Sample records for clay houses thoron-exposition

  1. Thoron and thoron progeny measurements in German clay houses.

    PubMed

    Gierl, S; Meisenberg, O; Feistenauer, P; Tschiersch, J

    2014-07-01

    In recent years, elevated thoron concentrations were found in houses built of unfired clay. In this study experiments were carried out in 17 traditional and modern clay houses in Germany to obtain an overview of indoor thoron in such houses. Long-term measurements over an 8-week period were performed using a newly developed Unattended Battery-Operated Progeny Measurement Device (UBPM) for measuring thoron progeny. This instrument uses a high-voltage electric field to precipitate radon and thoron progeny on nuclear track detectors. Additional active and passive measurements of radon, thoron and their progeny were performed. The equilibrium equivalent thoron concentration was found to be between 2 and 10 Bq m(-3). Gas concentrations were found to be between 20 and 160 Bq m(-3) for radon and between 10 and 90 Bq m(-3) for thoron 20 cm from the wall. The thoron exposure contributes significantly to the inhalation dose of the dwellers (0.6-4 mSv a(-1)). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Deposition and spatial variation of thoron decay products in a thoron experimental house using the Direct Thoron Progeny Sensors.

    PubMed

    Mishra, R; Joshi, M; Meisenberg, O; Gierl, S; Prajith, R; Kanse, S D; Rout, R; Sapra, B K; Mayya, Y S; Tschiersch, J

    2017-06-26

    Experiments have been carried out using the deposition-based Direct Thoron Progeny Sensors (DTPS) in a thoron experimental house. The objective was to study the thoron decay product characteristics such as the deposition velocities, spatial variability and dependence on aerosol particle concentrations. Since the deposition velocity is an important characteristic in the calibration of the DTPS, it is very important to study its dependence on aerosol concentration in a controlled environment. At low aerosol concentration (1500 particles/cm 3 ) the mean effective deposition velocity was measured to be 0.159 ± 0.045 m h -1 ; at high aerosol concentration (30 000 particles/cm 3 ) it decreased to 0.079 ± 0.009 m h -1 . The deposition velocity for the attached fraction of the thoron decay products did not change with increasing aerosol concentration, showing measurement results of 0.048 ± 0.005 m h -1 and 0.043 ± 0.014 m h -1 , respectively. At low particle concentration, the effective deposition velocity showed large scattering within the room at different distances from center. The attached fraction deposition velocity remained uniform at different distances from the wall. The measurements in the thoron experimental house can be used as a sensitivity test of the DTPS in an indoor environment with changing aerosol concentration. The uniform spatial distribution of thoron decay products was confirmed within the experimental house. This indicates that direct measurement of thoron decay product concentration should be carried out instead of inferring it from thoron gas concentration, which is very inhomogeneous within the experimental house.

  3. Preliminary results from an indoor radon thoron survey in Hungary.

    PubMed

    Szeiler, G; Somlai, J; Ishikawa, T; Omori, Y; Mishra, R; Sapra, B K; Mayya, Y S; Tokonami, S; Csordás, A; Kovács, T

    2012-11-01

    More than half of the radiation dose of natural origin comes from radon. However, according to some surveys in certain cases, the radiation dose originating from thoron may be considerable. Among the factors disturbing the measurement of radon, the presence of thoron may also influence the measured radon value, making the estimated radiation exposure imprecise. Thoron has previously been surveyed, mainly in Asia; however, recent surveys for some European locations have found that significant thoron concentrations also need to be considered. In this survey, several types of commercially available SSNTDs (solid-state nuclear track detectors) capable of measuring both radon and thoron were placed at the same time in 73 houses and 7 workplaces in Hungary with 3-month exposition periods. In order to measure thoron, the distance of the detector sets was fixed as 15-20 cm from the walls. The radon concentration was measured with five types of SSNTDs: NRPB, NRPB SSI, Raduet, DTPS and DRPS. The first four types had relatively good accordance (within ± 10 %), but the results of the DRPS detectors were considerably lower when compared with other detectors for radon concentrations over 100 Bq m(-3). The thoron averages were provided by two different types of detectors: Raduet and DTPS. The difference between their average results was more than 30 % and was six times the maximum values. Therefore, the thoron measurement results were judged to be erroneous, and their measurement protocol should be clearly established for future work.

  4. Clay Houses

    ERIC Educational Resources Information Center

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  5. Thoron detection with an active Radon exposure meter—First results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irlinger, J., E-mail: josef.irlinger@helmholtz-muenchen.de; Wielunski, M.; Rühm, W.

    For state-of-the-art discrimination of Radon and Thoron several measurement techniques can be used, such as active sampling, electrostatic collection, delayed coincidence method, and alpha-particle-spectroscopy. However, most of the devices available are bulky and show high power consumption, rendering them unfeasible for personal exposition monitoring. Based on a Radon exposure meter previously realized at the Helmholtz Center Munich (HMGU), a new electronic prototype for Radon/Thoron monitoring is currently being developed, which features small size and weight. Operating with pin-diode detectors, the low-power passive-sampling device can be used for continuous concentration measurements, employing alpha-particle-spectroscopy and coincidence event registration to distinguish decays originatingmore » either from Radon or Thoron isotopes and their decay products. In open geometry, preliminary calibration measurements suggest that one count per hour is produced by a 11 Bq m{sup −3} Radon atmosphere or by a 15 Bq m{sup −3} Thoron atmosphere. Future efforts will concentrate on measurements in mixed Radon/Thoron atmospheres.« less

  6. Preliminary Results of Indoor Radon/thoron Concentrations and Terrestrial Gamma Doses in Gejiu, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Sun, Quafu; Kobayashi, Yosuke; Min, Xiangdong; Yoshinaga, Shinji

    2008-08-01

    A preliminary survey on indoor radon/thoron and external gamma ray dose rate was conducted for houses in Gejiu city and its neighboring village in Yunnan Province, China. As a result of the radon/thoron measurements for about 50 houses, very high thoron concentrations were found in some hoses (maximum: 7,900 Bq/m3). The mean annual dose from thoron decay products was estimated to be larger than that from radon decay products (2.9 mSv vs. 1.6 mSv). Further dosimetric and epidemiological studies are needed to investigate the possible effects of radon and thoron.

  7. Comparative analysis of radon, thoron and thoron progeny concentration measurements.

    PubMed

    Janik, Miroslaw; Tokonami, Shinji; Kranrod, Chutima; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Hosoda, Masahiro; McLaughlin, James; Chang, Byung-Uck; Kim, Yong Jae

    2013-07-01

    This study examined correlations between radon, thoron and thoron progeny concentrations based on surveys conducted in several different countries. For this purpose, passive detectors developed or modified by the National Institute of Radiological Sciences (NIRS) were used. Radon and thoron concentrations were measured using passive discriminative radon-thoron detectors. Thoron progeny measurements were conducted using the NIRS-modified detector, originally developed by Zhuo and Iida. Weak correlations were found between radon and thoron as well as between thoron and thoron progeny. The statistical evaluation showed that attention should be paid to the thoron equilibrium factor for calculation of thoron progeny concentrations based on thoron measurements. In addition, this evaluation indicated that radon, thoron and thoron progeny were independent parameters, so it would be difficult to estimate the concentration of one from those of the others.

  8. Comparative analysis of radon, thoron and thoron progeny concentration measurements

    PubMed Central

    Janik, Miroslaw; Tokonami, Shinji; Kranrod, Chutima; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Hosoda, Masahiro; Mclaughlin, James; Chang, Byung-Uck; Kim, Yong Jae

    2013-01-01

    This study examined correlations between radon, thoron and thoron progeny concentrations based on surveys conducted in several different countries. For this purpose, passive detectors developed or modified by the National Institute of Radiological Sciences (NIRS) were used. Radon and thoron concentrations were measured using passive discriminative radon-thoron detectors. Thoron progeny measurements were conducted using the NIRS-modified detector, originally developed by Zhuo and Iida. Weak correlations were found between radon and thoron as well as between thoron and thoron progeny. The statistical evaluation showed that attention should be paid to the thoron equilibrium factor for calculation of thoron progeny concentrations based on thoron measurements. In addition, this evaluation indicated that radon, thoron and thoron progeny were independent parameters, so it would be difficult to estimate the concentration of one from those of the others. PMID:23297318

  9. MEASUREMENT OF RADON, THORON AND THEIR PROGENY IN DIFFERENT TYPES OF DWELLING IN ALMORA DISTRICT OF KUMAUN HIMALAYAN REGION.

    PubMed

    Singh, Kuldeep; Semwal, Poonam; Pant, Preeti; Gusain, G S; Joshi, Manish; Sapra, B K; Ramola, R C

    2016-10-01

    The indoor concentrations of radon ( 222 Rn), thoron ( 220 Rn) and their daughter products were measured in the dwellings of Almora district in Kumaun Himalaya, India using pin-hole dosemeters and deposition progeny sensors. The measurements were made in the residential houses built of mud, stone with cement plaster and cemented house during winter season. Average [geometric mean (GM) values] radon and thoron concentrations for all dwellings were found to be 99.82 and 79.70 Bq m -3 , respectively, while average equilibrium equivalent radon concentration and equilibrium equivalent thoron concentration (measured for the first time for this region) were measured at 35.22 and 2.52 Bq m -3 , respectively. Radon concentration (GM values) was found to be 110.73, 97.00 and 93.85 Bq m -3 for mud houses, stone with cemented plaster houses and cemented houses, respectively. On the other hand, thoron concentration values were 87.10, 75.79 and 75.68 Bq m -3 for cemented houses, mud houses and stone with cemented plaster houses, respectively. Interpretations have been made on the basis of measured radon/thoron and progeny concentration values with respect to the difference of construction material of the dwellings. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. An unattended device for high-voltage sampling and passive measurement of thoron decay products.

    PubMed

    Gierl, Stefanie; Meisenberg, Oliver; Haninger, Thomas; Wielunski, Marek; Tschiersch, Jochen

    2014-02-01

    An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m(3) × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4-9.9 Bq/m(3) of thoron decay products were measured.

  11. Study of indoor radon and thoron progeny levels in surrounding areas of Nalbari, Assam, India

    NASA Astrophysics Data System (ADS)

    Deka, P. C.; Sarma, H.; Sarkar, Subir; Goswami, T. D.; Sarma, B. K.

    2009-07-01

    With the growing understanding of the role of radon and its daughter products as major sources of radiation exposure, the importance of large number of estimation of radon concentration in various parts of the country is realized. Inhalation of radon, thoron and their decay products is the major source of the total radioactive dose received by the human population from natural radiation. The indoor radon and thoron progeny levels in Nalbari area of Assam are studied by using the LR-115 (type II) Solid State Nuclear Track Detector in Plastic Twin Chamber dosimeter. Radon and thoron progeny levels in different types of dwellings for one full calendar year are presented in this paper. For Assam Type (A.T.) houses, indoor radon progeny concentrations vary from 0.17 to 0.64 mWL with an annual geometric mean of 0.27 mWL and that for Reinforced Cement Concrete (R.C.C.) houses vary from 0.22 mWL to 0.60 mWL with the annual geometric mean of 0.37 mWL. The thoron progeny levels in A.T. houses also vary from 0.01 to of 0.05 mWL with an annual geometric mean of 0.02 mWL and that for R.C.C. houses vary from 0.02 to 0.08 mWL with the annual geometric mean of 0.04 mWL.

  12. Inhalation dose due to radon, thoron, and progenies in dwellings of a hill station.

    PubMed

    Sivakumar, R

    2017-02-01

    The general public spends a major portion of their time in an indoor environment and hence receives a considerable amount of radiation. Knowledge about indoor radiation is important in order to arrive at the actual effective dose received by residents. The indoor radon, thoron, and progeny concentrations observed in the present study were found to vary with seasons of a given year. The highest and lowest indoor average radon, thoron, and progeny levels were observed during winter and summer seasons, respectively. The concentrations of indoor radon, thoron, and progenies were found to vary with the type of houses. The highest 222 Rn, 220 Rn, and progeny concentrations were observed in mud houses and the lowest values were recorded in wooden houses. The indoor 222 Rn concentration correlated well with concentration of its grandparent 238 U in underlying soil with a correlation coefficient of 0.87. The correlation between indoor 220 Rn and 232 Th in the underlying soil was found to be 0.64. The estimated effective doses received by the general public in the present study due to indoor radon and thoron were 1.49 ± 0.49 and 1.30 ± 0.53 mSv/year, respectively. The annual effective doses due to radon and thoron progenies were estimated as 0.76 ± 0.27 and 0.47 ± 0.23 mSv/year, respectively. The contributions from 222 Rn, 220 Rn, and corresponding progenies to the annual effective doses received were 37, 32, 19, and 12%, respectively. The general public living in the study area receives an inhalation dose of 4.02 mSv/year due to indoor radon, thoron, and progenies, which were found to be less than the action limit of ICRP 2009.

  13. INADEQUACY OF THORON DOSE CALCULATIONS FROM THORON PROGENY MEASUREMENT ALONE.

    PubMed

    Lane-Smith, D; Wong, F K

    2016-10-01

    To determine the dose received by thoron ( 220 Rn) domestically, conventional methods measure the activity concentration of thoron progeny only (namely the 212 Pb atoms) and calculate the dose by using a set of conversion factors. This may be due to the measurement of progeny being simpler since it is longer lived and will be evenly spread throughout the room, whereas the thoron gas, with its short half-life, will exist only near the source and hence will not be of major concern for the majority of the room. However, concrete walls are a source of thoron, and spending prolonged amounts of time near them may lead to greatly increased radiation exposure, the degree of which is not revealed through progeny activity alone. The present paper compares the energy received from the ionising radiation of both thoron gas and thoron progeny near its source. Converting the energy dose to radiation dose is not within the scope of this paper. The results suggest a difference of an order of magnitude higher when taking into account the dose received by thoron gas. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. INDOOR RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN HIGH THORON RURAL SERBIA ENVIRONMENTS.

    PubMed

    Zunic, Zora S; Stojanovska, Z; Veselinovic, N; Mishra, R; Yarmoshenko, I V; Sapra, B K; Ishikawa, T; Omori, Y; Curguz, Z; Bossew, P; Udovicic, V; Ramola, R C

    2017-11-01

    This article deals with the variation of radon (Rn), thoron (Tn) and their progeny concentrations expressed in terms of equilibrium equivalent concentrations (EERC and EETC), in 40 houses, in four villages of Sokobanja municipality, Southern Serbia. Two types of passive detectors were used: (1) discriminative radon-thoron detector for simultaneous Rn and Tn gases measurements and (2) direct Tn and Rn progeny sensors (DRPS/DTPS) for measuring Rn and Tn progeny concentrations. Detectors were exposed simultaneously for a single period of 12 months. Variations of Tn and EETC appear higher than those of Rn and EERC. Analysis of the spatial variation of the measured concentrations is also reported. This work is part of a wider survey of Rn, Tn and their progeny concentrations in indoor environments throughout the Balkan region started in 2011 year. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. THORON-SCOUT - first diffusion based active Radon and Thoron monitor

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Streil, T.; Oeser, V.; Horak, G.; Duzynski, M.

    2016-10-01

    THORON-SCOUT is a stand-alone diffusion based active Radon and Thoron monitor for long term indoor measurements to evaluate the human health risk due to activity concentration in the breathing air. Alpha-particle spectroscopy of Po isotopes, being the progeny of the decay of the radioactive noble gas Radon, is applied to separately monitor activity contributions of 222Rn and 220Rn (Thoron) as well. In this work we show that the portion of Thoron (Tn) may locally be remarkable and even dominating and cannot be neglected as often has been assumed up to now. Along with tobacco consumption, Rn radioactivity turned out to be a dangerous cause of lung cancer, especially in older badly vented buildings situated in regions of radioactive geological formations. THORON-SCOUT allows a precise examination of the indoor atmosphere with respect to Rn and Inactivity concentration and, therefore, a realistic evaluation of corresponding health risk.

  16. Field experience on indoor radon, thoron and their progenies with solid-state detectors in a survey of Kosovo and Metohija (Balkan region).

    PubMed

    Gulan, L; Milic, G; Bossew, P; Omori, Y; Ishikawa, T; Mishra, R; Mayya, Y S; Stojanovska, Z; Nikezic, D; Vuckovic, B; Zunic, Z S

    2012-11-01

    Since 1996/97, indoor radon has been measured in scattered locations around Kosovo. In the most recent campaign, apart from radon, thoron and Rn and Tn progenies have also been measured. The current survey involves 48 houses, in which different detectors have been deployed side-by-side in one room, in order to measure indoor radon and thoron gas with RADUET devices based on CR-39 detectors (analysed by Japanese collaborators) and with direct thoron and radon progeny sensor (DTPS and DRPS) devices based on LR-115 detectors (analysed by collaborators from India). Estimated arithmetic mean values of concentrations in 48 houses are 122 Bq m(-3) for radon and 136 Bq m(-3) for thoron. Those for equilibrium equivalent radon concentration and equilibrium equivalent thoron concentration based on measurements in 48 houses are 40 and 2.1 Bq m(-3), respectively. The arithmetic mean value of the equilibrium factor is estimated to be 0.50 ± 0.23 for radon and 0.037 ± 0.041 for thoron. The preliminary results of these measurements are reported, particularly regarding DTPS and DRPS being set up in real field conditions for the first time in the Balkan region. The results are to be understood under the caveat of open questions related to measurement protocols which yield reproducible and representative results, and to quality assurance of Tn and Rn/Tn progeny measurements in general, some of which are discussed.

  17. Indoor radon and thoron concentrations in some towns of central and South Serbia.

    PubMed

    Vuckovic, Biljana; Gulan, Ljiljana; Milenkovic, Biljana; Stajic, Jelena M; Milic, Gordana

    2016-12-01

    This study presents the results of indoor radon and thoron activity concentrations of some municipalities in central and south part of Serbia: Krusevac, Brus, Blace and Kursumlija. Measurements were carried out in 60 dwellings during the winter season. Passive discriminative radon-thoron detectors known as UFO detectors were used. The mean values of indoor radon and thoron concentrations were 82 Bq m -3 and 42 Bq m -3 , respectively. Population-weighted mean values were 76 Bq m -3 and 40 Bq m -3 , respectively. 26.7% of dwellings had radon concentration higher than 100 Bq m -3 (one location had even more than 300 Bq m -3 ). There are no statistically significant correlations of indoor radon and thoron concentrations neither with the period of house construction, nor with the existence of a basement. The results of this study represent the first step of investigating radon and thoron levels in these parts of Serbia and therefore could be the basis for creating a radon map. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Measurement of radon/thoron exhalation rates and gamma-ray dose rate in granite areas in Japan.

    PubMed

    Prasad, G; Ishikawa, T; Hosoda, M; Sahoo, S K; Kavasi, N; Sorimachi, A; Tokonami, S; Uchida, S

    2012-11-01

    Radon and thoron exhalation rates and gamma-ray dose rate in different places in Hiroshima Prefecture were measured. Exhalation rates were measured using an accumulation chamber method. The radon exhalation rate was found to vary from 3 to 37 mBq m(-2) s(-1), while the thoron exhalation rate ranged from 40 to 3330 mBq m(-2) s(-1). The highest radon exhalation rate (37 mBq m(-2) s(-1)) and gamma-ray dose rate (92 nGy h(-1)) were found in the same city (Kure City). In Kure City, indoor radon and thoron concentrations were previously measured at nine selected houses using a radon-thoron discriminative detector (Raduet). The indoor radon concentrations varied from 16 to 78 Bq m(-3), which was higher than the average value in Japan (15.5 Bq m(-3)). The indoor thoron concentration ranged from ND (not detected: below a detection limit of approximately 10 Bq m(-3)) to 314 Bq m(-3). The results suggest that radon exhalation rate from the ground is an influential factor for indoor radon concentration.

  19. Radon and thoron inhalation doses in dwellings with earthen architecture: Comparison of measurement methods.

    PubMed

    Meisenberg, Oliver; Mishra, Rosaline; Joshi, Manish; Gierl, Stefanie; Rout, Rajeswari; Guo, Lu; Agarwal, Tarun; Kanse, Sandeep; Irlinger, Josef; Sapra, Balvinder K; Tschiersch, Jochen

    2017-02-01

    The radioactive noble gas radon ( 222 Rn) and its decay products have been considered a health risk in the indoor environment for many years because of their contribution to the radiation dose of the lungs. The radioisotope thoron ( 220 Rn) and its decay products came into focus of being a health risk only recently. The reason for this is its short half-life, so only building material can become a significant source for indoor thoron. In this study, dwellings with earthen architecture were investigated with different independent measurement techniques in order to determine appropriate methods for reliable dose assessment of the dwellers. While for radon dose assessment, radon gas measurement and the assumption of a common indoor equilibrium factor often are sufficient, thoron gas has proven to be an unreliable surrogate for a direct measurement of thoron decay products. Active/time-resolved but also passive/integrating measurements of the total concentration of thoron decay products demonstrated being precise and efficient methods for determining the exposure and inhalation dose from thoron and its decay products. Exhalation rate measurements are a useful method for a rough dose estimate only if the exhalation rate is homogeneous throughout the house. Before the construction of a building in-vitro exhalation rate measurements on the building material can yield information about the exposure that is to be expected. Determining the unattached fraction of radon decay products and even more of thoron decay products leads to only a slightly better precision; this confirms the relative unimportance of the unattached thoron decay products due to their low concentration. The results of this study thereby give advice on the proper measurement method in similar exposure situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Data on the effect of geological and meteorological parameters on indoor radon and thoron level- case study: Kermanshah, Iran.

    PubMed

    Pirsaheb, Meghdad; Najafi, Farid; Hemati, Lida; Khosravi, Touba; Sharafi, Hooshmand

    2018-06-01

    The present study was aimed to evaluate the relationship between indoor radon and thoron concentrations, geological and meteorological parameters. The radon and thoron concentrations were determined in three hospitals in Kermanshah, the west part of Iran, using the RTM-1688-2 radon meter. Also, the type and porosity of the underlying soil and the meteorological parameters such as temperature, humidity, atmospheric pressure, rainfall and wind speed were studied and the obtained results analyzed using STATA-Ver.8. In this study the obtained radon concentration was furthered in buildings which constructed on the soil with clayey gravel and sand feature than the soil with clay characteristic and little pasty with a significant difference ( P < 0.05). While the lower coefficient about 1.3 was obtained in measured the thoron concentration and a significant difference was not observed. So the soil porosity can extremely effect on the indoor radon amount. Among all studied meteorological parameters, temperature has been determined as the most important meteorological parameter, influence the indoor radon and thoron concentrations.

  1. Application of thoron interference as a tool for simultaneous measurement of radon and thoron with a pulse ionisation chamber.

    PubMed

    Tripathi, R M; Sumesh, C G; Vinod Kumar, A; Puranik, V D

    2013-07-01

    Pulse ionisation chamber (PIC)-based monitors measuring radioactive gas radon ((222)Rn) without energy discrimination will have interference due to thoron ((220)Rn) present in the atmosphere. A technique has been developed to use this property of interference for simultaneous measurement of radon and thoron gas. These monitors work on the principle of counting of gross alphas emitted from radon and its progeny. A theoretical model has been developed for the variation of thoron sensitivity with respect to the flow rate of gas through the monitor. The thoron sensitivity of the monitor is found to vary with the flow rate of gas through the monitor. Using this sensitivity, the sampling procedure has been developed and verified for simultaneous measurement of radon and thoron. The PIC-measured radon and thoron concentration using this procedure agrees well with those measured by using standard radon and thoron discriminating monitor.

  2. Effects of air exchange property of passive-type radon-thoron discriminative detectors on performance of radon and thoron measurements.

    PubMed

    Omori, Y; Janik, M; Sorimachi, A; Ishikawa, T; Tokonami, S

    2012-11-01

    Pairs of diffusion chambers with different air exchange rates are used in a large-scale survey to determine radon and thoron, separately. When they are enclosed in radon-proof bags for keeping after the exposure, since radon does not escape out immediately from the low-diffusion chamber, it leads to further exposure in the bags and disturbs the estimation of radon and thoron concentrations. In this study, the effects of the different air exchange properties of the radon-thoron discriminative detectors with CR-39 chips on the estimations of radon and thoron concentrations were investigated. The commercially available and frequently used detectors, Raduet, are examined in this study. The result shows that radon escapes out in 10 h. When degassing is not enough after the exposure in a calibration experiment or high-background radiation area, the residual radon causes the overestimation of the radon concentration and increase in the uncertainty in the thoron concentration, i.e. a low-performance quality of radon and thoron measurements.

  3. Measurement of thoron exhalation rates from building materials.

    PubMed

    de With, G; de Jong, P; Röttger, A

    2014-09-01

    Thoron (220Rn) exhalation from building materials has become increasingly recognized as a potential source for radiation exposure in dwellings. However, contrary to radon (220Rn), limited information on thoron exposure is available. The purpose of this study is to develop a test method for the determination of the thoron exhalation rate from building materials. The method is validated, and subsequently the thoron exhalation rates from 10 widely-applied concretes, gypsums, brick, limestone, and mortar are determined. The measured thoron exhalation rates of these materials range from 0.01 Bq m-2 s-1 to 0.43 Bq m-2 s-1, with relative standard uncertainties between 6% to 14%.

  4. Thoron and Hazards Associated with the Handling of Thorium Compounds; LE THORON ET LES RISQUES ASSOCIES DANS LA MANIPULATION DES COMPOSES DU THORIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradel, J.f Billard, F.

    1959-10-31

    Thoron and its daughters are continually released from thorium compounds, and their radiations present a danger to persons handling the compounds. A study was made of various methods for the determination of thoron in equilibrium with ThA in the air. The danger presented by thoron in the immediate vicinity of Th sources in a plant extracting thorium from uranothorianite ores was evaluated. A comparison was made of a continuous and a discontinuous method for the determination of thoron alone in air. The determination of thoron and radon with a scintillation chamber is described in detail. The evaluation of the dangersmore » associated with the handling of thorium ore and compounds showed that the maximum permissible concentration for thoron in equilibrium with ThA is 10/sup -6/ mu c/cm/sup 3/ and is 10/sup -10/ mu c/cm/ sup 3/ for ThB in equilibrium with its daughters. (J.S.R.)« less

  5. 2-D DIGE and MS/MS analysis of protein serum expression in rats housed in concrete and clay cages in winter.

    PubMed

    Kim, Jong-Choon; Kim, Jin Young; Yeom, Seok Ran; Jeong, Bo Yoon; Hwang, Hey-Zoo; Park, Keum-Joo; Lee, Seung-won

    2008-09-01

    In a previous study, we examined the physiological responses of male Sprague-Dawley rats over a 4-week exposure to concrete and clay cages. No general toxicological changes were observed in rats exposed to either of the two cage types in summer. Under winter conditions, however, various general toxicological effects were detected in rats housed in concrete cages, although rats housed in clay cages showed no such effects. The infrared thermographic examination indicated that skin temperature in the concrete-housed rats was abnormally low, but not so in the clay-housed rats. We examined proteomic changes in the serum of rats housed in winter in concrete and clay cages using two-dimensional differential in-gel electrophoresis and mass spectrometry/mass spectrometry. Five proteins were identified and quantitatively validated; all were cold stress-induced, acute phase proteins that were either up-regulated (haptoglobin) or down-regulated (alpha-1-inhibitor III, alpha-2u globulin, complement component 3, and vitamin D-binding protein) in the concrete-housed rats. These results suggest that the 4-week exposure to a concrete cage in winter elicited a typical systemic inflammatory reaction (i.e. acute phase response) in the exposed rats.

  6. Radon and thoron concentrations in public workplaces in Brisbane, Australia.

    PubMed

    Alharbi, Sami H; Akber, Riaz A

    2015-06-01

    Radon and thoron are radioactive gases that can emanate from soil and building materials, and it can accumulate in indoor environments. The concentrations of radon and thoron in the air from various workplace categories in Brisbane, Australia were measured using an active method. The average radon and thoron concentrations for all workplace categories were 10.5 ± 11.3 and 8.2 ± 1.4 Bq m(-3), respectively. The highest radon concentration was detected in a confined area, 86.6 ± 6.0 Bq m(-3), while the maximum thoron level was found in a storage room, 78.1 ± 14.0 Bq m(-3). At each site, the concentrations of radon and thoron were measured at two heights, 5 cm and 120 cm above the floor. The effect of the measurement heights on the concentration level was significant in the case of thoron. The monitoring of radon and thoron concentrations showed a lower radon concentration during work hours than at other times of the day. This can be attributed to the ventilation systems, including the air conditioner and natural ventilation, which normally operate during work hours. The diurnal variation was less observed in the case of thoron, as the change in its concentration during and after the working hours was insignificant. The study also investigated the influence of the floor level and flooring type on indoor radon and thoron concentrations. The elevated levels of radon and thoron were largely found in basements and ground floor levels and in rooms with concrete flooring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Mitigation of radon and thoron decay products by filtration.

    PubMed

    Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-09-01

    Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron

  8. Passive Measurements of Thoron and its Progeny in some Dwellings in Ireland

    NASA Astrophysics Data System (ADS)

    Choncubhair, Órlaith Ní; Laughlin, James Mc; Tokonami, Shinji

    2008-08-01

    In this paper, an account is given of the development, calibration and field use of a passive alpha track detector sensitive to thoron as well as to radon. No database of thoron and thoron progeny concentrations in dwellings in Ireland exists and, as a result, the level of exposure of the Irish population to thoron and its progeny is unknown. As an initial or pilot stage in establishing such a data base measurements of thoron and thoron progeny concentrations (the latter expressed in Equilibrium Equivalent Thoron Concentration (EETC)) were made in 40 randomly chosen Irish dwellings. The EETC measurements were made using a passive thoron progeny deposition rate monitor designed and supplied by NIRS (Japan). In addition standard unmodified SSI passive radon detectors were used to measure radon in these dwellings. The measured thoron concentrations ranged from below the level of detection to 154 Bq/m3 while the radon gas ranged from 15 to 179 Bq/m3. The thoron progeny EETC values for these dwellings ranged from 0.03 to 7.7 Bq/m3. An account is also given of the dosimetric implications of these measurements.

  9. Thoron in the environment and its related issues

    NASA Astrophysics Data System (ADS)

    Tokonami, Shinji

    2009-06-01

    Since radon is internationally noted as the second cause of lung cancer, many countries are trying about to solve the problem worldwide. In addition, a new evidence of lung cancer risk has been recently found out with a low level below 200 Bq m-3. Thus the action level will have to be set lower than before. Importance of radon exposure has been further recognized and accurate radon concentrations will be required. Recently thoron has also been recognized from the viewpoint of accurate radon measurements. The present paper describes specification of the NIRS radon and thoron chambers, passive measurement technique of radon and thoron and thoron interference on radon measurements from both experimental studies and field experiences on epidemiological study area.

  10. Calibration of CR-39-based thoron progeny device.

    PubMed

    Fábián, F; Csordás, A; Shahrokhi, A; Somlai, J; Kovács, T

    2014-07-01

    Radon isotopes and their progenies have proven significant role in respiratory tumour formation. In most cases, the radiological effect of one of the radon isotopes (thoron) and its progenies has been neglected together with its measurement technique; however, latest surveys proved that thoron's existence is expectable in flats and in workplace in Europe. Detectors based on different track detector measurement technologies have recently spread for measuring thoron progenies; however, the calibration is not yet completely elaborated. This study deals with the calibration of the track detector measurement method suitable for measuring thoron progenies using different devices with measurement techniques capable of measuring several progenies (Pylon AB5 and WLx, Sarad EQF 3220). The calibration factor values related to the thoron progeny monitors, the measurement uncertainty, reproducibility and other parameters were found using the calibration chamber. In the future, the effects of the different parameters (aerosol distribution, etc.) will be determined. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Long-term measurements of residential radon, thoron, and thoron progeny concentrations around the Chhatrapur placer deposit, a high background radiation area in Odisha, India.

    PubMed

    Omori, Yasutaka; Prasad, Ganesh; Sorimachi, Atsuyuki; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Vidya Sagar, Devulapalli; Ramola, Rakesh Chand; Tokonami, Shinji

    2016-10-01

    The Chhatrapur placer deposit is found in a high background radiation area which has been recently identified on the southeastern coast of India. Previously, some geochemical studies of this area were carried out to assess external dose from radionuclides-bearing heavy mineral sands. In this study, radon, thoron and thoron progeny concentrations were measured in about 100 dwellings during three seasons (autumn-winter, summer, and rainy) in a 10- to 12-month period and annual doses due to inhalation of them were evaluated. The measurements were made by passive-type radon-thoron discriminative detectors and thoron progeny detectors in which solid state nuclear track detectors were deployed. The results show that radon and thoron concentrations differ by one order of magnitude depending on exposure periods, while thoron progeny concentration is nearly constant throughout the year. Since thorium-rich sand is distributed in the studied area, exposure to thoron is equal to, or exceeds, exposure to radon and is not negligible for dose evaluation. Based on the measurements, doses due to inhalation of radon and thoron are evaluated as 0.1-1.6 mSv y -1 and 0.2-3.8 mSv y -1 , respectively. The total dose is 0.8-4.6 mSv y -1 , which is the same order of magnitude as the worldwide value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Influence of soil environmental parameters on thoron exhalation rate.

    PubMed

    Hosoda, M; Tokonami, S; Sorimachi, A; Ishikawa, T; Sahoo, S K; Furukawa, M; Shiroma, Y; Yasuoka, Y; Janik, M; Kavasi, N; Uchida, S; Shimo, M

    2010-10-01

    Field measurements of thoron exhalation rates have been carried out using a ZnS(Ag) scintillation detector with an accumulation chamber. The influence of soil surface temperature and moisture saturation on the thoron exhalation rate was observed. When the variation of moisture saturation was small, the soil surface temperature appeared to induce a strong effect on the thoron exhalation rate. On the other hand, when the variation of moisture saturation was large, the influence of moisture saturation appeared to be larger than the soil surface temperature. The number of data ranged over 405, and the median was estimated to be 0.79 Bq m(-2) s(-1). Dependence of geology on the thoron exhalation rate from the soil surface was obviously found, and a nationwide distribution map of the thoron exhalation rate from the soil surface was drawn by using these data. It was generally high in the southwest region than in the northeast region.

  13. Results of simultaneous radon and thoron measurements in 33 metropolitan areas of Canada

    PubMed Central

    Chen, Jing; Bergman, Lauren; Falcomer, Renato; Whyte, Jeff

    2015-01-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. 222Rn (radon gas) and 220Rn (thoron gas) are the most common isotopes of radon. In order to assess thoron contribution to indoor radon and thoron exposure, a survey of residential radon and thoron concentrations was initiated in 2012 with ∼4000 homes in the 33 census metropolitan areas of Canada. The survey confirmed that indoor radon and thoron concentrations are not correlated and that thoron concentrations cannot be predicted from widely available radon information. The results showed that thoron contribution to the radiation dose varied from 0.5 to 6 % geographically. The study indicated that, on average, thoron contributes ∼3 % of the radiation dose due to indoor radon and thoron exposure in Canada. Even though the estimated average thoron concentration of 9 Bq m−3 (population weighted) in Canada is low, the average radon concentration of 96 Bq m−3 (population weighted) is more than double the worldwide average indoor radon concentration. It is clear that continued efforts are needed to further reduce the exposure and effectively reduce the number of lung cancers caused by radon. PMID:24748485

  14. U.S. BICENTENNIAL EXPOSITION & PAINTING OF AMERICAN FLAG ON VAB

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Transformation of the U. S. Bicentennial on Science and Technology from an artist's concept to reality is well underway at KSC. At lower right are stages of the Saturn V rocket which will form part of the Exposition. Four of the 15 domes erected to house exhibits by 16 federal agencies and numerous industrial firms are visible in the foreground. At left center, workmen on a scaffold can be seen completing the blue field on the American flag being painted on the Vehicle Assembly Building. The Exposition will be open to the public from May 30 through September 7.

  15. The Concept of Equivalent Radon Concentration for Practical Consideration of Indoor Exposure to Thoron

    PubMed Central

    Chen, Jing; Moir, Deborah

    2012-01-01

    To consider the total exposure to indoor radon and thoron, a concept of equivalent radon concentration for thoron is introduced, defined as the radon concentration that delivers the same annual effective dose as that resulting from the thoron concentration. The total indoor exposure to radon and thoron is then the sum of the radon concentration and the equivalent radon concentration for thoron. The total exposure should be compared to the radon guideline value, and if it exceeds the guideline value, appropriate remedial action is required. With this concept, a separate guideline for indoor thoron exposure is not necessary. For homes already tested for radon with radon detectors, Health Canada’s recommendation of a 3-month radon test performed during the fall/winter heating season not only ensures a conservative estimate of the annual average radon concentration but also covers well any potentially missing contribution from thoron exposure. In addition, because the thoron concentration is much lower than the radon concentration in most homes in Canada, there is no real need to re-test homes for thoron. PMID:22470292

  16. Invited Article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janik, M., E-mail: mirek@fml.nirs.go.jp; Ishikawa, T.; Omori, Y.

    Inhalation of radon ({sup 222}Rn) and its short-lived decay products and of products of the thoron ({sup 220}Rn) series accounts for more than half of the effective dose from natural radiation sources. At this time, many countries have begun large-scale radon and thoron surveys and many different measurement methods and instruments are used in these studies. Consequently, it is necessary to improve and standardize technical methods of measurements and to verify quality assurance by intercomparisons between laboratories. Four international intercomparisons for passive integrating radon and thoron monitors were conducted at the NIRS (National Institute of Radiological Sciences, Japan). Radon exercisesmore » were carried out in the 24.4 m{sup 3} inner volume walk-in radon chamber that has systems to control radon concentration, temperature, and humidity. Moreover, the NIRS thoron chamber with a 150 dm{sup 3} inner volume was utilized to provide three thoron intercomparisons. At present, the NIRS is the only laboratory world-wide that has carried out periodic thoron intercomparison of passive monitors. Fifty laboratories from 26 countries participated in the radon intercomparison, using six types of detectors (charcoal, CR-39, LR 115, polycarbonate film, electret plate, and silicon photodiode). Eighteen laboratories from 12 countries participated in the thoron intercomparisons, using two etch-track types (CR-39 and polycarbonate) detectors. The tests were made under one to three different exposures to radon and thoron. The data presented in this paper indicated that the performance quality of laboratories for radon measurement has been gradually increasing. Results of thoron exercises showed that the quality for thoron measurements still needs further development and additional studies are needed to improve its measuring methods. The present paper provides a summary of all radon and thoron international intercomparisons done at NIRS from 2007 to date and it describes

  17. Thoron-tartaric acid systems for spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, M.H.

    1956-01-01

    Thoron is commonly used for the spectrophotometric determination of thorium. An undesirable feature of its use is its high sensitivity to zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotartaric acid, used in one of the systems, is most effective in masking zirconium. The behavior of rarer elements, usually associated with thorium ores, is determined in two systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  18. Measurements of radon and thoron progeny concentrations in dwellings of Tehri Garhwal, India, using LR-115 deposition-based DTPS/DRPS technique.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Yadav, Manjulata; Gusain, G S; Mishra, Rosaline; Ramola, R C

    2015-11-01

    This paper presents the values of radon and thoron progeny concentrations for different seasons in the dwellings of Tehri Garhwal, India. The measurements have been carried out using LR-115 solid-state nuclear track detector-based passive time-integrated direct thoron progeny sensor/direct radon progeny sensor technique. In summer, the radon and thoron progeny have been found to vary from 5.7±0.8 to 153.2±4.3 Bq m(-3) with an average of 37.6 Bq m(-3) and 0.3±0.06 to 3.2±0.19 Bq m(-3) with an average of 1.3 Bq m(-3), respectively. In the rainy season, the radon and thoron progeny have been found to vary from 3.2±0.6 to 120±3.7 Bq m(-3) with an average of 58.2 Bq m(-3) and 0.2±0.05 to 11.3±0.37 Bq m(-3) with an average of 3.4 Bq m(-3), respectively. In autumn, the radon and thoron progeny have been found to vary from 4.1±0.7 to 374.4±6.7 Bq m(-3) with an average of 95.6 Bq m(-3) and from 0.3±0.06 to 30.5±0.60 Bq m(-3) with an average of 6.6 Bq m(-3), respectively. In winter, the radon and thoron progeny have been found to vary from 9.8±1.1 to 188.9±4.8 Bq m(-3) with an average of 70.7 Bq m(-3) and 0.1±0.03 to 7.5±0.30 Bq m(-3) with an average of 2.3 Bq m(-3), respectively. It has been observed that the average value of radon and thoron progeny concentrations is maximum for autumn and minimum for summer seasons. The seasonal variations in radon and thoron progeny concentrations in different houses are discussed in detail. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Alpha particle spectroscopy in radon/thoron progeny measurements.

    PubMed

    Thiessen, N P

    1994-12-01

    A comparison is made between the relative variances and counting time requirements for obtaining radon and thoron progeny air concentrations from total alpha count data and from spectroscopically resolved alpha count data collected from air sampling filters. Spectral resolution is shown to have significant advantages, especially in mixed radon/thoron atmospheres. Systematic biases resulting from imperfect energy peak resolution are shown to be subject to accurate mathematical compensation.

  20. Comparison study and thoron interference test of different radon monitors.

    PubMed

    Sumesh, C G; Kumar, A Vinod; Tripathi, R M; Puranik, V D

    2013-03-01

    A comparison study and thoron interference test for different continuous radon monitors were carried out. The comparison study includes three passive diffusion monitors [one pulse ionisation chamber based-Alpha Guard and two silicon semi-conductor based-Radon Scout Plus (RSP)] and one silicon semi-conductor-based active radon thoron discriminating monitor--RAD 7. Radon emanation standard, supplied by National Institute of Science and Technology, has been utilised for the comparison study to qualify the calibration of the continuous radon monitors. All the instruments showed good agreement with the estimated radon concentration using (226)Ra/(222)Rn emanation standard. It was found that the active radon monitoring system is having a higher initial response towards the transient radon concentration than the passive radon monitors studied. The instruments measuring radon concentration without energy discrimination are likely to have some sensitivity towards the thoron concentration. Thus, thoron interference study was carried out in the above monitors. Nine percent interference in measured radon concentration in the Alpha Guard monitor and 4 % interference in the semi-conductor-based RSP monitors was observed. Study indicates that the interference of thoron in radon monitors depends on the area of diffusion of gas, volume of detection and sensitivity factor.

  1. Correlation of radon and thoron concentrations with natural radioactivity of soil in Zonguldak, Turkey

    NASA Astrophysics Data System (ADS)

    Koray, Abdullah; Akkaya, Gizem; Kahraman, Ayşegül

    2017-02-01

    Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil. In this study, the correlations between soil radon and thoron concentration with their parent nuclide (226Ra and 232Th) concentrations in collected soil samples from the same locations were evaluated. The result of the measurement shows that the distribution of radon and thoron in soil showed the same tendency as 226Ra and 232Th distribution. It was found a weak correlation between the radon and the 226Ra concentration (R =0.57), and between the thoron and the 232Th concentration (R=0.64). No strong correlation was observed between soil-gas radon and thoron concentration (R = 0.29).

  2. A new passive radon-thoron discriminative measurement system.

    PubMed

    Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M

    2010-10-01

    A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.

  3. Inventorying Toronto's single detached housing stocks to examine the availability of clay brick for urban mining.

    PubMed

    Ergun, Deniz; Gorgolewski, Mark

    2015-11-01

    This study examines the stocks of clay brick in Toronto's single detached housing, to provide parameters for city scale material reuse and recycling. Based on consensus from the literature and statistics on Toronto's single detached housing stocks, city scale reusable and recyclable stocks were estimated to provide an understanding of what volume could be saved from landfill and reintroduced into the urban fabric. On average 2523-4542 m(3) of brick was determined to be available annually for reuse, which would account for 20-36% of the volume of virgin brick consumed in new house construction in 2012. A higher volume, 6187 m(3) of brick, was determined to be available annually for recycling because more of the prevalence of cement-based mortar, which creates challenges for brick reuse in Toronto. The results demonstrated that older housing containing reusable brick were being mostly landfilled and replaced with housing that contained only recyclable brick. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India.

    PubMed

    Omori, Yasutaka; Tokonami, Shinji; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Hosoda, Masahiro; Kudo, Hiromi; Pornnumpa, Chanis; Nair, Raghu Ram K; Jayalekshmi, Padmavaty Amma; Sebastian, Paul; Akiba, Suminori

    2017-03-20

    In order to evaluate internal exposure to radon and thoron, concentrations for radon, thoron, and thoron progeny were measured for 259 dwellings located in high background radiation areas (HBRAs, outdoor external dose: 3-5 mGy y -1 ) and low background radiation areas (control areas, outdoor external dose: 1 mGy y -1 ) in Karunagappally Taluk, Kerala, India. The measurements were conducted using passive-type radon-thoron detectors and thoron progeny detectors over two six-month measurement periods from June 2010 to June 2011. The results showed no major differences in radon and thoron progeny concentrations between the HBRAs and the control areas. The geometric mean of the annual effective dose due to radon and thoron was calculated as 0.10 and 0.44 mSv, respectively. The doses were small, but not negligible compared with the external dose in the two areas.

  5. The thoron-tartaric acid systems for the spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, Mary H.

    1955-01-01

    Thoron is popularly used for the spectrophotometric determination of thorium.  An undesirable feature of its use is the high sensitivity of the reagent toward zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotataric acid, used in one of the systems, is found to be most effective in masking zirconium. The behavior of various rarer elements, usually found associated with thorium ores, is determined in two of the systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  6. Analysis of radon and thoron progeny measurements based on air filtration.

    PubMed

    Stajic, J M; Nikezic, D

    2015-02-01

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of (218)Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Thoron, radon and air ions spatial distribution in indoor air.

    PubMed

    Kolarž, Predrag; Vaupotič, Janja; Kobal, Ivan; Ujić, Predrag; Stojanovska, Zdenka; Žunić, Zora S

    2017-07-01

    Spatial distribution of radioactive gasses thoron (Tn) and radon (Rn) in indoor air of 9 houses mostly during winter period of 2013 has been studied. According to properties of alpha decay of both elements, air ionization was also measured. Simultaneous continual measurements using three Rn/Tn and three air-ion active instruments deployed on to three different distances from the wall surface have shown various outcomes. It has turned out that Tn and air ions concentrations decrease with the distance increase, while Rn remained uniformly distributed. Exponential fittings function for Tn variation with distance was used for the diffusion length and constant as well as the exhalation rate determination. The obtained values were similar with experimental data reported in the literature. Concentrations of air ions were found to be in relation with Rn and obvious, but to a lesser extent, with Tn. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. MEASUREMENT OF RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN THE DWELLINGS OF PAURI GARHWAL, UTTARAKHAND, INDIA.

    PubMed

    Joshi, Veena; Dutt, Sanjay; Yadav, Manjulata; Mishra, Rosaline; Ramola, R C

    2016-10-01

    It is well known that inhalation of radon, thoron and their progeny contributes more than 50 % of natural background radiation dose to human being. The time-integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector-based single-entry pin-hole dosemeter, while for the measurement of progeny concentrations, LR-115 deposition-based direct radon and thoron progeny sensors technique was used. The experimental techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Long-term measurements of radon, thoron and their airborne progeny in 25 schools in Republic of Srpska.

    PubMed

    Ćurguz, Z; Stojanovska, Z; Žunić, Z S; Kolarž, P; Ischikawa, T; Omori, Y; Mishra, R; Sapra, B K; Vaupotič, J; Ujić, P; Bossew, P

    2015-10-01

    This article reports results of the first investigations on indoor radon, thoron and their decay products concentration in 25 primary schools of Banja Luka, capital city of Republic Srpska. The measurements have been carried out in the period from May 2011 to April 2012 using 3 types of commercially available nuclear track detectors, named: long-term radon monitor (GAMMA 1)- for radon concentration measurements (C(Rn)); radon-thoron discriminative monitor (RADUET) for thoron concentration measurements (C(Tn)); while equilibrium equivalent radon concentration (EERC) and equilibrium equivalent thoron concentrations (EETC) measured by Direct Radon Progeny Sensors/Direct Thoron Progeny Sensors (DRPS/DTPS) were exposed in the period November 2011 to April 2012. In each school the detectors were deployed at 10 cm distance from the wall. The obtained geometric mean concentrations were C(Rn) = 99 Bq m(-3) and C(Tn) = 51 Bq m(-3) for radon and thoron gases respectively. Those for equilibrium equivalent radon concentration (EERC) and equilibrium equivalent thoron concentrations (EETC) were 11.2 Bq m(-3) and 0.4 Bq m(-3), respectively. The correlation analyses showed weak relation only between C(Rn) and C(Tn) as well as between C(Tn) and EETC. The influence of the school geographical locations and factors linked to buildings characteristic in relation to measured concentrations were tested. The geographical location and floor level significantly influence C(Rn) while C(Tn) depend only from building materials (ANOVA, p ≤ 0.05). The obtained geometric mean values of the equilibrium factors were 0.123 for radon and 0.008 for thoron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The influence of environmental factors on the deposition velocity of thoron progeny.

    PubMed

    Li, H; Zhang, L; Guo, Q

    2012-11-01

    Passive measuring devices are comprehensively employed in thoron progeny surveys, while the deposition velocity of thoron progeny is the most critical parameter, which varies in different environments. In this study, to analyse the influence of environmental factors on thoron progeny deposition velocity, an improved model was proposed on the basis of Lai's aerosol deposition model and the Jacobi's model, and a series of measurements were carried out to verify the model. According to the calculations, deposition velocity decreases with increasing aerosol diameter and also aerosol concentration, while increases with increasing ventilation rate. In typical indoor environments, a typical value of 1.26 × 10(-5)m s(-1) is recommended, with a range between 7.6 × 10(-7) and 3.2 × 10(-4) m s(-1).

  11. Seasonal variability of equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab, India.

    PubMed

    Saini, Komal; Singh, Parminder; Singh, Prabhjot; Bajwa, B S; Sahoo, B K

    2017-02-01

    A survey was conducted to estimate equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab state, India. Pin hole based twin cup dosimeters and direct progeny sensor techniques have been utilized for estimation of concentration level of radon, thoron and their progenies. Equilibrium factor calculated from radon, thoron and their progenies concentration has been found to vary from 0.15 to 0.80 and 0.008 to 0.101 with an average value of 0.44 and 0.036 for radon and thoron respectively. Equilibrium factor for radon has found to be highest in winter season and lowest in summer season whereas for thoron highest value is observed in winter and rainy season and lowest in summer. Unattached fractions of radon and thoron have been found to vary from 0.022 to 0.205 and 0.013 to 0.212 with an average value of 0.099 and 0.071 respectively. Unattached fractions have found to be highest in winter season and lowest in rainy and summer season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Kandari, Tushar; Gusain, G S; Mishra, Rosaline; Ramola, R C

    2016-01-01

    The measurements of radon, thoron and their progeny concentrations have been carried out in the dwellings of Uttarkashi and Tehri districts of Garhwal Himalaya, India using LR-115 detector based pin-hole dosimeter and DRPS/DTPS techniques. The equilibrium factors for radon, thoron and their progeny were calculated by using the values measured with these techniques. The average values of equilibrium factor between radon and its progeny have been found to be 0.44, 0.39, 0.39 and 0.28 for rainy, autumn, winter and summer seasons, respectively. For thoron and its progeny, the average values of equilibrium factor have been found to be 0.04, 0.04, 0.04 and 0.03 for rainy, autumn, winter and summer seasons, respectively. The equilibrium factor between radon and its progeny has been found to be dependent on the seasonal changes. However, the equilibrium factor for thoron and progeny has been found to be same for rainy, autumn and winter seasons but slightly different for summer season. The annual average equilibrium factors for radon and thoron have been found to vary from 0.23 to 0.80 with an average of 0.42 and from 0.01 to 0.29 with an average of 0.07, respectively. The detailed discussion of the measurement techniques and the explanation for the results obtained is given in the paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Portable apparatus for the measurement of environmental radon and thoron

    DOEpatents

    Negro, Vincent C.

    2001-01-01

    The radometer is a portable instrument for the measurement of the concentration of atmospheric radon/thoron in a test area. A constant velocity pump pulls the air from the outside at a constant flow rate. If the air is too moist, some or all of the sample is passed through a desiccant filter prior to encountering an electrostatic filter. The electrostatic filter prevents any charged particles from entering the sampling chamber. Once the sample has entered the chamber, the progeny of the decay of radon/thoron are collected on a detector and measured. The measured data is compiled by a computer and displayed.

  14. Optimization of the Timepix chip to measurement of radon, thoron and their progenies.

    PubMed

    Janik, Miroslaw; Ploc, Ondrej; Fiederle, Michael; Procz, Simon; Kavasi, Norbert

    2016-01-01

    Radon and thoron as well as their short-lived progenies are decay products of the radium and thorium series decays. They are the most important radionuclide elements with respect to public exposure. To utilize the semiconductor pixel radiation Timepix chip for the measurement of active and real-time alpha particles from radon, thoron and their progenies, it is necessary to check the registration and visualization of the chip. An energy check for radon, thoron and their progenies, as well as for (241)Am and(210)Po sources, was performed using the radon and thoron chambers at NIRS (National Institute of Radiological Sciences). The check found an energy resolution of 200 keV with a 14% efficiency as well as a linear dependency between the channel number (cluster volume) and the energy. The coefficient of determination r(2) of 0.99 for the range of 5 to 9 MeV was calculated. In addition, an offset for specific Timepix configurations between pre-calibration for low energy from 6 to 60 keV, and the actual calibration for alpha particles with energies from 4000 to 9000 keV, was detected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Prediction of indoor radon/thoron concentration in a model room from exhalation rates of building materials for different ventilation rates

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Sharma, Navjeet; Sarin, Amit

    2018-05-01

    Studies have confirmed that elevated levels of radon/thoron in the human-environments can substantially increase the risk of lung cancer in general population. The building materials are the second largest contributors to indoor radon/thoron after soil and bedrock beneath dwellings. In present investigation, the exhalation rates of radon/thoron from different building materials samples have been analysed using active technique. Radon/thoron concentrations in a model room have been predicted based on the exhalation rates from walls, floor and roof. The indoor concentrations show significant variations depending upon the ventilation rate and type of building materials used.

  16. International intercomparison of measuring instruments for radon/thoron gas and radon short-lived daughter products in the NRPI Prague.

    PubMed

    Jílek, K; Hýža, M; Kotík, L; Thomas, J; Tomášek, L

    2014-07-01

    During the 7th European Conference on Protection Against Radon at Home and at Work held in the autumn of 2013 in Prague, the second intercomparison of measuring instruments for radon and its short-lived decay products and the first intercomparison of radon/thoron gas discriminative passive detectors in mix field of radon/thoron were organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI) in Prague. In total, 14 laboratories from 11 different countries took part in the 2013 NRPI intercomparison. They submitted both continuous monitors for the measurement of radon gas and equivalent equilibrium radon concentration in a big NRPI chamber (48 m3) and sets of passive detectors including radon/thoron discriminative for the measurement of radon gas in the big chamber and thoron gas in a small thoron chamber (150 dm3). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Soil gas radon-thoron monitoring in Dharamsala area of north-west Himalayas, India using solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kumar, Arvind; Walia, Vivek; Kumar, Jitender; Gupta, Vikash; Yang, Tsanyao Frank; Singh, Surinder; Bajwa, Bikramjit Singh

    2013-10-01

    The study described here is based on the measurements of soil gas radon-thoron concentrations performed at Dharamsala region of north-west (NW) Himalayas, India. The study area is tectonically and environmentally significant and shows the features of ductile shear zone due to the presence of distinct thrust planes. Solid state nuclear track detectors (LR-115 films) have been used for the soil gas radon-thoron monitoring. Twenty five radon-thoron discriminators with LR-115 films were installed in the borehole of about 50 cm in the study areas. The recorded radon concentration varies from 1593 to 13570 Bq/m3 with an average value of 5292 Bq/m3. The recorded thoron concentration varies from 223 to 2920 Bq/m3 with an average value of 901 Bq/m3. The anomalous value of radon-thoron has been observed near to the faults like main boundary thrust (MBT and MBT2) as well as neotectonic lineaments in the region.

  18. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    NASA Astrophysics Data System (ADS)

    Kávási, Norbert; Vigh, Tamás; Németh, Csaba; Ishikawa, Tetsuo; Omori, Yasutaka; Janik, Miroslaw; Yonehara, Hidenori

    2014-02-01

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C-21°C), low or high wind speed (max. 2.4 m s-1) and low or elevated aerosol concentration (130-60 000 particles m-3). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (in brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m-3 and 550(497) Bq m-3 in the bauxite mine; 887(604) Bq m-3 and 1258(788) Bq m-3 in the manganese ore mine; 2510(2341) Bq m-3 and 3403(3075) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m-3 and 8512(1955) Bq m-3 in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m-3 and 161(148) Bq m-3 in the bauxite mine; 187(191) Bq m-3 and 117(147) Bq m-3 in the manganese-ore mine; 360(524) Bq m-3 and 371(789) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m-3 and 1462(3655) Bq m-3 in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves. Consequently, correction is required on previously obtained radon data acquired by CF monitors at subsurface workplaces to gain comparable data for SF monitors. In the

  19. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    PubMed

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m -3 with an overall average of 89 Bq m -3 The average thoron concentration varies from 29 to 55 Bq m -3 with an overall average of 38 Bq m -3 The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y -1 with an average of 2.9 mSv y -1 While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kávási, Norbert, E-mail: norbert@fml.nirs.go.jp; Social Organization for Radioecological Cleanliness, Veszprém; Vigh, Tamás

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C–21°C), low or high wind speed (max. 2.4 m s{sup −1}) and low or elevated aerosol concentration (130–60 000 particles m{sup −3}). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (inmore » brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m{sup −3} and 550(497) Bq m{sup −3} in the bauxite mine; 887(604) Bq m{sup −3} and 1258(788) Bq m{sup −3} in the manganese ore mine; 2510(2341) Bq m{sup −3} and 3403(3075) Bq m{sup −3} in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m{sup −3} and 8512(1955) Bq m{sup −3} in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m{sup −3} and 161(148) Bq m{sup −3} in the bauxite mine; 187(191) Bq m{sup −3} and 117(147) Bq m{sup −3} in the manganese-ore mine; 360(524) Bq m{sup −3} and 371(789) Bq m{sup −3} in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m{sup −3} and 1462(3655) Bq m{sup −3} in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the

  1. A study of indoor radon, thoron and their exhalation rates in the environment of Fazilka district, Punjab, India

    NASA Astrophysics Data System (ADS)

    Narang, Saurabh; Kumar, Deepak; Sharma, Dinesh Kumar; Kumar, Ajay

    2018-02-01

    Over the last few decades, the study of radioactive radon gas has gained huge momentum due to its possible role in health related hazards. In the present work, pin-hole twin chamber single entrance dosimeters have been used for track measurements of radon and thoron. The annual average radon concentration varies from 50.3 to 204 Bq/m3 at all locations. Almost all the values are below the safe range provided by ICRP. Radon concentration is found to be higher in winter as compared to other seasons. Variation of radon with quality of dwellings is also discussed. The values of annual effective dose due to radon and thoron are also well within the range provided by ICRP and WHO. Radon and thoron exhalation rates are measured using SMART RnDuo monitor. The radon mass exhalation rates ranged from 11 to 71 mBq/kg/h while the thoron surface values ranged from 36 to 2048 Bq/m2/h. All the values are on the lower side. A weak correlation is found between radon and thoron concentrations and their exhalation rates. When compared with the values of other parts of northern India, the values of present investigation are on higher side.

  2. Using Creative Writing to Teach Exposition/Artistic/Report Writing.

    ERIC Educational Resources Information Center

    West, William W.

    Teachers who restrict their teaching of writing to elements of exposition are likely to fail because there is insufficient content, interest, or challenge in learning simple exposition, and the techniques that contribute to polished exposition are more easily accessible when approached through aesthetic writing. A teaching sequence for using…

  3. Diurnal variations of radon and thoron activity concentrations and effective doses in dwellings in Niška Banja, Serbia.

    PubMed

    Vaupotič, J; Streil, T; Tokonami, S; Žunic, Z S

    2013-12-01

    In Niška Banja, a spa town in a radon-prone area in southern Serbia, radon ((222)Rn) and thoron ((220)Rn) activity concentrations were measured continuously for one day in indoor air of 10 dwellings with a SARAD RTM 2010-2 Radon/Thoron Monitor, and equilibrium factor between radon and its decay products and the fraction of unattached radon decay products with a SARAD EQF 3020-2 Equilibrium Factor Monitor. Radon concentration in winter time ranged from 26 to 73 100 Bq m(-3) and that of thoron, from 10 to 8650 Bq m(-3). In the same period, equilibrium factor and the unattached fraction varied in the range of 0.08 to 0.90 and 0.01 to 0.27, respectively. One-day effective doses were calculated and were in winter conditions from 4 to 2599 μSv d(-1) for radon and from 0.2 to 73 μSv d(-1) for thoron.

  4. MEASUREMENT OF INDOOR RADON-THORON IN AIR AND EXHALATION FROM SOIL IN THE ENVIRONMENT OF WESTERN HARYANA, INDIA.

    PubMed

    Mann, Nisha; Kumar, Amit; Kumar, Sushil; Chauhan, R P

    2016-10-01

    Measurement of indoor radon and thoron is important because the inhalation of radon-thoron and their daughters contributes more than 50 % of the total dose from natural sources. One of the important parameters to find out the contribution of soil and building materials towards indoor radon is radon exhalation rates, which can be used for estimation of indoor radon levels. The indoor radon and thoron levels from the air and radon exhalation rates from soil samples collected from two districts (Hisar and Fatehabad) of Western Haryana are measured using pin-hole-based radon-thoron dosimeter and LR-115 solid-state nuclear track detector by canister technique. The results show that the indoor radon and thoron levels from Hisar district varied from 11 to 112 and 11 to 80 Bq m -3 , while for Fatehabad district from 5 to 24 and 59 to 105 Bq m -3 , respectively, in summer season. In winter season, indoor radon and thoron levels from Hisar district varied from 15 to 43 and 32 to 102 Bq m -3 , while for Fatehabad district from 18 to 31 and 11 to 80 Bq m -3 , respectively. The indoor radon levels of 95 % locations lie well below the limit recommended by International Commission of Radiation Protection, 2011. The radon mass exhalation rate varied from 6 to 56 mBq kg -1 h -1 The radon mass exhalation rates from the soil samples were lower than the worldwide average, i.e. 56 mBq kg -1 h -1 There exists a poor correlation between indoor radon and exhalation rates. More investigations of measurement of radionuclide contents from rock and stone of study area can improve the understanding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. 2008 Homeland Security Symposium and Exposition

    DTIC Science & Technology

    2008-09-10

    Untitled Document 2008 Homeland Security Symposium and Exposition.html[5/19/2016 8:49:43 AM] 2008 Homeland Security Symposium and Exposition "New...national defenSe magazine Advertise in National Defense and increase your company exposure at this symposium! National Defense will be distributed to all...use the Internet Cafe to check their e-mail and search the Internet. Brand your name with maximum exposure at this high traffic area. Benefits

  6. Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India.

    PubMed

    Sannappa, J; Ningappa, C

    2014-03-01

    An extensive studies on the indoor activity concentrations of thoron, radon and their progeny in the granite region in the state of Karnataka, India, has been carried out since, 2007 in the scope of a lung cancer epidemiological study using solid-state nuclear track detector-based double-chamber dosemeters (LR-115, type II plastic track detector). Seventy-four dwellings of different types were selected for the measurement. The dosemeters containing SSNTD detectors were fixed 2 m above the floor. After an exposure time of 3 months (90 d), films were etched to reveal tracks. From the track density, the concentrations of radon and thoron were evaluated. The value of the indoor concentration of thoron and radon in the study area varies from 16 to 170 Bq m(-3) and 18 to 300 Bq m(-3) with medians of 66 and 82.3 Bq m(-3), respectively, and that of their progeny varies from 1.8 to 24 mWL with a median of 3.6 mWL and 1.6 to 19.6 mWL, respectively. The concentrations of indoor thoron, radon and their progeny and their equivalent effective doses are discussed.

  7. The Influence of Internal Wall and Floor Covering Materials and Ventilation Type on Indoor Radon and Thoron Levels in Hospitals of Kermanshah, Iran

    PubMed Central

    Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah

    2016-01-01

    Background Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). Objectives This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). Materials and Methods 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. Results In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Conclusions Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals. PMID:28180013

  8. The Influence of Internal Wall and Floor Covering Materials and Ventilation Type on Indoor Radon and Thoron Levels in Hospitals of Kermanshah, Iran.

    PubMed

    Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah

    2016-10-01

    Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals.

  9. 86. Photocopied August 1978. CLAY RAMMING EQUIPMENT IN OPERATION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. Photocopied August 1978. CLAY RAMMING EQUIPMENT IN OPERATION IN THE POWER HOUSE IN 1910. A PILE OF CLAY USED TO FILL THE WASHED-OUT AREAS BENEATH THE FOUNDATIONS IS SHOWN IN THE CENTER OF THE ILLUSTRATION BESIDE THE FILLER PIPE. THE WEIGHT USED TO FORCE THE CLAY DOWN UNDER THE FOUNDATIONS IS SHOWN PRESSING ON THE PLUNGER PIPE. (542) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  10. Thoron-meso-tartaric acid system for determination of thorium

    USGS Publications Warehouse

    Fletcher, M.H.; Grimaldi, F.S.; Jenkins, L.B.

    1957-01-01

    In the spectrophotometric determination of thorium with thoron, mesotartaric acid is used as a masking reagent for zirconium. The effects of different experimental variables such as the concentrations of the reagents, time, and temperature, and the behavior of 35 ions which might be present in thorium ores are discussed. A dilution procedure is given for the direct determination of thorium in zircon (ZrSiO4) that is also generally applicable to other materials.

  11. Improved automated analysis of radon (222Rn) and thoron (220Rn) in natural waters.

    PubMed

    Dimova, Natasha; Burnett, William C; Lane-Smith, Derek

    2009-11-15

    Natural radon ((222)Rn) and thoron ((220)Rn) can be used as tracers of various chemical and physical processes in the environment. We present here results from an extended series of laboratory experiments intended to improve the automated analysis of (222)Rn and (220)Rn in water using a modified RAD AQUA (Durridge Inc.) system. Previous experience with similar equipment showed that it takes about 30-40 min for the system to equilibrate to radon-in-water concentration increases and even longer for the response to return to baseline after a sharp spike. While the original water/gas exchanger setup was built only for radon-in-water measurement, our goal here is to provide an automated system capable of high resolution and good sensitivity for both radon- and thoron-in-water detections. We found that faster water flow rates substantially improved the response for both isotopes while thoron is detected most efficiently at airflow rates of 3 L/min. Our results show that the optimum conditions for fastest response and sensitivity for both isotopes are at water flow rates up to 17 L/min and an airflow rate of 3 L/min through the detector. Applications for such measurements include prospecting for naturally occurring radioactive material (NORM) in pipelines and locating points of groundwater/surface water interaction.

  12. Italian Exposition

    ScienceCinema

    None

    2017-12-09

    Le DG parle dans son allocution à l'occasion de l'exposition (suivi d'une visite)de la contribution du Cern à la création d'une espace de la technologie européenne. Il parle de la manière comment organiser des formes fructueuses de coopération et coordination internationales dans ce domaine. "Afin de renforcer encore notre relation avec l'industrie et intensifier le transfert de la technologie nous proposerons au ministre de recherche de poursuivre dans le cadre du programme EUREKA ensemble avec les industries des programmes concrètes." Le ministre italien prend ensuite la parole.

  13. Studies on radon/thoron and their decay products in granite quarries around Bangalore city, India

    NASA Astrophysics Data System (ADS)

    Ningappa, C.; Sannappa, J.; Chandrashekara, M. S.; Paramesh, L.

    2009-08-01

    The radon survey was performed in granite quarries around Bangalore rural district and Bangalore city as part of a lung cancer epidemiological study. Long duration measurements of indoor and outdoor radon, thoron and their progenies concentrations were made around granite quarries of Bangalore rural district by using Solid State Nuclear Track Detector (SSNTD, LR-115, Type-II Plastic track detector) during summer and winter period (2006-07). The increase of radioactivity in granite quarries and inhalation dose to workers and populations near the quarries have been summarized. The higher concentrations of radon and thoron in granite quarries suggest radiation health effects on workers and public around the quarries is higher than permissible levels. The results are presented and analyzed with reference to ICRP limits.

  14. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND PROGENY IN THE INDOOR ENVIRONMENT OF YAMUNA AND TONS VALLEYS OF GARHWAL HIMALAYA.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Prasad, Ganesh; Mishra, Rosaline; Ramola, R C

    2016-10-01

    Long-term measurements of indoor radon, thoron and their progeny concentrations have been carried out in dwellings of Yamuna and Tons Valleys of Uttarkashi, Garhwal Himalaya to investigate the health risk associated with inhalation of radon, thoron and progeny. The experimentally determined values of radon, thoron and progeny concentrations were used to estimate the annual inhalation doses and annual effective doses. The annual inhalation dose has been found to vary from 0.8 to 3.9 mSv y -1 with an average of 1.8 mSv y -1 The annual effective dose from the exposure to radon and its progeny in the study area has been found to vary from 0.1 to 2.4 mSv with an average of 1.2±0.6 mSv. Similarly, the annual effective dose due to thoron and its progeny has been found to vary from 0.2 to 1.5 mSv with an average of 0.6±0.4. The measurement techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. COMPARATIVE STUDY OF RADON AND THORON MEASUREMENTS IN FOUR ROMANIAN SHOW CAVES.

    PubMed

    Burghele, B D; Cucos, A; Papp, B; Dicu, T; Pressyanov, D; Dimitrov, D; Dimitrova, I; Constantin, S

    2017-11-01

    Measurements have been carried out using four types of passive detectors in four of the most popular show caves in Romania. Three types of detectors (RSKS, RadTrak and CD) were used for radon measurements and two (Raduet and CD) for thoron measurement. Activity concentrations in air were measured in the same locations for two seasons, autumn and winter. Measured values for the different caves varied between below detection limit (5 Bq m-3) and 4024 Bq m-3 for radon and from below 10 to 583 Bq m-3 for thoron. The results indicate a very good correlation between RSKS and RadTrak detectors (r = 0.96). The most significant difference between radon concentrations measured with different types of detectors (RSKS and CD) was higher than 150%. The study suggests that the activity concentration of radon in caves, measured using track detectors, could not be influenced by the type of detector used if the microclimate factor is acknowledged. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. MEASUREMENTS OF AIRBORNE CONCENTRATIONS OF RADON AND THORON DECAY PRODUCTS.

    PubMed

    Chalupnik, S; Skubacz, K; Urban, P; Wysocka, M

    2017-11-01

    Liquid scintillation counting (LSC) is a measuring technique, broadly applied in environmental monitoring of radionuclides. One of the possible applications of LSC is the measurement of radon and thoron decay products. But this method is suitable only for grab sampling. For long-term measurements a different technique can be applied-monitors of potential alpha energy concentration (PAEC) with thermoluminescent detectors (TLD). In these devices, called Alfa-2000 sampling probe, TL detectors (CaSO4:Dy) are applied for alpha particles counting. Three independent heads are placed over the membrane filter in a dust sampler's microcyclone. Such solution enables simultaneous measurements of PAEC and dust content. Moreover, the information which is stored in TLD chips is the energy of alpha particles, not the number of counted particles. Therefore, the readout of TL detector shows directly potential alpha energy, with no dependence on equilibrium factor, etc. This technique, which had been used only for radon decay products measurements, was modified by author to allow simultaneous measurements of radon and thoron PAEC. The LSC method can be used for calibration of portable radon decay products monitors. The LSC method has the advantage to be an absolute one, the TLD method to measure directly the (dose relevant) deposited energy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Controlling 212Bi to 212Pb activity concentration ratio in thoron chambers.

    PubMed

    He, Zhengzhong; Xiao, Detao; Lv, Lidan; Zhou, Qingzhi; Shan, Jian; Qiu, Shoukang; Wu, Xijun

    2017-11-01

    It is necessary to establish a reference atmosphere in a thoron chamber containing various ratios of 212 Bi to 212 Pb activity concentrations (C( 212 Bi)/C( 212 Pb)) to simulate typical environmental conditions (e.g., indoor or underground atmospheres). In this study, a novel method was developed for establishing and controlling C( 212 Bi)/C( 212 Pb) in a thoron chamber system based on an aging chamber and air recirculation loops which alter the ventilation rate. The effects of main factors on the C( 212 Bi)/C( 212 Pb) were explored, and a steady-state theoretical model was derived to calculate the ratio. The results show that the C( 212 Bi)/C( 212 Pb) inside the chamber is mainly dependent on ventilation rate. Ratios ranging from 0.33 to 0.83 are available under various ventilation. The stability coefficient of the ratios is better than 7%. The experimental results are close to the theoretical calculated results, which indicates that the model can serve as a guideline for the quantitative control of C( 212 Bi)/C( 212 Pb). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 2014 ICHLNRRA intercomparison of radon/thoron gas and radon short-lived decay products measuring instruments in the NRPI Prague.

    PubMed

    Jílek, K; Timková, J

    2015-06-01

    During the Eighth International Conference on High Levels of Natural Radiation and Radon Areas held in autumn 2014 at Prague, the third intercomparison of radon/thoron gas and radon short-lived decay products measurement instruments was organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI; SÚRO v.v.i.) in Prague. The intercomparison was newly focussed also on continuous monitors with active sampling adapters capable to distinguish radon/thoron gas in their mix field.The results of radon gas measurements carried out in the big NRPI radon chamber indicated very well an average deviation of up to 5 % from the reference NRPI value for 80 % of all the exposed instruments. The results of equilibrium equivalent concentration continuous monitors indicated an average deviation of up to 5 % from the reference NRPI value for 40 % of all the exposed instruments and their ~8-10 % shift compared with the NRPI. The results of investigated ambient conditions upon response of exposed continuous monitors indicated influence of aerosol changes upon response of radon monitors with an active air sampling adapters through the filter, only. The exposures of both radon/thoron gas discriminative continuous monitors and passive detectors have been indicated inconsistent results: on one hand, their excellent agreement up to several per cent for both the gases, and on the other hand, systematic unsatisfactory differences up to 40 %. Additional radon/thoron exercises are recommended to improve both the instruments themselves and quality of their operators. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Radiological characterization of clay mixed red mud in particular as regards its leaching features.

    PubMed

    Hegedűs, Miklós; Sas, Zoltán; Tóth-Bodrogi, Edit; Szántó, Tamás; Somlai, János; Kovács, Tibor

    2016-10-01

    The reuse of industrial by-products such as red mud is of great importance. In the case of the building material industry the reuse of red mud requires a cautious attitude, since the enhanced radionuclide content of red mud can have an effect on human health. The natural radionuclide content of red mud from the Ajka red mud reservoir and the clay sample from a Hungarian brick factory were determined by gamma spectrometry. It was found that maximum 27.8% red mud content can be added to fulfil the conditions of the EU-BSS. The effect of heat treatment was investigated on a red mud-clay mixture and it was found that in the case of radon and thoron exhalation the applied heat reduced remarkably the exhalation capacities. The leaching features of red mud and different mixtures were studied according to the MSZ-21470-50 Hungarian standard, the British CEN/TS 14429 standard and the Tessier sequential extraction method. The Tessier method and the MSZ-21470-50 standard are suitable for the characterization of materials; however, they do not provide enough information for waste deposition purposes. To this end, we propose using the CEN/TS 14429 method, because it is easy to use, and gives detailed information about the material's behaviour under different pH conditions, however, further measurements are necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Assessment of indoor radon, thoron concentrations, and their relationship with seasonal variation and geology of Udhampur district, Jammu & Kashmir, India.

    PubMed

    Kumar, Ajay; Sharma, Sumit; Mehra, Rohit; Narang, Saurabh; Mishra, Rosaline

    2017-07-01

    Background The inhalation doses resulting from the exposure to radon, thoron, and their progeny are important quantities in estimating the radiation risk for epidemiological studies as the average global annual effective dose due to radon and its progeny is 1.3 mSv as compared to that of 2.4 mSv due to all other natural sources of ionizing radiation. Objectives The annual inhalation dose has been assessed with an aim of investigating the health risk to the inhabitants of the studied region. Methods Time integrated deposition based 222 Rn/ 220 Rn sensors have been used to measure concentrations in 146 dwellings of Udhampur district, Jammu and Kashmir. An active smart RnDuo monitor has also been used for comparison purposes. Results The range of indoor radon/thoron concentrations is found to vary from 11 to 58 Bqm -3 with an average value of 29 ± 9 Bqm -3 and from 25 to 185 Bqm -3 with an average value of 83 ± 32 Bqm -3 , respectively. About 10.7% dwellings have higher values than world average of 40 Bqm -3 prescribed by UNSCEAR. The relationship of indoor radon and thoron levels with different seasons, ventilation conditions, and different geological formations have been discussed. Conclusions The observed values of concentrations and average annual effective dose due to radon, thoron, and its progeny in the study area have been found to be below the recommended level of ICRP. The observed concentrations of 222 Rn and 220 Rn measured with active and passive techniques are found to be in good agreement.

  1. [Historical study of the moth repellent, "Fujisawa Camphor" (3) An exposition as an advertisement media].

    PubMed

    Hattori, Akira

    2003-01-01

    Newspaper advertisements were the predominant medium in informing people about new products midway through the Meiji Era. Subscribers to these newspapers, however, were still limited. At the time, expositions were wildly popular. Seizing the opportunity , in 1903 Fujisawa promoted his "Fujisawa Camphor" through aggressive advertising at the 5th Domestic Industrial Exposition in Osaka. The advertising proved to be a success, as Fujisawa took 2nd Prize of the exposition.

  2. Passive radon/thoron personal dosimeter using an electrostatic collector and a diffused-junction detector

    NASA Astrophysics Data System (ADS)

    Bigu, J.; Raz, R.

    1985-01-01

    A solid-state alpha dosimeter has been designed and tested suitable for personal and environmental radon/thoron monitoring. The dosimeter basically consists of an electrostatic collector and an alpha-particle counting system with spectroscopy capabilities. The sensitive volume (˜20 cm3) of the electrostatic collector consists of a cylindrically shaped metal wire screen and a diffused-junction silicon alpha-detector covered with a thin aluminized Mylar sheet. A dc voltage (˜500 V) is applied between the wire screen and the Mylar sheet, with the latter held at negative potential relative to the former. Data can be retrieved during or after sampling by means of a microcomputer (Epson HX20) via a RS-232 communication interface unit. The dosimeter has been calibrated in a large (26 m3) radon/thoron test facility. A linear relationship was found between the dosimeter's alpha-count and both radon gas concentration and radon daughter working level. The dosimeter is mounted on top of an ordinary miner's cap lamp battery and is ideally suited for personal monitoring in underground uranium mines and other working areas. The dosimeter presented here is a considerably improved version of an earlier prototype.

  3. Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers

    NASA Astrophysics Data System (ADS)

    Elhamdouni, Y.; Khabbazi, A.; Benayad, C.; Mounir, S.; Dadi, A.

    2017-03-01

    This work is part of the valuation of local materials such as clay (earth), alfa fiber and straw fiber. The goal is to use these materials as bricks in rural construction. These materials are abundant, natural, and renewable. The objective of this work is to study the thermal and mechanical behavior of a new material by mixing clay (chosen as the binder) with different mass percentages of alfa fiber (0.5%, 1%, 2%, 3%, 4%), and to compare these results with those of materials often used in the construction of individual houses in rural Morocco (clay + straw). The results obtained prove to us that using straw fibers can reduce the thermal conductivity compared to alfa fiber, which allows to have energy savings of 2% to 7%. By against, alfa fibers can improve the mechanical behavior of clay-based materials when compared to the clay + straw material (an increase of 8% to 17% in the tractive resistance by bending and 6% to 18% for compression resistance). These results also specify the optimal usage conditions of these fibers (alfa and straw) in the clay bricks.

  4. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  5. A COMPARATIVE STUDY OF DIURNAL VARIATION OF RADON AND THORON CONCENTRATIONS IN INDOOR ENVIRONMENT.

    PubMed

    Pant, Preeti; Kandari, Tushar; Prasad, Mukesh; Ramola, R C

    2016-10-01

    The diurnal measurements of radon and thoron concentrations were performed in the indoor environment of Nuclear Research Laboratory, Badshahi Thaul, Tehri Garhwal, Uttarakhand, India by using AlphaGUARD, Portable Radon Monitor (SMART RnDuo) and RAD7. Using AlphaGUARD, the radon concentration was found to vary from 8 to 94 Bq m -3 with an average of 41.5±22.2 Bq m -3 Using Portable Radon Monitor (SMART RnDuo), the concentration was found to vary from 2 to 101 Bq m -3 with an average of 41.7±23.6 Bq m -3 , and with RAD7, the concentration was found to vary from 3 to 99 Bq m -3 with an average of 40±20.3 Bqm -3 While the thoron concentration using Portable Radon Monitor (SMART RnDuo) was found to vary from 4 to 65 Bq m -3 with an average of 17.3±12.9 Bqm -3 , and using RAD7, the concentration was found to vary from 5 to 90 Bq m -3 with an average of 29.8±17.3 Bq m -3 . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  7. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  8. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  9. Radon and Thoron In-air Occupational Exposure Study within Selected Wine Cellars of the Western Cape (South Africa) and Associated Annual Effective Doses.

    PubMed

    Botha, R; Newman, R T; Lindsay, R; Maleka, P P

    2017-01-01

    This is the first known study of exposure of Rn (radon) and secondarily Rn (thoron) in-air activity concentrations assessed within nine selected wine cellars in four wine districts of the Western Cape (South Africa) and the associated annual occupational effective doses. E-PERM electret ion chambers (EIC) and RAD-7 α-detectors were used to perform these measurements. The radon in-air levels ranged from 12 ± 4 Bq m to 770 ± 40 Bq m within the nine selected wine cellars. Eight of the nine wine cellars (excluding results from cellar w-6) had a median radon in-air activity concentration of 48 ± 8 Bq m. Continuous thoron in-air activity concentration levels were also measured near an internal granite wall of the wine cellar w-6 (barrel room), where peak levels of up to 1,520 ± 190 Bq m and an average of 680 ± 30 Bq m were observed. The occupational annual effective dose due to radon and decay progeny exposure in-air within the selected wine cellars ranged from 0.08 ± 0.03 mSv to 4.9 ± 0.3 mSv with a median of 0.32 ± 0.04 mSv (Tmax = 2,000 h). The annual effective dose within the wine cellar (w-6) ranged up to a maximum of 2.5 ± 0.4 mSv (Tmax = 2000 h) due to exposure to thoron and decay progeny. In general, most of the wines cellars pose negligible associated health risk to personnel due to ionizing radiation exposure from the inhalation of radon and progeny. Under certain conditions (proximity and exposure time), caution should be exercised at wine cellar w-6 because of elevated thoron in-air levels.

  10. Inhalation Dose and Source Term Studies in a Tribal Area of Wayanad, Kerala, India

    PubMed Central

    Damodaran, Ravikumar C.; Kumar, Visnuprasad Ashok; Panakal John, Jojo; Bangaru, Danalakshmi; Natarajan, Chitra; Sathiamurthy, Bala Sundar; Mundiyanikal Thomas, Jose; Mishra, Rosaline

    2017-01-01

    Among radiation exposure pathways to human beings, inhalation dose is the most prominent one. Radon, thoron, and their progeny contribute more than 50 per cent to the annual effective dose due to natural radioactivity. South west coast of India is classified as a High Natural Background Radioactivity Area and large scale data on natural radioactivity and dosimetry are available from these coastal regions including the Neendakara-Chavara belt in the south of Kerala. However, similar studies and reports from the northern part of Kerala are scarce. The present study involves the data collection and analysis of radon, thoron, and progeny concentration in the Wayanad district of Kerala. The radon concentration was found to be within a range of 12–378 Bq/m3. The thoron concentration varied from 15 to 621 Bq/m3. Progeny concentration of radon and thoron and the diurnal variation of radon were also studied. In order to assess source term, wall and floor exhalation studies have been done for the houses showing elevated concentration of radon and thoron. The average values of radon, thoron, and their progeny are found to be above the Indian average as well as the average values reported from the High Natural Background Radioactivity Areas of Kerala. Exhalation studies of the soil samples collected from the vicinity of the houses show that radon mass exhalation rate varied from below detectable limit (BDL) to a maximum of 80 mBq/kg/h. The thoron surface exhalation rate ranged from BDL to 17470 Bq/m2/h. PMID:28611847

  11. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  12. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  13. [Children with Multiple Risk Factor Exposition Benefit from the German "Strengthening Families Program"].

    PubMed

    Bröning, Sonja; Sack, Peter-Michael; Thomsen, Monika; Thomasius, Rainer

    2016-09-01

    Children with Multiple Risk Factor Exposition Benefit from the German "Strengthening Families Program" The German adaptation of the substance use-preventive family-based Strengthening Families Program 10-14 (SFP, Iowa version) was evaluated in a longitudinal two-year follow-up trial. Participants were N = 292 children with a mean age of twelve years at baseline, and N = 292 parents. We employed a multi-centric, randomized-controlled, two-armed (SFP vs. minimal control condition) study design. Following a "risk moderation hypothesis", we assumed that children with an elevated risk-exposition R(+) would benefit more than children with a low risk-exposition R(-) irrespective of the preventive intervention, and that R(+) under SFP would benefit more than R(+) under the minimal control condition. "Risk-exposition" was measured in correspondence with the Communities That Care Youth Survey-questionnaire. A total of 28 % of children were classified with an elevated risk level. Children's reports confirmed our hypothesis: R(+) report a total of eleven improvements, four of these being significantly more distinct than in the other groups (Anxiety-Depressivity, Punitive Parenting of mother, Punitive Parenting of father, Unbalanced family functioning). In three measures an improvement appears solely in R(+) under SFP (Satisfaction with family functioning, School Attachment and Peer Relationship Quality, Quality of Life). Parents' reports showed a similar tendency, but were less pronounced.

  14. Military Family Housing in the United States

    DTIC Science & Technology

    1993-09-01

    Deborah Clay- Mendez of CBO’s National Security Division and Lisa Siegel of CBO’s Budget Analysis Division prepared the study under the general...Aging of DoD’s Housing Beaufort Marine Corps Air Station in South Caro - Stock hna. (Photo courtesy of the General Accounting Office) DoD uses the

  15. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  16. STUDY OF RADON, THORON EXHALATION AND NATURAL RADIOACTIVITY IN COAL AND FLY ASH SAMPLES OF KOTA SUPER THERMAL POWER PLANT, RAJASTHAN, INDIA.

    PubMed

    Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B K; Sapra, B K; Kumar, Rajesh

    2016-10-01

    Electricity generation in India is largely dependent on coal-based thermal power plants, and increasing demand of energy raised the coal consumption in the power plants. In recent years, study of natural radioactivity content and radon/thoron exhalation from combustion of coal and its by-products has given considerable attention as they have been recognised as one of the important technically enhanced naturally occurring radioactive materials. In the present study, radon, thoron exhalation rate and the radioactivity concentration of radionuclides in coal and fly ash samples collected from Kota Super Thermal Power Plant, Rajasthan, India have been measured and compared with data of natural soil samples. The results have been analysed and discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  18. Dynamics of confined reactive water in smectite clay-zeolite composites.

    PubMed

    Pitman, Michael C; van Duin, Adri C T

    2012-02-15

    The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.

  19. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  20. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  1. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  2. 2006 Homeland Security Symposium and Exposition. Held in Arlington, VA on 29-31 March 2006

    DTIC Science & Technology

    2006-03-31

    Consequences , Vulnerabilities, and Threats) Prioritize Implement Protective Programs Measure Effectiveness 9March 2006 Major NIPP Theme: Sector Partnership... effect of exposure • Full understanding of the levels of exposure that mark the onset of miosis • Refined human operational exposure standard for GB...Untitled Document 2006 Homeland Security Symposium and Exposition.html[7/7/2016 11:38:26 AM] 2006 Homeland Security Symposium and Exposition

  3. Statistical Policy Working Paper 25. Data Editing Workshop and Exposition

    DOT National Transportation Integrated Search

    1996-12-01

    Statistical Policy Working Paper 25 is the written record of the Data Editing Workshop and Exposition held March 22, 1996, at the Bureau of Labor Statistics (BLS) Conference and Training Center. The program consisted of 44 oral presentations and 19 s...

  4. Heterostructured nanohybrid of zinc oxide-montmorillonite clay.

    PubMed

    Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Hwang, Sung-Ho; Yang, Jae Hun; Choy, Jin-Ho

    2006-02-02

    We have synthesized heterostructured zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and the sol solution of zinc acetate. According to X-ray diffraction, N2 adsorption-desorption isotherm, and field emission-scanning electron microscopic analyses, it was found that the intercalation of zinc oxide nanoparticles expands the basal spacing of the host montmorillonite clay, and the crystallites of the nanohybrids are assembled to form a house-of-cards structure. From UV-vis spectroscopic investigation, it becomes certain that calcined nanohybrid contains two kinds of the zinc oxide species in the interlayer space of host lattice and in mesopores formed by the house-of-cards type stacking of the crystallites. Zn K-edge X-ray absorption near-edge structure/extended X-ray absorption fine structure analyses clearly demonstrate that guest species in the nanohybrids exist as nanocrystalline zinc oxides with wurzite-type structure.

  5. Florence Nightingale in absentia: nursing and the 1893 Columbian Exposition.

    PubMed

    Selanders, Louise C; Crane, Patrick

    2010-12-01

    In 1893, Chicago hosted the Columbian Exposition. This event showcased America's social, cultural, and scientific advances and its growing cultural parity with Western Europe. This was the first major exposition in which women played a prominent role. Integral to the fair was a series of Congresses that provided an international platform for discussion of social issues. The Congress on Hospitals, Dispensaries, and Nursing, a section of the International Congress of Charities, Correction, and Philanthropy, particularly focused on health care issues. Nursing leaders from Europe and North America participated. Although Florence Nightingale provided a major paper that was read at the Congress, she was unable to attend the event. The intent of this article is to examine the issues and themes debated at the 1893 Congress and identify how the influence of Nightingale effected these discussions and the development of Western nursing for the next half-century.

  6. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  7. Clay for Little Fingers.

    ERIC Educational Resources Information Center

    Koster, Joan Bouza

    1999-01-01

    Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…

  8. Observations and modelling of thoron and its progeny in the soil-atmosphere-plant system.

    PubMed

    Baldacci, A E; Gattavecchia, E; Kirchner, G

    2010-11-01

    Samples of pasture vegetation, mainly Trifolium pratensis, were collected at the Botanic Garden of the University of Bologna during the period 1998-2000 and measured by gamma-spectrometry for determining thoron progeny. Concentrations of (212)Pb were between 1.5 and 20 Bq m(-2), with individual peaks up to 70 Bq m(-2). Soil samples were collected at the same location and physically characterised. Their chemical composition (particularly Th and U) was determined by X-ray fluorescence spectroscopy. Lead-212 on plants mainly originates from dry and wet deposition of this isotope generated in the lower atmosphere by the decay of its short-lived precursor (220)Rn, which is produced in the upper soil layers as a member of the natural thorium decay chain and exhales into the atmosphere. Concentrations of (220)Rn in the atmosphere depend on (1) the amount of Th present in soil, (2) the radon fraction which escapes from the soil minerals into the soil pore space, (3) its transport into the atmosphere, and (4) its redistribution within the atmosphere. The mobility of radon in soil pore space can vary by orders of magnitude depending on the soil water content, thus being the main factor for varying concentrations of (220)Rn and (212)Pb in the atmosphere. We present a simple model to predict concentrations of thoron in air and its progeny deposited from the atmosphere, which takes into account varying soil moisture contents calculated by the OPUS code. Results of this model show close agreement with our observations.

  9. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  10. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  11. Inhalation exposures due to radon and thoron ((222)Rn and (220)Rn): Do they differ in high and normal background radiation areas in India?

    PubMed

    Mishra, Rosaline; Sapra, B K; Prajith, R; Rout, R P; Jalaluddin, S; Mayya, Y S

    2015-09-01

    In India, High Background Radiation Areas (HBRAs) due to enhanced levels of naturally occurring radionuclides in soil (thorium and, to a lesser extent, uranium), are located along some parts of the coastal tracts viz. the coastal belt of Kerala, Tamilnadu and Odisha. It is conjectured that these deposits will result in higher emissions of radon isotopes ((222)Rn and (220)Rn) and their daughter products as compared to Normal Background Radiation Areas (NBRAs). While the annual external dose rates contributed by gamma radiations in these areas are about 5-10 times higher, the extent of increase in the inhalation dose rates attributable to (222)Rn and (220)Rn and their decay products is not well quantified. Towards this, systematic indoor surveys were conducted wherein simultaneous measurements of time integrated (222)Rn and (220)Rn gas and their decay product concentrations was carried out in around 800 houses in the HBRAs of Kerala and Odisha to estimate the inhalation doses. All gas measurements were carried out using pin-hole cup dosimeters while the progeny measurements were with samplers and systems based on the Direct radon/thoron Progeny sensors (DRPS/DTPS). To corroborate these passive measurements of decay products concentrations, active sampling was also carried out in a few houses. The results of the surveys provide a strong evidence to conclude that the inhalation doses due to (222)Rn and (220)Rn gas and their decay products in these HBRAs are in the same range as observed in the NBRAs in India. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Credit WCT. Original 2'" x 2'" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-'" x 2-'" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows small autoclave demonstrated by JPL staff member Milton Clay (JPL negative no. JPL-10286AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  13. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  14. Office of Telecommunications Policy; The White House Role in Domestic Communication.

    ERIC Educational Resources Information Center

    Columbia Univ., New York, NY. Network Project.

    In 1970, President Nixon created the White House Office of Telecommunications Policy (OTP) and appointed Clay T. Whitehead as its first director. This young office has attained influential power in the broad field of telecommunications and, some say, has jeopardized the independence of the public's communications custodian, the Federal…

  15. AGE-DEPENDENT INHALATION DOSE DUE TO EXPOSURE OF SHORT LIVED PROGENY OF RADON AND THORON FOR DIFFERENT AGE GROUPS IN JAMMU & KASHMIR, HIMALAYAS.

    PubMed

    Sharma, Sumit; Kumar, Ajay; Mehra, Rohit

    2018-05-16

    Dosimetric approach is used in this study for the assessment of doses due to inhalation of short lived radon/thoron progeny to the inhabitants of Udhampur district of Jammu & Kashmir. This paper also presents the activity concentrations and unattached fraction of radon and thoron progeny. The observed annual concentration of attached and unattached 222Rn and 220Rn progeny has been found to vary from 8 to 32 and 0.09 to 14 Bq/m3, 0.75 to 3.16 and 0.01 to 1.13 Bq/m3, respectively. The inhalation doses from radon progeny to different body organs of different age groups have been calculated by using the age dependent biokinetic model. The attachment rate of 222Rn and indoor aerosol concentration of 222Rn and 220Rn have been estimated and their relation between them has also been studied. The dose conversion factor for mouth and nasal breathing to different exposure conditions has been obtained from Porstendorfer model.

  16. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  17. Comprehensive review of geosynthetic clay liner and compacted clay liner

    NASA Astrophysics Data System (ADS)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  18. Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studiesmore » of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.« less

  19. Investigation into the effect of some additives on the mechanical strength, quality and thermal conductivity of clay bricks

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan I. O.; Qandil, A.; Qattous, M. A. A.

    2016-08-01

    It was repeatedly reported that the clay bricks industry in Jordan is facing both weak mechanical strength and poor quality which caused marketing problems where it is expected to serve the increasing demand of housing in the country especially after the political crises in the neighboring countries Iraq and Syria. It is therefore anticipated that improvement of the mechanical strength and quality of the produced clay evaluation of the brick industry in Jordan is worth investigating. In this paper, theoretical and experimental investigation obtained from field visits to the factories producing clay bricks were carried out. Furthermore, the effect of using some additives from locally available materials namely: Battn El-Ghoul Clay, Suweileh sand and Olive extracts on the mechanical strength, thermal conductivity and surface quality of the produced bricks is investigated and discussed. The experimental results indicated that thermal conductivity, color and durability were all enhanced and the ultimate compressive strength was reduced but remained higher than the acceptable value for brickwork.

  20. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  1. Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle

    NASA Astrophysics Data System (ADS)

    Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.

    2003-03-01

    Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.

  2. The expositive discourse as pedagogical discourse: studying recontextualization in the production of a science museum exhibition

    NASA Astrophysics Data System (ADS)

    Marandino, Martha

    2016-06-01

    In this paper I report on the sociological and educational particulars of The Biodiscovery Space exhibition of the Life Museum of the Oswaldo Cruz Foundation in Rio de Janeiro, Brazil, using Basil Bernstein's framework of pedagogic discourse and recontextualization. Data for analysis was obtained from interviews with the exhibition developers, field observations of museum visitors and analysis of exhibition documents. Using the ideas of power, classification and framework, among others, I analyzed the recontextualization process of the production of expositive discourse. Thus, working with Bernstein's idea of classification, I explain the relationship between the discourses of the science of biology, history of science, museology, education, and communication in order to produce an expositive discourse. I also make explicit how agents of the Official Recontextualization Field of the Museum and the Pedagogic Recontextualization Field "....of the Museum determine partly the final expositive discourse of an exhibition". Using the idea of a pedagogic discourse framework, I discuss how the constraints imposed by objects and texts in exhibitions help to create a specific manner of visitor interaction with these elements, "even if they have some autonomy". Considerations about the audience and the intended process of acquisition are presented, when I discuss the control strategies of the exhibition. I propose that the Biodiscovery Space exhibit has a visible pedagogy. Finally, using the collected data I discuss the power tensions created in the production of expositive discourse showing how distributive, recontextualization and evaluation rules work in the context of exhibitions. The study of the dynamics in forming the expositive discourse using Bernstein's framework reveals the individuals and institutions, the selection criteria, the negotiations and the power relations involved. It has the potential to assist both educators and researchers in the museum education

  3. Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    NASA Technical Reports Server (NTRS)

    Hackett, Michael (Compiler)

    1994-01-01

    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation.

  4. Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 1

    NASA Technical Reports Server (NTRS)

    Hackett, Michael (Compiler)

    1994-01-01

    Proceedings from symposia of the Technology 2003 Conference and Exposition, December 7-9, 1993, Anaheim, CA, was discussed. Volume 1 features the Plenary Session and the Plenary Workshop, plus papers presented in Advanced Manufacturing, Biotechnology/Medical Technology, Environmental Technology, Materials Science, and Power and Energy.

  5. Clay: The Forgotten Art.

    ERIC Educational Resources Information Center

    Martin, Doris Marie

    1995-01-01

    Discusses the tactile and kinesthetic areas of learning children experience when using clay. Includes practical tips for using and storing clay for preschool use and notes the differences between potters' clay and play dough. (HTH)

  6. Chemically-bonded brick production based on burned clay by means of semidry pressing

    NASA Astrophysics Data System (ADS)

    Voroshilov, Ivan; Endzhievskaya, Irina; Vasilovskaya, Nina

    2016-01-01

    We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg m3, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W m * °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.

  7. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites

    PubMed Central

    Zope, Indraneel S.; Yu, Zhong-Zhen

    2017-01-01

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition. PMID:28800095

  8. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    PubMed

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  9. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys Group, Old Hickory Clay Co., and Unimin Corp. — mined ball clay in four states in 2011. Production, on the basis of preliminary data, was 940 kt (1.04 million st) with an estimated value of $44.2 million. This is a 3-percent increase in tonnage from 912 kt (1.01 million st) with a value of $41.3 million that was produced in 2010. Tennessee was the leading producing state with 63 percent of domestic production, followed by Texas, Mississippi and Kentucky. About 69 percent of production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  10. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 2): Development, characterization, and performance evaluation.

    PubMed

    Sudeep Kumara, K; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S; Karunakara, N

    2017-06-01

    Exposure due to thoron ( 220 Rn) gas and its decay products in a thorium fuel cycle facility handling thorium or 232 U/ 233 U mixture compounds is an important issue of radiological concern requiring control and mitigation. Adsorption in a flow-through charcoal bed offers an excellent method of alleviating the release of 220 Rn into occupational and public domain. In this paper, we present the design, development, and characterization of a Thoron Mitigation System (TMS) for industrial application. Systematic experiments were conducted in the TMS for examining the 220 Rn mitigation characteristics with respect to a host of parameters such as flow rate, pressure drop, charcoal grain size, charcoal mass and bed depth, water content, and heat of the carrier gas. An analysis of the experimental data shows that 220 Rn attenuation in a flow through charcoal bed is not exponential with respect to the residence time, L/U a (L: bed depth; U a : superficial velocity), but follows a power law behaviour, which can be attributed to the occurrence of large voids due to wall channeling in a flow through bed. The study demonstrates the regeneration of charcoal adsorption capacity degraded due to moisture adsorption, by hot air blowing technique. It is found that the mitigation factor (MF), which is the ratio of the inlet 220 Rn concentration (C in ) to the outlet 220 Rn concentration (C out ), of more than 10 4 for the TMS is easily achievable during continuous operation (>1000 h) at a flow rate of 40 L min -1 with negligible (<1 cm of water column) pressure drop. The Thoron Mitigation System based on adsorption on charcoal bed offers a compact and effective device to remove 220 Rn from affluent air streams in a space constrained domain. The prototype system has been installed in a thorium fuel cycle facility where it is being evaluated for its long-term performance and overall effectiveness in mitigating 220 Rn levels in the workplace. Copyright © 2017 Elsevier Ltd. All

  11. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  12. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  13. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    PubMed

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Feasibility of Plasma Treated Clay in Clay/Polymer Nanocomposites Powders for use Laser Sintering (LS)

    NASA Astrophysics Data System (ADS)

    Almansoori, Alaa; Seabright, Ryan; Majewski, C.; Rodenburg, C.

    2017-05-01

    The addition of small quantities of nano-clay to nylon is known to improve mechanical properties of the resulting nano-composite. However, achieving a uniform dispersion and distribution of the clay within the base polymer can prove difficult. A demonstration of the fabrication and characterization of plasma-treated organoclay/Nylon12 nanocomposite was carried out with the aim of achieving better dispersion of clay platelets on the Nylon12 particle surface. Air-plasma etching was used to enhance the compatibility between clays and polymers to ensure a uniform clay dispersion in composite powders. Downward heat sintering (DHS) in a hot press is used to process neat and composite powders into tensile and XRD specimens. Morphological studies using Low Voltage Scanning Electron Microscopy (LV-SEM) were undertaken to characterize the fracture surfaces and clay dispersion in powders and final composite specimens. Thermogravimetric analysis (TGA) testing performed that the etched clay (EC) is more stable than the nonetched clay (NEC), even at higher temperatures. The influence of the clay ratio and the clay plasma treatment process on the mechanical properties of the nanocomposites was studied by tensile testing. The composite fabricated from (3% EC/N12) powder showed ~19 % improvement in elastic modulus while the composite made from (3% NEC/N12) powder was improved by only 14%). Most notably however is that the variation between tests is strongly reduced when etch clay is used in the composite. We attribute this to a more uniform distribution and better dispersion of the plasma treated clay within polymer powders and ultimately the composite.

  15. The eastern states exposition: an exploration of Big E tourist expenditures

    Treesearch

    Robert S. Bristow; Heather Cantillon

    2001-01-01

    The purpose of this paper is to prepare a visitor economic expenditure study for the 1999 Eastern States Exposition, better known as the Big E. The study was executed as part of a class project in Recreation Geography offered the Fall 1999 semester at Westfield State College. The students undertook an economic expenditure study at the Big E by studying tourism...

  16. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite

  17. Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement.

  18. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    NASA Astrophysics Data System (ADS)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  19. Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia’s Housing Sector

    PubMed Central

    Lawania, Krishna; Sarker, Prabir; Biswas, Wahidul

    2015-01-01

    Western Australia’s housing sector is growing rapidly and around half a million houses are expected to be built by 2030, which not only will result in increased energy and resources demand but will have socio-economic impacts. Majority of Western Australians live in detached houses made of energy intensive clay bricks, which have a high potential to generate construction and demolition (C&D) waste. Therefore, there is a need to look into the use of alternative materials and construction methods. Due to Western Australia’s temperate climate, concrete could not only offer a comfortable living space but an operational energy saving also can be achieved. This paper has assessed the global warming implications of cast in-situ concrete sandwich wall system as an alternative to clay brick walls (CBW) with partial replacement of cement in concrete with by-products such as fly ash (FA) and ground granulated blast furnace slag (GGBFS), natural aggregate (NA) with recycled crushed aggregate (RCA), natural sand (NS) with manufactured sand (MS) and, polyethylene terephthalate (PET) foam core as a replacement to polystyrene core for construction of a typical 4 × 2 × 2 detached house in Perth. Life cycle management (LCM) approach has been used to determine global warming reduction benefits due to the use of available by-products and recycled materials in Western Australian houses.

  20. Chemically-bonded brick production based on burned clay by means of semidry pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voroshilov, Ivan, E-mail: Nixon.06@mail.ru; Endzhievskaya, Irina, E-mail: icaend@mail.ru; Vasilovskaya, Nina, E-mail: icaend@mail.ru

    We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick weremore » shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg \\ m{sup 3}, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W \\ m {sup *} °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.« less

  1. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Five companies mined fire clay in four states in 2011. Production, based on a preliminary survey of the fire clay industry, was estimated to be 240 kt (265,000 st), valued at $7.68 million, an increase from 216 kt (238,000 st), valued at $6.12 million in 2010. Missouri was the leading producing state, followed by Texas, Washington and Ohio, in decreasing order by quantity.

  2. Glowing clay: Real time tracing using a suite of novel clay based fluorescent tracers

    NASA Astrophysics Data System (ADS)

    Hardy, Robert; Quinton, John; Pates, Jackie; Coogan, Mike

    2015-04-01

    Clay is one of the most mobile fractions of soil due to its small particle size. It is also known to sorb many chemicals, such as nutrients (notably phosphorus), agrochemicals and heavy metals. The movement of clay is therefore linked with the transport and fate of these substances. A novel fluorescent clay tracing suite has been produced, together with an imaging technique. This suite consists of qualitative clay tracers, using rhodamine based fluorophores, and quantitative clay tracers, using metal based fluorophores. Efforts have also been made to allow integration of commercially available tracers, which are silt and sand sized. The clay tracers exploit the high affinity that montmorillonite has for Rhodamine B and Ru(bpy)3. This allows for an extremely thin layer of the fluorophore to be sorbed onto the clay's surface, in much that same way as materials in the natural environment will bind to clay. The tracer that is produced retains key chemical and physical properties of clay, such as size, shape and density. The retention of these micro-properties results in the retention of macro-properties, such as tendency to aggregate and cracking on drying. Imaging techniques have been developed to analyse these tracers. The imaging system uses diffused laser light to excite the tracer and a modified DSLR camera to image the soil surface. The images have been compiled into a time lapse video showing the movement of clay over the course of a rainfall event. This is the first time that the quantitative movement of clay has been recorded over a soil surface in real time. 4D data can be extracted from the images allowing the spatial location and intensity of tracer to be monitored over time, with mm precision and on the timescale of seconds. As the system can also work with a commercial tracer it is possible to investigate the movement of particles of almost any size and over a range of scales from soil box to hillside. This allows users to access this technique without

  3. Scanning electron microscopy of clays and clay minerals

    USGS Publications Warehouse

    Bohor, B.F.; Hughes, R.E.

    1971-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the configuration, texture, and fabric of clay samples. Growth mechanics of crystalline units—interpenetration and interlocking of crystallites, crystal habits, twinning, helical growth, and topotaxis—also are uniquely revealed by the SEM.Authigenic kaolins make up the bulk of the examples because their larger crystallite size, better crystallinity, and open texture make them more suited to examination by the SEM than most other clay mineral types.

  4. Crazy Patchwork Clay Bowl

    ERIC Educational Resources Information Center

    Hobbs, Janice

    2007-01-01

    Crazy patchwork quilts, which inspired this bowl, are as American as apple pie. In 1876, the Philadelphia Centennial Exposition opened and the American society fell instantly in love with Japanese ceramics and asymmetrical art. Victorian ladies incorporated the idea of asymmetrical design into their quilts, which became known as crazy quilts. The…

  5. Clay Mineral Structure Similar to Clays Observed in Mudstone on Mars

    NASA Image and Video Library

    2013-12-09

    This schematic shows the atomic structure of the smallest units that make up the layers and interlayer region of clay minerals. This structure is similar to the clay mineral in drilled rock powder collected by NASA Curiosity Mars rover.

  6. Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay

    USGS Publications Warehouse

    Smith, J.A.; Jaffe, P.R.

    1991-01-01

    The interlamellar space of Wyoming bentonite (clay) was modified by exchanging either decyltrimethyl-ammonium (DTMA) or decyltrimethyldiammonium (DTMDA) cations for inorganic ions, and tetrachloromethane sorption to the resulting two organoclays from water was studied at 10, 20, and 35??C. Only one end of the 10-carbon alkyl chain of the DTMA cation is attached to the silica surface of the clay mineral, and tetrachloromethane sorption of DTMA-clay is characterized by isotherm linearity, noncompetitive sorption, weak solute uptake, and a relatively low heat of sorption. Both ends of the 10-carbon chain of the DTMDA cation are attached to the silica surface of the clay mineral, and tetrachloromethane sorption to DTMDA-clay is characterized by nonlinear isotherms, competitive sorption, strong solute uptake, and a relatively high, exothermic heat of sorption that varies as a function of the mass of tetrachloromethane sorbed. Therefore, the attachment of both ends of the alkyl chain to the interlamellar mineral surface appears to change the sorption mechanism from a partition-dominated process to an adsorption-dominated process. ?? 1991 American Chemical Society.

  7. Surface Properties and Permeability of Poly(Vinylidene Fluoride)-Clays (PVDF/Clays) Composite Membranes

    NASA Astrophysics Data System (ADS)

    Pramono, E.; Ahdiat, M.; Simamora, A.; Pratiwi, W.; Radiman, C. L.; Wahyuningrum, D.

    2017-07-01

    Surface properties are important factors that determine the performance of ultrafiltration membranes. This study aimed to investigate the effects of clay addition on the surface properties and membrane permeability of PVDF (poly-vinylidene fluoride) membranes. Three types of clay with different particle size were used in this study, namely montmorillonite-MMT, bentonite-BNT and cloisite 15A-CLS. The PVDF-clay composite membranes were prepared by phase inversion method using PEG as additive. The hydrophobicity of membrane surface was characterized by contact angle. The membrane permeability was determined by dead- end ultrafiltration with a trans-membrane pressure of 2 bars. In contact angle measurement, water contact angle of composite membranes is higher than PVDF membrane. The addition of clays decreased water flux but increased of Dextran rejection. The PVDF-BNT composite membranes reach highest Dextran rejection value of about 93%. The type and particle size of clay affected the hydrophobicity of membrane surface and determined the resulting membrane structure as well as the membrane performance.

  8. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  9. Clay energetics in chemical evolution

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.

    1986-01-01

    Clays have been implicated in the origin of terrestrial life since the 1950's. Originally they were considered agents which aid in selecting, concentrating and promoting oligomerization of the organic monomeric substituents of cellular life forms. However, more recently, it has been suggested that minerals, with particular emphasis on clays, may have played a yet more fundamental role. It has been suggested that clays are prototypic life forms in themselves and that they served as a template which directed the self-assembly of cellular life. If the clay-life theory is to have other than conceptual credibility, clays must be shown by experiment to execute the operations of cellular life, not only individually, but also in a sufficiently concerted manner as to produce some semblance of the functional attributes of living cells. Current studies are focussed on the ability of clays to absorb, store and transfer energy under plausible prebiotic conditions and to use this energy to drive chemistry of prebiotic relevance. Conclusions of the work are applicable to the role of clays either as substrates for organic chemistry, or in fueling their own life-mimetic processes.

  10. Rural Schools, Social Capital and the Big Society: A Theoretical and Empirical Exposition

    ERIC Educational Resources Information Center

    Bagley, Carl; Hillyard, Sam

    2014-01-01

    The paper commences with a theoretical exposition of the current UK government's policy commitment to the idealised notion of the Big Society and the social capital currency underpinning its formation. The paper positions this debate in relation to the rural and adopts an ethnographically-informed methodological approach to provide an in-depth…

  11. Life Cycle Greenhouse Gas Emissions and Energy Analysis of Passive House with Variable Construction Materials

    NASA Astrophysics Data System (ADS)

    Baďurová, Silvia; Ponechal, Radoslav; Ďurica, Pavol

    2013-11-01

    The term "passive house" refers to rigorous and voluntary standards for energy efficiency in a building, reducing its ecological footprint. There are many ways how to build a passive house successfully. These designs as well as construction techniques vary from ordinary timber constructions using packs of straw or constructions of clay. This paper aims to quantify environmental quality of external walls in a passive house, which are made of a timber frame, lightweight concrete blocks and sand-lime bricks in order to determine whether this constructional form provides improved environmental performance. Furthermore, this paper assesses potential benefit of energy savings at heating of houses in which their external walls are made of these three material alternatives. A two storey residential passive house, with floorage of 170.6 m2, was evaluated. Some measurements of air and surface temperatures were done as a calibration etalon for a method of simulation.

  12. Reducing the Cation Exchange Capacity of Lithium Clay to Form Better Dispersed Polymer-Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Liang, Maggie

    2004-01-01

    Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.

  13. CEC-normalized clay-water sorption isotherm

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.; Revil, A.

    2011-11-01

    A normalized clay-water isotherm model based on BET theory and describing the sorption and desorption of the bound water in clays, sand-clay mixtures, and shales is presented. Clay-water sorption isotherms (sorption and desorption) of clayey materials are normalized by their cation exchange capacity (CEC) accounting for a correction factor depending on the type of counterion sorbed on the mineral surface in the so-called Stern layer. With such normalizations, all the data collapse into two master curves, one for sorption and one for desorption, independent of the clay mineralogy, crystallographic considerations, and bound cation type; therefore, neglecting the true heterogeneity of water sorption/desorption in smectite. The two master curves show the general hysteretic behavior of the capillary pressure curve at low relative humidity (below 70%). The model is validated against several data sets obtained from the literature comprising a broad range of clay types and clay mineralogies. The CEC values, derived by inverting the sorption/adsorption curves using a Markov chain Monte Carlo approach, are consistent with the CEC associated with the clay mineralogy.

  14. Clay Portrait Boxes

    ERIC Educational Resources Information Center

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  15. Clay Animals and Their Habitats

    ERIC Educational Resources Information Center

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  16. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    PubMed

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  17. Polymer based nanocomposites with nanofibers and exfoliated clay

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Reneker, Darrell H.

    2005-01-01

    Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.

  18. Sampling Outdoor, Resting Anopheles gambiae and Other Mosquitoes (Diptera: Culicidae) in Western Kenya with Clay Pots

    PubMed Central

    Odiere, M.; Bayoh, M. N.; Gimnig, J.; Vulule, J.; Irungu, L.; Walker, E.

    2014-01-01

    Clay pots were analyzed as devices for sampling the outdoor resting fraction of Anopheles gambiae Giles (Diptera: Culicidae) and other mosquito species in a rural, western Kenya. Clay pots (Anopheles gambiae resting pots, herein AgREPOTs), outdoor pit shelters, indoor pyrethrum spray collections (PSC), and Colombian curtain exit traps were compared in collections done biweekly for nine intervals from April to June 2005 in 20 housing compounds. Of 10,517 mosquitoes sampled, 4,668 An. gambiae s.l. were sampled in total of which 63% were An. gambiae s.s. (46% female) and 37% were An. arabiensis (66% female). The clay pots were useful and practical for sampling both sexes of An. gambiae s.l. Additionally, 617 An. funestus (58% female) and 5,232 Culex spp. (males and females together) were collected. Temporal changes in abundance of An. gambiae s.l. were similarly revealed by all four sampling methods, indicating that the clay pots could be used as devices to quantify variation in mosquito population density. Dispersion patterns of the different species and sexes fit well the negative binomial distribution, indicating that the mosquitoes were aggregated in distribution. Aside from providing a useful sampling tool, the AgREPOT also may be useful as a delivery vehicle for insecticides or pathogens to males and females that enter and rest in them. PMID:17294916

  19. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  20. A radon-thoron isotope pair as a reliable earthquake precursor

    PubMed Central

    Hwa Oh, Yong; Kim, Guebuem

    2015-01-01

    Abnormal increases in radon (222Rn, half-life = 3.82 days) activity have occasionally been observed in underground environments before major earthquakes. However, 222Rn alone could not be used to forecast earthquakes since it can also be increased due to diffusive inputs over its lifetime. Here, we show that a very short-lived isotope, thoron (220Rn, half-life = 55.6 s; mean life = 80 s), in a cave can record earthquake signals without interference from other environmental effects. We monitored 220Rn together with 222Rn in air of a limestone-cave in Korea for one year. Unusually large 220Rn peaks were observed only in February 2011, preceding the 2011 M9.0 Tohoku-Oki Earthquake, Japan, while large 222Rn peaks were observed in both February 2011 and the summer. Based on our analyses, we suggest that the anomalous peaks of 222Rn and 220Rn activities observed in February were precursory signals related to the Tohoku-Oki Earthquake. Thus, the 220Rn-222Rn combined isotope pair method can present new opportunities for earthquake forecasting if the technique is extensively employed in earthquake monitoring networks around the world. PMID:26269105

  1. Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation

    PubMed

    Hussain; Dem&idot;rc&idot;; özbayoğlu

    1996-12-25

    There is a growing trend of characterizing coal and coal wastes in order to study the effect of clays present in them during coal washing. Coarse wastes from the Zonguldak Coal Washery, Turkey, were characterized and found to contain kaolinite, illite, and chlorite. These three clays, obtained in almost pure form from various locations in Turkey, have been subjected to X-ray diffraction (XRD) analysis to assess their purity and zeta potential measurements in order to evaluate their properties in terms of their surface charge and point of zero charge (pzc) values. It was found from XRD data that these clays were almost pure and their electrokinetic potential should therefore be representative of their colloidal behavior. All three clay minerals were negatively charged over the range from pH 2.5 to 11. Chlorite and illite have pzc at pH 3 and pH 2.5, respectively, whereas kaolinite has no pzc. The effect of these clays in Zonguldak coal, wastes, and black waters on coal flotation was studied by floating artificial mixtures of Zonguldak clean coal (4.5% ash) and individual clay. The flotation tests on coal/individual clay revealed that each clay influences coal flotation differently according to its type and amount. Illite had the worst effect on coal floated, followed by chlorite and kaolinite. The loss of yield in coal was found to be 18% for kaolinite, 20% for chlorite, and 28% for illite, indicating the worst effect of illite and least for kaolinite during coal flotation.

  2. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    1981-01-01

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  3. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2003-01-01

    Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.

  4. Mineral resource of the Month: Clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.

  5. Phosphates in some Missouri refractory clays

    USGS Publications Warehouse

    Halley, Robert B.; Foord, Eugene E.; Keller, David J.; Keller, Walter D.

    1997-01-01

    This paper describes in detail phosphate minerals occurring in refractory clays of Missouri and their effect on the refractory degree of the clays. The minerals identified include carbonate-fluorapatite (francolite), crandallite, goyazite, wavellite, variscite and strengite. It is emphasized that these phosphates occur only in local isolated concentrations, and not generally in Missouri refractory clays.The Missouri fireclay region comprises 2 districts, northern and southern, separated by the Missouri River. In this region, clay constitutes a major part of the Lower Pennsylvanian Cheltenham Formation. The original Cheltenham mud was an argillic residue derived from leaching and dissolution of pre-Pennsylvanian carbonates. The mud accumulated on a karstic erosion surface truncating the pre-Cheltenham rocks. Fireclays of the northern district consist mainly of poorly ordered kaolinite, with variable but minor amounts of illite, chlorite and fine-grained detrital quartz. Clays of the southern district were subjected to extreme leaching that produced well-ordered kaolinite flint clays. Local desilication formed pockets of diaspore, or more commonly, kaolinite, with oolite-like nubs or burls of diaspore (“burley”" clay).The phosphate-bearing materials have been studied by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectral analysis (SEM-EDS) and chemical analysis. Calcian goyazite was identified in a sample of diaspore, and francolite in a sample of flint clay. A veinlet of wavellite occurs in flint clay at one locality, and a veinlet of variscite-strengite at another locality.The Missouri flint-clay-hosted francolite could not have formed in the same manner as marine francolite. The evidence suggests that the Cheltenham francolite precipitated from ion complexes in pore water, nearly simultaneously with crystallization of kaolinite flint clay from an alumina-silica gel. Calcian goyazite is an early diagenetic addition to its diaspore

  6. Ultrasonically assisted single screw extrusion, film blowing and film casting of LLDPE/clay and PA6/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Niknezhad, Setareh

    The major objective of this study was to investigate the effect of ultrasonic treatment on the dispersion of modified clay particles in LLDPE and PA6 matrices and the final properties of nanocomposites. LLDPE and PA6 are two polymers that are widely used in packaging industry. Blown and cast films were manufactured from the prepared nanocomposites. To achieve one step film processing, an online ultrasonic film casting was developed. Ultrasonic waves caused high-energy mixing and dispersion due to the acoustic cavitation, causing the clay agglomorates to separate into individual platelets in polymer matrix. Ultrasonic waves also broke down the polymer molecular chains reducing viscosity of the melt, facilating dispersion of the clay platelets throughout the matrix. Ultrasound also led to a breakage of the clay platelets reducing the particle size and improving their distribution. Clay particles acted as a heterogenous nucleation agent generating smaller size polymer crystals. In turn, these improved different properties including mechanical properties, oxygen permeability and transparency of films. In LLDPE/clay 20A nanocomposites, the effect of ultrasound was more obvious at higher clay loadings. Exfoliated structure for ultrasonically treated nanocomposites containing 2.5, 5 and 7.5 wt% of clay 20A and highly intercalated structure for ultrasonically treated nanocomposites containing 10 wt% of clay 20A were achieved. However, in blown films, the exfoliated structure transferred to the intercalated structure due to the addition of more shear and thermal degradation of surfactants of the clay particles. While, manufacturing cast films using the new developed online ultrasonic cast film machine revealed the exfoliated structure with ultrasonic treatment till 7.5 wt% of clay loadings. Cast films of nanocomposites containing 5 wt% of clay loadings were also prepared with addition of different compatibilizers. The compatibilizer containing higher amount of grafted

  7. Clays and Clay Minerals and their environmental application in Food Technology

    NASA Astrophysics Data System (ADS)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  8. Intercalated layered clay composites and their applications

    NASA Astrophysics Data System (ADS)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double

  9. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    PubMed

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  10. Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    PubMed Central

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms. PMID:26218593

  11. Clays and clay minerals in Bikaner: Sources, environment pollution and management

    NASA Astrophysics Data System (ADS)

    Gayatri, Sharma; Anu, Sharma

    2016-05-01

    Environmental pollution can also be caused by minerals which include natural as well as human activities. Rapid urbanization, consumerist life style, anthropogenic deeds are increasing environmental pollution day by day. Fluctuation in our ecosystem or polluted environment leads to many diseases and shows adverse effects on living organisms. The main aim of this paper is to highlight the environmental pollution from clays and clay minerals and their mitigation..

  12. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Science of Clay

    ERIC Educational Resources Information Center

    Warwick, Sharon

    2005-01-01

    Students' natural curiosity provides a rich opportunity for teachers to make meaningful scientific connections between art and ceramics that will enhance the understanding of both natural forces and scientific aspects at work in the creation of clay artworks. This article discusses the scientific areas of study related to clay, which include…

  14. Effect of Sequential Exposition to Short- and Long-Wavelength Radiation on the Optical Absorption in the Bismuth Titanium Oxide Crystal Doped by Aluminum

    NASA Astrophysics Data System (ADS)

    Dyu, V. G.; Kisteneva, M. G.; Shandarov, S. M.; Khudyakova, E. S.; Smirnov, S. V.; Kargin, Yu. F.

    Changes in the spectral dependences of the optical absorption induced in the bismuth titanium oxide crystal doped by aluminum as a result of sequential exposition to cw laser radiation first with the wavelength λi = 532 nm and then with the longer wavelength λn = 633, 655, 663, 780, 871, or 1064 nm are investigated. Our experiments show that after the short-wavelength exposition to radiation with λi = 532 nm, the optical absorption in the crystal increases, and in the range 470-1000 nm, yields the spectrum whose form is independent of the initial crystal state. The subsequent exposition to longer-wavelength radiation leads to enhanced transmittance of the crystal in the examined spectral range. A maximum decrease of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λn = 663 nm.

  15. What Makes a Natural Clay Antibacterial?

    PubMed Central

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  16. To Hell with the Wigs! Native American Representation and Resistance at the World's Columbian Exposition

    ERIC Educational Resources Information Center

    Rinehart, Melissa

    2012-01-01

    The World's Columbian Exposition of 1893, in celebration of the quadricentennial anniversary of Columbus's landing in the Americas, spread over six hundred acres of reclaimed marsh lands in Chicago's South Side. Fourteen great buildings and two hundred additional buildings stood on the fairgrounds, and if tourists had visited every exhibit, they…

  17. Mars, clays and the origins of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  18. Burnt clay magnetic properties and palaeointensity determination

    NASA Astrophysics Data System (ADS)

    Avramova, Mariya; Lesigyarski, Deyan

    2014-05-01

    Burnt clay structures found in situ are the most valuable materials for archaeomagnetic studies. From these materials the full geomagnetic field vector described by inclination, declination and intensity can be retrieved. The reliability of the obtained directional results is related to the precision of samples orientation and the accuracy of characteristic remanence determination. Palaeointensity evaluations depend on much more complex factors - stability of carried remanent magnetization, grain-size distribution of magnetic particles and mineralogical transformations during heating. In the last decades many efforts have been made to shed light over the reasons for the bad success rate of palaeointensity experiments. Nevertheless, sometimes the explanation of the bad archaeointensity results with the magnetic properties of the studied materials is quite unsatisfactory. In order to show how difficult is to apply a priory strict criteria for the suitability of a given collection of archaeomagnetic materials, artificial samples formed from four different baked clays are examined. Two of the examined clay types were taken from clay deposits from different parts of Bulgaria and two clays were taken from ancient archaeological baked clay structures from the Central part of Bulgaria and the Black sea coast, respectively. The samples formed from these clays were repeatedly heated in known magnetic field to 700oC. Different analyses were performed to obtain information about the mineralogical content and magnetic properties of the samples. The obtained results point that all clays reached stable magnetic mineralogy after the repeated heating to 700oC, the main magnetic mineral is of titano/magnetite type and the magnetic particles are predominantly with pseudo single domain grain sizes. In spite that, the magnetic properies of the studied clays seem to be very similar, reliable palaeointensity results were obtained only from the clays coming from clay deposits. The

  19. Microbe-Clay Mineral Reactions and Characterization Techniques

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, G.; Ji, S.; Jaisi, D.; Kim, J.

    2008-12-01

    Clays and clay minerals are ubiquitous in soils, sediments, and sedimentary rocks. They play an important role in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. The changes in the oxidation state of the structural iron in clay minerals, in part, control their physical and chemical properties in natural environments, such as clay particle flocculation, dispersion, swelling, hydraulic conductivity, surface area, cation and anion exchange capacity, and reactivity towards organic and inorganic contaminants. The structural ferric iron [Fe(III)] in clay minerals can be reduced either chemically or biologically. Many different chemical reductants have been tried, but the most commonly used agent is dithionite. Biological reductants are bacteria, including dissimilatory iron reducing prokaryotes (DIRP) and sulfate-reducing bacteria (SRB). A wide variety of DIRP have been used to reduce ferric iron in clay minerals, including mesophilic, thermophilic, and hyperthermophilic prokaryotes. Multiple clay minerals have been used for microbial reduction studies, including smectite, nontronite (iron-rich smectite variety), illite, illite/smectite, chlorite, and their various mixtures. All these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible. The reduction extent and rate of ferric iron in clay minerals are measured by wet chemistry, and the reduced clay mineral products are typically characterized with chemical methods, X-ray diffraction, scanning and transmission electron microscopy, Mössbauer spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-vis spectroscopy, and synchrotron-based techniques (such as EXAFS). Microbially reduced smectites (nontronites) have been found to be reactive in reducing a variety of organic and inorganic contaminants. Degradable organic contaminants include pesticides

  20. Green Clay Minerals

    NASA Astrophysics Data System (ADS)

    Velde, B.

    2003-12-01

    Color is a problem for scientific study. One aspect is the vocabulary one used to describe color. Mint green, bottle green, and Kelly green are nice names but not of great utility in that people's physical perception of color is not always the same. In some industries, such as colored fabric manufacture, current use is to send a set of standard colors which are matched by the producer. This is similar to the use of the Munsell color charts in geology. None of these processes makes use of physical optical spectral studies. The reason is that they are difficult to obtain and interpret. For a geologist, color is very important but we rarely have the possibility to standardize the method of our color perception. One reason is that color is both a reflective and transmission phenomenon. The thickness of the sample is critical to any transmission characteristics. Hence, a field color determination is different from one made by using a petrographic microscope. Green glauconite in a hand specimen is not the same color in 30 μm thick thin section seen with a microscope using transmitted light.A second problem is that color in a spectral identification is the result of several absorption emissions,with overlapping signal, forming a complicated spectrum. Interpretation depends very greatly on the spectrum of the light source and the conditions of transmission-reflection of the sample. As a result, for this text, we will not attempt to analyze the physical aspect of green in green clays. In the discussion which follows, reference is made concerning color, to thin section microscopic perception.Very briefly, green clay minerals are green, because they contain iron. This is perhaps not a great revelation to mineralogists, but it is the key to understanding the origin and stability of green clay minerals. In fact, iron can color minerals either red or green or in various shades of orange and brown. The color most likely depends upon the relative abundance of the iron ion valence

  1. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Seven companies mined fire clay in four states during 2003. From 1984 to 1992, production declined to 383 kt (422,000 st) from a high of 1.04 Mt (1.14 million st) as markets for clay-based refractories declined. Since 1992, production levels have been erratic, ranging from 383 kt (422,000 st) in 1992 and 2001 to 583 kt (642,000 st) in 1995. Production in 2003, based on preliminary data, was estimated to be around 450 kt (496,000 st) with a value of about $10.5 million. This was about the same as in 2002. Missouri remained the leading producer state, followed by South Carolina, Ohio and California.

  2. Examination and Manipulation of Clay Aggregates - Initial Inquiry

    DTIC Science & Technology

    2011-06-06

    and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...PSU and the X-gum content from 0% to 10% of the mineral content of the clay (by weight). Montmorillonite was used in all the suspensions prepared

  3. [Electromagnetic radiation of non-thermal intensity and short exposition as a sub-threshold irritant for the central nervous system].

    PubMed

    Luk'ianova, S N

    2013-01-01

    This work represents generalization and the analysis of the long-term own materials characterizing reaction of the brain on electromagnetic radiation of low intensity (energy flow density in the continuous regime or in the impulse approximately 500 microW/sm2) and a short exposition (approximately 30 min). A set of the experimental results received on separate neurons, formations and brain as a whole give an idea about the reaction of the central nervous system to the studied influence. Comparison of these data with the corresponding responses to the known incentives (light, sound, electric current) testifies to the electromagnetic radiation of low energy flow density and a short exposition as a sub-threshold irritant for the central nervous system.

  4. Changes in the optical absorption induced by sequential exposition to short- and long-wavelength radiation in the BTO:Al crystal

    NASA Astrophysics Data System (ADS)

    Shandarov, S. M.; Dyu, V. G.; Kisteneva, M. G.; Khudyakova, E. S.; Smirnov, S. V.; Akrestina, A. S.; Kargin, Yu F.

    2017-02-01

    Modifications of the spectral dependences of the optical absorption induced in the Bi12TiO20:Al crystal as a result of sequential exposition to cw laser radiation first with the wavelength λ g = 532 nm and then with the longer wavelength λ l,n = 588, 633, 655, 658, 663, 700, 780, 871, or 1064 nm are investigated. We revealed that after the short-wavelength exposition to radiation with λg = 532 nm, the optical absorption in the crystal increases, and in the range 470-1000 nm, yields the spectrum whose form is independent of a prehistory. The subsequent exposition to longer-wavelength radiation leads to bleaching of the crystal in the examined spectral range. A maximum diminishing of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λ l,5 = 663 nm. To describe the experimentally observed reversible changes in the optical absorption spectrum in the Bi12TiO20:Al we use the impurity absorption model that takes into account the photoinduced transitions between two metastable states of a deep defect center leading to the change of its position in the crystal lattice under conditions of strong lattice relaxation.

  5. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  6. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    PubMed Central

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  7. Clay at Nili Fossae

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image of the Nili Fossae region of Mars was compiled from separate images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and the High-Resolution Imaging Science Experiment (HiRISE), two instruments on NASA's Mars Reconnaissance Orbiter. The images were taken at 0730 UTC (2:30 a.m. EDT) on Oct. 4, 2006, near 20.4 degrees north latitude, 78.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36 to 3.92 micrometers, and shows features as small as 18 meters (60 feet) across. HiRISE's image was taken in three colors, but its much higher resolution shows features as small as 30 centimeters (1 foot) across.

    CRISM's sister instrument on the Mars Express spacecraft, OMEGA, discovered that some of the most ancient regions of Mars are rich in clay minerals, formed when water altered the planet's volcanic rocks. From the OMEGA data it was unclear whether the clays formed at the surface during Mars' earliest history of if they formed at depth and were later exposed by impact craters or erosion of the overlying rocks. Clays are an indicator of wet, benign environments possibly suitable for biological processes, making Nili Fossae and comparable regions important targets for both CRISM and HiRISE.

    In this visualization of the combined data from the two instruments, the CRISM data were used to calculate the strengths of spectral absorption bands due to minerals present in the scene. The two major minerals detected by the instrument are olivine, a mineral characteristic of primitive igneous rocks, and clay. Areas rich in olivine are shown in red, and minerals rich in clay are shown in green. The derived colors were then overlayed on the HiRISE image.

    The area where the CRISM and HiRISE data overlap is shown at the upper left, and is about 5 kilometers (3 miles) across. The three boxes outlined in blue are enlarged to show how the different minerals in the scene match up with different landforms. In the image

  8. Studies to overcome the manufacturing problems in blast furnace tap hole clay of Integrated Steel Plants: Experimental approach

    NASA Astrophysics Data System (ADS)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Integrated Steel Plants commonly uses Blast Furnace route for iron production which accounts for over 60 % of the world iron output. Blast Furnace runs for ten to twenty years without repairing hearth walls and Tap Hole (TH). Tap hole is an outlet for hot metal produced in a Blast Furnace and run from the shell of the furnace into the interior allowing access to the molten material. Tapping is the term used for drilling a hole through the tap hole which allows the molten iron and slag to flow out. In Iron making process, removal of liquid iron from furnace and sending it for steel making is known as cast house practice. For tapping liquid iron and operating the tap hole requires a special type of clay. Tap hole clay (THC) used to stop the flow of liquid iron and slag from the blast furnace. Present work deals with the study on manufacturing of THC at Visakhapatnam Steel Plant and problems related to manufacturing. Experiments were conducted to solve the identified problems and results are furnished in detail. The findings can improve the manufacturing process and improve the productivity of tap hole clay.

  9. Preparation and properties of recycled HDPE/clay hybrids

    Treesearch

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  10. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  12. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  13. Clay-Bacteria Systems and Biofilm Production

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  14. Clay-Enriched Silk Biomaterials for Bone Formation

    PubMed Central

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  15. The "Hefferline Notes": B. F. Skinner's First Public Exposition of His Analysis of Verbal Behavior

    ERIC Educational Resources Information Center

    Knapp, Terry J.

    2009-01-01

    B. F. Skinner's first public exposition of his analysis of verbal behavior was the "Hefferline Notes" (1947a), a written summary of a course Skinner taught at Columbia University during the summer of 1947 just prior to his presentation of the William James Lectures at Harvard University in the fall. The Notes are significant because they display…

  16. Proceedings of the Bio-Energy '80 world congress and exposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-01-01

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have beenmore » prepared for 164 papers for inclusion in the Energy Data Base.« less

  17. Soil clay content underlies prion infection odds

    USGS Publications Warehouse

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  18. Soil clay content underlies prion infection odds

    PubMed Central

    David Walter, W.; Walsh, Daniel P.; Farnsworth, Matthew L.; Winkelman, Dana L.; Miller, Michael W.

    2011-01-01

    Environmental factors—especially soil properties—have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. PMID:21326232

  19. Soil clay content underlies prion infection odds.

    PubMed

    David Walter, W; Walsh, Daniel P; Farnsworth, Matthew L; Winkelman, Dana L; Miller, Michael W

    2011-02-15

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings.

  20. Interphase vs confinement in starch-clay bionanocomposites.

    PubMed

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Mechanisms of removing red tide organisms by organo-clays].

    PubMed

    Cao, Xi-Hua; Song, Xiu-Xian; Yu, Zhi-Ming; Wang, Kui

    2006-08-01

    We tested the influence of the preparation conditions of the quaternary ammonium compounds (QACs) modified clays on their capacities to remove red tide organisms, then discussed the mechanisms of the organo-clays removing red tide organisms. Hexadecyltrimethylammonium (HDTMA) improved the capacity of clays to flocculate red tide algae, and the HDTMA in metastable state enhanced the toxicity of the clay complexes to algae. The capacities of the organo-clays correlated with the toxicity and the adsorbed amount of the QACs used in clays modification, but as the incubation time was prolonged the stability of the organo-clays was improved and the algal removal efficiencies of the clay complexes decreased. When the adsorbed HDTMA was arranged in different clays in which the spatial resistance was different, there was more HDTMA in metastable state in the three-layer montmorillonite. Because of the homo-ion effect the bivalent or trivalent metal ions induced more HDTMA in metastable state and the corresponding organo-clays had high capacities to remove red tide organisms. When the reaction temperature was 60 degrees C the adsorbed HDTMA was easily arranged on cation exchange sites, if the temperature rose or fell the metastable HDTMA would increase so that the capacity of the clays was improved.

  2. Compressibility characteristics of Sabak Bernam Marine Clay

    NASA Astrophysics Data System (ADS)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  3. Fracture behavior of polypropylene/clay nanocomposites.

    PubMed

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  4. Multifaceted role of clay minerals in pharmaceuticals

    PubMed Central

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals. PMID:28031881

  5. Single clay sheets inside electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  6. Clay Cuffman: A Cool, Calm, Relaxed Guy

    ERIC Educational Resources Information Center

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  7. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  8. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  9. An intercomparison for NIRS and NYU passive thoron gas detectors at NYU.

    PubMed

    Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Chittaporn, Passaporn; Harley, Naomi H

    2012-04-01

    An intercomparison on thoron ((220)Rn) measurement was carried out between National Institute of Radiological Sciences, Japan (NIRS), and New York University School of Medicine, USA (NYU). The measurements of (220)Rn concentration at NIRS and NYU were performed by using the scintillation cell method and the two-filter method, respectively, as the standard measurement method. Three types of alpha track detectors based on passive radon ((222)Rn)-(220)Rn discriminative measurement technique were used: Raduet and Radopot detectors were used at NIRS, and four-leaf detectors were used at NYU. In this study, the authors evaluated (220)Rn concentration variation in terms of run for exposure, measurement method, and exposure chamber. The detectors were exposed to (220)Rn gas with approximately 15 kBq m(-3) during the period from 0.75 to 3 d. As a result, the variation of each measurement method among these exposure runs was comparable to or less than that for the two-filter method. Agreement between the standard measurement methods of NIRS and NYU was observed to be about 10%, as is the case with the passive detectors. The Raduet detector showed a large variation in the detection response between the NIRS and NYU chambers, which could be related to different traceability.

  10. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  11. Recent advances in clay mineral-containing nanocomposite hydrogels.

    PubMed

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  12. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    PubMed

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  13. Mineralogy and geochemistry of soils from glass houses and solariums

    NASA Astrophysics Data System (ADS)

    Bulgariu, Dumitru; Filipov, Feodor; Rusu, Constantin; Bulgariu, Laura

    2010-05-01

    very difficult. Practically, each type of soil from this category has distinct pedological and chemical-mineralogical characteristics, mostly determined by the nature of parental material and by the exploitation technologies. Concerning to the pedogeochemistry of soils from glasshouses have not yet been written summary studies, most existing papers from literature are in fact, case studies of particular situations. The deficit of information from this field, together with the ambiguity of pedogenetical characters of diagnostic, makes difficult the unitary characterization of soils from glasshouses. Characteristic for the soils from glass houses are the intense modifications of soil profile, the large variability of mineralogy and chemistry, and the salinization processes of superior horizons. From chemical point of view, the soils from glass houses is characterized by high values of bases saturation, accessible phosphorus and ration between humic and fulvic acids. From mineralogical point of view, the soils from glass houses studied is characterized by a high heterogeneity degree, both as contents, and as occurrence and distribution forms of mineral and organic components in profile. Predominant quantitatively are clay minerals and as variety, the crystalline forms are most abundant. As regard the clay minerals type, the kaolin and illites have dominant weights in comparison with smectites and the other mineral components. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07).

  14. Culture as Curriculum: Education and the International Expositions (1876-1904). History of Schools and Schooling. Volume 2

    ERIC Educational Resources Information Center

    Provenzo, Eugene F., Jr.

    2012-01-01

    The great International Expositions of the late nineteenth and early twentieth centuries brought together the world's political, intellectual, and industrial leaders for the exchange of information and ideas. They also promoted specific cultural values and belief systems. In this book, Eugene F. Provenzo, Jr. looks specifically at the educational…

  15. Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.

    PubMed

    Kimura, Yuji; Haraguchi, Kazutoshi

    2017-05-16

    Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.

  16. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    At present, 150 companies produce common clay and shale in 41 US states. According to the United States Geological Survey (USGS), domestic production in 2005 reached 24.8 Mt valued at $176 million. In decreasing order by tonnage, the leading producer states include North Carolina, Texas, Alabama, Georgia and Ohio. For the whole year, residential and commercial building construction remained the major market for common clay and shale products such as brick, drain tile, lightweight aggregate, quarry tile and structural tile.

  17. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  18. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    NASA Astrophysics Data System (ADS)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  19. Formation of stable nanocomposite clays from small peptides reacted with montmorillonite and illite-smectite mixed layer clays

    NASA Astrophysics Data System (ADS)

    Block, K. A.; Katz, A.; LeBlanc, J.; Peña, S.; Gottlieb, P.

    2015-12-01

    Understanding how organic compounds interact with clay minerals and which functional groups result in the strongest bonds is pivotal to achieving a better understanding of how mineral composition affects the residence time of carbon and nitrogen in soils. In this work, we describe how small peptides derived from tryptone casein digest are dissolved and suspended with clay minerals to examine the nature of OM adsorption to mineral surfaces and the resulting effect on clay mineral structure. XRD analyses indicate that peptides intercalation results in expansion of the d001 spacing of montmorillonite (Mt) and the smectite component of a 70-30 illite-smectite mixed layer clay (I-S) and poorer crystallinity overall as a result of exfoliation of tactoids. Peptide adsorption is concentration-dependent, however, surface adsorption appears to mediate interlayer adsorption in Mt reaching a maximum of 16% of the mass of the organoclay complex, indicating that at a critical concentration, peptide intercalation will supersede surface adsorption resulting in a more stable attachment. In I-S the degree of surface adsorption and intercalation is proportional to concentration, however, surface adsorption is not a priming mechanism for interlayer adsorption. Thermogravimetric analysis of the organoclay complexes determined by TGA coupled to GC-MS indicate that the most prominent product species measured was 1-(1-Trimethylsiloxyethenyl)-3-trimethylsiloxy-benzene, likely from tryptophan monomer decomposition. The compound was detected over a broad temperature range, greater than 300 oC, during pyrolysis and suggests a carbon-silicon covalent bond formed between the peptide and tetrahedral layers in the clay. An additional silicon-bearing VOC detected at lower pyrolysis temperature by GC was N,N-Diethyl-1-(trimethylsilyl)-9,10-didehydroergoline-8-carboxamide, likely derived from a lysine-bearing peptide derivative. We hypothesize that hydrophobic (non-ionic) peptides react with silanol

  20. Impact-Induced Clay Mineral Formation and Distribution on Mars

    NASA Technical Reports Server (NTRS)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  1. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  2. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  3. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  4. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  5. Controlling harmful algae blooms using aluminum-modified clay.

    PubMed

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  7. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    PubMed

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-02

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.

  8. Desorption and mobility mechanisms of co-existing polycyclic aromatic hydrocarbons and heavy metals in clays and clay minerals.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Grace, John R

    2018-05-15

    The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Sediment management and renewability of floodplain clay for structural ceramics

    NASA Astrophysics Data System (ADS)

    van der Meulen, M. J.; Wiersma, A. P.; Middelkoop, H.; van der Perk, M.; Bakker, M.; Maljers, D.; Hobo, N.; Makaske, B.

    2009-04-01

    The Netherlands have vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. The extraction of clay creates land surface lowerings of about 1.5 m, of which the majority are located in the embanked floodplains of the rivers Rhine and Meuse. At these surface lowerings, clay is replenished within several decades. This study explores to which extent the clay can be regarded as a renewable resource, with potential for sustainable use. For this purpose, first the current and past clay consumption is calculated. Subsequently, clay deposition in the floodplains is estimated from literature data on clay accumulation using sediment traps, heavy metal and radionuclide distribution in soil profiles, and from morphological modelling studies. These estimates of clay-deposition and consumption are then compared following three approaches that consider various temporal and spatial scales of clay deposition. This allows us to establish the extent to which man determines sedimentary processes in the Dutch floodplains. Consequently, using the sediment response to the land surface lowering resulting from clay extraction, we explore sediment management options for the Dutch Rhine and Meuse. Altogether we argue that clay has been, probably is, and certainly can be managed as a renewable mineral resource.

  10. Credit WCT. Original 21/4"x21/4" color negative is housed in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. At one time, Building 4285/E-86 accommodated tensile testing of propellant samples. This view shows a tensile strength tester set up for propellant tests, under the supervision of JPL staff member Milton Clay (JPL negative no. JPL-10291AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  11. NMR imaging and cryoporometry of swelling clays

    NASA Astrophysics Data System (ADS)

    Dvinskikh, Sergey V.; Szutkowski, Kosma; Petrov, Oleg V.; Furó, István.

    2010-05-01

    Compacted bentonite clay is currently attracting attention as a promising "self-sealing" buffer material to build in-ground barriers for the encapsulation of radioactive waste. It is expected to fill up the space between waste canister and surrounding ground by swelling and thus delay flow and migration from the host rock to the canister. In environmental sciences, evaluation and understanding of the swelling properties of pre-compacted clay are of uttermost importance for designing such buffers. Major goal of present study was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during different physical processes in an aqueous environment such as swelling, dissolution, and sedimentation on the time scale from minutes to years. The propagation of the swelling front during clay expansion depending on the geometry of the confining space was also studied. Magnetic resonance imaging and nuclear magnetic resonance spectroscopy were adapted and used as main experimental techniques. With this approach, spatially resolved movement of the clay/water interface as well as clay particle distributions in gel phase can be monitored [1]. Bulk samples with swelling in a vertical tube and in a horizontal channel were investigated and clay content distribution profiles in the concentration range over five orders of magnitude and with sub-millimetre spatial resolution were obtained. Expansion rates for bulk swelling and swelling in narrow slits were compared. For sodium-exchanged montmorillonite in contact with de-ionised water, we observed a remarkable acceleration of expansion as compared to that obtained in the bulk. To characterize the porosity of the clay a cryoporometric study [2] has been performed. Our results have important implications to waste repository designs and for the assessment of its long-term performance. Further research exploring clay-water interaction over a wide variety of clay composition and water ionic

  12. Pore space analysis of NAPL distribution in sand-clay media

    USGS Publications Warehouse

    Matmon, D.; Hayden, N.J.

    2003-01-01

    This paper introduces a conceptual model of clays and non-aqueous phase liquids (NAPLs) at the pore scale that has been developed from a mathematical unit cell model, and direct micromodel observation and measurement of clay-containing porous media. The mathematical model uses a unit cell concept with uniform spherical grains for simulating the sand in the sand-clay matrix (???10% clay). Micromodels made with glass slides and including different clay-containing porous media were used to investigate the two clays (kaolinite and montmorillonite) and NAPL distribution within the pore space. The results were used to understand the distribution of NAPL advancing into initially saturated sand and sand-clay media, and provided a detailed analysis of the pore-scale geometry, pore size distribution, NAPL entry pressures, and the effect of clay on this geometry. Interesting NAPL saturation profiles were observed as a result of the complexity of the pore space geometry with the different packing angles and the presence of clays. The unit cell approach has applications for enhancing the mechanistic understanding and conceptualization, both visually and mathematically, of pore-scale processes such as NAPL and clay distribution. ?? 2003 Elsevier Science Ltd. All rights reserved.

  13. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    NASA Astrophysics Data System (ADS)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the

  14. Natural Radioactivity of Boron Added Clay Samples

    NASA Astrophysics Data System (ADS)

    Akkurt, I.; ćanakciı, H.; Mavi, B.; Günoǧlu, K.

    2011-12-01

    Clay, consisting fine-grained minerals, is an interesting materials and can be used in a variety of diferent fields especially in dermatology application. Using clay such a field it is important to measure its natural radioacitivty. Thus the purpose of this study is to measure 226Ra, 232Th and 40K concentration in clay samples enriched with boron. Three different types of clay samples were prepared where boron is used in different rate. The measurements have been determined using a gamma-ray spectrometry consists of a 3″×3″ NaI(Tl) detector. From the measured activity the radium equivalent activities (Raeq), external hazard index (Hex), absorbed dose rate in air (D) and annual effective dose (AED) have also been obtained.

  15. Performance of Kaolin Clay on the Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  16. Bentonite Clay as a Natural Remedy: A Brief Review

    PubMed Central

    2017-01-01

    Background: From old times, the human kind has used clays, externally or internally, for maintaining body health or treating some diseases. Meanwhile there are few scientific articles reviewing the beneficial effects of clays on body function. Bentonite clay is one of the available clays in nature, used as traditional habits, and remedies in many cultures. Methods: These articles explored among 2500 scientific articles published in PubMed to sort the scientific works have been done on the effects of this clay on body function (it was about 100 articles). Results: Bentonite has a broad range of action on different parts of body. Conclusion: As traditional remedies seem to have a deep root in maintaining body health, it merits doing more research works on bentonite clay and its impacts on body function. PMID:29026782

  17. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  18. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  19. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    PubMed

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels

    NASA Astrophysics Data System (ADS)

    Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam

    2015-03-01

    The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.

  1. Effects of biochar on hydraulic conductivity of compacted kaolin clay.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung

    2018-03-01

    Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Inter-layered clay stacks in Jurassic shales

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  3. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 1): Development of theoretical models for design considerations.

    PubMed

    Sahoo, B K; Sudeep Kumara, K; Karunakara, N; Gaware, J J; Sapra, B K; Mayya, Y S

    2017-06-01

    Regulating the environmental discharge of 220 Rn (historically known as thoron) and its decay products from thorium processing facilities is important for protection of environment and general public living in the vicinities. Activated charcoal provides an effective solution to this problem because of its high adsorption capacity to gaseous element like radon. In order to design and develop a charcoal based Thoron Mitigation System, a mathematical model has been developed in the present work for studying the 220 Rn transport and adsorption in a flow through charcoal bed and estimating the 220 Rn mitigation factor (MF) as a function of system and operating parameters. The model accounts for inter- and intra-grain diffusion, advection, radioactive decay and adsorption processes. Also, the effects of large void fluctuation and wall channeling on the mitigation factor have been included through a statistical model. Closed form solution has been provided for the MF in terms of adsorption coefficient, system dimensions, grain size, flow rate and void fluctuation exponent. It is shown that the delay effects due to intra grain diffusion plays a significant role thereby rendering external equilibrium assumptions unsuitable. Also, the application of the statistical model clearly demonstrates the transition from the exponential MF to a power-law form and shows how the occurrence of channels with low probability can lower mitigation factor by several orders of magnitude. As a part of aiding design, the model is further extended to optimise the bed dimensions in respect of pressure drop and MF. The application of the results for the design and development of a practically useful charcoal bed is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Natural Radioactivity of Boron Added Clay Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkurt, I.; Guenoglu, K.; Canakcii, H.

    2011-12-26

    Clay, consisting fine-grained minerals, is an interesting materials and can be used in a variety of different fields especially in dermatology application. Using clay such a field it is important to measure its natural radioactivity. Thus the purpose of this study is to measure {sup 226}Ra, {sup 232}Th and {sup 40}K concentration in clay samples enriched with boron. Three different types of clay samples were prepared where boron is used in different rate. The measurements have been determined using a gamma-ray spectrometry consists of a 3''x3'' NaI(Tl) detector. From the measured activity the radium equivalent activities (Ra{sub eq}), external hazardmore » index (H{sub ex}), absorbed dose rate in air (D) and annual effective dose (AED) have also been obtained.« less

  5. Removal of clay by stingless bees: load size and moisture selection.

    PubMed

    Costa-Pereira, Raul

    2014-09-01

    Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis) collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  6. The colloidal chemistry of ceramic clays

    NASA Technical Reports Server (NTRS)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  7. Adsorption of dyes using different types of clay: a review

    NASA Astrophysics Data System (ADS)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2017-05-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  8. Experimental study of Human Adenoviruses interactions with clays

    NASA Astrophysics Data System (ADS)

    Bellou, Maria; Syngouna, Vasiliki; Paparrodopoulos, Spyros; Vantarakis, Apostolos; Chrysikopoulos, Constantinos

    2014-05-01

    Clays are used to establish low permeability liners in landfills, sewage lagoons, water retention ponds, golf course ponds, and hazardous waste sites. Human adenoviruses (HAdVs) are waterborne viruses which have been used as viral indicators of fecal pollution. The objective of this study was to investigate the survival of HAdV in static and dynamic clay systems. The clays used as a model were crystalline aluminosilicates: kaolinite and bentonite. The adsorption and survival of HAdVs onto these clays were characterized at two different controlled temperatures (4 and 25o C) under static and dynamic batch conditions. Control tubes, in the absence of clay, were used to monitor virus inactivation due to factors other than adsorption to clays (e.g. inactivation or sorption onto the tubes walls). For both static and dynamic batch experiments, samples were collected for a maximum period of seven days. This seven day time - period was determined to be sufficient for the virus-clay systems to reach equilibrium. To infer the presence of infectious HAdV particles, all samples were treated with Dnase and the extraction of viral nucleid acid was performed using a commercial viral RNA kit. All samples were analyzed by Real - Time PCR which was used to quantify viral particles in clays. Samples were also tested for virus infectivity by A549 cell cultures. Exposure time intervals in the range of seven days (0.50-144 hours) resulted in a load reduction of 0.74 to 2.96 logs for kaolinite and a reduction of 0.89 to 2.92 for bentonite. Furthermore, virus survival was higher onto bentonite than kaolinite (p

  9. Reinforcement of natural rubber latex by nanosize montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Tantatherdtam, Rattana

    Based on the unique character of montmorillonite namely its layer structure and the ability of silicate particles to separate into nanometer-size platelets, natural rubber (polyisoprene)/clay composites were obtained by mixing rubber latex with clay-water dispersion and coagulating the mixture. The resulting film had greatly improved mechanical properties compared with films using micron-sized fillers. Further, both modulus and toughness were improved; in many composite system an improvement in modulus leads to a loss of toughness. X-ray diffraction results indicated that clay platelets dispersed in the rubber matrix on the nanoscale level with some macromolecules intercalated into the clay gallery. The observed considerable improvement in mechanical properties, coupled with a theoretical model of composite modulus suggests a dispersed structure of clay in the composite. While not all clay particles are exfoliated, data suggest that a reasonable fraction of exfoliated materials is required to explain the experimental results.

  10. Captured Knowledge: Presentations and Notes of the KMWorld Conference and Exposition (4th, Santa Clara, California, September 13-15, 2000).

    ERIC Educational Resources Information Center

    Jones, Rebecca, Ed.; Nixon, Carol, Comp.; Burmood, Jennifer, Comp.

    This publication contains presentations, notes, and illustrative materials used in the annual KMWorld Conference and Exposition, "Knowledge Nets: Defining and Driving the E-Enterprise." Presentations include: "Knowledge Management Applied to the Manufacturing Enterprise" (Matthew Artibee); "Ryder Knowledge Center: Building…

  11. Polyimide-Clay Composite Materials for Space Application

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.; Connell, John W. (Technical Monitor)

    2005-01-01

    The introduction of nanometer-sized clay particles into a polyimide matrix has been shown to enhance the physical properties of specific polymer systems. The clay comprises large stacked platelets of the oxides of aluminum and silicon. These sheets have long dimensions on the order of tenths of a micrometer and thicknesses of several nanometers. Homogeneous dispersion of the clay platelets in the polymer matrix is necessary to achieve those enhancements in polymer properties. Natural montmorillonite with the empirical formula Na0.33Mg0.33Al1.67(OH)2(Si4O10) contains exchangeable inorganic cations. The clay lamellae stack together with the positive sodium ions situated between the surfaces of the individual sheets to balance negatively charged oxygen atoms that are on the surfaces of the sheets. These surface charges contribute to strong electrostatic forces which hold the sheets together tightly. Exfoliation can be accomplished only with unusual measures. In preparing clay nanocomposites, we have taken two steps to try to reduce these interlamellar forces in order to promote the separation (exfoliation) of the sheets and the dispersion of the individual clay particles throughout the organic polymer matrix. In the first step, some of the surface Na(+) ions are replaced with Li(+) ions. Unlike sodium cations, the lithium cations migrate into the interior of the lamellae when the system is heated. Their departure from the surface reduces the surface charge and therefore the attractive forces between the sheets. The loss of alkali metal cations from the surface can be measured as the cation exchange capacity (CEC) of the clay. For example, we found that the CEC of montmorillonite clay was reduced by almost two thirds by treating it with lithium ions and heating to 250 C for 24 hr. Lesser heating has a smaller effect on the CEC. X-ray diffraction measurements show that the d-spacing decreased from ca. 1.34 to 0.97 nm, apparently a consequence of a collapse of the clay

  12. Quality evaluation of processed clay soil samples

    PubMed Central

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    Introduction This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. Methods The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Results Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. “Small” market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. Conclusion The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed. PMID:27642456

  13. Quality evaluation of processed clay soil samples.

    PubMed

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.

  14. Water-assisted extrusion of bio-based PETG/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Naeun; Lee, Sangmook

    2018-02-01

    Bio-based polyethylene terephthalate glycol-modified (PETG)/clay nanocomposites were prepared using the water-assisted extrusion process. The effects of different types of clay and clay mixing methods (with or without the use of water) and the resulting nanocomposites properties were investigated by measuring the rheological and tensile properties and morphologies. The valuable properties were achieved when Cloisite 30B was mixed in a slurry state. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nano-clay was well dispersed within the PETG matrix. This shows that the slurry process could be an effective exfoliation method for many nanocomposites systems as well as for bio-based PETG/clay nanocomposites.

  15. The surface modification of clay particles by RF plasma technique

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Keol

    In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.

  16. Microbial Impacts on Clay Mineral Transformation and Reactivity

    NASA Astrophysics Data System (ADS)

    Dong, H.; Jaisi, D.; Fredrickson, J.; Plymale, A.

    2006-05-01

    Clays and clay minerals are ubiquitous in soils, sedimentary rocks, and pelagic oozes. They play important roles in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. Iron is a major constituent in clay minerals, and its mobility and stability in different environmental processes is, in part, controlled by the oxidation state. Recent studies have shown that biological reduction of structural Fe(III) in clay minerals can change the physical and chemical properties of clay minerals, such as swelling, cation exchange and fixation capacity, specific surface area, color, and magnetic exchange interactions. As a result of biological reduction of Fe(III), clay minerals also undergo mineral transformations, such as dissolution of smectite and precipitation of illite, siderite and vivianite. These chemical, structural and mineralogical changes of clay minerals have a profound effect on clay mineral reactivity, such as their reactivity with organic and inorganic (i.e., heavy metals and radionuclides) contaminants. Our latest data show that biologically reduced nontronite (a smectite variety) is much more effective in reducing soluble and mobile Tc(VII) to Tc(IV) than unreduced nontronite. The reduced Tc(IV) is insoluble in groundwater and soil and thus is immobile. Biologically reduced nontronite can be prepared by microbially reducing Fe(III) in nontronite by Shewanella putrefaciens in the absence of oxygen. Approximately 30% of structurally Fe(III) can be reduced in this manner. Biogenic Fe(II) can then serve as an electron donor to reduce Tc(VII). Nearly all Fe(II) is available to reduce Tc(VII), with the rate of reduction (typically within weeks) possibly depending on the speciation of Fe(II) (surface sorbed Fe(II) vs. structural Fe(II)). Further investigations are underway to further assess the reversibility of Tc reduction upon exposure to oxygen and to elucidate Tc reduction

  17. Evaluation of the medicinal use of clay minerals as antibacterial agents.

    PubMed

    Williams, Lynda B; Haydel, Shelley E

    2010-07-01

    Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis ('flesh-eating' infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources.Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between 'healing clays' and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s).The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation.Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process

  18. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.

  19. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.

    PubMed

    Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe

    2006-02-01

    High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.

  20. Impact of clay minerals on sulfate-reducing activity in aquifers

    USGS Publications Warehouse

    Wong, D.; Suflita, J.M.; McKinley, J.P.; Krumholz, L.R.

    2004-01-01

    Previous studies have shown that sulfate-reduction activity occurs in a heterogeneous manner throughout the terrestrial subsurface. Low-activity regions are often observed in the presence of clay minerals. Here we report that clays inhibit sulfate reduction activity in sediments and in a pure culture of Desulfovibriovulgaris. Clay minerals including bentonite and kaolinite inhibited sulfate reduction by 70–90% in sediments. Intact clays and clay colloids or soluble components, capable of passing through a 0.2-µm filter, were also inhibitory to sulfate-reducing bacteria. Other adsorbent materials, including anion or cation exchangers and a zeolite, did not inhibit sulfate reduction in sediments, suggesting that the effect of clays was not due to their cation-exchange capacity. We observed a strong correlation between the Al2O3content of clays and their relative ability to inhibit sulfate reduction in sediments (r2 = 0.82). This suggested that inhibition might be a direct effect of Al3+ (aq) on the bacteria. We then tested pure aluminum oxide (Al2O3) and showed it to act in a similar manner to clay. As dissolved aluminum is known to be toxic to a variety of organisms at low concentrations, our results suggest that the effects of clay on sulfate-reducing bacteria may be directly due to aluminum. Thus, our experiments provide an explanation for the lack of sulfate-reduction activity in clay-rich regions and presents a mechanism for the effect.

  1. Clay facial masks: physicochemical stability at different storage temperatures.

    PubMed

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  2. A quantification model for the structure of clay materials.

    PubMed

    Tang, Liansheng; Sang, Haitao; Chen, Haokun; Sun, Yinlei; Zhang, Longjian

    2016-07-04

    In this paper, the quantification for clay structure is explicitly explained, and the approach and goals of quantification are also discussed. The authors consider that the purpose of the quantification for clay structure is to determine some parameters that can be used to quantitatively characterize the impact of clay structure on the macro-mechanical behaviour. According to the system theory and the law of energy conservation, a quantification model for the structure characteristics of clay materials is established and three quantitative parameters (i.e., deformation structure potential, strength structure potential and comprehensive structure potential) are proposed. And the corresponding tests are conducted. The experimental results show that these quantitative parameters can accurately reflect the influence of clay structure on the deformation behaviour, strength behaviour and the relative magnitude of structural influence on the above two quantitative parameters, respectively. These quantitative parameters have explicit mechanical meanings, and can be used to characterize the structural influences of clay on its mechanical behaviour.

  3. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres.

    PubMed

    Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-08-01

    Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CSclay microstructure, an improvement in the mechanical properties of the chitosan-clay films has been substantiated with CS-SP reaching the highest value at 5% clay loading. While clay addition provides a way to resist the shrinkage occurring for native chitosan, the enhanced hydrophilicity associated to the water content affects the efficacy of the CO2 super-critical drying as the most hydrophilic CS-SP microspheres face the highest shrinkage, resulting in a lowest specific surface area compared to CS-HNT and CS-MMT. Chitosan-clay exhibits enhanced thermal properties with the degradation delayed in the order CSclay compared to native chitosan, evidencing the beneficial protective effect of the clay particulates for the biopolymer. However, under hydrothermal treatment, the presence of clay was found to be detrimental to the material stability as a significant shrinkage occurs in hybrid CS-clay microspheres, which is attributed again to their increased hydrophilicity compared to the native polymeric microspheres. In this framework, a peculiar behavior was observed for CS-MMT, with the microspheres standing both against contraction during CO2 gel drying and under hydrothermal conditions. The knowledge gained from this rational design will constitute a guideline toward the preparation of ultra-stable, practically-optimized food

  4. [EXPERIMENTAL MODEL AND CURRENCY OF EXPERIMENT OF DISTANT RESULTS OF LEAD EXPOSITION].

    PubMed

    Pataraia, G; Bagashvili, T; Andronikashvili, G; Gurashvili, T; Gogeshvili, K; Avalishvili, M

    2017-02-01

    In order to explore the distant results of exposition of little doses of lead, for the objective of the experiment model we have selected 32 mongral rats, of different age, but aged of both sex. Experimental animals were divided in two groups. During first two month from the beginning of the experiment, together with permissible food, animals were given the water, in which was open Pb(NO3)2 - to first group 1.5 mg on kg/weight and to II group 15 mg on kg/weight during the day and night. Before the beginning of the experiment, in the time of process and after it, observation was conducted, description and collection of photo-video materials about the behavior of animals, physiological parameters, possible change of weight, clear-sighted changes in appearance. During the autopsy of the animal, died during the experiment, it turned out that the reason of the death was acute heart failure caused by septicopyemia, the bilateral abscess pneumonia and right sided purulent pleurisy. The reason of the death of second animal was DIC (disseminated intravascular coagulation) Syndrome and the polyorganic pathology caused by it. We made the Nembutal injection to third animal because there was detected the 50×40×20 sized subcutaneous formation on the right surface of the chest, that turned out to be the breast adenoma with cystic fibrosis. After the completion of the experiment of distant results of lead exposition, surviving rats before autopsy will be dropped to sleep with high dose of drugs in compliance with the "Guidelines of animal care and ethical behavior", taken material will be processed for histopathological (in case of necessity histochemical and imunomorphological) and electronic microscopic researches.

  5. Preparation and Characterization of Natural Rubber/Organophilic Clay Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gonzales-Fernandes, M.; Esper, F. J.; Silva-Valenzuela, M. G.; Martín-Cortés, G. R.; Valenzuela-Diaz, F. R.; Wiebeck, H.

    Natural rubber/organophilic clay nanocomposites were prepared and characterized. A brown bentonite from Paraiba's State, Brazil was modified with a sodium salt and treated with quaternary ammonium salt hexadecyltrimethyl ammonium chloride. The clay in its natural state, after cation exchange with sodium and after organophilization was characterized by XRD, IR, SEM, thermal analysis. Nanocomposite samples were prepared containing 10 resin percent of organophilic clay. The vulcanized samples were analyzed by XRD, SEM. The nanocomposites obtained showed improvement in their mechanical properties in comparison with samples without clay.

  6. Evaluation of the medicinal use of clay minerals as antibacterial agents

    PubMed Central

    Williams, Lynda B.; Haydel, Shelley E.

    2010-01-01

    Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis (‘flesh-eating’ infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources. Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between ‘healing clays’ and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s). The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation. Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial

  7. Dehydration-induced luminescence in clay minerals

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.

    1981-01-01

    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  8. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  9. On display during a technical exposition at Dryden are NASA's B-52 launch aircraft, Boeing's X-37, B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace industry representatives view actual and mock-up versions of 'X-Planes' intended to enhance access to space during a technical exposition on June 22, 2000 at Dryden Flight Research Center, Edwards, California. From left to right: NASA's B-52 launch aircraft, in service with NASA since 1959; a neutral-buoyancy model of the Boeing's X-37; the Boeing X-40A behind the MicroCraft X-43 mock-up; Orbital Science's X-34 and the modified Lockheed L-1011 airliner that was to launch the X-34. These X-vehicles are part of NASA's Access to Space plan intended to bring new technologies to bear in an effort to dramatically lower the cost of putting payloads in space, and near-space environments. The June 22, 2000 NASA Reusable Launch Vehicle (RLV) Technology Exposition included presentations on the history, present, and future of NASA's RLV program. Special Sessions for industry representatives highlighted the X-37 project and its related technologies. The X-37 project is managed by NASA's Marshall Space Flight Center, Huntsville, Alabama.

  10. Do scaly clays control seismicity on faulted shale rocks?

    NASA Astrophysics Data System (ADS)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  11. Hydroxyapatite clay for gap filling and adequate bone ingrowth.

    PubMed

    Maruyama, M; Terayama, K; Ito, M; Takei, T; Kitagawa, E

    1995-03-01

    In uncemented total hip arthroplasty, a complete filling of the gap between femoral prosthesis and the host bone is difficult and defects would remain, because the anatomy of the reamed intramedullary canal cannot fit the prosthesis. Therefore, it seems practical to fill the gap with a clay containing hydroxyapatite (HA), which has an osteoconductive character. The clay (HA clay) is made by mixing HA granules (size 0.1 mm or more) having a homogeneous pore distribution and a porosity of 35-48 vol%, and a viscous substance such as a saline solution of sodium alginate (SSSA). In the first experiment, the ratio of HA granules and sodium alginate in SSSA is set for the same handling properties of HA clay and polymethylmethacrylate bone cement (standard viscosity) before hardening. As a result, the ratio is set for 55 wt% of HA in the clay and 12.5 wt% of sodium alginate in SSSA (i.e., HA:sodium alginate:saline solution = 9.8:1:7). In the second study, the gap between the femoral stem and bone model is completely filled with HA clay. However, the gap is not filled only with HA granules or HA granules mixed with saline solution. In the third animal experiment, using an unloaded model, histology shows that HA clay has an osteoconductive property bridging the gap between the implant and the cortical bone without any adverse reaction. HA clay is considered a useful biomaterial to fill the gap with adequate bone ingrowth.

  12. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  13. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  14. Numerous nanopores developed in organo-clay complexes during the shale formations

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Wang, T.; Lu, H.; Liao, J.

    2017-12-01

    Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.

  15. Origin of life and iron-rich clays

    NASA Technical Reports Server (NTRS)

    Hartman, H. H.

    1986-01-01

    The premise that life began with self-replicating iron-rich clays is explored. In association with these clays and UV light, polar organic molecules, such as oxalic acid, were synthesized. The carbonaceous chondrites have both iron-rich clays and organic molecules. It is convenient to classify meteoritic organic matter into 3 categories: insoluble polymer, hydrocarbons and polar organics (soluble in water). Recent work on the delta D, delta N-15 and delta C-13 has made it clear that these three fractions have been made by three different mechanisms. A significant fraction of the insoluble polymer has a delta-D which suggests that it was made in an interstellar medium. The hydrocarbons seem to have been made on a parent body by a Fischer-Tropsch mechanism. The polar organics were probably synthesized in a mixture of carbonate (NH4)2CO3, Fe(++) ion and liquid water by radiolysis. In a set of experiments the radiolysis of (NH4)2CO3 in the presence and absence of Fe(++) ion has been examined. The synthesis of glycine in the presence of Fe(++) ion is 3-4 times that in the absence of ferrous ion. The effects of the addition of hydrocarbons to this mixture are explored. Iron-rich clays at low temperature and pressure are synthesized. So far the results are not sufficiently crystalline to look for replication. It should be noted that organic chelating agents such as oxalic acid do increase the crystallinity of the clays but not sufficiently. The hydrothermal synthesis of iron-rich clays is being examined.

  16. Clay deposits of the Tierra Colorado district, southern Orange County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    The clay of this district is being mined for fire brick by the Vitrofrax Corporation. Much of the clay contains 35 percent or more of alumina and between 1 and 2 percent of iron oxide. Production is largely from an underground mine as the best clay deposit known in the district occurs on the side of a steep hill with more than 100 feet of sandstone overlying most of it. The good clay deposits occur at the base of an Eocene sandstone formation, and overlie mottled clays with a high iron content that are residual deposits formed on an old weathered surface. Mapping indicates that the clay deposits are very lenticular, though all occur at the same stratigraphic position, and they grade laterally into sandy clay and quartz sand. Topographic relief and the dip of the strata preclude finding large areas where the clay strata have relatively little overburden.

  17. [Mechanism of tritium persistence in porous media like clay minerals].

    PubMed

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  18. Removal of diphenhydramine from water by swelling clay minerals.

    PubMed

    Li, Zhaohui; Chang, Po-Hsiang; Jiang, Wei-Teh; Jean, Jiin-Shuh; Hong, Hanlie; Liao, Libing

    2011-08-01

    Frequent detection of pharmaceuticals in surface water and wastewater attracted renewed attention on studying interactions between pharmaceuticals and sludge or biosolids generated from wastewater treatment. Less attention was focused on studying interactions between pharmaceuticals and clay minerals, important soil and sediment components. This research targeted on investigating interactions between diphenhydramine (DPH), an important antihistamine drug, and a montmorillonite, a swelling clay, in aqueous solution. Stoichiometric desorption of exchangeable cations accompanying DPH adsorption confirmed that cation exchange was the most important mechanism of DPH uptake by the swelling clay. When the solution pH was below the pK(a) of DPH, its adsorption on the swelling clay was less affected by pH. Increasing solution pH above the pK(a) value resulted in a decrease in DPH adsorption by the clay. An increase in d(001) spacing at a high DPH loading level suggested interlayer adsorption, thus, intercalation of DPH. The results from this study showed that swelling clays are a good environmental sink for weak acidic drugs like DPH. In addition, the large cation exchange capacity and surface area make the clay a good candidate to remove cationic pharmaceuticals from the effluent of wastewater treatment facilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Chemical and mineralogical characteristics of French green clays used for healing

    USGS Publications Warehouse

    Williams, Lynda B.; Haydel, Shelley E.; Giese, Rossman F.; Eberl, Dennis D.

    2008-01-01

    The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.

  20. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    PubMed

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  1. Release of Escherichia coli under raindrop impact: The role of clay

    NASA Astrophysics Data System (ADS)

    Wang, C.; Parlange, J.-Y.; Schneider, R. L.; Rasmussen, E. W.; Wang, X.; Chen, M.; Dahlke, H. E.; Truhlar, A. M.; Walter, M. T.

    2018-01-01

    A recent paper by Wang et al. (2017) showed that the release of Escherichia coli (E. coli) from soil into overland flow under raindrop impact and the release of clay follow identical temporal patterns. This raised the question: what is the role of clay, if any, in E. coli transfer from soil to overland flow, e.g., does clay facilitate E. coli transfer? Using simulated rainfall experiments over soil columns with and without clay in the matrix, we found there was significantly more E. coli released from the non-clay soil because raindrops penetrated more deeply than into the soil with clay.

  2. Effect of red clay on diesel bioremediation and soil bacterial community.

    PubMed

    Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun

    2014-08-01

    Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.

  3. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.

    PubMed

    Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan

    2016-12-01

    Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Thermo Gravimetric and Differential Thermal Analysis of Clay of Western Rajasthan (india)

    NASA Astrophysics Data System (ADS)

    Shekhawat, M. S.

    The paper presents the study of thermo gravimetric and differential thermal analysis of blended clay. Western part of Rajasthan (India) is rich resource of Ball clays and it is mainly used by porcelain, sanitary ware, and tile industry. The quality and grade of clay available in the region vary from one deposit to other. To upgrade the fired colour and strength properties, different variety of clays may be blended together. The paper compares the results of thermal analysis one of blended clay B2 with reference clay of Ukraine which is imported by industries owners. The result revealed that the blended clay is having mineral kaolinite while the Ukrainian clay is Halloysite.

  5. Microstructures and deformation mechanisms in Opalinus Clay: insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH)

    NASA Astrophysics Data System (ADS)

    Laurich, Ben; Urai, Janos L.; Nussbaum, Christophe

    2017-01-01

    The Main Fault in the shaly facies of Opalinus Clay is a small reverse fault formed in slightly overconsolidated claystone at around 1 km depth. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite and celestite veins, scaly clay and clay gouge. Scaly clay occurs in up to 1.5 m wide lenses, providing hand specimens for this study. We mapped the scaly clay fabric at 1 m-10 nm scale, examining scaly clay for the first time using broad-ion beam polishing combined with scanning electron microscopy (BIB-SEM). Results show a network of thin shear zones and microveins, separating angular to lensoid microlithons between 10 cm and 10 µm in diameter, with slickensided surfaces. Our results show that microlithons are only weakly deformed and that strain is accumulated by fragmentation of microlithons by newly formed shear zones, by shearing in the micron-thick zones and by rearrangement of the microlithons.The scaly clay aggregates can be easily disintegrated into individual microlithons because of the very low tensile strength of the thin shear zones. Analyses of the microlithon size by sieving indicate a power-law distribution model with exponents just above 2. From this, we estimate that only 1 vol % of the scaly clay aggregate is in the shear zones.After a literature review of the hypotheses for scaly clay generation, we present a new model to explain the progressive formation of a self-similar network of anastomosing thin shear zones in a fault relay. The relay provides the necessary boundary conditions for macroscopically continuous deformation. Localization of strain in thin shear zones which are locally dilatant, and precipitation of calcite veins in dilatant shear fractures, evolve into complex microscale re-partitioning of shear, forming new shear zones while the microlithons remain much less deformed internally and the volume proportion of the µm-thick shear zones slowly increases. Grain-scale deformation mechanisms are microfracturing

  6. Biodegradation of crude oil saturated fraction supported on clays.

    PubMed

    Ugochukwu, Uzochukwu C; Jones, Martin D; Head, Ian M; Manning, David A C; Fialips, Claire I

    2014-02-01

    The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.

  7. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.

    PubMed

    da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares

    2016-08-01

    A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Clay-cement suspensions - rheological and functional properties

    NASA Astrophysics Data System (ADS)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  9. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    PubMed Central

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  10. Exfoliation restacking route to Au nanoparticle-clay nanohybrids

    NASA Astrophysics Data System (ADS)

    Paek, Seung-Min; Jang, Jae-Up; Hwang, Seong-Ju; Choy, Jin-Ho

    2006-05-01

    A novel gold-pillared aluminosilicate (Au-PILC) were synthesized with positively charged gold nanoparticles capped by mercaptoammonium and exfoliated silicate layers. Gold nanoparticles were synthesized by NaBH4 reduction of AuCl4- in the presence of N,N,N-Trimethyl (11-mercaptoundecyl)ammonium (HS(CH2)11NMe3+) protecting ligand in an aqueous solution, and purified by dialysis. The resulting positively charged and water-soluble gold nanoparticles were hybridized with exfoliated silicate sheets by electrostatic interaction. The formation of Au clay hybrids could be easily confirmed by the powder X-ray diffraction with the increased basal spacing of clay upon insertion of Au nanoparticles. TEM image clearly revealed that the Au particles with an average size of 4 nm maintain their structure even after intercalation. The Au nanoparticles supported by clay matrix were found to be thermally more stable, suggesting that the Au nanoparticles were homogeneously protected with clay nanoplates. The present synthetic route could be further applicable to various hybrid systems between metal nanoparticles and clays.

  11. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    PubMed

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.

  12. The Alberhill and other clay deposits of Temescal Canyon, Riverside County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    Clay is mined in open pits by several companies in the Alberhill district, and the refractory clays of relatively high alumina sediment are used largely for fire brick. The Alberhill Coal and Clay Company is the largest operator and has produced a little over 2,000,000 tons of clay, of which nearly half was the refractory type. The clay occurs at the contact of the lower Tertiary and the Mesozoic basement complex. The weathered surface of basement rocks includes much clay of high iron and low alumina content, and the better clay occurs in the basal Tertiary sediments. The clay deposits vary rather abruptly in thickness and quality, and only local lenses contain workable deposits. Structural deformation makes dips of 10 to 20 degrees common and the clay strata therefore pitch under excessive overburden in short distances. Extensive deposits of thick alluvial fan deposits cover the clay-bearing strata over most of the area, and add to the overburden problems. The apparent lack of clay deposits of good quality that would total several million tons of ore, and the geological conditions that would make exploration and mining difficult and expensive make this district unpromising.

  13. Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Misra, S. N.; Misra, N. M.

    2018-05-01

    Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.

  14. Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.

    PubMed

    Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin

    2003-10-15

    Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.

  15. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  16. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    PubMed

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  17. Deformation and Fabric in Compacted Clay Soils

    NASA Astrophysics Data System (ADS)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  18. Sectioning Clay Models Makes Anatomy & Development Tangible

    ERIC Educational Resources Information Center

    Howell, Carina Endres; Howell, James Endres

    2010-01-01

    Clay models have proved to be useful teaching aids for many topics in biology that depend on three-dimensional reasoning. Students studying embryonic development struggle to mentally reconstruct the three-dimensional structure of embryos and larvae by observing prepared slides of cross-sectional slices. Students who build clay models of embryos…

  19. Diazonium cation-exchanged clay: an efficient, unfrequented route for making clay/polymer nanocomposites.

    PubMed

    Salmi, Zakaria; Benzarti, Karim; Chehimi, Mohamed M

    2013-11-05

    We describe a simple, off-the-beaten-path strategy for making clay/polymer nanocomposites through tandem diazonium salt interface chemistry and radical photopolymerization. Prior to photopolymerization, sodium montmorillonite (MMT) was ion exchanged with N,N'-dimethylbenzenediazonium cation (DMA) from the tetrafluoroborate salt precursor. DMA acts as a hydrogen donor for benzophenone in solution; this pair of co-initiators permits us to photopolymerize glycidyl methacrylate (GMA) between the lamellae of the diazonium-modified clay, therefore providing intercalated MMT-PGMA nanocomposites with an onset of exfoliation. This work conclusively provides a new approach for bridging reactive and functional polymers to layered nanomaterials via aryl diazonium salts in a simple, fast, efficient cation-exchange approach.

  20. Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture

    NASA Astrophysics Data System (ADS)

    Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor

    2016-11-01

    Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by

  1. The Hefferline Notes: B. F. Skinner's First Public Exposition of His Analysis of Verbal Behavior.

    PubMed

    Knapp, Terry J

    2009-01-01

    B. F. Skinner's first public exposition of his analysis of verbal behavior was the Hefferline Notes (1947a), a written summary of a course Skinner taught at Columbia University during the summer of 1947 just prior to his presentation of the William James Lectures at Harvard University in the fall. The Notes are significant because they display Skinner's analysis as it made the transition from spoken to written form; moreover, they are an effective supplemental source of examples and early approximations for comprehending Skinner's functional verbal operants.

  2. Rattles of Clay.

    ERIC Educational Resources Information Center

    Banning, Donna

    1983-01-01

    Using the rattles of Native American cultures as inspiration, students used pinching, coiling, and slab and molding techniques to form the bodies of rattles and clay pellets for sound. Surface decoration included glazed and unglazed areas as well as added handles, feathers, and leather. (IS)

  3. Final Regulations to Reduce Toxic Air Pollutant Emissions from Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Fact Sheets

    EPA Pesticide Factsheets

    This page contains a February 2003 and September 2015 fact sheet with information regarding the final rules to the NESHAP for Brick and Structural Clay Products Manufacturing and the NESHAP for Clay Ceramics Manufacturing

  4. Processes and controls in swelling anhydritic clay rocks

    NASA Astrophysics Data System (ADS)

    Mutschler, Thomas; Blum, Philipp; Butscher, Christoph

    2015-04-01

    Referring to the swelling of anhydritic clay rocks in tunneling, Leopold Müller-Salzburg noted in the third volume on tunneling of his fundamental text book on rock engineering that "a truly coherent explanation of these phenomena is still owing" (Müller-Salzburg 1978, p. 306). This valuation is still true after more than three decades of research in the field of swelling anhydritic clay rocks. One of the reasons is our limited knowledge of the processes involved in the swelling of such rocks, and of the geological, mineralogical, hydraulic, chemical and mechanical controls of the swelling. In this contribution, a review of processes in swelling anhydritic clay rocks and of associated controls is presented. Also numerical models that aim at simulating the swelling processes and controls are included in this review, and some of the remaining open questions are pointed out. By focusing on process-oriented work in this review, the presentation intends to stimulate further research across disciplines in the field of swelling anhydritic clay rocks to finally get a step further in managing the swelling problem in geotechnical engineering projects. Keywords: swelling; anhydritic clay rocks; review

  5. Boron Enrichment in Martian Clay

    PubMed Central

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  6. INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS

    EPA Science Inventory

    Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...

  7. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Part of the 2003 industrial minerals review. The legislation, production, and consumption of common clay and shale are discussed. The average prices of the material and outlook for the market are provided.

  10. 75 FR 4100 - Affirmative Fair Housing, Marketing (AFHM) Plan-Multifamily Housing, Affirmative Fair Housing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ..., Marketing (AFHM) Plan-Multifamily Housing, Affirmative Fair Housing Marketing (AFHM) Plan-Single Family Housing and Affirmative Fair Housing Marketing (AFHM) Plan- Cooperatives/Condominiums AGENCY: Office of... for marketing to ensure that they meet the Fair Housing guidelines concerning the manner in which...

  11. Radon and thoron in cave dwellings (Yan'an, China)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegand, J.; Feige, S.; Xie Quingling

    2000-04-01

    {sup 222}Rn and {sup 220}Rn concentrations were measured in cave dwellings and brick houses in the region of Yan'an (China) during summer 1997. The underground dwellings are built into Quaternary loess, and all investigated houses are founded on it. The median values of indoor {sup 222}Rn and {sup 220}Rn concentrations are 42 (n = 18) and 77Bq m{sup {minus}3} (n = 15) for brick houses and 92 (n = 23) and 215 (n = 17) Bq m{sup {minus}3} for cave dwellings. To classify the dwellings in respect to their cave-character, the fraction of walls having a direct contact to themore » loess is calculated for each dwelling. While the {sup 222}Rn concentrations are increasing with higher fractions, the {sup 220}Rn concentrations are not correlated with this fraction. On the other hand, due to the short half-life of {sup 220}Rn the distance from the measuring point to the walls is negatively correlated with the {sup 220}Rn concentration, while there is no correlation with the {sup 222}Rn concentration. Therefore, concentric isolines of {sup 220}Rn concentrations showing a strong gradient were detected in cave dwellings. An influence of the ventilation rate is distinct for {sup 222}Rn but weak for {sup 220}Rn. The effective dose rates for {sup 222}Rn and {sup 220}Rn and their progenies are calculated for brick houses (2.7 mSv y{sup {minus}1}), cave dwellings (7.1 mSv y{sup {minus}1}), and for traditional cave dwellings with a bed foundation built with loess (16.7 mSv y{sup {minus}1}). These calculations are based on summer measurements only. It is expected that the true effective dose rates will be significantly higher.« less

  12. Adsorption of hydrogen gas and redox processes in clays.

    PubMed

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  13. Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity

    PubMed Central

    Svensson, Sarah L.; Behroozian, Shekooh; Xu, Wanjing; Surette, Michael G.; Li, Loretta

    2017-01-01

    ABSTRACT Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria, a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus. These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity. PMID:28536287

  14. Investigation of Four Different Laponite Clays as Stabilizers in Pickering Emulsion Polymerization.

    PubMed

    Brunier, Barthélémy; Sheibat-Othman, Nida; Chniguir, Mehdi; Chevalier, Yves; Bourgeat-Lami, Elodie

    2016-06-21

    Clay-armored polymer particles were prepared by emulsion polymerization in the presence of Laponite platelets that adsorb at the surface of latex particles and act as stabilizers during the course of the polymerization. While Laponite RDS clay platelets are most often used, the choice of the type of clay still remains an open issue that is addressed in the present article. Four different grades of Laponite were investigated as stabilizers in the emulsion polymerization of styrene. First, the adsorption isotherms of the clays, on preformed polystyrene particles, were determined by ICP-AES analysis of the residual clay in the aqueous phase. Adsorption of clay depended on the type of clay at low concentrations corresponding to adsorption as a monolayer. Adsorption of clay particles as multilayers was observed for all the grades above a certain concentration under the considered ionic strength (mainly due to the initiator ionic species). The stabilization efficiency of these clays was investigated during the polymerization reaction (free of any other stabilizer). The clays did not have the same effect on stabilization, which was related to differences in their compositions and in their adsorption isotherms. The different grades led to different polymer particles sizes and therefore to different polymerization reaction rates. Laponite RDS and S482 gave similar results, ensuring the best stabilization efficiency and the fastest reaction rate; the number of particles increased as the clay concentration increased. Stabilization with Laponite XLS gave the same particles size and number as the latter two clays at low clay concentrations, but it reached an upper limit in the number of nucleated polymer particles at higher concentrations indicating a decrease of stabilization efficiency at high concentrations. Laponite JS did not ensure a sufficient stability of the polymer particles, as the polymerization results were comparable to a stabilizer-free polymerization system.

  15. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents themore » distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository

  16. Case Report: Human Exposure to Dioxins from Clay

    PubMed Central

    Franzblau, Alfred; Hedgeman, Elizabeth; Chen, Qixuan; Lee, Shih-Yuan; Adriaens, Peter; Demond, Avery; Garabrant, David; Gillespie, Brenda; Hong, Biling; Jolliet, Olivier; Lepkowski, James; Luksemburg, William; Maier, Martha; Wenger, Yvan

    2008-01-01

    Context For the general population, the dominant source of exposure to dioxin-like compounds is food. As part of the University of Michigan Dioxin Exposure Study (UMDES), we measured selected polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (PCBs) in serum of 946 subjects who were a representative sample of the general population in five Michigan counties. Case presentation The total toxic equivalency (TEQ; based on 2005 World Health Organization toxic equivalency factors) of serum from the index case was 211 ppt on a lipid-adjusted basis, which was the highest value observed in the UMDES study population. This subject had no apparent opportunity for exposure to dioxins, except that she had lived on property with soil contaminated with dioxins for almost 30 years, and had been a ceramics hobbyist for > 30 years. Soil from her property and clay that she used for ceramics were both contaminated with dioxins, but the congener patterns differed. Discussion The congener patterns in this subject’s serum, soil, and ceramic clay suggest strongly that the dioxin contamination in clay and not soil was the dominant source of dioxin contamination in her serum. Relevance to public health practice: It appears that ceramic clay, in particular the process of firing clay with unvented kilns, can be a significant nonfood and nonindustrial source of human exposure to dioxins among ceramics hobbyists. The extent of human exposure from ceramic clay is unclear, but it may be widespread. Further work is needed to more precisely characterize the routes of exposure. PMID:18288324

  17. Dynamic properties of composite cemented clay.

    PubMed

    Cai, Yuan-Qiang; Liang, Xu

    2004-03-01

    In this work, the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.

  18. Termites utilise clay to build structural supports and so increase foraging resources.

    PubMed

    Oberst, Sebastian; Lai, Joseph C S; Evans, Theodore A

    2016-02-08

    Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites.

  19. Termites utilise clay to build structural supports and so increase foraging resources

    PubMed Central

    Oberst, Sebastian; Lai, Joseph C. S.; Evans, Theodore A.

    2016-01-01

    Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites. PMID:26854187

  20. Hyperspectral analysis of clay minerals

    NASA Astrophysics Data System (ADS)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  1. Antibacterial clay against gram-negative antibiotic resistant bacteria.

    PubMed

    Zarate-Reyes, Luis; Lopez-Pacheco, Cynthia; Nieto-Camacho, Antonio; Palacios, Eduardo; Gómez-Vidales, Virginia; Kaufhold, Stephan; Ufer, Kristian; García Zepeda, Eduardo; Cervini-Silva, Javiera

    2018-01-15

    Antibiotic resistant bacteria persist throughout the world because they have evolved the ability to express various defense mechanisms to cope with antibiotics and the immune system; thus, low-cost strategies for the treatment of these bacteria are needed, such as the usage of environmental minerals. This paper reports the antimicrobial properties of a clay collected from Brunnenberg, Germany, that is composed of ferroan saponite with admixtures of quartz, feldspar and calcite as well as exposed or hidden (layered at inner regions) nano Fe(0). Based on the growth curves (log phase) of six antibiotic resistant bacteria (4 gram-negative and 2 gram-positive), we concluded that the clay acted as a bacteriostat; however, the clay was only active against the gram-negative bacteria (except for resilient Klebsiella pneumonia). The bacteriostatic mode of action was evidenced by the initial lack of Colony Forming Units on agar plates with growth registered afterward, certainly after 24h, and can be explained because interactions between membrane lipopolysaccharides and the siloxane surfaces of the clay. Labile or bioavailable Fe in the clay (extracted by EDTA or DFO-B) induced the quantitative production of HO as well as oxidative stress, which, nevertheless, did not account for by its bacteriostatic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Retention and loss of water extractable carbon in soils: effect of clay properties.

    PubMed

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  3. Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity.

    PubMed

    Svensson, Sarah L; Behroozian, Shekooh; Xu, Wanjing; Surette, Michael G; Li, Loretta; Davies, Julian

    2017-05-23

    Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria , a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity. IMPORTANCE Identifying and characterizing the resident microbial populations (bacteria, viruses, protozoa, and fungi) is key to understanding the ecology, chemistry, and homeostasis of virtually all sites on Earth. The Kisameet Bay deposit in British Columbia, Canada, holds a novel glacial clay with a history of medicinal use by local indigenous people. We previously showed that it has potent activity against a variety of antibiotic-resistant bacteria, suggesting it could complement our dwindling arsenal of antibiotics. Here, we have characterized the microbiome of this deposit to gain insight

  4. Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite

    NASA Astrophysics Data System (ADS)

    Paliwal, Bhasker; Lawrimore, William B.; Chandler, Mei Q.; Horstemeyer, Mark F.

    2017-05-01

    We study interfacial debonding of several representative structures of polyvinyl alcohol (PVA)/pyrophillite-clay systems - both gallery-interface (polymer/clay interface in the interlayer region containing polymer between clay layers stacked parallel to each other) and matrix-interphase (polymer/clay interphase-region when individual clay layers are well separated and dispersed in the polymer matrix) - using molecular dynamics simulations, while explicitly accounting for shearing/sliding (i.e. Mode-II) deformation mode. Ten nanocomposite geometries (five 2-D periodic structures for tension and five 1-D periodic structures for shearing) were constructed to quantify the structure-property relations by varying the number density of polymer chains, length of polymer chains and model dimensions related to the interface deformation. The results were subsequently mapped into a cohesive traction-separation law, including evaluation of peak traction and work of separation that are used to characterise the interface load transfer for larger length scale micromechanical models. Results suggest that under a crack nucleation opening mode (i.e. Mode-I), the matrix-interphase exhibits noticeably greater strength and a greater work of separation compared to the gallery-interface; however, they were similar under the shearing/sliding mode of deformation. When compared to shearing/sliding, the tensile peak opening mode stresses were considerably greater but the displacement at the peak stress, the displacement at the final failure and the work of separation were considerably lower. Results also suggest that PVA/clay nanocomposites with higher degree of exfoliation compared with nanocomposites with higher clay-intercalation can potentially display higher strength under tension-dominated loading for a given clay volume fraction.

  5. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressuremore » is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at

  6. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    PubMed

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  8. Rheological properties of purified illite clays in glycerol/water suspensions

    NASA Astrophysics Data System (ADS)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction < 2 μm and glycerol/water suspensions were investigated. Carbonates were removed by dissolution in hydrochloric and citric acids and other non-clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  9. Mössbauer Spectra of Clays and Ceramics

    NASA Astrophysics Data System (ADS)

    Wagner, F. E.; Wagner, U.

    2004-06-01

    The physical, chemical and mineralogical aspects of the use of Mössbauer spectroscopy in studies of clay-based ceramics are described. Mössbauer spectra of pottery clays fired under oxidising, reducing and changing conditions are explained, and the possibilities of using Mössbauer spectra to derive information on the firing temperatures and the kiln atmosphere during firing in antiquity are discussed and illustrated by examples.

  10. Characterization of clay scales forming in Philippine geothermal wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, A.G.; Cardile, C.M.

    1989-01-01

    Smectite scales occur in 24 out of the 36 blocked wells located in Tongonan, Palinpinon and Bacon-Manito. These comprise 2-85% of the well scales and form at depths of 33-2620 m, where measured and fluid inclusion temperatures are 40-320{sup 0}C. Most, however, occur below the production casing show where temperatures are {ge}230{sup 0}C, often at depths coinciding with aquifers. The clay scales are compositionally and structurally different from the bentonite used in drilling, which is essentially sodium-rich montmorillonite. The clay deposits are expanding, generally disordered, and combine the characteristics of a montmorillonite, saponite and vermiculite in terms of reaction tomore » cationic exchange treatments, structure and composition. Six types of clay scales are identified, but the predominant one, comprising 60-100% of the clay deposits in a well, is Mg- and Fe-rich and referred to as a vermiculitic species. The crystallinity, degree of disorder, textures, optical characteristics, structure and relative amounts of structural Al, Mg and Fe vary with time, temperature and fluid composition, but not with depth and measured pressure. Despite its variance from bentonite characteristics, one of the dominant suggested mechanisms of clay scale formation uses the drilling mud in the well as a substrate, from which the Mg- and Fe-rich clay evolves.« less

  11. Fluoride content of clay minerals and argillaceous earth materials

    USGS Publications Warehouse

    Thomas, Josephus; Glass, H.D.; White, W.A.; Trandel, R.M.

    1977-01-01

    A reliable method, utilizing a fluoride ion-selective electrode, is described for the determination of fluoride in clays and shales. Interference by aluminum and iron is minimal. The reproducibility of the method is about ±5% at different levels of fluoride concentration.Data are presented for various clay minerals and for the <2-µm fractions of marine and nonmarine clays and shales. Fluoride values range from 44 ppm (0.0044%) for nontronite from Colfax, WA, to 51,800 ppm (5.18%) for hectorite from Hector, CA. In general, clays formed under hydrothermal conditions are relatively high in fluoride content, provided the hydrothermal waters are high in fluoride content. Besides hectorite, dickite from Ouray, CO, was found to contain more than 50 times as much fluoride (6700 ppm) as highly crystalline geode kaolinite (125 ppm). The clay stratum immediately overlying a fluorite mineralized zone in southern Illinois was found to have a higher fluoride content than the same stratum in a nonmineralized zone approximately 1 mile away. Nonmarine shales in contact with Australian coals were found to be lower in fluoride content than were marine shales in contact with Illinois coals.It is believed that, in certain instances, peak shifts on DTA curves of similar clay minerals are the result of significant differences in their fluoride content.

  12. Degradation of Nylon-6/Clay Nanocomposites in NO(x)

    NASA Astrophysics Data System (ADS)

    Shelley, J. S.; Devries, K. L.

    2000-04-01

    Nylon-6 is an important engineering polymer that, in its fully spherulitic (bulk) form, has many applications in gears, rollers, and other long life cycle components. In 1993, Toyota commercialized a nylon-6/clay nanocomposite out of which it produced the timing belt cover for the 1993 Camry. Although these hybrid nanocomposites show significant improvements in their mechanical response characteristics, including yield strength and heat distortion temperature, little is known about the degradation of these properties due to environmental pollutants like NOx. Nylon-6 fibers are severely degraded by interaction with NOx and other pollutants, showing a strong synergism between applied load and environmental degradation. While the nanocomposites show a significant reduction in permeability of gases and water due to the incorporation of lamellar clay, their susceptibility to non-diffusional mechano-chemical degradation is unknown. The fracture toughness of these nylon-6/day nanocomposites increases, not as a function of clay content, but as a function of the volume of nylon-6 polymer chains influenced by the clay lamellar surfaces. Both the clay and the constrained volume offer the nanocomposites some protection from the deleterious effects of NOx. The time-to-failure at a given stress intensity factor as a function of clay content and constrained volume will be discussed along with fracture toughness of the materials.

  13. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  14. Characterisation of the wall-slip during extrusion of heavy-clay products

    NASA Astrophysics Data System (ADS)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  15. The clays of the United States east of the Mississippi River

    USGS Publications Warehouse

    Ries, Henrich

    1903-01-01

    Since clays vary mineralogically they vary also chemically, but the plasticity may remain the same through a wide range of chemical composition, and this property is evidently not dependent on the chemical composition alone, but is due rather to some physical cause. The plasticity may be destroyed by heating the clay to a sufficiently high temperature to drive off the chemically combined water. Although varying in their mineral composition, most clays are supposed to contain more or less of the mineral kaolinite (a hydrated silicate of alumina), which is commonly referred to as the clay base or clay substance. The adoption of the latter term has probably arisen from the fact that many have 'considered this mineral to be the cause of plasticity, an idea now known to be somewhat incorrect, because some of the most plastic clays contain but small quantities of kaolinite, and vice versa. 

  16. Geology and Refractory Clay Deposits of the Haldeman and Wrigley Quadrangles, Kentucky

    USGS Publications Warehouse

    Patterson, Sam H.; Hosterman, John W.; Huddle, John Warfield

    1962-01-01

    The Haldeman and Wrigley 7th-minute quadrangles are near the western edge of the eastern Kentucky coal field and cover an area of approximately 117 square miles in parts of Carter, Rowan, Elliott, and Morgan Counties, Ky. The rocks exposed in the two quadrangles are of Early and Late Mississippian and Early and Middle Pennsylvanian age. The Mississippian rocks are composed of the thick Brodhead formation, which consists of siltstone and shale, and eleven thin marine limestone and shale formations, having an aggregate thickness of about 150 feet. The Lee and Breathitt formations, of Pennsylvanian age, consist of sandstone, siltstone, and shale; they also contain thin beds of coal and several beds of underclay, including the economically important Olive Hill clay bed of Crider, 1913. Pennsylvanian rocks include beds of both continental and marine origin. The eleven thin Mississippian formations and the upper-most part of the thick Brodhead formation are truncated by a prominent unconformity on which rocks of Pennsylvanian age rest. The rocks occupy a region of gentle dips between the Cincinnati arch and the Appalachian Mountains. Refractory clay deposits are in the Olive Hill clay bed, which occurs in the lower part of the Lee formation. The Olive Hill clay bed is discontinuous and consists of a series of irregularly shaped lenses. The bed is approximately two-thirds semifiint clay and one-third flint clay, and it contains minor amounts of plastic clay. Some of the flint clay is nearly pure kaolinite, but the semi flint and plastic clay consists of mixtures of kaolinite, illite, and mixed-layer clay minerals. The structure of the kaolinite ranges from highly crystalline to very poorly crystalline 'fireclay' type. The degree of crystallinity of the kaolinite and the hardness of the clay vary inversely with the amount of illite and mixed-layer clay minerals present. The nearly pure kaolinite is believed to have formed by the removal of alkalies and some silica fram

  17. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  18. Clay Mineral Crystal Structure Tied to Composition

    NASA Image and Video Library

    2016-12-13

    This diagram illustrates how the dimensions of clay minerals' crystal structure are affected by which ions are present in the composition of the mineral. Different clay minerals were identified this way at two sites in Mars' Gale Crater: "Murray Buttes" and "Yellowknife Bay." In otherwise identical clay minerals, a composition that includes aluminum and ferric iron ions (red dots) results in slightly smaller crystalline unit cells than one that instead includes magnesium and ferrous iron ions (green dots). Ferric iron is more highly oxidized than ferrous iron. Crystalline cell units are the basic repeating building blocks that define minerals. X-ray diffraction analysis, a capability of the Chemistry and Mineralogy (CheMin) instrument on NASA's Curiosity Mars rover, identifies minerals from their crystalline structure. http://photojournal.jpl.nasa.gov/catalog/PIA21148

  19. Clays of Ladon Basin

    NASA Image and Video Library

    2018-01-23

    Ladon Basin was a large impact structure that was filled in by the deposits from Ladon Valles, a major ancient river on Mars as seen in this image from NASA's Mars Reconnaissance Orbiter (MRO). These wet sediments were altered into minerals such as various clay minerals. Clays imply chemistry that may have been favorable for life on ancient Mars, if anything lived there, so this could be a good spot for future exploration by rovers and perhaps return of samples to Earth. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 52.1 centimeters (20.5 inches) per pixel (with 2 x 2 binning); objects on the order of 156 centimeters (61.4 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22183

  20. Investigating the Influence of Clay Mineralogy on Stream Bank Erodibility

    NASA Astrophysics Data System (ADS)

    Ambers, R. K.; Stine, M. B.

    2005-12-01

    Soil scientists concerned with erosion of agricultural fields and geotechnical engineers concerned with the mechanical behavior of soils under different conditions have both examined the role of clay mineralogy in controlling soil/sediment properties. Fluvial geomorphologists studying stream channel erosion and stability have focused more on the effects of particle-size distribution, vegetation and rooting. The clay mineralogy of bed and bank sediment has the potential to influence cohesiveness and erodibility, however. The goal of this study is to determine the influence of clay mineralogy on the erodibility of natural stream bank sediment, utilizing techniques drawn from pedology and soil mechanics. Bank samples were collected from eleven sites in small watersheds in central and western Virginia. To obtain sediment containing a range of different clay minerals, watersheds with different types of bedrock were chosen for sampling. Rock types included mafic to felsic metamorphic and igneous rocks, shale, sandstone, and limestone. Where stream bank materials were clearly stratified, different layers were sampled separately. X-ray diffraction of the clay-fraction of the sediment indicates the presence of kaolinite, illite, vermiculite, and mixed-layer clay minerals in various abundances in the different samples. Clay content is 9-46%, as determined by the hydrometer method, and textures range from silty clay and silt loam to clay loam and sandy loam. Organic mater contents range from 1-5% by the loss-on-ignition method. Bulk density of intact sediment samples averages 1.5 g/cc. Liquid limits range from 23-41 with one sample having a value of 65; plasticity indices range from 15-22. While these tests predict that the samples would show a range of mechanical behaviors, the channel morphology at the sampling sites was not strikingly different, all having steep cut banks eroded primarily by scour with no evidence of mass movement and most having a width/depth ratio around

  1. February 2011 sensitive clay landslides in eastern Turkey

    NASA Astrophysics Data System (ADS)

    Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Fredin, O.; Schlunegger, F.

    2016-12-01

    The Çöllolar open pit mine is situated in the northwestern sector of the Elbistan basin, which is an intramontane basin located at a mean elevation of about 1200 m in the eastern Turkey. The basement rock in the basin is karstic limestone, which is overlain by a thick layer of clay (>100 m), followed by 20-50 m thick lignite series that is overlain by the 20-50 m thick gyttja sequence. These deposits are overlain by Quaternary deposits, comprising the top surfaces of the terraces of the Hurman River, which drains the surface and ground water from the surrounding hills to the northeast towards the center of the Elbistan basin. The lignite series in the basin has been excavated since early 1970's. In February 2011, two landslides in which 10 workers were killed, occurred in the Çöllolar mine. Of the two landslides, the 2nd and largest which covers an area of ca. 2.3 km2, was caused by the collapse of the northeastern wall of the open-pit mine. The failure was made of successive rearward collapses with the debris flowing into the open-pit. In this study, we focus on the sensitivity of the clays within the Quaternary deposits that seems led to instability and the trigger of the landslides based on the flow style of the movement and nature of the failure. To reveal these factors, we employed six boreholes and collected 64 undisturbed, 41 disturbed and 10 surface samples for the sedimentological and geotechnical analysis. Our results from this study show that Quaternary deposits are heterogeneous and have variable clay content. Mineralogically, most of these clays belong to the smectite group with high swelling potential. They are high plastic clays with high consolidation ratio. They have high shear and remolded shear strengths, thus low to medium sensitivity. Their sensitivity increases dramatically with increasing water content. During our analysis, we encountered a soft clay layer, which showed an over consolidation ratio of 10 and a strain softening response

  2. Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+.

    PubMed

    Aggarwal, Vaneet; Li, Hui; Boyd, Stephen A; Teppen, Brian J

    2006-02-01

    Trichloroethene (TCE) is one of the most common pollutants in groundwater, and Cs+ can be a cocontaminant at nuclear facilities. Smectite clays have large surface areas, are common in soils, have high affinities for some organic contaminants, and hence can potentially influence the transport of organic pollutants entering soils and sediments. The exchangeable cations present near smectite clay surfaces can radically influence the sorption of organic pollutants by soil clays. This research was undertaken to determine the effect of Cs+, and other common interlayer cations, such as K+ and Ca2+, on the sorption of TCE by a reference smectite clay saponite. Cs-saturated clay sorbed the most TCE, up to 3500 mg/kg, while Ca-saturated smectite sorbed the least. We hypothesize that the stronger sorption of TCE by the Cs-smectite can be attributed to the lower hydration energy and hence smaller hydrated radius of Cs+, which expands the lateral clay surface domains available for sorption. Also, Cs-smectite interlayers are only one or two water layers thick, which may drive capillary condensation of TCE. Our results implicate enhanced retention of TCE in aquifer materials containing smectites accompanied by Cs+ cocontamination.

  3. Moving Along: Sporting Clay.

    ERIC Educational Resources Information Center

    Hiller, Peter

    2002-01-01

    Presents a junior high school student art project where three-dimensional art sculptures of surfing, snow boarding, or dirt biking were created. Discusses how the students created their three-dimensional works of art using a clay-slab technique. (CMK)

  4. [Study on the kinetics of organo-clay removing red tide organisms].

    PubMed

    Wu, Ping; Yu, Zhi-ming

    2007-07-01

    The kinetics of red tide organisms (Heterosigma akashiwo and Scrippsiella trochoidea) coagulation with clays modified by dialkyl-polyoxyethenyl quaternary ammonium compound (DPQAC) was studied using spectrophotometer and fluorometry, and the effects of different kinds and concentrations of clays, the second component DPQAC added in clays and pH on the coagulation rate were examined. When using spectrophotometer, the coagulation kinetics of red tide organism coagulation with organo-clays is well fit for the bimolecular reaction model; while using fluorometry, it is fit for the hyperbola model much better. Moreover, the results also prove that using fluorometry can avoid the great change of permeance efficiency caused by clays' sedimentation when using spectrophotometer, which has availably avoided the influence of clays' sedimentation and reflected the essential of algal coagulation and sedimentation well and truly. The results of two studying methods show that the coagulation rate is more rapid in the system of kaolin than in that of bentonite; increasing the concentration of clays and DPQAC and increasing pH all can accelerate coagulation, and among those increasing the concentration of DPQAC is the most efficient way of increasing the removal efficiency and coagulation rate.

  5. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    PubMed

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  6. Clay Fabric of Gassy Submarine Sediments

    DTIC Science & Technology

    1991-01-01

    28°54󈧑 ° 89°30󈧎" 38 125 11.9 39 559 81 *The Lambert coordinates of Core B- I A: X = 2,594,001; Y = 82,970. The Lambert coordinates of Core B-2... X = 2,585,823: Y = 90,832. Location fluid before critical point drying under equivalent in situ down- hole pressure, was constructed. The detailed...it appeared that Clay Fabric vs. Degassing ime with a specimen size of 7 x 7 x 20 mm the clay fabric in the central portion of a specimen will not

  7. Modification and characterization of montmorillonite clay for the extraction of zearalenone

    NASA Astrophysics Data System (ADS)

    Hue, Kerri-Ann Alicia

    Mycotoxins are secondary metabolites of organisms belonging to the fungus kingdom. The cost associated with mycotoxin contamination in the USA and Canada is approximately US $5 billion. Zearalenone (ZEN), a resorcylic acid lactone, is produced by various members of the genus Fusarium . These fungi often colonize a variety of foods and feedstuffs including, corn, sorghum, wheat, oats, barley, and other cereal grains. This metabolite has estrogenic effects in farm animals with pigs being the most sensitive. ZEN induces hyperestrogenism and can cause infertility, reduced sex drive, fetal mummification, and abortions. Clays have successfully been used in the animal feed industry as an adsorbent and binders for certain small, water soluble mycotoxins. These mycotoxins are attracted to the electrical imbalance between the layers of the clays caused by isomorphic substitution of structural atoms. The mycotoxins are sequestered in the clay layers and pass harmlessly through the animal. However, ZEN is water insoluble and is not extracted easily with aluminosilicate clays. Therefore the modification of hydrated sodium calcium aluminosilicate (HSCAS) clays with organic cations has been proposed to render the clays hydrophobic and increase the ZEN binding capacity. The goal of this study was to develop a safe and cost effective organophilic material able to bind and extract zearalenone, to investigate the factors most important to extraction, and to investigate the fundamental properties between the clay-surfactant-mycotoxin systems that lead to extraction. The clay was modified by cation exchange reactions with tricaprylmethylammonium (TCMA) chloride and generic corn oil. The organophilic clays were then characterized using XRD, FTIR, and TGA analytical techniques. These techniques were used to determine the change in fundamental clay properties that would lead to the extraction of ZEN. Desorption studies were performed to determine any increase in toxicity that might be

  8. The Clay Shoveler's Fracture: A Case Report and Review of the Literature.

    PubMed

    Posthuma de Boer, Jantine; van Wulfften Palthe, Alexander F Y; Stadhouder, Agnita; Bloemers, Frank W

    2016-09-01

    A clay-shoveler's fracture is a very rarely occurring stress-type avulsion fracture of the lower cervical or upper thoracic spinous processes owing its name to the clay shovelers of past times. Currently, this type of injury is mainly encountered in individuals practicing sports involving rotational movements of the upper spine. We present a case of a man sustaining a clay-shoveler's injury during his work in a horse-riding school. Treatment consisted of a period of rest and analgesics, followed by mobilization as was tolerated. We give a brief historical account of clay shoveler's fractures. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Clay-shoveler's fractures are frequently overlooked due to their rareness; however, they have specific clinical features that should alert an attending physician to set the correct diagnosis. This report describes a typical case of a clay-shoveler's fracture, relates to the historical entity of clay-shoveler's fractures, and summarizes existing literature on this topic. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Learning of Cross-Sectional Anatomy Using Clay Models

    ERIC Educational Resources Information Center

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  10. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  11. Sorption-desorption behavior of PCP on soil organic matter and clay minerals.

    PubMed

    Pu, Xunchi; Cutright, Teresa J

    2006-08-01

    Pentachlorophenol (PCP) contamination is a severe environmental problem due to its widespread occurrence, toxicity and recalcitrance. In order to gain a better understanding of the fate of PCP in soils, the role of the soil organic matter (SOM) and clay minerals in the PCP sorption-desorption was studied on two bulk field soils, two subsoils (i.e., SOM or clay-removed soil) and two artificial soils. The two field soils used were a silty loam from New Mexico (NM) containing 10% clay and a sandy-clay-loam from Colombia (CO) South America comprised of 18% clay minerals. The bulk CO soil containing kaolinite sorbed significantly less PCP than the NM soil. All soils depicted an apparent hysteresis during sorption. The CO bulk and subsoils desorbed 14-20% and 15-26% of the sorbed PCP respectively whereas the NM bulk and subsoils desorbed only 4-12% and 5-16%, respectively. Experiments conducted with pure clay and artificial soils indicated that the expandable clay minerals were key sorbent material. Additional studies to investigate the interaction between SOM and clay minerals are needed to fully understand sorptive phenomena.

  12. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jove-Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn Edward

    Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barriermore » system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D

  13. Potential bioavailability of mercury in humus-coated clay minerals.

    PubMed

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils. Copyright © 2015. Published by Elsevier B.V.

  14. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    NASA Astrophysics Data System (ADS)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  15. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    PubMed Central

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  16. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  17. Clay mineralogy of weathering profiles from the Carolina Piedmont.

    USGS Publications Warehouse

    Loferski, P.J.

    1981-01-01

    Saprolite profiles (12) that formed over various crystalline rocks from the Charlotte 1o X 2o quadrangle showed overall similarity in their clay mineralogy to depths of 6 to 45 m indicating control by weathering processes rather than by rock type. Most saprolite contained 10-25% clay, and ranged 3 to 70%. Kaolinite and halloysite composed = or >75% of the clay fraction of most samples. The ratio kaolinite:halloysite ranged widely, from 95% kaolinite to 90% halloysite, independent of depth. Clay-size mica was present in all profiles, and ranged 5-75% over a sericite schist. Mixed-layer mica-smectite and mica-vermiculite were subordinate; discrete smectite and vermiculite were rare. The abundance of halloysite indicates a continuously humid environment since the time of profile formation, because of the rapidity with which halloysite dehydrates irreversibly. -R.S.M.

  18. Thoron (220Rn) in the indoor environment and work places

    NASA Astrophysics Data System (ADS)

    Ramachandran, T. V.; Sahoo, B. K.

    2009-08-01

    Ever since studies on uranium miners established the presence of a positive risk coefficient for the occurrence of lung cancer in miners exposed to elevated levels of 222Rn and its progeny, there was a great upsurge of interest in the measurement of 222Rn in the environment. Subsequently, considerable data is being generated on the levels of 222Rn in the environment across the worlds and is being periodically reported by UNSCEAR reports. In contrast to this, data pertaining to 220Rn in indoors and workplace environment is scaree due to the genral perception that its levels are negligible due to its shorter half life, and subsequently its contribution to the total inhalation dose is ignored, in the presence of other significant sources of natural radiation. This may not be true. Globally many locations have higher levels of natural background radiation due to elevated levels of primordial radio nuclides in the soil and their decay products like radon (222Rn), and thoron (220Rn) in the environment. Of late, technologically enhanced naturally occurring radioactive material has also contributed to the burden of background radiation. It is estimated that inhalation of 222Rn, 220Rn and their short lived progenies contribute more than 54% of the total natural background radiation dose received by the general population. 220Rn problem exists in industries which use thorium nitrate. Including India, lamps using thoriated gas mantles are still being used for indoor and outdoor lighting and by hawkers in rural as well as urban areas. Considering the fact that large amount of thorium nitrate is being handled by these industries, contribution to the inhalation dose of workers from 220Rn gas emanated and build up of the progeny in ambient air may also be quite significant. In this paper current status of 220Rn levels in the indoor environment and workplaces as well as in other industries where large amount of 232Th is being handled is being summarized. Methods of measurement and

  19. The effect of clay on the dissolution of nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Lemmens, K.

    2001-09-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  20. ON THE GEOCHEMISTRY OF NIOBIUM AND TANTALUM IN CLAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachadzhanov, D.N.

    1963-10-01

    With the aid of the spectral method with a preliminary enrichment in tannin, the niobium and tantalum content was determined in some humid and arid clays of the Russian platform. The investigated samples were composed of 354 specimens. The average content of niobium in humid clays is 0.0020%, of tantalum 0.00024% (the Nb/Ta ratio is 8.4) and in arid clays is respectively the content of niobium 0.00133% and the content of tantalum 0.00009% (the Nb/Ta ratio is 14.8). The average value of the content of niobium content for all studied clays is 0.00183% and of the tantalum content 0.00020%, themore » Nb/Ta ratio being 9.1. In clays an interconnection of niobium with tantalum, as well as with aluminium, titanium, zirconium, and hafnium was observed. However, on the background of this connection some separation of the named elements is noted. A tendency for the Nb/Ta ratio shift from the region of matter removal towards the center of the marine basin was observed. The study of niobium and tantalum distribution over different clay fractions showed that one part of elements is connected with zircon and titanium minerals in aleuosand fraction (0.1-- 0.01 mm). Another, approximately similar part is contained in the proper clay fraction (<0. 01 mm), the tantalum somewhat more concentrating in the aleurosand fraction and niobium in the clay fraction. (P.C.H.)« less

  1. Shear Strength of Remoulding Clay Samples Using Different Methods of Moulding

    NASA Astrophysics Data System (ADS)

    Norhaliza, W.; Ismail, B.; Azhar, A. T. S.; Nurul, N. J.

    2016-07-01

    Shear strength for clay soil was required to determine the soil stability. Clay was known as a soil with complex natural formations and very difficult to obtain undisturbed samples at the site. The aim of this paper was to determine the unconfined shear strength of remoulded clay on different methods in moulding samples which were proctor compaction, hand operated soil compacter and miniature mould methods. All the samples were remoulded with the same optimum moisture content (OMC) and density that were 18% and 1880 kg/m3 respectively. The unconfined shear strength results of remoulding clay soils for proctor compaction method was 289.56kPa with the strain 4.8%, hand operated method was 261.66kPa with the strain 4.4% and miniature mould method was 247.52kPa with the strain 3.9%. Based on the proctor compaction method, the reduction percentage of unconfined shear strength of remoulded clay soil of hand operated method was 9.66%, and for miniature mould method was 14.52%. Thus, because there was no significant difference of reduction percentage of unconfined shear strength between three different methods, so it can be concluded that remoulding clay by hand operated method and miniature mould method were accepted and suggested to perform remoulding clay samples by other future researcher. However for comparison, the hand operated method was more suitable to form remoulded clay sample in term of easiness, saving time and less energy for unconfined shear strength determination purposes.

  2. Effects of leachate concentration on the integrity of solidified clay liners.

    PubMed

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  3. Biodegradable Pectin/clay Aerogels

    USDA-ARS?s Scientific Manuscript database

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  4. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  5. Expanded clay hot mix study : final report: part I.

    DOT National Transportation Integrated Search

    1969-04-01

    This is part I of a two part final report on expanded clay hot mix to: (1) evaluate the use of various expanded clay bituminous mixtures under high traffic counts, (2) accumulate through experience testing, suitable information on the physical proper...

  6. Primordial clays on Mars formed beneath a steam or supercritical atmosphere.

    PubMed

    Cannon, Kevin M; Parman, Stephen W; Mustard, John F

    2017-12-06

    On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars' primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.

  7. Primordial clays on Mars formed beneath a steam or supercritical atmosphere

    NASA Astrophysics Data System (ADS)

    Cannon, Kevin M.; Parman, Stephen W.; Mustard, John F.

    2017-12-01

    On Mars, clay minerals are widespread in terrains that date back to the Noachian period (4.1 billion to 3.7 billion years ago). It is thought that the Martian basaltic crust reacted with liquid water during this time to form hydrated clay minerals. Here we propose, however, that a substantial proportion of these clays was formed when Mars’ primary crust reacted with a dense steam or supercritical atmosphere of water and carbon dioxide that was outgassed during magma ocean cooling. We present experimental evidence that shows rapid clay formation under conditions that would have been present at the base of such an atmosphere and also deeper in the porous crust. Furthermore, we explore the fate of a primordial clay-rich layer with the help of a parameterized crustal evolution model; we find that the primordial clay is locally disrupted by impacts and buried by impact-ejected material and by erupted volcanic material, but that it survives as a mostly coherent layer at depth, with limited surface exposures. These exposures are similar to those observed in remotely sensed orbital data from Mars. Our results can explain the present distribution of many clays on Mars, and the anomalously low density of the Martian crust in comparison with expectations.

  8. Unraveling the antibacterial mode of action of a clay from the Colombian Amazon.

    PubMed

    Londono, Sandra Carolina; Williams, Lynda B

    2016-04-01

    Natural antibacterial clays can inhibit growth of human pathogens; therefore, understanding the antibacterial mode of action may lead to new applications for health. The antibacterial modes of action have shown differences based on mineralogical constraints. Here we investigate a natural clay from the Colombian Amazon (AMZ) known to the Uitoto natives as a healing clay. The physical and chemical properties of the AMZ clay were compared to standard reference materials: smectite (SWy-1) and kaolinite (API #5) that represent the major minerals in AMZ. We tested model Gram-negative (Escherichia coli ATCC #25922) and Gram-positive (Bacillus subtilis ATCC #6633) bacteria to assess the clay's antibacterial effectiveness against different bacterial types. The chemical and physical changes in the microbes were examined using bioimaging and mass spectrometry of clay digests and aqueous leachates. Results indicate that a single dose of AMZ clay (250 mg/mL) induced a 4-6 order of magnitude reduction in cell viability, unlike the reference clays that did not impact bacterial survival. AMZ clay possesses a relatively high specific surface area (51.23 m(2)/g) and much higher total surface area (278.82 m(2)/g) than the reference clays. In aqueous suspensions (50 mg clay/mL water), soluble metals are released and the minerals buffer fluid pH between 4.1 and 4.5. We propose that the clay facilitates chemical interactions detrimental to bacteria by absorbing nutrients (e.g., Mg, P) and potentially supplying metals (e.g., Al) toxic to bacteria. This study demonstrates that native traditional knowledge can direct scientific studies.

  9. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  10. Clay-starch combination for micropollutants removal from wastewater treatment plant effluent.

    PubMed

    Mohd Amin, M F; Heijman, S G J; Rietveld, L C

    2016-01-01

    In this study, a new, more effective and cost-effective treatment alternative is investigated for the removal of pharmaceuticals from wastewater treatment plant effluent (WWTP-eff). The potential of combining clay with biodegradable polymeric flocculants is further highlighted. Flocculation is viewed as the best method to get the optimum outcome from clay. In addition, flocculation with cationic starch increases the biodegradability and cost of the treatment. Clay is naturally abundantly available and relatively inexpensive compared to conventional adsorbents. Experimental studies were carried out with existing naturally occurring pharmaceutical concentrations found and measured in WWTP-eff with atrazine spiking for comparison between the demineralised water and WWTP-eff matrix. Around 70% of the total measured pharmaceutical compounds were removable by the clay-starch combination. The effect of clay with and without starch addition was also highlighted.

  11. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  12. Effects of clay dispersion on aquifer storage and recovery in coastal aquifers

    USGS Publications Warehouse

    Konikow, Leonard F.; August, L.L.; Voss, C.I.

    2001-01-01

    Cyclic injection, storage, and withdrawal of freshwater in brackish aquifers is a form of aquifer storage and recovery (ASR) that can beneficially supplement water supplies in coastal areas. A 1970s field experiment in Norfolk, Virginia, showed that clay dispersion in the unconsolidated sedimentary aquifer occurred because of cation exchange on clay minerals as freshwater displaced brackish formation water. Migration of interstitial clay particles clogged pores, reduced permeability, and decreased recovery efficiency, but a calcium preflush was found to reduce clay dispersion and lead to a higher recovery efficiency. Column experiments were performed in this study to quantify the relations between permeability changes and clay mineralogy, clay content, and initial water salinity. The results of these experiments indicate that dispersion of montmorillonite clay is a primary contributor to formation damage. The reduction in permeability by clay dispersion may be expressed as a linear function of chloride content. Incorporating these simple functions into a radial, cross-sectional, variable-density, ground-water flow and transport model yielded a satisfactory simulation of the Norfolk field test - and represented an improvement over the model that ignored changes in permeability. This type of model offers a useful planning and design tool for ASR operations in coastal clastic aquifer systems.

  13. Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  14. Semianalytical solutions for transport in aquifer and fractured clay matrix system

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2015-09-01

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of semianalytical solutions is derived based on specific initial and boundary conditions as well as various source functions. The analytical model solutions are evaluated by numerical Laplace inverse transformation and analytical Fourier inverse transformation. The model solutions can be used to study the fate and transport in a three-dimensional spatial domain in which a nonaqueous phase liquid exists as a pool atop a fractured low-permeability clay layer. The nonaqueous phase liquid gradually dissolves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the fractures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured clay formation.

  15. Chlorination of alumina in kaolinitic clay

    NASA Astrophysics Data System (ADS)

    Grob, B.; Richarz, W.

    1984-09-01

    The chlorination of alumina in kaolinitic clay with Cl2 and CO gas mixtures was studied gravimetrically. The effects of the calcination method and of NaCl addition on the reactivity of the clay were examined. Fast reaction rates were achieved only with samples previously exposed to a sulfating treatment. Optimum conditions, with maximum yield and selectivity to A1C13 and minimum SiO2 conversion, were found between 770 and 970 K. At higher temperatures the SiCl4 formed poisons the reactive alumina surface by selective chemisorption with a marked decrease of the reaction rate.

  16. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    PubMed

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  17. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston

    NASA Astrophysics Data System (ADS)

    Shimamoto, Toshihiko; Logan, John M.

    1981-06-01

    The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures

  18. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    NASA Astrophysics Data System (ADS)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    While most magnetic resonance imaging (MRI) applications concern medical research, there is a rapidly increasing number of MRI studies in the field of environmental science and technology. In this presentation, MRI will be introduced from the latter perspective. While many processes in these areas are similar to those addressed in medical applications of MRI, parameters and experimental implementations are often quite different and, in many respects, far more demanding. This hinders direct transfer of existing methods developed for biomedical research, especially when facing the challenging task of obtaining spatially resolved quantitative information. In MRI investigation of soils, clays, and rocks, mainly water signal is detected, similarly to MRI of biological and medical samples. However, a strong variation of water mobility and a wide spread of water spin relaxation properties in these materials make it difficult to use standard MRI approaches. Other significant limitations can be identified as following: T2 relaxation and probe dead time effects; molecular diffusion artifacts; varying dielectric losses and induced currents in conductive samples; limited dynamic range; blurring artifacts accompanying drive for increasing sensitivity and/or imaging speed. Despite these limitations, by combining MRI techniques developed for solid and liquid states and using independent information on relaxation properties of water, interacting with the material of interest, true images of distributions of both water, material and molecular properties in a wide range of concentrations can be obtained. Examples of MRI application will be given in the areas of soil and mineral research where understanding water transport and erosion processes is one of the key challenges. Efforts in developing and adapting MRI approaches to study these kinds of systems will be outlined as well. Extensive studies of clay/water interaction have been carried out in order to provide a quantitative

  19. Field trip guidebook on environmental impact of clays along the upper Texas coast

    NASA Technical Reports Server (NTRS)

    Garcia, Theron D.; Ming, Douglas W.; Tuck, Lisa Kay

    1991-01-01

    The field trip was prepared to provide an opportunity to see first hand some the environmental hazards associated with clays in the Houston, Texas area. Because of the very high clay content in area soils and underlying Beaumont Formation clay, Houston is a fitting location to host the Clay Mineral Society. Examinations were made of (1) expansive soils, (2) subsidence and surface faulting, and (3) a landfill located southeast of Houston at the Gulf Coast Waste Disposal Authority where clay is part of the liner material.

  20. Coupled Heat and Moisture Transport Simulation on the Re-saturation of Engineered Clay Barrier

    NASA Astrophysics Data System (ADS)

    Huang, W. H.; Chuang, Y. F.

    2014-12-01

    Engineered clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation processes of clay barrier, with emphasis on the coupling effects of heat and moisture during the intrusion of groundwater to the repository. A reference bentonite and a locally available clay were adopted in the laboratory program. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures so as to determine the soil water characteristic curves of the two clays at different temperatures. And water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the clay barrier. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. It was found that soil suction decreases as temperature increases, resulting in a reduction in water retention capability. The finite element method was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on the clays. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. Finally, the model was then used to evaluate the effect of clay barrier thickness on the time required for groundwater to penetrate the clay barrier and approach saturation. Due to the variation in clay suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  1. Effects of Fiber Reinforcement on Clay Aerogel Composites

    PubMed Central

    Finlay, Katherine A.; Gawryla, Matthew D.; Schiraldi, David A.

    2015-01-01

    Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol) matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression. PMID:28793515

  2. Clays as possible catalysts for peptide formation in the prebiotic era

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1976-01-01

    From the point of view of prebiotic synthesis, clays might have performed functions of concentration, catalysis, and protection of molecules. The degrees of polymerization obtained, when amino acid adenylates are added to montmorillonite suspensions in water, are much higher than those obtained by polymerization in the absence of such a clay. In addition, they are of a discrete spectrum, usually multiples of 6 or 7, and reach values of up to 40 mers. In the absence of clay a continuous spectrum of degrees of polymerization is obtained, and usually up to 4-6 mers only. Copolymerization in the absence of clays yields mostly random copolymers, in their presence mostly block copolymers are obtained. Optical density measurements show that after adsorption has taken place on the clay, stacking of its layers occurs. Polymerization starts only after these stacked layers have been formed

  3. California Bearing Ratio (CBR) test on stabilization of clay with lime addition

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto; Limbong, M. N.; Oberlyn, S. J.

    2018-02-01

    Clay is a type of soil with particles of certain minerals giving plastic properties when mixed with water. Soil has an important role in a construction, besides as a building material in a wide variety of civil engineering works, soil is also used as supporting foundation of the building. Basic properties of clay are rock-solid in dry and plastic with medium water content. In high water content, clay becomes sticky like (cohesive) and soften. Therefore, clay stabilization is necessary to repair soil’s mechanical properties. In this research, lime is use as a stabilizer that contains the Ca+ element to bond bigger particles. Lime used is slaked lime Ca(OH)2. Clay used has liquid limitation (LL) value of 47.33%, plasticity index of 29.88% and CBR value 6.29. The results explain about 10% lime mixture variation gives the optimum stabilized clay with CBR value of 8.75%.

  4. Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay

    PubMed Central

    Mao, Xuhui; Wang, James; Ciblak, Ali; Cox, Evan E.; Riis, Charlotte; Terkelsen, Mads; Gent, David B.; Alshawabkeh, Akram N.

    2012-01-01

    Successful bioremediation of contaminated soils is controlled by the ability to deliver bioremediation additives, such as bacteria and/or nutrients, to the contaminated zone. Because hydraulic advection is not practical for delivery in clays, electrokinetic (EK) injection is an alternative for efficient and uniform delivery of bioremediation additive into low-permeability soil and heterogeneous deposits. EK–enhanced bioaugmentation for remediation of clays contaminated with chlorinated solvents is evaluated. Dehalococcoides (Dhc) bacterial strain and lactate ions are uniformly injected in contaminated clay and complete dechlorination of chlorinated ethene is observed in laboratory experiments. The injected bacteria can survive, grow, and promote effective dechlorination under EK conditions and after EK application. The distribution of Dhc within the clay suggests that electrokinetic transport of Dhc is primarily driven by electroosmosis. In addition to biodegradation due to bioaugmentation of Dhc, an EK-driven transport of chlorinated ethenes is observed in the clay, which accelerates cleanup of chlorinated ethenes from the anode side. Compared with conventional advection-based delivery, EK injection is significantly more effective forestablis hingmicrobial reductive dechlorination capacity in low-permeability soils. PMID:22365139

  5. Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, Wafa; Tlili, Ali

    2017-05-01

    This study concerns the purification of Tunisian phosphoric acid produced by the Tunisian Chemical Group (TCG), using raw and activated clays materials from Southern Tunisia. The Gafsa basin clays samples (Jebel Hamadi (JHM); Jebel Stah (JS) and the El Hamma sample (Jebel Aïdoudi (JAD)) were activated with 3 M, HCl solution. Phosphoric acid purification was performed on raw and activated clays. Mineralogical characterisation was carried out using the X-ray powder diffraction method and infrared absorption spectroscopy. Textural changes between raw and activated clays were identified using SEM observations and specific surface analysis. Jebel Hamadi clays were almost dominated by smectite associated with kaolinite and illite traces, while Jebel Stah and Jebel Aïdoudi clays were composed of the association of smectite, illite and kaolinite. It is worth noting that the position of the smectite (001) reflection increased after the acidic activation in all studied samples, indicating the relaxation of the smectite structure along the c-axis. This was corroborated by the increasing specific surface area of the clay particles with the activation process. The specific surface area was close to 50 m2/g and 200 m2/g, for raw and activated materials, respectively. The maximum phosphoric acid purification was obtained by using activated clays with 3 N HCl for 4 h. This performance correlated with the maximum of the external specific surface area which generated strong acid sites. Furthermore, the best results of phosphoric acids purification from TCG were obtained at a specific consumption equivalent to 30 Kg of clay/ton of P2O5. These results showed that the best phosphoric acid purification was yielded by Jebel Aïdoudi clay. In all cases, the highest organic carbon reduction rates in the phosphoric acid after filtration were obtained at 90°C.

  6. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    PubMed

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  7. Role of interlayer hydration in lincomycin sorption by smectite clays.

    PubMed

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- < K- < Cs-smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  8. Evaluation of the healing activity of therapeutic clay in rat skin wounds.

    PubMed

    Dário, Giordana Maciel; da Silva, Geovana Gomes; Gonçalves, Davi Ludvig; Silveira, Paulo; Junior, Adilson Teixeira; Angioletto, Elidio; Bernardin, Adriano Michael

    2014-10-01

    The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 μm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. First Direct Detection of Clay Minerals on Mars

    NASA Technical Reports Server (NTRS)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.

    1985-01-01

    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  10. Wave-induced ripple development in mixed clay-sand substrates

    NASA Astrophysics Data System (ADS)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben

    2016-04-01

    This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results

  11. Thermal Transmittance of Porous Hollow Clay Brick by Guarded Hot Box Method

    NASA Astrophysics Data System (ADS)

    Kim, Joonsoo

    2018-03-01

    The thermal property of a porous hollow clay brick was determined by measuring the thermal transmittance of the wall made of porous hollow clay bricks. Prior to the production of porous hollow clay bricks, nonporous and porous tiny clay bricks were prepared to determine the physico-mechanical properties by modifying the amount of wood flour and firing temperature. The bricks were produced by uniaxial pressing and then fired in an electric furnace. Their physico-mechanical properties were measured by water absorption, apparent porosity, bulk density, and compressive strength. The porous tiny clay bricks were produced with three types of wood flour: coarse wood flour (1-0.36 mm), medium-sized wood flour (0.36-0.15 mm), and fine wood flour (< 0.08 mm). The thermal transmittance of porous hollow clay bricks was determined through the guarded hot box method, which measures the wall made of porous hollow clay bricks and nonporous cement bricks. The two walls had a thermal transmittance of 1.42 and 2.72 W\\cdot m^{-2}\\cdot K^{-1}, respectively. The difference in thermal transmittance was due to the pores created with fine wood flour (< 0.08 mm) as a pore-forming agent.

  12. Mechanical reinforcement and environmental effects on a nylon-6/clay nanocomposite

    NASA Astrophysics Data System (ADS)

    Shelley, J. Stebbins

    2000-10-01

    Hybridization, or modifying the organic polymers with inorganic constituents, is one method of achieving mechanical property improvements in polymeric materials while preserving processing characteristics. Toyota Central Research developed, and Ube Industries commercialized, one such hybrid nanocomposite: nylon-6/montmorillonite clay. This dissertation explores mechanisms of reinforcement in these nylon-6/clay nanocomposites and studies their degradation by atmospheric pollutants. A 100% improvement in modulus, 77% improvement in yield stress, and 54°C improvement in heat distortion temperature over nylon-6 were observed in extruded 5 wt% clay nanocomposite sheets. Infrared absorption spectrography and dynamic mechanical analysis were used to investigate the mechanisms of reinforcement in these nanocomposites. The improved mechanical properties, increased heat distortion temperature, reduced diffusion rate, and lower susceptibility to degradation in NO x observed where attributed to constraint of polymer chain motion by interaction with clay lamellae. Changes in the loss tangent peak in the glass transition region of the dynamic mechanical data provide an estimate of the volume of chains constrained by complexation of their mid-chain amide oxygen groups with the charged clay lamellae. X-ray analysis, optical microscopy, and light scattering were used to study changes in crystallization due to this complexation. Photomicrographs indicate that the morphology of the crystallites change from spherulitic to planar with the addition of clay. Decreases in diffusion rates of water and total water absorption were demonstrated in immersion experiments. Complexation of nylon-6 with 5 wt% clay reduces the total absorption of water by over 16%. The plane stress fracture toughness of extruded 5 wt% clay nanocomposite was 46% greater than that of nylon-6. The degradation of the nanocomposites in calcium chloride solution and NOx was examined through post exposure residual

  13. Comparative Study on the Cost of Building Public House Construction Using Red Brick and Interlock Brick Building Material in the City of Banda Aceh

    NASA Astrophysics Data System (ADS)

    Malahayati, Nurul; Hayati, Yulia; Nursaniah, Cut; Firsa, T.; Fachrurrazi; Munandar, Aris

    2018-05-01

    Red brick and interlocking brick are the building materials that are often used for wall installation work on houses construction. In the development of building materials technology and cost savings, interlocking brick can be alternative to replace red bricks. In Aceh Province, the use of interlocking bricks is less popular compared to other big cities in Indonesia. Interlocking brick is made from a mixture of clay, concrete sand and compacted cement and one of the environmentally friendly materials because it does not burn the process like red brick material. It is named interlocking brick because the installation method is locked together and it serves as a structural and partition wall of residential buildings. The aims of this study are to compare the cost of building a house in Banda Aceh City using red brick and interlock brick building materials. The data were obtained from interviews and questionnaires distributed to respondents who had built houses in Banda Aceh City. The results concluded that the house construction cost using interlock brick offer lower construction cost at comparable quality rather than using red brick.

  14. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  15. Towards a numerical run-out model for quick-clay slides

    NASA Astrophysics Data System (ADS)

    Issler, Dieter; L'Heureux, Jean-Sébastien; Cepeda, José M.; Luna, Byron Quan; Gebreslassie, Tesfahunegn A.

    2015-04-01

    Highly sensitive glacio-marine clays occur in many relatively low-lying areas near the coasts of eastern Canada, Scandinavia and northern Russia. If the load exceeds the yield stress of these clays, they quickly liquefy, with a reduction of the yield strength and the viscosity by several orders of magnitude. Leaching, fluvial erosion, earthquakes and man-made overloads, by themselves or combined, are the most frequent triggers of quick-clay slides, which are hard to predict and can attain catastrophic dimensions. The present contribution reports on two preparatory studies that were conducted with a view to creating a run-out model tailored to the characteristics of quick-clay slides. One study analyzed the connections between the morphological and geotechnical properties of more than 30 well-documented Norwegian quick-clay slides and their run-out behavior. The laboratory experiments by Locat and Demers (1988) suggest that the behavior of quick clays can be reasonably described by universal relations involving the liquidity index, plastic index, remolding energy, salinity and sensitivity. However, these tests should be repeated with Norwegian clays and analyzed in terms of a (shear-thinning) Herschel-Bulkley fluid rather than a Bingham fluid because the shear stress appears to grow in a sub-linear fashion with the shear rate. Further study is required to understand the discrepancy between the material parameters obtained in laboratory tests of material from observed slides and in back-calculations of the same slides with the simple model by Edgers & Karlsrud (1982). The second study assessed the capability of existing numerical flow models to capture the most important aspects of quick-clay slides by back-calculating three different, well documented events in Norway: Rissa (1978), Finneidfjord (1996) and Byneset (2012). The numerical codes were (i) BING, a quasi-two-dimensional visco-plastic model, (ii) DAN3D (2009 version), and (iii) MassMov2D. The latter two are

  16. Painting with Clay: A Study of the Masters

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    Plasticine clay is a bendable material that is easily manipulated by students of all ages. It is a great material to work with because it does not dry out from day to day, so high-school students can work on an extended project. They do not have to worry about the clay drying and cracking, and the entire work of art does not have to be completed…

  17. 4. View of houses from Port Ludlow, houses no. 69 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of houses from Port Ludlow, houses no. 69 and 70, facing southwest. House no. 69 in foreground, house no. 70 in background. - Houses Moved from Port Ludlow, Various Addresses (moved from Port Ludlow, WA), Port Gamble, Kitsap County, WA

  18. Complex resistivity signatures of ethanol in sand-clay mixtures

    USGS Publications Warehouse

    Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale D.; Szabo, Zoltan

    2013-01-01

    We performed complex resistivity (CR) measurements on laboratory columns to investigate changes in electrical properties as a result of varying ethanol (EtOH) concentration (0% to 30% v/v) in a sand–clay (bentonite) matrix. We applied Debye decomposition, a phenomenological model commonly used to fit CR data, to determine model parameters (time constant: τ, chargeability: m, and normalized chargeability: mn). The CR data showed a significant (P ≤ 0.001) time-dependent variation in the clay driven polarization response (~ 12 mrad) for 0% EtOH concentration. This temporal variation probably results from the clay–water reaction kinetics trending towards equilibrium in the sand–clay–water system. The clay polarization is significantly suppressed (P ≤ 0.001) for both measured phase (ϕ) and imaginary conductivity (σ″) with increasing EtOH concentration. Normalized chargeability consistently decreases (by up to a factor of ~ 2) as EtOH concentration increases from 0% to 10% and 10 to 20%, respectively. We propose that such suppression effects are associated with alterations in the electrical double layer (EDL) at the clay–fluid interface due to (a) strong EtOH adsorption on clay, and (b) complex intermolecular EtOH–water interactions and subsequent changes in ionic mobility on the surface in the EDL. Changes in the CR data following a change of the saturating fluid from EtOH 20% to plain water indicate strong hysteresis effects in the electrical response, which we attribute to persistent EtOH adsorption on clay. Our results demonstrate high sensitivity of CR measurements to clay–EtOH interactions in porous media, indicating the potential application of this technique for characterization and monitoring of ethanol contamination in sediments containing clays.

  19. Housing quality, housing instability, and maternal mental health.

    PubMed

    Suglia, Shakira Franco; Duarte, Cristiane S; Sandel, Megan T

    2011-12-01

    Poor housing conditions and residential instability have been associated with distress among women; however, this association could be the result of other social factors related to housing, such as intimate partner violence (IPV) and economic hardship. We examined associations of housing conditions and instability with maternal depression and generalized anxiety disorder (GAD) while accounting for IPV and economic hardship in the Fragile Families and Child Wellbeing Study (N = 2,104). In the third study wave, interviewers rated indoor housing quality, including housing deterioration (e.g., peeling paint and holes in floor) and housing disarray (e.g., dark, crowded, and noisy). Mothers reported whether they had moved more than twice in the past two years, an indicator of housing instability. A screening for depression and GAD was obtained from questions derived from the Composite International Diagnostic Interview-Short Form in the second and third study waves. IPV and economic hardship were assessed through questionnaire. In this sample, 16% of women were classified as having probable depression and 5% as having probable GAD. In adjusted analyses, mothers experiencing housing disarray (odds ratio [OR], 1.3 [95% confidence interval (CI), 1.0, 1.7]) and instability (OR, 1.4 [95% CI, 1.2, 2.3]) were more likely to screen positive for depression. In addition, those experiencing housing instability were more likely to screen positive for GAD (OR 1.9 [95% CI, 1.2, 3.0]) even after adjusting for other social factors. No associations were noted between housing deterioration and maternal mental health. Similar associations were noted when incident cases of probable depression and GAD were examined. Housing instability and disarray, but not deterioration, are associated with screening positive for depression and generalized anxiety among women regardless of other social stressors present in their lives. Housing could potentially present a point of intervention to prevent

  20. Understanding Housing Delays and Relocations Within the Housing First Model.

    PubMed

    Zerger, Suzanne; Pridham, Katherine Francombe; Jeyaratnam, Jeyagobi; Hwang, Stephen W; O'Campo, Patricia; Kohli, Jaipreet; Stergiopoulos, Vicky

    2016-01-01

    This study explores factors contributing to delays and relocations during the implementation of the Housing First model in Toronto, Ontario. While interruptions in housing tenure are expected en route to recovery and housing stability, consumer and service provider views on finding and keeping housing remain largely unknown. In-person interviews and focus groups were conducted with 48 study participants, including 23 case managers or housing workers and 25 consumers. The following three factors contributed to housing delays and transfers: (1) the effectiveness of communication and collaboration among consumers and service providers, (2) consumer-driven preferences and ambivalence, and (3) provider prioritization of consumer choice over immediate housing access. Two strategies--targeted communications and consumer engagement in housing searches--supported the housing process. Several factors affect the timing and stability of housing. Communication between and among providers and consumers, and a shared understanding of consumer choice, can further support choice and recovery.

  1. Tool for Taking Clay Impressions

    NASA Technical Reports Server (NTRS)

    Duncan, R. S.

    1984-01-01

    Clay impression of small parts taken with tool consisting of hollow tube closed at one end. Slots at other end admit part short distance into tube. Impression used to make silicone rubber mold for examination.

  2. Clay-based polymer nanocomposites: research and commercial development.

    PubMed

    Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R

    2005-10-01

    This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.

  3. Ostwald ripening of clays and metamorphic minerals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  4. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  5. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, T. F.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W.; Morrison, S. M.; Yen, A. S.; hide

    2017-01-01

    One of the primary science goals of Mars Science Laboratory (MSL) is to investigate layered clay mineral-bearing deposits outcropping in the lower NW slopes of Aeolis Mons (Mt. Sharp) detected from orbit. Martian clay mineral-bearing layered rocks are of particular interest because they are potential markers of sedimentary deposits formed in habitable aqueous environments. The CheMin X-ray diffraction (XRD) instrument aboard MSL has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. Previously, the high concentrations of clay minerals (approximately 20 wt.%) detected in drill powders of mudstone (Sheepbed member) at Yellowknife Bay (YKB) allowed their detailed characterization. Drill powders recovered from lacustrine mudstones of the Sheepbed member at YKB contain smectite clay minerals. Based on the position of 02l reflections in XRD patterns, which serve as an indicator of octahedral occupancy, the smectites are Fe-bearing, trioctahedral species analogous to ferrian saponites from terrestrial deposits. The smectites are thought to have been formed through a process of isochemical aqueous alteration of detrital olivine close to the time of sediment deposition under anoxic to poorly oxidizing conditions. The clay minerals are key indicators that the lake waters were benign and habitable at the time. Clay minerals were detected at other locations during MSL's traverse, including samples from the Pahrump Hills, but lower abundances and overlapping peaks from crystalline phases in XRD patterns hamper in-depth analysis.

  6. 2,3,7,8-DIBENZO-P-DIOXINS IN MINED CLAY PRODUCTS ...

    EPA Pesticide Factsheets

    Ball clay was the source of dioxin contamination discovered in selected chickens analyzed as part of a joint U.S. Department of Agriculture/U.S. Environmental Protection Agency national survey of the U.S. poultry supply conducted in 1997. The affected animals, which had been raised in the southern United States, represented approximately 5% of the national poultry production . All of these chickens and other animal food sources (i.e., farm-raised catfish), similarly contaminated, were fed a diet of animal feed containing ball clay as an anti-caking additive. The clay was mined in northwestern Mississippi within a geological formation referred to as the Mississippi Embayment. Individual raw and processed ball clay samples were analyzed for the presence of the 2,3,7,8-PCDDs/PCDFs. The average toxic equivalents (TEQs) for the raw and processed samples were 1513 and 996 ppt dry weight, respectively. Other mined clay-based products used in animal feeds revealed lower TEQs. All of the products exhibited either an absence of detectable concentrations of 2,3,7,8-PCDFs or concentrations 2-3 orders of magnitude lower than the PCDDs. The isomer distribution, specific isomer identification, and congener profile of the PCDDs in the clay were established and compared to known sources of dioxin contamination. Several unique features of this isomer distribution are characteristic of the clays and are distinguishable from those other known sources. These characteristic

  7. Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) on developmental stages of house fly, Musca domestica.

    PubMed

    Archana, M; D'Souza, Placid E; Patil, Jagadeesh

    2017-09-01

    The housefly, Musca domestica is a major domestic, medical and veterinary pest. The management of these flies reliance on insecticide, causes environmental constraints, insecticide resistance and residues in the meat, skin. Therefore one of the eco-friendly alternate methods is by using biological agents such as entomopathogenic nematodes (EPN). In the present study evaluated the survival of EPN species Steinernema feltiae , Heterorhabditis indica , S. carpocapsae , S. glaseri and S. abbasi in poultry manure and also their efficacy against different developmental stages of house fly. After exposing to poultry manure, S. feltiae showed more survival as followed by H. indica , S. carpocapsae , S. glaseri and S. abbasi in all exposition period. When the exposition period extended to 96 h, all nematode species survivability was drastically reduced. After exposing these nematodes to poultry manure at 24 h their virulence capacity against wax moth, Galleria mellonella showed all the nematode species were able cause 100% mortality. However their progeny production was significantly reduced. Fly eggs and pupae were refractory to these nematode infection. Petri dish without artificial diet assay showed that, second and 3rd-instar larvae were highly susceptible to EPNs as compared to larvae provided with artificial diet. H. indica showed high virulence capacity compared to other nematodes tested. Poultry manure assay revealed that, H. indica and S. carpocapsae caused minimal mortality where as S. feltiae , S. glaseri and S. abbasi did not cause any mortality. This may be because of poor survival and limited movement of nematodes in poultry manure which may be due to ammonia, other toxic substances in poultry manure. The decrease in larval mortality in manure suggests that biocontrol of housefly by using EPNs is unlikely.

  8. Study on Fired Clay Bricks by Replacing Clay with Palm Oil Waste: Effects on Physical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.

    2017-06-01

    Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.

  9. Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment

    NASA Astrophysics Data System (ADS)

    Curry, Kenneth J.; Bennett, Richard H.; Mayer, Lawrence M.; Curry, Ann; Abril, Maritza; Biesiot, Patricia M.; Hulbert, Matthew H.

    2007-04-01

    We employed direct visualization of organic matter (OM) sequestered by microfabric signatures in organo-clay systems to study mechanisms of OM protection. We studied polysaccharides, an abundant class of OM in marine sediments, associated with the nano- and microfabric of clay sediment using a novel application of transmission electron microscopy, histochemical staining (periodic acid-thiosemicarbazide-silver proteinate), and enzymatic digestion techniques. We used two experimental organo-clay sediment environments. First, laboratory-consolidated sediment with 10% chitin (w/w) added was probed for chitin before and after digestion with chitinase. Second, fecal pellets from the polychaete Heteromastus filiformis were used as a natural environment rich in clay and polysaccharides. Sections of this material were probed with silver proteinate for polysaccharides before and after digestion with a mixture of enzymes (amylase, cellulase, chitinase, dextranase, and pectinase). In both environments, chitin or other polysaccharides were found within pores, bridging clay domains, and attached to clay surfaces in undigested samples. Digested samples showed chitin or polysaccharides more closely associated with clay surfaces and in small pores. Our results imply protective roles for both sorption to clay surfaces and encapsulation within clay microfabric signatures.

  10. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  11. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  12. Diffusional Transport of Organic Solutes in Subsurface Clay Lenses and Layers

    NASA Astrophysics Data System (ADS)

    Demond, A. H.; Ayral, D.; Goltz, M. N.

    2009-12-01

    The storage of organic solvents in clay lenses and layers in the subsurface creates long-term contaminant sources. Because of the low hydraulic conductivities of clay, it is thought that organic movement into clay lenses occurs through the process of diffusion. The ratio of the effective diffusion coefficient in the porous medium and the diffusion coefficient in bulk water is usually given by the tortuosity factor which accounts for the reduced area and the increased path length in the porous medium. However, there is field evidence which suggests that the concentrations in these lenses exceed that which can be accounted for by simple diffusion. There are reports, for example, of tortuosity factors greater than 1.0, which theoretically is not possible. Clays such as montmorillonite or bentonite shrink and swell depending on water content, and similar behavior can occur in the presence of organic solvents. In fact, research has shown that the basal spacing of bentonite can decrease by 50% when permeated with heptane. Such contraction of the clay structure can lead to the formation of cracks and macropores, with a concomitant alteration of the diffusional pathways that solutes follow. Models formulated for diffusional transport in soil are available to calculate the tortuosity factor as a function of water content. In addition, models are available to simulate phenomena in which the diffusion coefficient is concentration dependent. However, calculations of diffusional transport using such models show that they may not adequately reflect the impact of the alteration of the clay structure. However, modeling the transport of organic solutes in clay as a dual-domain system with some minimal advective transport in macropores can yield tortuosity factors greater than 1.0. Thus, it appears the cracking of clay in contact with organic solvents and a resultant advective component to transport of the solute may be an explanation of field observations.

  13. Modeling in Ceramic Clay

    ERIC Educational Resources Information Center

    Miller, Louis J.

    1976-01-01

    Modeling is an additive process of building up a sculpture with some plastic material like clay. It affords the student an opportunity to work in three dimensions, a creative relief from the general two-dimensional drawing and design activities that occupy a large segment of time in the art curriculum. (Author/RK)

  14. Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens

    PubMed Central

    Behroozian, Shekooh; Svensson, Sarah L.

    2016-01-01

    ABSTRACT The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens. PMID:26814180

  15. [Exposition of the operator's eye lens and efficacy of radiation shielding in fluoroscopically guided interventions].

    PubMed

    Galster, M; Guhl, C; Uder, M; Adamus, R

    2013-05-01

    Efficacy of radiation protection tools for the eye lens dose of the radiologist in fluoroscopic interventions. A patient phantom was exposed using a fluoroscopic system. Dose measurements were made at the eye location of the radiologist using an ionization chamber. The setting followed typical fluoroscopic interventions. The reduction of scattered radiation by the equipment-mounted shielding (undercouch drapes and overcouch top) was evaluated. The ceiling-suspended lead acrylic glass screen was tested in scattered radiation generated by a slab phantom. The protective properties of different lead glass goggles and lead acrylic visors were evaluated by thermoluminescence measurements on a head phantom in the primary beam. The exposition of the lens of about 110 to 550 μSv during radiologic interventions is only slightly reduced by the undercouch drapes. Applying the top in addition to the drapes reduces the lens dose by a factor of 2 for PA projections. In 25°LAO the dose is reduced by a factor between 1.2 and 5. The highest doses were measured for AP angulations furthermore the efficacy of the equipment-mounted shielding is minimal. The ceiling-suspended lead screen reduced scatter by a factor of about 30. The lead glass goggles and visors reduced the lens dose up to a factor of 8 to 10. Depending on the specific design, the tested models are less effective especially for radiation from lateral with cranial angulation of the beam. Occasionally the visors even caused an increase of dose. The exposition of the eye lens can be kept below the new occupational limit recommended by the ICRP if the radiation shielding equipment is used consistently. © Georg Thieme Verlag KG Stuttgart · New York.

  16. The Politics of Clay: The American-Soviet Mural Project.

    ERIC Educational Resources Information Center

    Preston, Lynn

    1990-01-01

    Describes a U.S.-Soviet mural project where citizens from Milwaukee, Wisconsin and citizens from Leningrad created two peace murals--one in the United States and the other in the Soviet Union. The murals were exchanged. Participants made their own clay using dry clay and water before creating their impressions of peace and friendship. (KM)

  17. The use of fortified soil-clay as on-site system for domestic wastewater purification.

    PubMed

    Oladoja, N A; Ademoroti, C M A

    2006-02-01

    The quest for simple, low-cost and high-performance decentralized wastewater treatment system for domestic application in developing nations necessitated this study. Clay samples collected from different deposits in Nigeria were characterized by studying the mineralogical and geochemical composition using X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS), respectively. Three major clay minerals of kaolinite, illite and smectite were identified. The geochemical studies showed the abundance of SiO2, Al2O3 and H2O+ in each of the clay samples. Performance efficiency studies were conducted to determine the best combination ratio of pebbles/soil-clay. Soil-clay fortified by pebbles in combination ratios of 1:3 (i.e. pebbles:soil-clay = 1:3 (w/w) showed the optimum water purification, while the combination 3:1 gave the least. The flow rate studies showed that the wastewater had a longer residence time in non-fortified soil-clay than in fortified soil-clay. Two modes of treatment methods were employed-single and double column treatment methods (SCT and DCT). The two methods gave effluents of good quality characteristics, but those from the DCT were of better quality. The quality of effluents also varies from one clay type to another. The quality of effluents from media containing smectite clay mineral was better than those from other columns. Repeated usage of the fortified clay column showed a decrease of pH, TS and DO, and an increase of COD when monitored over a period of 10 days.

  18. An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    An in-depth exposition on the nonlinear deformations of shells with "small" initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of "small" strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the "small" Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the "small" three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.

  19. Some engineering aspects of homoionized mixed clay minerals.

    PubMed

    Oren, Ali Hakan; Kaya, Abidin

    2003-05-01

    Many studies have been conducted to investigate the physicochemical behavior of pure clay minerals and predict their engineering performance in the field. In this study, the physicochemical properties of an artificial mixture of different clay minerals namely, 40-50% montmorillonite, 20-30% illite and 10-15% kaolin were investigated. The mixture was homoionized with sodium, Na+; calcium, Ca2+; and aluminum, Al3+. The engineering properties studied were consistency limits, sediment volume, compressibility behavior, and hydraulic conductivity. The results revealed that the liquid, plastic and shrinkage limits of soil increased with increasing cation valence. The hydraulic conductivity of the soil also increased with an increase in the valence of the cation at any given void ratio. Aluminum and sodium treated clays had the highest and the lowest modified compression index values, respectively. Furthermore, trivalent cation saturated clayey soil consolidates three times faster than that of monovalent and two times faster than that of divalent. These properties of the soils determined were, in general, similar to those of kaolinite rather than those of montmorillonite. The comparison of the results obtained with the published data in the literature revealed that the physicochemical behavior of the tested clay soil was, in general, similar to that of kaolinite.

  20. Physicochemical of pillared clays prepared by several metal oxides

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Kristiani, Anis

    2017-03-01

    Natural clays could be modified by the pillarization method, called as Pillared Clays (PILCs). PILCs have been known as porous materials that can be used for many applications, one of the fields is catalysis. PILCs as two dimensional materials are interesting because their structures and textural properties can be controlled by using a metal oxide as the pillar. Different metal oxide used as the pillar causes different properties results of pillared clays. Usually, natural smectite clays/bentonites are used as a raw material. Therefore, a series of bentonite pillared by metal oxides was prepared through pillarization method. Variation of metals pillared into bentonite are aluminium, chromium, zirconium, and ferro. The physicochemical properties of catalysts were characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) analysis, and Fourier transform infrared spectroscopy (FTIR) measurement. Noteworthy characterization results showed that different metals pillared into bentonite affected physical and chemical properties, i.e. basal spacing, surface area, pore size distribution, thermal stability and acidity.

  1. The radiolysis and radioracemization of amino acids on clays

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hall, H.; Chow, G.; Yi, L.; Lemmon, R. M.

    1985-01-01

    The effects of the surfaces of kaolinite and bentonite clays on the radiolysis and radioracemization of L-leucine and its hydrochloride salt have been investigated experimentally. L-leucine and its hydrochloride salt were deposited on the clays and the amino acid/clay preparations were irradiated by a Co-60 gamma-ray source which induced 2-89 percent radiolysis. The efficiency of radiolysis and radioracemization were measured using gas chromatography. Results were obtained for leucine in 0.1 M aqueous solution for comparison with the clay-deposted leucine and leucine hydrochloride. It is found that radiolysis and radioracemization in the samples occurred according to a pseudo-first-order rate law. Comparison of the specific rate constants showed that leucine and its hydrochloride salt were the most resistant to both radiolysis and radioracemization, followed by leucine and its hydrochloride salt on kaolin. Leucine and its HCl salt on bentonite, and leucine in aqueous solution were found to be the least resistant to radiolysis and radioracemization. The experimental results are intepreted with respect to the Vester-Ulbricht mechanism for the origin of optical activity.

  2. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  3. 24 CFR 8.25 - Public housing and multi-family Indian housing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Public housing and multi-family... multi-family Indian housing. (a) Development and alteration of public housing and multi-family Indian...-family Indian housing. (2) The requirements of § 8.23 shall apply to public housing and multi-family...

  4. 24 CFR 8.25 - Public housing and multi-family Indian housing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Public housing and multi-family... multi-family Indian housing. (a) Development and alteration of public housing and multi-family Indian...-family Indian housing. (2) The requirements of § 8.23 shall apply to public housing and multi-family...

  5. 24 CFR 8.25 - Public housing and multi-family Indian housing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Public housing and multi-family... multi-family Indian housing. (a) Development and alteration of public housing and multi-family Indian...-family Indian housing. (2) The requirements of § 8.23 shall apply to public housing and multi-family...

  6. 24 CFR 8.25 - Public housing and multi-family Indian housing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Public housing and multi-family... multi-family Indian housing. (a) Development and alteration of public housing and multi-family Indian...-family Indian housing. (2) The requirements of § 8.23 shall apply to public housing and multi-family...

  7. 24 CFR 8.25 - Public housing and multi-family Indian housing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Public housing and multi-family... multi-family Indian housing. (a) Development and alteration of public housing and multi-family Indian...-family Indian housing. (2) The requirements of § 8.23 shall apply to public housing and multi-family...

  8. [Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms].

    PubMed

    Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming

    2004-09-01

    Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red tide organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red tide control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red tide organisms. At the same time the availability of organo-clay to remove the red tide of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red tide seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red tide organisms more effectively than the original clay.

  9. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the common clay and shale industry is provided. In 2000, U.S. production increased by 5 percent, while sales or use declined to 23.6 Mt. Despite the slowdown in the economy, no major changes are expected for the market.

  10. An investigative study of polymer adsorption onto montmorillonite clay

    NASA Astrophysics Data System (ADS)

    McConnell Boykin, Cheri Lynn

    For colloidal systems with adsorbed polymer, the mechanisms governing stabilization and flocculation are defined by the critical overlap concentration, c*. Below c*, steric stabilization or bridging flocculation are viable mechanisms of adsorption, while above c* associative thickening stabilization, depletion stabilization or depletion flocculation may occur. While these types of systems have been described by their mechanism of interaction, few studies have been geared towards evaluating and actually defining these interactions. This research focuses on elucidating the mechanisms of interaction for a series of polyacrylamide copolymers adsorbed onto montmorillonite clay. The well-defined copolymers synthesized and characterized for these studies include: nonionic polyacrylamide, (PAm); cationic poly(acrylamide-co-[3-(methacryloylamino) propyl] trimethylammonium chloride), (PAmMaap Quat); nonionic/anionic poly(acrylamide-co-acrylic acid), (PAmAA); and anionic poly(acrylamide-co-[2-acrylamido-2-methylpropane sulfonic acid]), (PAmAmps). By combining the results from the following experiments it was possible to determine the mechanisms of interaction for each of the clay/polymer systems at pH 3, 7 and 10. The adsorption capacity of each of the copolymers was determined from constructing adsorption isotherms while the polymer conformation was determined from 13C NMR line-broadening experiments. FTIR spectroscopy verified which surface of the clay was involved in adsorption along with the polymer moiety bound to the surface. Finally, the stabilization behavior was evaluated from statistically designed phase diagrams as a function of polymer and clay concentrations. By evaluating the phase behavior as well as c* for the polymer/solvent systems, it was determined that there was no direct correlation between c* for a polymer/solvent system and the mechanism of interaction for colloid/polymer/solvent systems previously defined by Vincent, Sato and Napper. In general, the

  11. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  12. Melt-state rheology, solid-state mechanical properties and microstructure of polymer-clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Somwangthanaroj, Anongnat

    Polymer/clay nanocomposites have the potential usefulness in industrial applications such as automotive and packaging due to their strong, light-weight and inexpensive properties. However, to respond to needs of various applications it is crucial to understand the crystallization and rheological properties of these materials. Our initial hypothesis was that the processing conditions such as shear rate, shear strain and temperature affect the crystallization kinetics of intercalated polypropylene nanocomposites. Another hypothesis was that the compatibilizer, PP-MA, affects the role of the nucleating agent, sodium benzoate. The final hypothesis was that the rheological properties of nanocomposites depend on the degree of clay dispersion. By means of time-resolved small-angle light scattering, we were able to demonstrate that clay enhances the crystallization kinetics in nanocomposites and its result differs significantly from that of pure polypropylene. Characteristic crystallization times are extracted from the time evolution of integral measures of the angularly dependent parallel polarized and cross polarized light scattering intensity. Flow acceleration of crystallization kinetics has been observed for the polymer nanocomposites at applied strain rates for which flow has only modest effect on polypropylene crystallization. Furthermore, we were able to conclude that the addition of the nucleating agent sodium benzoate in the presence of polypropylene grafted maleic anhydride is not effective in accelerating crystallization. The rheological properties of two types of polypropylene/clay nanocomposites, with different degrees of clay dispersion have been measured in both linear and non-linear viscoelastic regime. In the linear viscoelastic regime, the storage and loss modulus of nanocomposites increases when clay loading increases. The storage and loss modulus of unsonicated nanocomposites are higher than the sonicated ones because the ultrasonic processing alters

  13. Adsorption of bacteriophages on clay minerals

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    1999-01-01

    The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.

  14. The Fame of Sharkey Clay

    Treesearch

    W. M. Broadfoot

    1962-01-01

    Sharkey clay is now important to the Southern forest industry because it supports so much of the hardwood resource-more than any other soil within the Mississippi Delta-and its extent will continue to make it important to Delta forestry.

  15. Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey

    NASA Astrophysics Data System (ADS)

    Bilgin, Oyku

    2017-12-01

    The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.

  16. 24 CFR 982.606 - Congregate housing: Who may reside in congregate housing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Special Housing Types Congregate Housing § 982.606 Congregate housing: Who may reside in congregate...

  17. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance.

    PubMed

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-05

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m 2 and ~78 kW/m 2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  18. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  19. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    PubMed Central

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-01-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901

  20. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.

    PubMed

    Adazabra, A N; Viruthagiri, G; Shanmugam, N

    2017-04-15

    The peculiar challenge of effective disposing abundant spent shea waste and the excellent compositional variation tolerance of clay material offered an impetus to examine the incorporation of spent shea waste into clay material as an eco-friendly disposal route in making clay bricks. For this purpose, the chemical constituent, mineralogical compositions and thermal behavior of both clay material and spent shea waste were initially characterized from which modelled brick specimens incorporating 5-20 wt% of the waste into the clay material were prepared. The clay material showed high proportions of SiO 2 (52.97 wt%) and Al 2 O 3 (27.10 wt%) indicating their rich kaolinitic content: whereas, the inert nature of spent shea waste was exhibited by their low oxide content. The striking similarities in infrared absorption bands of pristine clay material and clay materials incorporated with 15 wt% of spent shea waste showed that the waste incorporation had no impact on bond formation of the clay bricks. Potential performance benefits of developing bricks from clay material incorporated with spent shea waste included improved fluxing agents, economic sintering and making of sustainable bricks. Consequently, the analytical results authenticate the incorporation of spent shea waste into clay materials for various desired benefits aside being an environmental correct route of its disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of organo-clay on the dielectric relaxation response of silicone rubber

    NASA Astrophysics Data System (ADS)

    Gharavi, N.; Razzaghi-Kashani, M.; Golshan-Ebrahimi, N.

    2010-02-01

    Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition.

  2. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study.

    PubMed

    Wang, Cai; Henderson, Gregg

    2014-12-01

    Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  3. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes.

    PubMed

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D

    2014-07-28

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  4. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes

    PubMed Central

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D.

    2014-01-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments. PMID:25068404

  5. Development of photopolymerizable clay nanocomposites utilizing reactive dispersants

    NASA Astrophysics Data System (ADS)

    Owusu-Adom, Kwame

    Nanocomposites hold tremendous promise for expanding the utility of polymeric materials. However, accessing particulate sizes in the nanoscale domain continues to be a scientific challenge, especially in highly cross-linked photopolymerizable systems. In this study, photopolymerizable nanocomposites utilizing clay nanoparticles and reactive dispersants have been developed. The influence of particle size, dispersant-clay interactions, and surfactant concentration on photopolymerization behavior and nanoparticle dispersion has been elucidated. Clay particles serve as templates upon which surfactants aggregate during photopolymerization. This results in higher photopolymerization rates with addition of increasing concentrations of polymerizable surfactants. Furthermore, polymerizable surfactants induce faster photopolymerization rates compared to non-polymerizable analogues in systems that have ionically-bound dispersants on the particle surface. Utilizing reactive organoclays induces significant changes to the photopolymerization behavior depending on the choice of reactive functionality employed. Faster acrylate photopolymerization rates occur in photopolymer systems containing thiol-modified clays, while much slower rates occur for nonpolymerizable organoclay systems. In addition, chemical compatibility between monomer and clay dispersant (based on chemical similarity or polarity) allows enhancement of exfoliation in photopolymerizable formulations. With polymerizable dispersants, exfoliation is readily achieved in various multifunctional acrylate systems. The degree of exfoliation depends on the position of the reactive group relative to the surfactant's cationic site and the type of functionality. Thiolated organoclays exfoliate during polymerization, while methacrylated clays show substantially less dependence on polymerization behavior. Interestingly, changes in the physical properties of the resulting nanocomposite are independent of the degree of exfoliation

  6. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    PubMed Central

    Higgins, Thomas M.; Warren, Holly; Panhuis, Marc in het

    2011-01-01

    The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs) and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases. PMID:28348277

  7. The relationship between housing subsidies and supportive housing on neighborhood distress and housing satisfaction: does drug use make a difference?

    PubMed

    Dickson-Gomez, Julia; McAuliffe, Timothy; Obidoa, Chinekwu; Quinn, Katherine; Weeks, Margaret

    2016-05-27

    Since the 1970s, the dominant model for U.S. federal housing policy has shifted from unit-based programs to tenant-based vouchers and certificates. Because housing vouchers allow recipients to move to apartments and neighborhoods of their choice, such programs were designed to improve the ability of poor families to move into neighborhoods with less concentrated poverty. However, little research has examined whether housing voucher recipients live in less distressed neighborhoods than those without housing vouchers. There is much reason to believe that drug users may not be able to access or keep federal housing subsidies due to difficulties drug users, many of whom may have criminal histories and poor credit records, may have in obtaining free market rental housing. In response to these difficulties, permanent supportive housing was designed for those who are chronically homeless with one or more disabling condition, including substance use disorders. Little research has examined whether residents of permanent supportive housing units live in more or less economically distressed neighborhoods compared to low-income renters. This paper uses survey data from 337 low-income residents of Hartford, CT and geospatial analysis to determine whether low-income residents who receive housing subsidies and supportive housing live in neighborhoods with less concentrated poverty than those who do not. We also examine the relationships between receiving housing subsidies or supportive housing and housing satisfaction. Finally, we look at the moderating effects of drug use and race on level of neighborhood distress and housing satisfaction. Results show that low-income residents who receive housing subsidies or supportive housing were not more or less likely to live in neighborhoods with high levels of distress, although Black residents with housing subsidies lived in more distressed neighborhoods. Regarding housing satisfaction, those with housing subsidies perceived

  8. Effects of Kaolin Clay on the Mechanical Properties of Asphaltic Concrete AC14

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Ramadhansyah, P. J.; Rafsanjani, M. H.; Norhidayah, A. H.; Yaacob, H.; Hainin, M. R.; Warid, M. N. Mohd; Satar, M. K. I. Mohd; Aziz, Md Maniruzzaman A.; Mashros, N.

    2018-04-01

    This study investigated the effect of kaolin clay on the mechanical properties of asphaltic concrete AC14 through Marshall Stability, resilient modulus, and dynamic creep tests. Four replacement levels of kaolin clay (2%, 4%, 6%, and 8% by weight of the binder) were considered. Kaolin clay functioned as an effective filler replacement material to increase the mechanical properties of asphalt mixtures. Asphaltic concrete with 2% to 4% kaolin clay replacement level exhibited excellent performance with good stability, resilient modulus, and creep stiffness.

  9. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    PubMed

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, Dorothy; Starkey, Harry C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6⋅45 N, 1:1), acetic acid (4⋅5 N, 1:3), sodium hydroxide (2⋅8 N), sodium chloride solution (pH 6⋅10; Na = 35‰; Cl = 21⋅5‰), and natural sea water (pH 7⋅85; Na = 35⋅5‰; Cl = 21⋅ 5‰) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective.

  12. Concentrations of polychlorinated dibenzo-p-dioxins in processed ball clay from the United States.

    PubMed

    Ferrario, Joseph; Byrne, Christian; Schaum, John

    2007-04-01

    Processed ball clays commonly used by the ceramic art industry in the United States were collected from retail suppliers and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). The average PCDD toxic equivalent (TEQ) concentrations of these processed ball clays was approximately 800 pg/g (TEQ-WHO) with characteristic congener profiles and isomer distributions similar to patterns of previously analyzed raw and processed ball clays. The PCDF concentrations were below the average limit of detection (LOD) of 0.5 pg/g. Correlation analyses reveal no significant relationship between total organic carbon (TOC) and either individual, homologues, and total tetra-through octa-chlorinated PCDD congeners, or TEQ concentrations of the processed ball clays. The results are consistent with earlier studies on levels of PCDDs in ball clays. Data from earlier studies indicated that dioxins may be released to the environment during the processing of raw clay or the firing process used in commercial ceramic facilities. The presence of dioxin in the clays also raises concerns about potential occupational exposure for individuals involved in the mining/processing of ball clay, ceramics manufacturing and ceramic artwork.

  13. Quick clay and landslides of clayey soils.

    PubMed

    Khaldoun, Asmae; Moller, Peder; Fall, Abdoulaye; Wegdam, Gerard; De Leeuw, Bert; Méheust, Yves; Otto Fossum, Jon; Bonn, Daniel

    2009-10-30

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils. Reproducing landslides on a small scale in the laboratory shows that an additional factor that determines the violence of the slides is the inhomogeneity of the flow. We propose a simple yield stress model capable of reproducing the laboratory landslide data, allowing us to relate landslides to the measured rheology.

  14. Quick Clay and Landslides of Clayey Soils

    NASA Astrophysics Data System (ADS)

    Khaldoun, Asmae; Moller, Peder; Fall, Abdoulaye; Wegdam, Gerard; de Leeuw, Bert; Méheust, Yves; Otto Fossum, Jon; Bonn, Daniel

    2009-10-01

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils. Reproducing landslides on a small scale in the laboratory shows that an additional factor that determines the violence of the slides is the inhomogeneity of the flow. We propose a simple yield stress model capable of reproducing the laboratory landslide data, allowing us to relate landslides to the measured rheology.

  15. Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.

    PubMed

    Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong

    2018-05-01

    Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7  cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.

  16. 2. Keeper's house, light tower and oil house, view north, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Keeper's house, light tower and oil house, view north, south and east sides of keeper's house, south side of tower and oil house - Owl's Head Light Station, Off State Highway 73 just east of Rockland on Owl's Head Bay, Owls Head, Knox County, ME

  17. 7. Keeper's house, fog signal house and light tower, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Keeper's house, fog signal house and light tower, view north northeast, west and south sides of keeper's house and tower, southwest and southeast sides of fog signal house - West Quoddy Head Light Station, At eastern tip of West Quaddy Head, Lubec, Washington County, ME

  18. Selective Clay Placement within a Silicate Clay-Epoxy Blend Nanocomposite and the Effect on Physical Properties

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Scheiman, Daniel A; Kohlmman, Lee W.

    2009-01-01

    Many epoxy systems under consideration for composite pressure vessels are composed of toughened epoxy resins. In this work, epoxy blends containing both rigid aromatic and flexible aliphatic components were prepared, to model toughened systems, and determine the optimum route of silicate addition. Compositions were chosen such that both glassy and rubbery resins were obtained at room temperature. The physical properties of the nanocomposites varied with T(g) and silicate placement, however, nanocomposite T(g)s were observed which exceeded that of the base resin by greater than 10 C. The tensile strength of the glassy resin remained constant or decreased on the dispersion of clay while that of the rubbery material doubled. Selectively placing the clay in the aliphatic component of the rubbery blend resulted in a greater than 100% increase in material toughness.

  19. Enhancement of Plant Establishment on Dredged Material Sites with Mycorrhizal Fungi and Clay Amendments

    DTIC Science & Technology

    1989-10-01

    montmorillonite enhanced the growth of smooth brome grass. Topsoil, the clays attapulgite and kaolinite , and the commercial products Agrosoke anj Stawetwere...clays bentonite, attapulgite, kaolinite , and montmorillonite . Trade name and company addresses for the clays are listed in Table 1. Agrosoke and Stawet...desertcoZa, G. etunicatwn, and G. intraradice8. The clays attapulgite, ben- tonite, kaclinite,/and montmorillonite from various commercial sources were

  20. 12. Fuel house and fog signal house, view northeast, southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Fuel house and fog signal house, view northeast, southwest side of fuel house, west and south sides of fog signal house - Cape Elizabeth Light Station, Near Two Lights State Park at end of Two Lights Road, off State Highway 77, Cape Elizabeth, Cumberland County, ME

  1. 1. General view, twoandahalf story house at left. (The house ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view, two-and-a-half story house at left. (The house next door is George McCraig House, HABS No. PA-1593). Photocopied from December 1957 photograph on file at Philadelphia Historical Commission - Henry Elwell House, 812 South Front Street, Philadelphia, Philadelphia County, PA

  2. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    PubMed Central

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  3. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf

    USGS Publications Warehouse

    Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 ??m-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Nin??o years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does

  4. Fundamental investigations of clay/polymer nanocomposites and applications in co-extruded microlayered systems

    NASA Astrophysics Data System (ADS)

    Decker, Jeremy John

    The second and fourth generations of hydroxylated dendritic polyesters (HBP2, HBP4) were combined with unmodified sodium montmorillonite clay (Na +MMT) in water to generate a broad range of polymer clay nanocomposites from 0 to 100% wt/wt Na+MMT. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate intercalation states of the clay galleries. It was shown that interlayer spacings were independent of generation number and changed over the composition range from 0.5 nm to 3.5 nm in 0.5 nm increments that corresponded to a flattened HBP conformation within the clay tactoids. The HBP4/Na+MMT systems were investigated to study the vitrified Rigid Amorphous Fraction (RAF) induced by the clay surfaces. Differential Scanning Calorimetry (DSC) showed changes in heat capacity, Delta Cp, at Tg, that decreased with clay content, until completely suppressed at 80 wt% Na+MMT due to confinement. RAF was quantified from these changes in heat capacity and verified by the analysis of orthopositronium lifetime temperature scans utilizing positron annihilation lifetime spectroscopy (PALS): verifying the glassy nature of the RAF at elevated temperatures. Mathematical relationships allowed for correlation of the interlayer spacings with DeltaC p. RAF formation correlated to intercalated HBP4, and external surfaces of the clay tactoids. The interdiffusion of a polymer pair in microlayers was exploited to increase the concentration of nanoclay particles. When microlayers of a nanocomposite composed of organically modified montmorillonite (M2(HT)2 ) inside maleic anhydride grafted linear low-density polyethylene (LLDPE-g-MA) and low-density polyethylene (LDPE) were taken into the melt, the greater mobility of the linear LLDPE-g-MA chains compared to the branched LDPE chains caused shrinkage of the nanocomposite microlayers, concentrating the M 2(HT)2 contained within. Analysis of the clay morphology within these layers demonstrated an increase in clay

  5. GUARD HOUSE AND SOUTH FIRE HOUSE, VICINITY MAP. (Shows the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GUARD HOUSE AND SOUTH FIRE HOUSE, VICINITY MAP. (Shows the Guard House and Barracks, and South Fire House in relation to nearby roads, railroad tracks, and the piers). Navy Yard, Mare Island, California. P.W. Drawing No. C-1899, approved 1941; file no. 930-C-1. Scale one inch to forty feet. 72 cn x 97 cm. Ink on vellum - Mare Island Naval Shipyard, Guard House & Barracks, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  6. Tailoring the mechanical properties of SU-8/clay nanocomposites: polymer microcantilever fabrication perspective

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Ojijo, Vincent; Cele, Hastings; Joubert, Trudi; Suprakas, Sinha Ray; Land, Kevin

    2014-06-01

    SU-8/Clay nanocomposite is considered as a candidate material for microcantilever sensor fabrication. Organically modified montmorillonite clay nanoparticles are dispersed in the universally used negative photoresist polymer SU-8, for a low cost material, which is also biocompatible. If varying the clay loading of the composite material yields a variation of the Young's modulus, the tailored material stiffness presents an opportunity for fabrication of microcantilevers with tunable sensor sensitivity. With this microcantilever application perspective, mechanical and thermal properties of the material were investigated. SU-8/Clay nanocomposite samples were prepared with clay loadings from 1wt% - 10wt%. Tensile test results show a general trend of increase in composite modulus with an increase in the clay loading up to 7wt%, followed by a small drop at 10wt%. The composite material indeed yields moderate variation of the Young's modulus. It was also found that the thermal degradation peak of the material occurred at 300°C, which is beyond the operating temperature of typical microcantilever sensor applications. The fabrication of a custom designed microcantilever array chip with the SU-8/Clay nanocomposite material was achieved in a class 100 cleanroom, using spin-coating and photolithography microfabrication techniques. The optimization of the process for fabricating microcantilever with the SU-8/Clay nanocomposite material is discussed in this paper. The results of this research are promising for cheaper mass production of low cost disposable, yet sensitive, microcantilever sensor elements, including biosensor applications.

  7. Satisfaction with housing and housing support for people with psychiatric disabilities.

    PubMed

    Brolin, Rosita; Rask, Mikael; Syrén, Susanne; Baigi, Amir; Brunt, David Arthur

    2015-01-01

    The aim of this study was to investigate the degree of satisfaction with housing and housing support for people with psychiatric disabilities in Sweden. A total of 370 residents, in supported housing and in ordinary housing with housing support, completed a new questionnaire and reported a high degree of overall satisfaction, but many of them wanted to move somewhere else. Differences were found between the two different types of housing concerning satisfaction with housing support, social life and available choices. Security and privacy, as well as other's influence on the choice of residential area and dwelling proved to be important predictors for satisfaction.

  8. Improved cell disruption of Pichia pastoris utilizing aminopropyl magnesium phyllosilicate (AMP) clay.

    PubMed

    Kim, Sun-Il; Wu, Yuanzheng; Kim, Ka-Lyun; Kim, Geun-Joong; Shin, Hyun-Jae

    2013-06-01

    An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.

  9. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    PubMed Central

    Kielmann, Udo; Jeschke, Gunnar; García-Rubio, Inés

    2014-01-01

    Polymer-clay nanocomposites (PCNCs) containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural) suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR) techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid) or the clay surface (labeled catamine). Continuous-wave (CW) EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack. PMID:28788520

  10. The Effect of Art Therapy with Clay on Hopelessness Levels Among Neurology Patients.

    PubMed

    Akhan, Latife Utas; Kurtuncu, Meltem; Celik, Sevim

    This study was performed to determine the effect of art therapy with clay on hopelessness levels of patients under treatment in departments of neurology. The study was of one group, pre- and posttest design. This study was performed on patients who were hospitalized in the neurology departments of a university and a state hospital between February and May 2012 in Turkey. The sample for the study comprised 50 neurology patients with diagnoses of epilepsy (17 patients) and stroke (33 patients). The patients in the study were asked to create objects of clay of any shape they desired. Data for the research were collected with a sociodemographic data form and by using the Beck Hopelessness Scale (BHS). While BHS scores of neurology patients before clay therapy were found higher compared to the scores after therapy with clay, there was also a statistically significant difference. After clay therapy, BHS scores were lower in women, in married patients, in patients who suffered from a stroke, people who had chronic disease, people without psychological illness, and in the case of children. The study showed that clay therapy had an impact on the hopelessness levels of neurology patients. Art therapy with clay may be used for rehabilitation purposes in neurology patients, both in the hospital and at home after discharge.

  11. Clay with Desiccation Cracks is an Advection Dominated Environment

    NASA Astrophysics Data System (ADS)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment

  12. Influence of Clay Content, Mineralogy and Fabric On Radar Frequency Response of Aquifer Materials

    NASA Astrophysics Data System (ADS)

    West, L. J.; Handley, K.

    High frequency electromagnetic methods such as ground penetrating radar (GPR) and time domain reflectometry (TDR) are widely employed to measure water saturation in the vadose zone and water filled porosity in the saturated zone. However, previous work has shown that radar frequency dielectric properties are strongly influenced by clay as well as by water content. They have also shown that that the dielectric response of clay minerals is strongly frequency dependent, and that even a small proportion of clay such as that present in many sandstone aquifers can have a large effect at typi- cal GPR frequencies (around 100MHz). Hence accurate water content/porosity deter- mination requires clay type and content to be taken into account. Reported here are dielectric measurements on clay-sand mixtures, aimed at investigating the influence of clay mineralogy, particle shape, and the geometrical arrangement of the mixture constituents on GPR and TDR response. Dielectric permittivity (at 50-1000MHz) was measured for mixtures of Ottawa Sand and various clay minerals or clay size quartz rock flour, using a specially constructed dielectric cell. Both homogeneous and layered mixtures were tested. The influence of pore water salinity, clay type, and particle arrangement on the dielectric response is interpreted in terms of dielectric dispersion mechanisms. The appropriateness of var- ious dielectric mixing rules such as the Complex Refractive Index Method (CRIM) for determination of water content or porosity from field GPR and TDR data are dis- cussed.

  13. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, T.F.; Blake, D. F..; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W..; Morrison, S. M.; Yen, A. S.; hide

    2017-01-01

    The CheMin XRD instrument aboard Mars Science Laboratory (MSL) has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. The most recent samples, named Marimba, Quela and Sebina were acquired from the Murray Formation in the Murray Buttes region of lower Mt. Sharp. Marimba and Quela come from a approx. 30 m package of finely laminated lacustrine mudstones. Sebina comes from an overlying package of heterolithic mudstone-sandstones. Clay minerals make up approx.15-25 wt.% of the bulk rock with similar contributions to XRD patterns in all three samples. Broad basal reflections at approx. 10deg 2(theta) CoK(alpha) indicate the presence of 2:1 group clay minerals. The 02(lambda) clay mineral band lies at approx. 22.9deg 2(theta), a region typically occupied by Fe-bearing dioctahedral 2:1 clay minerals like nontronite or Fe-illite. The low humidity within the CheMin instrument, which is open to the martian atmosphere, promotes loss of interlayer H2O and collapse of smectite interlayers making them difficult to distinguish from illites. However, based on the low K content of the bulk samples, it appears that smectitic clay minerals are dominant. Peak dehydroxylation of the Marimba sample measured by the SAM instrument on MSL occurred at 610C and 780C. Fe-bearing smectites are not consistent with these dehydroxylation temperatures. Thus, we suggest that a mixture of dioctahedral and trioctahedral smectite phases are present giving the appearance of intermediate octahedral occupancy in XRD. Dioctahedral smectites have not previously been reported in Gale Crater by MSL. Earlier in the mission, relatively clay mineral rich samples (approx. 20 wt.%) from lacustrine mudstones in Yellowknife Bay (YKB) were found to contain ferrian saponites. It is proposed that YKB saponites formed via isochemical aqueous alteration of detrital olivine close to the time of sediment deposition, under anoxic to poorly oxidizing

  14. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study

    NASA Astrophysics Data System (ADS)

    Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.

    2017-11-01

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  15. Toward Accurate Adsorption Energetics on Clay Surfaces

    PubMed Central

    2016-01-01

    Clay minerals are ubiquitous in nature, and the manner in which they interact with their surroundings has important industrial and environmental implications. Consequently, a molecular-level understanding of the adsorption of molecules on clay surfaces is crucial. In this regard computer simulations play an important role, yet the accuracy of widely used empirical force fields (FF) and density functional theory (DFT) exchange-correlation functionals is often unclear in adsorption systems dominated by weak interactions. Herein we present results from quantum Monte Carlo (QMC) for water and methanol adsorption on the prototypical clay kaolinite. To the best of our knowledge, this is the first time QMC has been used to investigate adsorption at a complex, natural surface such as a clay. As well as being valuable in their own right, the QMC benchmarks obtained provide reference data against which the performance of cheaper DFT methods can be tested. Indeed using various DFT exchange-correlation functionals yields a very broad range of adsorption energies, and it is unclear a priori which evaluation is better. QMC reveals that in the systems considered here it is essential to account for van der Waals (vdW) dispersion forces since this alters both the absolute and relative adsorption energies of water and methanol. We show, via FF simulations, that incorrect relative energies can lead to significant changes in the interfacial densities of water and methanol solutions at the kaolinite interface. Despite the clear improvements offered by the vdW-corrected and the vdW-inclusive functionals, absolute adsorption energies are often overestimated, suggesting that the treatment of vdW forces in DFT is not yet a solved problem. PMID:27917256

  16. Mechanistic examination of pre-exfoliating confinement of surface-active polystyrene nanobeads within pristine clay.

    PubMed

    Khvan, Svetlana; Kim, Junkyung; Lee, Sang-Soo

    2007-02-01

    Hydrophobic polymer (PS) nanoparticles preformed through an emulsifier-free emulsion polymerization method were successfully incorporated into a gallery of pristine sodium montmorillonite via interfacial cation exchange. The polymer beads confined between clay nanosheets were capable of (1) preventing the silicate layers from restacking and (2) maintaining the exfoliated state of clay. The increase in the abundance of surface groups promoted adsorption of the nanobeads onto the silicate surface and eventually led to the establishment of strong polymer-clay interactions. These findings suggest that, on the basis of the obtained pre-exfoliated clay masterbatch, the presence of strong polymer-clay interactions could improve the mechanical performance of nanocomposites.

  17. 24 CFR 982.609 - Congregate housing: Housing quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... URBAN DEVELOPMENT SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Special Housing... apply in place of § 982.401(c) (food preparation and refuse disposal). Congregate housing is not subject... area. (b) Food preparation and refuse disposal: Additional performance requirements. The following...

  18. Carbon dioxide intercalation in Na-fluorohectorite clay at near-ambient conditions

    NASA Astrophysics Data System (ADS)

    Fossum, Jon Otto; Hemmen, Henrik; Rolseth, Erlend G.; Fonseca, Davi; Lindbo Hansen, Elisabeth; Plivelic, Tomas

    2012-02-01

    A molecular dynamics study by Cygan et al.[1] shows the possibility of intercalation and retention of CO2 in smectite clays at 37 ^oC and 200 bar, which suggests that clay minerals may prove suitable for carbon capture and carbon dioxide sequestration. In this work we show from x-ray diffraction measurements that gaseous CO2 intercalates into the interlayer space of the synthetic smectite clay Na-fluorohectorite. The mean interlayer distance of the clay when CO2 is intercalated is 12.5 å at -20 C and 15 bar. The magnitude of the expansion of the interlayer upon intercalation is indistinguishable from that of the dehydrated-monohydrated intercalation of H2O, but this possibility is ruled out by careful repeating the measurements exposing the clay to nitrogen gas. The dynamics of the CO2 intercalation process displays a higher intercalation rate at increased pressure, and the rate is several orders of magnitude slower than that of water or vapor at ambient pressure and temperature.[4pt] [1] Cygan, R. T.; Romanov, V. N.; Myshakin, E. M. Natural materials for carbon capture; Techincal report SAND2010-7217; Sandia National Laboratories: Albuquerque, New Mexico, November, 2010.

  19. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Collective Structural Changes in Vermiculite Clay Suspensions Induced by Cesium Ions

    NASA Astrophysics Data System (ADS)

    Motokawa, Ryuhei; Endo, Hitoshi; Yokoyama, Shingo; Nishitsuji, Shotaro; Kobayashi, Tohru; Suzuki, Shinichi; Yaita, Tsuyoshi

    2014-10-01

    Following the Fukushima Daiichi nuclear disaster in 2011, Cs radioisotopes have been dispersed over a wide area. Most of the Cs has remained on the surface of the soil because Cs+ is strongly adsorbed in the interlayer spaces of soil clays, particularly vermiculite. We have investigated the microscopic structure of an aqueous suspension of vermiculite clay over a wide length scale (1-1000 Å) by small-angle X-ray scattering. We determined the effect of the adsorption behavior of Cs+ on the structural changes in the clay. It was found that the abruption of the clay sheets was induced by the localization of Cs+ at the interlayer. This work provides important information for predicting the environmental fate of radioactive Cs in polluted areas, and for developing methods to extract Cs from the soil and reduce radioactivity.

  1. Removal of Cr(VI) from Aqueous Environments Using Micelle-Clay Adsorption

    PubMed Central

    Qurie, Mohannad; Khamis, Mustafa; Manassra, Adnan; Ayyad, Ibrahim; Nir, Shlomo; Scrano, Laura; Bufo, Sabino A.; Karaman, Rafik

    2013-01-01

    Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques. PMID:24222757

  2. An Evidence-Based Review on Medicinal Value of Clays in Traditional Persian Medicine.

    PubMed

    Hosseinkhani, Ayda; Montaseri, Hashem; Hosamo, Ammar; Zarshenas, Mohammad Mehdi

    2017-01-01

    The use of earths and clays for medical purposes dates back to antiquity. In recent years, there has been an increasing interest in researches on traditional remedies in the hope of discovering new drug. Iran is an ancient country with a medical backbone acquired from the experiences of ancient Persian scholars, who had made a great contribution to the development of the medical sciences. Many medical and pharmaceutical books by early Persian scientists still exist and may have the potential of leading researchers to new drug discoveries. Owing to the emergence of new and antimicrobial-resistant infections, present-day medicine has recently begun focusing on medicinal earths and clays especially as mineral antimicrobials. The current study is, therefore, aimed at gathering information regarding medicinal clays in traditional Persian medicine (TPM). Five main Persian materia medica with the key word 'tin' (clay) and current databases such as PubMed, Scopus, ScienceDirect, and Google Scholar were searched by key words 'white, green, red, maroon, violet, black, grey and pink clays' and 'pharmacological effects'. Twenty three clays were found in Persian manuscripts. Although their mineralogical compositions are unknown, different pharmacological properties have been attributed to these mineral medicaments. Clay's properties were widely used in medieval times for the treatment of infections to poisoning. They were also used in compound formulations, possibly for their pharmaceutical formulation modifying effects. Modern scientific proofs have also been found in many of the medicinal clays reported in Persian manuscripts. Although many of the reported clays are still unknown, their characterization may lead to new medicinal developments. Novel analytical methods available today make it possible to elucidate the chemical compositions of these minerals as parameters responsible for their medicinal effects. Copyright© Bentham Science Publishers; For any queries, please

  3. Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additives.

    PubMed

    Jaynes, William F; Zartman, Richard E

    2011-06-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (K(d) = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (K(d) = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (K(d) = 13,800) and carnitine (K(d) = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (K(d) = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (K(d) = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (K(d) = 1340) or the untreated montmorillonite (K(d) = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity.

  4. Stimuli-Responsive Polymer-Clay Nanocomposites under Electric Fields

    PubMed Central

    Piao, Shang Hao; Kwon, Seung Hyuk; Choi, Hyoung Jin

    2016-01-01

    This short Feature Article reviews electric stimuli-responsive polymer/clay nanocomposites with respect to their fabrication, physical characteristics and electrorheological (ER) behaviors under applied electric fields when dispersed in oil. Their structural characteristics, morphological features and thermal degradation behavior were examined by X-ray diffraction pattern, scanning electron microscopy and transmission electron microscopy, and thermogravimetric analysis, respectively. Particular focus is given to the electro-responsive ER characteristics of the polymer/clay nanocomposites in terms of the yield stress and viscoelastic properties along with their applications. PMID:28787852

  5. Effects of clay on fat necrosis and carcass characteristics in Japanese Black steers.

    PubMed

    Oka, Akio; Iwamoto, Eiji; Tatsuda, Ken

    2015-10-01

    Twenty 10-month-old Japanese Black steers were used to evaluate the effects of clay on fat necrosis and carcass characteristics. Ten steers (Clay group) were fed the clay (50 g/day) during 10-30 months of age. The other 10 steers (Control group) were not fed it. There was no significant difference in body weight or average daily gain between the two groups (P > 0.05). The occurrence of fat necrotic mass in the Clay group (30%) was lower (P < 0.05) than that in the Control group (90%) at slaughter. The size of necrotic masses in the Clay group was smaller (P < 0.05) than that in the Control group. There was no significant difference in the marbling score, beef color, Longissimus muscle area or subcutaneous fat thickness between the two groups. These results suggest that the clay prevented the occurrence of fat necrosis and did not affect the carcass characteristics in Japanese Black steers. © 2015 Japanese Society of Animal Science.

  6. A minimalistic microbial food web in an excavated deep subsurface clay rock.

    PubMed

    Bagnoud, Alexandre; de Bruijn, Ino; Andersson, Anders F; Diomidis, Nikitas; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    Clay rocks are being considered for radioactive waste disposal, but relatively little is known about the impact of microbes on the long-term safety of geological repositories. Thus, a more complete understanding of microbial community structure and function in these environments would provide further detail for the evaluation of the safety of geological disposal of radioactive waste in clay rocks. It would also provide a unique glimpse into a poorly studied deep subsurface microbial ecosystem. Previous studies concluded that microorganisms were present in pristine Opalinus Clay, but inactive. In this work, we describe the microbial community and assess the metabolic activities taking place within borehole water. Metagenomic sequencing and genome-binning of a porewater sample containing suspended clay particles revealed a remarkably simple heterotrophic microbial community, fueled by sedimentary organic carbon, mainly composed of two organisms: a Pseudomonas sp. fermenting bacterium growing on organic macromolecules and releasing organic acids and H2, and a sulfate-reducing Peptococcaceae able to oxidize organic molecules to CO(2). In Opalinus Clay, this microbial system likely thrives where pore space allows it. In a repository, this may occur where the clay rock has been locally damaged by excavation or in engineered backfills. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischia, Marco, E-mail: marco.ischia@ing.unitn.it; Maschio, Roberto Dal; Grigiante, Maurizio

    2011-01-15

    Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, atmore » temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.« less

  8. Mineralogy and thermal properties of clay from Slatina (Ub, Serbia)

    NASA Astrophysics Data System (ADS)

    Milosevic, Maja; Logar, Mihovil; Kaludjerovic, Lazar; Jelic, Ivana

    2017-04-01

    The "Slatina" deposit, Ub, Serbia was opened in 1965 and represents one of few deposits exploited by "Kopovi" a.d., Ub, company. Deposit is composed of clay layers belonging to Neogene sediments that are widespread transgressive over granitoid rocks of Cer mountain and Paleozoic and Mesozoic sediments. Clay is mostly of illite-montmorillonite-kaolinite type and they are generally used as ceramic materials while some of the layers are used as fire-resistant materials. In this study we present mineralogical and thermal characterization of two samples to determine their application as industrial materials. Chemical and mineral composition was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) on powder and oriented samples, infrared spectroscopy (IR) and granulometry. Cationic exchange capacity (CEC) and specific surface area (SSA) was determined using spectrophotometry and methylene blue (MB). Thermal properties where determined by gravimetry (120, 350, 600 and 1000 oC) and differential thermal analysis (DTA). Quantitative mineral composition obtained by Rietveld refinement of combined chemical and XRD data shows that the sample 1(SC) is mainly smectite-illite (45%) and kaolinite (14%) clay with 19% of quartz, 10% feldspars and 7% of limonite, while sample 2(SV) is smectite-illite (43%) and kaolinite (11%) clay with 10% of quartz, 15% feldspars and 7% of limonite. Both samples have low content of impurities (carbonate minerals). Medium grain size (μm) goes from 1.02 (SSA = 104 m2/g) for sample 1(SC) to 0.71 (SSA = 117 m2/g) for sample 2(SV) while their CEC is 12.7 and 14.9 mmol/100g for 1(SC) and 2(SV) respectively. IR spectra of the samples shows larger amount of smectite clays with quartz and carbonate minerals for both samples which is in accordance with XRD data. DTA data shows couple of events that are endothermic. First one (100-200 oC) is associated with loss of moisture and constitutive water, second

  9. ADSORPTION OF SURFACTANT ON CLAYS

    EPA Science Inventory

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  10. Development and characterization of clay facial mask containing turmeric extract solid dispersion.

    PubMed

    Pan-On, Suchiwa; Rujivipat, Soravoot; Ounaroon, Anan; Tiyaboonchai, Waree

    2018-04-01

    To develop clay facial mask containing turmeric extract solid dispersion (TESD) for enhancing curcumin water solubility and permeability and to determine suitable clay based facial mask. The TESD were prepared by solvent and melting solvent method with various TE to polyvinylpyrrolidone (PVP) K30 mass ratios. The physicochemical properties, water solubility, and permeability were examined. The effects of clay types on physical stability of TESD, water adsorption, and curcumin adsorption capacity were evaluated. The TESD prepared by solvent method with a TE to PVP K30 mass ratio of 1:2 showed physically stable, dry powders, when mixed with clay. When TESD was dissolved in water, the obtained TESD micelles showed spherical shape with mean size of ∼100 nm resulting in a substantial enhancement of curcumin water solubility, ∼5 mg/ml. Bentonite (Bent) and mica (M) showed the highest water adsorption capacity. The TESD's color was altered when mixed with Bent, titanium dioxide (TiO 2 ) and zinc oxide (ZnO) indicating curcumin instability. Talcum (Talc) showed the greatest curcumin adsorption followed by M and kaolin (K), respectively. Consequently, in vitro permeation studies of the TESD mixed with Talc showed lowest curcumin permeation, while TESD mixed with M or K showed similar permeation profile as free TESD solutions. The developed TESD-based clay facial mask showed lower curcumin permeation as compared to those formulations with Tween 80. The water solubility and permeability of curcumin in clay based facial mask could be improved using solid dispersion technique and suitable clay base composed of K, M, and Talc.

  11. Dual aging behaviour in a clay-polymer dispersion.

    PubMed

    Zulian, Laura; Augusto de Melo Marques, Flavio; Emilitri, Elisa; Ruocco, Giancarlo; Ruzicka, Barbara

    2014-07-07

    Clay-polymer compounds have recently attracted increasing attention due to their intriguing physical properties in colloidal science and their rheological non-trivial behaviour in technological applications. Aqueous solutions of Laponite clay spontaneously age from a liquid up to an arrested state of different nature (gel or glass) depending on the colloidal volume fraction and ionic strength. We have investigated, through dynamic light scattering, how the aging dynamics of Laponite dispersions at fixed clay concentration (Cw = 2.0%) is modified by the addition of various amounts of poly(ethylene oxide) (PEO) (CPEO = (0.05 ÷ 0.50) %) at two different molecular weights (Mw = 100 kg mol(-1) and Mw = 200 kg mol(-1)). A surprising and intriguing phenomenon has been observed: the existence of a critical polymer concentration C that discriminates between two different aging dynamics. With respect to pure Laponite systems the aging will be assisted (faster) or hindered (slower) for PEO concentrations respectively lower (CPEO < C) or higher (CPEO > C) than the critical concentration. In this way a control on the aging dynamics of PEO-Laponite systems is obtained. A possible explanation based on the balance of competitive mechanisms related to the progressive saturation of the clay surface by polymers is proposed. This study shows how a real control on the aging speed of the PEO-Laponite system is at hand and renders possible a real control of the complex interparticle interaction potential.

  12. Evaluation of the release of dioxins and PCBs during kiln-firing of ball clay.

    PubMed

    Broadwater, Kendra; Meeker, John D; Luksemburg, William; Maier, Martha; Garabrant, David; Demond, Avery; Franzblau, Alfred

    2014-01-01

    Ball clay is known to be naturally contaminated with high levels of polychlorinated di-benzo-p-dioxins (PCDDs). This study evaluated the potential for PCDD, polychlorinated dibenzofuran (PCDF) and polychlorinated biphenyl (PCB) release during the kiln firing of ball clay in an art studio. Toxic equivalence (TEQ) were calculated using World Health Organization (WHO) 2005 toxic equivalence factors (TEF) and congener concentrations. Ten bags of commercial ball clay were found to have an average TEQ of 1,370 nanograms/kilogram (ng kg(-1)) dry weight (dw), almost exclusively due to PCDDs (99.98% of TEQ). After firing, none of the 29 dioxin-like analytes was measured above the limits of detection (LOD) in the clay samples. Air samples were taken during firings using both low-flow and high-flow air samplers. Few low-flow air samples contained measurable levels of dioxin congeners above the LOD. The mean TEQ in the high volume air samples ranged from 0.07 pg m(-3) to 0.21 pg m(-3) when firing ball clay, and was 0.11 pg m(-3) when no clay was fired. These concentrations are within the range measured in typical residences and well-controlled industrial settings. The congener profiles in the high-flow air samples differed from the unfired clay; the air samples had a considerable contribution to the TEQ from PCDFs and PCBs. Given that the TEQs of all air samples were very low and the profiles differed from the unfired clay, it is likely that the PCDDs in dry ball clay were destroyed during kiln firing. These results suggest that inhalation of volatilized dioxins during kiln firing of dry ball clay is an unlikely source of exposure for vocational and art ceramicists. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Delineation of a quick clay zone at Smørgrav, Norway, with electromagnetic methods under geotechnical constraints

    NASA Astrophysics Data System (ADS)

    Kalscheuer, Thomas; Bastani, Mehrdad; Donohue, Shane; Persson, Lena; Aspmo Pfaffhuber, Andreas; Reiser, Fabienne; Ren, Zhengyong

    2013-05-01

    In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures. For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 Ω m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.

  14. Lime as an Anti-Plasticizer for Self-Compacting Clay Concrete

    PubMed Central

    Landrou, Gnanli; Brumaud, Coralie; Winnefeld, Frank; Flatt, Robert J.; Habert, Guillaume

    2016-01-01

    This paper focuses on the modification of clay properties with inorganic additives to deflocculate and flocculate inorganic soil for the development of a material that would be as easy to use as the current concrete products, but with a much lower environmental impact. Considering that the rheological behaviour of clays is controlled by their surface charge, we first introduce potential determining ions to deflocculate the clay particles and to reduce the yield stress of the earth material. Their efficiency is characterized using zeta potential measurements and rheological tests. We then achieve the flocculation of clay particles by using natural minerals that slowly dissolve in the interstitial liquid and ultimately precipitate calcium silicate hydrate (C–S–H). The precipitation products are identified by X-ray diffraction and the consequences of this delayed precipitation are followed by oscillatory rheometric measurements. Finally, it is suggested that in this process, C–S–H precipitation is not used as a binding vector but as an anti-plasticizer that removes the inorganic dispersant additives. PMID:28773453

  15. Lime as an Anti-Plasticizer for Self-Compacting Clay Concrete.

    PubMed

    Landrou, Gnanli; Brumaud, Coralie; Winnefeld, Frank; Flatt, Robert J; Habert, Guillaume

    2016-04-29

    This paper focuses on the modification of clay properties with inorganic additives to deflocculate and flocculate inorganic soil for the development of a material that would be as easy to use as the current concrete products, but with a much lower environmental impact. Considering that the rheological behaviour of clays is controlled by their surface charge, we first introduce potential determining ions to deflocculate the clay particles and to reduce the yield stress of the earth material. Their efficiency is characterized using zeta potential measurements and rheological tests. We then achieve the flocculation of clay particles by using natural minerals that slowly dissolve in the interstitial liquid and ultimately precipitate calcium silicate hydrate (C-S-H). The precipitation products are identified by X-ray diffraction and the consequences of this delayed precipitation are followed by oscillatory rheometric measurements. Finally, it is suggested that in this process, C-S-H precipitation is not used as a binding vector but as an anti-plasticizer that removes the inorganic dispersant additives.

  16. Smectite clay--inorganic nanoparticle mixed suspensions: phase behaviour and rheology.

    PubMed

    Bailey, Louise; Lekkerkerker, Henk N W; Maitland, Geoffrey C

    2015-01-14

    Smectite clay minerals and their suspensions have long been of both great scientific and applications interest and continue to display a remarkable range of new and interesting behaviour. Recently there has been an increasing interest in the properties of mixed suspensions of such clays with nanoparticles of different size, shape and charge. This review aims to summarize the current status of research in this area focusing on phase behaviour and rheological properties. We will emphasize the rich range of data that has emerged for these systems and the challenges they present for future investigations. The review starts with a brief overview of the behaviour and current understanding of pure smectite clays and their suspensions. We then cover the work on smectite clay-inorganic nanoparticle mixed suspensions according to the shape and charge of the nanoparticles - spheres, rods and plates either positively or negatively charged. We conclude with a summary of the overarching trends that emerge from these studies and indicate where gaps in our understanding need further research for better understanding the underlying chemistry and physics.

  17. Substandard Housing.

    ERIC Educational Resources Information Center

    Milkove, Daniel L., Comp.

    1986-01-01

    Defines substandard housing and summarizes newly derived data from the 1980 Census showing that 7.5% of all rural occupied housing in the Nation was substandard. Points out regional and rural-urban differences. Notes effects on rural housing of poverty rates, percentage of nonwhite households, average household size, growth in county population,…

  18. Investigating the behaviour of Mg isotopes during the formation of clay minerals

    NASA Astrophysics Data System (ADS)

    Wimpenny, Joshua; Colla, Christopher A.; Yin, Qing-Zhu; Rustad, James R.; Casey, William H.

    2014-03-01

    We present elemental and isotopic data detailing how the Mg isotope system behaves in natural and experimentally synthesized clay minerals. We show that the bulk Mg isotopic composition (δ26Mg) of a set of natural illite, montmorillonite and kaolinite spans a 2‰ range, and that their isotopic composition depends strongly on a balance between the relative proportions of structural and exchangeable Mg. After acid leaching, these natural clays become relatively enriched in isotopically heavy Mg by between 0.2‰ and 1.6‰. Results of exchange experiments indicate that the Mg that has adsorbed to interlayer spaces and surface charged sites is relatively enriched in isotopically light Mg compared to the residual clay. The isotopic composition of this exchangeable Mg (-1.49‰ to -2.03‰) is characteristic of the isotopic composition of Mg found in many natural waters. Further experiments with an isotopically characterized MgCl2 solution shows that the clay minerals adsorb this exchangeable Mg with little or no isotopic fractionation, although we cannot discount the possibility that the uptake of exchangeable Mg does so with a slight preference for 24Mg. To characterize the behaviour of Mg isotopes during clay mineral formation we synthesized brucite (Mg(OH)2), which we consider to be a good analogue for the incorporation of Mg into the octahedral sheet of Mg-rich clay minerals or into the brucitic layer of clays such as chlorite. In our experiment the brucite mineral becomes enriched in the heavy isotopes of Mg while the corresponding solution is always relatively enriched in isotopically light Mg. The system reaches a steady state after 10 days with a final fractionation factor (αsolid-solution) of 1.0005 at near-neutral pH. This result is consistent with the general consensus that secondary clay minerals preferentially take up isotopically heavy Mg during their formation. However our results also show that exchangeable Mg is an important component within bulk

  19. Clay and Shale Permeability at Lab to Regional Scale

    NASA Astrophysics Data System (ADS)

    Neuzil, C.

    2017-12-01

    Because clays, shales, and other clay-rich media tend to be only poorly permeable, and are laterally extensive and voluminous, they play key roles in problems as diverse as groundwater supply, waste confinement, exploitation of conventional and unconventional oil and gas, and deformation and failure in the crust. Clay and shale permeability is a crucial but often highly uncertain analysis parameter; direct measurements are challenging, error-prone, and - perhaps most importantly - provide information only at quite small scales. Fortunately, there has been a dramatic increase in clay and shale permeability data from sources that include scientific ocean drilling, nuclear waste repository research, groundwater resource studies, liquid waste and CO2 sequestration, and oil and gas research. The effect of lithology as well as porosity on matrix permeability can now be examined and permeability - scale relations are becoming discernable. A significant number of large-scale permeability estimates have been obtained by inverse methods that essentially treat large-scale flow systems as natural experiments. They suggest surprisingly little scale-dependence in clay and shale permeabilities in subsiding basins and accretionary complexes. Stable continental settings present a different picture; as depths increase beyond 1 km, scale dependence mostly disappears even over the largest areas. At depths less than 1 km, secondary permeability is not always present over areas of 1 - 10 km2, but always evident for areas in excess of about 103 km2. Transmissive fractures have been observed in very low porosity (< 0.03) shales in these settings, but the cause of scale dependence in other cases is unclear; it may reflect time-dependent, or "dynamic" conditions, including irreversible and ongoing changes imposed on subsurface flow systems by human activities.

  20. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation

    PubMed Central

    Ribeiro, Simone P S; Estevão, Luciana R M; Nascimento, Regina S V

    2008-01-01

    Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI), the UL-94 rating and thermogravimetric analysis (TGA). The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials. PMID:27877975