawa, Hideki

    2013-08-01

    This study investigates the influence of microbes on fluid transport in sedimentary and igneous host rock environments. It particularly focuses on granodiorite rock (Äspö; Sweden) and mudstone (Horonobe; Japan) that were utilised during laboratory-based column experiments. The results showed that biofilms form on both rock types in low nutrient conditions. Cryogenic scanning electron microscopy showed that the morphology of biofilaments varied from filamentous meshwork (in crushed granodiorite column experiments) to clusters of rod-like cells (fracture surfaces in mudstone). X-ray diffraction analysis of the fine fractions (<5 µm) revealed the formation of secondary clay mineral phases within the crushed Äspö granodiorite rock substrate only. The formation of secondary clay minerals appears to be enhanced when bacteria are present. All experiments showed biofilm formation, bacterial enhanced trapping of fines blocking off pore throats and/or secondary clay mineral formation. These observations illustrate the importance of bacteria on rock transport properties which will impact on the containment and migration of contaminants. PMID:23770916

  5. Zircon U-Pb and molybdenite Re-Os geochronology, and whole-rock geochemistry of the Hashitu molybdenum deposit and host granitoids, Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Zhai, Degao; Liu, Jiajun; Wang, Jianping; Yang, Yongqiang; Zhang, Hongyu; Wang, Xilong; Zhang, Qibin; Wang, Gongwen; Liu, Zhenjiang

    2014-01-01

    The Hashitu deposit is a newly-discovered Mo deposit in the southern part of the Great Hinggan Range, NE China. Molybdenum mineralization occurs as quartz-sulfide veins within the Hashitu granite-porphyry composite pluton. The sulfide assemblage in the veins is dominated by molybdenite, with minor amounts of galena, sphalerite, chalcopyrite, pyrite and marcasite. The associated gangue minerals are quartz, fluorite, calcite, sericite, chlorite and epidote. Whole-rock chemical compositions show that the Hashitu granites belong to the A2-type. The U-Pb ages of zircons from the Hashitu granite and porphyry units are 147 ± 1 Ma and 143 ± 2 Ma, respectively. The Re-Os isochron age of molybdenites from the deposit is 150 ± 4 Ma. The molybdenite Re-Os model ages vary from 144 to 150 Ma, with a weighted mean of 147 ± 1 Ma. The results show that the ages of zircon crystallization and Mo mineralization are similar, mostly within analytical uncertainties, and that the host granite pluton is one of many late-Jurassic plutons in the Great Hinggan Range. The formation of the late-Jurassic granitic plutons in this region coincides with the subduction of the Pacific plate beneath the North China block which took place ˜2000 km to the east at the time. The occurrence of abundant late-Jurassic granitoids with compositions similar to the Hashitu pluton in the Great Hinggan Range is a positive sign for more discoveries of Mo deposits in this region.

  6. Green Clay Minerals

    NASA Astrophysics Data System (ADS)

    Velde, B.

    2003-12-01

    in the silicate (clay mineral in our case) structure, the specific bonding of these ions, and other factors. In fact, the reasons for coloration are not known completely, but it is certain that a combination of Fe2+ and Fe3+ ions is necessary to give a nice green color to clays. In the green clay minerals discussed here, the colors vary greatly as seen under the optical microscope (not always the same as the one seen in hand specimen). Yellow to blue-green hues can be found. However, for the moment, no clear relation between iron content, iron valence ratio, or other factors such as minor transition element concentrations can be found to explain the greenness of green clay minerals. The fact that a clay is green just indicates a combination of the two oxidation states of iron. The color, however, indicates the key to the formation in nature of green clay minerals.Green clay minerals are in general the product of "mixed valence" conditions of formation, most often in a situation where some iron is reduced from Fe3+ and enters into a silicate mineral structure. In general, iron would rather be an oxide when it is in the trivalent state. The moment iron is reduced to a divalent state under surface or near-surface conditions, it looks for a silicate, sulfide, or carbonate to hide in. The reverse is also true, of course. When a silicate is oxidized, Fe2+ becoming Fe3+, the iron begins to group together in oxide clumps and eventually exits the silicate structure. This is seen in thin section in altered rocks (weathering or hydrothermal action). The production of trivalent, oxidized iron usually results in a brownish or orange mineral.If the geology of the formation of green silicate minerals is relatively well defined, especially at near surface or surface conditions, the question remains how much of the iron is in a reduced oxidation state and how? In the case of reduction of iron in surface environments: if most of the iron goes to Fe2+, one mineral is formed; if only

  7. CLAY MINERALOGY OF INSOLUBLE RESIDUES IN MARINE EVAPORITES.

    USGS Publications Warehouse

    Bodine, Marc W., Jr.

    1985-01-01

    Insoluble residues from three sequences of Paleozoic marine evaporites (Retsof salt bed in western New York, Salado Formation in south-eastern New Mexico, and Paradox Member of the Hermosa Formation in southeastern Utah) are rich in trioctahedral clays. Chlorite (clinochlore), corrensite (mixed-layer chlorite-trioctahedral smectite), talc, and illite (the only dioctahedral clay) are the dominant clay minerals; serpentine, discrete trioctahedral smectite (saponite), and interstratified talc-trioctahedral smectite are sporadically abundant. These clay-mineral assemblages differ chemically and mineralogically from those observed in most continental and normal marine rocks, which commonly contain kaolinite, dioctahedral smectite (beidellite-montmorillonite), illite, mixed-layer illite-dioctahedral smectite, and, in most cases, no more than minor quantities of trioctahedral clay minerals. The distinctive clay mineralogy in these evaporite sequences suggests a largely authigenic origin. These clay minerals are thought to have formed during deposition and early diagenesis through interaction between argillaceous detritus and Mg-rich marine evaporite brines.

  8. Selecting brines and clay stabilizers to prevent formation damage

    SciTech Connect

    Evans, B.; Ali, S.

    1997-05-01

    Although many technical reports have been written about formation damage caused by brine/formation interactions, this article discusses the effects brines and chemical clay stabilizers have on pure samples of kaolinite, smectite, illite and chlorite clays. Analytical chemistry and geochemical models were not employed in this study; instead, capillary suction time tests were used to empirically compare clay migration and swelling characteristics when samples were exposed to certain brine/clay stabilizer combinations. Objective of the study was to determine which type of clay was most damaging in reservoir rocks, and whether one brine or chemical stabilizer could meet the needs of stabilizing all clay types. This information is provided with well completion operations in mind, especially when fluid cost/performance is a major concern. This article compares the unique brine/chemical stabilizer reaction characteristics of each clay type common to oil and gas reservoirs.

  9. Palaeoceanographic approach to the Kimmeridge Clay Formation

    SciTech Connect

    Miller, R.G. )

    1988-08-01

    The Upper Jurassic/Lower Cretaceous Kimmeridge Clay Formation (KCF) is northern Europe's premier source rock and can be understood using a new but relatively simple oceanographic model. This explains or accommodates most current observations about the KCF and its depositional environment and draws upon paleogeographic, paleoclimatic, geochemical, sedimentological, and paleontological evidence.

  10. Water saturation of hydrothermal smectite-rich clay might have promoted slope instability prior to the 1998 debris avalanche at Casita volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Delmelle, P.; Opfergelt, S.; Boivin, P.; Delvaux, B.

    2006-12-01

    In October 1998, a relatively small collapse (1 600 000 cubic meters) of a pre-existing scarp occurred on the southern flank of the dormant Casita volcano, Nicaragua. It resulted in a debris avalanche, which quickly transformed into a disastrous debris flow that destroyed two towns and killed more than 2500 people. The failure was shown to be triggered by an excess pore water pressure within highly fractured rocks, following prolonged seasonal rains and precipitations from Hurricane Mitch. This pressure was linked to the water saturation of a hydrothermally-altered clay bedrock impeding in-depth infiltration. Yet, the nature and amounts of the clay material involved in the slope failure were still unknown. Here we report on physical, chemical and mineralogical investigations aimed at quantifying the clay content, and identifying the layer silicates of the hydrothermally-altered clays uncovered by the 1998 debris avalanche. The fine clay material was exceptionally rich in smectite (up to 50 wt. percent), which swells upon wetting and shrinks during dry conditions (Opfergelt et al., 2006, Geophys. Res. Lett., 33 (15), L15305). The smectite belonged to the beidellite-montmorillonite series. The pervasive presence of water-saturated smectitic clay strongly reduced the permeability in depth, and also altered the rheological and mechanical properties of both the pre-failure rock mass and flow materials. The shrink-swell behavior progressively decreased the rock's shear strength, and gradually destabilized the overlying rock mass in the decades and centuries before the landslide, thereby contributing to slope instability. Prolonged intense rainfall led to the formation of incipient weak failure surfaces in the superficial rock mass. As provoked by water saturation, this process was likely favored by the rapid change of the mechanical properties of smectite-rich clays deposited in fracture, joint and gouge interfaces. We suggest that hazard assessments associated with

  11. Communicating with Clay.

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2000-01-01

    Presents a unit on clay that is centered around sign language in which students explore the slab method of working with clay. States that each student picks a letter of the sign language alphabet and fashions a clay hand to depict the letter. (CMK)

  12. Clay Minerals are controlled by the environment - Clay Minerals control the environment

    NASA Astrophysics Data System (ADS)

    Stahr, K.; Zarei, M.

    2012-04-01

    Where clay minerals are analyzed in soils, often there is some confusion, because in the widespread loess-affected and moraine landscapes of Europe quite a variety of clay minerals is found. The sources of these minerals are inherited from the local solid rock, transported through different processes, transformed through mineral changes and inherited from paleo-environments. Very often a miserable assemblage in the clay fraction is found with mica clay, smectite, kaolinite, chlorite and also some quartz. In order to understand the current dynamic of clay mineral formation, very detailed and quantitative analysis in comparison of horizons and landscape are necessary. It is much easier to through light on the development, if conditions are looked for where a single specific mineral can be formed like short range order minerals from volcanic ashes or smectites from basaltic parent material. Old leaching land surfaces will form kaolinitic and in tropical areas gibbsitic clay fractions. In arid environments of deserts and desert fringes, palygorskite and sepiolite can dominate. In general, clay minerals buffer the environment. This is mainly due to the extraordinary large interfaces between mineral surface and pore systems. In the last years mainly the processes of buffering through charging soil solution and of buffering through mineral organic compounds have been analyzed. Development of new microscopic and spectromethods have brought great progress in understanding the role of clays in soil environments.

  13. Occurrence of Rock Varnish at Yungay, Atacama Desert, Chile

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. R.; McKay, C. P.

    2007-03-01

    Rock varnish is a thin nanostratigraphic coating consisting of clay particles cemented together by Fe and Mn oxides and is ubiquitous in arid climates. We report the occurrence of rock varnish in the Mars-like conditions present at Yungay.

  14. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation. PMID:19425352

  15. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  16. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland

    NASA Astrophysics Data System (ADS)

    Molnár, Ferenc; Oduro, Harry; Cook, Nick D. J.; Pohjolainen, Esa; Takács, Ágnes; O'Brien, Hugh; Pakkanen, Lassi; Johanson, Bo; Wirth, Richard

    2016-01-01

    The Peräpohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9-1.8 Ga) followed by intrusions of late-orogenic (1.84-1.80 Ga) and post-orogenic granitoids (1.79-1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95-1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th < 100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9-1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well

  17. The mangazeya Ag-Pb-Zn vein deposit hosted in sedimentary rocks, Sakha-Yakutia, Russia: Mineral assemblages, fluid inclusions, stable isotopes (C, O, S), and origin

    NASA Astrophysics Data System (ADS)

    Anikina, E. Yu.; Bortnikov, N. S.; Klubnikin, G. K.; Gamyanin, G. N.; Prokof'ev, V. Yu.

    2016-05-01

    The succession of mineral assemblages, chemistry of gangue and ore minerals, fluid inclusions, and stable isotopes (C, O, S) in minerals have been studied in the Mangazeya silver-base-metal deposit hosted in terrigenous rocks of the Verkhoyansk Fold-Thrust Belt. The deposit is localized in the junction zone of the Kuranakh Anticlinorium and the Sartanga Synclinorium at the steep eastern limb of the Endybal Anticline. The deposit is situated at the intersection of the regional Nyuektame and North Tirekhtyakh faults. Igneous rocks are represented by the Endybal massif of granodiorite porphyry 97.8 ± 0.9 Ma in age and dikes varying in composition. One preore and three types of ore mineralization separated in space are distinguished: quartz-pyrite-arsenopyrite (I), quartz-carbonate-sulfide (II), and silver-base-metal (III). Quartz and carbonate (siderite) are predominant in ore veins. Ore minerals are represented by arsenopyrite, pyrite, sphalerite, galena, fahlore, and less frequent sulfosalts. Three types of fluid inclusions in quartz differ in phase compositions: two- or three-phase aqueous-carbon dioxide (FI I), carbon dioxide gas (FI II), and two-phase (FI III) containing liquid and a gas bubble. The homogenization temperature and salinity fall within the ranges of 367-217°C and 13.8-2.6 wt % NaCl equiv in FI I; 336-126°C and 15.4-0.8 wt % NaCl equiv in FI III. Carbon dioxide in FI II was homogenized in gas at +30.2 to +15.3°C and at +27.2 to 29.0°C in liquid. The δ34S values for minerals of type I range from-1.8 to +4.7‰ (V-CDT); of type II, from-7.4 to +6.6‰; and of type III, from-5.6 to +7.1‰. δ13C and δ18O vary from-7.0 to-6.7‰ (V-PDB) and from +16.6 to +17.1 (V-SMOW) in siderite-I; from-9.1 to-6.9‰ (V-PDB) and from +14.6 to +18.9 (V-SMOW) in siderite-II; from-5.4 to-3.1‰ (V-PDB) and from +14.6 to +19.5 (V-SMOW) in ankerite; and from-4.2 to-2.9‰ (V-PDB) and from +13.5 to +16.8 (V-SMOW) in calcite. The data on mineral assemblages, fluid

  18. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland

    NASA Astrophysics Data System (ADS)

    Molnár, Ferenc; Oduro, Harry; Cook, Nick D. J.; Pohjolainen, Esa; Takács, Ágnes; O'Brien, Hugh; Pakkanen, Lassi; Johanson, Bo; Wirth, Richard

    2016-06-01

    The Peräpohja Schist Belt comprises a supracrustal sequence of quartzites, mafic volcanics and volcaniclastics, carbonate rocks, black shales, mica schists and greywackes which were deposited from ca. 2.44 to ~1.91 Ga, during the rifting of the Archaean basement in the eastern part of the Fennoscandian shield. Metamorphism and multiple folding of the basin fill took place during the Svecofennian orogeny (1.9-1.8 Ga) followed by intrusions of late-orogenic (1.84-1.80 Ga) and post-orogenic granitoids (1.79-1.76 Ga). The Rompas Au-U mineralisation is hosted by deformed calcsilicate veins in mafic volcanic rocks and locally contains very high grade (>10,000 g/t Au) gold pockets with strict spatial association of gold minerals to uraninite and pyrobitumen. Chemical ages from the unaltered domains in the structure of uraninite indicate a 1.95-1.90 Ga age for the deposition of the primary, high temperature (e.g. U/Th < 100 in uraninite) hydrothermal uranium mineralisation. These data are in agreement with the results of previous U-Pb dating of uraninite by SIMS. Textural evidence suggests that metamorphic recrystallisation of the uraninite-bearing quartz-dolomite veins into calcsilicate mineral assemblages during the Svecofennian orogeny (1.9-1.8 Ga) was followed by a hydrocarbon-bearing fluid flow event and radiolytic polymerisation of hydrocarbons around grains of uraninite. Gold precipitated during a subsequent hydrothermal process in the fractures of uraninite, as well as in the cracks and on the botryoidal surfaces of uraninite-pyrobitumen nodules. Remobilisation and redeposition of uranium by these hydrothermal events produced secondary uraninite grains with chemical ages between 1.85 and 1.65 Ga. Native gold is associated with galena, altaite, hunchunite, nickeline and rare cobaltite, Pb-bearing maldonite, pyrite, pyrrhotite, chalcopyrite, molybdenite and titanite. Raman spectra show disordered structure of undeformed pyrobitumen nodules in contrast with the well

  19. Synthetic clay-magnetite aggregates designed for controlled deposition experiments

    NASA Astrophysics Data System (ADS)

    Feinberg, J. M.; Galindo-Gonzalez, C.; Kasama, T.; Cervera, L.; Posfai, M.; Harrison, R. J.; Dunin-Borkowski, R. E.

    2007-12-01

    The behavior of magnetic particles in fluid environments is key to the acquisition of detrital remanence magnetization and is essential to a multitude of industrial applications. This study introduces a series of synthetic clay-magnetite aggregates whose physical attributes can be tailored for controlled depositional experiments. We describe the mineralogical structure and magnetic behavior of montmorillonite platelets coated with nanometer-scale magnetite crystals using both electron microscopy and rock magnetism techniques. Selected area electron diffraction of the magnetite and the montmorillonite host shows no evidence of preferred orientation or oriented aggregation. Grain size distributions of magnetite in three different clay-magnetite assemblages were directly measured using conventional bright-field transmission electron microscopy. The spacing of the magnetite grains and their three-dimensional distribution around individual clay platelets was imaged using a tomographic reconstruction generated from high-angle annular dark-field (HAADF) images. The grain size distributions determined from the bright-field images and the tomographic reconstruction agree within error with estimates derived from magnetic granulometry techniques based on magnetic hysteresis and low-field susceptibility measurements. All three samples behave superparamagnetically at room temperature, and display increasing levels of single domain behavior as the samples are cooled to liquid nitrogen temperatures (- 195°C). Off-axis electron holography images show that superparamagnetic grains are also stabilized into flux closure structures at -195°C. The average spacing between adjacent magnetite crystals and the overall platelet shape of the aggregates creates an anisotropy of magnetic susceptibility that allows assemblages to align with external magnetic fields at room temperature. By adjusting the dimensions and concentrations of the magnetite grains in these aggregates, we can create

  20. Monitoring water content in Opalinus Clay within the FE-Experiment: Test application of dielectric water content sensors

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Vogt, T.; Komatsu, M.; Müller, H. R.

    2013-12-01

    The spatiotemporal variation of water content in the near field rock around repository tunnels for radioactive waste in clay formations is one of the essential quantities to be monitored for safety assessment in many waste disposal programs. Reliable measurements of water content are important not only for the understanding and prediction of coupled hydraulic-mechanic processes that occur during tunnel construction and ventilation phase, but also for the understanding of coupled thermal-hydraulic-mechanical (THM) processes that take place in the host rock during the post closure phase of a repository tunnel for spent fuel and high level radioactive waste (SF/HLW). The host rock of the Swiss disposal concept for SF/HLW is the Opalinus Clay formation (age of approx. 175 Million years). To better understand the THM effects in a full-scale heater-engineered barrier-rock system in Opalinus Clay, a full-scale heater test, namely the Full-Scale Emplacement (FE) experiment, was initiated in 2010 at the Mont Terri underground rock laboratory in north-western Switzerland. The experiment is designed to simulate the THM evolution of a SF/HLW repository tunnel based on the Swiss disposal concept in a realistic manner during the construction, emplacement, backfilling, and post-closure phases. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors. The sensors will be distributed in the host rock, the tunnel lining, the engineered barrier, which consists of bentonite pellets and blocks, and on the heaters. The excavation is completed and the tunnel is currently being ventilated. Measuring water content in partially saturated clay-rich high-salinity rock with a deformable grain skeleton is challenging. Therefore, we use the ventilation phase (before backfilling and heating) to examine the applicability of commercial water content sensors and to

  1. Alteration and arenization processes of granitic waste rock piles from former uranium Mines in Limousin, France.

    NASA Astrophysics Data System (ADS)

    Kanzari, Aisha; Boekhout, Flora; Gérard, Martine; Galoisy, Laurence; Phrommavanh, Vannapha; Descostes, Michael

    2014-05-01

    France counts approximately 200 former uranium mines, 50 of which are located in the Limousin region. Mining activities between 1945 and 2001 have generated close to 200 000 tons of waste rocks in the Limousin, with uranium levels corresponding essentially to the geological background. Waste rock piles from three former mining sites in this region, were selected according to their age, uranium content and petrological signature. These sites are part of the two-mica granitic complex of St Sylvestre massif, formed 324 million years ago. Granitic blocks that build up the waste rock piles have experienced different processes and intensities of alteration before their emplacement at the surface. These processes are responsible for the petrological heterogeneity throughout the waste rock pile at the time of construction. It is important to make a distinction within waste rocks between natural-cut-off waste rocks and economic-cut-off waste rocks. The latter represents a minority and is linked to stock prices. Natural-cut-off waste rocks contain about 20 ppm of uranium; economic-cut-off waste rocks contain about 100 to 300 ppm of uranium. The aims of this study are to 1) assess the neo-formation of U-bearing minerals hosted by these rocks, and 2) to characterize the weathering processes since the construction of the rock piles, including both mechanical and chemical processes. The structure of the waste rocks piles, from metric blocks to boulders of tens centimeters, induces an enhanced weathering rate, compared to a granitic massif. Mechanical fracturing and chemical leaching by rainwater (arenization) of the waste rocks produce a sandy-silty alteration phase. Silty-clay weathering aureoles of submetric-granitic blocks evolving into technic soil are mainly located below growing birch trees. Sampling on the rock piles was restricted to surface rocks. Samples collected consist mainly of granites, and rare lamprophyres with a high radiometric signal, thereby especially

  2. Contact metamorphism of clay minerals in central Utah

    SciTech Connect

    Tannenbaum, T.G. . Geology Dept.)

    1993-03-01

    Smectite is the dominant alteration product identified in the contact aureole of a limey shale from the Carmel Formation. The Jurassic-aged shale from Emery County, Utah was intruded by Tertiary basaltic dikes and sills. Samples of the shale were taken in the contact zone and at increasing distances from the country rock-dike contact. Samples of the dike itself were taken from the chill margin, an intermediate zone, and from the center of the intrusion. The clay minerals in the country rock were studied using X-ray diffraction and whole rock analysis of the shale and dike rocks were done by X-ray fluorescence spectrometry. Discrete smectite and illite were identified in the shale at the country rock-dike contact. As the distance from the dike increases, the clay mineral assemblage changes to a mixture of illite and interstratified chlorite/smectite. The proportion of smectite in the clay mineral assemblage correlates with the distance from the dike contact. These data suggest that either a transformation of chlorite/smectite to discrete smectite occurred in proximity to the dike or that fluids associated with the dike promoted smectite formation. Chemical analyses of the whole rock samples reveal no change in bulk composition for the suite of country rock samples. Chemical analyses of the dike rocks, however reveal that calcium contents decrease toward the chill margin, indicating a chemical flux between the dike and surrounding country rocks. The transformation of chlorite/smectite to discrete smectite in the shale and the calcium decrease in the dike rock indicates that a geochemical relationship exists between the dike and country rock. The exact reaction path is not clear yet, but it is evident that intrusion of the small dikes in this area had a profound effect on the clay mineralogy of the surrounding country rocks.

  3. Clay mineralogy of the Boda Claystone Formation (Mecsek Mts., SW Hungary)

    NASA Astrophysics Data System (ADS)

    Németh, Tibor; Máthé, Zoltán; Pekker, Péter; Dódony, István; Kovács-Kis, Viktória; Sipos, Péter; Cora, Ildikó; Kovács, Ivett

    2016-04-01

    Boda Claystone Formation (BCF) is the host rock of the planned site for high level nuclear waste repository inHungary. Samples representing the dominant rock types of BCF were studied: albitic claystone, claystone with high illite content, and analcime bearing claystone. Clay minerals in these three rock types were characterized by Xray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal analysis (DTA-TG), and the results were discussed from the point of view of the radionuclide sorption properties being studied in the future. Mineral compositions of bulk BCF samples vary in wide ranges. In the albitic sample, besides the dominant illite, few percent of chlorite represents the layer silicates in the clay fraction. Illite is the dominating phase in the illitic sample, with a few percent of chlorite. HRTEM study revealed that the thickness of illite particles rarely reaches 10 layers, usually are of 5-6 TOT layer thick. Illite crystals are generally thicker in the albitic sample than in the illitic one. The significant difference between the clay mineral characterisitics of the analcimous and the other two samples is that the former contains regularly interstratified chlorite/smectite beside the dominant illite. Based on the structural and chemical data two illite type minerals are present in the BCF samples: 1M polytype containing octahedral Fe and Mg besides Al, 2M polytype illite generally is free of Fe andMg. Close association of very thin illite plates and nanosized hematite crystals is typical textural feature for BCF. The goal of this study is to provide solid mineralogical basis for further studies focusing on radionuclide sorption properties.

  4. Mont Terri Underground Rock Laboratory, Switzerland-Research Program And Key Results

    NASA Astrophysics Data System (ADS)

    Nussbaum, C. O.; Bossart, P. J.

    2012-12-01

    Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants and the potential for self-sealing, has brought clay formations into focus as potential host rocks for the geological disposal of radioactive waste. Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching clay formations. Research is carried out in the underground facility, which is located adjacent to the security gallery of the Mont Terri motorway tunnel. Fifteen partners from European countries, USA, Canada and Japan participate in the project. The objectives of the research program are to analyze the hydrogeological, geochemical and rock mechanical properties of the Opalinus Clay, to determine the changes induced by the excavation of galleries and by heating of the rock formation, to test sealing and container emplacement techniques and to evaluate and improve suitable investigation techniques. For the safety of deep geological disposal, it is of key importance to understand the processes occurring in the undisturbed argillaceous environment, as well as the processes in a disturbed system, during the operation of the repository. The objectives are related to: 1. Understanding processes and mechanisms in undisturbed clays and 2. Experiments related to repository-induced perturbations. Experiments of the first group are dedicated to: i) Improvement of drilling and excavation technologies and sampling methods; ii) Estimation of hydrogeological, rock mechanical and geochemical parameters of the undisturbed Opalinus Clay. Upscaling of parameters from laboratory to in situ scale; iii) Geochemistry of porewater and natural gases; evolution of porewater over time scales; iv) Assessment of long-term hydraulic transients associated with erosion and thermal

  5. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  6. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  7. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  8. Clay Mineralogy of Soils and Sediments from an Alluvial Aquifer, Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Elliott, W. C.; Zaunbrecher, L. K.; Lim, D.; Pickering, R. A.; Williams, K. H.; Long, P. E.; Qafoku, N. P.

    2014-12-01

    Alluvial aquifers along the Colorado River corridor in central to western Colorado contain legacy contamination including U, V, As and Se. These alluvial aquifers host important "hot spots" and "hot moments" for microbiological activity controlling organic carbon processing and fluxes in the subsurface that are both significant on their own, but also influence contaminant behavior. Mineral phases likely active in the sequestration of metal contaminants are chlorite, smectite-vermiculite, illite, and smectite. These minerals are also important biogeofacies markers. The Colorado alluvial sediments include lenses of silt and clay that are commonly more reduced than coarser grained materials. The clay minerals that make up the alluvial aquifer sediments include these mineral phases important for metal sequestration (chlorite, smectite, illite), as well as kaolinite and quartz. More specifically, the clay mineralogy of soils derived from these sediments at Rifle are composed of the same suite of minerals found in the alluvial sediments plus a vermiculite-smectite intergrade. The vermiculite-smectite intergrade is a weathering product of illite. The presence of illite and chlorite in both the sediments and the soils at Rifle reflect a mineralogically immature character of the source rocks. These assemblages are consistent with sediments and soils that formed in a moderately low rainfall climate, indicative of mixed provence of immature (chlorite, smectite, illite) and mature (kaolinite) minerals relative to their source areas.

  9. Incorporation of tramadol drug into Li-fluorohectorite clay: A preliminary study of a medical nanofluid

    NASA Astrophysics Data System (ADS)

    Valdés, L.; Hernández, D.; de Ménorval, L. Ch.; Pérez, I.; Altshuler, E.; Fossum, J. O.; Rivera, A.

    2016-07-01

    During the last years, clays have been increasingly explored as hosts for drugs. In the present paper, we have been able to host the non-steroidal anti-inflammatory drug, Tramadol, into the clay Li-fluorohectorite (Li-Fh). We preliminary evaluate its incorporation by means of UV spectroscopy and X ray diffraction. Our results indicate that the clay hosts the drug molecule in its interlayer space. We suggest a set of parameters to guarantee an efficient incorporation process. Future studies will concentrate on the release of the drug from the clay nanofluid.

  10. Clay mineralogy of weathering profiles from the Carolina Piedmont.

    USGS Publications Warehouse

    Loferski, P.J.

    1981-01-01

    Saprolite profiles (12) that formed over various crystalline rocks from the Charlotte 1o X 2o quadrangle showed overall similarity in their clay mineralogy to depths of 6 to 45 m indicating control by weathering processes rather than by rock type. Most saprolite contained 10-25% clay, and ranged 3 to 70%. Kaolinite and halloysite composed = or >75% of the clay fraction of most samples. The ratio kaolinite:halloysite ranged widely, from 95% kaolinite to 90% halloysite, independent of depth. Clay-size mica was present in all profiles, and ranged 5-75% over a sericite schist. Mixed-layer mica-smectite and mica-vermiculite were subordinate; discrete smectite and vermiculite were rare. The abundance of halloysite indicates a continuously humid environment since the time of profile formation, because of the rapidity with which halloysite dehydrates irreversibly. -R.S.M.