Science.gov

Sample records for clay minerals

  1. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  2. Clay Mineral: Radiological Characterization

    NASA Astrophysics Data System (ADS)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.

    2008-08-01

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  3. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  4. Clay Mineral: Radiological Characterization

    SciTech Connect

    Cotomacio, J. G.; Silva, P. S. C.; Mazzilli, B. P

    2008-08-07

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and {sup 40}K in these clay minerals.The objective of this work is to determine the concentrations of {sup 238}U, {sup 232}Th, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 40}K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay.Measurement for the determination of {sup 238}U and {sup 232}Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 40}K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906{+-}340 Bq kg{sup -1} for {sup 40}K, 40{+-}9 Bq kg{sup -1} for {sup 226}Ra, 75{+-}9 Bq kg{sup -1} for {sup 228}Ra, 197{+-}38 Bq kg{sup -1} for {sup 210}Pb, 51{+-}26 Bq kg{sup -1} for {sup 238}U and 55{+-}24 Bq kg{sup -1} for {sup 232}Th, considering both kinds of clay.

  5. Clay Mineral Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Day-Stirrat, R. J.

    2014-12-01

    Anisotropy of the orientation of clay minerals, often referred to as texture, may be unique to sediments' deposition, composition, deformation or diagenetic history. The literature is rich with studies that include preferred orientation generation in fault gouge, low-grade metamorphic rocks, sediments with variable clay content and during the smectite-to-illite transformation. Untangling the interplay between many competing factors in any one geologic situation has proven a significant challenge over many years. Understanding how, where and when clay minerals develop a preferred orientation has significant implications for permeability anisotropy in shallow burial, the way mechanical properties are projected from shallower to deeper settings in basin modeling packages and the way velocity anisotropy is accounted for in seismic data processing. The assessment of the anisotropic properties of fine-grained siliciclastic rocks is gaining significant momentum in rock physics research. Therefore, a fundamental understanding of how clay minerals develop a preferred orientation in space and time is crucial to the understanding of anisotropy of physical properties. The current study brings together a wealth of data that may be used in a predictive sense to account for fabric anisotropy that may impact any number of rock properties.

  6. Green Clay Minerals

    NASA Astrophysics Data System (ADS)

    Velde, B.

    2003-12-01

    Color is a problem for scientific study. One aspect is the vocabulary one used to describe color. Mint green, bottle green, and Kelly green are nice names but not of great utility in that people's physical perception of color is not always the same. In some industries, such as colored fabric manufacture, current use is to send a set of standard colors which are matched by the producer. This is similar to the use of the Munsell color charts in geology. None of these processes makes use of physical optical spectral studies. The reason is that they are difficult to obtain and interpret. For a geologist, color is very important but we rarely have the possibility to standardize the method of our color perception. One reason is that color is both a reflective and transmission phenomenon. The thickness of the sample is critical to any transmission characteristics. Hence, a field color determination is different from one made by using a petrographic microscope. Green glauconite in a hand specimen is not the same color in 30 μm thick thin section seen with a microscope using transmitted light.A second problem is that color in a spectral identification is the result of several absorption emissions,with overlapping signal, forming a complicated spectrum. Interpretation depends very greatly on the spectrum of the light source and the conditions of transmission-reflection of the sample. As a result, for this text, we will not attempt to analyze the physical aspect of green in green clays. In the discussion which follows, reference is made concerning color, to thin section microscopic perception.Very briefly, green clay minerals are green, because they contain iron. This is perhaps not a great revelation to mineralogists, but it is the key to understanding the origin and stability of green clay minerals. In fact, iron can color minerals either red or green or in various shades of orange and brown. The color most likely depends upon the relative abundance of the iron ion valence

  7. Elastic Properties of Clay Minerals

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Prasad, M.; Nur, A.

    2001-12-01

    We present ultrasonic P- and S-waves velocity measurements on pure clay samples using three different experiment setups. These experiments provided petrophysical and acoustic properties of clay minerals as a function both of mineralogy and compaction. In the first experiment, acoustic measurements were performed on cold-pressed clay aggregates at ambient and at hydrostatic pressure conditions. Porosity and grain density values of the different clay mineralogy aggregates ranged from 4 to 43% and 2.13 to 2.83 g cm-3, respectively. In the second experiment, we measured P-wave velocity and attenuation in a kaolinite-water suspension in which clay concentration was increased up to 60%. In the third experiment, P- and S- wave velocities were measured during uniaxial stress compaction of clay powders. Results from all three experiments revealed low bulk (K) and shear (μ ) moduli for kaolinite, montmorillonite, and smectite; the values range between 6-12 GPa for K and 4-6 GPa for μ , respectively. Using these clay moduli values in effective medium and granular porous media models, velocity is predicted in saturated pure kaolinite samples, kaolinite suspension and shaly sandstones fairly well. Experimental results also showed that water interlayers play an important role in the compaction and strength of clay aggregates. Clay minerals carrying on water interlayers in their structure showed high compaction and strength. This study is relevant for a more reliable assessment of the seismic response in reservoirs and/or basins characterized by clay-bearing formations.

  8. Elastic Properties of Clay Minerals

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Prasad, M.; Nur, A.

    We present ultrasonic P- and S-waves velocity measurements on pure clay samples us- ing three different experiment setups. These experiments provided petrophysical and acoustic properties of clay minerals as a function both of mineralogy and compaction. In the first experiment, acoustic measurements were performed on cold-pressed clay aggregates at ambient and at hydrostatic pressure conditions. Porosity and grain den- sity values of the different clay mineralogy aggregates ranged from 4 to 43% and 2.13 to 2.83 g cm-3, respectively. In the second experiment, we measured P-wave velocity and attenuation in a kaolinite-water suspension in which clay concentration was in- creased up to 60%. In the third experiment, P- and S- wave velocities were measured during uniaxial stress compaction of clay powders. Results from all three experiments revealed low bulk (K) and shear (µ) moduli for kaolinite, montmorillonite, and smec- tite; the values range between 6-12 GPa for K and 4-6 GPa for µ, respectively. Using these clay moduli values in effective medium and granular porous media (theories) models, velocity is predicted in saturated pure kaolinite samples, kaolinite suspension and shaly sandstone fairly well. Experimental results also showed that water interlay- ers play an important role in the compaction and strength of clay aggregates. Clay minerals carrying on water interlayers in their structure showed high compaction and strength. This study is relevant for a more reliable assessment of the seismic response in reservoirs and/or basins characterized by clay-bearing formations.

  9. Mineral resource of the Month: Clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.

  10. Mineral resource of the month: clays

    USGS Publications Warehouse

    Virta, Robert

    2004-01-01

    Clays represent one of the largest mineral commodities in the world in terms of mineral and rock production and use. Many people, however, do not recognize that clays are used in an amazingly wide variety of applications. Use continues to increase worldwide as populations and their associated needs increase. Robert Virta, clay and shale commodity specialist for the U.S. Geological Survey, has prepared the following information about clays.

  11. Dehydration-induced luminescence in clay minerals

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.

    1981-01-01

    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  12. Desert varnish: the importance of clay minerals.

    PubMed

    Potter, R M; Rossman, G R

    1977-06-24

    Desert varnish has been characterized by infrared spectroscopy, x-ray diffraction, and electron microscopy. It is a distinct morphological entity having an abrupt boundary with the underlying rock. Clay minerals comprise more than 70 percent of the varnish. Iron and manganese oxides constitute the bulk of the remainder and are dispersed throughout the clay layer. PMID:17776923

  13. Polarographic reduction behaviour of clay minerals.

    PubMed

    Malik, W U; Gupta, G C

    1968-01-01

    Suspensions of the clay minerals bentonite, kaolinite illite and chlorite have been examined polarographically and reduction waves found. The differences in their behaviour, with and without the addition of surface active reagents, are reported. PMID:18960257

  14. Clay Minerals are controlled by the environment - Clay Minerals control the environment

    NASA Astrophysics Data System (ADS)

    Stahr, K.; Zarei, M.

    2012-04-01

    Where clay minerals are analyzed in soils, often there is some confusion, because in the widespread loess-affected and moraine landscapes of Europe quite a variety of clay minerals is found. The sources of these minerals are inherited from the local solid rock, transported through different processes, transformed through mineral changes and inherited from paleo-environments. Very often a miserable assemblage in the clay fraction is found with mica clay, smectite, kaolinite, chlorite and also some quartz. In order to understand the current dynamic of clay mineral formation, very detailed and quantitative analysis in comparison of horizons and landscape are necessary. It is much easier to through light on the development, if conditions are looked for where a single specific mineral can be formed like short range order minerals from volcanic ashes or smectites from basaltic parent material. Old leaching land surfaces will form kaolinitic and in tropical areas gibbsitic clay fractions. In arid environments of deserts and desert fringes, palygorskite and sepiolite can dominate. In general, clay minerals buffer the environment. This is mainly due to the extraordinary large interfaces between mineral surface and pore systems. In the last years mainly the processes of buffering through charging soil solution and of buffering through mineral organic compounds have been analyzed. Development of new microscopic and spectromethods have brought great progress in understanding the role of clays in soil environments.

  15. Ostwald ripening of clays and metamorphic minerals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  16. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  17. Clay Mineralogy: The clay mineral composition of soils and clays is providing an understanding of their properties.

    PubMed

    Grim, R E

    1962-03-16

    The structures of the clay minerals are reasonably well known, but greater detail and more precision are needed if the properties of clays and soils are to be fully understood. For example, the selective adsorptive and catalytic properties and the reaction with organic materials vary with the character of the clay mineral, but the structural factors that control such properties are not well understood. Research is urgently needed on the structure of pure clay minerals and on the reactions of pure clay minerals with organic and inorganic materials. Much past research on clay-mineral reactions has little fundamental value because the clay that was used was composed of a mixture of minerals which were not well characterized. It is not a simple matter to find pure samples of many of the clay minerals, and to a considerable extent progress depends on finding such pure minerals or preparing them in the laboratory. PMID:17816101

  18. Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    PubMed Central

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms. PMID:26218593

  19. Sorption Energy Maps of Clay Mineral Surfaces

    SciTech Connect

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-07-19

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation.

  20. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. PMID:24035982

  1. Feasibility of classification of clay minerals by using PAS

    NASA Astrophysics Data System (ADS)

    Honda, Y.; Yoshida, Y.; Akiyama, Y.; Nishijima, S.

    2015-06-01

    After the nuclear power plant disaster, the evaluation of radioactive Cs kept in soil, especially in clay minerals and the elucidation of its movement are urgent subjects to promote decontamination. It is known that the extractable level of Cs depends on the sort of clay minerals. We tried to find the characteristics of clay minerals belonging to phillosilicate group using positron annihilation spectroscopy (PAS) and the relationship between the results of PAS and the amounts of substantially extracted Cs from the clay minerals. The results showed that each clay mineral was found to be distinguishable from other clay minerals by PAS and the extraction rate of Cs was different among those clay minerals, however the direct correlation between the results of PAS and the extraction rates of Cs was not found.

  2. Electrokinetics of pure clay minerals revisited

    SciTech Connect

    Sondi, I.; Biscan, J.; Pravdic, V.

    1996-03-25

    Clay minerals have long attracted the attention of colloid scientists. This paper considers, specifically, their important role in the transport of various contaminants from land to sea, e.g., metal ions and organic detrital and man-made material in watercourses. Advance in experimental techniques have enabled precise characterization of clays and then electrokinetic experiments at high electrolyte concentrations, such as in seawater. Three of the most important clay minerals encountered in suspended matter in natural waters, montmorillonite, illite, and chlorite, were prepared in a very pure state. Electrokinetic experiments were done in pure aqueous single and complex electrolyte solutions and in solutions in which natural organic matter was simulated using a humic substance, fulvic acid, of defined provenance and properties, typical of riverine waters. An isoelectric point was found at pH 5.0 {+-} 0.2 for chlorite; none were found for illite and montmorillonite. Only Ca{sup 2+} showed a charging effect on chlorite, indeed a reversal of sign from negative to positive at 1 {times} 10{sup {minus}3} mol dm{sup {minus}3}. Addition of fulvic acid affected only chlorite, illite less, and Na montmorillonite not at all.

  3. Prolonged triboluminescence in clays and other minerals

    NASA Technical Reports Server (NTRS)

    Lahav, N.; Coyne, L. M.; Lawless, J. G.

    1982-01-01

    Samples of various clays and minerals were ground or fractured and monitored with a liquid scintillation spectrometer in order to obtain triboluminescent decay curves. Kaolinite samples displayed several million counts/min after grinding, with a surface area emission estimated at tens of billions of photons/sq cm of surface. The photon production rates varied with the origin of the sample, and kaolinite continually yielded higher production rates than bentonite. The addition of water to the samples slightly increased the count rate of emitted light, while the addition of the fluorescent molecule substance tryptofan significantly enhanced the count rate. Freezing smears of kaolinite and montmorillonite in liquid nitrogen and in a salt ice mixture also induced triboluminescence in the montmorillonite. A possible connection between powdery triboluminescent materials formed in mining industries and respiratory disorders among miners is suggested.

  4. Recent advances in clay mineral-containing nanocomposite hydrogels.

    PubMed

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications. PMID:26435008

  5. Impact-Induced Clay Mineral Formation and Distribution on Mars

    NASA Technical Reports Server (NTRS)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  6. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  7. Clay mineralogy of weathering rinds and possible implications concerning the sources of clay minerals in soils.

    USGS Publications Warehouse

    Colman, Steven M.

    1982-01-01

    Weathering rinds on volcanic clasts in Quaternary deposits in the western US contain only very fine-grained and poorly crystalline clay minerals. Rinds were sampled from soils containing well-developed argillic B horizons in deposits approx 105 yr old or more. The clay-size fraction of the rinds is dominated by allophane and iron hydroxy-oxides, whereas the B horizons contain abundant well-crystallized clay minerals. The contrast between the clay mineralogy of the weathering rinds, in which weathering is isolated from other soil processes, and that of the associated soil matrices suggests a need to reassess assumptions concerning the rates at which clay minerals form and the sources of clay minerals in argillic B horizons. It seems that crystalline clay minerals form more slowly in weathering rinds than is generally assumed for soil environments and that the weathering of primary minerals may not be the dominant source of crystalline clay minerals in Middle to Late Pleistocene soil.-A.P.

  8. Microbe-Clay Mineral Reactions and Characterization Techniques

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, G.; Ji, S.; Jaisi, D.; Kim, J.

    2008-12-01

    Clays and clay minerals are ubiquitous in soils, sediments, and sedimentary rocks. They play an important role in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. The changes in the oxidation state of the structural iron in clay minerals, in part, control their physical and chemical properties in natural environments, such as clay particle flocculation, dispersion, swelling, hydraulic conductivity, surface area, cation and anion exchange capacity, and reactivity towards organic and inorganic contaminants. The structural ferric iron [Fe(III)] in clay minerals can be reduced either chemically or biologically. Many different chemical reductants have been tried, but the most commonly used agent is dithionite. Biological reductants are bacteria, including dissimilatory iron reducing prokaryotes (DIRP) and sulfate-reducing bacteria (SRB). A wide variety of DIRP have been used to reduce ferric iron in clay minerals, including mesophilic, thermophilic, and hyperthermophilic prokaryotes. Multiple clay minerals have been used for microbial reduction studies, including smectite, nontronite (iron-rich smectite variety), illite, illite/smectite, chlorite, and their various mixtures. All these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible. The reduction extent and rate of ferric iron in clay minerals are measured by wet chemistry, and the reduced clay mineral products are typically characterized with chemical methods, X-ray diffraction, scanning and transmission electron microscopy, Mössbauer spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-vis spectroscopy, and synchrotron-based techniques (such as EXAFS). Microbially reduced smectites (nontronites) have been found to be reactive in reducing a variety of organic and inorganic contaminants. Degradable organic contaminants include pesticides

  9. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    PubMed

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  10. Layer Charge of Clay Minerals; Selected papers from the Symposium on Current Knowledge on the Layer Charge of Clay Minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Special issue contains papers based on the contributions presented during the workshop “Current Knowledge on the Layer Charge of Clay Minerals”, held on September 18 and 19, 2004, in the Smolenice Castle, Slovakia. Layer charge is one of the most important characteristics of clay minerals as it...

  11. Clays and clay minerals in Bikaner: Sources, environment pollution and management

    NASA Astrophysics Data System (ADS)

    Gayatri, Sharma; Anu, Sharma

    2016-05-01

    Environmental pollution can also be caused by minerals which include natural as well as human activities. Rapid urbanization, consumerist life style, anthropogenic deeds are increasing environmental pollution day by day. Fluctuation in our ecosystem or polluted environment leads to many diseases and shows adverse effects on living organisms. The main aim of this paper is to highlight the environmental pollution from clays and clay minerals and their mitigation..

  12. Differentiation of pleistocene deposits in northeastern Kansas by clay minerals

    USGS Publications Warehouse

    Tien, P.-L.

    1968-01-01

    Seventy-four samples from eight stratigraphic sections of lower Pleistocene glacial and glaciofluvial deposits in Doniphan County, extreme northeastern Kansas, were analyzed using X-ray diffraction techniques. Clay-mineral assemblages of the <2 ?? fraction of these deposits are nearly identical, consisting of a mixed-layer clay mineral associated with minor amounts of kaolinite and illite. An attempt was made to differentiate units of till and nontill deposits by using the relative intensities of 001 reflections of "mixed-layer mineral," kaolinite, and illite. At least two tills were recognizable. Associated nontill deposits, could not be differentiated from one another, although the nontills are easily distinguished from tills. ?? 1968.

  13. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  14. Microbial Impacts on Clay Mineral Transformation and Reactivity

    NASA Astrophysics Data System (ADS)

    Dong, H.; Jaisi, D.; Fredrickson, J.; Plymale, A.

    2006-05-01

    Clays and clay minerals are ubiquitous in soils, sedimentary rocks, and pelagic oozes. They play important roles in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. Iron is a major constituent in clay minerals, and its mobility and stability in different environmental processes is, in part, controlled by the oxidation state. Recent studies have shown that biological reduction of structural Fe(III) in clay minerals can change the physical and chemical properties of clay minerals, such as swelling, cation exchange and fixation capacity, specific surface area, color, and magnetic exchange interactions. As a result of biological reduction of Fe(III), clay minerals also undergo mineral transformations, such as dissolution of smectite and precipitation of illite, siderite and vivianite. These chemical, structural and mineralogical changes of clay minerals have a profound effect on clay mineral reactivity, such as their reactivity with organic and inorganic (i.e., heavy metals and radionuclides) contaminants. Our latest data show that biologically reduced nontronite (a smectite variety) is much more effective in reducing soluble and mobile Tc(VII) to Tc(IV) than unreduced nontronite. The reduced Tc(IV) is insoluble in groundwater and soil and thus is immobile. Biologically reduced nontronite can be prepared by microbially reducing Fe(III) in nontronite by Shewanella putrefaciens in the absence of oxygen. Approximately 30% of structurally Fe(III) can be reduced in this manner. Biogenic Fe(II) can then serve as an electron donor to reduce Tc(VII). Nearly all Fe(II) is available to reduce Tc(VII), with the rate of reduction (typically within weeks) possibly depending on the speciation of Fe(II) (surface sorbed Fe(II) vs. structural Fe(II)). Further investigations are underway to further assess the reversibility of Tc reduction upon exposure to oxygen and to elucidate Tc reduction

  15. Black Carbon, The Pyrogenic Clay Mineral?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most soils contain significant amounts of black carbon, much of which is present as discrete particles admixed with the coarse clay fraction (0.2–2.0 µm e.s.d.) and can be physically separated from the more abundant diffuse biogenic humic materials. Recent evidence has shown that naturally occurring...

  16. Intercalation of Trichloroethene by Sediment-Associated Clay Minerals

    SciTech Connect

    Matthieu, Donald E.; Brusseau, Mark; Johnson, G. R.; Artiola, J. L.; Bowden, Mark E.; Curry, J. E.

    2013-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site inTucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer dspacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (*26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment.

  17. INTERCALATION OF TRICHLOROETHENE BY SEDIMENT-ASSOCIATED CLAY MINERALS

    PubMed Central

    Matthieu, D.E.; Brusseau, M.L.; Johnson, G.R.; Artiola, J.L.; Bowden, M.L.; Curry, J.E.

    2012-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site in Tucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer d-spacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (~26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment. PMID:22921434

  18. Fluoride content of clay minerals and argillaceous earth materials

    USGS Publications Warehouse

    Thomas, J., Jr.; Glass, H.D.; White, W.A.; Trandel, R.M.

    1977-01-01

    A reliable method, utilizing a fluoride ion-selective electrode, is described for the determination of fluoride in clays and shales. Interference by aluminum and iron is minimal. The reproducibility of the method is about ??5% at different levels of fluoride concentration. Data are presented for various clay minerals and for the <2-??m fractions of marine and nonmarine clays and shales. Fluoride values range from 44 ppm (0.0044%) for nontronite from Colfax, WA, to 51,800 ppm (5.18%) for hectorite from Hector, CA. In general, clays formed under hydrothermal conditions are relatively high in fluoride content, provided the hydrothermal waters are high in fluoride content. Besides hectorite, dickite from Ouray, CO, was found to contain more than 50 times as much fluoride (6700 ppm) as highly crystalline geode kaolinite (125 ppm). The clay stratum immediately overlying a fluorite mineralized zone in southern Illinois was found to have a higher fluoride content than the same stratum in a nonmineralized zone approximately 1 mile away. Nonmarine shales in contact with Australian coals were found to be lower in fluoride content than were marine shales in contact with Illinois coals. It is believed that, in certain instances, peak shifts on DTA curves of similar clay minerals are the result of significant differences in their fluoride content. ?? 1977.

  19. Immersion Freezing of Clay Minerals and its Time Dependence

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Moehler, O.; Bundke, U.; Cziczo, D. J.; Danielczok, A.; Ebert, M.; Garimella, S.; Hoffmann, N.; Kanji, Z. A.; Kiselev, A. A.; Raddatz, M.; Stetzer, O.

    2012-12-01

    Immersion ice nucleation efficiency of clay minerals has been investigated using the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber. Various clay dust samples, including two illite as well as three kaolinite standards, have been examined in the temperature range between 238 K and 255 K. We observed two trends in immersion ice nucleation properties as cloud expansion conditions in the AIDA are varied. First, as previously described in the literature, the supersaturation required for the immersion freezing of clay minerals decreased with decreasing temperature and increasing inferred ice-active surface site densities. Second, the ice nucleation activity of clay minerals strongly depended on the solo-parameter, which is the rate change in temperature (i.e., dNice/dT = ∂Nice/∂t ÷ ∂T/∂t). Further time dependence of ice formation is investigated and discussed as a function of cooling rates, ice nuclei (IN), and aerosol concentrations. Ice residuals collected through a pumped counterflow virtual impactor are examined by electron microprobe analyses to seek the true chemical and physical identity of IN in clay minerals. Brief comparisons of AIDA measurement to the measurements with other ice nucleation chambers (e.g., ETH-PINC, FINCH, and commercially available DMT-SPIN) are also presented.

  20. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    SciTech Connect

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  1. Triazine adsorption by saponite and beidellite clay minerals.

    PubMed

    Aggarwal, Vaneet; Li, Hui; Teppen, Brian J

    2006-02-01

    We investigated the sorption of three triazine herbicides (atrazine, simazine, and metribuzin) by saponite and beidellite clay minerals saturated with K+, Cs+, Na+, and Ca2+. Saponite clay sorbed a larger fraction of each pesticide from aqueous solution than did beidellite clay. The lower cation-exchange capacity in saponite compared to that in beidellite presumably results in a less crowded interlayer, with more siloxane surface being available for adsorption. Generally, Cs-saturated clays sorbed more triazines than did clays saturated by K+, Na+, or Ca2+. We attribute this to the smaller hydrated radius of Cs+, which again increases the siloxane surface that is available for sorption. Furthermore, the relatively weak hydration of Cs+ reduces the swelling of clay interlayers, thus making sorption domains less hydrated and more receptive to hydrophobic molecules. The Cs-saponite manifested a sorption of more than 1% atrazine by weight above equilibrium concentrations of 6 mg/L, which to our knowledge is the largest sorption of neutral atrazine from water yet reported for an inorganic sorbent. Molecular dynamics simulations indicate that atrazine interacts both with clay basal planes and with multiple cations in the clay interlayer. PMID:16519299

  2. Iodide interactions with clay minerals: Batch and diffusion studies

    NASA Astrophysics Data System (ADS)

    Miller, A. W.; Kruichak, J.; Mills, M.; Wang, Y.

    2012-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Iodine-129 is often the major driver of exposure risk from nuclear waste repositories at timescales >10,000 years. Therefore, understanding the geochemical cycling of iodine in clays is critical in developing defensible quantitative descriptions of nuclear waste disposal. Anions are not typically considered to interact with most clays as it is assumed that the fixed negative charge of clays actively repels the dissoloved anion. This is corroborated by many batch studies, but diffusion experiments in compacted clays have shown iodide retardation relative to chloride. The reasons for this are unknown; however, several possible hypotheses include: redox transformation controls on sorption behavior, complex surface charge environments due to overlapping charge domains, and sorption to ancillary minerals or weathering products. Seven different clay minerals have been examined using several techniques to chracterize the surface charge environment and iodide uptake. The use of a series of clays shifts the independent variable away from water chemistry characteristics (pH, contaminant concentration), and toward structural characterisitics of clay minerals including isomorphous substitution and clay texture. Iodide uptake batch experiments were completed with the clay minerals in a range of swamping electrolytes. The results give evidence for a novel uptake mechanism involving ion pair formation and iodide concentration within nano-confined environments. These results were further tested using diffusional columns where nano-confined regimes make up a larger proportion of the total porosity. These columns were compacted to different hydrostatic pressures and saturated with different ionic compositions. Porosity distributions were characterized with a fluoride tracer. Iodide diffusion characteristics were

  3. First Direct Detection of Clay Minerals on Mars

    NASA Technical Reports Server (NTRS)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.

    1985-01-01

    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  4. [Occurrence relationship between iron minerals and clay minerals in net-like red soils: evidence from X-ray diffraction].

    PubMed

    Yin, Ke; Hong, Han-Lie; Han, Weni; Ma, Yu-Bo; Li, Rong-Biao

    2013-04-01

    The high purity of clay minerals is a key factor to reconstruct the palaeoclimate in clay mineralogy, however, the existence of iron minerals (such as goethite and hematite) and organics lead to the intergrowth of clay minerals and other minerals, producing other mineral impurities in enriched clay minerals. Although the removal of organics in soil sediments has been fully investigated, the occurrence state of iron minerals remains controversial, hindering the preparation of high-purity clay minerals. Therefore, the occurrence relationship of iron minerals and clay minerals in Jiujiang net-like red soils of the middle to lower reaches of the Yangtze River was investigated using the sequential separation method, which provided some implications for the removal of iron minerals in soil sediments. The results indicated that goethite and hematite were mostly absorbed on the surface of hydroxy-interlayered smectite and illite in the form of films, and the rest were absorbed by kaolinite. PMID:23841442

  5. Clay Minerals in Playas of the Mojave Desert, California.

    PubMed

    Droste, J B

    1959-07-10

    Montmorillonite, illite, chlorite, and kaolinite in the playas of southern California are traceable directly to the source areas surrounding the basins. No evidence found in this investigation suggests that these clay minerals are unstable in the sodic or calcic saline lake environment, but this conclusion may not be directly applied to marine evaporite facies where the minerals are rich in potassium and magnesium. PMID:17738603

  6. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  7. Radiation-induced defects in clay minerals: A review

    NASA Astrophysics Data System (ADS)

    Allard, Th.; Balan, E.; Calas, G.; Fourdrin, C.; Morichon, E.; Sorieul, S.

    2012-04-01

    Extensive information has been collected on radiation effects on clay minerals over the last 35 years, providing a wealth of information on environmental and geological processes. The fields of applications include the reconstruction of past radioelement migrations, the dating of clay minerals or the evolution of the physico-chemical properties under irradiation. The investigation of several clay minerals, namely kaolinite, dickite, montmorillonite, illite and sudoite, by Electron Paramagnetic Resonance Spectroscopy has shown the presence of defects produced by natural or artificial radiations. These defects consist mostly of electron holes located on oxygen atoms of the structure. The various radiation-induced defects are differentiated through their nature and their thermal stability. Most of them are associated with a π orbital on a Si-O bond. The most abundant defect in clay minerals is oriented perpendicular to the silicate layer. Thermal annealing indicates this defect in kaolinite (A-center) to be stable over geological periods at ambient temperature. Besides, electron or heavy ion irradiation easily leads to an amorphization in smectites, depending on the type of interlayer cation. The amorphization dose exhibits a bell-shaped variation as a function of temperature, with a decreasing part that indicates the influence of thermal dehydroxylation. Two main applications of the knowledge of radiation-induced defects in clay minerals are derived: (i) The use of defects as tracers of past radioactivity. In geological systems where the age of the clay can be constrained, ancient migrations of radioelements can be reconstructed in natural analogues of high level nuclear waste repositories. When the dose rate may be assumed constant over time, the paleodose is used to date clay populations, an approach applied to fault gouges or laterites of the Amazon basin. (ii) The influence of irradiation over physico-chemical properties of clay minerals. An environmental

  8. Fluxes of clay minerals in the South China Sea

    NASA Astrophysics Data System (ADS)

    Schroeder, Annette; Wiesner, Martin G.; Liu, Zhifei

    2015-11-01

    In order to assess dominant settling processes that change the composition of the detrital clay fraction during transport from neighboring estuaries to a deep sea basin, we studied relative clay mineral abundances and absolute clay mineral fluxes of clay-sized sinking particulate matter collected by eight sediment trap systems deployed from shallow to deep water depth in the South China Sea. This is the first basin-wide study on recent sedimentation processes in the western Pacific marginal seas. Annual averages of relative clay mineral abundances at the shallow traps are temporally more variable and regionally more diverse, resembling those of surrounding drainage basins. In contrast, higher fluxes of material reach the deeper traps. Their characteristics trend temporally and spatially towards uniformity and are enriched with smectite in the entire deep basin. Sinking particulate matter that reaches the shallow traps spends less time in pelagic transport and is affected by monsoonal current reversals. The enrichment in smectite in the deeper traps is a result of longer duration in transport at low velocities, which may increase the effect of differential settling during transport. The trend is caused by lateral advection driven by the cyclonic deep circulation, and this is considered as the main transport process in the northern and central deep basin. The high fluxes in the south-western deep basin could be the result of laterally advected re-suspended sediments from the neighboring shelves. The effects on the composition of the detrital clay fraction caused by oceanographic control, which indirectly include those by differential settling, mask the climatic signal from surrounding drainage basins in the deep basin sediments. This strongly affects the interpretation of the clay mineralogical record in sediments deposited under recent conditions in the South China Sea deep basin.

  9. Picloram and Aminopyralid Sorption to Soil and Clay Minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopyralid sorption data are lacking, and these data are needed to predict off-target transport and plant available herbicide in soil solution. The objective of this research was to determine the sorption of picloram and aminopyralid to five soils and three clay minerals and determine if the pote...

  10. Sorption of tylosin on clay minerals.

    PubMed

    Zhang, Qian; Yang, Chen; Huang, Weilin; Dang, Zhi; Shu, Xiaohua

    2013-11-01

    The equilibrium sorption of tylosin (TYL) on kaolinite and montmorillonite was measured at different solution pH using batch reactor systems. The results showed that all the sorption isotherms were nonlinear and that the nonlinearity decreased as the solution pH increased for a given clay. At a specific aqueous concentration, the single-point sorption distribution coefficient (KD) of TYL decreased rapidly as the solution pH increased. A speciation-dependent sorption model that accounted for the contributions of the cationic and neutral forms of TYL fit the data well, suggesting that the sorption may be dominated by both ion exchange and hydrophobic interactions. The isotherm data also fit well to a dual mode model that quantifies the contributions of a site-limiting Langmuir component (ion exchange) and a non-specific linear partitioning component (hydrophobic interactions). X-ray diffraction analyses revealed that the interlayers of montmorillonite were expanded due to the uptake of TYL. TYL molecules likely form a monolayer surface coverage. PMID:24007614

  11. Adsorption of diethyl phthalate ester to clay minerals.

    PubMed

    Wu, Yanhua; Si, Youbin; Zhou, Dongmei; Gao, Juan

    2015-01-01

    Phthalate esters are a group of plasticizers, which have been widely detected in China's agricultural and industrial soils. In this study, batch adsorption experiments were conducted to investigate the environmental effects on the adsorption of diethyl phthalate ester (DEP) to clay minerals. The results showed that DEP adsorption isotherms were well fitted with the Freundlich model; the interlayer spacing of K(+) saturated montmorillonite (K-mont) was the most important adsorption area for DEP, and di-n-butyl ester (DnBP) was limited to intercalate into the interlayer of K-mont due to the bigger molecular size; there was no significant effect of pH and ionic strength on DEP adsorption to K-mont/Ca-mont, but to Na-mont clay. The adsorption to kaolinite was very limited. Data of X-ray diffraction and FTIR spectra further proved that DEP molecules could intercalate into K-/Ca-mont interlayer, and might interact with clay through H-bonding between carbonyl groups and clay adsorbed water. Coated humic acid on clay surface would enhance DEP adsorption at low concentration, but not at high concentration (eg. Ce>0.26 mM). The calculated adsorption enthalpy (ΔHobs) and adsorption isotherms at varied temperatures showed that DEP could be adsorbed easier as more adsorbed. This study implied that clay type, compound structure, exchangeable cation, soil organic matter and temperature played important roles in phthalate ester's transport in soil. PMID:25150972

  12. Environmental applications of radiation-induced defects in clay minerals

    NASA Astrophysics Data System (ADS)

    Allard, T.

    2011-12-01

    Radiation effects on clay minerals have been studied over the last 35 years, providing a wealth of information on environmental and geological processes. They have been applied to the reconstruction of past radioelement migrations in the geosphere, the dating of clay minerals from soils or the evolution of the physico-chemical properties under irradiation. All known radiation-induced point defects in clay minerals are detected using Electron Paramagnetic Resonance Spectroscopy. They mostly consist in electron holes located on oxygen atoms of the structure, and can be differentiated through their nature and their thermal stability. For instance, several are associated to a π orbital on a Si-O bond. One defect, namely the A-center, is stable over geological periods at ambiant temperature. These point defects are produced mainly by ionizing radiations. By contrast to point defects, it was shown that electron or heavy ion irradiation easily produces amorphization in smectites. Two main applications of radiation-induced defects in clay minerals are derived : (i) the use of defects as tracers of past radioactivity. In geosystems where the age of the clay can be constrained, migrations of radioelements can be reconstructed in natural analogues of the far field of high level nuclear waste repositories. When the dose rate may be assumed constant over time, the paleodose is used to date clay populations, an approach applied to laterites of the Amazon basin. (ii) The influence of radiation on clay mineral properties that remains poorly documented, although it is an important issue in various domains such as the safety assessment of the high level nuclear waste repositories. In case of a leakage of transuranic elements from the radioactive wasteform, alpha recoil nuclei would amorphize smectite after a period much lower than the disposal lifetime. By contrast, amorphisation from ionizing radiation is unlikely over 1 million years. Furthermore, it was shown that amorphization

  13. Geochemical dynamics of cesium sorption by selected clay minerals

    SciTech Connect

    Noll, M.R.

    1989-01-01

    This study focuses on the interactions of cesium with selected clay minerals. Cesium is of interest as it is a chief component of high level radioactive waste. Primarily, the thermodynamics and kinetics of Cs exchange reactions were investigated to determine the preference for Cs of a kaolinite, illite, and vermiculite. Thermodynamic studies indicated that Cs was most strongly preferred by Ca saturated clays. Of the three minerals studied, illite proved to be the most effective in adsorbing Cs as indicated by the Vanselow Selectivity Coefficients (k{sub v}). The k{sub v} values for illite ranged from 5.87 to over 10{sup 10}, depending on the mineral and saturating cation. Kinetics experiments proved to be the most interesting. On 2:1 clay minerals (illite and vermiculite), two simultaneous reactions are postulated. The first, and faster of the two reactions, is believed to correspond to Cs adsorption on surface planar sites. The second reaction may be the adsorption of Cs on interlayer and wedge exchange sites. Kaolinite only shows a single reaction since it is a 1:1 clay mineral. Rate coefficients were calculated and the first reaction was found to be on the order of one magnitude greater than the second reaction. The reactions on kaolinite were similar to this faster reaction. Desorption data indicated that the rate of desorption was one or more orders of magnitude less than the corresponding adsorption rate. It is important to note, however, that studies on the effect of temperature indicated that Arrhenius behavior is not followed in many of these experiments. It is postulated that changes in cation radius ratio, or the availability of exchange sites is causing this Anti-Arrhenius behavior. Finally, it is concluded that illite exhibits the greatest preference for the adsorption of Cs.

  14. CO2 adsorption isotherm on clay minerals and the CO2 accessibility into the clay interlayer

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Bertier, Pieter; Busch, Andreas; Rother, Gernot; Krooß, Bernhard

    2013-04-01

    Large-scale CO2 storage in porous rock formations at 1-3 km depth is seen as a global warming mitigation strategy. In this process, CO2 is separated from the flue gas of coal or gas power plants, compressed, and pumped into porous subsurface reservoirs with overlying caprocks (seals). Good seals are mechanically and chemically stable caprocks with low porosity and permeability. They prevent leakage of buoyant CO2 from the reservoir. Caprocks are generally comprised of thick layers of shale, and thus mainly consist of clay minerals. These clays can be affected by CO2-induced processes, such as swelling or dissolution. The interactions of CO2 with clay minerals in shales are at present poorly understood. Sorption measurements in combination scattering techniques could provide fundamental insight into the mechanisms governing CO2-clay interaction. Volumetric sorption techniques have assessed the sorption of supercritical CO2 onto coal (Gensterblum et al., 2010; Gensterblum et al., 2009), porous silica (Rother et al., 2012a) and clays as a means of exploring the potential of large-scale storage of anthropogenic CO2 in geological reservoirs (Busch et al., 2008). On different clay minerals and shales, positive values of excess sorption were measured at gas pressures up to 6 MPa, where the interfacial fluid is assumed to be denser than the bulk fluid. However, zero and negative values were obtained at higher densities, which suggests the adsorbed fluid becomes equal to and eventually less dense than the corresponding bulk fluid, or that the clay minerals expand on CO2 charging. Using a combination of neutron diffraction and excess sorption measurements, we recently deduced the interlayer density of scCO2 in Na-montmorillonite clay in its single-layer hydration state (Rother et al., 2012b), and confirmed its low density, as well as the expansion of the basal spacings. We performed neutron diffraction experiments at the FRMII diffractometer on smectite, kaolinite and illite

  15. Reactivity of Fe(II) species associated with clay minerals.

    PubMed

    Hofstetter, Thomas B; Schwarzenbach, René P; Haderlein, Stefan B

    2003-02-01

    Mineral-bound Fe(II) species represent important natural reductants of pollutants in the anaerobic subsurface. At clay minerals, three types of Fe(II) species in fundamentally different chemical environments may be present simultaneously, i.e., structural Fe(II), Fe(II) complexed by surface hydroxyl groups, and Fe(II) bound by ion exchange. We investigated the accessibility and reactivity of these three types of Fe(II) species in suspensions of two different clay minerals containing either ferrous iron-bearing nontronite or iron-free hectorite. Nitroaromatic compounds (NACs) exhibiting different sorption behavior on clays were used to probe the reactivity of the various types of reduced iron species. The clay treatment allowed for a preparation of nontronite and hectorite surfaces with Fe(II) adsorbed by surface hydroxyl groups at the edge surfaces. Furthermore, hectorite suspensions with additional Fe(II) bound to the ion exchange sites at the basal siloxane surfaces were set up. We found that both structural Fe(II) and Fe(II) complexed by surface hydroxyl groups of nontronite reduced the NACs to anilines. An electron balance revealed that more than 10% of the total iron in nontronite was reactive Fe(II). Fe(II) bound by ion exchange did not contribute to the observed reduction of NACs. Reversible adsorption of the NACs at the basal siloxane surface of the clays strongly retarded NAC reduction, even in the presence of high concentrations of Fe(II) bound by ion exchange to the basal siloxane surfaces. Our work shows that in natural systems a fraction of the total Fe(II) present on clays may contribute to the pool of highly reactive Fe(II) species in the subsurface. Furthermore, this work may help to distinguish between Fe(II) species of different reactivity regarding pollutant reduction. Although structural iron in clays represents only a small fraction of the total iron pool in soils and aquifers, reactive Fe(II) species originating from the reduction of

  16. Reversibility of soil forming clay mineral reactions induced by plant - clay interactions

    NASA Astrophysics Data System (ADS)

    Barré, P.; Velde, B.

    2012-04-01

    Recent data based upon observations of field experiments and laboratory experiments suggest that changes in phyllosilicate mineralogy, as seen by X-ray diffraction analysis, which is induced by plant action can be reversed in relatively short periods of time. Changes from diagenetic or metamorphic mineral structures (illite and chlorite) to those found in soils (mixed layered minerals in the smectite, hydroxy-interlayer mineral and illites) observed in Delaware Bay salt marsh sediments in periods of tens of years and observed under different biologic (mycorhize) actions in coniferous forests in the soil environment can be found to be reversed under other natural conditions. Reversal of this process (chloritisation of smectitic minerals in soils) has been observed in natural situations over a period of just 14 years under sequoia gigantia. Formation of smectite minerals from illite (potassic mica-like minerals) has been observed to occur under intensive agriculture conditions over periods of 80 years or so under intensive zea mais production. Laboratory experiments using rye grass show that this same process can be accomplished to a somewhat lesser extent after one growing season. However experiments using alfalfa for 30 year growing periods show that much of the illite content of a soil can be reconstituted or even increased. Observations on experiments using zea mais under various fertilizer and mycorhize treatments indicate that within a single growing season potassium can be extracted from the clay (illite layers) but at the end of the season the potassium can be restored to the clay structures and more replaced that extracted. Hence it is clear that the change in clay mineralogy normally considered to be irreversible, illite to smectite or chlorite to smectite observed in soils, is a reversible process where plant systems control the soil chemistry and the soil mineralogy. The changes in clay mineralogy concern mostly the chemical composition of the interlayer

  17. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation. PMID:19425352

  18. Diagenesis and clay mineral formation at Gale Crater, Mars

    SciTech Connect

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  19. Diagenesis and clay mineral formation at Gale Crater, Mars

    DOE PAGESBeta

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water)more » in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.« less

  20. Diagenesis and clay mineral formation at Gale Crater, Mars

    PubMed Central

    Bridges, J C; Schwenzer, S P; Leveille, R; Westall, F; Wiens, R C; Mangold, N; Bristow, T; Edwards, P; Berger, G

    2015-01-01

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ∽7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component. PMID:26213668

  1. Diagenesis and clay mineral formation at Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-01

    Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100-1000, pH of ~7.5-12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  2. Studies of clays and clay minerals using x-ray powder diffraction and the Rietveld method

    SciTech Connect

    Bish, D.L.

    1993-09-01

    The Rietveld method was originally developed (Rietveld, 1967, 1969) to refine crystal structures using neutron powder diffraction data. Since then, the method has been increasingly used with X-ray powder diffraction data, and today it is safe to say that this is the most common application of the method. The method has been applied to numerous natural and synthetic materials, most of which do not usually form crystals large enough for study with single-crystal techniques. It is the ability to study the structures of materials for which sufficiently large single crystals do not exist that makes the method so powerful and popular. It would thus appear that the method is ideal for studying clays and clay minerals. In many cases this is true, but the assumptions implicit in the method and the disordered nature of many clay minerals can limit titsapplicability. This chapter will describe the Rietveld method, emphasizing the assumptions important for the study of disordered materials, and it will outline the potential applications of the method to these minerals. These applications include, in addition to the refinement of crystal structures, quantitative analysis of multicomponent mixtures, analysis of peak broadening, partial structure solution, and refinement of unit-cell parameters.

  3. New techniques for clay mineral identification by remote sensing

    SciTech Connect

    Abrams, M.J.; Goetz, A.F.H.; Lang, H.

    1983-03-01

    In the past three years there have been major advancements in our ability to identify clay minerals by remote sensing. Multispectral scanners, including NASA's Thematic Mapper Simulator (analog for Landsat-D Thematic Mapper) have had several broad-band channels in the wavelength region of 1.0 to 2.5 ..mu..m. In particular, the wavelength region 2.0 to 2.5 ..mu..m contains diagnostic spectral-absorption features for most layered silicates. Computer processing of image data obtained with these scanners has allowed the identification of the presence of clay minerals, without, however, being able to identify specific mineralogies. Studies of areas with known hydrocarbon deposits and porphyry copper deposits have demonstrated the value of this information for rock-type discrimination and recognition of hydrothermal alteration zones. Non-imaging, narrow-band radiometers and spectrometers have been used in the field, from aircraft, and from space to identify individual mineralogical constituents. This can be done because of diagnostic spectral absorption features in the 2.0 to 2.5 ..mu..m region characteristic of different clay types. Preliminary analysis of SMIRR data over Egypt showed that kaolinite, carbonate rocks, and possibly montmorillonite, could be identified directly. Plans are currently under way for development of narrow-band imaging systems which will be capable of producing maps showing the surface distribution of individual clay types. This will represent a major step in remote sensing, by allowing unique identification of minerals rather than the current ability only to discriminate among materials. Applications of this technology will provide geologists with a powerful new tool for resource exploration and general geologic mapping problems.

  4. Contact metamorphism of clay minerals in central Utah

    SciTech Connect

    Tannenbaum, T.G. . Geology Dept.)

    1993-03-01

    Smectite is the dominant alteration product identified in the contact aureole of a limey shale from the Carmel Formation. The Jurassic-aged shale from Emery County, Utah was intruded by Tertiary basaltic dikes and sills. Samples of the shale were taken in the contact zone and at increasing distances from the country rock-dike contact. Samples of the dike itself were taken from the chill margin, an intermediate zone, and from the center of the intrusion. The clay minerals in the country rock were studied using X-ray diffraction and whole rock analysis of the shale and dike rocks were done by X-ray fluorescence spectrometry. Discrete smectite and illite were identified in the shale at the country rock-dike contact. As the distance from the dike increases, the clay mineral assemblage changes to a mixture of illite and interstratified chlorite/smectite. The proportion of smectite in the clay mineral assemblage correlates with the distance from the dike contact. These data suggest that either a transformation of chlorite/smectite to discrete smectite occurred in proximity to the dike or that fluids associated with the dike promoted smectite formation. Chemical analyses of the whole rock samples reveal no change in bulk composition for the suite of country rock samples. Chemical analyses of the dike rocks, however reveal that calcium contents decrease toward the chill margin, indicating a chemical flux between the dike and surrounding country rocks. The transformation of chlorite/smectite to discrete smectite in the shale and the calcium decrease in the dike rock indicates that a geochemical relationship exists between the dike and country rock. The exact reaction path is not clear yet, but it is evident that intrusion of the small dikes in this area had a profound effect on the clay mineralogy of the surrounding country rocks.

  5. Transformation of anthracene on various cation-modified clay minerals.

    PubMed

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies. PMID:25135171

  6. Adsorption and separation of proteins by a smectitic clay mineral.

    PubMed

    Ralla, Kathrin; Sohling, Ulrich; Riechers, Daniel; Kasper, Cornelia; Ruf, Friedrich; Scheper, Thomas

    2010-09-01

    The adsorption of proteins by a smectitic clay mineral was investigated. The clay used in this study is a mixture of montmorillonite and amorphous SiO(2). Due to the high porosity the montmorillonite units are accessible for protein adsorption. The amorphous silica prevents the montmorillonite from swelling and allows column packing. Protein adsorption was performed at different pH under static conditions. Furthermore, static capacities were determined. The material reveals high adsorption capacities for proteins under static conditions (270-408 mg/g), whereby proteins are mainly adsorbed via electrostatic interactions. The Freundlich isotherm is suggested as an adsorption model. For desorption a pH shift was found to be most effective. Binding and elution of human serum albumin and ovalbumin were tested under dynamic conditions. Dynamic capacities of about 40 mg/g for ovalbumin at 764 cm/h were found. The clay mineral provides suitable properties for the application as cost-efficient, alternative separation material. PMID:20340034

  7. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    PubMed Central

    Hashizume, Hideo

    2015-01-01

    Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components. PMID:25734235

  8. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  9. Clays and Clay Minerals and their environmental application in Food Technology

    NASA Astrophysics Data System (ADS)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  10. Report on "Methodologies for Investigating Microbial-Mineral Interactions: A Clay Minerals Society Short Course"

    SciTech Connect

    Maurice, Patricia A.

    2010-02-08

    A workshop entitled, “Methods of Investigating Microbial-Mineral Interactions,” was held at the Clay Minerals Society meeting at the Pacific Northwest National Laboratory in Richland, WA on June 19, 2004. The workshop was organized by Patricia A. Maurice (University of Notre Dame) and Lesley A. Warren (McMaster University, CA). Speakers included: Dr. P. Bennett, Dr. J. Fredrickson (PNNL), Dr. S. Lower (Ohio State University), Dr. P. Maurice, Dr. S. Myneni (Princeton University), Dr. E. Shock (Arizona State), Dr. M. Tien (Penn State), Dr. L. Warren, and Dr. J. Zachara (PNNL). There were approximately 75 attendees at the workshop, including more than 20 students. A workshop volume was published by the Clay Minerals Society [Methods for Study of Microbe-Mineral Interactions (2006), CMS Workshop Lectures, vol 14(Patricia A. Maurice and Leslie A. Warren, eds.) ISBN 978-1-881208-15-0, 166 pp.

  11. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  12. Radiolysis of alanine adsorbed in a clay mineral

    NASA Astrophysics Data System (ADS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-07-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  13. Analysis of mixed-layer clay mineral structures

    USGS Publications Warehouse

    Bradley, W.F.

    1953-01-01

    Among the enormously abundant natural occurrences of clay minerals, many examples are encountered in which no single specific crystallization scheme extends through a single ultimate grain. The characterization of such assemblages becomes an analysis of the distribution of matter within such grains, rather than the simple identification of mineral species. It having become established that the particular coordination complex typified by mica is a common component of many natural subcrystalline assemblages, the opportunity is afforded to analyze scattering from random associations of these complexes with other structural units. Successful analyses have been made of mixed hydration states of montmorillonite, of montmorillonite with mica, of vermiculite with mica, and of montmorillonite with chlorite, all of which are variants of the mica complex, and of halloysite with hydrated halloysite.

  14. Role of clay minerals in the transportation of iron

    USGS Publications Warehouse

    Carroll, D.

    1958-01-01

    The clay minerals have iron associated with them in several ways: 1. (1) as an essential constituent 2. (2) as a minor constituent within the crystal lattice where it is in isomorphous substitution and 3. (3) as iron oxide on the surface of the mineral platelets. Nontronite, "hydromica," some chlorites, vermiculite, glauconite and chamosite contain iron as an essential constituent. Kaolinite and halloysite have no site within the lattice for iron, but in certain environments iron oxide (goethite or hematite) is intimately associated as a coating on the micelles. Analyses of clay minerals show that the content of Fe2O3 varies: 29 per cent (nontronite), 7??3 per cent (griffithite), 4.5 per cent ("hydromica"), 5.5 per cent (chlorite), 4 per cent (vermiculite) and 18 per cent (glauconite). The FeO content is: 40 per cent (chamosite), 7.8 per cent (griffithite), 1-2 per cent ("hydromica"), 3 per cent (glauconite) and 2 per cent (chlorite). The iron associated with the clay minerals remains stable in the environment in which the minerals occur, but if either pH or Eh or both are changed the iron may be affected. Change of environment will cause: 1. (1) removal of iron by reduction of Fe3+ to Fe2+; 2. (2) ion-exchange reactions; 3. (3) instability of the crystal lattice. Experiments using bacterial activity to produce reducing conditions with kaolinite and halloysite coated with iron oxides and with nontronite in which ferric iron is in the octahedral position within the lattice showed that ferric oxide is removed at Eh +0??215 in fresh water and at Eh +0.098 in sea water. Hematite, goethite, and indefinite iron oxides were removed at different rates. Red ferric oxides were changed to black indefinite noncrystalline ferrous sulphide at Eh -0.020 but reverted to ferric oxide under oxidizing conditions. Nontronite turned bright green under reducing conditions and some of the ferrous iron remained within the lattice on a return to oxidizing conditions. Bacterial activity

  15. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  16. The formation of goethite and hydrated clay minerals on Mars

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.

    1974-01-01

    Laboratory studies reported by Huguenin (1973) on the kinetics and mechanism of the photostimulated oxidation of magnetic and preliminary laboratory data on the weathering of silicates, reported herein, are applied to Mars. Basalts in the Martian dark areas are predicted to alter to hydrated Fe(2 plus or minus) depleted clay minerals, minor goethite, and minor to trace amounts of transition metal oxides such as TiO2, MnO2, and Cr2O3 at a rate of 10 to the minus 1.5 plus or minus 1.5 micron/yr. Some Ca-Mg carbonates are also expected to be formed. The clay minerals are predicted to be more silica-rich than the silicate source material, SiO2 contents of 60% or higher being expected, and strongly depleted in Fe(2+). The oxygen, OH, and H2O contents of the bulk weathering product are predicted to be significantly greater than those of the dark-area source materials, whereas the relative bulk metal abundances should be the same.

  17. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals

    PubMed Central

    Crosson, Garry S.; Sandmann, Emily

    2013-01-01

    Abstract The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo–second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and −0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10−2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment

  18. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    PubMed

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10(-2) g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals who may

  19. DFT theoretical and FT-IR spectroscopic investigations of the plasticity of clay minerals dispersions

    NASA Astrophysics Data System (ADS)

    Kasprzhitskii, A.; Lazorenko, G.; Yavna, V.; Daniel, Ph.

    2016-04-01

    Plasticity is the most important property of dispersions of clay minerals that determine the character of participation of these systems in many natural and technological processes. We report on the results of studies of hydration mechanism in typical clay minerals making part of natural dispersions of sedimentation masses by means of IR spectroscopy and theoretical density functional theory (DFT) methods. X-ray diffraction analysis of clay minerals of Millerovo mineral deposit (Russian Federation) is carried out. Regularities and peculiarities of interaction of water molecules with kaolinite basal planes (001) and (00 1 bar) are analyzed. The role of water in the formation of plasticity of clay minerals dispersions is revealed. The modes of water molecules placement and their state and structure in the system "clay mineral-water" is defined. Phase transition processes of clay minerals dispersion into plastic and liquid state and their influence on spectral characteristics of the systems are investigated. The interpretation of clay minerals phase transitions into plastic and fluid state based on the results of DFT simulation is given. The relation is established between specific variation of spectral characteristics and phase transitions of clay minerals dispersions into plastic and liquid state.

  20. Metachromasy as an indicator of photostabilization of methylene blue adsorbed to clays and minerals.

    PubMed

    Samuels, Maya; Mor, Omer; Rytwo, Giora

    2013-04-01

    The influence of methylene blue adsorption to different clays on its photodegradation was studied. Methylene blue in solution was decomposed by sunlight in a zero-order process. Adsorption to some clay minerals (sepiolite and vermiculite) and a zeolite (clinoptilolite) accelerated the degradation process, and converted it to a first-order reaction. On the other hand, adsorption to other clay minerals (palygorskite and montmorillonite) stabilized the dye and prevented its degradation. Interestingly, in the clay-dye complexes that exhibited stability, clear metachromasy of the adsorbed methylene blue occurred, whereas the effect was not observed in the clay-dye complexes that underwent photodegradation. PMID:23474529

  1. Origin of clay-mineral variation in Wisconsinan age sediments from the Lake Michigan basin

    SciTech Connect

    Monaghan, G.W. ); Larson, G.J. . Dept. of Geological Sciences)

    1994-04-01

    Drift samples collected in Wisconsin and Michigan from exposures representative of the Wisconsinan stratigraphy of the Lake Michigan Lobe indicate that clay mineral and shale lithology systematically vary between successive till sheets as a result of differential erosion of two unique source beds: shale bedrock, rich in 10[angstrom] clay (illite) and pre-existing drift (particularly lacustrine clay), depleted in 10[angstrom] clay. A general increase in relative amounts of 10[angstrom] clay and shale clasts begins with early or middle Wisconsinan (Altonian) Glenn Shores till and continues through late Wisconsinan (Woodfordian) Ganges-New Berlin till and Saugatuck-Oak Creek till. Both 10[angstrom] clay and shale decrease in post Mackinaw (late Woodfordian) Interstade Ozaukee-Haven and Two Rivers tills. Clay minerals in till rich in 10[angstrom] clay (Saugatuck-Oak Creek) were derived mainly from extensive erosion and comminution of shale whereas those in tills depleted in 10[angstrom] clay (Ganges-New Berlin, Ozaukee-Haven, and Two Rivers) were eroded mainly from lacustrine clay. Because it is compositionally dissimilar to either the shale or lake clay source and relatively rich in kaolinite, clay minerals in early-middle Wisconsinan Glenn Shores till may have been derived from Sangamon saprolite eroded during an early post-Sangamon ice advance. Variations in source bed erosion and subsequent changes in till lithology result either from depletion of the source bed (Glenn Shores till) or from progressively eroding drift mantling shale outcrops (unroofing) during successive late Wisconsinan ice advances.

  2. Clay Minerals in Mawrth Vallis Region of Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold.

    The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green.

    The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter.

    Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars.

    CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  3. Geochemistry of clay minerals for uranium exploration in the Grants mineral belt, New Mexico

    NASA Astrophysics Data System (ADS)

    Brookins, D. G.

    1982-03-01

    Clay mineralogy studies of ore rocks versus barren rocks in the Grants mineral belt, New Mexico, show that some combination of chlorite (rosette form), illite, mixed-layer illite-montmorillonite, (±Mg-montmorillonite) are penecontemporaneous with uranium minerals in trend ore; these same clay minerals plus kaolinite are related to the roll-type ore near the main redox front of the Grants mineral belt. Clay minerals from barren rocks are characterized by a greater abundance of Na-montmorillonite, kaolinite, and face-to-edge form chlorite. Chlorites from ore zones contain much more vanadium than do chlorites from barren rocks. Trend orr probably formed from southeasterly flowing waters following paleochannels in the Late Jurassic. These deposits are found almost entirely in reduced rocks, and organic carbon may have been an important reductant to remove U-V-U-V-Se-Mo from solution as carbonate from ore zones contains some organic carbon based on stable isotope studies. Uplift, remobilization, and reprecipitation of some of the trend ore resulted in the formation of redistributed ore, some of which possesses a roll-type geometry. Mineralization for the roll-type ore was apparently controlled by sulfide-sulfate equilibria at or near the main redox front in the Grants mineral belt. Trend and roll-type ore possess different assemblages of clay minerals and different trace element abundances. Laramide-age faults cut both trend ore and some roll-type ores. Stack ore is found in Laramide-age fault zones. Limited oxygen isotopic data from clay minerals collected from two mines at Ambrosia Lake in reduced rocks indicate probable preservation of ancient, formational waters and show no evidence of infiltration by young meteoric waters. This information, plus the pre-Laramide-age faults, suggest, but do not unequivocally prove, that the main redox front has been relatively stable since its formation, probably some time in the Cretaceous. Younger encroachment of the redox front

  4. A general evaluation of the frequency distribution of clay and associated minerals in the alluvial soils of ceylon

    USGS Publications Warehouse

    Herath, J.W.; Grimshaw, R.W.

    1971-01-01

    Clay mineral analyses were made of several alluvial clay materials from Ceylon. These studies show that the soil materials can be divided into 3 clay mineral provinces on the basis of the frequency distribution of clay and associated minerals. The provinces closely follow the climatic divisions. The characteristic feature of this classification is the progressive development of gibbsite from Dry to Wet Zone areas. Gibbsite has been used as a reliable indicator mineral. ?? 1971.

  5. [Effects of temperature on organic carbon mineralization in paddy soils with different clay content].

    PubMed

    Ren, Xiu-E; Tong, Cheng-Li; Sun, Zhong-Lin; Tang, Guo-Yong; Xiao, He-Ai; Wu, Jin-Shui

    2007-10-01

    An incubation test with three kinds of paddy soil (sandy loam, clay loam, and silty clay soils) in subtropical region was conducted at 10, 15, 20, 25 and 30 degrees C to examine the response of the mineralization of soil organic carbon (SOC) to temperature change. The results showed that during the period of 160 d incubation, the accumulative mineralized amount of SOC in sandy loam, clay loam, and silty clay soils at 30 degrees C was 3.5, 5.2 and 4.7 times as much as that at 10 degrees C, respectively. The mineralization rate was lower and relatively stable at lower temperatures (< or = 20 C), but was higher at the beginning of incubation and decreased and became stable as the time prolonged at higher temperatures (> or = 25 degrees C). During incubation, the temperature coefficient (Q10) of SOC mineralization in test soils fluctuated, with an average Q10 in sandy loam, clay loam, and silty clay soils being 1.92, 2.37 and 2.32, respectively. There was a positive exponential correlation between SOC mineralization constant k and temperature (P < 0.01), and the response of SOC mineralization to temperature change was in the order of clay loam soil > silty clay soil > sandy loam soil. PMID:18163305

  6. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa

    NASA Technical Reports Server (NTRS)

    Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.

    1994-01-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  7. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa.

    PubMed

    Toulkeridis, T; Goldstein, S L; Clauer, N; Kroner, A; Lowe, D R

    1994-03-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence. PMID:11540244

  8. MAX--An Interactive Computer Program for Teaching Identification of Clay Minerals by X-ray Diffraction.

    ERIC Educational Resources Information Center

    Kohut, Connie K.; And Others

    1993-01-01

    Discusses MAX, an interactive computer program for teaching identification of clay minerals based on standard x-ray diffraction characteristics. The program provides tutorial-type exercises for identification of 16 clay standards, self-evaluation exercises, diffractograms of 28 soil clay minerals, and identification of nonclay minerals. (MDH)

  9. Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Liu, Qingsong; Zhao, Xiangyu; Jin, Chunsheng; Liu, Caicai; Li, Shihu

    2015-01-01

    Clay minerals and Al-substituted haematite (Al-hm) usually coexist in soils and sediments. However, effects of clay minerals on Al-hm during thermal magnetic measurements in argon environment have not been well studied. In order to quantify such effects, a series of Al-hm samples were synthesized, and were then mixed with clay minerals (illite, chlorite, kaolinite and Ca-montmorillonite). The temperature dependence of magnetic susceptibility curves in an argon environment showed that Al-substituted magnetite was produced during the thermal treatment via the reduction of Al-hm by the clay mineral, which leads to a significant magnetic enhancement of the thermal products. In addition, the reductive capacity varies among different types of clay minerals, that is, illite > chlorite > kaolinite > Ca-montmorillonite. Furthermore, the iron content in the clay minerals and Al content of Al-hm are two predominant factors controlling the reduced haematite content. The iron is released from the clay minerals and provides the reducing agent, while Al decreases the crystallinity of haematite and thus facilitates the chemical reaction. Therefore, the thermal magnetic measurements can be used to quantify the Al content of Al-hm in natural samples. Our study provides significant information for palaeomagnetism and environmental magnetism studies, such as thermal magnetic analysis and palaeomagnetic intensity reconstruction using ancient pottery and kilns.

  10. [Species Determination and Spectral Characteristics of Swelling Clay Minerals in the Pliocene Sandstones in Xinghai, Qinghai].

    PubMed

    Wang, Chao-wen; Chen, Jiang-jun; Fang, Qian; Yin, Ke; Hong, Han-lie

    2015-10-01

    X-ray diffraction (XRD) and Fourier infrared absorption spectroscopy (FTIR) were conducted to deepen our research on specific species and spectral characteristics of swelling clay minerals in the Pliocene sandstones in Xinghai, Qinghai province. XRD results show that swelling clay minerals are dominant clay minerals in the sandstones, which can be up to 97% in percentage. XRD patterns show 060 reflections of the samples occur both remarkably at 1.534 Å and 1.498 Å, indicating the samples contain physical mixtures of trioctahedral and dioctahedral swelling clay minerals, respectively. Further treatment of Li-300 degrees C heat and glycerol saturation shows the swelling clay minerals collapse to 9.3-9.9 Å with a partial expansion to -18 Å. This indicates the swelling clay minerals dominate montmorillonite and contain minor saponite. The montmorillonite shows no swelling after Li-300 degrees C heat and glycerol saturation because of Li+ inserting into the octahedral layers, which balances the layer charge caused by the substitution of Mg to Al. FTIR results show the samples are composed of a kind of phyllosilicate with absorbed and structural water, which is in agreement with the results of XRD. Absorbed peaks at 913, 842, 880 cm(-1), corresponding to OH associated with Al-Al, Al-Mg, and Al-Fe pairs, further indicates the minerals are dominant dioctahedron in structure. Meanwhile, absorbed peaks at 625 and 519 cm(-1), corresponding to coupled Si-O and Al-O-Si deformation, indicates parts of Si is replaced by Al in tetrahedron. The spectral characteristics of the samples are against the presence of beidellite and nontronite based on the results of XRD and FTIR, while demonstrating an,existence of montmorillonite. This study, to distinguish the specific species of swelling clay species in clay minerals, would be of great importance when using clay mineralogy to interpret provenance and climatic information. PMID:26904841

  11. Clay Mineral Composition of Sediments in Some Desert Lakes in Nevada, California, and Oregon.

    PubMed

    Droste, J B

    1961-06-16

    X-ray analyses of some Recent desert lacustrine sediments in Nevada, California, and Oregon show that illite and montmorillonite are the most abundant clay minerals and that chlorite and kaolinite are present in subordinate amounts in the sediments of many of the lakes. These clay suites are derived from source rocks. PMID:17738874

  12. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  13. Evaluation of the medicinal use of clay minerals as antibacterial agents.

    PubMed

    Williams, Lynda B; Haydel, Shelley E

    2010-07-01

    . Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200 degrees C), then dehydroxylation (550 degrees C or more), and finally to destruction of the clay mineral structure by (~900 degrees C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226

  14. Evaluation of the medicinal use of clay minerals as antibacterial agents

    PubMed Central

    Williams, Lynda B.; Haydel, Shelley E.

    2010-01-01

    process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure by (~900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226

  15. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes.

    PubMed

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D

    2014-01-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments. PMID:25068404

  16. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes

    NASA Astrophysics Data System (ADS)

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D.

    2014-07-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  17. Palaeoenvironmental significance of the clay mineral composition of Olduvai basin deposits, northern Tanzania

    NASA Astrophysics Data System (ADS)

    Mees, Florias; Segers, Stijn; Ranst, Eric Van

    2007-01-01

    Quaternary deposits in the southeastern part of the Olduvai basin, northern Tanzania, consist of lake margin deposits, followed by a series of fluvial sediments. The clay mineral fraction of the lake margin deposits (Bed I and lower part of Bed II) is composed of smectite and subordinate illite. All smectite is largely dioctahedral and shows indications for a limited degree of irregular interstratification by illite. In the overlying fluvial deposits (Beds II-IV), illite is the most abundant clay mineral. Smectite only occurs in lower parts of the fluvial deposits (up to the middle of Bed III), where it generally shows a high degree of irregular interstratification. Differences in clay mineral composition between the lake margin deposits and the fluvial deposits record differences in sediment source area and degree of alteration. Dioctahedral smectite in the lake margin deposits and the oldest fluvial deposits is derived from a region with volcanic material extending to the east and south of the basin, which also supplies a certain amount of illite. Illite in the fluvial deposits of Bed IV originates from an area with a metamorphic bedrock to the west and north. Alteration of detrital clay minerals resulted in Mg-enrichment of dioctahedral smectite in part of the lake margin deposits and partial illitization of smectite in the older fluvial deposits. Formation of clay minerals during diagenesis or soil development is not documented by analysis of the total clay fraction.

  18. Elastic Properties of Clay Minerals Determined by Atomic Force Acoustic Microscopy Technique

    NASA Astrophysics Data System (ADS)

    Kopycinska-Müller, M.; Prasad, M.; Rabe, U.; Arnold, W.

    Seismic wave propagation in geological formations is altered by the presence of clay minerals. Knowledge about the elastic properties of clay is therefore essential for the interpretation and modeling of the seismic response of clay-bearing formations. However, due to the layered structure of clay, it is very difficult to investigate its elastic properties. We measured elastic properties of clay using atomic force acoustic microscopy (AFAM). The forces applied during the experiments were not higher than 50 nN. The adhesion forces were measured from the pull-off forces and included into our calculations by means of the Derjaguin-Mueller-Toporov model for contact mechanics. The obtained values of the elastic modulus for clay varied from 10 to 17 GPa depending on various parameters that describe the dynamics of a vibrating beam

  19. Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas

    NASA Astrophysics Data System (ADS)

    Chen, Shangbin; Han, Yufu; Fu, Changqin; Zhang, han; Zhu, Yanming; Zuo, Zhaoxi

    2016-08-01

    A pore is an essential component of shale gas reservoirs. Clay minerals are the adsorption carrier second only to organic matter. This paper uses the organic maturity test, Field-Emission Scanning Electron Microscopy (FE-SEM), and X-ray Diffraction (XRD) to study the structure and effect of clay minerals on storing gas in shales. Results show the depositional environment and organic maturity influence the content and types of clay minerals as well as their structure in the three types of sedimentary facies in China. Clay minerals develop multi-size pores which shrink to micro- and nano-size by close compaction during diagenesis. Micro- and nano-pores can be divided into six types: 1) interlayer, 2) intergranular, 3) pore and fracture in contact with organic matter, 4) pore and fracture in contact with other types of minerals, 5) dissolved and, 6) micro-cracks. The contribution of clay minerals to the presence of pores in shale is evident and the clay plane porosity can even reach 16%, close to the contribution of organic matter. The amount of clay minerals and pores displays a positive correlation. Clay minerals possess a strong adsorption which is affected by moisture and reservoir maturity. Different pore levels of clay minerals are mutually arranged, thus essentially producing distinct reservoir adsorption effects. Understanding the structural characteristics of micro- and nano-pores in clay minerals can provide a tool for the exploration and development of shale gas reservoirs.

  20. Clay Mineral Assemblages as Proxies for Reconstructing Messinian Paleoenvironments in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Martinez-Ruiz, Francisca; Comas, Menchu; Vasconcelos, Crisogono

    2014-05-01

    Significant tectonic and climate changes at time of the Messinian Salinity Crisis (MSC) led to a complex sedimentation involving marked changes in sediment composition, particularly in clay mineral assemblages. One of the noticeable mineralogical changes across this time interval is the strong smectite increase in Messinian deposits in comparison to the underlying Tortonian and overlaying Pliocene sediments. As no break in the clay mineralogy is recognized in the open ocean (Chamley et al., 1978), such changes are also distinctive of the Mediterranean basins. Since the early discoveries of the giant Messinian evaporite formation (DSDP Legs 13 and 42A), a vast literature contributed, during the last decades, to the continuous debate and re-examination of the actual Messinian paleoenvironment. Drilled records in the westernmost Mediterranean (Alboran Sea) have shown significant changes in the mineralogical assemblages associated to the Messinian events. This basin is depleted of significant salt deposits. Site 976 (ODP Leg 161) recovered a 670-m-thick, middle Miocene (Serravallian) to Pleistocene/Holocene sedimentary sequence, including a thin interval of Messinian sediment, lying directly upon the metamorphic basement. Analysis of clay mineral assemblages from the sedimentary cover of Hole 976B revealed an homogeneous clay association composed of illite, smectite, chlorite and kaolinite with no major changes in clay mineral abundances except for the sediment interval dated as Messinian, which is characterized by a sharp smectite increase (Martinez-Ruiz et al., 1999). Transmission Electron Microscope analyses of clay minerals revealed that smectite composition corresponds to Al-rich beidellites, which supports the existence of such smectites in peri-Mediterranean soils. Smectite formation was favored by the climate conditions at that time, comprising progressive aridification and the alternation of wet and dry climatic episodes. Diagenesis in these smectites is

  1. Potential bioavailability of mercury in humus-coated clay minerals.

    PubMed

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils. PMID:26456605

  2. MODELING OF CATION BINDING IN HYDRATED 2:1 CLAY MINERALS

    EPA Science Inventory

    Hydrated 2:1 clay minerals are high-surface area, layered silicates that play a unique role in determining the fate of ionic pollutants in the environment. These minerals, including smectites and vermiculites, make up a major component of many soils. Ionic pollutants, including r...

  3. Kinetic study of aluminum adsorption by aluminosilicate clay minerals

    SciTech Connect

    Walker, W.J.; Cronan, C.S.; Patterson, H.H.

    1988-01-01

    The adsorption kinetics of Al/sup 3 +/ by montmorillonite, kaolinite, and vermiculite were investigated as a function of the initial Al concentration, the surface area of the clay, and H/sup +/ concentration, at 25/sup 0/, 18/sup 0/, and 10/sup 0/C. In order to minimize complicated side reactions the pH range was kept between 3.0 and 4.1. Results showed that the adsorption rate was first order with respect to both the initial Al concentration and the clay surface area. Changes in pH within this narrow range had virtually no effect on adsorption rate. This zero order reaction dependence suggested that the H/sup +/, compared to Al, has a weak affinity for the surface. The rates of adsorption decreased in the order of montmorillonite > kaolinite > vermiculite when compared on the basis of equal surface areas, but changed to kaolinite > montmorillonite > vermiculite when the clays were compared on an equal exchange capacity basis. The calculated apparent activation energies were < 32 kJ mol/sup -1/, indicating that over the temperature range of the study the adsorption process is only marginally temperature sensitive. The mechanism is governed by a simple electrostatic cation exchange involving outer sphere complexes between adsorbed Al and the clay surface. Vermiculite, may have a second reaction step governed by both electrostatic attraction and internal ion diffusion. Equilibrium constants for the formation of an adsorbed Al clay complex were also estimated and are 10/sup 5.34/, 10/sup 5.18/, and 10/sup 4.94/ for kaolinite, montmorillonite, and vermiculite, respectively, suggesting that these clays could play a significant role in controlling soil solutions Al concentrations.

  4. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study. PMID:25269317

  5. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf

    USGS Publications Warehouse

    Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 ??m-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Nin??o years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does

  6. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf.

    PubMed

    Hein, James R; Dowling, Jennifer S; Schuetze, Anthony; Lee, Homa J

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 microm-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Niño years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does

  7. Molecular Basis of Clay Mineral Structure and Dynamics in Subsurface Engineering Applications

    NASA Astrophysics Data System (ADS)

    Cygan, R. T.

    2015-12-01

    Clay minerals and their interfaces play an essential role in many geochemical, environmental, and subsurface engineering applications. Adsorption, dissolution, precipitation, nucleation, and growth mechanisms, in particular, are controlled by the interplay of structure, thermodynamics, kinetics, and transport at clay mineral-water interfaces. Molecular details of these processes are typically beyond the sensitivity of experimental and analytical methods, and therefore require accurate models and simulations. Also, basal surfaces and interlayers of clay minerals provide constrained interfacial environments to facilitate the evaluation of these complex processes. We have developed and used classical molecular and quantum methods to examine the complex behavior of clay mineral-water interfaces and dynamics of interlayer species. Bulk structures, swelling behavior, diffusion, and adsorption processes are evaluated and compared to experimental and spectroscopic findings. Analysis of adsorption mechanisms of radionuclides on clay minerals provides a scientific basis for predicting the suitability of engineered barriers associated with nuclear waste repositories and the fate of contaminants in the environment. Similarly, the injection of supercritical carbon dioxide into geological reservoirs—to mitigate the impact of climate change—is evaluated by molecular models of multi-fluid interactions with clay minerals. Molecular dynamics simulations provide insights into the wettability of different fluids—water, electrolyte solutions, and supercritical carbon dioxide—on clay surfaces, and which ultimately affects capillary fluid flow and the integrity of shale caprocks. This work is supported as part of Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program

  8. Clay minerals as alteration products in basaltic volcaniclastic deposits of La Palma (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    García-Romero, E.; Vegas, J.; Baldonedo, J. L.; Marfil, R.

    2005-02-01

    Clay minerals from several volcaniclastic environments including pyroclastic (tuffs), epiclastic (lacustrine, alluvial terraces, marine fan delta) and unconformity-related paleosols in La Palma (Canary Islands) were studied by XRD, SEM, TEM, HRTEM imaging and AEM. Clay minerals and their assemblages allowed us to distinguish between primary volcaniclastic basaltic material produced directly by pyroclastic eruptions and epiclastic volcaniclastic material derived from erosion of pre-existing volcanic rocks. The clay fractions consist mainly of smectite with minor chlorite, mica, chlorite-smectite mixed-layers and talc. Phyllosilicates of the epiclastic units display wider compositional variations owing to wide variations in the mineralogical and chemical composition of the parent material. Most of the phyllosilicates (mica, corrensite, talc and chlorite) are inherited minerals derived from the erosion of the Basement Complex Unit, which had undergone hydrothermal alteration. Smectites of the epiclastic units are saponite and beidellite-montmorillonite derived from the hydrothermal Basement Complex Unit and from volcanic materials altered in the sedimentary environment. Conversely, clay minerals of unconformity-related paleosols are dominated by smectite composed of variable mixtures of saponite and beidellite, which were formed by pedogenetic processes with later hydrothermal influence. The mineralogical association in the pyroclastic unit is dominated by hydrothermally formed smectite (beidellite-montmorillonite), zeolites and calcite. This paper contributes to the differentiation between pyroclastic and epiclastic volcaniclastic rocks of several depositional settings in a basaltic volcanic complex by their clay minerals characterization.

  9. ATTENUATION OF POLLUTANTS IN MUNICIPAL LANDFILL LEACHATE BY CLAY MINERALS

    EPA Science Inventory

    The first part of this project was a laboratory column study of attenuation of pollutants in municipal solid waste landfill leachate by mixtures of sand and calcium-saturated clays. K, NH4, Mg, Si, and Fe were moderately attenuated; and the heavy metals Pb, Cd, Hg, and Zn were st...

  10. Estimation of the standard molal heat capacities, entropies and volumes of 2:1 clay minerals

    NASA Astrophysics Data System (ADS)

    Ransom, Barbara; Helgeson, Harold C.

    1994-11-01

    The dearth of accurate values of the thermodynamic properties of 2:1 clay minerals severely hampers interpretation of their phase relations, the design of critical laboratory experiments and geologically realistic computer calculations of mass transfer in weathering, diagenetic and hydrothermal systems. Algorithms and strategies are described below for estimating to within 2% the standard molal heat capacities, entropies, and volumes of illites, smectites and other 2:1 clay minerals. These techniques can also be used to estimate standard molal thermodynamic properties of fictive endmembers of clay mineral solid solutions. Because 2:1 clay minerals like smectite and vermiculite are always hydrated to some extent in nature, contribution of interlayer H 2O to their thermodynamic properties is considered explicitly in the estimation of the standard molal heat capacities, entropies, and volumes of these minerals. Owing to the lack of accurate calorimetric data from which reliable values of the standard molal heat capacity and entropy of interlayer H 2O can be retrieved, these properties were taken in a first approximation to be equal to those of zeolitic H 2O in analcite. The resulting thermodynamic contributions per mole of interlayer H 2O to the standard molal heat capacity, entropy, and volume of hydrous clay minerals at 1 bar and 25°C are 11.46 cal mol -1, 13.15 cal mol -1 K -1 and 17.22 cm 3 mol, respectively. Estimated standard molal heat capacities, entropies and volumes are given for a suite of smectites and illites commonly used in models of clay mineral and shale diagenesis.

  11. Characterization of Clay Minerals and Kerogen in Alberta Oil Sands Geological End Members

    NASA Astrophysics Data System (ADS)

    Zheng, Limin

    The high degree of variability of oil sands ores can be attributed to a mixture of different geological end members, i.e., estuarine sand, estuarine clay, marine sand and marine clay. This study focused on the mineralogy, especially of clay minerals, and toluene insoluble organic matter, referred to as kerogen, in different oil sands end members. Clays and kerogens will likely have a significant impact on solvent recovery from the gangue following non-aqueous bitumen extraction. The bitumen-free solids were subjected to mineralogical and geochemical analysis. Kerogens were isolated and analyzed by various characterization methods. The types of clays were identified in oriented samples by X-ray diffraction analysis. The nitrogen to carbon ratio in the isolated kerogens is found to be higher than in bitumen. There are more type III kerogens in estuarine samples and more type II kerogens in marine samples.

  12. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  13. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. PMID:26408945

  14. Clay mineral diagenesis in Westwater Canyon sandstone member of Morrison Formation, San Juan basin, New Mexico

    SciTech Connect

    Crossey, L.J. )

    1989-09-01

    The Westwater Canyon Sandstone Member and the Brushy Basin and Recapture Shale Members of the Morrison Formation are examined from core located on the southern flank of the San Juan basin, northwestern New Mexico. Clay mineralogy of fine-grained lithologies of the Westwater Canyon Sandstone Member is contrasted with that of coarse-grained lithologies. Two distinct mixed-layer clay populations are present: a high expandable mixed-layer illite/smectite associated with coarse-grained lithologies. Two distinct mixed-layer clay populations are present: a highly expandable mixed-layer illite/smectite associated with coarse-grained units (in addition to chlorite and kaolinite), and an illitic mixed-layer illite/smectite (in some cases ordered and accompanied by traces of chlorite) in the fine-grained units. The expandable component of the mixed-layer clay does not exhibit a trend with depth but is lithology dependent. Coarse-grained samples from the Westwater Canyon Sandstone Member contain numerous mudstone intraclasts. The clay mineralogy of selected clasts has been examined. These lithologic characteristics must be taken into account in interpreting clay mineral diagenesis within the Morrison Formation. Framework grain alternation within the Westwater Canyon Sandstone Member has been linked to lacustrine facies in the overlying Brushy Basin Shale Member. Authigenic clay minerals within the Westwater Canyon Sandstone Member may provide a record of downward-percolating lake fluids. Early diagenetic effects must be recognized in order to interpret the complete diagenetic history of the Westwater Canyon Sandstone Member.

  15. Crystallization and textural porosity of synthetic clay minerals.

    SciTech Connect

    Carrado, K. A.; Csencsits, R.; Thiyagarajan, P.; Seifert, S.; Macha, S. M.; Harwood, J.; Univ. of Illinois at Chicago; IIT

    2002-12-01

    The crystallization of synthetic layered magnesium silicate hectorite clays from both silica sol and organosilane sources is compared. For the silica sol-derived clays, a templating method is employed wherein organic or polymeric molecules are included during clay crystallization that are then removed from the composites via calcination. The mechanism of silane-derived hectorite formation is followed by XRD, TGA, 29Si MAS NMR, and small angle X-ray scattering (SAXS), and results are compared to those obtained for the sol-derived hectorite. The mechanism appears to be similar but the rate is approximately doubled when the silane is used rather than silica sol. Analytical transmission electron microscopy (TEM) is exploited to glean structural morphology information towards resolving the nature of the resulting pore network structures. Results are compared with nitrogen adsorption-desorption isotherm behavior; dominant hysteresis loops are present in the type IV isotherms. Pore size distributions based on both the adsorption and desorption isotherms are compared. Small angle neutron scattering (SANS) experiments reveal that the average particle size increases as synthetic laponite < sol-derived hectorite < silane-derived hectorite < natural hectorite. Contrast matching SANS studies in aqueous and organic solvents are carried out to extract information about pore accessibility.

  16. Interaction of surface-modified silica nanoparticles with clay minerals

    NASA Astrophysics Data System (ADS)

    Omurlu, Cigdem; Pham, H.; Nguyen, Q. P.

    2016-05-01

    In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate), cationic (quaternary ammonium (quat)), and nonionic (polyethylene glycol (PEG)) surfactant. We employed ultraviolet-visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl) and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  17. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    NASA Astrophysics Data System (ADS)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  18. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    NASA Astrophysics Data System (ADS)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  19. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra

    NASA Astrophysics Data System (ADS)

    Viscarra Rossel, R. A.

    2011-12-01

    Clay minerals are the most reactive inorganic components of soils. They help to determine soil properties and largely govern their behaviors and functions. Clay minerals also play important roles in biogeochemical cycling and interact with the environment to affect geomorphic processes such as weathering, erosion and deposition. This paper provides new spatially explicit clay mineralogy information for Australia that will help to improve our understanding of soils and their role in the functioning of landscapes and ecosystems. I measured the abundances of kaolinite, illite and smectite in Australian soils using near infrared (NIR) spectroscopy. Using a model-tree algorithm, I built rule-based models for each mineral at two depths (0-20 cm, 60-80 cm) as a function of predictors that represent the soil-forming factors (climate, parent material, relief, vegetation and time), their processes and the scales at which they vary. The results show that climate, parent material and soil type exert the largest influence on the abundance and spatial distribution of the clay minerals; relief and vegetation have more local effects. I digitally mapped each mineral on a 3 arc-second grid. The maps show the relative abundances and distributions of kaolinite, illite and smectite in Australian soils. Kaolinite occurs in a range of climates but dominates in deeply weathered soils, in soils of higher landscapes and in regions with more rain. Illite is present in varied landscapes and may be representative of colder, more arid climates, but may also be present in warmer and wetter soil environments. Smectite is often an authigenic mineral, formed from the weathering of basalt, but it also occurs on sediments and calcareous substrates. It occurs predominantly in drier climates and in landscapes with low relief. These new clay mineral maps fill a significant gap in the availability of soil mineralogical information. They provide data to for example, assist with research into soil

  20. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    SciTech Connect

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce W.; Kovarik, Libor

    2014-05-15

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  1. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals

    NASA Astrophysics Data System (ADS)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce; Kovarik, Libor

    2014-05-01

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfonate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10, 20, and 30 °C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10 °C, though at 30 °C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  2. Implications of Clay Mineral-RNA Interactions for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Stephenson, J. D.; Ditzler, M. A.

    2014-12-01

    Due to its ability to both store information and catalyze reactions, RNA is considered by many to have been the dominant biopolymer at the origin of life. We are screening a large, random RNA population for catalytic activity in the presence and absence of prebiotically relevant clay minerals, to investigate the effect of RNA-clay mineral interactions on RNA function. There is an extensive precedent for screening RNA populations for enzymatic functions such as ligation, cleavage and binding in the laboratory. While several environmental parameters have been explored, previous screens have not considered geological interactions. This is surprising as the role of clay minerals has featured prominently in many origin of life theories. Recent empirical evidence demonstrating that clay minerals can adsorb and protect RNA molecules as well as catalyze RNA polymerization has specifically reinvigorated the proposed importance of clay mineral-RNA interactions. Although the identity of the first true biomolecules remains uncertain, interaction between emerging life and its geological environment appears inevitable. We therefore consider understanding the effect of geological-biological interactions to be of crucial importance when considering the earliest biopolymers at the origin of life. Our screens are from a random population of 10^14 unique random RNA sequences and are conducted with and without montmorillonite clay. We are screening for the ability of sequences to self cleave, one of the most basic enzymatic functions considered important to the earliest biopolymers. Our RNA function screens will therefore illuminate the effect of geological interactions at a crucial stage of early evolution.

  3. Experimental Constraints on Microbial Liberation of Structural Iron from Common Clay Minerals in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S. W.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.

    2013-12-01

    Iron is a limiting nutrient in many marine settings. The marine Fe-cycle is complex because Fe may be used as an electron donor or acceptor and cycled many times before ultimate burial in sediments. Thus, the availability of iron plays a large role in the marine carbon cycle, influencing not only the extent of primary productivity but also the oxidation of organic matter in sediments. The primary constituents of marine sediments are clay minerals, which commonly contain lattice-bound Fe in octahedral sites. In marine settings, the pool of Fe bound within silicate mineral lattices has long been considered reactive only over long timescales, and thus non-bioavailable. In vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe (III) from the crystal lattice of nontronite, an uncommon but particularly Fe-rich (> 12 wt.%) smectite. Importantly, this process is capable of liberating Fe (II) to solution, where it is available to biotic processes as an electron donor. In order to constrain the capacity of naturally-occurring marine bacteria to liberate structurally-coordinated Fe from the lattices of common clay minerals, we exposed a suite of 16 different clay minerals (0.8-13.9 wt.% Fe) to lab cultures of known Fe-reducer S. onenidensis MR-1 and to a natural consortium of Fe-reducing microbes from the San Pedro and Santa Monica Basins over timescales ranging from 7-120 days. Clay minerals were treated with Na-dithionite to extract surface-bound Fe prior to exposure. Crystallographic data and direct measurements of Fe in solution demonstrate the release of structural Fe from all clay minerals analyzed. Neoformation of illite and amorphous quartz were observed. The array of clay minerals and microbes used in this experiment complement past findings and suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly

  4. Clay minerals in Alpine Fault gouge: First results from the DFDP-1B pilot hole

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B. A.; Schleicher, A. M.

    2012-12-01

    Clay mineralization is increasingly recognized as a key process along fault systems in the upper crust. The Alpine Fault in New Zealand is a major active fault zone with locally large earthquakes. Samples from this fault zone offer excellent opportunity to investigate recent and ancient rupture zones, and the mechanical role of clay mineral transformations and fluid-rock interactions in particular. The Alpine Fault drilling project (DFDP-project) on the South Island of New Zealand sampled two shallow pilot holes; DFDP-1A was drilled down to 100.6 m and DFDP-1B drilled down to 151.4 m. Five samples from borehole DFDP-1B have been investigated by X-ray diffraction, X-ray texture goniometry and electron microscopy. These samples were taken at ~143.3 m (sections 69_2 to 69_2) and ~128.1 m depth (sections 59_1 to 59_1); the latter is the area of principal slip. The bulk rock mineralogy shows similar compositions in all samples with quartz, phyllosilicates (muscovite, chlorite), calcite, zeolite and clay minerals; the dominant clay phases in all samples are illite and chlorite. Importantly, abundant discrete smectite is uniquely present in gouge zones at sections 69_2 (~143.4 m) and 59_1 (~128.1 m). Smectite was likely formed by dissolution-precipitation reactions during displacement and movement of aqueous fluids along permeable fractures, at the expense of host rock minerals. Electron microscopy of fault gouge at section 69_2 shows small illite and smectite particles with pseudo-hexagonal shapes and variable amounts of K, Ca, Mg and Fe, growing adjacent to each other. Some distinct illite and smectite mineral veins form epitaxially on quartz-feldspar mineral surfaces. Clay fabric intensity, measured by X-ray goniometry, is higher outside the gouge zones (true cataclasite, section 69_1) with average fabric intensities of m.r.d. 3.5. Both gouge zones at sections 59_2 and 69_1 exhibit uniformly weak fabrics for illite and chlorite (m.r.d. ~2.5 on average). The weak

  5. Investigating the behaviour of Mg isotopes during the formation of clay minerals

    NASA Astrophysics Data System (ADS)

    Wimpenny, Joshua; Colla, Christopher A.; Yin, Qing-Zhu; Rustad, James R.; Casey, William H.

    2014-03-01

    We present elemental and isotopic data detailing how the Mg isotope system behaves in natural and experimentally synthesized clay minerals. We show that the bulk Mg isotopic composition (δ26Mg) of a set of natural illite, montmorillonite and kaolinite spans a 2‰ range, and that their isotopic composition depends strongly on a balance between the relative proportions of structural and exchangeable Mg. After acid leaching, these natural clays become relatively enriched in isotopically heavy Mg by between 0.2‰ and 1.6‰. Results of exchange experiments indicate that the Mg that has adsorbed to interlayer spaces and surface charged sites is relatively enriched in isotopically light Mg compared to the residual clay. The isotopic composition of this exchangeable Mg (-1.49‰ to -2.03‰) is characteristic of the isotopic composition of Mg found in many natural waters. Further experiments with an isotopically characterized MgCl2 solution shows that the clay minerals adsorb this exchangeable Mg with little or no isotopic fractionation, although we cannot discount the possibility that the uptake of exchangeable Mg does so with a slight preference for 24Mg. To characterize the behaviour of Mg isotopes during clay mineral formation we synthesized brucite (Mg(OH)2), which we consider to be a good analogue for the incorporation of Mg into the octahedral sheet of Mg-rich clay minerals or into the brucitic layer of clays such as chlorite. In our experiment the brucite mineral becomes enriched in the heavy isotopes of Mg while the corresponding solution is always relatively enriched in isotopically light Mg. The system reaches a steady state after 10 days with a final fractionation factor (αsolid-solution) of 1.0005 at near-neutral pH. This result is consistent with the general consensus that secondary clay minerals preferentially take up isotopically heavy Mg during their formation. However our results also show that exchangeable Mg is an important component within bulk

  6. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  7. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron availability

    NASA Astrophysics Data System (ADS)

    Jeong, G. Y.; Achterberg, E. P.

    2014-06-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in Asian and Saharan dust particles. Cross-sectional slices of dust particles were prepared by focused ion beam (FIB) techniques and analyzed by transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDXS). TEM images of FIB slices revealed that clay minerals occurred as either nano-thin platelets or relatively thick plates. The nano-thin platelets included illite, smectite, illite-smectite mixed layers and their nanoscale mixtures (illite-smectite series clay minerals, ISCMs) which could not be resolved with an electron microbeam. EDXS chemical analysis of the clay mineral grains revealed that the average Fe content was 5.8% in nano-thin ISCM platelets assuming 14% H2O, while the Fe content of illite and chlorite was 2.8 and 14.8%, respectively. In addition, TEM and EDXS analyses were performed on clay mineral grains dispersed and loaded on microgrids. The average Fe content of clay mineral grains was 6.7 and 5.4% in Asian and Saharan dusts, respectively. A comparative X-ray diffraction analysis of bulk dusts showed that Saharan dust was more enriched in clay minerals than in Asian dust, while Asian dust was more enriched in chlorite. The average Fe / Si, Al / Si and Fe / Al molar ratios of the clay minerals, compared to previously reported chemistries of mineral dusts and leached solutions, indicated that dissolved Fe originated from clay minerals. Clay minerals, in particular nanocrystalline ISCMs and Fe-rich chlorite are important sources of available Fe in

  8. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  9. Thermal behavior of water confined in micro porous of clay mineral at additional pressure.

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Takemura, T.; Fujimori, H.; Nagoe, A.; Sugimoto, T.

    2014-12-01

    Water is the most familiar substance. However water has specific properties that has a crystal structure of a dozen and density of that is maximum at 277.15 K. Therefore it understands various natural phenomena to study physical properties of water. Oodo et al study physical properties of water confined in silica gel [1]. They indicate that melting point of water confined in silica gel decrease with decreasing pore size of silica gel. Also in case that pore size is less than 2 nm, water confined in silica gel is unfreezing water at low temperature. It is considered that effect of pore size prevent crystal growth of water. Therefore we are interested in water confined in clay minerals. Clay minerals have a number of water conditions. Also it is thought that water confined in clay minerals show different physical behavior to exist the domain where change with various effect. Therefore we studied a thermal properties and phase behavior of absorption water in clay minerals. In addition, we analyzed the changes in the thermal behavior of absorption water due to the effect of earth pressure that was an environmental factor in the ground. [1] Oodo & Fujimori, J. Non-Cryst. Solids, 357 (2011) 683.

  10. Clay mineral associations in fine-grained surface sediments of the North Sea

    NASA Astrophysics Data System (ADS)

    Irion, Georg; Zöllmer, Volker

    1999-03-01

    With the help of about 500 samples of surface sediments from the North Sea crude maps of the distributions of the clay minerals illite, chlorite, smectite and kaolinite were constructed. Illite, with 51%, is the dominant clay mineral, followed by smectite (27%), chlorite (12%), and kaolinite (10%). There are well-distinguished areas of different concentrations of the individual clay mineral associations. Illite and chlorite show highest values in the north, kaolinite concentrations are high in a corridor a few hundred kilometres wide between the east coast of the UK and the Danish/south Norwegian coast. Smectite is high in the German Bight and in the southwestern North Sea. The distribution patterns of the clay mineral associations are mainly explained by late Quaternary history and by recent to sub-recent sedimentary processes. During the Pleistocene cold periods illite- and chlorite-rich sediments from the Fennoscandian Shield were transported by the great inland ice-masses in a southward direction. The present high sea-level erosion on the east coast of Great Britain provides the North Sea with kaolinite-rich fine-grained sediments. Smectites inherited from Elsterian deposits in the southeast corner and probably from sub-recent Elbe sediments are responsible for their higher values in the German Bight. The high values of smectite in the southwest may have originated from Cretaceous sediments eroded on the banks of the Strait of Dover. The present contribution of riverine suspended load to the North Sea appears to be low.

  11. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  12. FINAL REPORT. MODELING OF CATION BINDING IN HYDRATED 2:1 CLAY MINERALS

    EPA Science Inventory

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique rolein determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swellin...

  13. Clay minerals in primitive meteorites and interplanetary dust 1

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  14. Clay minerals in basin of Mexico lacustrine sediments and their influence on ion mobility in groundwater

    NASA Astrophysics Data System (ADS)

    Warren, C. J.; Rudolph, D. L.

    1997-09-01

    Semiconfined aquifers used as the principal water supply within the Basin of Mexico are overlain by lacustrine deposits that provide a degree of protection from contamination associated with metropolitan Mexico City. Solute transport behavior and the nature of chemical interactions with mineral components in these sediments is poorly understood. The objectives of this paper were to identify the clay mineral phases of the lacustrine sediments and to determine the significance of the exchange properties of the day minerals on contaminant transport processes. Samples obtained from two cores were separated into sand, silt, and clay-size fractions. The clay-size fraction was analyzed by X-ray diffraction and Fourier transform infrared spectroscopy and for specific surface area and pH-dependent cation and anion exchange capacity. The clay-sized fraction averaged 56% of the sediment. Analyses indicated that the clay was predominantly composed of a Si-rich allophane with approximately 30% montmorillonite. Halloysite was also present to a depth of about 1.5 m, but was absent deeper in the sediment. Kaolinite and illite, reported in previous studies, and imogolite were not found in the samples. Solute transport in the sediment was modeled to demonstrate the impact of exchange properties imparted by the allophane compared to other possible clay mineral assemblages. The predominance of allophane in the Basin of Mexico sediments is responsible for many of the fundamental characteristics of the material including: high porosity (0.8-0.9), high water content (200-400%), and an extremely high and pH-dependent cation exchange capacity. The pH of the pore water within the lacustrine sediments of the Basin of Mexico is typically between 6.5 and 12. Measured cation exchange values ranged from ≈ 450 meq kg -1 at pH 6.5 to ≈ 650 meq kg -1 at pH 12 which could produce variable cation mobility in the semiconfining aquitard. The simulations illustrated that allophane is very effective

  15. Can clay minerals account for the non-asperity on the subducting plate interface?

    NASA Astrophysics Data System (ADS)

    Katayama, I.; Kubo, T.; Sakuma, H.; Kawai, K.

    2014-12-01

    Seismicity along the subducting plate interface shows a regional variation, in which large earthquakes occur repeatedly at the strongly coupled patches that are surrounded by weakly coupled regions. This model suggests that the subduction plate interface is heterogeneous in terms of frictional properties; however, mechanism making the difference in strong and weak coupling is still not well understood. We consider this difference to relate to the alternation of plate interface due to aqueous fluids that result in the spatial distribution of clay minerals. In order to test this hypothesis, we measured frictional healing of clay minerals and discuss whether the frictional properties of clays can account for the weakly coupled non-asperity regions in the subducting plate interface. We carried out a series of slide-hold-slide frictional experiments to examine the time-dependent frictional restrengthening of the simulated fault gouge. In the experiments, the axial loading was interrupted for periods ranging 10 to 3000 s after steady-state friction, and we measured the difference between the steady-state friction and the peak friction after each holding period. The preliminary results show that the frictional strength of clay minerals (saponite, illite and chlorite) slightly increases with holding time; however, the healing rate is significantly smaller than that of dry silicates such as quartz. Similar weak healing rate has been reported in the serpentinized simulated faults (Katayama et al. 2013). These experimental results suggest that the recovery of fault strength is different in materials, in which clay minerals show weak and slow recovery whereas dry materials show relatively quick and thereby strong coupling on the fault surface. Aqueous fluids that are released from the descending plate may change the mineralogy on the plate interface where clay minerals become dominant at the channel of fluid flow surrounding the unaltered dry patches that potentially act as a

  16. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    PubMed Central

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10−11 ~ 10−9 molL−1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima. PMID:26868138

  17. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    NASA Astrophysics Data System (ADS)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-02-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10-11 ~ 10-9 molL-1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  18. Mineralogy and hydrogen isotope geochemistry of clay minerals in the Ohnuma geothermal area, Northeastern Japan

    NASA Astrophysics Data System (ADS)

    Marumo, Katsumi; Nagasawa, Keinosuke; Kuroda, Yoshimasu

    1980-04-01

    Mineralogical and hydrogen isotopic studies have been made on clay minerals occurring in the Ohnuma geothermal area, northeastern Japan. Here, clay minerals such as smectite, kaolinite, dickite, sericite, and chlorite were formed by hydrothermal alteration of Miocene rocks. A chemical equilibrium can be assumed to be attained from the fact that the amount of expandable layer in the interstratified chlorite/smectite decreases and the polytype of sericite changes from 1M to 2M 1 with increasing depth and temperature. The hydrogen isotopic composition (D/H) of the clay minerals is lighter than that of the geothermal and local meteoric waters by about 20-40‰. The hydrogen isotopic fractionation factors α mineral-water are as follows: 0.972-0.985 for kaolinite and dickite, 0.973-0.977 for sericite, and 0.954-0.987 for chlorite. In the temperature range from 100 to 250°C, the hydrogen isotopic fractionation factors between these minerals and water are not sensitive to the temperature. α chlorite-water depends on the kind of octahedrally coordinated cations which lie close to the hydroxyl groups; it becomes large with an increase of Mg content of chlorite.

  19. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima.

    PubMed

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the (137)Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of (137)Cs (10(-11) ~ 10(-9 )molL(-1) of (137)Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed "weathered biotite" (WB) in this study, from Fukushima sorbed (137)Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of (137)Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed (137)Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima. PMID:26868138

  20. Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content

    NASA Astrophysics Data System (ADS)

    Cherblanc, F.; Berthonneau, J.; Bromblet, P.; Huon, V.

    2016-06-01

    The mechanical characteristics of various sedimentary stones significantly depend on the water content, where 70 % loss of their mechanical strengths can be observed when saturated by water. Furthermore, the clay fraction has been shown to be a key factor of their hydro-mechanical behaviour since it governs for instance the hydric dilation. This work aims at investigating the correlations between the clay mineral content and the mechanical weakening experienced by limestones when interacting with water. The experimental characterization focuses on five different limestones that exhibit very different micro-structures. For each of them, we present the determination of clay mineral composition, the sorption isotherm curve and the dependences of tensile and compressive strengths on the water content. It emerges from these results that, first, the sorption behaviour is mainly governed by the amount of smectite layers which exhibit the larger specific area and, second, the rate of mechanical strength loss depends linearly on the sorption capacity. Indeed, the clay fraction plays the role of a retardation factor that delays the appearance of capillary bridges as well as the mechanical weakening of stones. However, no correlation was evidenced between the clay content and the amplitude of weakening. Since the mechanisms whereby the strength decreases with water content are not clearly established, these results would help to discriminate between various hypothesis proposed in the literature.

  1. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah

    USGS Publications Warehouse

    Solum, J.G.; van der Pluijm, B.A.; Peacor, D.R.

    2005-01-01

    Pronounced changes in clay mineral assemblages are preserved along the Moab Fault (Utah). Gouge is enriched up to ???40% in 1Md illite relative to protolith, whereas altered protolith in the damage zone is enriched ???40% in illite-smectite relative to gouge and up to ???50% relative to protolith. These mineralogical changes indicate that clay gouge is formed not solely through mechanical incorporation of protolith, but also through fault-related authigenesis. The timing of mineralization is determined using 40Ar/39Ar dating of size fractions of fault rocks with varying detrital and authigenic clay content. We applied Ar dating of illite-smectite samples, as well as a newer approach that uses illite polytypes. Our analysis yields overlapping, early Paleocene ages for neoformed (1Md) gouge illite (63??2 Ma) and illite-smectite in the damage zone (60??2 Ma), which are compatible with results elsewhere. These ages represent the latest period of major fault motion, and demonstrate that the fault fabrics are not the result of recent alteration. The clay fabrics in fault rocks are poorly developed, indicating that fluids were not confined to the fault zone by preferentially oriented clays; rather we propose that fluids in the illite-rich gouge were isolated by adjacent lower permeability, illite-smectite-bearing rocks in the damage zone. ?? 2005 Elsevier Ltd. All rights reserved.

  2. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah

    NASA Astrophysics Data System (ADS)

    Solum, John G.; van der Pluijm, Ben A.; Peacor, Donald R.

    2005-09-01

    Pronounced changes in clay mineral assemblages are preserved along the Moab Fault (Utah). Gouge is enriched up to ˜40% in 1M d illite relative to protolith, whereas altered protolith in the damage zone is enriched ˜40% in illite-smectite relative to gouge and up to ˜50% relative to protolith. These mineralogical changes indicate that clay gouge is formed not solely through mechanical incorporation of protolith, but also through fault-related authigenesis. The timing of mineralization is determined using 40Ar/ 39Ar dating of size fractions of fault rocks with varying detrital and authigenic clay content. We applied Ar dating of illite-smectite samples, as well as a newer approach that uses illite polytypes. Our analysis yields overlapping, early Paleocene ages for neoformed (1M d) gouge illite (63±2 Ma) and illite-smectite in the damage zone (60±2 Ma), which are compatible with results elsewhere. These ages represent the latest period of major fault motion, and demonstrate that the fault fabrics are not the result of recent alteration. The clay fabrics in fault rocks are poorly developed, indicating that fluids were not confined to the fault zone by preferentially oriented clays; rather we propose that fluids in the illite-rich gouge were isolated by adjacent lower permeability, illite-smectite-bearing rocks in the damage zone.

  3. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)

    NASA Astrophysics Data System (ADS)

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.; Liu, Chongxuan; Edelmann, Richard E.

    2011-09-01

    99Technetium ( 99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life ( t1/2 = 2.13 × 10 5 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron, either in aqueous form (Fe 2+) or in mineral form [Fe(II)], has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) has not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Surface Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total structural Fe content of these clay minerals, after surface Fe-oxide removal, ranged from 0.7% to 30.4% by weight, and the structural Fe(III)/Fe(total) ratio ranged from 45% to 98%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with structural Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella putrefaciens CN32 cells as a mediator. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. In the S-I series, smectite (montmorillonite) was the most reducible (18% and 41% without and with AQDS, respectively) and illite the least (1% for both

  4. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)

    SciTech Connect

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.; Liu, Chongxuan; Edelmann, Richard E.

    2011-07-01

    99Technetium (99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life (t1/2 = 2.13 x 105 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron [Fe(II)], either in aqueous form or in mineral form, has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) have not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total Fe content of these clay minerals, after Fe-oxide removal, ranged from 0.7 to 30.4% by weight, and the Fe(III)/Fe(total) ratio ranged from 44.9 to 98.5%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella Putrifaciens CN32 cells as mediators. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. The extent of Fe(III) bioreduction was the highest for chlorite (~43 wt%) and the lowest for palygorskite (~4.17 wt%). In the S-I series, NAu-2 was the most reducible (~31 %) and illite the least (~0.4 %). The

  5. Leaching of clay minerals in a limestone environment

    USGS Publications Warehouse

    Carroll, D.; Starkey, H.C.

    1959-01-01

    Water saturated with CO2 at about 25??C was percolated through mixed beds of limestone or marble fragments and montmorillonite, "illite" and kaolinite in polyethylene tubes for six and fortyfive complete runs. The leachates were analysed for SiO2, A12O3 and Fe2O3, but only SiO2 was found. The minerals lost SiO2 in this order: montmorillonite > kaolinite > "illite". The differential removal of SiO2 during the short period of these experiments suggests a mechanism for the accumulation of bauxite deposits associated with limestones. ?? 1959.

  6. Genesis of clay mineral assemblages and micropaleoclimatic implications in the Tertiary Powder River Basin, Wyoming

    SciTech Connect

    Flores, R.M.; Weaver, J.N. ); Bossiroy, D.; Thorez, J. )

    1990-05-01

    An x-ray diffraction (XRD) study was undertaken on the clay mineralogy of the early Tertiary coal-bearing sequences of the Powder River basin. The vertical and lateral distribution of alternating fluvial conglomerates, sandstones, mudstones, shales, coals, and paleosols reveals a transition from alluvial fans along the basin margin to an alluvial plain and peat bogs basinward. Samples included unweathered shales and mudstones from a borehole and a variety of corresponding surface outcrop samples of Cambrian to Eocene age. Samples older than Tertiary were collected along the basin margin specifically to determine the potential source of parent material during Tertiary sedimentation. XRD analyses were performed on the <2-{mu}m fraction prepared as oriented aggregates. To investigate the materials in their natural state, no chemical pre-treatments the authors applied before the analysis. A series of specific post-treatments, consisting of catonic saturation (Li+, K+), a solution with polyalcohols, heating, acid attack and hydrazine saturation was selectively applied. These post-treatments permit a good discrimination between the mimetic clay minerals such as smectite and illite-smectite mixed layers that constitute the bulk of the clay fraction in the Tertiary rocks. When analyzed only using routine XRD, these swelling minerals are apparently uniformly distributed in the fluvial sedimentary rocks and are better interpreted as a single smectitic population. However, the post-treatments clearly differentiate both qualitatively and quantitatively this smectitic stock. Other clays include illite and kaolinite, which have different degrees of crystallinity, and minor interstratified clays (i.e., illite-chlorite, chlorite-smectite). The clay minerals in pre-Tertiary (and pedogenic) materials are different from those in the Tertiary rocks.

  7. Detrital and authigenic clay minerals in lower Morrow Sandstones of eastern New Mexico

    SciTech Connect

    Mazzullo, J.; Mazullo, L.J.

    1984-01-01

    Sandstone reservoirs of the Morrow Formation of southeastern New Mexico are important natural gas reservoirs. Production from this unit is affected by the types and distributions of detrital and authigenic clay minerals present in the rocks. Thus, X-ray diffraction and scanning electron microscopic analyses of samples from the lower Morrow reservoirs were conducted to understand the types, morphologies, petrographic positions, and regional trends of clays in the unit. By far, authigenic kaolinite and chlorite are the major clays present in the lower Morrow sandstone reservoirs. The kaolinite content of the clay fraction of the formation can reach a maximum of 100%, whereas that of chlorite can be as high as 59%. When both are present, authigenic kaolinite and chlorite can effectively reduce much of the permeability of the sandstone reservoirs. Smectite, illite, and mixed-layer smectite-illite are relatively insignificant clays in the lower Morrow, except in certain small areas of the study area, and are largely detrital in origin. The distribution of smectite, illite, and mixed-layer smectite-illite reflects the depositional processes acting in each of the facies of the lower Morrow. These clays are most abundant in immature fluvial-deltai c and basinal sandstones and relatively deficient in reworked marine sandstones. Distribution of authigenic kaolinite and chlorite also mimics the facies pattern, but is not controlled by it. In the lower Morrow, kaolinite increases landward while chlorite increases toward the basinal facies. Successful treatment procedures for reservoir sandstones must differ with the different clay mineral types present.

  8. Clay mineral distribution and provenance in the Heuksan mud belt, Yellow Sea

    NASA Astrophysics Data System (ADS)

    Cho, Hyen Goo; Kim, Soon-Oh; Kwak, Kyeong Yoon; Choi, Hunsoo; Khim, Boo-Keun

    2015-12-01

    The Heuksan mud belt (HMB), located in the southeastern Yellow Sea, runs parallel to the southwest coast of Korea. In this study, the distribution and relative contribution of four major clay minerals are investigated using 101 surface sediment samples collected in the course of KIOST (2001, 2010, 2011) and KIGAM (2012) cruises, as well as 33 river sediment samples (four from the Huanghe River, three from the Changjiang River, and 26 from Korean rivers) in order to clarify the provenance of fine-grained sediments in the HMB. Based on this currently largest and most robust dataset available for interpretation, the clay mineral assemblages of the fine-grained sediments in the HMB are found to be on average composed of 64.7% illite, 17.9% chlorite, 11.4% kaolinite, and 5.9% smectite. Overall, the clay mineral assemblages are similar in both the northern and the southern parts of the HMB, although smectite seems to be relatively enriched in the southern part, whereas kaolinite is slightly more dominant in the northern part. This clearly indicates that the clays are mostly derived from Korean rivers and, in the southern part of the HMB, partly also from the Huanghe River in China. The new data thus confirm and strengthen the tentative interpretation of some earlier work based on a more limited dataset.

  9. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    PubMed

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study. PMID:24603112

  10. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  11. Mineralization of clay/polymer aerogels: a bioinspired approach to composite reinforcement.

    PubMed

    Johnson, Jack R; Spikowski, Jane; Schiraldi, David A

    2009-06-01

    Clay aerogels, ultra low density materials made via a simple freeze-drying technique, have shown much promise in broad applications because of their low densities, often in the same range as silica aerogels (0.03-0.3 g/cm(3),) but suffering from low mechanical strength. A bioinspired approach to mineralize an active polymer/clay aerogel composite is inspected, showing marked improvement of the mechanical properties with increasing modification. Further property improvement was achieved using a layer-by-layer approach to produce alternate layers of polymer and silica on the surface. PMID:20355926

  12. Strike-parallel variations in clay minerals and fault vergence in the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Underwood, Michael B.

    2002-02-01

    Clay minerals probably affect the zonation of mechanical properties within a thick unit of abyssal-plain deposits as they enter the Cascadia subduction zone. Landward- vergent thrust faults develop above a deeper décollement because smectite-rich mudrocks within that corridor release more water during clay dehydration, which in turn elevates pore pressure and reduces basal shear stress relative to wedge strength. Conversely, dilution of smectite by illite and chlorite increases the frictional coefficient, and fluid overpressure should drop where smectite dehydration is volumetrically reduced. Thus, thrust faults within chlorite-rich segments of the margin are seaward vergent.

  13. Effect of clay minerals present in aquifer soils on the adsorption and desorption of hydrophobic organic compounds

    SciTech Connect

    Ghosh, D.R. ); Keinath, T.M. )

    1994-02-01

    Adsorption of hydrophobic organic compounds (HOCs) onto clay minerals and organic matter present in soils results in retarding their mobility. To study the impact of clay minerals on HOC sorption, kinetic and equilibrium studies were performed using naphthalene as a test surrogate contaminant. The results of these studies indicated that expandable clay minerals (clays that expand and expose large internal surface area on wetting), such as montmorillonite and vermiculite, had a significant impact on naphthalene partitioning. A mathematical model was developed from the equilibrium data which related clay mineral concentrations with the naphthalene partition coefficient. Equilibrium desorption studies were also performed by adding a micellar solution of a surfactant mixture (50:50) of Tween 20 and Aerosol AY-65 to mobilize the adsorbed naphthalene. The surfactant mixture was generally unable to mobilize the sorbed contaminant due to sorption irreversibility and adsorption hysteresis. 36 refs., 1 fig., 5 tabs.

  14. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  15. Reactive Clay Minerals in a land use sequence of disturbed soils of the Belgian Loam Belt

    NASA Astrophysics Data System (ADS)

    Barao, Lucia; Vandevenne, Floor; Ronchi, Benedicta; Meire, Patrick; Govers, Gerard; Struyf, Eric

    2014-05-01

    Clay minerals play a key role in soil biogeochemistry. They can stabilize organic matter, improve water storage, increase cation exchange capacity of the soil (CEC) and lower nutrient leaching. Phytoliths - the biogenic silica bodies (BSi) deposited in cell walls of plants - are important Si pools in soil horizons due to their higher solubility compared to minerals. They provide the source of Si for plant uptake in short time scales, as litter dissolves within soils. In a recent study, we analyzed the BSi pool differences across a set of different land uses (forests, pastures, croplands) in 6 long-term disturbed (multiple centuries) soil sites in the Belgium Loam Belt. Results from a simultaneous chemical extraction in 0.5M NaOH of Si and Al, showed that soils were depleted in the BSi pool while showing high levels of reactive secondary clay minerals, mainly in the deeper horizons and especially in the forests and the croplands. During the extraction, clays were similar in reactivity to the biogenic pool of phytoliths. In order to study the kinetics in a more natural environment, batch dissolution experiments were conducted. Samples from different soil depths for each land use site (0.5 g) were mixed with 0.5 L of demineralised water modified to pH 4, 7 and 10. Subsamples of 2 ml were taken during 3 months. In the end of the period, results for pH 7 showed that in the pastures, where reactive clays were almost absent, the ratio Si/RSi (defined as the Si concentration in the end of the batch experiment divided by the reactive silica extracted from the soil with the alkaline extraction) was lower than 0.005%. The same ratio was higher in the mineral horizons of forests (Si/RSi>0.01%) and croplands (0.005% < Si/RSi <0.01%) where clay minerals were the dominant fraction. These preliminary results highlight the clay minerals' strong potential for Si mobilization. More attention should be paid to this important fraction as it can contribute strongly to Si availability

  16. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals.

    PubMed

    Wang, Xiaoli; Li, Yu

    2011-05-30

    Clay minerals in surficial sediment samples, collected from the Songhua River in China, were separated via sedimentation after removal of Fe/Mn oxides and organic materials; Cu and Zn adsorption onto the sediment components was then evaluated. Clay minerals were examined via X-ray diffraction and scanning electron microscopy. Clay minerals were found to consist mainly of illite, kaolinite, chlorite and an illite/smectite mixed layer. Non-clay minerals were dominated by quartz and orthoclase. The retention of Cu and Zn by clay minerals was 1.6 and 2.5 times, respectively, greater than that of the whole, untreated surficial sediment. Compared to the other critical components in sediments related to metal sorption (Mn oxides, Fe oxides and organic materials), the adsorption capacity of clay minerals was found to be relatively lower on a unit mass basis. These data suggest that, although clay minerals may be important in the adsorption of heavy metals to aquatic sediments, their role is less significant than Fe/Mn oxides and organic materials. PMID:21466918

  17. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions.

    PubMed

    Ghorbanzadeh, Nasrin; Lakzian, Amir; Halajnia, Akram; Kabra, Akhil N; Kurade, Mayur B; Lee, Dae S; Jeon, Byong-Hun

    2015-12-01

    Adsorption of As(V) on various clay minerals including kaolinite (KGa-1), montmorillonite (SWy-1) and nontronites (NAU-1 and NAU-2), and subsequent bioreduction of sorbed As(V) to As(III) by bacterium Shewanella putrefaciens strain CN-32 were investigated. Nontronites showed relatively higher sorption capacity for As(V) primarily due to higher iron oxide content. Freundlich equation well described the sorption of As(V) on NAU-1, NAU-2 and SWy-1, while As(V) sorption isotherm with KGa-1 fitted well in the Langmuir model. The bacterium rapidly reduced 50% of dissolved As(V) to As(III) in 2 h, followed by its complete reduction (>ca. 98%) within 12 h. In contrast, sorption of As(V) to the mineral surfaces interferes with the activity of bacterium, resulting in low bioreduction of As(V) by 27% for 5 days of incubation. S. putrefaciens also promoted the reduction of Fe(III) present in the clay mineral to Fe(II). This study indicates that the sorption and subsequent bioreduction of As(V) on clay minerals can significantly influence the mobility of As(V) in subsurface environment. PMID:25971375

  18. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean

    PubMed Central

    Kennedy, Martin J.; Wagner, Thomas

    2011-01-01

    The majority of carbon sequestration at the Earth’s surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m2 g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% total organic carbon (TOC). The observed MSA changes with TOC across multiple scales of variability and on a sample-by-sample basis (centimeter scale), provides a rigorous test of a hypothesized influence on organic carbon burial by detrital clay mineral controlled MSA. Changes in TOC also correspond with geochemical and sedimentological evidence for water column anoxia. Bioturbated intervals show a lower organic carbon loading on mineral surface area of 0.1 mg-OC m-2 when compared to 0.4 mg-OC m-2 for laminated and sulfidic sediments. Although either anoxia or mineral surface protection may be capable of producing TOC of < 5%, when brought together they produced the very high TOC (10–18%) apparent in these sediments. This nonlinear response in carbon burial resulted from minor precession-driven changes of continental climate influencing clay mineral properties and runoff from the African continent. This study identifies a previously unrecognized land–sea connection among continental weathering, clay mineral production, and anoxia and a nonlinear effect on marine carbon sequestration during the Coniacian-Santonian Oceanic Anoxic Event 3 in the tropical eastern Atlantic. PMID:21576498

  19. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater.

    PubMed

    Hunter, W R; Battin, T J

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with (13)C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of (13)C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  20. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    PubMed Central

    Hunter, W. R.; Battin, T. J.

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  1. Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites

    USGS Publications Warehouse

    May, Howard M.; Klnniburgh, D.G.; Helmke, P.A.; Jackson, M.L.

    1986-01-01

    Determinations of the aqueous solubilities of kaolinite at pH 4, and of five smectite minerals in suspensions set between pH 5 and 8, were undertaken with mineral suspensions adjusted to approach equilibrium from over- and undersaturation. After 1,237 days, Dry Branch, Georgia kaolinite suspensions attained equilibrium solubility with respect to the kaolinite, for which Keq = (2.72 ?? 0.35) ?? 107. The experimentally determined Gibbs free energy of formation (??Gf,2980) for the kaolinite is -3,789.51 ?? 6.60 kj mol-1. Equilibrium solubilities could not be determined for the smectites because the composition of the solution phase in the smectite suspensions appeared to be controlled by the formation of gibbsite or amorphous aluminum hydroxide and not by the smectites, preventing attempts to determine valid ??Gf0 values for these complex aluminosilicate clay minerals. Reported solubility-based ??Gf0 determinations for smectites and other variable composition aluminosilicate clay minerals are shown to be invalid because of experimental deficiencies and of conceptual flaws arising from the nature of the minerals themselves. Because of the variable composition of smectites and similar minerals, it is concluded that reliable equilibrium solubilities and solubility-derived ??Gf0 values can neither be rigorously determined by conventional experimental procedures, nor applied in equilibriabased models of smectite-water interactions. ?? 1986.

  2. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Battin, T. J.

    2016-08-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  3. Subsurface water and clay mineral formation during the early history of Mars.

    PubMed

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-01

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface. PMID:22051674

  4. Reductions in the Toxicity of Cadmium to Microorganisms by Clay Minerals

    PubMed Central

    Babich, H.; Stotzky, G.

    1977-01-01

    The clay minerals montmorillonite and kaolinite protected bacteria, including actinomycetes, and filamentous fungi from the inhibitory effects of cadmium (Cd). Montmorillonite provided greater protection than did equivalent concentrations of kaolinite. The protective ability of the clays was correlated with their cation exchange capacity (CEC). The greater the CEC, the greater the absorbancy of exogenous Cd by the exchange complex and the greater the protection. The greater protection afforded by montmorillonite, as compared to kaolinite, was correlated with its higher CEC. Clays homoionic to Cd did not protect against exogenous Cd, as the exchange complex was already saturated with Cd. Montmorillonite homoionic to Cd was more detrimental to microbial growth than was kaolinite homoionic to Cd, as more Cd was present on and apparently desorbed from the montmorillonite. PMID:16345228

  5. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans

    NASA Astrophysics Data System (ADS)

    Jeong, G. Y.; Achterberg, E. P.

    2014-11-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in Asian and Saharan dust particles. Cross-sectional slices of dust particles were prepared by focused ion beam (FIB) techniques and analyzed by transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDXS). TEM images of FIB slices revealed that clay minerals occurred as either nano-thin platelets or relatively thick plates. Chemical compositions and lattice fringes of the nano-thin platelets suggested that they included illite, smectite, illite-smectite mixed layers, and their nanoscale mixtures (illite-smectite series clay minerals, ISCMs) which could not be resolved with an electron microbeam. EDXS chemical analysis of the clay mineral grains revealed that the average Fe content was 5.8% in nano-thin ISCM platelets assuming 14% H2O, while the Fe content of illite and chlorite was 2.8 and 14.8%, respectively. In addition, TEM and EDXS analyses were performed on clay mineral grains dispersed and loaded on micro-grids. The average Fe content of clay mineral grains was 6.7 and 5.4% in Asian and Saharan dusts, respectively. A comparative X-ray diffraction analysis of bulk dusts showed that Saharan dust was more enriched in clay minerals than Asian dust, while Asian dust was more enriched in chlorite. Clay minerals, in particular nanocrystalline ISCMs and Fe-rich chlorite, are probably important sources of Fe to remote marine ecosystems. Further detailed analyses of the mineralogy and chemistry of clay minerals in global mineral dusts are required to evaluate the

  6. Laboratory reflectance spectra of clay minerals mixed with Mars analog materials: Toward enabling quantitative clay abundances from Mars spectra

    NASA Astrophysics Data System (ADS)

    Roush, Ted L.; Bishop, Janice L.; Brown, Adrian J.; Blake, David F.; Bristow, Thomas F.

    2015-09-01

    Quantitative estimates of clay minerals on the martian surface, via remote sensing observations, provide constraints on activity, timing, duration, and extent of aqueous processes and the geochemical environment in martian history. We describe an analytical study to begin enabling quantitative estimates of phyllosilicates when mixed with martian analog materials. We characterize the chemistry, mineralogy, particle size distribution, and reflectance spectra of the end-member materials: saponite, montmorillonite, pyroxene, and palagonitic soil. Reflectance spectra were obtained for physical mixtures of saponite and montmorillonite with pyroxene, and saponite with palagonitic soil. We analyzed the diagnostic phyllosilicate spectral signatures in the 2.2-2.4 μm wavelength region in detail for the mixtures. This involved fitting the observed ∼2.3 or ∼2.2 μm band depth, associated with the presence of saponite and montmorillonite, respectively, as a function of the abundance of these materials in the mixtures. Based upon the band depth of the spectral features we find that 3-5 wt.% of the clay minerals in the mixture with pyroxene can be recognized and at 25 wt.% their presence is indisputable in the mixtures. When the saponite is mixed with the lower albedo palagonitic soil, its presence is clearly distinguishable via the 1.4 and 2.3 μm features at 25 wt.% abundance. These relationships, between abundance and band depth, provide an ability to quantitatively address the amount of these materials in mixtures. The trends described here provide guidance for estimating the presence of phyllosilicates in matrices on the martian surface.

  7. Pedogenic formation of montmorillonite from a 2:1-2:2 intergrade clay mineral

    USGS Publications Warehouse

    Malcolm, R.L.; Nettleton, W.D.; McCracken, R.J.

    1969-01-01

    Montmorillonite was found to be the dominant clay mineral in surface horizons of certain soils of the North Carolina Coastal Plain whereas a 2:1-2:2 intergrade clay mineral was dominant in subjacent horizons. In all soils where this clay mineral sequence was found, the surface horizon was low in pH (below 4??5) and high in organic matter content. In contrast, data from studies of other soils of this region (Weed and Nelson, 1962) show that: (1) montmorillonite occurs infrequently; (2) maximum accumulation of the 2:1-2:2 intergrade normally occurs in the surface horizon and decreases with depth in the profile; (3) organic matter contents are low; and (4) pH values are only moderately acid (pH 5-6). It is theorized that the montmorillonite in the surface horizon of the soils studied originated by pedogenic weathering of the 2:1-2:2 intergrade clay mineral. The combined effects of low pH (below 4??5) and high organic matter content in surface horizons are believed to be the agents responsible for this mineral transformation. The protonation and solubilization (reverse of hydrolysis) of Al-polymers in the interlayer of expansible clay minerals will occur at or below pH 4??5 depending on the charge and steric effects of the interlayer. A low pH alone may cause this solubilization and thus mineral transformation, but in the soils studied the organic matter is believed to facilitate and accelerage the transformation. The intermediates of organic matter decomposition provide an acid environment, a source of protons, and a source of watersoluble mobile organic substances (principally fulvic acids) which have the ability to complex the solubilized aluminum and move it down the profile. This continuous removal of solubilized aluminum would provide for a favorable gradient for aluminum solubilization. The drainage class or position in a catena is believed to be less important than the chemical factors in formation of montmorillonite from 2:1-2:2 intergrade, because

  8. Synthesis of Smectite Clay Minerals: A Critical Review

    SciTech Connect

    Kloprogge, J T.; Komarneni, S; Amonette, James E. )

    1999-01-01

    Smectites are one of the most important groups of phyllosilicates found in soils and sediments, and certainly one of the most difficult to study. New information about the formation mechanisms, impact of structural features on surface properties, and long-term stability of smectites can best be gained from the systematic study of single-phase specimens. In most instances, these specimens can only be obtained through synthesis under controlled conditions. Syntheses of smectites have been attempted (1) at ambient pressure and low-temperature (< 100 C), (2) under moderate hydrothermal conditions (100-1000 C, pressures to several kbars), (3) under extreme hydrothermal conditions (>1000 C or pressures> 10 kbars), and (4) in the presence of fluoride. Of these approaches, syntheses performed under moderate hydrothermal conditions are the most numerous and the most successful in terms of smectite yield and phase- purity. Using hydrothermal techniques, high phase-purity can be obtained for beidellites and several transition-metal smectites. However, synthesis of montmorillonite in high purity remains difficult. Starting materials for hydrothermal syntheses include gels, glasses, and other aluminosilicate minerals. The presence of Mg2+ seems to be essential for the formation of smectites, even for phases such as montmorillonite which contain low amounts of Mg. Highly crystalline smectites can be obtained when extreme temperatures or pressures are used, but other crystalline impurities are always present. Although the correlation between synthesis stability fields and thermodynamic stability fields is good in many instances, metastable phases are often formed. Few studies, however, include the additional experiments (approach from under- and over-saturation, reversal experiments) needed to ascertain the conditions for formation of thermodynamically stable phases. Thorough characterization of synthetic products by modern instrumental and molecular-scale techniques is also

  9. Indication of Cesium Adsorption Into Angstrom-Scale Open Spaces in Saponite Clay Mineral

    NASA Astrophysics Data System (ADS)

    Numata, Kazuomi; Sato, Kiminori; Fujimoto, Koichiro

    2012-12-01

    Adsorption behavior of cesium (Cs) into angstrom-scale open spaces for the saponite clay mineral is investigated by making use of positronium (Ps) annihilation spectroscopy together with thermogravimetry and differential thermal analysis (TG-DTA). Ps annihilation spectroscopy reveals two kinds of open spaces with their sizes of 3 Å and 10 Å, respectively, after baking at 423 K for 8 h under the vacuum condition at 10-5 Torr. The large open space is found to survive for the Cs-type saponite due to less hydration of the Cs cations even after the exposure to the air for 200 h. It is thus inferred that Cs is locally adsorbed in the angstrom-scale open spaces in the saponite clay minerals.

  10. Oxyanion sorption and surface anion exchange by surfactant-modified clay minerals

    SciTech Connect

    Li, Z.

    1999-10-01

    In this study the sorption of nitrate (NO{sub 2}{sup {minus}}) and chromate (CrO{sub 4}{sup 2{minus}}) from aqueous solution by surfactant-modified clay minerals was investigated. Both the sorption and desorption of oxyanions were found to follow a Langmuir sorption isotherm. In general, the sorption affinity is higher for chromate than for nitrate, reflecting that the interaction between the divalent anions and the surfactant bilayer is stronger than that between the monovalent anions and the surfactant bilayer. Surfactant-modified kaolinite has a higher sorption capacity for chromate. The sorption capacities for chromate and nitrate are equal for surfactant-modified illite while the sorption capacity for nitrate is higher for surfactant-modified smectite. Desorption by water revealed that chromate sorption was irreversible, while nitrate sorption was slightly reversible. In a mixed solution system, nitrate and chromate compete for the same sorption sites, resulting in a decrease in sorption capacity for each anion. Stoichiometric counterion desorption due to chromate and/or nitrate sorption further confirms that sorption of oxyanions by surfactant-modified clay minerals was due to surface anion exchange. The selectivity coefficients were higher for chromate to replace bromide than for nitrate to replace bromide for surfactant-modified kaolinite, but lower when surfactant-modified illite and smectite were the anion exchangers. The results indicate that surfactant-modified clay minerals are effective sorbents to remove anionic contaminants from water. However, the types of clay minerals should be correctly selected to maximize the contaminant removal efficiency.

  11. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Astrophysics Data System (ADS)

    Bristow, T.; Blake, D.; Bish, D. L.; Vaniman, D.; Ming, D. W.; Morris, R. V.; Chipera, S.; Rampe, E. B.; Farmer, J. D.; Treiman, A. H.; Downs, R.; Morrison, S.; Achilles, C.; Des Marais, D. J.; Crisp, J. A.; Sarrazin, P.; Morookian, J.; Grotzinger, J. P.; Team, M.

    2013-12-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent ~150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (~3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of ~20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at ~10A with a slight inflexion at ~12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating >60°C in the presence of water

  12. Can clay minerals account for the behavior of non-asperity on the subducting plate interface?

    NASA Astrophysics Data System (ADS)

    Katayama, Ikuo; Kubo, Tatsuro; Sakuma, Hiroshi; Kawai, Kenji

    2015-12-01

    Seismicity along the subducting plate interface shows regional variation, which has been explained by the seismic asperity model where large earthquakes occur at strongly coupled patches that are surrounded by weakly coupled regions. This suggests that the subduction plate interface is heterogeneous in terms of frictional properties; however, the mechanism producing the difference between strong and weak couplings remains poorly understood. Here, we propose that the heterogeneity of the fluid pathway and of the spatial distribution of clay minerals plays a key role in the formation of non-asperity at the subducting plate interface. We use laboratory measurements of frictional properties to show that clay minerals on a simulated fault interface are characterized by weak and slow recovery, whereas other materials such as quartz show relatively quick recovery and thereby strong coupling on the fault surface. Aqueous fluids change the mineralogy at the plate interface by producing clay minerals due to hydrate reactions, suggesting that the hydrated weakly coupled regions act as a non-asperity and form a barrier to rupture propagation along the plate boundary at the depths of seismogenic zone.

  13. Clay minerals from Weichselian glaciolimnic sediments of the Sępopolska Plain (NE Poland)

    NASA Astrophysics Data System (ADS)

    Dlugosz, Jacek; Orzechowski, Miroslaw; Kobierski, Miroslaw; Smolczynski, Slawomir; Zamorski, Ryszard

    2009-06-01

    Glaciolimnic deposits sampled from three sedimentation reservoirs located on the Sępopolska Plain (northeastern Poland) were investigated. The material under study was deposited in the recession phase of the Pomeranian phase of Vistula (Weichselian) glaciation. The clay fraction was separated by centrifugation after preparation according to Jackson. Mineralogical investigations were done by X-ray diffraction. The analysed deposits had a similar complex composition of clay minerals. The main components were illites mixed with the illite/smectite mineral with percentages < 10 % S. Another part were minerals of the illite/smectite type which had differentiated content of smectite layers (mainly 80-90 % S). There were also chlorite minerals, probably as mixed layer minerals of the chlorite/vermiculite type or HIV with a negligible amount of chlorite layers. The results indicated that all the deposits were of the same age as well as similar deposited material and the samples are different from typical Pomeranian till and typical limnic material of the same age. Small differences observed among the deposits of specific sedimentation reservoirs were probably the result of later processes.

  14. Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks

    NASA Astrophysics Data System (ADS)

    Sun, Vivian Z.; Milliken, Ralph E.

    2015-12-01

    Clay minerals on Mars have commonly been interpreted as the remnants of pervasive water-rock interaction during the Noachian period (>3.7 Ga). This history has been partly inferred by observations of clays in central peaks of impact craters, which often are presumed uplifted from depth. However, combined mineralogical and morphological analyses of individual craters have shown that some central peak clays may represent post-impact, possibly authigenic processes. Here we present a global survey of 633 central peaks to assess their hydrous minerals and the prevalence of uplifted, detrital, and authigenic clays. Central peak regions are examined using high-resolution Compact Reconnaissance Imaging Spectrometer for Mars and High Resolution Imaging Science Experiment data to identify hydrous minerals and place their detections in a stratigraphic and geologic context. We find that many occurrences of Fe/Mg clays and hydrated silica are associated with potential impact melt deposits. Over 35% of central peak clays are not associated with uplifted rocks; thus, caution must be used when inferring deeper crustal compositions from surface mineralogy of central peaks. Uplifted clay-bearing rocks suggest the Martian crust hosts clays to depths of at least 7 km. We also observe evidence for increasing chloritization with depth, implying the presence of fluids in the upper portions of the crust. Our observations are consistent with widespread Noachian/Early Hesperian clay formation, but a number of central peak clays are also suggestive of clay formation during the Amazonian. These results broadly support current paradigms of Mars' aqueous history while adding insight to global crustal and diagenetic processes associated with clay mineral formation and stability.

  15. Investigating the Thermal Limit of Clay Minerals for Applications in Nuclear Waste Repository Design

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Miller, A. W.; Kruichak, J.; Mills, M.; Tellez, H.; Wang, Y.

    2013-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of clays (illite, mixed layer illite/smectite, montmorillonite, and palygorskite) were heated for a range of temperatures between 100-500 °C. These samples were characterized by a variety of methods, including nitrogen adsorption, x-ray diffraction, thermogravimetric analysis, barium chloride exchange for cation exchange capacity (CEC), and iodide sorption. The nitrogen porosimetry shows that for all the clays, thermally-induced changes in BET surface area are dominated by collapse/creation of the microporosity, i.e. pore diameters < 17 angstroms. Changes in micro porosity (relative to no heat treatment) are most significant for heat treatments 300 °C and above. Alterations are also seen in the chemical properties (CEC, XRD, iodide sorption) of clays, and like pore size distribution changes, are most significant above 300 °C. Overall, the results imply that changes seen in pores size distribution

  16. Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment

    NASA Astrophysics Data System (ADS)

    Chen, Yueh-Min; Gao, Jin-bo; Yuan, Yong-Qiang; Ma, Jun; Yu, Shen

    2016-08-01

    Clay minerals in surface sediments can affect the adsorption of heavy metals. However, few historical studies have focused on the influence of fine clay mineral characteristics on metal sorption. Since the reactions between heavy metals and fine clay minerals in sediments remain obscure, this study investigates the influence of fine clay mineral characteristics on metal sorption in a typical urbanizing small watershed. Clay minerals, including nanoparticles with various size fractions ranging from 1000 to 2000 (clay), 450-1000 (fine clay), and 220-450 (very fine clay) nm were used to demonstrate their transformation from well crystalline to poorly crystalline. The nanoparticles were collected and evaluated by determination of their surface area, X-ray diffraction, scanning electron microscopy (SEM) and chemical analyses. The relationship between metal content and properties of the surface sediments was also revealed by canonical correlation analysis. With smaller particle sizes, nanoparticles (very fine clay) were observed to be poorly crystalline, possibly indicating few repetitions of unit cells as a result of preferential structural disruption of other crystal planes caused by pressure-induced phase transition in the fine-size fractions. The first canonical matrix (M) variables of metal contents can be predicted by both surface area and pore volume, followed by kaolinite and illite contents. On the other hand, the category of metal, i.e., Cu, Cr, Zn, or Pb, was significantly correlated with the first 'M' canonical variables. The data obtained in the present study are of fundamental significance in advancing our understanding of the reactions between heavy metals and fine clay minerals in the terrestrial ecosystem.

  17. DE-FG02-06ER15364: Final Technical Report Nanoscale Reactivity of Clays, Clay Analogues (Micas), and Clay Minerals

    SciTech Connect

    Nagy, Kathryn L.

    2008-07-03

    The project objectives were to determine the nanoscale to molecular scale structure of the interface between muscovite mica and aqueous solutions containing various sorbates and to explore systematics that control the incorporation of inorganic and organic chemical components during aging of nanoparticles of iron-oxides and aluminosilicate clays. The basal surface of phyllosilicates is a primary sorbent of environmental contaminants, natural organic matter, and nutrients. Micas are also superb atomically-flat substrates used in materials science and surface physics applications. We applied X-ray scattering techniques using high brilliance synchrotron radiation to investigate molecular-scale details of mica’s interface structure in solutions containing common and toxic cations, anions, and natural organic molecules. Nanoparticles are ubiquitous in the environment and have a high capacity for sorbing contaminants through the combined effects of their high surface areas and pH-dependent surface charge. Aging of nanoparticles from metastable to stable phases can be inhibited by sorption of nonstructural components, but exact mechanisms are unknown. We synthesized Fe-oxides and aluminosilicate clay minerals from aqueous solutions in the presence of selected anions, and organic molecules, and quantified the uptake of these additives during aging and some implications for nanoparticle formation.

  18. Significance of saturation index of certain clay minerals in shallow coastal groundwater, in and around Kalpakkam, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Chidambaram, S.; Karmegam, U.; Sasidhar, P.; Prasanna, M. V.; Manivannan, R.; Arunachalam, S.; Manikandan, S.; Anandhan, P.

    2011-10-01

    The saturation index of clay minerals like Gibbsite, Kaolinite, Illite, Montmorillonite and Chlorite in groundwater were studied in detail by collecting 29 groundwater samples from the shallow coastal aquifers in and around Kalpakkam. The samples collected were analysed for major cations, anions and trace elements by using standard procedures. The study reveals that pH has a significant role in the saturation index (SI) of minerals. It also shows that the relationship of electrical conductivity to the SI of these minerals is not significant than that of the ionic strength, log pCO2 values, and alumina silica ratio have significant relation to the SI of these clay minerals. The SI of these clay minerals was spatially distributed to identify the areas of higher SI. Silica has good correlation to SI of Kaolinite, Gibbsite and Montmorillonite and Al has good correlation to SI of all the minerals except to that of Chlorite.

  19. Clay mineral burial diagenesis: A case study from the Calabar flank of the Niger Delta

    NASA Astrophysics Data System (ADS)

    Braide, Sokari P.

    Detailed clay mineralogic and chemical analyses of Tertiary subsurface sediments of the Agbada and Akata Formations, from two wells on the Calabar Flank of the Niger Delta, have been systematically studied with a view to understanding clay mineral burial diagenesis. Five principal clay minerals, smectite, illite, kaolinite, chlorite and various proportions of mixed-layer illite/smectite were identified. Seven major oxides (SiO 2, Al 2O 3, MgO, Fe 2O 3, CaO, Na 2O, K 2O) were analysed for with an atomic absorption spectrophotometer, with a view to ascertain any depth related variations. The geothermal gradient of the two wells (Uruan-1 and Uda-1) was also calculated. The results appear to suggest a transformation from smectite to a mixed-layer illite/smectite (I/S) phase. The transformation first goes to a random I/S phase, and then to ordered I/S and back to random I/S, even though postulated conditions for a complete transformation to illite did exist. It would therefore seem, from this case study, that neither temperature nor the availability of potassium is the principal factor controlling the transformation. Kaolinite and chlorite distribution does not exhibit any systematic trend that could be related to burial diagenesis. These results provoked an extensive literature review on the subject, and key ideas discerned are summarized here. The prognosis? In the author's opinion, we still have a lot to learn about the factors that control the mechanics and reaction extent of clay mineral burial diagenesis.

  20. [Effect of treatments of hydrogen peroxide and sodium dithionite-citrate-bicarbonate on clay minerals of red earth sediments].

    PubMed

    Li, Rong-Biao; Hong, Han-Lie; Yin, Ke; Wang, Chao-Wen; Gao, Wen-Peng; Han, Wen; Wu, Qing-Feng

    2013-04-01

    As classical procedures for pretreatment of soil sediments, hydrogen peroxide (H2O2) and sodium dithionite-citrate-bicarbonate (DCB) treatment methods are very important in removing the organic matter and iron oxides acting as cementing agents in the soils. However, both of these methods have less been focused on the effect on the clay minerals when separating. Here, we report the comparable methods between H2O2 and DCB to reveal their effect on clay minerals in red earth sediments using X-ray diffraction (XRD). The XRD results suggested that mineral particles can be totally decentralized by either H2O2 or DCB method in the soils and high purity clay minerals can be obtained by separating quartz and other impurities from clay minerals effectively. However, the XRD data were distorted by the DCB treatment owning to the cation exchange between Na+ and interlayer cation. On the contrary, the authentic data can be obtained by H2O2 treatment. Therefore, the H2O2 treatment seems to be a more appropriate method to obtain authentic information of clay mineralogy when separating of clay minerals from red earth sediments. PMID:23841441

  1. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    PubMed

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2. PMID:24816462

  2. Origin, Behavior and Texture of Clay Minerals in Mongolian Active Fault of Bogd and Comparison with SAFOD Fault Gouge

    NASA Astrophysics Data System (ADS)

    Wenk, H.; Buatier, M.; Chauvet, A.; Kanitpanyacharoen, W.

    2010-12-01

    Fault gouges are generally considered as the highly deformed zone corresponding to the localization of shear during seismic events. Clays are ubiquitous minerals in fault gouges but the origin is unclear. They can form as a result of break up of inherited phyllosilicates during faulting, or during co- or post- deformation events or even during interseismic creeping. In this study, we aim to characterize the origin and nature of the clay minerals, to observe the microtexture and preferred orientation of clay at various scales in order to understand the behavior of clay mineral in seismic faults. The investigation relied on x-ray powder patterns, SEM, TEM and high energy synchrotron x-ray diffraction. The major clay components are smectite, illite-smectite, illite-mica and kaolinite. Our observations suggest that the protolith and the fault rock of the Bogd and paleo-Bogd faults in Mongolia were highly altered by fluids. The fluid-rock interactions allows clay minerals to form and to precipitate kaolinite and smectite. Thus, newly formed clay minerals are heterogeneously distributed in the fault zone. The decrease of smectite component of the highly deformed samples suggests a dehydration process during deformation, leading to illite precipitation. From synchrotron diffraction images, volume fractions and preferred orientation were analyzed. Our analysis shows that texture strength of constituent clays is very weak ranging from 1.05 to 2.59 m.r.d., which is consistent with similar data from SAFOD fault gouge. The clays minerals of the Bogd fault favors the slip weakening behavior of the fault.

  3. Stable isotope geochemistry of clay minerals from fossil and active hydrothermal systems, southwestern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Marumo, Katsumi; Longstaffe, Fred J.; Matsubaya, Osamu

    1995-06-01

    Miocene submarine to Quaternary terrestrial volcanism in southwestern Hokkaido, Japan, is associated with hydrothermal clay alteration and mineralization, including Kuroko-type deposits at Kagenosawa (14.2 Ma, Cu > Zn, Pb > Au) and Minamishiraoi (12.5 Ma, Ba > Zn, Pb, Cu), vein-style mineralization at Date (5.2 Ma, Au-Ag-Cu-Pb-Zn) and Chitose (3.6 Ma, Au-Ag), and geothermal activity at Noboribetsu (≤1.8 Ma). The δD and δ 18O values of mica (sericite), mica-smectite, chlorite, chlorite-smectite, nacrite, dickite, kaolinite, and smectite were used to deduce the type(s) of hydrothermal fluid at each locality. Calculated compositions for Minamishiraoi and Kagenosawa fluids suggest that seawater was dominant, but some mixing with magmatic water is also indicated, particularly for the polymetallic Kagenosawa deposit. Hydrothermal fluids at Date, Chitose, and the Noboribetsu geothermal area were dominated by meteoric water. Minor involvement of magmatic water during mineralization at Date cannot be ruled out, but evolution of local meteoric water along an evaporation trend and/or an 18O-shift due to hydrothermal rock-meteoric water interaction also could have produced appropriate fluid compositions. The δD and δ 18O values of modern hot-spring waters at Noboribetsu closely parallel fluid compositions calculated for the clay alteration at Date, Chitose, and Noboribetsu. Because relatively poor reproducibility was obtained for the δD values of the swelling clays, additional tests were conducted. Stepwise heating showed that, for some smectitic clays, water evolved between 200 and 300°C had anomalously high δD values because of residual interlayer water. This error can be minimized by sufficiently long preheating (in vacuo) at ≤200°C. In vacuo TG patterns of other smectitic clays suggested gradual loss of hydroxyl-groups beginning near 200°C, rather than the more typical distinct separation between interlayer water at <200°C and hydroxyl-groups at > 400

  4. Synthesis of ZnO nanoparticles on a clay mineral surface in dimethyl sulfoxide medium.

    PubMed

    Németh, József; Rodríguez-Gattorno, Geonel; Díaz, David; Vázquez-Olmos, América R; Dékány, Imre

    2004-03-30

    Nanocrystalline ZnO particles have been prepared with different methods using zinc cyclohexanebutyrate as precursor in dimethyl sulfoxide (DMSO) medium via alkaline hydrolysis. A series of preparations were carried out in the presence of layered silicates (kaolinite and montmorillonite). It was revealed by different measurement techniques that the presence of the clay minerals has a stabilization influence on the size of the ZnO nanocrystals. UV-vis absorption spectra show a blue shift when the nanoparticles are prepared in the presence of the clay minerals. The average particle diameters calculated from the Brus equation ranged from 2.6 to 13.0 nm. The UV-vis spectra of the synthesized nanoparticles did not show any red shift after 2-3 days, demonstrating that stable ZnO nanocrystals are present in the dispersions. The presence of the ZnO nanoparticles was also proven by fluorescence measurements. A number of the nanoparticles are incorporated into the interlamellar space of the clays, and an intercalated structure is formed as proven by X-ray diffraction (XRD) measurements. The size of the nanoparticles in the interlamellar space is in the range of 1-2 nm according to the XRD patterns. Transmission electron microscopy and high-resolution transmission electron microscopy investigations were applied to determine directly the particle size and the size distribution of the nanoparticles. PMID:15835163

  5. Relationships between magnetic parameters, chemical composition and clay minerals of topsoils near Coimbra, central Portugal

    NASA Astrophysics Data System (ADS)

    Lourenço, A. M.; Rocha, F.; Gomes, C. R.

    2012-08-01

    Magnetic measurements, mineralogical and geochemical studies were carried out on surface soil samples in order to find possible relationships and to obtain environmental implications. The samples were taken over a square grid (500 × 500 m) near the city of Coimbra, in central Portugal. Mass specific magnetic susceptibility ranges between 12.50 and 710.11 × 10-8 m3 kg-1 and isothermal magnetic remanence at 1 tesla values range between 253 and 18 174 × 10-3 Am-1. Chemical analysis by atomic absorption spectrometry shows that the concentration of various toxic elements was higher than the mean background values for world soils. Higher values of susceptibility and toxic elements content were reported near roads and rivers. Urban pollution and road traffic emission seem to be the main influence for these values. A semi-quantitative X-ray diffraction study has been carried out on a representative set of subsamples, using peak areas. Illite (average 52%), kaolinite (average 55%), chlorite (average 6%) and irregular illite-smectite mixed-layers (average 9%) are the major clay minerals groups identified. Mineral composition of total fraction confirms the presence of magnetite/maghemite. The clay minerals results point to a contrast in the behavior of the main clay minerals: illite, chlorite, and kaolinite (also, smectite in some samples), which are generally in agreement with the magnetic and geochemical data. The results showed that magnetic measurements are a sensitive, fast, inexpensive and robust method, which can be advantageously applied for studying soils affected by urban and road pollution.

  6. Effect of Several Clay Minerals and Humic Acid on the Survival of Klebsiella aerogenes Exposed to Ultraviolet Irradiation1

    PubMed Central

    Bitton, Gabriel; Henis, Y.; Lahav, N.

    1972-01-01

    The effect of various clay minerals and humic acid on the survival of Klebsiella aerogenes exposed to ultraviolet (UV) irradiation was investigated. A protective effect was observed and found to depend on the specific light absorption and light scattering properties of the clay minerals and the humic acid used. The higher the specific absorption, the better was the survival of K. aerogenes after UV irradiation. Bacterial survival was lower in clays saturated with divalent cations (Ca, Zn) than in those homoionic to monovalent cations (K). PMID:5031559

  7. Mineral contributions to atrazine and alachlor sorption in soil mixtures of variable organic carbon and clay content

    NASA Astrophysics Data System (ADS)

    Grundl, Tim; Small, Greg

    1993-09-01

    A sediment mixing approach was taken to systematically vary the organic carbon (oc) and clay content (cm) of a suite of organic-poor, clay-rich sediments. Organic carbon content ranged from 3.2% to 0.4% and clay content ranged from 24% to 51%. Atrazine and alachlor were shown to sorb to both natural organic carbon and clay minerals. Partition coefficients to natural organic carbon ( Koc) were found to be 217 and 412 L/kg organic carbon for atrazine and alachlor, respectively. Partition coefficients to the clay fraction were found to be 3.5 and 4.9 L/kg clay for atrazine and alachlor, respectively. When expressed in terms of surface area, the partition coefficients to clay for atrazine and alachlor were 1.80·10 -5 and 2.51·10 -5 L/m 2 clay, respectively. Critical cm/oc ratios at which mineral phase sorption accounts for 50% of the total are defined. Implications for the modelling of herbicide movement in the subsurface if mineral phase sorption is ignored is discussed.

  8. Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite.

    PubMed

    Hamdi, Noureddine; Srasra, Ezzeddine

    2012-01-01

    Phosphate ions are usually considered to be responsible for the algal bloom in receiving water bodies and aesthetic problems in water. From the environmental point of view, the management of such contaminant and valuable resource is very important. The present work deals with the removal of phosphate ions from aqueous solutions using kaolinitic and smectic clay minerals and synthetic zeolite as adsorbent. The pH effect and adsorption kinetic were studied. It was found that phosphate could be efficiently removed at acidic pH (between 4 and 6) and the second order model of kinetics is more adopted for all samples. The isotherms of adsorption of phosphate ions by the two clays and the zeolite samples show that the zeolite has the highest rate of uptake (52.9 mg P/g). Equilibrium data were well fitted with Langmuir and Freundlich isotherm. PMID:22894095

  9. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  10. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.

    PubMed

    Tenney, Craig M; Cygan, Randall T

    2014-01-01

    Capture and subsequent geologic storage of CO2 in deep brine reservoirs plays a significant role in plans to reduce atmospheric carbon emission and resulting global climate change. The interaction of CO2 and brine species with mineral surfaces controls the ultimate fate of injected CO2 at the nanoscale via geochemistry, at the pore-scale via capillary trapping, and at the field-scale via relative permeability. We used large-scale molecular dynamics simulations to study the behavior of supercritical CO2 and aqueous fluids on both the hydrophilic and hydrophobic basal surfaces of kaolinite, a common clay mineral. In the presence of a bulk aqueous phase, supercritical CO2 forms a nonwetting droplet above the hydrophilic surface of kaolinite. This CO2 droplet is separated from the mineral surface by distinct layers of water, which prevent the CO2 droplet from interacting directly with the mineral surface. Conversely, both CO2 and H2O molecules interact directly with the hydrophobic surface of kaolinite. In the presence of bulk supercritical CO2, nonwetting aqueous droplets interact with the hydrophobic surface of kaolinite via a mixture of adsorbed CO2 and H2O molecules. Because nucleation and precipitation of minerals should depend strongly on the local distribution of CO2, H2O, and ion species, these nanoscale surface interactions are expected to influence long-term mineralization of injected carbon dioxide. PMID:24410258

  11. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  12. Evidence for microbial liberation of structurally-coordinated iron in clay minerals as a nutrient source in the world ocean

    NASA Astrophysics Data System (ADS)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.

    2012-12-01

    Clay minerals are the most abundant materials found at the surface of earth and they are the primary constituents of marine sediments. Iron, a limiting nutrient in many marine settings, is a common constituent of clay minerals. Recent in vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe from the crystal lattice of nontronite, an uncommon and particularly Fe-rich (> 12 wt.%) smectitie. Reduction of structurally-coordinated Fe results in both the liberation of Fe(II) to solution, where it is available for other biotic processes, as well as the transformation of smectite to illite. However, it remains unclear: 1. whether Fe-reducers are able to access structurally coordinated Fe found at low wt.% in common clay minerals; and 2. if naturally occuring populations of Fe-reducers are able to reduce structurally coordinated Fe as are some lab strains. In order to address these questions, we conducted in vitro experiments using a suite of sixteen clay minerals with low (0.8 wt.%) to high (13.9 wt.%) Fe concentrations. Clays were treated with Na-dithionite solution to remove surface-bound Fe, isolating for study Fe sourced from within the clay crystal lattice. Experimental evidence clearly indicates that, under in vitro conditions, Fe(III) bound in common clay minerals is available for reduction by the lab strain Shewanella oneidensis MR-1 as well as by naturally-occuring consortia of Fe-reducers cultured from the San Pedro and Santa Monica Basins. Our findings suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly to biogeochemical cycling of Fe and C.

  13. Clay minerals on Mars: Riotinto mining district (Huelva, Spain) as Earth analogue for acidic alteration pathways

    NASA Astrophysics Data System (ADS)

    Mavris, C.; Cuadros, J.; Bishop, J. L.; Nieto, J. M.; Michalski, J. R.

    2015-12-01

    Combined satellite and in-situ measurements of Mars surface have detected mineral assemblages indicating processes for which Earth analogues exist. Among them, aluminous clay-sulfate assemblages have been observed, which suggest alteration by acidic fluids. The Riotinto mining district (SW Spain) provides an Earth analogue site for such Martian processes. The parent rocks belong to an Upper Palaeozoic (Late Famennian-Tournaisian) volcano-sedimentary complex including siliciclastic sediments and mafic and felsic volcanics, all of which underwent hydrothermal alteration. The oxidation of an extensive pyrite-rich orebody provided mild to extreme acidic fluxes that leached the surrounding rocks for over 20 million years. The mineral assemblages are strongly dependent on their acidic alteration intensity. The observed mineralogical parageneses and leaching conditions for our sites at Riotinto are consistent with three alteration sequences: i) Mild: containing a range of clay minerals from vermiculite to kaolinite, with a wide variety of crystal order and mixed-layering; ii) Intermediate: containing smectite to kaolinite with jarosite-group phases; iii) Advanced: containing kaolinite, jarosite-group phases, and iron oxides. Our findings suggest that, even within this general scheme, the specific alteration pathways can be different.

  14. Adsorption of iron cyanide complexes onto clay minerals, manganese oxide, and soil.

    PubMed

    Kang, Dong-Hee; Schwab, A Paul; Johnston, C T; Banks, M Katherine

    2010-09-01

    The adsorption characteristics of an iron cyanide complex, soluble Prussian blue KFe(III)[Fe(II)(CN)(6)], were evaluated for representative soil minerals and soil at pH 3.7, 6.4 and 9.7. Three specimen clay minerals (kaolinite, montmorillonite, and illite), two synthesized manganese oxides (birnessite and cryptomelane), and a Drummer soil from Indiana were used as the adsorbents. Surface protonation of variable charge sites increased with decreasing pH yielding positively charged sites on crystal edges and enhancing the attractive force between minerals and iron cyanide complexes. Anion adsorption on clays often is correlated to the metal content of the adsorbent, and a positive relationship was observed between iron or aluminum content and Prussian blue adsorption. Illite had high extractable iron and adsorbed more ferro-ferricyande anion, while kaolinite and montmorillonite had lower extractable iron and adsorbed less. However, less pH effect was observed on the adsorption of iron cyanide to manganese oxides. This may due to the manganese oxide mediated oxidation of ferrocyanide [Fe(II)(CN)(6)(4-)], to ferricyanide [Fe(III)(CN)(6)(3-)], which has a low affinity for manganese oxides. PMID:20665323

  15. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study. PMID:25474976

  16. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study. PMID:25508755

  17. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    DOE PAGESBeta

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.« less

  18. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    SciTech Connect

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.

  19. Clay minerals in surface sediment of the north Yellow Sea and their implication to provenance and transportation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, An-Chun; Huang, Peng; Xu, Fang-Jian; Zheng, Xu-Feng

    2014-11-01

    The clay minerals in surface sediments of the north Yellow Sea have been identified with X-ray diffraction analysis and scanning electron microscope and energy dispersive X-ray spectrometer analysis to constrain the provenance and sediment transportation system in the area. Illite, with an average abundance of 58%, is the dominant mineral, followed by smectite (20% on average), chlorite (16% on average) and kaolinite (6% on average). The result of the a K-mean clustering analysis for the clay minerals show a close relationship between sedimentary types and clay mineral assemblages: there is more kaolinite and smectite in the muddy area in the western part of the north Yellow Sea and more chlorite in the sandy area in the eastern part. The Huanghe (Yellow River) is considered to provide most of the clay minerals, and in particular, rich kaolinite and smectite to the muddy area, whereas the Yalujiang provides large amounts of illite and chlorite. The spatial distribution characteristics of the clay minerals are closely related with the local circulation system, including the Shandong Coastal Current and Yellow Sea Warm Current. The former transports the outflow of the Huanghe to the north Yellow Sea, whereas the intrusion of the latter in wintertime is responsible for the annular enrichment of smectite in central part, as well as poor classification near Dalian Bay.

  20. Radiation Sensitivity of Natural Organic Matter: Clay Mineral Association Effects in the Callovo-Oxfordian Argillite

    SciTech Connect

    Schäfer, T.; Michel, P; Claret, F; Beetz, T; Wirick, S; Jacobsen, C

    2009-01-01

    Clay-rich low-organic carbon formations (e.g., Callovo-Oxfordian argillite in France and Opalinus Clay in Switzerland) are considered as host rocks for radioactive waste disposal. The clay-organic carbon has a strong impact on the chemical stability of the clays. For this reason, the nature of the clay-organic carbon, the release of hydrophilic organic compounds, namely, humic (HA) and fulvic acids (FA) and the radiation sensitivity of the undisturbed host rock organics was investigated. The clay sample originates from Oxfordian argillite (447 m depth, borehole EST 104). HA and FA were extracted following the standard International Humic Substance Society (IHSS) isolation procedure. Synchrotron based (C-, K-, Ca-, O- and Fe-edge XANES) scanning transmission X-ray microscopy (STXM) and FT-IR microspectroscopy was used to identify under high spatial resolution the distribution of clay-organic matter with different functionality using principal component and cluster analysis. The results show that in this old (Jurassic) geological formation, small parts of the organic inventory (1-5%) keeps the structure/functionality and can be mobilized as hydrophilic humic substance type material (HA and FA). Target spectra analysis shows best correlation for isolated humic acids with organics found in smectite-rich regions, whereas the extractable FA has better spectral similarities with the illite mixed layer minerals (MLM) regions. After radiation of 1.7 GGy under helium atmosphere the same rock sample area was investigated for radiation damage. Radiation damage in the smectite and illite-MLM associated organic matter is comparably low with 20-30% total oxygen mass loss and 13-18% total carbon mass loss. A critical dose dc of 2.5 GGy and a optical density after infinite radiation (OD?) of 54% was calculated under room temperature conditions. C(1s) XANES show a clear increase in Cdouble bond; length as m-dashC bonds especially in the illite-MLM associated organics. This results

  1. Atomic-level studies of the depletion in reactive sites during clay mineral dissolution

    SciTech Connect

    Sanders, Rebecca L.; Washton, Nancy M.; Mueller, Karl T.

    2012-06-20

    Environmental weathering is typically viewed as a macroscopic phenomenon that is based on a number of competing atomic- or molecular-level processes. One important process is the release of metal or metalloid elements into solution at the water-rock interface. To both explain and predict environmental weathering, the atomic-level “reactive sites” on the surfaces of minerals must be characterized and quantified. Whether these sites are atomic in nature, represented by a chemical bond, or comprise a more complex assemblage of covalently or ionically linked atoms or molecules, the kinetic rate of atomic release (dissolution) depends on the available reactive surface. For one important class of materials, clay minerals, their reactive surface areas are a challenge to quantify as it is well recognized that there are two distinct types of surfaces: edge sites and basal planes1-3. Clay dissolution rates continuously decrease over time as reactive edge sites are preferentially depleted4. Changes in reactive surface area and the difficulties in quantifying this elusive variable have often been cited as one key reason for the complexity in developing accurate rate equations3,5,6. In this work, we demonstrate a solid-state nuclear magnetic resonance (SSNMR) method for counting the number of reactive surface sites on a defined quantity of a clay mineral. Using this SSNMR proxy7-9, changes in reactive surface area were monitored for a series of batch dissolution experiments of low-defect kaolinite KGa-1b at 21 ºC and pH 3 over the course of 80 days. While no changes (within error) were observed for specific surface area (as determined from BET gas isotherm data), the SSNMR proxy revealed decreases in the number of reactive surface sites per gram of kaolinite as a function of dissolution time. This observation can be tied to a concomitant decrease in the rates of release of Si and Al into solution. These results further highlight the need to account for changes in reactive

  2. Clay mineral content of continental shelf and river sediments, southern California

    USGS Publications Warehouse

    Hein, James R.; Dowling, Jennifer S.

    2001-01-01

    This report contains data on the clay mineral content of 250 shelf surface-sediment samples from the California Continental Borderland (Tables 1, 2; Figures 1-7), 79 samples with depth in cores from Santa Monica Bay (Table 3; see Table 1 for surface sediment data for those same cores and for core locations), 24 suspended and 13 bottom sediment samples from rivers draining Southern California (Table 4), and six rock samples or composite rock samples from the Palos Verdes Headland (Table 4). This report is designed as the data repository and these data are discussed in a paper by Hein et al. (2001).

  3. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  4. Clay mineral distributions in and around the Mississippi River watershed and Northern Gulf of Mexico: sources and transport patterns

    NASA Astrophysics Data System (ADS)

    Sionneau, T.; Bout-Roumazeilles, V.; Biscaye, P. E.; Van Vliet-Lanoe, B.; Bory, A.

    2008-09-01

    Maps of the distributions of the four major clay minerals (smectite, illite, kaolinite and chlorite) in and around the Mississippi River drainage basin and in the Northern Gulf of Mexico have been produced using newly acquired data from erodible/alluvial terrestrial sediments and marine surface sediments, as well as from previously published data. East of the Rockies, North America can be divided into four, large, clay-mineral provinces: (1) the north-western Mississippi River watershed (smectite rich), (2) the Great Lakes area and eastern Mississippi River watershed (illite and chlorite rich), (3) the south-eastern United States (kaolinite rich) and (4) the Brazos River and south-western Mississippi River watersheds (illite and kaolinite rich). The clay mineral distributions in surface sediments of the present-day Gulf of Mexico are strongly influenced by three main factors: (1) by relative fluvial contributions: the Mississippi River delivers the bulk of the clay input to the Northern Gulf of Mexico whereas the Apalachicola, Mobile, Brazos and Rio Grande rivers inputs have more local influences; (2) by differential settling of various clay mineral species, which is identified for the first time in Northern Gulf of Mexico sediments; and (3) by oceanic current transport: the Gulf of Mexico surface and subsurface circulation distributes the clay-rich sediments from river mouth sources throughout the Northern Gulf of Mexico.

  5. Clay mineral distributions in the continental shelf sediments between the Ganges mouths and Madras, east coast of India

    NASA Astrophysics Data System (ADS)

    Raman, C. V.; Krishna Rao, G.; Reddy, K. S. N.; Ramesh, M. V.

    1995-12-01

    Clay minerals have been determined in samples of shelf sediments along the east coast of India between the Mahanadi River in the north and Madras in the south. The data have been collated with published clay mineralogy of the east coast shelf sediments, and fluvial and estuarine sediments of the adjacent rivers to evaluate the clay mineral distribution patterns in the shelf visávis clay mineral provenance. Trends in the relative proportions of the clay minerals define three major clay mineral provinces along the shelf from north to south: the Himalayan, Eastern Ghats and Deccan Provinces. The Himalayan Province is characterized by abundant illite followed by chlorite, and the Deccan Province by abundant smectite from the Deccan basalts. The Eastern Ghats Province is mixed, the northern region being dominated by illite and kaolinite and the southern region by smectite and illite. The Eastern Ghats Province is not represented in the clay assemblages from the deep Bay of Bengal, while the other two are. Chlorite is virtually absent in the fluvial sediments of the Peninsular rivers and its presence in the adjacent shelf sediments is attributed to three sources: (a) southerly transport of chlorite-rich Ganges sediments over the shelf in suspension, (b) advection of the Ganges-derived suspended solids from east to west across the Bay of Bengal, and (c) reworking of Pleistocene and early Holocene sediments in the shelf. The present study suggests that the clay mineralogy of the distal Bengal Fan is controlled by the relative rates of sediment supply from Himalayan and Deccan sources. The chlorite-rich sediments in the distal fan are derived primarily from the former source and the smectite-rich sediments primarily from the latter source.

  6. Paleoenvironmental Implications of Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas F.; Blake, David F.

    2014-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx. 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx. 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at approx. 10A with a slight inflexion at approx. 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and

  7. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas; Blake, David; Bish, David L.; Vaniman, David; Ming, Douglas W.; Morris, Richard V.; Chipera, Steve; Rampe, Elizabeth B.; Farmer, Jack, D.; Treiman, Allan H; Downs, Robert; Morrison, Shaunna; Achilles, Cherie; DesMarais, David J.; Crisp, Joy A.; Sarrazin, Philippe; Morookian, John Michael; Grotzinger. John P.

    2013-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating

  8. Clay mineral weathering and contaminant dynamics in a casutic aqueous sytem II. Mineral transformation and microscale partitioning

    SciTech Connect

    Choi, Sunkyung; Crosson, Garry S.; Mueller, Karl T.; seraphin, supapan; Chorover, Jon

    2005-04-08

    Microscopic and spectroscopic studies were conducted to assess mineral transformation processes in aqueous suspensions of illite (Il), vermiculite (Vm) and montmorillonite (Mt) that were subjected to weathering in a simulated high-level radioactive tank waste leachate (0.05 m AlT, 2 m Na*, 1 m NO3 *, pH *14, Cs* and Sr2* present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10*5 to 10* mol kg*. Incongruent clay dissolution resulted in an accumulation of secondary aluminosilicate precipitates identified as nitrate-sodalite, nitrate-cancrinite and zeolite X, by molecular spectroscopy and electron microscopy (XRD, IR, NMR, SEM-EDS and TEM-EDS). Contaminant fate was dependent on competing uptake to parent clays and weathering products. TEM-EDS results indicated that high Il affinity for Cs was due to adsorption at frayed edge sites. The Il system also comprised Sr-rich aluminous precipitates after 369 d reaction time. In Mt systems, Cs and Sr were co-precipitated into increasingly recalcitrant spheroidal precipitates over the course of the experiment, whereas contaminant association with montmorillonite platelets was less prevalent. In contrast, Cs and Sr were found in association with weathered Vm particles despite the formation of spheroidal aluminosilicate precipitates that were comparable to those formed from Mt dissolution.

  9. Improved dewatering behavior of clay minerals dispersions via interfacial chemistry and particle interactions optimization.

    PubMed

    McFarlane, Angus; Bremmell, Kristen; Addai-Mensah, Jonas

    2006-01-01

    Orthokinetic flocculation of clay dispersions at pH 7.5 and 22 degrees C has been investigated to determine the influence of interfacial chemistry and shear on dewatering and particle interactions behavior. Modification of pulp chemistry and behavior was achieved by using kaolinite and Na-exchanged (swelling) smectite clay minerals, divalent metal ions (Ca(II), Mn(II)) as coagulants and anionic polyacrylamide copolymer (PAM A) and non-ionic polyacrylamide homopolymer (PAM N) as flocculants. The pivotal role of shear, provided by a two-blade paddle impeller, was probed as a function of agitation rate (100-500 rpm) and time (15/60 s). Particle zeta potential and adsorption isotherms were measured to quantify the interfacial chemistry, whilst rheology and cryogenic SEM were used to investigate particle interactions and floc structure and aggregate network, respectively. Osmotic swelling, accompanied by the formation of "honeycomb" particle network structure and high yield stress, was produced by the Na-exchanged smectite, but not kaolinite, dispersions. Dispersion of the clay particles in 0.05 M Ca(II) or Mn(II) solution led to a marked reduction in particle zeta potential, complete suppression of swelling, honeycomb network structure collapse and a concomitant reduction in shear yield stress of smectite pulps. Optimum conditions for improved, orthokinetic flocculation performance of negatively charged clay particles, reflecting faster settling flocs comprised (i) coagulation, (ii) moderate agitation rate, (iii) shorter agitation time, and (iv) anionic rather than non-ionic PAM. The optimum dewatering rates were significantly higher than those produced by standard, manual-mixing flocculation techniques (plunging and cylinder inversion) commonly used in industry for flocculant trials. The optimum flocculation conditions did not, however, have a significant impact on the final sediment solid content of 20-22 wt%. Further application of shear to pre-sedimented pulps

  10. Clay minerals as indicators for depositional environment in the south Hallettsville Field, Lavaca County, Texas

    SciTech Connect

    Freed, R.L.

    1980-01-01

    The South Hallettsville Field, Lavaca County, Texas, produces gas and condensate from Lower Wilcox sandstones and shales which have been interpreted as either channel turbidite deposits in outer-shelf to slope locations or as delta to pro-delta sands and muds. Thirteen core samples were analyzed by X-ray diffraction methods to determine whether a semiquantitative estimate of clay mineral content would aid in determining the depositional environment. Discrete illite, kaolinite, and chlorite are of particular interest because the presence of these minerals is interpreted as being due to original deposition. If a turbidity-type event occurred, the weight percents of nondiagenetic clays in this sequence should: (1) decrease significantly as the boundary is crossed between the shale and the overlying sandstone; and (2) gradually increase in progressively shallower samples within the sandstone. However, the weight percents for kaolinite and chlorite do not vary significantly; the illite content gradually decreases with shallower depths. This sequence is more compatible with a deltaic environment of deposition. 10 references.

  11. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste.

    PubMed

    Taghipour, Marzieh; Jalali, Mohsen

    2015-10-30

    This study was conducted to investigate the effect of time, clay minerals and nanoparticles (NPs) on chromium (Cr) fractionation in a soil contaminated with leather factory waste (LFW). Soil was mixed with LFW, then, the contaminated soils were treated with clay minerals (bentonite and zeolite) and nanoparticles (MgO, TiO2 and ZnO) at 5% and 1%, respectively. The samples were incubated for 15-180 days at 25 °C and constant moisture. After incubation, Cr in control and treated soils was fractionated by the sequential extraction procedure. The distribution of various Cr fractions in control soil indicated that the greatest amounts of Cr were found in the residual fraction (RES) followed by the carbonate (CAR), organic matter (OM) and exchangeable (EXC) fractions. The addition of LFW in soils increased Cr concentration in all fractions. The higher proportion of EXC fraction in the soil treated with LFW indicates its higher potential of leaching and runoff transport. In all treated soils, the RES fraction was increased, while EXC and OM fractions were decreased during incubation. The results indicated that NPs are effective adsorbent for the removal of Cr ions from LFW treated soil, and they could be useful in reducing their environment risk. PMID:25956643

  12. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    PubMed

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds. PMID:26531715

  13. Effects of heavy metals on the electrokinetic properties of bacteria, yeast, and clay minerals

    SciTech Connect

    Collins, Y.E.

    1987-01-01

    The electrokinetic patterns of four bacteria (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae, Canida albicans), and two clay minerals (montmorillonite, kaolinite) in the presence of the chloride salts of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) and of Na and Mg were determined by microelectrophoresis. The cells and clays were net negatively charged at pH values above their isoelectric point (pI) in solutions of Na, Mg, Hg, and Pb with an ionic strength (..mu..) of 3 x 10/sup -4/. However, at pH values above pH 5.0, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn. The charge of the bacteria and S. cerevisiae also reversed in solution of Ni and Cu with a ..mu.. > 3 x 10/sup -4/, whereas there was no reversal in solutions with a ..mu.. < 3 x 10/sup -4/. The clays became net positively charged when the ..mu.. of Cu was > 3 x 10/sup -4/ and that of Ni was > 1.5 x 10/sup -4/. The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (..mu.. = 3 x 10/sup -4/). The pI of the cells in the presence of some heavy metals, especially Ni and Cr, was at higher pH values than in the presence of Na and Mg.

  14. Stable isotope geochemistry of clay minerals from fossil and active hydrothermal systems, southwestern Hokkaido, Japan

    SciTech Connect

    Marumo, Katsumi; Longstaffe, F.J.; Matsubaya, Osamu

    1995-06-01

    Miocene submarine to Quaternary terrestrial volcanism in southwestern Hokkaido, Japan, is associated with hydrothermal clay alteration and mineralization, including Kuroko-type deposits at Kagenosawa (14.2 Ma, Cu > Zn, Pb > Au) and Minamishiraoi (12.5 Ma, Ba > Zn, Pb, Cu), vein-style at Noboribetsu ({le} 1.8 Ma). The {delta}D and {delta}{sup 18}O values of mica (sericite), mica-smectite, chlorite, chlorite-smectite, nacrite, dickite, kaolinite, and smectite were used to deduce the type(s) of hydrothermal fluid at each locality. Calculated compositions for Minamishiraoi and Kagenosawa fluids suggest that seawater was dominant, but some mixing with magmatic water is also indicated, particularly for the polymetallic Kagenosawa deposit. Hydrothermal fluids at Date, Chitose, and the Noboribetsu geothermal area were dominated by meteoric water. The {delta}D and {delta}{sup 18}O values of modern hot-spring waters at Noboribetsu closely parallel fluid compositions calculated for the clay alteration at Date, Chitose, and Noboribetsu. In vacuo TG patterns of other smectitic clays suggested gradual loss of hydroxyl-groups beginning near 200{degrees}C, rather than the more typical distinct separation between interlayer water at <200{degrees}C and hydroxyl-groups at >400{degrees}C. This behaviour constrains the maximum temperature that can be used for in vacuo preheating. Furthermore, shifts to lower {delta}D values (by as much as 19{per_thousand}) were obtained when this smectite was dispersed in low-D water for three weeks, perhaps indicating isotopic exchange. However, with appropriate care, {delta}D values obtained by conventional procedures (including preheating to {le}200{degrees}C) normally reproduced natural compositions of the smectitic clays with acceptable accuracy and precision.

  15. Spectral stratigraphy and clay minerals analysis in parts of Hellas Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Das, I. C.; Joseph, J.; Subramanian, S. K.; Dadhwal, V. K.

    2014-11-01

    Absorption features that occur in reflectance spectra are a sensitive indicator of mineralogy and chemical composition for a wide variety of materials. The investigation of the mineralogy and chemical composition of surfaces give information about the origin and evolution of planetary bodies. On Mars, the processes of formation of different types of clay minerals result from different types of wet conditions viz. hydrothermalism, subsurface/groundwater weathering, surface alteration etc. The image analyzed in the present study was frt000947f- 164-trr3 (-27.87N-65.06E). Through the spectral stratigraphic characterization along a crater wall, eight (8) different layers were identified considering the spectral variability and their position. In Hellas Planitia, the alteration minerals identified by CRISM based on distinctive absorptions from 0.4 to3.9 μm include Al-rich smectite, montmorillonite, phyllosilicate mineral at 2.2 μm and 2.35 μm, including strong absorption feature noticed at 1.9 μm. We conclude that the layers exposed in the crater wall help characterize the compositional stratigraphy for confirming the presence of hydrated minerals in this region as an outcome of geohydrological weathering process.

  16. Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA

    NASA Astrophysics Data System (ADS)

    Haines, Samuel H.; van der Pluijm, Ben A.

    2012-10-01

    Neoformed minerals in shallow fault rocks are increasingly recognized as key to the behavior of faults in the elasto-frictional regime, but neither the conditions nor the processes which wall-rock is transformed into clay minerals are well understood. Yet, understanding of these mineral transformations is required to predict the mechanical and seismogenic behavior of faults. We therefore present a systematic study of clay gouge mineralogy from 30 outcrops of 17 low-angle normal faults (LANF's) in the American Cordillera to demonstrate the range and type of clay transformations in natural fault gouges. The sampled faults juxtapose a wide and representative range of wall rock types, including sedimentary, metamorphic and igneous rocks under shallow-crustal conditions. Clay mineral transformations were observed in all but one of 28 faults; one fault contains only mechanically derived clay-rich gouge, which formed entirely by cataclasis. Clay mineral transformations observed in gouges show four general patterns: 1) growth of authigenic 1Md illite, either by transformation of fragmental 2M1 illite or muscovite, or growth after the dissolution of K-feldspar. Illitization of fragmental illite-smectite is observed in LANF gouges, but is less common than reported from faults with sedimentary wall rocks; 2) 'retrograde diagenesis' of an early mechanically derived chlorite-rich gouge to authigenic chlorite-smectite and saponite (Mg-rich tri-octahedral smectite); 3) reaction of mechanically derived chlorite-rich gouges with Mg-rich fluids at low temperatures (50-150 °C) to produce localized lenses of one of two assemblages: sepiolite + saponite + talc + lizardite or palygorskite +/- chlorite +/- quartz; and 4) growth of authigenic di-octahedral smectite from alteration of acidic volcanic wall rocks. These transformation groups are consistent with patterns observed in fault rocks elsewhere. The main controls for the type of neoformed clay in gouge appear to be wall

  17. Spatial distribution of clay minerals in agrochernozems of erosional and denudational plains in the Stavropol region

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Godunova, E. I.; Shkabarda, S. N.; Samsonova, A. A.; Malueva, T. I.

    2012-09-01

    The distribution pattern of the fine fractions (<1.0 and 1-5 μm) and the mineralogical composition of the agrochernozems formed on the erosional-denudational plains of the Stavropol region have been studied. Erosion and denudation caused the redistribution of the fine material within the catena with its maximal accumulation on the lowermost part of the slope. The same processes favored the formation of surface deposits slightly differing in the composition of the principal mineral phases, i.e., complex disordered mixedlayered micas-smectites with varying combinations of micaceous and smectite layers in crystallites and di- and trioctahedral hydromicas. Imperfect kaolinite and magnesium-ferric chlorite are accompanying minerals. An increase in the amount of mixed-layered minerals with smectite layer is observed down the profile. In addition to the mentioned minerals, the individual smectite and clinoptilolite, which are components of Tertiary deposits, are identified in the lower parts of the agrochernozem profiles. The fine-silt fractions consist of (in decreasing order) di- and tri-octahedral micas, quartz, feldspars, plagioclase, and an admixture of phyllosilicates (kaolinite, chlorite, and mixed-layered chlorite-smectites). The maximal amount of the fine fraction, as well as the maximal amount of mica in it, is registered in the soils in the lower part of the slope. The phyllosilicates are decomposed in this fraction in the upper horizons. The seven-year-long application of mineral fertilizers intensified the peptization of the soil mass in the arable horizons, which increased the content of clay particles in them. A more contrasting distribution of the mixed-layered formations in the profiles, a considerable decrease in their reflection intensities, an increase in the structural disorder of the minerals, and a certain increase in the content of the fine-dispersed quartz are observed.

  18. Microorganism-induced weathering of clay minerals in a hydromorphic soil

    NASA Astrophysics Data System (ADS)

    Hong, Hanlie; Fang, Qian; Cheng, Liuling; Wang, Chaowen; Churchman, Gordon Jock

    2016-07-01

    In order to improve the understanding of factors influencing weathering in hydromorphic soils, the clay mineral and chemical compositions, iron (hydr)oxides, organic compounds, and Sr and Nd isotopic compositions, of hydromorphic soils on the banks of the Liangzi Lake, Hubei province, south China, were investigated. The B horizon in the lower profile exhibits a distinct net-like pattern, with abundant short white veins within the red-brown matrix. Their various 87Sr/86Sr and 143Nd/144Nd isotopic compositions showed only small variations of 0.7270-0.7235 and 0.51200-0.51204, respectively, consistent with the composition of Yangtze River sediments, indicating that the soils were all derived from alluvium from the catchment. The white veins contained notably more SiO2, Al2O3, TiO2, and mobile elements relative to the red-brown matrix, while they both showed similar values for the chemical index of alteration of 86.7 and 87.1, respectively, and displayed similar degrees of weathering. The clay minerals in A, AE, and E horizons of the soil profile were illite, kaolinite, and mixed-layer illite-smectite. These same three clay minerals comprised the white net-like veins in the soil B horizon, whereas only illite and kaolinite were observed in the red-brown matrix. Iron (hydr)oxides in A, AE, and E horizons of the soil profile were hematite and goethite, whereas in the red-brown matrix of the B horizon they were hematite, goethite, and ferrihydrite. Different organic compounds were observed for the white vein and the red-brown matrix in the soil B horizon: an 18:2 fatty acid biomarker for fungi in the net-like vein, but not in the red-brown matrix. Compared with the red-brown matrix, the white net-like vein also clearly contained more mono-unsaturated fatty acids, which are sometimes associated with bacteria that have the capacity to reduce Fe(III). Thus, migration of iron and the formation of the net-like veins involved the participation of biota during the hydromorphic

  19. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    PubMed

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils. PMID:24837340

  20. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  1. Terrestrial Analogs for Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H; Morris, Richard V.; Bristow, Thomas; Ming, Douglas W.; Achillies, Cherie; Bish, David L.; Blake, David; Vaniman, David; Chipera, Steve

    2013-01-01

    the last three varieties may be contemporaneous. One sample shows agate (alpha- quartz) that was precipitated between the episodes of deposition of the fine-grained and coarse-grained 'griffithite.' 'Griffithite' is not unique as a possible terrestrial analog - some clay minerals from the Doushantou formation, China, have similar 02L diffraction bands, and many basalts contain smectites in vesicles and as replacements after olivine. Similar trioctahedral smectites occur also in the nakhlite martian meteorites - as veinlets and replacements of olivine. By understanding the formation of these terrestrial clays, we hope to constrain the nature and mechanism of formation of the Sheepbed clay mineral.

  2. First-principles study of cesium adsorption to weathered micaceous clay minerals

    NASA Astrophysics Data System (ADS)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  3. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    PubMed

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota. PMID:26296415

  4. Interactions Between Chlorinated Waste Solvents and Clay Minerals in Low Permeability Subsurface Layers

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Otero-Diaz, M.; Demond, A. H.

    2014-12-01

    Waste organic contaminants stored in low permeability subsurface layers serve as long-term sources for dissolved phase contaminant plumes. These layers may have a different mineralogical make up than the surrounding geologic media; specifically, they may be characterized by a high clay content. Although these layers are often considered inert, interactions may occur between the clay minerals and the waste liquids that may influence transport. Measurements of the basal spacing of Na-montmorillonite in contact with pure chlorinated organic liquids such as trichloroethylene (TCE) showed that it is similar to that with water; however, its basal spacing in contact with waste chlorinated liquids was reduced, leading to cracking. In fact, the basal spacing in contact with the waste chlorinated liquids was closer to that in contact with air than in contact with water. The observation that contact with pure organic liquids did not cause cracking, but contact with chlorinated wastes obtained from the field did, suggests that other components of the waste are critical to the basal spacing reduction process. Screening experiments indicated that the presence of a binary mixture of surfactants, a nonionic and an anionic surfactant, in the chlorinated solvent were necessary to cause the cracking at the same rate and magnitude as the chlorinated wastes obtained from the field. Fourier transform infrared (FT-IR) spectroscopy measurements suggest that the mixture alters the adsorbed water OH-bending band, implying a displacement of adsorbed water. Coupling these results with sorption and x-ray diffraction (XRD) measurements, a hypothesis of component conformation in the clay interlayer space that leads to cracking can be constructed.

  5. Mineralogic and isotopic constraints on impact related clay mineral alteration, in the Woodleigh impact structure, Western Australia

    NASA Astrophysics Data System (ADS)

    Uysal, I. T.; Golding, S. D.; Mory, A. J.; Glikson, A. Y.

    2003-04-01

    Clay mineral fractions from one of the largest Phanerozoic impact structures, the Woodleigh impact structure were investigated by XRD, electron microscopy and K-Ar and stable isotopic studies. Samples were collected from the central uplifted Precambrian basement granitoid, conglomeratic rocks derived from reworked impact rocks, and from the Ordovician-Devonian sandstones located ˜30 km west of the central uplift. There are remarkable lateral and vertical variations in authigenic clay mineral compositions and illite crystallinity (IC) values (Kübler index). Clay minerals from shocked granitoid basement rocks are mainly smectite-rich (>75%) mixed-layer illite-smectite with some discrete illite formed as an alteration-product (replacement) of biotite. Clay minerals in the conglomeratic rocks consist of mainly illite and Fe-rich chlorite, and in the lower part of the section, chlorite-rich (>50%) mixed-layer chlorite-smectite. Smectite in the oxidised upper part of the conglomeratic section is probably a weathering- product. Clay minerals from the Ordovician-Devonian sandstones further away from the central part of the impact structure include illite, less chlorite, and in the Devonian strata smectite. IC values of the <2 mm grain-size fraction in the conglomeratic rocks range from 0.51 to 0.56 ^oΔ 2θ in the upper part and from 0.75 to 0.82 ^oΔ 2θ in the lower part of the section. Illites from the Ordovician-Devonian sandstones show significantly higher IC values ranging from 0.75 to 1.45 ^oΔ 2θ. Results of the clay mineralogy suggest that variations of clay mineral compositions and IC values are related to the changes in rock lithology and the variable effects of impact-induced hydrothermal processes. K-Ar dating of the authigenic illites of the coarser size-fractions (2-1 μm and 0.5-0.2 μm) containing no smectite yield concordant ages around 365 Ma. These K-Ar age data are consistent with previous results (Uysal et al., 2001;EPSL, 192:281--289) and

  6. Sequestered carbon on clay mineral probed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.

    PubMed

    Lombardi, Kátia Cylene; Mangrich, Antonio Salvio; Wypych, Fernando; Rodrigues-Filho, Ubirajara Pereira; Guimarães, José L; Schreiner, Wido H

    2006-03-01

    This paper describes the interaction among soil organic matter components with kaolinite, an important clay mineral present in tropical soils, especially in Brazil. XPS data show that the soil organic matter adsorbed on kaolinite has aromatic and aliphatic structures, with phenolic and/or alcoholic functions and carbonyl carbons (CO) of amide and/or carboxylic groups. The N1s spectrum of the kaolinite shows an asymmetric peak that is assigned to amide and protonated ammines probably from humin. The interaction between them is strong enough to resist chemical oxidative or reductive attack besides loose amide functionalities. EPR data show that reductive treatment reduces some Fe3+ of the kaolinite structure, loosing organic components. A schematic representation of the reduction of structural Fe3+ in the concentrated domains and consequently increased concentration of Fe3+ ions in diluted domains of the spectrum is presented. This reinforces the hypothesis that humin is a stable carbon sink in soils when adsorbed to clays. PMID:16146633

  7. Anisotropy on the collective dynamics of water confined in swelling clay minerals.

    PubMed

    Jiménez-Ruiz, M; Ferrage, E; Delville, A; Michot, L J

    2012-03-15

    Collective excitations of water confined in the interlayer space of swelling clay minerals were studied by means of inelastic neutron scattering. The effect of bidimensional confinement on the dynamics of the interlayer water was investigated by using a synthetic Na-saponite sample with a general formula of Si(7.3)Al(0.7)Mg(6)O(20)(OH)(4)Na(0.7) in a bilayer hydration state. Experimental results reveal two inelastic signals, different from those described for bulk water with a clear anisotropy on the low-energy excitation of the collective dynamics of interlayer water, this difference being stronger in the perpendicular direction. Results obtained for the parallel direction follow the same trend as bulk water, and the effect of the confinement is mainly manifested from the fact that clay interlayer water is more structured than bulk water. Data obtained in the perpendicular direction display a nondispersive behavior below a cutoff wavenumber value, Q(c), indicating a nonpropagative excitation below that value. Molecular dynamics simulations results agree qualitatively with the experimental results. PMID:22324768

  8. Effects of clay minerals on Triassic sandstone reservoir in Shan Can Ning basin and their significance

    SciTech Connect

    Zhu Guo Hua; Qian Kai

    1989-03-01

    Mesozoic sandstone reservoirs in the Shan Can Ning basin contain various clay minerals with different genesis and occurrences, which give rise to different effects on reservoir characteristics. The results of this study suggest that the effects of illite on permeability, electrical resistivity, and oil and water saturation of the Yan 10 sandstone are much more obvious than those due to kaolinite. Authigenic chlorite film covering the peripheral edges of sand grains restrained the coaxial secondary overgrowths of quartz, feldspar, and other grains. This restraint played an effective role in preserving the pores and texture of the Yanchang reservoir rocks. The authigenic chlorite film contains abundant micropores which can adsorb considerable pore water, which is kept in an irreducible state. Thus, given the same water saturation conditions, the water production of Yanchang reservoir rocks rich in authigenic chlorite is significantly lower than that of the rocks poor in chlorite film. Because the occurrence of the pore-lining clay (film type) reduces the size of pore throats, acidization may show notable effects on this type of sandstone reservoir.

  9. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Webster, C. R.; Stern, J. C.; Brunner, A. E.; Atreya, S. K.; Conrad, P. G.; Domagal-Goldman, S.; Eigenbrode, J. L.; Flesch, G. J.; Christensen, L. E.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Malespin, C.; McAdam, A. C.; Ming, D. W.; Navarro-Gonzalez, R.; Niles, P. B.; Owen, T.; Pavlov, A. A.; Steele, A.; Trainer, M. G.; Williford, K. H.; Wray, J. J.; aff14

    2015-01-01

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity’s Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  10. The Imprint of Atmospheric Evolution in the D/H of Hesperian Clay Minerals on Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Webster, C. R.; Stern, J. C.; Brunner, A. E.; Atreya, S. K.; Conrad, P. G.; Domagal-Goldman, S.; Eigenbrode, J. L.; Flesch, G. J.; Christensen, L. E.; Franz, H. B.; Glavin, D. P.; Jones, J. H.; McAdam, A. C.; Pavlov, A. A.; Trainer, M. G.; Williford, K. H.

    2014-01-01

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient Martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550 degrees Centigrade and 950 degrees Centigrade from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (plus or minus 0.2) times the ratio in standard mean ocean water. The D/H ratio in this approximately 3-billion-year-old mudstone, which is half that of the present Martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  11. The differences in clay minerals between the northern and southern Chelungpu fault, Taiwan

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.

    2004-12-01

    In 1999, we obtained a detailed data about motion of fault from the Taiwan Chi-Chi earthquake. The motion represents the high frequency of acceleration and small slip distance in southern part, and low frequency of acceleration and large slip distance in the northern part. Those differences in the fault motion between the southern and northern parts are coincidence with occurrences of deformation textures of rocks which were sampled by drilling of shallow parts (a few hundreds meter) of the fault in 2000. In the southern core, a relatively strong deformation structure is preserved in total, and gouge containing fragments of pseudotachylytes and ultracataclasites is observed at the Chi-Chi- earthquake fault, which indicates that the main deformation mechanisms for the southern part of the fault was brittle. On the other hands, in the northern part, sand layer with much amount of water is found at the Chi-Chi- earthquake fault zone, and no breakage of sand grain is observed, which suggests that the deformation mechanism for northern part is independent particulate flow. The purpose of this study is to reveal the differences in clay minerals between the southern and northern part of the Chi-Chi earthquake fault. And then, we discuss about rock-fluid interaction and frictional heating characterized in seismogenic fault system. We analyzed clay minerals by X-ray diffract meter (XRD) after classification of rock types such as sandstone, alteration of sandstone and mudstone, breccia, and gouge. 1.33 micron meter of grains are obtained. Oriented sample was made. XRD analysis was conducted under following condition; 35kV, 15mA, 1 degree per minute of scan rate, and 0.02 degree of scan step. Range of 2 theta was from 2 degree to 35 degree. At first, air-dried condition of samples was measured. After that, ethylene glycol solvated samples were measured. The result represents that all samples contain smectite, illite, chlorite. No difference in components of clay mineral is

  12. A comparison of heavy mineral assemblage between the loess and the Red Clay sequences on the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Peng, Wenbin; Wang, Zhao; Song, Yougui; Pfaff, Katharina; Luo, Zeng; Nie, Junsheng; Chen, Wenhan

    2016-06-01

    QEMSCAN-based (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) heavy mineral analysis has recently been demonstrated an efficient way to allow a rapid extraction of provenance information from sediments. However, one key issue to correctly obtain a provenance signal using this technique is to clearly separate effects of diagenetic alteration on heavy minerals in sediments, especially in fine-grained loess. Here we compare heavy mineral assemblages of bottom Quaternary loess (L33) and upper Pliocene Red Clay of three sites on the Chinese Loess Plateau (CLP). Two sites (Chaona and Luochuan) with similar modern climate conditions show similar heavy mineral assemblages but contain much less of the unstable heavy mineral amphibole than the drier Xifeng site. This result provides strong evidence supporting that climate-caused diagenesis is an important factor controlling heavy mineral assemblages of fine-grained loess. However, heavy mineral assemblages are similar for loess and paleosol layers deposited after 0.5 Ma on the Chinese Loess Plateau regardless of climate differences, suggesting that time is also a factor controlling heavy mineral assemblages of loess and Red Clay. Our high resolution sampling of the upper Miocene-Pliocene Chaona Red Clay sequence reveals similar heavy mineral compositions with a minor amphibole content, different from the drier Xifeng site results of the same age. This result indicates that the monsoonal climate pattern might have been maintained since the late Miocene. Furthermore, it indicates that the heavy mineral method is promising in tracing provenance for sites northwest of the Xifeng site on the Loess Plateau.

  13. Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo-mineral associations

    NASA Astrophysics Data System (ADS)

    Dümig, Alexander; Häusler, Werner; Steffens, Markus; Kögel-Knabner, Ingrid

    2012-05-01

    Interactions between organic and mineral constituents prolong the residence time of organic matter in soils. However, the structural organization and mechanisms of organic coverage on mineral surfaces as well as their development with time are still unclear. We used clay fractions from a soil chronosequence (15, 75 and 120 years) in the foreland of the retreating Damma glacier (Switzerland) and from mature soils outside the proglacial area (>700 and <3000 years) to elucidate the evolution of organo-mineral associations during initial soil formation. The chemical composition of the clay-bound organic matter (OM) was assessed by solid-state 13C NMR spectroscopy while the quantities of amino acids and neutral sugar monomers were determined after acid hydrolysis. The mineral phase was characterized by X-ray diffraction, oxalate extraction, specific surface area by N2 adsorption (BET approach), and cation exchange capacity at pH 7 (CECpH7). The last two methods were applied before and after H2O2 treatment. We found pronounced shifts in quantity and quality of OM during aging of the clay fractions, especially within the first one hundred years of soil formation. The strongly increasing organic carbon (OC) loading of clay-sized particles resulted in decreasing specific surface areas (SSA) of the mineral phases and increasing CECpH7. Thus, OC accumulation was faster than the supply of mineral surfaces and cation exchange capacity was mainly determined by the OC content. Clay-bound OC of the 15-year-old soils showed high proportions of carboxyl C and aromatic C. This may point to remnants of ancient OC which were inherited from the recently exposed glacial till. With increasing age (75 and 120 years), the relative proportions of carboxyl and aromatic C decreased. This was associated with increasing O-alkyl C proportions, whereas accumulation of alkyl C was mainly detected in clay fractions from the mature soils. These findings from solid-state 13C NMR spectroscopy are in

  14. Removal of organic pollutants in model water and thermal wastewater using clay minerals.

    PubMed

    Szabó, Emese; Vajda, Krisztina; Veréb, Gábor; Dombi, András; Mogyorósi, Károly; Ábrahám, Imre; Májer, Marcell

    2011-01-01

    Water treatment method was developed for the removal of different anionic dyes such as methyl orange and indigo carmine, and also for thymol applying sodium bentonite and cationic surfactant - hexadecyltrimethylammonium bromide (HTAB) - or polyelectrolytes (polydiallyldimethylammonium chloride, poly-DADMAC and poly-amines). The removal efficiency of these model substrates was examined in model water using UV-Vis spectrophotometry, HPLC and TOC analysis. The clay mineral and HTAB were added in one step to the polluted model water in Jar-test experiments. The influence of the cation exchange capacity (CEC) of the applied clay mineral and the presence of polyaluminium chloride coagulant (BOPAC) were also tested for the water treatment process. The structures of the in situ produced and pre-prepared organoclay composites were compared by XRD analysis. The rapid formation of organoclay adsorbents provided very efficient removal of the dyes (65-90 % in 3-10 mg/L TOC(0) range) with 200 mg/L sodium bentonite dose, however thymol was less efficiently separated. Adsorption efficiencies of the composites were compared at different levels of ion exchange such as at 40, 60 and 100 %. In the case of thymol, the elimination of inorganic carbon from the model water before the TOC analysis resulted in some loss of the analysed volatile compound therefore the HPLC analysis was found to be the most suitable tool for the evaluation of the process. This one-step adsorption method using in situ formed organoclay was better performing than the conventional process in which the montmorillonite-surfactant composite is pre-preapared and subsequently added to the polluted water. The purification performance of this method was also evaluated on raw and artificially polluted thermal wastewater samples containing added thymol. PMID:21929471

  15. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite

    SciTech Connect

    Fernandez, Rodrigo; Martirena, Fernando; Scrivener, Karen L.

    2011-01-15

    This paper investigates the decomposition of three clayey structures (kaolinite, illite and montmorillonite) when thermally treated at 600 {sup o}C and 800 {sup o}C and the effect of this treatment on their pozzolanic activity in cementitious materials. Raw and calcined clay minerals were characterized by the XRF, XRD, {sup 27}Al NMR, DTG and BET techniques. Cement pastes and mortars were produced with a 30% substitution by calcined clay minerals. The pozzolanic activity and the degree of hydration of the clinker component were monitored on pastes using DTG and BSE-IA, respectively. Compressive strength and sorptivity properties were assessed on standard mortars. It was shown that kaolinite, due to the amount and location of OH groups in its structure, has a different decomposition process than illite or montmorillonite, which results in an important loss of crystallinity. This explains its enhanced pozzolanic activity compared to other calcined clay-cement blends.

  16. Surficial clay mineral distribution on the southwestern continental margin of India: evidence of input from the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Chauhan, Onkar S.; Gujar, A. R.

    1996-03-01

    Analyses of spatial distribution of clay minerals, sediment texture, and > 63 μm fractions of the grab samples from the S W continental margin of India exhibit: (i) higher contents of illite and chlorite on the lower slope and (ii) a well-defined no-clay zone on the entire shelf. Kaolinite and smectite are also present in significant quantities on the slope with traces of gibbsite and palygorskite in some samples. The high contents of illite and chlorite (clay minerals which are not abundant in the soils and estuarine sediments of this region) in the southern region of the study area are evidence for sediment contribution from the Bay of Bengal waters (BBW), which enter this region after the SW monsoon. Distribution trends of kaolinite, smectite, gibbsite, and laterite granules on the slope are suggestive of contribution from chemically weathered soils of Peninsular India.

  17. Neogene sandstone reservoirs of the East Slovakian basin: Zeolites and clay minerals from the alteration of volcanics

    SciTech Connect

    Reed, J.K.; Gipson, M. Jr. )

    1991-03-01

    Petrographic analyses of core samples from wells in the East Slovakian basin indicate that alteration products of volcanic materials cause porosity loss in sandstone reservoirs. The reservoirs, which produce natural gas, are part of a shallow marine to continental basin fill with interbedded volcaniclastics, tuffs, and volcanites. Abnormally high heat-flow values have been recorded in the basin fill, which reaches up to 7 km in thickness. Both clay minerals and zeolites are found to restrict porosity. Kaolinite, smectite, illite, chlorite, and mixed-layer clay minerals are all identified in various combinations. Zeolites identified include phillipsite, erionite, clinoptilolite, and analcime. These minerals are related to the occurrence of volcanic rock fragments in the reservoir sand and interbedded volcanics, and they occur as diagenetic replacement minerals and cements. The effects of these minerals are compounded by the initial poor reservoir quality caused by immature sediments and calcite cement. Reservoir productivity would probably be increased if drilling and completion practices in the basin reflected the potential effects of the clay minerals and zeolites.

  18. Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals.

    PubMed

    Lin, Y; Munroe, P; Joseph, S; Ziolkowski, A; van Zwieten, L; Kimber, S; Rust, J

    2013-03-01

    In this study biochar mixtures comprising a Jarrah-based biochar, chicken litter (CL), clay and other minerals were thermally treated, via torrefaction, at moderate temperatures (180 and 220 °C). The objectives of this treatment were to reduce N losses from CL during processing and to determine the effect of both the type of added clay and the torrefaction temperature on the structural and chemical properties of the final product, termed as an enhanced biochar (EB). Detailed characterisation indicated that the EBs contained high concentrations of plant available nutrients. Both the nutrient content and plant availability were affected by torrefaction temperature. The higher temperature (220 °C) promoted the greater decomposition of organic matter in the CL and dissociated labile carbon from the Jarrah-based biochar, which produced a higher concentration of dissolved organic carbon (DOC). This DOC may assist to solubilise mineral P, and may also react with both clay and minerals to block active sites for P adsorption. This subsequently resulted in higher concentrations of plant available P. Nitrogen loss was minimised, with up to 73% of the initial total N contained in the feedstock remaining in the final EB. However, N availability was affected by both torrefaction temperature and the nature of the clay minerals added. PMID:23270707

  19. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    NASA Astrophysics Data System (ADS)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  20. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Caylor, E.; Rasmussen, C.; Dhakal, P.

    2015-12-01

    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and

  1. Interplay between cataclasis, clay mineral diagenesis and porosity reduction in deformation bands in unconsolidated arkosic sands

    NASA Astrophysics Data System (ADS)

    Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne

    2013-04-01

    . The dominant deformation mechanisms and the magnitude of porosity reduction in the carbonate-free lithologies are controlled by the initial mica content, mean grain size, level of alteration and albite content in the host rock. The studied deformation bands show a preferred fracturing of sericitized albite grains and the smearing of micas into the pore space. These processes increase the amount of phyllosilicates in the pore space and facilitate the growth of various authigenic clay minerals like smectite, vermiculite, kaolinite and illite. Because of the changed petrophysical properties the deformation bands show a different diagenetic evolution in comparison with the host rock. We identified 4 steps in the development from a high-porosity host rock to a low porosity deformation band. The measured reduction in porosity by up to 18% is associated with a permeability reduction, reflected in the retention of fluids along the deformation bands with the highest content of authigenic clay minerals.

  2. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    USGS Publications Warehouse

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  3. Changes of clay mineral assemblages in Lake Hovsgol (Mongolia) in the course of their transportation and sedimentation

    NASA Astrophysics Data System (ADS)

    Zhdanova, A.; Solotchina, E.; Krivonogov, S.

    2009-04-01

    As known, clay minerals of lake sediments sensitively indicate climatic and environmental changes. Composition of clay mineral assemblages depends on petrography and weathering pattern of parental rocks in lake catchments. Lake Hovsgol, the second large basin in the Baikal Rift Zone, differs from the first one by extremely small drainage area: its ratio to the lake surface is 1.8 (compare with 17 of Lake Baikal). This peculiarity of lake Hovsgol defines the amount of clay minerals deposited in bottom sediments and the value of their transformation in the course of transportation We studied a number of short sediment cores (up to 1.75 m long) obtained from different parts of the lake in the framework of the Hovsgol Drilling Project, 2001-2007. Regularities of modern clay minerals transportation were studied in 80 samples from river mouths and piedmont slopes around the lake. Their mineral composition was determined by X-ray powder diffraction and IR-spectroscopy. For X-ray, we prepared the oriented mounts by transferring the suspension of bulk sample in distilled water onto a glass slide. Slides, dried at room temperature, then were solvated for about 24 hours with ethylene-glycol vapor in an evacuated desiccator. Measurements were conducted on an automated powder diffractometer with CuKα radiation, graphite monochromator. The comparative analysis of clay minerals and their crystallochemical parameters were performed by the original method of modeling X-ray diffraction profiles, based on the calculation of the interference function of the one-dimensional disordered crystals with finite thickness and using a specially developed optimization procedure. Quantitative estimations of the composition of minerals such as quartz, plagioclase, carbonate were made by IR-spectroscopy. Samples were prepared using the KBr pellet method. It was established that the mineral association in bottom sediments includes illite, smectite, chlorite, chlorite-smectite, muscovite, kaolinite

  4. Lithium, a preliminary survey of its mineral occurrence in flint clay and related rock types in the United States

    USGS Publications Warehouse

    Tourtelot, H.A.; Brenner-Tourtelot, E. F.

    1978-01-01

    Maximum concentrations of lithium found in samples of flint clay and associated rocks of Pennsylvanian age in different States, in parts per million (ppm), are: Missouri, 5100; Pennsylvania-Maryland, 2100; Kentucky, 890; Ohio, 660; Alabama, 750; and Illinois, 160. Lithium-bearing kaolin deposits are distributed in the Coastal Plain province from New Jersey to Texas, and one occurs in Idaho; maximum lithium concentrations in samples from these deposits range from 64 to 180 ppm. The maximum concentration found in the Arkansas bauxite region is 460 ppm and that in flint clay in Colorado is 370 ppm. Samples from areas other than Pennsylvania, Maryland, Kentucky and Missouri are relatively few in number, represent mostly commercially valuable clays, and represent only a part of the refractory clay deposits in the United States. Data are not available on the clays associated with these deposits that may be unusable because they contain too much lithium as well as other deleterious elements. In both Pennsylvania and Missouri, lithium contents vary regionally between districts and locally between deposits. In samples containing more than 2000 ppm lithium, the lithium occurs in a dioctahedral chlorite mineral very similar to cookeite, which previously has not been recognized in sedimentary clays. The associated clays consist chiefly of well-crystallized kaolinite. The dioctahedral chlorite, however, seems to be most abundant where diaspore and boehmite occur along with the kaolinite. Barium, chromium, copper, phosphorus and strontium are present in some samples in amounts of several hundred pans per million or more, and may contribute to the failure of some clays to perform satisfactorily in firing tests. Lithium-rich clays could serve as a significant lithium resource in the very distant future. Clays that contain as much as 1% lithium may be common enough in Missouri or in Pennsylvania to be produced as a by-product to help support benefication costs for refractory clays

  5. Self-sealing barriers of clay/mineral mixtures The SB project at the Mont Terri Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Rothfuchs, Tilmann; Jockwer, Norbert; Zhang, Chun-Liang

    Moderately compacted clay/mineral mixtures may represent a reasonable alternative to highly compacted bentonite buffers currently studied and considered in some concepts of underground repositories for high-level radioactive wastes. In contrast to highly compacted buffers clay/sand mixtures exhibit a high permeability to gas in the unsaturated state and a comparably low gas entry/break through pressure in the saturated state while providing an adequate self-sealing potential due to swelling of the clay minerals after water uptake from the host rock. By using optimized material mixtures, the evolution of high gas pressure in the repository near-field due to corrosion of the waste containers will be avoided and possible migration of radionuclides from the waste matrix in the liquid phase through the buffer will be diffusion controlled just like in the host rock. On basis of promising laboratory results gained in GRS’ geotechnical laboratory it was decided to test and demonstrate the sealing properties of clay/mineral mixtures under realistic in situ conditions at the Mont Terri Underground Rock Laboratory (MTRL). The paper presents details about the envisaged in situ experiments and material data obtained from laboratory investigations. First results of full-scale mock-up tests are presented as well. In addition, information is given about further laboratory investigations and scoping calculations that have been performed to analyze whether it would be possible to achieve and demonstrate the required sealing properties within the comparably short run time of the project. It has been found that clay/sand mixtures with clay contents between 35% and 50% are suitable for the envisaged in situ tests at the MTRL (and most likely also for adequate sealing of disposal rooms in repositories). The SB project is part of the Integrated Project ESDRED [ANDRA, 2005. www.esred.info] funded by the Commission of the European Commission.

  6. Palaeozoic clay mineral sedimentation and diagenesis in the Dinant and Avesnes Basins (Belgium, France): relationships with Variscan tectonism

    NASA Astrophysics Data System (ADS)

    Han, G.; Preat, A.; Chamley, H.; Deconinck, J.-F.; Mansy, J.-L.

    2000-11-01

    Clay mineral investigations have been performed on more than 500 limestones and shales sampled in Lower Devonian (Emsian) to Lower Carboniferous (Namurian) outcrops in the Dinant and Avesnes Basins (Ardenne Massif, NW Europe). Clay mineral data have been placed in the palaeoenvironmental and structural histories documented by previous lithological, stratigraphical, palaeontological, diagenetic and tectonic contexts. The clay associations are dominated by illite and chlorite derived partly from the erosion of land masses surrounding the marine domain. The geothermal gradient estimated from correlation with conodont colour alteration index ranges between 40 and 70°C/km. A diachronous northwards migration of the diagenesis/metamorphism interface links to uplift caused by Late Carboniferous compressional folding and overthrusting. Associated clay minerals include smectite, locally preserved from diagenetic changes mainly by early pore closure, that reflect lagoonal or quiet offshore marine conditions. Smectite and subordinate kaolinite abundances decrease upwards during the Devonian in three successive intervals suggesting alternations of sub-arid to drier climates. The local occurrence of corrensite (ordered chlorite-smectite mixed-layer) is attributed to the moderate diagenetic transformation of pre-existing smectite

  7. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals

    SciTech Connect

    Collins, Y.E.; Stotzky, G. )

    1992-05-01

    The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength ([mu]) of 3 [times] 10[sup [minus]4]; montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 and then at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a [mu] of >3 [times] 10[sup [minus]4], whereas there was no reversal in solutions with a [mu] of <3 [times] 10[sup [minus]4]. The clays became net positively charged when the [mu] of Cu was >3 [times] 10[sup [minus]4] and that of Ni was >1.5 [times] 10[sup [minus]4]. The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measured the electrophoretic mobility did not affect their viability.

  8. Controls on clay minerals assemblages in an early paleogene nonmarine succession: Implications for the volcanic and paleoclimatic record of extra-andean patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Raigemborn, María Sol; Gómez-Peral, Lucía E.; Krause, Javier Marcelo; Matheos, Sergio Daniel

    2014-07-01

    The distribution of the clay minerals of the Banco Negro Inferior-Río Chico Group succession (BNI-RC), a middle Danian-middle Eocene mainly continental epiclastic-pyroclastic succession exposed in the Golfo San Jorge Basin, extra-Andean Patagonia (∼46° LS), is assessed in order to determine the possible origin of clay and specific non-clay minerals using X-ray diffraction and scanning electron microscopy analyses. The control over the clay mineralogy of the sedimentary settings, contemporary volcanism, paleoclimate and weathering conditions is considered. A paleoclimatic reconstruction is provided and correlated with the main global warming events that occurred during the early Paleogene. Mineralogical analyses of BNI-RC demonstrate that smectite and kaolin minerals (kaolinite, halloysite and kaolinite/smectite mixed layers) are the main clay minerals, whereas silica polymorphs (volcanic glass and opal) are common non-clay minerals. Throughout the succession, smectite and kaolin minerals are arranged in different proportions in the three clay-mineral assemblages. These show a general vertical trend in which the smectite-dominated assemblage (S1) is replaced by the smectite-dominated assemblage associated with other clays (S2) and the kaolinite-dominated assemblage (K), and finally by S2 up-section. The detailed micromorphological analysis of the clay and non-clay minerals allows us to establish that the origins of these are by volcanic ash weathering, authigenic and pedogenic, and that different stages in the evolution of mineral transformations have occurred. The supply of labile pyroclastic material from an active volcanic area located to the northwest of the study area could have acted as precursor of the authigenic and volcanogenic minerals of the analyzed succession. Diverse fine-grained lithological facies (muddy and tuffaceous facies) and sedimentary settings (coastal swamp and transitional environments, and different fluvial systems) together with

  9. Orientation and optical properties of methylene blue crystal for better understanding of interactions with clay mineral surface

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil

    2013-04-01

    The properties of cationic dye Methylene blue (MB) adsorbed on diferent surfaces have been investigated intensively over the years and various models for the orientation of its cations have been proposed (Hang and Brindley, 1970; Bujdak et al., 2003; Li and Zare, 2004; Marr III et al., 1973; Bujdak, 2006).The main objective of this work is to investigate and determine orientation and optical properties of metylene blue crystal upon its crystallization on a glass slate and to use those findings in better understanding of interactions with clay minerals. Cationic dyes have very high affinity for clay surfaces and those interactions are easily detected, therefore these dyes are used to determine several properties of clay surfaces (morphology, layer charge, CEC). For this study, we have selected a group of MB crystal and carried out XRD analysis, polarized absorption spectra measurement (400 - 900 nm) and determination of optical properties (pleochroism, determination of twining and extinction angle) using polarizing microscope. Methylene blue crystals are exhibiting mostly needle like habitus with huge difference in width - length ratio. According to X-ray diffraction it is quite obvious that the y (b) axis is perpendicular to the crystal surface. The x (a) and z (c) axis lie in the crystal plane (010). Crystals exhibit prominent dichroism: from blue (E || elong.) to colorless. In accordance with current interpretation of MB spectra peaks at 647 and 570 nm can be assigned as dimer aggregation and peaks at 475 and 406 nm as higher level of aggregation. All of them exhibit pronounced polarization dependence. The group of peaks at lower energy (700 to 900 nm) do not show significant polarization dependence and they correspond to the J - aggregates. Peak at around 800 nm have been noticed as fluorescence active. In dependence with thickness of the crystals and vibration direction we have observed presence of polysynthetic twinning which can be compared with polysynthetic

  10. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.