Science.gov

Sample records for clay-based waste containment

  1. Modification of clay-based waste containment materials

    SciTech Connect

    Adu-Wusu, K.; Whang, J.M.; McDevitt, M.F.

    1997-12-31

    Bentonite clays are used extensively for waste containment barriers to help impede the flow of water in the subsurface because of their low permeability characteristics. However, they do little to prevent diffusion of contaminants, which is the major transport mechanism at low water flows. A more effective way of minimizing contaminant migration in the subsurface is to modify the bentonite clay with highly sorptive materials. Batch sorption studies were conducted to evaluate the sorptive capabilities of organo-clays and humic- and iron-based materials. These materials proved to be effective sorbents for the organic contaminants 1,2,4-trichlorobenzene, nitrobenzene, and aniline in water, humic acid, and methanol solution media. The sorption capacities were several orders of magnitude greater than that of unmodified bentonite clay. Modeling results indicate that with small amounts of these materials used as additives in clay barriers, contaminant flux through walls could be kept very small for 100 years or more. The cost of such levels of additives can be small compared to overall construction costs.

  2. Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes.

    PubMed

    Coronado, M; Segadães, A M; Andrés, A

    2015-12-15

    This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature. PMID:26252997

  3. Long-term modeling of glass waste in portland cement- and clay-based matrices

    SciTech Connect

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  4. WASTE CONTAINMENT OVERVIEW

    EPA Science Inventory

    BSE waste is derived from diseased animals such as BSE (bovine spongiform encepilopothy, also known as Mad Cow) in cattle and CWD (chronic wasting disease) in deer and elk. Landfilling is examined as a disposal option and this presentation introduces waste containment technology...

  5. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste. PMID:23047084

  6. VEGETATIVE COVERS FOR WASTE CONTAINMENT

    EPA Science Inventory

    Disposal of municipal ahd hazardous waste in the United States is primarily accomplished by containment in lined and capped landfills. Evapotranspiration cover systems offer an alternative to conventional landfill cap systems. These covers work on completely different principles ...

  7. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  8. Nuclear waste storage container with metal matrix

    DOEpatents

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  9. Contained recovery of oily waste

    DOEpatents

    Johnson, Jr., Lyle A.; Sudduth, Bruce C.

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  10. [Disposal of waste containing asbestos in Croatia].

    PubMed

    Mladineo, Vinko

    2009-11-01

    In order to ensure systematic disposal of asbestos waste in the whole of Croatia, its government has mandated the Environmental Protection and Energy Efficiency Fund to implement emergency measures to collect and dispose of asbestos-containing construction waste. This requires a construction of 45 special disposal containers in the existing municipal waste landfills and contracting collection of asbestos-containing construction waste. By now, the Fund has disposed of 8000 m3 of asbestos cement waste, recovered five dumps with asbestos-containing construction waste, reclaimed a location contaminated by asbestos in Vranjic, and has continued to recover the land at the premises of factory Salonit in bankruptcy, which had been producing corrugated asbestos sheets before the ban. In collaboration with several non-governmental organisations, the Fund has started an educational campaign to protect the environment. PMID:20853773

  11. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  12. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  13. Ground freezing for containment of hazardous waste

    SciTech Connect

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  14. Nuclear waste; Can we contain it

    SciTech Connect

    King, F.; Ikeda, B.M.; Shoesmith, D.W.

    1992-04-01

    This paper reports that the safe disposal of nuclear waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels. The disposal of such wastes deep in stable geological formations has been extensively researched since the late 1970s and is now the preferred option internationally. In all of the proposed disposal concepts, the natural barrier of the geological formation is supplemented by a series of engineered barriers each of which retards the transport of radionuclides to the environment. The geological formations being considered usually fall into one of three general categories: crystalline rock (Canada, Sweden, Switzerland, United Kingdom, United States); salt deposits (United States, Germany); and sedimentary deposits, such as clay or seabed sediments (Belgium, United Kingdom, United States), illustrates the Canadian disposal concept based on disposal in igneous rock in the Canadian Shield. The waste will consist of either used fuel bundles or immobilized reprocessed material. In the multibarrier approach the principal engineered component, and the only absolute barrier, is a metallic container enclosing the waste. The required period of containment will influence the choice of material and the thickness of the container.

  15. Predicting the Lifetimes of Nuclear Waste Containers

    NASA Astrophysics Data System (ADS)

    King, Fraser

    2014-03-01

    As for many aspects of the disposal of nuclear waste, the greatest challenge we have in the study of container materials is the prediction of the long-term performance over periods of tens to hundreds of thousands of years. Various methods have been used for predicting the lifetime of containers for the disposal of high-level waste or spent fuel in deep geological repositories. Both mechanical and corrosion-related failure mechanisms need to be considered, although until recently the interactions of mechanical and corrosion degradation modes have not been considered in detail. Failure from mechanical degradation modes has tended to be treated through suitable container design. In comparison, the inevitable loss of container integrity due to corrosion has been treated by developing specific corrosion models. The most important aspect, however, is to be able to justify the long-term predictions by demonstrating a mechanistic understanding of the various degradation modes.

  16. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, Dennis F.

    1997-01-01

    A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  17. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  18. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  19. Properties of radioactive wastes and waste containers. [Marlex CL-100

    SciTech Connect

    Arora, H.S.; Dayal, R.

    1984-01-01

    Major tasks in this NRC-sponsored program include: (1) an evaluation of the acceptability of low-level solidified wastes with respect to minimizing radionuclide releases after burial; and (2) an assessment of the influence of pertinent environmental stresses on the performance of high-integrity radwaste container (HIC) materials. The waste form performance task involves studies on small-scale laboratory specimens to predict and extrapolate: (1) leachability for extended time periods; (2) leach behavior of full-size forms; (3) performance of waste forms under realistic leaching conditions; and (4) leachability of solidified reactor wastes. The results show that leach data derived from testing of small-scale specimens can be extrapolated to estimate leachability of a full-scale specimen and that radionuclide release data derived from testing of simulants can be employed to predict the release behavior of reactor wastes. Leaching under partially saturated conditions exhibits lower releases of radionuclides than those observed under the conventional IAEA-type or ANS 16.1 leach tests. The HIC assessment task includes the characterization of mechanical properties of Marlex CL-100, a candidate radwaste high density polyethylene material. Tensile strength and creep rupture tests have been carried out to determine the influence of specific waste constituents as well as gamma irradiation on material performance. Emphasis in ongoing tests is being placed on studying creep rupture while the specimens are in contact with a variety of chemicals including radiolytic by-products of irradiated resin wastes. 12 references 6 figures, 2 tables.

  20. Alternative construction materials in waste containment applications

    SciTech Connect

    Swyka, M.A.

    1996-03-01

    Over the past few years, there has been a challenge presented by the combined forces of industry, the economy, increased regulatory requirements, and the public`s heightened sensitivity to recycling and effective management of solid waste to reduce, reuse, and recycle. Therefore, individuals have begun thinking about landfill construction in new ways and taking a second and third look at ways to reduce construction costs while maintaining system performance and regulatory compliance. As a result of this examination, EMCON (Mahwah, NJ) has begun to identify components of the waste stream that can be redirected into a beneficial use as construction materials. Use of non-traditional materials for landfill construction, such as broken glass, tires, ash, or sludge, has the potential for significant savings, and subsequent benefit of converting potentially unusable waste materials into a useful part of a landfill containment system.

  1. 40 CFR 264.172 - Compatibility of waste with containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Compatibility of waste with containers... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of Containers § 264.172 Compatibility of waste with containers. The owner...

  2. 40 CFR 264.172 - Compatibility of waste with containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Compatibility of waste with containers... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of Containers § 264.172 Compatibility of waste with containers. The owner...

  3. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    PubMed

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. PMID:26764134

  4. Direct conversion of halogen-containing wastes to borosilicate glass

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.; Rudolph, J.C.

    1996-12-09

    Glass has become a preferred waste form worldwide for radioactive wastes: however, there are limitations. Halogen-containing wastes can not be converted to glass because halogens form poor-quality waste glasses. Furthermore, halides in glass melters often form second phases that create operating problems. A new waste vitrification process, the Glass Material Oxidation and dissolution System (GMODS), removes these limitations by converting halogen-containing wastes into borosilicate glass and a secondary, clean, sodium-halide stream.

  5. Sensor system for buried waste containment sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  6. 40 CFR 265.172 - Compatibility of waste with container.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Compatibility of waste with container... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of Containers § 265.172 Compatibility of waste...

  7. Water Balance Covers For Waste Containment: Principles and Practice

    EPA Science Inventory

    Water Balance Covers for Waste Containment: Principles and Practices introduces water balance covers and compares them with conventional approaches to waste containment. The authors provided detailed analysis of the fundamentals of soil physics and design issues, introduce appl...

  8. Lid design for low level waste container

    DOEpatents

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  9. Lid design for low level waste container

    DOEpatents

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  10. Characterization of Oversized Crates containing Nuclear Waste

    SciTech Connect

    Berg, Randal K.; Haggard, Daniel L.; Hilliard, Jim; Mozhayev, Andrey V.

    2007-11-01

    The 212-N Building at the Hanford Site held fifteen large crates containing glove boxes and process equipment associated with the development and fabrication of mixed oxide (MOX) fuel. The gloveboxes and associated equipment originated from the 308 Building of the Hanford Site and had been placed in the crates after a process upset in the 1960s. The crates were transported to the 212-N Building and had been in storage since 1972. In an effort to reduce the hazard categorization of 212-N the crates were removed from the building and Nondestructive Assay (NDA) was performed to characterize the crate contents meeting both Safeguards and Waste Management interests. A measurement system consisting of four configurable neutron slab detectors and high purity germanium (HPGe) detectors was deployed. Since no viable information regarding the waste matrix and configuration was available it was essential to correct for attenuation with a series of transmission measurements using californium and europium sources for both neutron and gamma applications. The gamma and neutron results obtained during this measurement campaign are compared and discussed in the paper.

  11. Waste container fabrication from recycled DOE metal

    SciTech Connect

    Motl, G.P.; Burns, D.D.

    1994-02-15

    The Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Much of this material cannot be surface decontaminated. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to {open_quotes}beneficially reuse{close_quotes} this material in applications where small amounts of radioactivity are not a detriment. One example is where RSM is currently being beneficially used to fabricate shield blocks for use in DOE medium energy physics programs. This paper describes other initiatives now underway within DOE to utilize RSM to fabricate other products, such as radioactive waste shipping, storage and disposal containers.

  12. Ancient metallurgy and nuclear waste containment

    SciTech Connect

    Goodway, M.

    1993-12-31

    Archaeological artifacts of glass, ceramic, and metal provide examples of long term durability and as such have been surveyed by the nuclear agencies of several countries as a possible guide to choices of materials for the containment of nuclear waste. In the case of metals evaluation is difficult because of the loss of many artifacts to recycling and corrosion processes, as well as by uncertainty as to the environmental history under which the remainder survived. More recently the study of ancient metallurgy has expanded to included other materials associated with metals processing. It is suggested that an impermeable ceramic composite used in ancient metals processing installations should be reproduced and tested for its resistance to radiation damage. This material was synthesized more than two millennia ago and has a proven record of durability. These installations have had no maintenance but are intact, some still holding water.

  13. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  14. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  15. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  16. Defense High Level Waste Disposal Container System Description Document

    SciTech Connect

    N. E. Pettit

    2001-07-13

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  17. Studies on concrete containing ground waste glass

    SciTech Connect

    Shao, Y.; Lefort, T.; Moras, S.; Rodriguez, D.

    2000-01-01

    The possibility of using finely ground waste glass as partial cement replacement in concrete was examined through three sets of tests: the lime-glass tests to assess the pozzolanic activity of ground glass, the compressive strength tests of concrete having 30% cement replaced by ground glass to monitor the strength development, and the mortar bar tests to study the potential expansion. The results showed that ground glass having a particle size finer than 30 {mu}m did exhibit a pozzolanic behavior. The compressive strength from lime glass tests exceeded a threshold value of 4.1 MPa. The strength activity index was 91, 84, 96, and 108% at 3, 7, 28, and 90 days, respectively, exceeding 75% at al ages. The mortar bar tests demonstrated that the finely ground glass helped reduce the expansion by up to 50%. A size effect was observed; a smaller glass particle size led to a higher reactivity with lime, a higher compressive strength in concrete, and a lower expansion. Compared to fly ash concrete, concrete containing ground glass exhibited a higher strength at both early and late ages.

  18. Radioactive-waste container with leak monitor

    SciTech Connect

    Janberg, K.G.; Methling, D.

    1985-01-22

    A container has a massive metallic vessel whose interior is adapted to receive radioactive waste and whose mouth is formed with inner and outer spaced generally planar and annular vessel shoulders and formed there-between with a nonplanar intermediate annular vessel surface. A massive metallic cover formed with a plug fits in the mouth and has respective inner and outer plug shoulders closely juxtaposed with the vessel shoulders and a nonplanar intermediate annular plug surface complementary to the intermediate vessel surface. An inner ring seal engages snugly between the inner shoulders. A pair of generally concentric and spaced outer ring seals engage snugly between the outer shoulders and forming an annular outer chamber therebetween. An intermediate ring seal engages snugly between the intermediate surfaces and forms therebetween and with the inner ring seal an annular inner chamber and therebetween and with the outer ring seals an intermediate chamber. The cover is formed with respective inner, intermediate, and outer passages each having one end opening into the respective chamber and another end. Valves are provided on the cover at the other ends of the passages for sampling gases therein and in the respective chambers.

  19. 40 CFR 265.172 - Compatibility of waste with container.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Compatibility of waste with container. 265.172 Section 265.172 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  20. 40 CFR 264.172 - Compatibility of waste with containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Compatibility of waste with containers. 264.172 Section 264.172 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  1. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1999-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  2. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1999-03-02

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  3. Process for treating liquid chlorinated hydrocarbon wastes containing iron

    SciTech Connect

    Doane, E.P.

    1986-09-30

    A process is described for reducing the ferric chloride content of liquid waste streams comprising higher boiling chlorinated hydrocarbons and containing amounts of ferric chloride. The process consists essentially of contacting the waste stream with an amount of water sufficient to convert ferric chloride contained in the stream to solid ferric chloride hexahydrate, and then removing the solid hexahydrate by filtration or centrifugation from the waste stream.

  4. Defense High Level Waste Disposal Container System Description

    SciTech Connect

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  5. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastes specified in 40 CFR 261.31 as EPA Hazardous Waste Nos. F020, F02l, F022, F023, F026, F027, and... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  6. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wastes specified in 40 CFR 261.31 as EPA Hazardous Waste Nos. F020, F02l, F022, F023, F026, F027, and... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  7. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes specified in 40 CFR 261.31 as EPA Hazardous Waste Nos. F020, F02l, F022, F023, F026, F027, and... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  8. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastes specified in 40 CFR 261.31 as EPA Hazardous Waste Nos. F020, F02l, F022, F023, F026, F027, and... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  9. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastes specified in 40 CFR 261.31 as EPA Hazardous Waste Nos. F020, F02l, F022, F023, F026, F027, and... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  10. Regulatory requirements affecting disposal of asbestos-containing waste

    SciTech Connect

    1995-11-01

    Many U.S. Department of Energy (DOE) facilities are undergoing decontamination and decommissioning (D&D) activities. The performance of these activities may generate asbestos-containing waste because asbestos was formerly used in many building materials, including floor tile, sealants, plastics, cement pipe, cement sheets, insulating boards, and insulating cements. The regulatory requirements governing the disposal of these wastes depend on: (1) the percentage of asbestos in the waste and whether the waste is friable (easily crumbled or pulverized); (2) other physical and chemical characteristics of the waste; and (3) the State in which the waste is generated. This Information Brief provides an overview of the environment regulatory requirements affecting disposal of asbestos-containing waste. It does not address regulatory requirements applicable to worker protection promulgated under the Occupational Safety and Health Act (OSHAct), the Mining Safety and Health Act (MSHA), or the Toxic Substances Control Act (TSCA).

  11. 1995 solid waste 30-year container volume summary

    SciTech Connect

    Templeton, K.J.; DeForest, T.J.; Patridge, M.D.

    1995-07-01

    This report describes a 30-year forecast of the solid waste volumes by container category. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU-TRUM) waste. These volumes and their associated container categories will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1995 through FY 2024. The data presented in this report establish a baseline for solid waste management both in the present and future. With knowledge of the volumes by container type, decisions on the facility handling and storage requirements can be adequately made. It is recognized that the forecast estimates will vary as facility planning and missions continue to change and become better defined; however, the data presented in this report still provide useful insight into Hanford`s future solid waste management requirements.

  12. EVALUATION OF HDPE CONTAINERS FOR MACROENCAPSULATION OF MIXED WASTE DEBRIS

    SciTech Connect

    Eaton, David; Carlson, Tim; Gardner, Brad; Bushmaker, Robert; Battleson, Dan; Shaw, Mark; Bierce, Lawrence

    2003-02-27

    Macroencapsulation is currently available at facilities permitted by the U.S. Environmental Protection agency for the treatment of radioactively contaminated hazardous waste. The U.S. Department of Energy is evaluating the use of high-density polyethylene containers to provide a simpler means of meeting macroencapsulation requirements. Macroencapsulation is used for the purpose of isolating waste from the disposal environment in order to meet the Land Disposal Restriction treatment standards for debris-like waste. The containers being evaluated have the potential of providing a long-term reduction in the leachability and subsequent mobility of both the hazardous and radioactive contaminants in this waste while at the same allowing treatment by the generator as the waste is being generated. While the testing discussed in this paper shows that further developmental work is necessary, these tests also indicate that these containers have the potential to reduce the cost, schedule, and complexity of meeting the treatment standard for mixed waste debris.

  13. Toxic-Waste Disposal by Combustion in Containers

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Stephens, J. B.; Moynihan, P. I.; Compton, L. E.; Kalvinskas, J. J.

    1986-01-01

    Chemical wastes burned with minimal handling in storage containers. Technique for disposing of chemical munitions by burning them inside shells applies to disposal of toxic materials stored in drums. Fast, economical procedure overcomes heat-transfer limitations of conventional furnace designs by providing direct contact of oxygenrich combustion gases with toxic agent. No need to handle waste material, and container also decontaminated in process. Oxygen-rich torch flame cuts burster well and causes vaporization and combustion of toxic agent contained in shell.

  14. Seal welded cast iron nuclear waste container

    DOEpatents

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  15. LCA comparison of container systems in municipal solid waste management

    SciTech Connect

    Rives, Jesus; Rieradevall, Joan; Gabarrell, Xavier

    2010-06-15

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

  16. Utilization of clay wastes containing boron as cement additives

    SciTech Connect

    Oezdemir, Mine; Oeztuerk, Nese Uygan

    2003-10-01

    The utilization of clay wastes (CW) containing boron as cement additives was investigated. The effect of CW on mechanical and chemical properties of cement prepared by adding CW to clinker and gypsum was determined. The results obtained were compared with Portland cement properties and Turkish standards (TS) values. It was determined that the first clay waste (CW1) and the second clay waste (CW2) may be used as cement additives up to 5% and 10%, respectively.

  17. Method for primary containment of cesium wastes

    DOEpatents

    Angelini, Peter; Lackey, Walter J.; Stinton, David P.; Blanco, Raymond E.; Bond, Walter D.; Arnold, Jr., Wesley D.

    1983-01-01

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600.degree. C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000.degree. C. for a suitable duration.

  18. Testing waste forms containing high radionuclide loadings

    SciTech Connect

    McConnell, J.W. Jr.; Neilson, R.M. Jr.; Rogers, R.D.

    1986-01-01

    The Low-Level Waste Data Base Development - EPICOR-II Resin/Liner Investigation Program funded by the US Nuclear Regulatory Commission (NRC) is obtaining information on radioactive waste during NRC-prescribed tests and in a disposal environment. This paper describes the resin solidification task of that program, including the present status and results to date. An unusual aspect of this investigation is the use of commercial grade, ion exchange resins that have been loaded with over five times the radioactivity normally seen in a commercial application. That dramatically increases the total radiation dose to the resins. The objective of the resin solidification task is to determine the adequacy of test procedures specified by NRC for ion exchange resins having high radionuclide loadings.

  19. Method of determining a content of a nuclear waste container

    DOEpatents

    Bernardi, Richard T.; Entwistle, David

    2003-04-22

    A method and apparatus are provided for identifying contents of a nuclear waste container. The method includes the steps of forming an image of the contents of the container using digital radiography, visually comparing contents of the image with expected contents of the container and performing computer tomography on the container when the visual inspection reveals an inconsistency between the contents of the image and the expected contents of the container.

  20. Controlled Containment, Radioactive Waste Management in the Netherlands

    SciTech Connect

    Codee, H.

    2002-02-26

    All radioactive waste produced in The Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small nuclear power program which will end in the near future. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, including TENORM, The Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an essential element of the management system and forms a necessary step in the strategy of controlled containment that will ultimately result in final removal of the waste. Since the waste will remain retrievable for long time new technologies and new disposal options can be applied when available and feasible.

  1. Plasma processing of carbon-containing technical aggregations and wastes

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; An'shakov, A. S.; Faleev, V. A.; Danilenko, A. A.

    2008-12-01

    The plasma gasification of technical aggregations is experimentally studied using the utilization of solid domestic wastes as an example. A shaft electric furnace is described, and the experimental and calculated data are analyzed and compared. The high-temperature gasification of carbon-containing wastes is shown to be a promising process.

  2. TOTAL RECYCLE SYSTEMS FOR PETROCHEMICAL WASTE BRINES CONTAINING REFRACTORY CONTAMINANTS

    EPA Science Inventory

    Petrochemical wastewaters containing relatively high concentrations of salt and refractory organics were selected to study their feasibility for total recycle. A combination of reverse osmosis and electrodialysis was operated as a hybrid system using the pretreated wastes to prod...

  3. APPLICATION OF NONSPHERICAL FISSILE CONFIGURATION IN WASTE CONTAINERS AT SRS

    SciTech Connect

    Eghbali, D; Michelle Abney, M

    2007-01-03

    Transuranic (TRU) solid waste that has been generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site (SRS) has been stored in more than 30,000 55-gallon drums and carbon steel boxes since 1953. Nearly two thirds of those containers have been processed and shipped to the Waste Isolation Pilot Plant. Among the containers assayed so far, the results indicate several drums with fissile inventories significantly higher (600-1000 fissile grams equivalent (FGE) {sup 239}Pu) than their original assigned values. While part of this discrepancy can be attributed to the past limited assay capabilities, human errors are believed to be the primary contributor. This paper summarizes the application of nonspherical fissile material configuration in waste containers, resulting in less restrictive mass and spacing limits, increased storage capacity, and several administrative controls for handling and storage of waste containers being modified without compromising safety.

  4. 5. View, oxidizer waste tanks and containment basin in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View, oxidizer waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking northeast. - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. Biodegradable containers from green waste materials

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Schettini, Evelia; Pandini, Stefano; Bignotti, Fabio; Vox, Giuliano; D'Amore, Alberto

    2016-05-01

    Novel biodegradable polymeric materials based on protein hydrolysate (PH), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) were obtained and their physico-chemical properties and mechanical behaviour were evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, were used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable-based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of PH or in packaging.

  6. 40 CFR 148.11 - Waste specific prohibitions-dioxin-containing wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Waste specific prohibitions-dioxin-containing wastes. 148.11 Section 148.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection §...

  7. 40 CFR 148.11 - Waste specific prohibitions-dioxin-containing wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-dioxin-containing wastes. 148.11 Section 148.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection §...

  8. INNOVATIVE PRACTICES FOR TREATING WASTE STREAMS CONTAINING HEAVY METALS: A WASTE MINIMIZATION APPROACH

    EPA Science Inventory

    Innovative practices for treating waste streams containing heavy metals often involve technologies or systems that either reduce the amount of waste generated or recover reusable resources. With the land disposal of metal treatment residuals becoming less of an accepted waste man...

  9. INNOVATIVE PRACTICES FOR TREATING WASTE STREAMS CONTAINING HEAVY METALS: A WASTE MINIMIZATION APPROACH

    EPA Science Inventory

    Innovative practices for treating waste streams containing heavy metals often involve technologies or systems that either reduce the amount of waste generated or recover reusable resources. ith the land disposal of metal treatment residuals becoming less of an accepted waste mana...

  10. 40 CFR 148.11 - Waste specific prohibitions-dioxin-containing wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Waste specific prohibitions-dioxin-containing wastes. 148.11 Section 148.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection §...

  11. 40 CFR 148.11 - Waste specific prohibitions-dioxin-containing wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Waste specific prohibitions-dioxin-containing wastes. 148.11 Section 148.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection §...

  12. 40 CFR 148.11 - Waste specific prohibitions-dioxin-containing wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Waste specific prohibitions-dioxin-containing wastes. 148.11 Section 148.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection §...

  13. Liquefaction of commingled waste plastics containing PVC

    SciTech Connect

    Huffman, G.P.; Feng, Zhen; Bailey, D.; Rockwell, J.

    1996-12-31

    Direct liquefaction studies were conducted on a washed, commingled waste plastic (CWP), as received from the American Plastics Council and after addition of 5 wt.% of polyvinyl chloride (PVC). Both non-catalytic and catalytic experiments were performed the catalytic experiments utilized 1 wt.% of HZSM-5. The experiments on the CWP-PVC mixture were conducted with and without the addition of 5 wt.% of calcium hydroxide. The effect of PVC on product yields was evaluated. Oil quality was examined by GC simulated distillation. The forms of occurrence of chlorine in the liquefaction products were determined by x-ray absorption fine structure (XAFS) spectroscopy utilizing the X-ray absorption near edge structure (XANES).

  14. Transuranic contaminated waste container characterization and data base. Revision I

    SciTech Connect

    Kniazewycz, B.G.

    1980-05-01

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction.

  15. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  16. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  17. Multi-layer waste containment barrier

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.

    1999-01-01

    An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.

  18. Management of hazardous waste containers and container storage areas under the Resource Conservation and Recovery Act

    SciTech Connect

    Not Available

    1993-08-01

    DOE`s Office of Environmental Guidance, RCRA/CERCLA Division, has prepared this guidance document to assist waste management personnel in complying with the numerous and complex regulatory requirements associated with RCRA hazardous waste and radioactive mixed waste containers and container management areas. This document is designed using a systematic graphic approach that features detailed, step-by-step guidance and extensive references to additional relevant guidance materials. Diagrams, flowcharts, reference, and overview graphics accompany the narrative descriptions to illustrate and highlight the topics being discussed. Step-by-step narrative is accompanied by flowchart graphics in an easy-to-follow, ``roadmap`` format.

  19. VOC transport in vented drums containing simulated waste sludge

    SciTech Connect

    Liekhus, K.J.; Gresham, G.L.; Rae, C.; Connolly, M.J.

    1994-02-01

    A model is developed to estimate the volatile organic compound (VOC) concentration in the headspace of the innermost layer of confinement in a lab-scale vented waste drum containing simulated waste sludge. The VOC transport model estimates the concentration using the measured VOC concentration beneath the drum lid and model parameters defined or estimated from process knowledge of drum contents and waste drum configuration. Model parameters include the VOC diffusion characteristic across the filter vent, VOC diffusivity in air, size of opening in the drum liner lid, the type and number of layers of polymer bags surrounding the waste, VOC permeability across the polymer, and the permeable surface area of the polymer bags. Comparison of model and experimental results indicates that the model can accurately estimate VOC concentration in the headspace of the innermost layer of confinement. The model may be useful in estimating the VOC concentration in actual waste drums.

  20. Disposal of water treatment wastes containing arsenic - a review.

    PubMed

    Sullivan, Colin; Tyrer, Mark; Cheeseman, Christopher R; Graham, Nigel J D

    2010-03-15

    Solid waste management in developing countries is often unsustainable, relying on uncontrolled disposal in waste dumps. Particular problems arise from the disposal of treatment residues generated by removing arsenic (As) from drinking water because As can be highly mobile and has the potential to leach back to ground and surface waters. This paper reviews the disposal of water treatment wastes containing As, with a particular emphasis on stabilisation/solidification (S/S) technologies which are currently used to treat industrial wastes containing As. These have been assessed for their appropriateness for treating As containing water treatment wastes. Portland cement/lime mixes are expected (at least in part) to be appropriate for wastes from sorptive filters, but may not be appropriate for precipitative sludges, because ferric flocs often used to sorb As can retard cement hydration. Brine resulting from the regeneration of activated alumina filters is likely to accelerate cement hydration. Portland cement can immobilize soluble arsenites and has been successfully used to stabilise As-rich sludges and it may also be suitable for treating sludges generated from precipitative removal units. Oxidation of As(III) to As(V) and the formation of calcium-arsenic compounds are important immobilisation mechanisms for As in cements. Geopolymers are alternative binder systems that are effective for treating wastes rich in alumina and metal hydroxides and may have potential for As wastes generated using activated alumina. The long-term stability of cemented, arsenic-bearing wastes is however uncertain, as like many cements, they are susceptible to carbonation effects which may result in the subsequent re-release of As. PMID:20153878

  1. Waste container weighing data processing to create reliable information of household waste generation.

    PubMed

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations. PMID:25765610

  2. The problem of burying radioactive wastes containing transplutonium elements (TPE)

    SciTech Connect

    Bryzgalova, R.V.; Krivokhatskii, A.S.; Rogozin, Y.M.; Sinitsyna, G.S.

    1986-09-01

    This paper discusses the problem of burying radioactive wastes containing TPE. The most acceptable and developed method at present is that of disposal into continental, deep-lying, geological formatins. Based on an analysis of estimates of the thermal conditions on burying highly active wastes, including TPE concentrates, data on the filtration and sorption characteristics of rocks, estimates of the diffusion of radionuclide species capable of migrating, and taking into account the retention powers of rocks it is concluded that it is possible to bury such wastes in weakly permeable geological formations possessing shielding characteristics which ensure reliability and safety in burial.

  3. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  4. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  5. Alternatives for high-level waste forms, containers, and container processing systems

    SciTech Connect

    Crawford, T.W.

    1995-09-22

    This study evaluates alternatives for high-level waste forms, containers, container processing systems, and onsite interim storage. Glass waste forms considered are cullet, marbles, gems, and monolithic glass. Small and large containers configured with several combinations of overpack confinement and shield casks are evaluated for these waste forms. Onsite interim storage concepts including canister storage building, bore holes, and storage pad were configured with various glass forms and canister alternatives. All favorable options include the monolithic glass production process as the waste form. Of the favorable options the unshielded 4- and 7-canister overpack options have the greatest technical assurance associated with their design concepts due to their process packaging and storage methods. These canisters are 0.68 m and 0.54 m in diameter respectively and 4.57 m tall. Life-cycle costs are not a discriminating factor in most cases, varying typically less than 15 percent.

  6. Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes

    SciTech Connect

    Perona, J.J.; Brown, C.H.

    1993-03-01

    The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP.

  7. Corrosion of radioactive waste tanks containing washed sludge and precipitates

    SciTech Connect

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1988-05-01

    At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.

  8. Reliability evaluation methodologies for ensuring container integrity of stored transuranic (TRU) waste

    SciTech Connect

    Smith, K.L.

    1995-06-01

    This report provides methodologies for providing defensible estimates of expected transuranic waste storage container lifetimes at the Radioactive Waste Management Complex. These methodologies can be used to estimate transuranic waste container reliability (for integrity and degradation) and as an analytical tool to optimize waste container integrity. Container packaging and storage configurations, which directly affect waste container integrity, are also addressed. The methodologies presented provide a means for demonstrating Resource Conservation and Recovery Act waste storage requirements.

  9. Pipe overpack container for trasuranic waste storage and shipment

    DOEpatents

    Geinitz, Richard R.; Thorp, Donald T.; Rivera, Michael A.

    1999-01-01

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  10. Preliminary evaluation of galvanic sludge immobilization in clay-based matrix as an environmentally safe process.

    PubMed

    Karlovic, Elvira S; Dalmacija, Bozo D; Tamas, Zagorka S; Prica, Miljana Dj; Ranogajec, Jonjaua G

    2008-04-01

    This study attempts to determine the possibilities and limitations of the immobilization of galvanic wastes by their incorporation into clay-based materials. It focuses on the effects of several processing parameters such as the temperature of thermal treatment, the relative amount of sludge, and the physico-chemical aspects of the sample, on the fixing level of relevant metals (Zn, Ni, Fe, Mn, Pb, Cu, Cr) in thermally treated clay-based samples. The effectiveness of sludge inactivation was assessed by water-leaching test and conductivity measurements. In view of the potential use of the sludge stabilization products as construction materials, the linear shrinkage and bending strain of the fired samples was investigated. To characterize their morphology, mineralogy and composition, fired samples of clay and its mixtures with galvanic sludge were studied on a scanning electron microscope (SEM) coupled with an energy dispersive X-ray analyser (EDS) and X-ray diffractometer (XRD). It was found that the efficiency of metal immobilization is dependent on the clay composition and the temperature of the thermal treatment of the prepared mixtures. The thermal treatment of all samples at all temperatures resulted in the stabilization of all heavy metal ions (copper, nickel, iron, lead, manganese and zinc) with the exception of chromium. PMID:18324540

  11. Precipitation and Deposition of Aluminum Containing Species in Tank Wastes

    SciTech Connect

    Mattigod, Shas V.; Hobbs, David T.; Wang, L.; Dabbs, Daniel M.; Aksay, Ilhan A.

    2003-06-01

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and, thereby, minimize the volume of high-level waste glass required to encapsulate radioactive sludges. Unfortunately, waste-processing steps that include evaporation can involve solutions that are supersaturated with respect to cementitious aluminosilicates that result in unwanted precipitation and scale formation. Of all the constituents of tank waste, limited solubility cementitious aluminosilicates have the greatest potential for clogging pipes and transfer lines, fouling highly radioactive components such as ion exchangers, and completely shutting down processing operations. For instance, deposit buildup and clogged drain lines experienced during the tank waste volume-reduction process at Savannah River Site (SRS) required an evaporator to b e shut down in October 1999. The Waste Processing Technology Section (WPTS) of Westinghouse Savannah River Company (WSRC) at SRS is now collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to solve the deposition and clogging problems. The primary goals of this study are to understand the (1) the major factors controlling precipitation, heterogeneous nucleation and growth phenomena, of relatively insoluble aluminosilicates, (2) role of organics for inhibiting aluminosilicate formation, and (3) to develop a predictive tool to control precipitation, scale formation, and cementation under tank waste processing conditions. The results obtained from this will provide crucial information for (1) avoiding problematical sludge processing steps, and (2) identifying and developing effective technologies to process retrieved sludges and supernatants before ultimate

  12. Precipitation and Deposition of Aluminum Containing Species in Tank Wastes

    SciTech Connect

    Mattigod, Shas V.; Hobbs, David T.; Wang, L.; Dabbs, Daniel M.; Aksay, Ilhan A.

    2004-06-01

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and, thereby, minimize the volume of high-level waste glass required to encapsulate radioactive sludges. Unfortunately, waste-processing steps that include evaporation can involve solutions that are supersaturated with respect to cementitious aluminosilicates that result in unwanted precipitation and scale formation. Of all the constituents of tank waste, limited solubility cementitious aluminosilicates have the greatest potential for clogging pipes and transfer lines, fouling highly radioactive components such as ion exchangers, and completely shutting down processing operations. For instance, deposit buildup and clogged drain lines experienced during the tank waste volume-reduction process at Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section (WPTS) of Westinghouse Savannah River Company (WSRC) at SRS is now collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to solve the deposition and clogging problems. The primary goals of this study are to understand the (1) the major factors controlling precipitation, heterogeneous nucleation and growth phenomena, of relatively insoluble aluminosilicates, (2) role of organics for inhibiting aluminosilicate formation, and (3) to develop a predictive tool to control precipitation, scale formation, and cementation under tank waste processing conditions. The results obtained from this will provide crucial information for (1) avoiding problematical sludge processing steps, and (2) identifying and developing effective technologies to process retrieved sludges and supernatants before ultimate

  13. Russian Containers for Transportation of Solid Radioactive Waste

    SciTech Connect

    Petrushenko, V. G.; Baal, E. P.; Tsvetkov, D. Y.; Korb, V. R.; Nikitin, V. S.; Mikheev, A. A.; Griffith, A.; Schwab, P.; Nazarian, A.

    2002-02-28

    The Russian Shipyard ''Zvyozdochka'' has designed a new container for transportation and storage of solid radioactive wastes. The PST1A-6 container is cylindrical shaped and it can hold seven standard 200-liter (55-gallon) drums. The steel wall thickness is 6 mm, which is much greater than standard U.S. containers. These containers are fully certified to the Russian GOST requirements, which are basically identical to U.S. and IAEA standards for Type A containers. They can be transported by truck, rail, barge, ship, or aircraft and they can be stacked in 6 layers in storage facilities. The first user of the PST1A-6 containers is the Northern Fleet of the Russian Navy, under a program sponsored jointly by the U.S. DoD and DOE. This paper will describe the container design and show how the first 400 containers were fabricated and certified.

  14. In situ containment and stabilization of buried waste

    SciTech Connect

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  15. Radwaste desk reference. [Dry Active Wastes; Contains Glossary

    SciTech Connect

    Munson, L.F. ); Kelly, J. ); Deltete, C.P.; Hahn, R.E. ); Haight, R.F.; Kahn, D. )

    1991-06-01

    This volume of the Radwaste Desk Reference contains fundamental practical and theoretical information on dry active waste (DAW). Because its information is based entirely on actual industry practice, the work can serve as an extensive how-to'' manual for both the newcomer and the experienced radwaste professional responsible for DAW generation, processing, packaging, or assay.

  16. 8. View, fuel waste tanks and containment basin associated with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View, fuel waste tanks and containment basin associated with Components Test Laboratory (T-27) located uphill to the left, looking northwest. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  17. 4. View, fuel waste tanks and containment basin in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View, fuel waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking southeast. At the extreme right is the Long-Term Oxidizer Silo (T-28B) and the Oxidizer Conditioning Structure (T-28D). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. Bonding material containing ashes after domestic waste incineration for cementation of radioactive waste

    SciTech Connect

    Dmitriev, S.A.; Varlakov, A.P.; Gorbunova, O.A.; Arustamov, A.E.; Barinov, A.S.

    2007-07-01

    It is known that cement minerals hydration is accompanied with heat emission. Heat of hardening influences formation of a cement compound structure and its properties. It is important to reduce the heat quantity at continuous cementation of waste and filling of compartments of a repository or containers by a cement grout. For reduction of heating, it is necessary to use cement of mineral additives (fuel ashes, slag and hydraulic silica). Properties of ashes after domestic waste incineration can be similar to ones of fly fuel ashes. However, ash after domestic waste incineration is toxic industrial waste as it contains toxic elements (As, Cd, Hg, Pb, Sb, Zn). Utilization of secondary waste (slag and ash) of combustion plants is an important environmental approach to solving cities' issues. Results of the research have shown that ashes of combustion plants can be used for radioactive waste conditioning. Co-processing of toxic and radioactive waste is ecologically and economically effective. At SIA 'Radon', experimental batches of cement compositions are used for cementation of oil containing waste. (authors)

  19. Mineral Carbonation Using Asbestos-Containing Cement Board Waste

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Roh, Y.

    2012-12-01

    Mineral carbonation appears to be one of the plausible methods for the practical fixation of CO2. Carbon consumption and sequestration by carbonation reactions involving alkaline elements such as Ca and Mg have been developed. Suitable feedstocks for CO2 sequestration are mineral carbonation using Ca/Mg-silicates. Asbestos-containing cement board waste consists of chrysotile asbestos which is one of the Mg-silicate and cement. Chrysotile is one of the raw materials to form carbonate mineral for CO2 fixation in previous studies and cement contains a quantity of calcium which is able to react with CO2. Generally, asbestos-containing cement board waste is dumped in controlled waste sites in South Korea. However, this cannot be regarded as an ultimate solution because dispersion of asbestos fibers in the air is an intrinsic risk during dumping operations and in the long-term management. An alternative solution is thermal transformation of asbestos-containing material into non-hazardous phase. Therefore, the aims of the study were to sequester CO2 using asbestos-containing cement board waste via mineral carbonation and to detoxify chrysotile asbestos in cement board waste via heat treatment. Two steps of experiments were designed: (1) synthesis of a carbonate mineral (i.e., calcite and magnesite), via the physicochemical reactions of fragmented cement board with CO2 and (2) transformation of fibrous asbestos into non-fibrous material through heat treatment. Physicochemical and mineralogical properties of cement board waste were investigated by TG-DTA , XRF, XRD, SEM, and EDS analyses. XRD analysis showed that the calcite (CaCO3) was formed after reaction of fragmented cement board with CO2. Mineralogical characteristics showed minerals such as chrysotile [Mg3Si2O5(OH)4] and calcite (CaCO3) in the reactions of fragmented cement board with CO2 were transformed into calcite (CaCO3), calcium oxide (CaO), and quartz (SiO2) by heat treatment. SEM-EDS analyses showed that

  20. HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER

    SciTech Connect

    Lee, S.

    2009-06-01

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

  1. Study on the plasma treatment of waste oil containing PCB

    NASA Astrophysics Data System (ADS)

    Park, H. S.; Lukashov, V. P.; Vashchenko, S. P.; Morozov, S. V.

    2009-12-01

    The paper presents the results of treatment of transformer oil containing less than 2 ppm polychlorinated biphenyls (PCB) in a plant of high-temperature plasma melting of ash residues after the municipal waste incineration. The content of undecomposed PCBs, dioxins, and other hazardous waste in all secondary products of treatment (off gases; slag; secondary fly ash; process water used for slag granulation) was analyzed by different methods. Performed analytical investigations showed high ecological degree of PCB decomposition in the plant of plasma-thermal treatment of ashes after incinerators.

  2. Potential of pottery materials in manufacturing radioactive waste containers.

    PubMed

    Helal, A A; Alian, A M; Aly, H M; Khalifa, S M

    2003-07-01

    Various pottery materials were evaluated for possible use in manufacturing containers for radioactive waste. Their potential was examined from the viewpoints of the effectiveness of disposal and the changes induced in them by gamma rays. Samples of these materials were irradiated with high-energy neutrons and gamma rays in a reactor near its core. the physical and mechanical properties of the materials before and after gamma irradiation (in a 60Co gamma cell) were compared. The study showed that pottery materials are resistant to radiation. Therefore, they were proposed for manufacturing drums for disposal of radioactive waste of high gamma activity. PMID:12878117

  3. Properties of radioactive wastes and waste containers. Status report, October 1980-September 1981

    SciTech Connect

    Morcos, N.; Dayal, R.; Weiss, A.J.

    1982-04-01

    Licensing of near surface low-level radioactive waste disposal sites and waste forms/containers requires the ability to predict the dispersibility of radionuclides from waste forms and waste containers disposed in burial sites. Basic concerns in licensing radioactive waste forms and containers are their dimensional stability and the potential for migration of the radionuclides enclosed therein in a near- and long-term predictable fashion. To assess these concerns, a data base is needed for evaluating the acceptability of solidified low-level radioactive waste packages for disposal. Furthermore, the need to develop test procedures and methodologies exists to enable the prediction of long-term performance of waste forms based on short-term laboratory tests. The objectives of the research program at BNL are to provide an improved understanding of phenomena, testing methodology and data. This improves the NRC's capability to predict low-level waste isolation performance, and to provide a better technical basis for regulatory standards. The areas addressed to meet these objectives during the 1981 fiscal year were: leachability and compressive strength of boric acid waste in Portland III cement. The tracers used for the study were /sup 137/Cs, /sup 85/Sr, and /sup 60/Co; leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from organic ion exchange resin/Portland III and Lumnite cements; displacement of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from organic ion exchange resins upon mixing with Portland II and Lumnite cements; leachability of organic ion exchange resins/Bitumen composites using resins in the H/sup +/, Na/sup +/, Cs/sup +/, Sr/sup +2/, and SO/sub 4//sup -2/ forms, and /sup 137/Cs and /sup 85/Sr tracers; correlation of /sup 137/Cs leachability from small-scale (laboratory) samples to large-scale waste forms; and hydrostatic testing of DOT 17H drums. 32 refs., 61 figs., 33 tabs.

  4. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  5. Assessing the disposal of wastes containing NORM in nonhazardous waste landfills

    SciTech Connect

    Smith, K. P.; Blunt, D. L.; Williams, G. P.; Arnish, J. J.; Pfingston, M. R.; Herbert, J.

    1999-11-22

    In the past few years, many states have established specific regulations for the management of petroleum industry wastes containing naturally occurring radioactive material (NORM) above specified thresholds. These regulations have limited the number of disposal options available for NORM-containing wastes, thereby increasing the related waste management costs. In view of the increasing economic burden associated with NORM management, industry and regulators are interested in identifying cost-effective disposal alternatives that still provide adequate protection of human health and the environment. One such alternative being considered is the disposal of NORM-containing wastes in landfills permitted to accept only nonhazardous wastes. The disposal of petroleum industry wastes containing radium-226 and lead-210 above regulated levels in nonhazardous landfills was modeled to evaluate the potential radiological doses and associated health risks to workers and the general public. A variety of scenarios were considered to evaluate the effects associated with the operational phase (i.e., during landfill operations) and future use of the landfill property. Doses were calculated for the maximally exposed receptor for each scenario. This paper presents the results of that study and some conclusions and recommendations drawn from it.

  6. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  7. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  8. Clay-based polymer nanocomposites: research and commercial development.

    PubMed

    Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R

    2005-10-01

    This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials. PMID:16245517

  9. 9. View, oxidizer waste tanks and containment basin associated with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View, oxidizer waste tanks and containment basin associated with Components Test Laboratory (T-27) located directly uphill, looking north. Located uphill in the upper left portion of the photograph (from right to left) are the Oxidizer Conditioning Structure (T-28D), Long-Term Oxidizer Silo (T-28B), and Systems Integration Laboratory (T-28). - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-01

    In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment. PMID:21963338

  11. Development of electrochemical denitrification from waste water containing ammonium nitrate

    SciTech Connect

    Sawa, Toshio; Hirose, Yasuo; Ishii, Yoshinori; Takatsudo, Atsushi; Wakasugi, Kazuhico; Hayashi, Hiroshi

    1995-12-31

    The authors developed processes to dentrify waste water containing ammonium nitrate discharged from the nuclear fuel manufacturing works and to recover nitric acid and ammonia. For denitrification they applied the operating method and the conditions of operation to make 0.4mM or less from NH{sub 4}NO{sub 3} waste water of 1.5 M by 3 stages of electrodialysis cells. To recover nitric acid and ammonium water, they separated HNO{sub 3} solution of 6 M and NH{sub 4}OH solution with one unit of electrolysis cell, then absorbed NH{sub 3} gas from NH{sub 4}OH solution with water and applied the condition of operation to recover 8 M NH{sub 4}OH solution. The authors demonstrated that treatment and recovery can be carried out stably with actual waste water with a system through the combination of previously mentioned electrodialysis cells, electrolysis cells and an ammonia gas absorber. At present they are planning a plant where NH{sub 4}NO{sub 3} waste water of 4,500 mol can be treated per day.

  12. WASTE CONTAINER AND WASTE PACKAGE PERFORMANCE MODELING TO SUPPORT SAFETY ASSESSMENT OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL.

    SciTech Connect

    SULLIVAN, T.

    2004-06-30

    Prior to subsurface burial of low- and intermediate-level radioactive wastes, a demonstration that disposal of the wastes can be accomplished while protecting the health and safety of the general population is required. The long-time frames over which public safety must be insured necessitates that this demonstration relies, in part, on computer simulations of events and processes that will occur in the future. This demonstration, known as a Safety Assessment, requires understanding the performance of the disposal facility, waste containers, waste forms, and contaminant transport to locations accessible to humans. The objective of the coordinated research program is to examine the state-of-the-art in testing and evaluation short-lived low- and intermediate-level waste packages (container and waste form) in near surface repository conditions. The link between data collection and long-term predictions is modeling. The objective of this study is to review state-of-the-art modeling approaches for waste package performance. This is accomplished by reviewing the fundamental concepts behind safety assessment and demonstrating how waste package models can be used to support safety assessment. Safety assessment for low- and intermediate-level wastes is a complicated process involving assumptions about the appropriate conceptual model to use and the data required to support these models. Typically due to the lack of long-term data and the uncertainties from lack of understanding and natural variability, the models used in safety assessment are simplistic. However, even though the models are simplistic, waste container and waste form performance are often central to the case for making a safety assessment. An overview of waste container and waste form performance and typical models used in a safety assessment is supplied. As illustrative examples of the role of waste container and waste package performance, three sample test cases are provided. An example of the impacts of

  13. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2003-11-18

    A sensor system for a buried waste containment site having a bottom wall barrier and sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  14. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2005-09-27

    A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  15. Coal tar-containing asphalt - resource or hazardous waste?

    SciTech Connect

    Andersson-Skold, Y.; Andersson, K.; Lind, B.; Claesson, A.; Larsson, L.; Suer, P.; Jacobson, T.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.

  16. Treatment technology analysis for mixed waste containers and debris

    SciTech Connect

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste.

  17. Containment canister for capturing hazardous waste debris during piping modifications

    SciTech Connect

    Dozier, Stanley B.

    2001-09-30

    The present invention relates to a containment canister for capturing hazardous waste debris during modifications to gloveboxes, or other radiological or biochemical hoods (generally termed gloveboxes therein), that require drilling and welding operations. Examples of such modifications include penetrations for pipe, thermowells, etc. In particular, the present invention relates to an improved containment canister that eliminates the need for costly containment huts and additional man power while at the same time reducing the risk of radiation exposure or other biohazard exposure to workers during glovebox modifications. The present invention also provides an improved hole saw which enables a driller to remove metal shavings and replace the hole saw if there is tooth wear present on the hole saw prior to actually penetrating a glovebox during modifications.

  18. Alcohol-free alkoxide process for containing nuclear waste

    DOEpatents

    Pope, James M.; Lahoda, Edward J.

    1984-01-01

    Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

  19. Apparatus for treating oil field wastes containing hydrocarbons

    SciTech Connect

    Mudd, R.E.; Wyatt, W.L.

    1986-03-11

    An apparatus is described for treating wastes containing carbonaceous materials comprising: (a) a rotary kiln having a first end higher than a second end whereby material rotating therein will flow from the first to the second end, the kiln having an inlet at the first end; (b) means for injecting burning fuel and air into the first end of the kiln and cause substantially complete combustion of all carbonaceous materials in the wastes and leaving only dry solid non-combustible residue and gases; (c) outlet means at the second end of the kiln; (d) separating means connected to the outlet means for separating heavier solid materials exiting the kiln from lighter solid materials exiting the kiln, the separating means including suction means for entraining the lighter materials in air and gases exhausted from the kiln while permitting heavier solid materials to separate therefrom by gravity; and (e) means downstream from the suction means for separating the lighter solid materials from the gases.

  20. Alcohol-free alkoxide process for containing nuclear waste

    SciTech Connect

    Pope, J.M.; Lahoda, E.J.

    1984-02-07

    Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO/sub 2/, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

  1. Definitions of solid and hazardous wastes. [Contains Glossary

    SciTech Connect

    Not Available

    1992-08-01

    This guidance document explains the definitions of solid and hazardous waste under the Resource Conservation and Recovery Act (RCRA). The definitions are presented in flowchart form to provide the reader with a method of utilizing applicable regulations to determine whether or not a material meets the definition of a solid or hazardous waste. A narrative adjacent to each step of the flowchart elaborates on the specific subject and clarifies the role of the step. The text also contains cross references to other parts of this document for further clarification. The information is provided in terms of a decision-making process. The flowcharts and accompanying text include all major information from the RCRA regulations found in Title 40 of the Code of Federal Regulations, Part 261 (40 CFR Part 261). In some cases, regulatory language has been supplemented with language from EPA rulemaking preambles.

  2. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Residues of hazardous waste in empty containers. 261.7 Section 261.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.7 Residues of hazardous waste in empty containers. (a)(1)...

  3. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II

  4. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    SciTech Connect

    Manaktala, H.K. . Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. . Div. of High-Level Waste Management)

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

  5. Mixed Waste Encapsulation in Polyester Resins. Treatment for Mixed Wastes Containing Salts. Mixed Waste Focus Area. OST Reference #1685

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous solid mixed wastes, such as treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of nitrate, sulfate, and chloride salts makes traditional cement stabilization of these waste streams difficult, expensive, and challenging. Salts can effect the setting rate of cements and can react with cement hydration products to form expansive and cement damaging compounds. Many of these salt wastes are in a dry granular form and are the by-product of treating spent acidic and metal solutions used to recover and reformulate nuclear weapons materials over the past 50 years. At the Idaho National Engineering and Environmental Laboratory (INEEL) alone, there is approximately 8,000 cubic meters of nitrate salts (potassium and sodium nitrate) stored above ground with an earthen cover. Current estimates indicate that over 200 million kg of contaminated salt wastes exist at various DOE sites. Continued primary treatment of waste water coupled with the use of mixed waste incinerators may generate an additional 5 million kg of salt-containing, mixed waste residues each year. One of the obvious treatment solutions for these salt-containing wastes is to immobilize the hazardous components to meet Environmental Protection Agency/Resource Conservation and Recovery Act (EPA/RCRA) Land Disposal Restrictions (LDR), thus rendering the mixed waste to a radioactive waste only classification. One proposed solution is to use thermal treatment via vitrification to immobilize the hazardous component and thereby substantially reduce the volume, as well as provide exceptional durability. However, these melter systems involve expensive capital apparatus with complicated off-gas systems. In addition, the vitrification of high salt waste may cause foaming and usually requires extensive development to specify glass

  6. Container materials for isolation of radioactive waste in salt

    SciTech Connect

    Streicher, M.A.; Andrews, A.

    1987-10-01

    The workshop reviewed the extensive data on the corrosion resistance of low-carbon steel in simulated salt repository environments, determined whether these data were sufficient to recommend low-carbon steel for fabrication of the container, and assessed the suitability of other materials under consideration in the SRP. The panelists determined the need for testing and research programs, recommended experimental approaches, and recommended materials based on existing technology. On the first day of the workshop, presentations were made on waste package requirements; the expected corrosion environment; degradation processes, including a review of data from corrosion tests on carbon steel; and rationales for container design and materials, modeling studies, and planned future work. The second day was devoted to a panel caucus, presentation of workshop findings, and open discussion. 76 refs., 2 figs., 3 tabs.

  7. Properties of slag concrete for low-level waste containment

    SciTech Connect

    Langton, C.A.; Wong, P.B.

    1991-12-31

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 {times} 100 {times} 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10{sup {minus}7} cm/sec; and effective nitrate, chromium and technetium diffusivities of 10{sup {minus}8}, 10{sup {minus}12} and 10{sup {minus}12} cm{sup 2}/sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr{sup +6} to Cr{sup +3} and Tc{sup +7} to Tc{sup +4} and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site.

  8. Properties of slag concrete for low-level waste containment

    SciTech Connect

    Langton, C.A. ); Wong, P.B. )

    1991-01-01

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 {times} 100 {times} 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10{sup {minus}7} cm/sec; and effective nitrate, chromium and technetium diffusivities of 10{sup {minus}8}, 10{sup {minus}12} and 10{sup {minus}12} cm{sup 2}/sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr{sup +6} to Cr{sup +3} and Tc{sup +7} to Tc{sup +4} and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site.

  9. Animal waste containment in anaerobic lagoons lined with compacted clays

    SciTech Connect

    Reddi, L.N.; Davalos, H.

    2000-03-01

    The practice of animal waste containment has recently drawn much interest from public and regulatory agencies in agriculture-oriented states such as Kansas and North Carolina. In this paper, the debate surrounding the practice is outlined, and results from a research investigation pertinent to the state of Kansas are presented. The research investigation involved two phases. In the first phase, compacted specimens of Kansas soils were tested with animal waste as the influent. The key objective of this phase of research was to assess the range of seepage quantities and the transport characteristics of nitrogen in the ammonium form (NH{sub 4}-N) through the compacted soils. Results from this phase indicated a steady increase of microbial counts in the liquid effluent. However, biological clogging did not appear to be prominent during the NH{sub 4}-N breakthrough time period. The results indicate significant differences in microbial uptake of NH{sub 4}-N among samples of the same soil type. In the second phase, analytical and numerical solutions were used to simulate ammonium transport in the field-scale liners and to estimated upper-bound travel times and final concentrations of NH{sub 4}-N in the underlying soils. Results form this phase showed drastic differences in travel times and end concentrations of NH{sub 4}-N among liners prepared from the same soil type. The potential for significant retardation, decay, and saturation levels of NH{sub 4}-N in clay liners suggests that liner thickness is an important parameter. It is concluded that mass transfer characteristics of liner material, cation exchange capacity and microbial uptake in particular, should be important considerations in the design of animal waste lagoon liners.

  10. Stress corrosion cracking of candidate waste container materials

    SciTech Connect

    Maiya, P.S.; Soppet, W.K.; Park, J.Y.; Kassner, T.F.; Shack, W.J.; Diercks, D.R.

    1990-11-01

    Six alloys have been selected as candidate container materials for the storage of high-level nuclear waste at the proposed Yucca Mountain site in Nevada. These materials are Type 304L stainless steel (SS), Type 316L SS, Incology 825, P-deoxidized Cu, Cu-30%Ni, and Cu-7% Al. The present program has been initiated to determine whether any of these materials can survive for 300 years in the site environment without developing through-wall stress corrosion cracks, and to assess the relative resistance of these materials to stress corrosion cracking (SCC). A series of slow-strain-rate tests (SSRTs) in simulated Well J-13 water which is representative of the groundwater present at the Yucca Mountain site has been completed, and crack-growth-rate (CGR) tests are also being conducted under the same environmental conditions. 13 refs., 60 figs., 22 tabs.

  11. Physics and Chemistry of the Hydrogen Fluoride Production Process from Fluorine Containing Waste

    NASA Astrophysics Data System (ADS)

    Dyachenko, A. N.; Kraydenko, R. I.; Lesnikova, M. S.; Malyutin, L. N.; Petlin, I. V.

    2016-06-01

    The impact of the aluminum industry wastes on the environment is established. The resource efficient method of aluminum industry fluorine-containing wastes processing, which includes wastes oxidizing roasting to remove carbon component and the interaction of fluorine- containing particles with sulfuric acid in order to produce hydrogen fluoride, is considered. The economic and environmental effect of the proposed processing method is substantiated.

  12. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    SciTech Connect

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio

  13. Proposed Objective Odor Control Test Methodology for Waste Containment

    NASA Technical Reports Server (NTRS)

    Vos, Gordon

    2010-01-01

    The Orion Cockpit Working Group has requested that an odor control testing methodology be proposed to evaluate the odor containment effectiveness of waste disposal bags to be flown on the Orion Crew Exploration Vehicle. As a standardized "odor containment" test does not appear to be a matter of record for the project, a new test method is being proposed. This method is based on existing test methods used in industrial hygiene for the evaluation of respirator fit in occupational settings, and takes into consideration peer reviewed documentation of human odor thresholds for standardized contaminates, industry stardnard atmostpheric testing methodologies, and established criteria for laboratory analysis. The proposed methodology is quantitative, though it can readily be complimented with a qualitative subjective assessment. Isoamyl acetate (IAA - also known at isopentyl acetate) is commonly used in respirator fit testing, and there are documented methodologies for both measuring its quantitative airborne concentrations. IAA is a clear, colorless liquid with a banana-like odor, documented detectable smell threshold for humans of 0.025 PPM, and a 15 PPB level of quantation limit.

  14. Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion

    NASA Astrophysics Data System (ADS)

    Bennett, D. G.; Gens, R.

    2008-09-01

    This paper provides a brief overview of current repository and engineered barrier system (EBS) designs in selected high-level waste (HLW) and spent fuel (SF) disposal concepts from European countries, with special reference to key metallic waste containers and corrosion processes. The paper discusses assessments of copper, iron and steel container corrosion behaviour under the environmental conditions expected, given likely repository host rocks and groundwaters, and comments on the significance of corrosion processes, the choice of waste container materials, and areas of research. Most of the HLW and/or SF disposal programmes in European countries are pursuing disposal options in which the primary waste container is designed, in conjunction with the surrounding EBS materials, to provide complete containment of the waste for at least the period when temperatures in the disposal system are significantly raised by radioactive decay.

  15. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    SciTech Connect

    Colleen Shelton-Davis

    2005-11-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

  16. Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins

    SciTech Connect

    Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

    1997-07-07

    Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE`s mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies.

  17. Phytostabilization of a landfill containing coal combustion waste.

    SciTech Connect

    Barton, Christopher; Marx, Donald; Adriano, Domy; Koo, Bon Jun; Newman, Lee; Czapka, Stephen; Blake, John

    2005-12-01

    The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three subsurface treatments (blocks) and five surface amendments (treatments) was implemented. The three blocks included (1) ripping and compost amended, (2) ripping only, and (3) control. Surface treatments included (1) topsoil, (2) fly ash, (3) compost, (4) apatite, and (5) control. Inoculated loblolly (Pinus taeda) and Virginia (Pinus virginiana) pine trees were planted on each plot. After three growing seasons, certain treatments were shown to be favorable for the establishment of vegetation on the basin. Seedlings located on block A developed a rooting system that penetrated into the basin media without significant adverse effects to the plant. However, seedlings on blocks B and C displayed poor rooting conditions and high mortality, regardless of surface treatment. Pore-water samples from lysimeters in block C were characterized by high acidity, Fe, Mn, Al, sulfate, and traceelement concentrations. Water-quality characteristics of the topsoil plots in block A, however, conformed to regulatory protocols. A decrease in soil-moisture content was observed in the rooting zone of plots that were successfully revegetated, which suggests that the trees, in combination with the surface treatments, influenced the water balance by facilitating water loss through transpiration and thereby reducing the likelihood of unwanted surface runoff and/or drainage effluent.

  18. Biofilm treatment of soil for waste containment and remediation

    SciTech Connect

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A.

    1997-12-31

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k{sub sat} using a flexible-wall permeameter. Saturated hydraulic conductivity (k{sub sat}) was reduced from 1 x 10{sup -5} cm/sec to 2 x 10{sup -8} cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k{sub sat}, for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment.

  19. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Residues of hazardous waste in empty containers. 261.7 Section 261.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.7 Residues of...

  20. Remote automated material handling of radioactive waste containers

    SciTech Connect

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site`s suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling.

  1. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  2. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste listed in §§ 261.31 or 261.33(e) of this chapter is empty if: (i) All wastes have been... container that has held an acute hazardous waste listed in §§ 261.31 or 261.33(e) is empty if: (i) The... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Residues of hazardous waste in...

  3. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste listed in §§ 261.31 or 261.33(e) of this chapter is empty if: (i) All wastes have been... container that has held an acute hazardous waste listed in §§ 261.31 or 261.33(e) is empty if: (i) The... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Residues of hazardous waste in...

  4. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste listed in §§ 261.31 or 261.33(e) of this chapter is empty if: (i) All wastes have been... container that has held an acute hazardous waste listed in §§ 261.31 or 261.33(e) is empty if: (i) The... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Residues of hazardous waste in...

  5. Neutron shielding analysis for remote handled transuranic waste containers in facility casks at the Waste Isolation Pilot Plant

    SciTech Connect

    Livingston, J.V.; Disney, R.K.

    1984-04-01

    Neutron shielding characteristics of the Waste Isolation Pilot Plant facility cask have been quantified for a variety of combinations of neutron sources and waste matrices which would potentially be handled in waste containers. The neutron attenuation and neutron environment of the waste container and the facility cask have been analyzed to ensure that the design requirement of neutron dose rate will be met under the combinations of the source and waste matrix conditions. The analyses considered the ranges of neutron source spectrum and waste matrices which combine to produce the minimum neutron shielding worth of the facility cask. One-dimensional analyses were performed with discrete ordinate transport theory methods using multigroup neutron cross section data. The results discussed in this report demonstrate the effect of source spectrum and waste container matrix on predicted neutron dose rates adjacent to the unshielded waste container and the surface of the facility cask. An evaluation of the uncertainties in predicted neutron dose rates is provided which results in an assessment of the maximum measured neutron dose rate external to the facility cask. A description of the analytical models developed, the analysis methodology, the neutron source spectra, and the detailed results are described in this report. 10 refs., 50 figs., 39 tabs.

  6. Production of new biomass/waste-containing solid fuels

    SciTech Connect

    Akers, D.; Shirey, G.; Zitron, Z.; Nowak, M.

    2000-07-01

    The electric utility industry is interested in the use of biomass and waste byproducts as fuel to reduce both emissions and fuel costs. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. One method of addressing these issues is to produce composite fuels composed of a pelletized mixture of biomass and other constituents. However, for composite fuels to be extensively used in the US, especially in the steam market, a lower cost method of producing these fuels must be developed. Also, standard formulations of biomass and coal (possibly including waste) with broad application to US boilers must be identified. In addition to acceptable cost, these standard formulations can provide environmental benefits relative to coal. The Department of Energy along with the Electric Power Research Institute and various industry partners has funded CQ Inc. to develop both a dewatering/pelletizing die and three standard formulations of biomass, coal, and waste byproducts. Six biomass/waste sources were initially selected for study: petroleum coke, mixed waste plastic, switchgrass, waxed cardboard, poultry manure, and sewage sludge. A sample representative of each source was collected and analyzed. Also, two sources of coal, recovered from waste ponds, were collected for use in the project.

  7. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    SciTech Connect

    Daniel M. Dabbs; Ilhan A. Aksay

    2005-01-12

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations.

  8. Immobilization of plutonium-containing waste into borobasalt, piroxen and andradite mineral-like compositions

    NASA Astrophysics Data System (ADS)

    Matyunin, Yu. I.; Yudintsev, S. V.; Jardine, L. J.

    2000-07-01

    Immobilization of plutonium-containing waste with obtaining stable and solid compositions is one of the problems that require a solution while managing radioactive waste. At VNIINM work is under way to select and synthesize matrix compositions for the immobilization of various-origin plutonium waste with the use of a cold crucible induction melting technology (CCIM). This paper presents information on the synthesis in a muffle furnace and in the CCIM zerium-, uranium- and plutonium-containing borobasalt, piroxen and andradite materials.

  9. Characteristics of metal waste forms containing technetium and uranium

    SciTech Connect

    Fortner, J.A.; Kropf, A.J.; Ebert, W.L.

    2013-07-01

    2 prototype alloys: RAW-1(Tc) and RAW-2(UTc) suitable for a wide range of waste stream compositions are being evaluated to support development of a waste form degradation model that can be used to calculate radionuclide source terms for a range of waste form compositions and disposal environments. Tests and analyses to support formulation of waste forms and development of the degradation model include detailed characterizations of the constituent phases using SEM/EDS and TEM, electrochemical tests to quantify the oxidation behavior and kinetics of the individual and coupled phases under a wide range of environmental conditions, and corrosion tests to measure the gross release kinetics of radionuclides under aggressive test conditions.

  10. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  11. The Japanese approach to developing clay-based repository concepts An example of design studies for the assessment of sealing strategies

    NASA Astrophysics Data System (ADS)

    Sugita, Yutaka; Fujita, Tomoo; Takahashi, Yoshiaki; Kawakami, Susumu; Umeki, Hiroyuki; Yui, Mikazu; Uragami, Manabu; Kitayama, Kazumi

    The H12 repository concept for vitrified high-level radioactive waste was developed based on a multi-barrier system, with the emphasis on robust engineered barrier performance to ensure its feasibility for a wide range of geological conditions typically observed in Japan. The decision to use a volunteer siting process requires maximum flexibility of the repository concept to allow it to be adapted to potential sites and hence a wide range of variants of the basic H12 repository design has been developed. In order to evaluate the feasibility and applicability of different repository options to specific siting environments, NUMO has established a set of “design factors” which classify the aspects that need to be considered when evaluating the pros and cons of different repository options. The buffer in the repository concepts is clay-based. An Na-type bentonite from Japan is used as the reference material for all clay-based repository components (buffer, backfill, clay plug, etc.). The characteristics of this bentonite (thermal, mechanical, chemical, hydraulic) have been examined with consideration of various practical constraints (limitation on the repository footprint, the influence of saline water, the interaction of hyperalkaline leachates, practical working environment, etc.). Clay-based seals, which close off the tunnels after emplacement of the engineered barrier system (EBS), may also be key components for assessment of the performance of the repository. Full analyses considering all engineered barrier components (buffer, backfill, clay plug, concrete lining, tunnel, concrete plug) that may be used in a repository will be an essential future task. As a first step towards this goal, a numerical analysis focusing on hydraulic behaviour at the intersections of the disposal tunnels and the main tunnel is presented to illustrate how the design requirements of clay-based seals can be determined.

  12. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    SciTech Connect

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to

  13. Iron Phosphate Glass-Containing Hanford Waste Simulant

    SciTech Connect

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, M. J.; Rodriguez, Carmen P.; Kim, Dong-Sang; Riley, Brian J.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that is high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.

  14. Iron Phosphate Glass-Containing Hanford Waste Simulant

    SciTech Connect

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, Michael J.; Kim, Dong-Sang

    2011-08-01

    Resolution of the nation’s high level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron phosphate-based glass with a selected waste composition that is high in sulfates (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis as related to the implementation of phosphate-based glasses for Hanford low activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, and Mo-Sci Corporation.

  15. Stress corrosion cracking of candidate waste container materials; Final report

    SciTech Connect

    Park, J.Y.; Maiya, P.S.; Soppet, W.K.; Diercks, D.R.; Shack, W.J.; Kassner, T.F.

    1992-06-01

    Six alloys have been selected as candidate container materials for the storage of high-level nuclear waste at the proposed Yucca mountain site in Nevada. These materials are Type 304L stainless steel (SS). Type 316L SS, Incoloy 825, phosphorus-deoxidized Cu, Cu-30%Ni, and Cu-7%Al. The present program has been initiated to determine whether any of these materials can survive for 300 years in the site environment without developing through-wall stress corrosion cracks. and to assess the relative resistance of these materials to stress corrosion cracking (SCC)- A series of slow-strain-rate tests (SSRTs) and fracture-mechanics crack-growth-rate (CGR) tests was performed at 93{degree}C and 1 atm of pressure in simulated J-13 well water. This water is representative, prior to the widespread availability of unsaturated-zone water, of the groundwater present at the Yucca Mountain site. Slow-strain-rate tests were conducted on 6.35-mm-diameter cylindrical specimens at strain rates of 10-{sup {minus}7} and 10{sup {minus}8} s{sup {minus}1} under crevice and noncrevice conditions. All tests were interrupted after nominal elongation strain of 1--4%. Scanning electron microscopy revealed some crack initiation in virtually all the materials, as well as weldments made from these materials. A stress- or strain-ratio cracking index ranks these materials, in order of increasing resistance to SCC, as follows: Type 304 SS < Type 316L SS < Incoloy 825 < Cu-30%Ni < Cu and Cu-7%Al. Fracture-mechanics CGR tests were conducted on 25.4-mm-thick compact tension specimens of Types 304L and 316L stainless steel (SS) and Incoloy 825. Crack-growth rates were measured under various load conditions: load ratios M of 0.5--1.0, frequencies of 10{sup {minus}3}-1 Hz, rise nines of 1--1000s, and peak stress intensities of 25--40 MPa{center_dot}m {sup l/2}.

  16. Simultaneous treatment of SO2 containing stack gases and waste water

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  17. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    SciTech Connect

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-09-30

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive).

  18. Heat transfer effects in vertically emplaced high level nuclear waste container

    SciTech Connect

    Moujaes, S.F.; Lei, Y.M.

    1994-05-01

    Modeling free convection heat transfer in an cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rack. These waste containers are vertically emplaced in the borehole 300 meters below ground, and in a horizontal grid of 30 {times} 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3--4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions.

  19. Properties of lightweight cement-based composites containing waste polypropylene

    NASA Astrophysics Data System (ADS)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.

  20. STABILIZATION AND TESTING OF MERCURY CONTAINING WASTES: BORDEN SLUDGE

    EPA Science Inventory

    This report details the stability assessment of a mercury containing sulfide treatment sludge. Information contained in this report will consist of background data submitted by the geneerator, landfill data supplied by EPA and characterization and leaching studies conducted by UC...

  1. STABILIZATION AND TESTING OF MERCURY CONTAINING WASTES: BORDEN SLUDGE

    EPA Science Inventory

    This report details the stability assessment of a mercury containing sulfide treatment sludge. Information contained in this report will consist of background data submitted by the generator, landfill data supplied by EPA and characterization and leaching studies conducted by UC...

  2. Selection of containment systems for commercial high-level radioactive waste management

    SciTech Connect

    Kaplan, M. F.; Giuffre, M. S.; Bartlett, J. W.

    1981-05-01

    This document reports the results of a study aimed at determining the best strategy for providing containment during management of commercial high-level radioactive wastes. Containment to assure public and worker safety is needed for all storage, transport, handling, and disposal operations. There are several thousand containment system options; this work determined, in overview rather than detail, which options should be pursued. This work shows that the geologic and engineered barriers in repositories in different geologic media, such as salt and granite, play very different roles in preserving long-term containment. In sum, there is no common engineered waste package that is suitable for disposal in all geologic media, each package must be tailored to the specific repository system. The need to make the waste package specific to the repository system leads to the key elements of waste management containment strategy: perform final packaging at the disposal site, and deliver to the site a waste that is in a form suitable for disposal and in a container that is (a) appropriate for the process that produced the waste form, (b) satisfactory for transport, and (c) suitable as the common basis for custom tailoring the waste package for any repository system. As described in this report, mild carbon steel is a container material that can be expected to meet these requirements.

  3. Feasibility assessment of copper-base waste package container materials in nuclear waste repositories sited in basalt and tuff

    SciTech Connect

    Gause, E.P.; Abraham, N.

    1987-12-31

    In early 1984, the United States Department of Energy Office of Civilian Radioactive Waste Management (DOE-OCRWM) established a two-year program (FY 1985 and FY 1986) to evaluate the use of copper and copper alloys in basalt and tuff repository environments in accordance with Congressional directive. The Basalt Waste Isolation Project (BWIP) and the Nevada Nuclear Waste Storage Investigation (NNWSI) Project concluded that copper-base materials are feasible as candidate container materials in a repository sited in a basalt or tuff environment. The feasibility of using copper materials in containers was qualitatively assessed using the following criteria: 1) container design and development; 2) preclosure safety (e.g., fabrication or emplacement risks); 3) repository interfaces (e.g., handling of containers); 4) retrievability considerations; 5) containment (mainly corrosion considerations); 6) radionuclide release (container/waste interactions); and 7) cost and availability. Weighting factors were not used and no comparison to other candidate disposal container materials was made. This paper details the results of testing, literature reviews, and evaluations that were performed for each of the seven criteria on each of the three conceptual container designs. The designs were as follows: A thick-walled Cupronickel 90-10 pressure vessel (BWIP); a copper monolith made by the HIP (hot isostatic pressing) process (BWIP); and a thin-walled aluminum bronze or Cupronickel 70-30 pressure vessel (NNWSI Project). A brief discussion of future plans to evaluate copper-base materials is presented for the BWIP and NNWSI Project.

  4. Remote mining for in-situ waste containment. Final report

    SciTech Connect

    Martinelli, D.; Banta, L.; Peng, S.

    1995-10-01

    This document presents the findings of a study conducted at West Virginia University to determine the feasibility of using a combination of longwall mining and standard landfill lining technologies to mitigate contamination of groundwater supplies by leachates from hazardous waste sites.

  5. Properties of Saltstone Prepared Containing H-Canyon Waste

    SciTech Connect

    Cozzi, A

    2005-04-05

    Saltstone slurries were prepared from solutions made from H-Canyon waste and evaluated for processing properties. Salt solutions prepared with a 1:1 ratio of Tank 50H simulant and H-Canyon blended waste produced slurries that met the processing requirements in Table 2 of the Task Technical and Quality Assurance Plan (TTQAP). Additions of set retarder and antifoam were necessary to meet these processing requirements. The water to premix ratio used to achieve acceptable processing properties was 0.63. Slurries prepared solely with H-Canyon blended waste as the salt solution met the gel time and bleed water requirements, but did not set in the allotted time. Compressive strength samples prepared from the mix with acceptable processing properties had an average compressive strength of 814 psi (Samples with a compressive strength value of >200 psi are acceptable.). Analysis for mercury of the leachate of samples analyzed by the Toxic Characteristic Leaching Procedure (TCLP) indicated a concentration of mercury in the leachate <0.11 mg/L (The limit set by the Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) for mercury to require treatment is 0.2 mg/L.). It is recommended that without further testing; Tank 50H be limited to no more than 50 wt% H-Canyon material. It is also recommended that prior to the transfer of Tank 50H to the Saltstone Processing Facility; a sample of the Tank 50H waste be evaluated for processing properties.

  6. Test procedures for polyester immobilized salt-containing surrogate mixed wastes

    SciTech Connect

    Biyani, R.K.; Hendrickson, D.W.

    1997-07-18

    These test procedures are written to meet the procedural needs of the Test Plan for immobilization of salt containing surrogate mixed waste using polymer resins, HNF-SD-RE-TP-026 and to ensure adequacy of conduct and collection of samples and data. This testing will demonstrate the use of four different polyester vinyl ester resins in the solidification of surrogate liquid and dry wastes, similar to some mixed wastes generated by DOE operations.

  7. Early detection and evaluation of waste through sensorized containers for a collection monitoring application

    SciTech Connect

    Rovetta, Alberto; Fan Xiumin; Vicentini, Federico; Zhu Minghua; Giusti, Alessandro; He Qichang

    2009-12-15

    The present study describes a novel application for use in the monitoring of municipal solid waste, based on distributed sensor technology and geographical information systems. Original field testing and evaluation of the application were carried out in Pudong, Shanghai (PR China). The local waste management system in Pudong features particular requirements related to the rapidly increasing rate of waste production. In view of the fact that collected waste is currently deployed to landfills or to incineration plants within the context investigated, the key aspects to be taken into account in waste collection procedures include monitoring of the overall amount of waste produced, quantitative measurement of the waste present at each collection point and identification of classes of material present in the collected waste. The case study described herein focuses particularly on the above mentioned aspects, proposing the implementation of a network of sensorized waste containers linked to a data management system. Containers used were equipped with a set of sensors mounted onto standard waste bins. The design, implementation and validation procedures applied are subsequently described. The main aim to be achieved by data collection and evaluation was to provide for feasibility analysis of the final device. Data pertaining to the content of waste containers, sampled and processed by means of devices validated on two purpose-designed prototypes, were therefore uploaded to a central monitoring server using GPRS connection. The data monitoring and management modules are integrated into an existing application used by local municipal authorities. A field test campaign was performed in the Pudong area. The system was evaluated in terms of real data flow from the network nodes (containers) as well as in terms of optimization functions, such as collection vehicle routing and scheduling. The most important outcomes obtained were related to calculations of waste weight and

  8. Diffusion of radionuclides in clay-based ceramics

    SciTech Connect

    Ivanov, P.A.; Gulin, A.N.; Shatkov, V.M.; Shashukov, E.A.; Kuznetsov, B.S.

    1988-09-01

    The diffusion coefficients of sodium-22, strontium-90, and cesium-134 in clay-containing ceramics of three types are determined by the method of integral residual activity. It is found that at the investigated temperatures the diffusion coefficients of the radionuclides decrease in the order sodium-22, cesium-134, strontium-90. Migration of cesium-134 in comparison with sodium-22 is characterized by substantially lower values of the preexponential factor and diffusion activation energy. It is shown that in the case of ceramic made up of 89% by mass cambrian clay and 11% by mass perlite, increase in relative moisture content of the samples from0.05 to 0.3% leads to substantial (by 2-3 orders of magnitude) growth of the diffusion coefficients of the radionuclides. Further increase in the relative moisture content has practically no effect on their diffusive mobility.

  9. Concentrated coal plant wastes contained with concrete cutoff

    SciTech Connect

    Not Available

    1984-03-01

    A 3-mile concrete cutoff wall around a huge scrubber-waste-disposal basin is being constructed in southeastern Montana. The $25-million cutoff is designed to seal highly pervious layers of baked shale surrounding the pond, protecting scarce groundwater reserves from the scrubber slurry generated by a power station 3 miles away. Groundwater contamination concerns led to the decision for the cutoff, which is made from interlocking concrete panels.

  10. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect

    DEROSA, D.C.

    2000-01-13

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  11. TECHNICAL RESOURCE DOCUMENT: TREATMENT TECHNOLOGIES FOR METAL/CYANIDE-CONTAINING WASTES. VOLUME 3

    EPA Science Inventory

    The Technical Resource Document provides information that can be used by environmental regulatory agencies and others as a source of technical information for waste management options for hazardous liquid wastes containing heavy metals and/or cyanide compounds. These options incl...

  12. ASSESSMENT AND RECOMMENDATIONS FOR IMPROVING THE PERFORMANCE OF WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This broad-based study addressed three categories of issues related to the design,
    construction, and performance of waste containment systems used at landfills, surface
    impoundments, and waste piles, and in the remediation of contaminated sites. Geosynthetic materials have...

  13. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    SciTech Connect

    Ulm, Franz-Josef

    2000-03-31

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  14. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. he document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic drai...

  15. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. The document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic dr...

  16. Oil-containing waste water treating material consisting of modified active carbon

    SciTech Connect

    Sato, H.; Shigeta, S.; Takenaka, Y.

    1982-03-16

    An oil-containing waste water treating material comprises an active carbon upon whose surface is chemically bonded at least one nitrogenous compound which is an amine or a quaternarized derivative thereof.

  17. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  18. EVALUATION USING AN ORGANOPHILIC CLAY TO CHEMICALLY STABILIZE WASTE CONTAINING ORGANIC COMPOUNDS

    EPA Science Inventory

    A modified clay (organophilic) was utilized to evaluate the potential for chemically stabilizing a waste containing organic compounds. hemical bonding between the binder and the contaminants was indicated. eachate testing also indicated strong binding. Copy available at NTIS as ...

  19. CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. n gene...

  20. Corrosion issues in high-level nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Asl, Samin Sharifi

    In this dissertation different aspects of corrosion and electrochemistry of copper, candidate canister material in Scandinavian high-level nuclear waste disposal program, including the thermodynamics and kinetics of the reactions that are predicted to occur in the practical system have been studied. A comprehensive thermodynamic study of copper in contact with granitic groundwater of the type and composition that is expected in the Forsmark repository in Sweden has been performed. Our primary objective was to ascertain whether copper would exist in the thermodynamically immune state in the repository, in which case corrosion could not occur and the issue of corrosion in the assessment of the storage technology would be moot. In spite of the fact that metallic copper has been found to exist for geological times in granitic geological formations, copper is well-known to be activated from the immune state to corrode by specific species that may exist in the environment. The principal activator of copper is known to be sulfur in its various forms, including sulfide (H2S, HS-, S2-), polysulfide (H2Sx, HSx -, Sx 2-), poly sulfur thiosulfate ( SxO3 2-), and polythionates (SxO6 2-). A comprehensive study of this aspect of copper chemistry has never been reported, and yet an understanding of this issue is vital for assessing whether copper is a suitable material for fabricating canisters for the disposal of HLNW. Our study identifies and explores those species that activate copper; these species include sulfur-containing entities as well as other, non-sulfur species that may be present in the repository. The effects of temperature, solution pH, and hydrogen pressure on the kinetics of the hydrogen electrode reaction (HER) on copper in borate buffer solution have been studied by means of steady-state polarization measurements, including electrochemical impedance spectroscopy (EIS). In order to obtain electrokinetic parameters, such as the exchange current density and the

  1. Treatment and recycling of asbestos-cement containing waste.

    PubMed

    Colangelo, F; Cioffi, R; Lavorgna, M; Verdolotti, L; De Stefano, L

    2011-11-15

    The remediation of industrial buildings covered with asbestos-cement roofs is one of the most important issues in asbestos risk management. The relevant Italian Directives call for the above waste to be treated prior to disposal on landfill. Processes able to eliminate the hazard of these wastes are very attractive because the treated products can be recycled as mineral components in building materials. In this work, asbestos-cement waste is milled by means of a high energy ring mill for up to 4h. The very fine powders obtained at all milling times are characterized to check the mineralogical and morphological transformation of the asbestos phases. Specifically, after 120 min of milling, the disappearance of the chrysotile OH stretching modes at 3690 cm(-1), of the main crystalline chrysotile peaks and of the fibrous phase are detected by means of infrared spectroscopy and X-ray diffraction and scanning electron microscopy analyses, respectively. The hydraulic behavior of the milled powders in presence of lime is also tested at different times. The results of thermal analyses show that the endothermic effects associated to the neo-formed binding phases significantly increase with curing time. Furthermore, the technological efficacy of the recycling process is evaluated by preparing and testing hydraulic lime and milled powder-based mortars. The complete test set gives good results in terms of the hydration kinetics and mechanical properties of the building materials studied. In fact, values of reacted lime around 40% and values of compressive strength in the range of 2.17 and 2.29 MPa, are measured. PMID:21924550

  2. Precipitation of Aluminum Containing Species in Tank Wastes

    SciTech Connect

    Mattigod, Shas V.; Hobbs, David; Parker, Kent E.; McCready, David E.

    2002-05-29

    Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section (WPTS) of Westinghouse Savannah River Company at SRS is now collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the steady-state thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to eliminate the deposition and clogging problems. The data obtained at 40 ?C showed that formation and persistence of crystalline phases was dependent on the initial hydroxide concentrations. The formation and persistence of zeolite A occurred only at lower hydroxide concentrations, whereas increasing hydroxide concentrations appeared to promote the formation of sodalite and cancrinite. The data also showed that although zeolite A forms initially, it is a metastable phase that converts to more stable crystalline materials such as sodalite and cancrinite. Additionally, the rate of transformation of zeolite A appeared to increase with increasing hydroxide concentration. The data from tests conducted at 80 ?C revealed relatively rapid formation of sodalite and cancrinite. Although minor amounts of zeolite A were initially detected in some cases, the higher reaction temperatures seemed to promote very rapid transformation of this phase into more stable phases. Also, the higher temperature and hydroxide concentrations appeared to initiate kinetically fast crystallization of sodalite and cancrinite. More recent testing at SRS in support of the HLW evaporator plugging issue has shown similar trends in the formation of aluminosilicate phases. These tests were carried out under conditions more similar to those that occur in HLW tanks and evaporators. Comparison of our results with those reported above show very similar trends.

  3. Aluminum-Containing Phases in Tank Waste: Precipitation and Deposition of Aluminum-Containing Phases

    SciTech Connect

    Mattigod, Shas; Hobbs, D.T.; Wellman, D.M.; Aksay, I.

    2006-06-01

    Aluminosilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. Recent investigations illustrated the accumulation 7 wt% uranium, 3% was 235U and absent of neutron poisons, within these deposits and presented a criticality concern. The Waste Processing Technology Section of Westinghouse Savannah River Company at SRS is now collaborating with a team from Pacific Northwest National Laboratory in efforts to identify the phases controlling uranium solubility and understand the conditions under which they precipitate.

  4. Inhibition of nuclear waste solutions containing multiple aggressive anions

    SciTech Connect

    Congdon, J.W.

    1988-05-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions; however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion.

  5. NONDESTRUCTIVE TESTING (NDT) TECHNIQUES TO DETECT CONTAINED SUBSURFACE HAZARDOUS WASTE

    EPA Science Inventory

    The project involves the detection of buried containers with NDT (remote-sensing) techniques. Seventeen techniques were considered and four were ultimately decided upon. They were: electromagnetic induction (EMI); metal detection (MD); magnetometer (MAG); and ground penetrating r...

  6. Feasibility assessment of copper-base waste package container materials in a repository in basalt

    SciTech Connect

    Anantatmula, R.P.

    1985-09-01

    The results of FY 1985 corrosion testing and design development efforts are presented in support of a feasibility assessment of copper-base materials for use in waste container applications for a proposed nuclear waste repository in basalt. Two materials were included in the assessment activities: (1) high purity copper (UNS C10200), and (2) Cupronickel 90-10 (UNS C70600). Testing activities during FY 1985 included general corrosion, pitting corrosion, and environmentally assisted cracking studies. The FY 1985 waste package design studies considered consolidated spent nuclear fuel and West Valley high-level waste. 6 refs., 5 figs., 2 tabs.

  7. Stabilization of mercury-containing wastes using sulfide.

    PubMed

    Piao, Haishan; Bishop, Paul L

    2006-02-01

    This paper summarizes the findings of our studies on mercury stabilization using sulfide. Primary stabilization variables such as stabilization pH and sulfide/mercury molar ratio were tested. Mercury stabilization effectiveness was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) and the constant pH leaching tests. The influence of interfering ions on mercury immobilization was also tested. The experimental results indicate that the sulfide-induced treatment technology is an effective way to minimize mercury leaching. It was found that the most effective mercury stabilization occurs at pH 6 combined with a sulfide/mercury molar ratio of 1. The combined use of increased dosage of sulfide and ferrous ions ([S]/[Hg]=2 and [Fe]/[Hg]=3 at pH=6) can significantly reduce interferences by chloride and/or phosphate during sulfide-induced mercury immobilization. The sulfide-treated waste stabilization efficiency reached 98%, even with exposure of the wastes to high pH leachants. PMID:16099084

  8. A process for treatment of mixed waste containing chemical plating wastes

    SciTech Connect

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-02-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr{sup VI} to Cr{sup III} from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions.

  9. Properties of radioactive wastes and waste containers. Quarterly progress report, January-March 1980

    SciTech Connect

    Manaktala, H.K.; Weiss, A.J.

    1980-05-01

    Solidification experiments were performed with organic ion-exchange resins using Portland type II cement to investigate waste to binder ratios which result in monolithic waste forms. Test results are provided in tabular form showing formulations which result in considerable swelling, cracking, or splitting of the specimens upon solidification. The range of waste loadings which produce monolithic waste forms is given. Experiments were conducted to establish appropriate waste/binder ratios within which simulated boric acid reactor waste may be incorporated into portland type III cement, to produce acceptable waste forms. Both pH-adjusted and pH-unadjusted boric acid solutions were used. Sodium hydroxide in solid pellet form was used to adjust the boric acid pH. Data are reported for 3, 6, and 12 weight percent boric acid wastes, with pH-adjusted values of 7, 10, and 12. Range of waste/binder ratios investigated is from 0.32 to 1.5. Results are summarized in the form of ternary compositional phase diagrams depicting envelope boundaries within which formulations exhibit no free standing liquids. The cure time is substantially reduced when NaOH pellets are used, rather than 10 M NaOH solution. This is attributed to the higher solid contents in the waste solution when NaOH in solid form is used. A ''two-part'' urea-formaldehyde process was used to solidify four simulated LWR waste streams, viz. ion-exchange bead resins, diatomaceous earth, sodium sulfate, and boric acid wastes. The waste forms were evaluated on the basis of solid monolith, free standing liquid, corrosivity of the free liquids, and specimen shrinkage criteria. The results show that the two-part urea-formaldehyde process (a) is capable of solidifying LWR low-level wastes into solid free-standing monoliths, (b) produces free-standing water with pH approximately 2, and (c) produces specimen shrinkage of approximately 5 volume percent after four weeks in an enclosed environment.

  10. Fracture during cooling of cast borosilicate glass containing nuclear wastes

    SciTech Connect

    Smith, P.K.; Baxter, C.A.

    1981-09-01

    Procedures and techniques were evaluated to mitigate thermal stress fracture in waste glass as the glass cools after casting. The two principal causes of fracture identified in small-scale testing are internal thermal stresses arising from excessive thermal gradients when cooled too fast, and shear fracturing in the surface of the glass because the stainless steel canister shrinks faster than the glass on cooling. Acoustic emission and ceramographic techniques were used to outline an annealing schedule that requires at least three weeks of controlled cooling below 550/sup 0/C to avoid excessive thermal gradients and corresponding stresses. Fracture arising from canister interactions cannot be relieved by slow cooling, but can be eliminated for stainless steel canisters by using ceramic paper, ceramic or graphite paste linings, or by choosing a canister material with a thermal expansion coefficient comparable to, or less than, that of the glass.

  11. Containment canister for capturing hazardous waste debris during piping modifications

    SciTech Connect

    Dozier, Stanley B.

    2001-07-24

    The present invention relates to a capture and containment canister which reduces the risk of radiation and other biohazard exposure to workers, the need for a costly containment hut and the need for the extra manpower associated with the hut. The present invention includes the design of a canister having a specially designed magnetic ring that attracts and holds the top of the canister in place during modifications to gloveboxes and other types of radiological and biochemical hoods. The present invention also provides an improved hole saw that eliminates the need for a pilot bit.

  12. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  13. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    SciTech Connect

    Singh, D.; Wagh, A.S.; Tlustochowicz

    1996-04-01

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of {sup 137}Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes.

  14. Properties of radioactive wastes and waste containers. Quarterly progress report, April-June 1981

    SciTech Connect

    Morcos, N.; Weiss, A.J.

    1981-11-01

    An empirical relationship has been developed to estimate the cumulative fractional releases of /sup 137/Cs from simulated waste forms as a function of leaching time and the geometric surface-to-volume ratios. Data from an ongoing leaching study were used. The simulated waste forms consisted of organic cation exchange resins solidified in Portland I cement at a waste-to-cement ratio of 0.6 and water-to-cement ratio of 0.4. The nominal specimen dimensions were: 1-inch diameter x 1-inch high, 2-inch diameter x 2-inch high, 2-inch diameter x 4-inch high, 3-inch diameter x 3-inch high, 6-inch diameter x 6-inch high, 6-inch diameter x 12-inch high, and 12-inch diameter x 12-inch high. The waste forms were leached in deionized water using a modified IAEA leaching procedure. A study designed to evalate the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from simulated boric acid waste solidified in Portland III cement and to measure the compressive strength of the ensuing waste forms before and after leaching was concluded. Leaching data extending over 229 days are presented. The simulated waste forms were leached in deionized water using a modified IAEA leaching procedure. The compressive strength of the specimens was measured initially and after their exposure to a leaching environment for 352 days.

  15. Properties of radioactive wastes and waste containers. Quarterly progress report, October-December 1981

    SciTech Connect

    Morcos, N.; Dayal, R.

    1982-05-01

    A study correlating the leachability of /sup 137/Cs from small-scale to large-scale cement forms was performed. The waste forms consisted of organic ion exchange resins incorporated in Portland I cement, with a waste-to-cement ratio of 0.6 and a water-to-cement ratio of 0.4 (as free water) and boric acid waste (12% solution), incorporated in Portland III cement, with a waste-to-cement ratio of 0.7. /sup 137/Cs was added to both waste types prior to solidification. The samples' dimensions varied from 1 in. x 1 in. to 22 in. x 22 in. (diameter x height) in size. Leach data extending over a period of 260 days were obtained. A method based on semi-infinite plane source diffusion model was applied to analyze the leach data. An effective bulk diffusion coefficient was calculated from the leach data for both types of solidified waste. A derived mathemtical expression allows prediction of the amount of /sup 137/Cs leached from the forms as a function of leaching time and waste form dimensions. A reasonably good agreement between the experimental and calculated data is obtained.

  16. Innovative systems for waste isolation and containment. Final report

    SciTech Connect

    Eklund, A.G.; Huyck, C.A.; Oliphint, R.P.

    1995-09-01

    Native soils amended to enhance their chemical isolation and containment properties were tested in a laboratory column leaching study to determine their effectiveness at containing leachates from atmospheric fluidized-bed combustion (AFBC) and spray dryer byproducts. Levels of arsenic, boron, cadmium, calcium, chloride, selenium, silicon, sodium, sulfate, vanadium, pH, and electrical conductivity in the column leachates were measured. These tests indicate that native soil liners that have high levels of clay and iron, or are amended with alkaline-resistant bentonite, are the best choices for isolating and containing highly alkaline coal combustion byproducts such as AFBC and spray dryer byproducts. All of the liners tested attenuated calcium and sulfate from the AFBC byproducts. Some of the amended soil liners also attenuated chloride, boron, selenium, and cadmium from the AFBC byproducts. All of the liners attenuated calcium, sodium, and chloride from the spray dryer byproducts. Most of the amended soil liners also attenuated boron, selenium, silicon, and vanadium from the spray dryer byproducts.

  17. Poly-urea spray elastomer for waste containment applications

    SciTech Connect

    Miller, C.J.; Cheng, S.C.J.; Tanis, R.

    1997-12-31

    Geomembrane usage in environmental applications has increased dramatically following the promulgation of federal regulations resulting from the Resource Conservation and Recovery Act of 1976 (RCRA). Subtitle D rules, formulated under the authority of RCRA, call for minimum performance standards to limit adverse effects of a solid waste disposal facility on human health or the environment (40 CFR 257,258, August 30, 1988). These rules set minimum standards requiring new landfill designs to include liner systems and final cover systems. Each state has the responsibility to develop rules that are at least as stringent as the Subtitle D rules. There are several types of geomembranes currently available for landfill applications, each offering particular advantages and disadvantages. For example, PVC does not show the yield point (point of instability) that HDPE shows, HDPE has a higher puncture resistance than PVC, and PVC will deform much more than HDPE before barrier properties of the geomembrane are lost. Because each geomembrane material exhibits its own particular characteristics the material selected should be chosen based on the individual project requirements. It is preferable to select a design that uses the least expensive material and meets the performance specifications of the project.

  18. Pulsed eddy current thickness measurements of transuranic waste containers

    SciTech Connect

    O`Brien, T.K.; Kunerth, D.C.

    1995-12-31

    Thickness measurements on fifty five gallon waste drums for drum integrity purposes have been traditionally performed at the INEL using ultrasonic testing methods. Ultrasonic methods provide high resolution repeatable thickness measurements in a timely manner, however, the major drawback of using ultrasonic techniques is coupling to the drum. Areas with severe exterior corrosion, debonded paper labels or any other obstacle in the acoustic path will have to be omitted from the ultrasonic scan. We have developed a pulsed eddy current scanning system that can take thickness measurements on fifty five gallon carbon steel drums with wall thicknesses up to 65 mils. This type of measurement is not susceptible to the problems mentioned above. Eddy current measurements in the past have excluded ferromagnetic materials such as carbon steel because of the difficulty in penetrating the material and in compensating for changes in permeability from material to material. New developments in data acquisition electronics as well as advances in personal computers have made a pulsed eddy current system practical and inexpensive. Certain aspects of the pulsed eddy current technique as well as the operation of such a system and features such as real time pass/fail thresholds for overpacking identification and full scan data archiving for future evaluation will be discussed.

  19. ANNUAL REPORT. PRECIPITATION AND DEPOSITION OF ALUMINUM-CONTAINING SPECIES IN TANK WASTES

    EPA Science Inventory

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and thereby minimize the volume of high-level ...

  20. PRECIPITATION AND DEPOSITION OF ALUMINUM-CONTAINING PHASES IN TANK WASTES

    EPA Science Inventory

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and, thereby, minimize the volume of high-lev...

  1. Criticality Potential of Waste Packages Containing DOE SNF Affected by Igneous Intrusion

    SciTech Connect

    D.S. Kimball; C.E. Sanders

    2006-02-07

    The Department of Energy (DOE) is currently preparing an application to submit to the U.S. Nuclear Regulatory Commission for a construction authorization for a monitored geologic repository. The repository will contain spent nuclear fuel (SNF) and defense high-level waste (DHLW) in waste packages placed in underground tunnels, or drifts. The primary objective of this paper is to perform a criticality analysis for waste packages containing DOE SNF affected by a disruptive igneous intrusion event in the emplacement drifts. The waste packages feature one DOE SNF canister placed in the center and surrounded by five High-Level Waste (HLW) glass canisters. The effective neutron multiplication factor (k{sub eff}) is determined for potential configurations of the waste package during and after an intrusive igneous event. Due to the complexity of the potential scenarios following an igneous intrusion, finding conservative and bounding configurations with respect to criticality requires some additional considerations. In particular, the geometry of a slumped and damaged waste package must be examined, drift conditions must be modeled over a range of parameters, and the chemical degradation of DOE SNF and waste package materials must be considered for the expected high temperatures. The secondary intent of this calculation is to present a method for selecting conservative and bounding configurations for a wide range of end conditions.

  2. Application of PINS and GNAT to the assay of 55-gal containers of radioactive waste

    SciTech Connect

    Gehrke, R.J.; Aryaeinejad, R.; Watts, K.D.; Staples, D.R.; Akers, D.W.

    1994-03-01

    The Portable Isotropic Neutron Spectroscopy (PINS) and Gamma Neutron Assay Technique (GNAT) assay systems that were developed with funding from the office of Research and Development (NN20), were taken to the Stored Waste Examination Pilot Plant (SWEPP) facility at the Radioactive Waste Management Complex (RWMC) and applied to the assay of surrogate and Rocky Flats Plant waste contained in 55-gal drums. PINS, a portable prompt {gamma} neutron activation analysis technique, was able to identify key elements in both the surrogate and real waste so that three-main waste categories: metal, combustible material, and cemented chlorinated sludge wastes could be identified. GNAT, a {gamma}, neutron assay technique for the identification and quantification of fissioning isotopes, was able to identify {sup 240}Pu in surrogate waste in which nine 1-g nuclear accident dosimeters were inserted. GNAT was also able to identify {sup 24O}Pu in real 55-gal waste drums containing 15- and 40-g of plutonium even in the presence of high activity concentrations of {sup 241}Am.

  3. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    SciTech Connect

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the WP. This

  4. The Treatment of Mixed Waste with GeoMelt In-Container Vitrification

    SciTech Connect

    Finucane, K.G.; Campbell, B.E.

    2006-07-01

    AMEC's GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

  5. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Bullen, D.B.; Gdowski, G.E. ); Weiss, H. )

    1988-06-01

    Three copper-based alloys, CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni), are being considered along with three austenitic candidates as possible materials for fabrication of containers for disposal of high-level radioactive waste. The waste will include spent fuel assemblies from reactors as well as high-level reprocessing wastes in borosilicate glass and will be sent to the prospective repository at Yucca Mountain, Nevada, for disposal. The containers must maintain mechanical integrity for 50 yr after emplacement to allow for retrieval of waste during the preclosure phase of repository operation. Containment is required to be substantially complete for up to 300 to 1000 yr. During the early period, the containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. The final closure joint will be critical to the integrity of the containers. This volume surveys the available data on the metallurgy of the copper-based candidate alloys and the welding techniques employed to join these materials. The focus of this volume is on the methods applicable to remote-handling procedures in a hot-cell environment with limited possibility of postweld heat treatment. The three copper-based candidates are ranked on the basis of the various closure techniques. On the basis of considerations regarding welding, the following ranking is proposed for the copper-based alloys: CDA 715 (best) > CDA 102 > CDA 613 (worst). 49 refs., 15 figs., 1 tab.

  6. Enviro-geotechnical considerations in waste containment system design and analysis

    SciTech Connect

    Fang, H.Y.; Daniels, J.L.; Inyang, H.I.

    1997-12-31

    The effectiveness of waste control facilities hinges on careful evaluation of the overall planning, analysis and design of the entire system prior to construction. At present, most work is focused on the waste controlling system itself, with little attention given to the local environmental factors surrounding the facility sites. Containment materials including geomembranes, geotextiles and clay amended soils have received intense scrutiny. This paper, however, focuses on three relatively important issues relating to the characterization of the surrounding geomedia. Leakage through naturally occurring low-permeability soil layers, shrinkages swelling, cracking and effects of dynamic loads on system components are often responsible for a waste containment breach. In this paper, these mechanisms and their synergistic effects are explained in terms of the particle energy field theory. It is hoped that this additional information may assist the designer to be aware or take precaution to design safer future waste control facilities.

  7. LLNL/YMP Waste Container Fabrication and Closure Project; GFY technical activity summary

    SciTech Connect

    1990-10-01

    The Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM) Program is studying Yucca Mountain, Nevada as a suitable site for the first US high-level nuclear waste repository. Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing and developing the waste package for the permanent storage of high-level nuclear waste. This report is a summary of the technical activities for the LLNL/YMP Nuclear Waste Disposal Container Fabrication and Closure Development Project. Candidate welding closure processes were identified in the Phase 1 report. This report discusses Phase 2. Phase 2 of this effort involved laboratory studies to determine the optimum fabrication and closure processes. Because of budget limitations, LLNL narrowed the materials for evaluation in Phase 2 from the original six to four: Alloy 825, CDA 715, CDA 102 (or CDA 122) and CDA 952. Phase 2 studies focused on evaluation of candidate material in conjunction with fabrication and closure processes.

  8. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A. Spangler, L.R.

    1995-12-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. The EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is unnecessary. A test program was conducted to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative.

  9. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  10. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  11. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1991-09-10

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

  12. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    1991-01-01

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.

  13. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    NASA Astrophysics Data System (ADS)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  14. Flexible process options for the immobilisation of residues and wastes containing plutonium

    SciTech Connect

    Stewart, M.W.A.; Moricca, S.A.; Day, R. A.; Begg, B. D.; Scales, C. R.; Maddrell, E. R.; Eilbeck, A. B.

    2007-07-01

    Residues and waste streams containing plutonium present unique technical, safety, regulatory, security, and socio-political challenges. In the UK these streams range from lightly plutonium contaminated materials (PCM) through to residue s resulting directly from Pu processing operations. In addition there are potentially stocks of Pu oxide powders whose future designation may be either a waste or an asset, due to their levels of contamination making their reuse uneconomic, or to changes in nuclear policy. While waste management routes exist for PCM, an immobilisation process is required for streams containing higher levels of Pu. Such a process is being developed by Nexia Solutions and ANSTO to treat and immobilise Pu waste and residues currently stored on the Sellafield site. The characteristics of these Pu waste streams are highly variable. The physical form of the Pu waste ranges from liquids, sludges, powders/granules, to solid components (e.g., test fuels), with the Pu present as an ion in solution, as a salt, metal, oxide or other compound. The chemistry of the Pu waste streams also varies considerably with a variety of impurities present in many waste streams. Furthermore, with fissile isotopes present, criticality is an issue during operations and in the store or repository. Safeguards and security concerns must be assessed and controlled. The process under development, by using a combination of tailored waste form chemistry combined with flexible process technology aims to develop a process line to handle a broad range of Pu waste streams. It aims to be capable of dealing with not only current arisings but those anticipated to arise as a result of future operations or policy changes. (authors)

  15. Report for slot cutter proof-of-principle test, Buried Waste Containment System project. Revision 1

    SciTech Connect

    1998-05-21

    Several million cubic feet of hazardous and radioactive waste was buried in shallow pits and trenches within many US Department of Energy (US DOE) sites. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. Many of the hazardous materials in these waste sites are migrating into groundwater systems through plumes and leaching. On-site containment is one of the options being considered for prevention of waste migration. This report describes the results of a proof-of-principle test conducted to demonstrate technology for containing waste. This proof-of-principle test, conducted at the RAHCO International, Inc., facility in the summer of 1997, evaluated equipment techniques for cutting a horizontal slot beneath an existing waste site. The slot would theoretically be used by complementary equipment designed to place a cement barrier under the waste. The technology evaluated consisted of a slot cutting mechanism, muck handling system, thrust system, and instrumentation. Data were gathered and analyzed to evaluate the performance parameters.

  16. Calculational technique to predict combustible gas generation in sealed radioactive waste containers

    SciTech Connect

    Flaherty, J.E.; Fujita, A.; Deltete, C.P.; Quinn, G.J.

    1986-05-01

    Certain forms of nuclear waste, when subjected to ionizing radiation, produce combustible mixtures of gases. The production of these gases in sealed radioactive waste containers represents a significant safety concern for the handling, shipment and storage of waste. The US Nuclear Regulatory Commission (NRC) acted on this safety concern in September 1984 by publishing an information notice requiring waste generators to demonstrate, by tests or measurements, that combustible mixtures of gases are not present in radioactive waste shipments; otherwise the waste must be vented within 10 days of shipping. A task force, formed by the Edison Electric Institute to evaluate these NRC requirements, developed a calculational method to quantify hydrogen gas generation in sealed containers. This report presents the calculational method along with comparisons to actual measured hydrogen concentrations from EPICOR II liners, vented during their preparation for shipment. As a result of this, the NRC recently altered certain waste shipment Certificates-Of-Compliance to allow calculations, as well as tests and measurements, as acceptable means of determining combustible gas concentration. This modification was due in part to work described herein.

  17. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect

    Boggs, C.J.; Shaddoan, W.T.

    1996-03-01

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  18. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    NASA Astrophysics Data System (ADS)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  19. PROBABILISTIC ASSESSMENT OF A CRITICALITY IN A WASTE CONTAINER AT SRS

    SciTech Connect

    Eghbali, D

    2006-12-26

    Transuranic solid waste that has been generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site (SRS) has been stored in more than 30,000 55-gallon drums and various size carbon steel boxes since 1953. Nearly two thirds of those containers have been processed and shipped to the Waste Isolation Pilot Plant. Among the containers assayed so far, the results indicate several drums with fissile inventories significantly higher (600-1000 grams {sup 239}Pu) than their original assigned values. While part of this discrepancy can be attributed to the past limited assay capabilities, human errors are believed to be the primary contributor. This paper summarizes an assessment of the probability of occurrence of a criticality accident during handling of the remaining transuranic waste containers at SRS.

  20. Selection criteria for container materials at the proposed Yucca Mountain high level nuclear waste repository

    SciTech Connect

    Halsey, W.G.

    1989-11-01

    A geological repository has been proposed for the permanent disposal of the nation`s high level nuclear waste at Yucca Mountain in the Nevada desert. The containers for this waste must remain intact for the unprecedented service lifetime of 1000 years. A combination of engineering, regulatory, and licensing requirements complicate the container material selection. In parallel to gathering information regarding the Yucca Mountain service environment and material performance data, a set of selection criteria have been established which compare candidate materials to the performance requirements, and allow a quantitative comparison of candidates. These criteria assign relative weighting to varied topic areas such as mechanical properties, corrosion resistance, fabricability, and cost. Considering the long service life of the waste containers, it is not surprising that the corrosion behavior of the material is a dominant factor. 7 refs.

  1. Properties of radioactive wastes and waste containers. Quarterly progress report, October-December 1980

    SciTech Connect

    Morcos, N.; Weiss, A.J.

    1981-05-01

    Simulated boric acid waste at three different concentrations was solidified in Portland III cement together with /sup 137/Cs, /sup 85/Sr, and /sup 60/Co. The leachability of these tracers from the waste forms was measured over a period of 84 days. Compressive strengths of the simulated waste forms at the three boric acid concentrations were also measured. An experiment was performed to determine the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from organic ion exchange resin/cement composites. Portland II and Lumnite cements were used as binders with waste-to-cement ratios of 1.0 and 1.8 by weight for both cements. In addition, the displacement of the three radiotracers from the ion exchange resins upon mixing the loaded resins with the two cements (before solidification) was measured. Cationic resins in the H/sup +/, Na/sup +/, Cs/sup +/, and Sr/sup +2/ forms were loaded with /sup 137/Cs and /sup 85/Sr, were mixed in different ratios with anionic resins in the SO/sub 4/ form, and were solidified in bitumen. The leachability and physical integrity of the resulting organic ion exchange resin/bitumen composites were measured. A total of 30 DOT 17H drums, from three different manufacturing lots, were tested to determine if they met the specifications set forth in the Code of Federal Regulations 49 CFR 178-118-66. The results are presented. 15 references, 39 figures, 10 tables.

  2. Demonstration of close-coupled barriers for subsurface containment of buried waste. Conceptual test plan

    SciTech Connect

    Heiser, J.; Dwyer, B.

    1995-07-01

    Over the past five decades, the US Department of Energy (DOE) Complex sites have experienced numerous loss of confinement failures from underground storage tanks (USTs), piping systems, vaults, landfills, and other structures containing hazardous and mixed wastes. Consequently, efforts are being made to devise technologies that provide interim containment of waste sites while final remediation alternatives are developed. Barrier materials consisting of cement and polymer which will be emplaced beneath a 7500 liter tank. The stresses around the tank shall be evaluated during barrier construction.

  3. Fabrication and closure development of nuclear waste disposal containers for the Yucca Mountain Project: Status report

    SciTech Connect

    Domian, H.A.; Robitz, E.S.; Conrardy, C.C.; LaCount, D.F.; McAninch, M.D.; Fish, R.L.; Russell, E.W.

    1991-09-01

    In GFY 89, a project was underway to determine and demonstrate a suitable method for fabricating thin-walled monolithic waste containers for service within the potential repository at Yucca Mountain. A concurrent project was underway to determine and demonstrate a suitable closure process for these containers after they have been filled with high-level nuclear waste. Phase 1 for both the fabrication and closure projects was a screening phase in which candidate processes were selected for further laboratory testing in Phase 2. This report describes the final results of the Phase 1 efforts. It also describes the preliminary results of Phase 2 efforts.

  4. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    PubMed

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production

  5. Precipitation and Deposition of Aluminum-Containing Species in Tank Wastes

    SciTech Connect

    Mattigod, Shas V.; Hobbs, David T.; Wang, Li-Qiong; Dabbs, Daniel M.; Aksay, Ilhan A.

    2002-06-01

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and thereby minimize the volume of high-level waste glass required to encapsulate radioactive sludges. Unfortunately, waste-processing steps that include evaporation can involve solutions that are supersaturated with respect to cementitious aluminosilicates that result in unwanted precipitation and scale formation. Of all the constituents of tank waste, limited solubility cementitious aluminosilicates have the greatest potential for clogging pipes and transfer lines, fouling highly radioactive components such as ion exchangers, and completely shutting down processing operations. For instance, deposit buildup and clogged drain lines experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section of Westinghouse Savannah River Company at SRS now is collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to solve the deposition and clogging problems. The primary objectives of this study are (1) to understand the major factors controlling precipitation, heterogeneous nucleation, and growth phenomena of relatively insoluble aluminosilicates; (2) to determine the role of organics for inhibiting aluminosilicate formation, and (3) to develop a predictive tool to control precipitation, scale formation, and cementation under tank waste processing conditions. The results of this work will provide crucial information for (1) avoiding problematical sludge processing steps and (2) identifying and developing effective technologies to process retrieved sludges and supernatants before ultimate

  6. Application of fuel cell for pyrite and heavy metal containing mining waste

    NASA Astrophysics Data System (ADS)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  7. Nonradioactive Air Emissions Notice of Construction (NOC) Application for the Central Waste Complex (CSC) for Storage of Vented Waste Containers

    SciTech Connect

    KAMBERG, L.D.

    2000-04-01

    This Notice of Construction (NOC) application is submitted for the storage and management of waste containers at the Central Waste Complex (CWC) stationary source. The CWC stationary source consists of multiple sources of diffuse and fugitive emissions, as described herein. This NOC is submitted in accordance with the requirements of Washington Administrative Code (WAC) 173-400-110 (criteria pollutants) and 173-460-040 (toxic air pollutants), and pursuant to guidance provided by the Washington State Department of Ecology (Ecology). Transuranic (TRU) mixed waste containers at CWC are vented to preclude the build up of hydrogen produced as a result of radionuclide decay, not as safety pressure releases. The following activities are conducted within the CWC stationary source: Storage and inspection; Transfer and staging; Packaging; Treatment; and Sampling. This NOC application is intended to cover all existing storage structures within the current CWC treatment, storage, and/or disposal (TSD) boundary, as well as any storage structures, including waste storage pads and staging areas, that might be constructed in the future within the existing CWC boundary.

  8. Corrosion models for predictions of performance of high-level radioactive-waste containers

    SciTech Connect

    Farmer, J.C.; McCright, R.D.; Gdowski, G.E.

    1991-11-01

    The present plan for disposal of high-level radioactive waste in the US is to seal it in containers before emplacement in a geologic repository. A proposed site at Yucca Mountain, Nevada, is being evaluated for its suitability as a geologic repository. The containers will probably be made of either an austenitic or a copper-based alloy. Models of alloy degradation are being used to predict the long-term performance of the containers under repository conditions. The models are of uniform oxidation and corrosion, localized corrosion, and stress corrosion cracking, and are applicable to worst-case scenarios of container degradation. This paper reviews several of the models.

  9. Microbial control on decomposition of radionuclides-containing oily waste in soil

    NASA Astrophysics Data System (ADS)

    Selivanovskaya, Svetlana; Galitskaya, Polina

    2014-05-01

    The oily wastes are formed annually during extraction, refinement, and transportation of the oil and may cause pollution of the environment. These wastes contain different concentrations of waste oil (40-60%), waste water (30-90%), and mineral particles (5-40%). Some oily wastes also contain naturally occurring radionuclides which were incorporated by water that was pumped up with the oil. For assessment of the hazard level of waste treated soil, not only measurements of contaminants content are needed, because bioavailability of oily components varies with hydrocarbon type, and soil properties. As far as namely microbial communities control the decomposition of organic contaminants, biological indicators have become increasingly important in hazard assessment and the efficiency of remediation process. In this study the decomposition of radionuclides-containing oily waste by soil microbial communities were estimated. Waste samples collected at the Tikchonovskii petroleum production yard (Tatarstan, Russia) were mixed with Haplic greyzem soil at ratio 1:4 and incubated for 120 days. During incubation period, the total hydrocarbon content of the soil mixed with the waste reduced from 156 ± 48 g kg-1 to 54 ± 8 g kg-1 of soil. The concentrations of 226Ra and 232Th were found to be 643 ± 127, 254 ± 56 Bq kg-1 and not changed significantly during incubation. Waste application led to a soil microbial biomass carbon decrease in comparison to control (1.9 times after 1 day and 1.3 times after 120 days of incubation). Microbial respiration increased in the first month of incubation (up to 120% and 160% of control after 1 and 30 days, correspondingly) and decreased to the end of incubation period (74% of control after 120 days). Structure of bacterial community in soil and soil/waste mixture was estimated after 120 days of incubation using SSCP method. The band number decreased in contaminated soil in comparison to untreated soil. Besides, several new dominant DNA

  10. In situ containment and stabilization of buried waste. Annual report FY 1992

    SciTech Connect

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  11. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  12. Prediction of unconfined compressive strength of cement paste containing industrial wastes.

    PubMed

    Stegemann, J A; Buenfeld, N R

    2003-01-01

    Neural network analysis was used to construct models of unconfined compressive strength (UCS) as a function of mix composition using existing data from literature studies of Portland cement containing real industrial wastes. The models were able to represent the known non-linear dependency of UCS on curing time and water content, and generalised from the literature data to find relationships between UCS and quantities of five waste types. Substantial decreases in UCS were caused by all wastes; except for EAF dust, the effect was nonlinear with the greatest decrease caused initially by approx. 12% plating sludge, 40% foundry dust, 58% other ash, and 72% MSWI fly ash by mass of dry product. It appears that the maximum waste additions used in modelling may approximate the practical limits of waste additions used in modelling may approximate the practical limits of waste addition to Portland cement, i.e., 50% plating sludge or EAF dust, 64% foundry dust, 92% other ash, and 85% MSWI fly ash by mass of dry product. The laboratory was found to be a key predictive variable and acted as a surrogate for laboratory-specific variables related to cement composition, strength and hardening class, product mixing and preparation details, laboratory conditions, and testing details. While the neural network modelling approach has been shown to be feasible, development of better models would require larger data sets with more complete information regarding laboratory-specific variables and waste composition. PMID:12781220

  13. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Gdowski, G.E.; Bullen, D.B. )

    1988-08-01

    Six alloys are being considered as possible materials for the fabrication of containers for the disposal of high-level radioactive waste. Three of these candidate materials are copper-based alloys: CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The other three are iron- to nickel-based austenitic materials: Types 304L and 316L stainless steels and Alloy 825. Radioactive waste will include spent-fuel assemblies from reactors as well as waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, the containers must be retrievable from the disposal site. Shortly after emplacement of the containers in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This radiation will promote the radiolytic decomposition of moist air to hydrogen. This volume surveys the available data on the effects of hydrogen on the six candidate alloys for fabrication of the containers. For copper, the mechanism of hydrogen embrittlement is discussed, and the effects of hydrogen on the mechanical properties of the copper-based alloys are reviewed. The solubilities and diffusivities of hydrogen are documented for these alloys. For the austenitic materials, the degradation of mechanical properties by hydrogen is documented. The diffusivity and solubility of hydrogen in these alloys are also presented. For the copper-based alloys, the ranking according to resistance to detrimental effects of hydrogen is: CDA 715 (best) > CDA 613 > CDA 102 (worst). For the austenitic alloys, the ranking is: Type 316L stainless steel {approx} Alloy 825 > Type 304L stainless steel (worst). 87 refs., 19 figs., 8 tabs.

  14. Demonstration of close-coupled barriers for subsurface containment of buried waste

    SciTech Connect

    Dwyer, B.P.; Heiser, J.; Stewart, W.

    1996-12-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification.

  15. Method of solidifying waste materials, such as radioactive or toxic materials, contained in aqueous solutions

    SciTech Connect

    Knieper, J.; May, K.; Printz, H.

    1984-07-24

    A method is disclosed of solidifying waste materials, such as radioactive or toxic materials, which are contained in aqueous solutions. To accomplish this solidification, an inorganic, non-metallic binding agent such as gypsum is intermixed with the aqueous solution and a substance such as pumice or ceramic tile which promotes the intermixing of the binding agent and the aqueous solution.

  16. STABILIZATION OF A MIXED WASTE SLUDGE SURROGATE CONTAINING MORE THAN 260 PPM MERCURY

    SciTech Connect

    Smith, W. J.; Feizollahi, F.; Brimley, R.

    2002-02-25

    In an earlier demonstration of an innovative mercury stabilization technology for the Department of Energy, ATG's full-scale process stabilized mercury in soils that initially contained more than 260 ppm of mercury of unknown speciation. The treated waste satisfied the leaching standards for mercury that qualify wastes containing less than 260 ppm for land disposal. This paper describes the extension of that work to demonstrate a full-scale process for the stabilization of a representative sludge that contained more than 260 ppm of Hg of several mercury species. RCRA (Resource Conservation and Recovery Act) regulations now require the recovery of mercury from any waste containing more than 260 ppm of mercury, usually with thermal retorts. The results of this work with a surrogate sludge, and of the previous work with an actual soil, support a proposal now before the U.S. EPA (Environmental Protection Agency) to allow such wastes to be stabilized without retorting. The full-scale demonstration with a sulfide reagent reduced the mercury concentrations in extracts of treated sludge below the relevant leaching standard, a Universal Treatment Standard (UTS) limit of 0.025 mg mercury per liter of leachate generated by the Toxicity Characteristic Leaching Procedure (TCLP). The sulfide formulation reduced the concentration to about onehalf the UTS limit.

  17. Stress corrosion cracking in canistered waste package containers: Welds and base metals

    SciTech Connect

    Huang, J.S.

    1998-03-01

    The current design of waste package containers include outer barrier using corrosion allowable material (CAM) such as A516 carbon steel and inner barrier of corrosion resistant material (CRM) such as alloy 625 and C22. There is concern whether stress corrosion cracking would occur at welds or base metals. The current memo documents the results of our analysis on this topic.

  18. Wool-waste as organic nutrient source for container-grown plants

    SciTech Connect

    Zheljazkov, Valtcho D. Stratton, Glenn W.; Pincock, James; Butler, Stephanie; Jeliazkova, Ekaterina A.; Nedkov, Nedko K.; Gerard, Patrick D.

    2009-07-15

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  19. Biochemical process of low level radioactive liquid simulation waste containing detergent

    SciTech Connect

    Kundari, Noor Anis Putra, Sugili; Mukaromah, Umi

    2015-12-29

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0

  20. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  1. Land containment system: Horizontal grout barrier: A method for in situ waste management

    SciTech Connect

    Ridenour, D.E.; Saugier, R.K.

    1994-08-01

    The DOE has a number of sites where wastes can potentially leak into the ground and escape into the environment. Both the DOE and others are faced with a need to control a wide variety of pollutants on land: leaking underground storage tanks, unstabilized soluble wastes entering the groundwater, leachates from dump sites and other sources. Current technologies require either removal and repackaging of the waste from its existing location or, the ability to tie vertical barrier walls into an underlying impermeable layer to contain leaking wastes. Necessary elements in control are land containment systems capable of completely surrounding and holding the contamination until it is removed, stabilized and/or treated in situ. Horizontal barrier placement technology as currently practiced is not highly developed. A search of the barrier industry indicates that no other existing/developed technique is as capable as the innovative horizontal grout barrier method promises to be in providing means for vertical containment of preexisting land disposed materials. The primary competitive technologies are triple rod jet grouting and freeze walls.

  2. Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Thomay, C.; Velthuis, J.; Poffley, T.; Baesso, P.; Cussans, D.; Frazão, L.

    2016-03-01

    The non-invasive imaging of dense objects is of particular interest in the context of nuclear waste management, where it is important to know the contents of waste containers without opening them. Using Muon Scattering Tomography (MST), it is possible to obtain a detailed 3D image of the contents of a waste container on reasonable timescales, showing both the high and low density materials inside. We show the performance of such a method on a Monte Carlo simulation of a dummy waste drum object containing objects of different shapes and materials. The simulation has been tuned with our MST prototype detector performance. In particular, we show that both a tungsten penny of 2 cm radius and 1 cm thickness, and a uranium sheet of 0.5 cm thickness can be clearly identified. We also show the performance of a novel edge finding technique, by which the edges of embedded objects can be identified more precisely than by solely using the imaging method.

  3. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    SciTech Connect

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  4. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOEpatents

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  5. Chloride ions promoted the catalytic wet peroxide oxidation of phenol over clay-based catalysts.

    PubMed

    Zhou, Shiwei; Zhang, Changbo; Xu, Rui; Gu, Chuantao; Song, Zhengguo; Xu, Minggang

    2016-01-01

    Catalytic wet peroxide oxidation (CWPO) of phenol over clay-based catalysts in the presence and absence of NaCl was investigated. Changes in the H2O2, Cl(-), and dissolved metal ion concentration, as well as solution pH during phenol oxidation, were also studied. Additionally, the intermediates formed during phenol oxidation were detected by liquid chromatography-mass spectroscopy and the chemical bonding information of the catalyst surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The results showed that the presence of Cl(-) increased the oxidation rate of phenol to 155%, and this phenomenon was ubiquitous during the oxidation of phenolic compounds by H2O2 over clay-based catalysts. Cl(-)-assisted oxidation of phenol was evidenced by several analytical techniques such as mass spectroscopy (MS) and XPS, and it was hypothesized that the rate-limiting step was accelerated in the presence of Cl(-). Based on the results of this study, the CWPO technology appears to be promising for applications in actual saline phenolic wastewater treatment. PMID:26942523

  6. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Bullen, D.B.; Gdowski, G.E. )

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of high-level radioactive-waste disposal containers. The waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The copper-based alloy materials are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The austenitic materials are Types 304L and 316L stainless steels and Alloy 825. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr, and they must be retrievable from the disposal site during the first 50 yr after emplacement. The containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This volume surveys the available data on the phase stability of both groups of candidate alloys. The austenitic alloys are reviewed in terms of the physical metallurgy of the iron-chromium-nickel system, martensite transformations, carbide formation, and intermetallic-phase precipitation. The copper-based alloys are reviewed in terms of their phase equilibria and the possibility of precipitation of the minor alloying constituents. For the austenitic materials, the ranking based on phase stability is: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is: CDA 102 (oxygen-free copper) (best), and then both CDA 715 and CDA 613. 75 refs., 24 figs., 6 tabs.

  7. Assessment of natural gas technology opportunities in the treatment of selected metals containing wastes. Topical report, June 1994-August 1995

    SciTech Connect

    McGervey, J.; Holmes, J.G.; Bluestein, J.

    1995-08-01

    The report analyzes the disposal of certain waste streams that contain heavy metals, as determined by Resource Conservation and Recovery Act (RCRA) regulations. Generation of the wastes, the regulatory status of the wastes, and current treatment practices are characterized, and the role of natural gas is determined. The four hazardous metal waste streams addressed in this report are electric arc furnace (EAF) dust, electroplating sludge wastes, used and off-specification circuit boards and cathode ray tubes, and wastes from lead manufacturing. This report assesses research and development opportunities relevant to natural gas technologies that may result from current and future enviromental regulations.

  8. Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project

    SciTech Connect

    Russell, E.W.; Clarke, W.; Domian, H.A.; Madson, A.A.

    1991-08-01

    This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

  9. Thermal and stress analysis of hot isostatically pressed, alumina ceramic, nuclear waste containers

    SciTech Connect

    Chang, Yun; Hoenig, C.L.

    1990-03-01

    The Yucca Mountain Project is studying design and fabrication options for a safe durable container in which to store nuclear waste underground at Yucca Mountain, Nevada. The ceramic container discussed here is an alternative to using a metal container. This ceramic alternative would be selected if site conditions prove too corrosive to use metals for nuclear waste storage. Some of the engineering problems addressed in this study were: the stress generated in the alumina container by compressive loads when 4000 to 40,000 psi of external pressure is applied; the thermal stress in the container during the heating and cooling processes; the temperature histories of the container in various production scenarios and the power required for typical heaters; the fastest possible turnaround time to heat, seal, and cool the container commensurate with preserving the structural integrity of the ceramic and the closure; the testing of some commercial heating elements to determine the maximum available heat output; and the trade-offs between the minimization in thermal stress and cycle time for closure. 2 refs., 23 figs., 2 tabs.

  10. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free... into nonasbestos (asbestos-free) material shall: (a) Obtain the prior written approval of...

  11. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos...

  12. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos...

  13. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos...

  14. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos...

  15. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    SciTech Connect

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  16. Development and evaluation of a neutron-photon shield for transuranic waste containers.

    SciTech Connect

    Wishau, R. J.; Castro, J. M.; Huchton, R. L.

    2002-01-01

    The Los Alamos National Laboratory (LANL) Operational Health Physics Group in conjunction with the Nuclear Materials Technology Division Waste Management Group has developed a wraparound shield for use with 55-gallon (0.208 cubic meter) drums containing transuranic (TRU) waste. The shield or 'drum cover' as it is called, is innovative in its ability to shield both neutron and gamma photons associated with TRU waste. The shielding materials are comprised of a 0.275-inch (7mm) thick sheet of borated polyurethane for neutrons, and two sheets of composite lead vinyl fabric (equivalent to 0.35 mm of lead) for shielding photons. The drum covers have proven their relative effectiveness. Shielding tests have shown that the drum covers are highly effective in attenuating photons and are somewhat effective for shielding neutrons. Total (neutron and photon) radiation reduction for actual TRU drurns has been as high as 87%.

  17. Multicomponent leach tests in Standard Canadian Shield Saline Solution on glasses containing simulated nuclear waste

    SciTech Connect

    Heimann, R.B.; Wood, D.D.; Hamon, R.F.

    1984-01-01

    Leaching experiments on borosilicate glass frit and simulated nuclear waste glasses were performed as a preliminary to leaching experiments on glasses incorporating radioactive waste. The experimental design included (1) simulated waste glass, (2) ASTM Grade-2 titanium container material, (3) clay buffer material, (4) Standard Canadian Shield Saline Solution, and (5) granitic rock. Cumulative fractions of release for boron were determined, as well as the solution concentrations of silicon, iron, strontium and cesium. The leach rates for boron after 28 d were approximately 5 x 10/sup -6/ kg x m/sup -2/ x s/sup -1/ in Hastelloy vessels. There is an apparently strong relationship between the clay/groundwater ratio, the concentration of iron in the solution, and the concentrations of silicon, strontium, and cesium.

  18. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Gdowski, G.E.; Bullen, D.B. )

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

  19. Application of waste activated bleaching earth containing rapeseed oil on riboflavin production in the culture of Ashbya gossypii.

    PubMed

    Ming, H; Lara Pizarro, Ana V; Park, Enoch Y

    2003-01-01

    Waste activated bleaching earth (ABE) that contained 40% rapeseed oil and was discharged by an oil refinery plant, was used for riboflavin production in a culture of Ashbya gossypii. When 125 g/L waste ABE that contained 50 g/L rapeseed oil was added into the culture, the riboflavin concentration was 1.12 g/L, which was almost 1.6-fold as high as that of pure rapeseed oil. However, in waste ABE concentration higher than 125 g/L, the produced riboflavin concentration decreased, which was due to the difficulty in mixing due to the presence of a high amount of solid material in the culture. The surface of the waste ABE was smooth without a hitch, because of being covered with rapeseed oil. However, after the culture, the surface of the waste ABE seemed like that of new one, and the oil content was nearly zero grams per liter. The waste ABE, oily clay, and its black color gradually fade and yellow little by little, and finally the waste ABE changed to yellow powder. Of the riboflavin produced during the culture, 70% was adsorbed in the oil free waste ABE. With diluted alkali solution, extraction only two times yielded 90% recovery of riboflavin adsorbed in the waste ABE. The waste ABE containing waste vegetable oil was suitable for raw material for production of the value-added useful bioproducts, which might be a good model for reuse of the waste resource. PMID:12675581

  20. DEMONSTRATiON OF A SUBSURFACE CONTAINMENT SYSTEM FOR INSTALLATION AT DOE WASTE SITES

    SciTech Connect

    Thomas J. Crocker; Verna M. Carpenter

    2003-05-21

    Between 1952 and 1970, DOE buried mixed waste in pits and trenches that now have special cleanup needs. The disposal practices used decades ago left these landfills and other trenches, pits, and disposal sites filled with three million cubic meters of buried waste. This waste is becoming harmful to human safety and health. Today's cleanup and waste removal is time-consuming and expensive with some sites scheduled to complete cleanup by 2006 or later. An interim solution to the DOE buried waste problem is to encapsulate and hydraulically isolate the waste with a geomembrane barrier and monitor the performance of the barrier over its 50-yr lifetime. The installed containment barriers would isolate the buried waste and protect groundwater from pollutants until final remediations are completed. The DOE has awarded a contract to RAHCO International, Inc.; of Spokane, Washington; to design, develop, and test a novel subsurface barrier installation system, referred to as a Subsurface Containment System (SCS). The installed containment barrier consists of commercially available geomembrane materials that isolates the underground waste, similar to the way a swimming pools hold water, without disrupting hazardous material that was buried decades ago. The barrier protects soil and groundwater from contamination and effectively meets environmental cleanup standards while reducing risks, schedules, and costs. Constructing the subsurface containment barrier uses a combination of conventional and specialized equipment and a unique continuous construction process. This innovative equipment and construction method can construct a 1000-ft-long X 34-ft-wide X 30-ft-deep barrier at construction rates to 12 Wday (8 hr/day operation). Life cycle costs including RCRA cover and long-term monitoring range from approximately $380 to $590/cu yd of waste contained or $100 to $160/sq ft of placed barrier based upon the subsurface geology surrounding the waste. Project objectives for Phase I

  1. Mechanical and toxicological evaluation of concrete artifacts containing waste foundry sand.

    PubMed

    Mastella, Miguel Angelo; Gislon, Edivelton Soratto; Pelisser, Fernando; Ricken, Cláudio; da Silva, Luciano; Angioletto, Elídio; Montedo, Oscar Rubem Klegues

    2014-08-01

    The creation of metal parts via casting uses molds that are generally made from sand and phenolic resin. The waste generated after the casting process is called waste foundry sand (WFS). Depending on the mold composition and the casting process, WFS can contain substances that prevent its direct emission to the environment. In Brazil, this waste is classified according to the Standard ABNT NBR 10004:2004 as a waste Class II (Non-Inert). The recycling of this waste is limited because its characteristics change significantly after use. Although the use (or reuse) of this byproduct in civil construction is a technically feasible alternative, its effects must be evaluated, especially from mechanical and environmental points of view. Thus, the objective of this study is to investigate the effect of the use of WFS in the manufacture of cement artifacts, such as masonry blocks for walls, structural masonry blocks, and paving blocks. Blocks containing different concentrations of WFS (up to 75% by weight) were produced and evaluated using compressive strength tests (35 MPa at 28 days) and toxicity tests on Daphnia magna, Allium cepa (onion root), and Eisenia foetida (earthworm). The results showed that there was not a considerable reduction in the compressive strength, with values of 35 ± 2 MPa at 28 days. The toxicity study with the material obtained from leaching did not significantly interfere with the development of D. magna and E. foetida, but the growth of the A. cepa species was reduced. The study showed that the use of this waste in the production of concrete blocks is feasible from both mechanical and environmental points of view. PMID:24582355

  2. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    SciTech Connect

    Marusich, Robert M.

    2012-01-25

    A set of steady state diffusion flow equations, for the hydrogen diffusion from one bag to the next bag (or one plastic waste container to another), within a set of nested waste bags (or nested waste containers), are developed and presented. The input data is then presented and justified. Inputting the data for each volume and solving these equations yields the steady state hydrogen concentration in each volume. The input data (permeability of the bag surface and closure, dimensions and hydrogen generation rate) and equations are analyzed to obtain the hydrogen concentrations in the innermost container for a set of containers which are analyzed for the TRUCON code for the general waste containers and the TRUCON code for the Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB).

  3. On problem of burial of solid tritium-containing high radioactive wastes

    SciTech Connect

    Voitenko, V.A.; Kolomiets, N.F.

    1993-12-31

    Within the range of realization of national programs of treatment with radioactive wastes the problems of localization and burial of solid tritium-containing wastes is of great importance. This problem is characterized by a number of peculiarities connected with the localization of tritium-containing wastes on one side and on the other hand, it requires the specific approach connected with the diversity of ways of tritium migration into the environment with its genetic significant, and as a rule, with extremely high waste activity. As a metal-sorbent in given products, titanium is used in a form of thin films sprayed on various metal backings. Mainly, the corrosion-resistant materials are chosen for backing materials such as, molybdenum, copper or stainless steel, made in a form of discs or rectangle plates with thickness from 0.1 to 2 mm and area of 20 cm{sup 2}. The activity of one article may be attained to 100 Ci. Tritium is well sorbed by titanium at the temperature approximately 400 C (its solubility reaches 467 cm per 1 g of titanium) and is relatively well kept by it up to this temperature.

  4. Evaluation of a neutron-photon shield for transuranic (TRU) waste containers

    SciTech Connect

    Wishau, R. J.; Gallegos, M.; Ruby, R.; Sullivan, E. J.

    2004-01-01

    The Los Alamos National Laboratory (LANL) Operational Health Physics Group, with the support of the Nuclear Materials Technology Waste Management Group, has developed a wrap-around shield for use with 0.208 cubic meter (55 gallon) drums containing transuranic (TRU) waste. The shield or 'drum cover' as it is called, is innovative in its ability to attenuate both neutron and photon radiation associated with TRU waste. This poster presents information on the design, fabrication and field use of the drum cover. Design details to be presented include the composition of the shield including the materials used, thicknesses, weight, dimensions and fastener arrangement. Information on the source supplier for the shield materials, the fabrication vendor and the drum cover cost are provided. Shielding data show the unique effectiveness of the drum cover and its ability to reduce neutron and photon radiation exposures as low as reasonably achievable (ALARA). These data include x-ray testing of the assembled shield materials, as well as field experience report on the drum cover using TRU waste containers and neutron source drums. The poster includes discussion and photographs of recent field uses for the drum cover, user experience and acceptance of the drum cover and suggestions for future use and enhancement of the drum cover design.

  5. Northwest Hazardous Waste Research, Development, and Demonstration Center: Program Plan. [Contains glossary

    SciTech Connect

    Not Available

    1988-02-01

    The Northwest Hazardous Waste Research, Development, and Demonstration Center was created as part of an ongoing federal effort to provide technologies and methods that protect human health and welfare and environment from hazardous wastes. The Center was established by the Superfund Amendments and Reauthorization Act (SARA) to develop and adapt innovative technologies and methods for assessing the impacts of and remediating inactive hazardous and radioactive mixed-waste sites. The Superfund legislation authorized $10 million for Pacific Northwest Laboratory to establish and operate the Center over a 5-year period. Under this legislation, Congress authorized $10 million each to support research, development, and demonstration (RD and D) on hazardous and radioactive mixed-waste problems in Idaho, Montana, Oregon, and Washington, including the Hanford Site. In 1987, the Center initiated its RD and D activities and prepared this Program Plan that presents the framework within which the Center will carry out its mission. Section 1.0 describes the Center, its mission, objectives, organization, and relationship to other programs. Section 2.0 describes the Center's RD and D strategy and contains the RD and D objectives, priorities, and process to be used to select specific projects. Section 3.0 contains the Center's FY 1988 operating plan and describes the specific RD and D projects to be carried out and their budgets and schedules. 9 refs., 18 figs., 5 tabs.

  6. Solution-Derived, Chloride-Containing Minerals as a Waste Form for Alkali Chlorides

    SciTech Connect

    Riley, Brian J.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Lepry, William C.

    2012-10-01

    Sodalite [Na8(AlSiO4)6Cl2] and cancrinite [(Na,K)6Ca2Al6Si6O24Cl4] are environmentally stable, chloride-containing minerals and are a logical waste form option for the mixed alkali chloride salt waste stream that is generated from a proposed electrochemical separations process during nuclear fuel reprocessing. Due to the volatility of chloride salts at moderate temperatures, the ideal processing route for these salts is a low-temperature approach such as the sol-gel process. The sodalite structure can be easily synthesized by the sol-gel process; however, it is produced in the form of a fine powder with particle sizes on the order of 1–10 µm. Due to the small particle size, these powders require additional treatment to form a monolith. In this study, the sol-gel powders were pressed into pellets and fired to achieve > 90% of theoretical density. The cancrinite structure, identified as the best candidate mineral form in terms of waste loading capacity, was only produced on a limited basis following the sol-gel process and converted to sodalite upon firing. Here we discuss the sol-gel process specifics, chemical durability of select waste forms, and the steps taken to maximize chloride-containing phases, decrease chloride loss during pellet firing, and increase pellet densities.

  7. Vitrification of an incinerator blowdown waste containing both chloride salts and carbon

    SciTech Connect

    Resce, J.L.; Ragsdale, R. G.; Overcamp, T.J.

    1996-10-01

    A low-level, mixed-waste simulant, derived from incinerator blowdown residue, has been vitrified in a series of crucible tests. Major components of this waste simulant included carbon, sodium chloride, silica, and alumina. Hazardous and surrogate radioactive metal complexes were also included. Two different formulations of additives were combined with the waste to facilitate glass formation. These glass formulations included NaNO{sub 3} to serve as a flux and to assist in the oxidation of the carbon. During vitrification, a chloride salt layer was observed on the melt surface which volatilized during the course of heating. Furthermore, significant concentrations of As, Cd, Cs, Ni, Pb, Sb, Se, Tl, and Zn had volatilized during vitrification. It is postulated that this was due, in part, to the formation of volatile metal chlorides. Upon quenching, small metal nuggets, containing Pb, Sb, Ag, and Ni separated from the glasses. This reduction of the metal oxides was caused by the presence of carbon in the simulant. The chemical durability was evaluated by both the Toxicity Characteristic Leaching Procedure (TCLP) and the Product Consistency Test (PCT). The TCLP results were below the limits for the toxicity characteristic for a hazardous waste and also met the Universal Treatment Standards for listed wastes such as F006. 11 refs., 5 tabs.

  8. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  9. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  10. A novel shielding material prepared from solid waste containing lead for gamma ray

    NASA Astrophysics Data System (ADS)

    Erdem, Mehmet; Baykara, Oktay; Doğru, Mahmut; Kuluöztürk, Fatih

    2010-09-01

    Human beings are continuously exposed to cosmogenic radiation and its products in the atmosphere from naturally occurring radioactive materials (NORM) within Earth, their bodies, houses and foods. Especially, for the radiation protection environments where high ionizing radiation levels appear should be shielded. Generally, different materials are used for the radiation shielding in different areas and for different situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead was analyzed as shielding material for gamma radiation. The photon total mass attenuation coefficients ( μ/ ρ) were measured and calculated using WinXCom computer code for the novel shielding material, concrete and lead. Theoretical and experimental values of total mass attenuation coefficient of the each studied sample were compared. Consequently, a new shielding material prepared from the solid waste containing lead could be preferred for buildings as shielding materials against gamma radiation.

  11. Corrosion of Nuclear Fuel Inside a Failed Copper Nuclear Waste Container

    SciTech Connect

    Broczkowski, Michael E.; Goldik, Jonathan S.; Santos, Billy G.; Noel, James J.; Shoesmith, David

    2007-07-01

    Canada's Nuclear Waste Management Organization has recommended to the Canadian federal government an adaptive phased management approach to the long-term management of used nuclear fuel. This approach includes isolation in a deep geologic repository. In such a repository, the fuel would be sealed inside a carbon steel-lined copper container. To assist the development of performance assessment models studies of fuel behaviour inside a failed waste container are underway. Using an iterative modeling and experimental approach, the important features and processes that determine fuel behaviour have been identified and studied. These features and processes are discussed and the results of studies to elucidate specific mechanisms and determine important parameter values summarized. (authors)

  12. Autoclave inactivation of infectious radioactive laboratory waste contained within a charcoal filtration system.

    PubMed

    Stinson, M C; Green, B L; Marquardt, C J; Ducatman, A M

    1991-07-01

    A model system was developed previously for disposal of solid laboratory waste that is both radioactive and heat sensitive, e.g., HIV. A double polypropylene bag with charcoal vent filter and absorbent was designed to meet requirements for both steam sterilization and disposal as solid radioactive waste. Earlier work demonstrated the effective containment of radioactive gases by the filter and inactivation of organisms as heat sensitive as HIV. We sought to broaden the application of this model to ensure inactivation of microorganisms that are more heat resistant than HIV. The efficacy of steam sterilization using water or solutions of iodophor, hypochlorite, or hydrogen peroxide was studied under constant temperature and time conditions. The systems were monitored with internal probes, physical, chemical, and biological indicators. Biological indicators documented inactivation when bags containing hydrogen peroxide (3%) were autoclaved for 60 min at 121 degrees C. Synergistic activity between hydrogen peroxide and autoclave conditions significantly reduced processing time. PMID:2061040

  13. Autoclave inactivation of infectious radioactive laboratory waste contained within a charcoal filtration system

    SciTech Connect

    Stinson, M.C.; Green, B.L.; Marquardt, C.J.; Ducatman, A.M. )

    1991-07-01

    A model system was developed previously for disposal of solid laboratory waste that is both radioactive and heat sensitive, e.g., HIV. A double polypropylene bag with charcoal vent filter and absorbent was designed to meet requirements for both steam sterilization and disposal as solid radioactive waste. Earlier work demonstrated the effective containment of radioactive gases by the filter and inactivation of organisms as heat sensitive as HIV. The authors sought to broaden the application of this model to ensure inactivation of microorganisms that are more heat resistant than HIV. The efficacy of steam sterilization using water or solutions of iodophor, hypochlorite, or hydrogen peroxide was studied under constant temperature and time conditions. The systems were monitored with internal probes, physical, chemical, and biological indicators. Biological indicators documented inactivation when bags containing hydrogen peroxide (3%) were autoclaved for 60 min at 121C. Synergistic activity between hydrogen peroxide and autoclave conditions significantly reduced processing time.

  14. Stochastic modeling of the influence of environment on pitting corrosion damage of radioactive-waste containers

    SciTech Connect

    Henshall, G.A.

    1994-06-01

    A physically-based, phenomenological stochastic model for pit initiation and growth is presented as a potential tool for predicting the degradation of high-level radioactive-waste containers by aqueous pitting corrosion. Included in the model are simple phenomenological equations describing the dependence of the controlling stochastic parameters on the applied (or corrosion) potential, chloride ion concentration, and absolute temperature. Results from this model are presented that demonstrate its ability to simulate several important environmental effects on pitting.

  15. Treatment and resource recovery from inorganic fluoride-containing waste produced by the pesticide industry.

    PubMed

    Li, Yang; Zhang, Hua; Zhang, Zhiqi; Shao, Liming; He, Pinjing

    2015-05-01

    The rapid development of the fluorinated pesticide industry has produced a large amount of fluorine-containing hazardous waste, especially inorganic fluoride-containing waste (IFCW). A two-step process, including extraction and recovery, was developed to recover fluorine as synthetic cryolite from IFCW produced by the pesticide industry. The optimum conditions for extraction were found to be a temperature of 75°C, an initial pH (pHi) of 12, a 4-hr incubation time and a liquid-to-solid ratio of 40mL/g; these conditions resulted in a fluorine extraction ratio of 99.0%. The effects of pH and the F/Al molar ratio on fluorine recovery and the compositional, mineralogical and morphological characteristics of the cryolite products were investigated. Field-emission scanning electron microscopy of recovered precipitates showed changes in morphology with the F/Al molar ratio. Coupling Fourier transform and infrared spectroscopy, X-ray diffraction indicated that the formation of AlF6(3-) was restricted as increasing pH. Both the amount of fluorine recovered and the quality of the cryolite were optimized at initial pH=3 and a F/Al molar ratio 5.75. This study proposed a reliable and environmentally friendly method for the treatment of fluoride-containing wastes, which could be suitable for industrial applications. PMID:25968254

  16. Assessment of two thermally treated drill mud wastes for landfill containment applications.

    PubMed

    Carignan, Marie-Pierre; Lake, Craig B; Menzies, Todd

    2007-10-01

    Offshore oil and gas drilling operations generate significant amounts of drill mud waste, some of which is transported onshore for subsequent thermal treatment (i.e. via thermal remediation). This treatment process results in a mineral waste by-product (referred to as thermally treated drill mud waste; TTDMW). Bentonites are originally present in many of the drill mud products and it is hypothesized that TTDMW can be utilized in landfill containment applications (i.e. cover or base liner). The objective of this paper is to examine the feasibility of this application by performing various physical and chemical tests on two TTDMW samples. It is shown that the two TTDMW samples contained relatively small amounts of clay-sized minerals although hydraulic conductivity values are found to be less than 10(-8) m/s. Organic carbon contents of the samples were approximately 2%. Mineralogy characterization of the samples confirmed varying amounts of smectite, however, peak friction angles for a TTDMW sample was greater than 36 degrees. Chemical characterization of the TTDMW samples show potential leaching of barium and small amounts of other heavy metals. Discussion is provided in the paper on suggestions to assist in overcoming regulatory issues associated with utilization of TTDMW in landfill containment applications. PMID:17985664

  17. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    SciTech Connect

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  18. Container and waste pile standards for owners and operators of hazardous waste facilities: consolidated permit regulations--Environmental Protection Agency. Amendments to interim final rule.

    PubMed

    1981-11-01

    The Environmental Protection Agency (EPA) is today promulgating amendments to the hazardous waste management regulations regarding the management of hazardous waste in containers and piles and associated permit regulations (40 CFR Part 264, Subparts I and L, and Part 122, Subpart B). These amendments better tailor the standards to the particular type of hazard posed by specific situations. The standards for containers are amended to waive the containment system requirements for wastes that do not contain free liquids, provided that the wastes are protected from contact with accumulated liquid. The standards for waste piles are amended to waive the containment system requirements for wastes that do not contain free liquids, provided that the pile is protected from precipitation by a structure and from surface water run-on and wind dispersal of the waste by the structure or some other means. The Agency believes these amendments believes these amendments will not reduce the level of protection of human health and the environment. PMID:10253362

  19. Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors.

    PubMed

    Sun, Wenjie; Sun, Mei; Barlaz, Morton A

    2016-07-01

    Landfills that accept municipal solid waste (MSW) in the U.S. may also accept a number of sulfur-containing wastes including residues from coal or MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, microbially mediated processes can convert sulfate to hydrogen sulfide (H2S). The presence of H2S in landfill gas is problematic for several reasons including its low odor threshold, human toxicity, and corrosive nature. The objective of this study was to develop and demonstrate a laboratory-scale reactor method to measure the H2S production potential of a range of sulfur-containing wastes. The H2S production potential was measured in 8-L reactors that were filled with a mixture of the target waste, newsprint as a source of organic carbon required for microbial sulfate reduction, and leachate from decomposed residential MSW as an inoculum. Reactors were operated with and without N2 sparging through the reactors, which was designed to reduce H2S accumulation and toxicity. Both H2S and CH4 yields were consistently higher in reactors that were sparged with N2 although the magnitude of the effect varied. The laboratory-measured first order decay rate constants for H2S and CH4 production were used to estimate constants that were applicable in landfills. The estimated constants ranged from 0.11yr(-1) for C&D fines to 0.38yr(-1) for a mixed fly ash and bottom ash from MSW combustion. PMID:26860424

  20. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    SciTech Connect

    Ashby, J.; Rowe, J.

    1980-02-01

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases.

  1. Segmented Gamma Scanner for Small Containers of Uranium Processing Waste- 12295

    SciTech Connect

    Morris, K.E.; Smith, S.K.; Gailey, S.; Nakazawa, D.R.; Venkataraman, R.

    2012-07-01

    The Segmented Gamma Scanner (SGS) is commonly utilized in the assay of 55-gallon drums containing radioactive waste. Successfully deployed calibration methods include measurement of vertical line source standards in representative matrices and mathematical efficiency calibrations. The SGS technique can also be utilized to assay smaller containers, such as those used for criticality safety in uranium processing facilities. For such an application, a Can SGS System is aptly suited for the identification and quantification of radionuclides present in fuel processing wastes. Additionally, since the significant presence of uranium lumping can confound even a simple 'pass/fail' measurement regimen, the high-resolution gamma spectroscopy allows for the use of lump-detection techniques. In this application a lump correction is not required, but the application of a differential peak approach is used to simply identify the presence of U-235 lumps. The Can SGS is similar to current drum SGSs, but differs in the methodology for vertical segmentation. In the current drum SGS, the drum is placed on a rotator at a fixed vertical position while the detector, collimator, and transmission source are moved vertically to effect vertical segmentation. For the Can SGS, segmentation is more efficiently done by raising and lowering the rotator platform upon which the small container is positioned. This also reduces the complexity of the system mechanism. The application of the Can SGS introduces new challenges to traditional calibration and verification approaches. In this paper, we revisit SGS calibration methodology in the context of smaller waste containers, and as applied to fuel processing wastes. Specifically, we discuss solutions to the challenges introduced by requiring source standards to fit within the confines of the small containers and the unavailability of high-enriched uranium source standards. We also discuss the implementation of a previously used technique for

  2. Testing of low-temperature stabilization alternatives for salt containing mixed wastes -- Approach and results to date

    SciTech Connect

    Maio, V.; Loomis, G.; Spence, R.D.; Smith, G.; Biyani, R.K.; Wagh, A.

    1998-05-01

    Through its annual process of identifying technology deficiencies associated with waste treatment, the Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) determined that the former DOE weapons complex lacks efficient mixed waste stabilization technologies for salt containing wastes. These wastes were generated as sludge and solid effluents from various primary nuclear processes involving acids and metal finishing; and well over 10,000 cubic meters exist at 6 sites. In addition, future volumes of these problematic wastes will be produced as other mixed waste treatment methods such as incineration and melting are deployed. The current method used to stabilize salt waste for compliant disposal is grouting with Portland cement. This method is inefficient since the highly soluble and reactive chloride, nitrate, and sulfate salts interfere with the hydration and setting processes associated with grouting. The inefficiency results from having to use low waste loadings to ensure a durable and leach resistant final waste form. The following five alternatives were selected for MWFA development funding in FY97 and FY98: phosphate bonded ceramics; sol-gel process; polysiloxane; polyester resin; and enhanced concrete. Comparable evaluations were planned for the stabilization development efforts. Under these evaluations each technology stabilized the same type of salt waste surrogates. Final waste form performance data such as compressive strength, waste loading, and leachability could then be equally compared. Selected preliminary test results are provided in this paper.

  3. Potential use of densified polymer-pastefill mixture as waste containment barrier materials.

    PubMed

    Fall, M; Célestin, J; Sen, H F

    2010-12-01

    Mining activities generate a large amount of solid waste, such as waste rock and tailings. The surface disposal of such waste can create several environmental and geotechnical problems. Public perception and strict government regulations with regards to the disposal of such waste compel the mining industry to develop new strategies which are environmentally sound and cost effective. In this scenario, recycling of such waste into mining or civil engineering construction materials have become a great challenge for the mining and civil engineering community. Hence, in this study, taking advantage of the inherent low hydraulic conductivity of paste tailings (pastefill), small amounts (0.05, 0.1, 0.2, 0.5%) of a super absorbent polymer (SAP) are added to the latter after moisturizing the tailings. The resulting densified polymer-pastefill (PP) materials are compacted and submitted to permeability tests at room temperature and performance tests under cyclic freeze-thaw and wet-dry conditions to evaluate their suitability as a barrier for waste containment facilities. Valuable results are obtained. It is found that the hydraulic conductivity of the proposed barrier material (PP) decreases as the amount of SAP increases. Hydraulic conductivity values as low as 1 × 10(-7) and 6 × 10(-9)cm/s are obtained for PPs which contain 0.1-0.5% SAP, respectively. The PP material also shows relatively good resistance to cyclic freeze-thaw and wet-dry stresses. The results show that negligible to acceptable changes in hydraulic conductivity occur after five freeze-thaw and six wet-dry cycles. None of the changes reach one order of magnitude. As a final step, a cost analysis is undertaken to evaluate the economical benefits that could be drawn from such a proposed barrier material. When compared to a conventional compacted sand-bentonite barrier with 12% bentonite concentration, it is found that the benefit realized could be estimated to 98, 96 and 90% when using PP material that

  4. In-situ containment and stabilization of buried waste: Annual report FY 1994

    SciTech Connect

    Allan, M.L.; Kukacka, L.E.

    1994-10-01

    The two landfills of specific interest are the Chemical Waste Landfill (CWL) and the Mixed Waste Landfill (MWL), both located at Sandia National Laboratory. The work is comprised of two subtasks: (1) In-Situ Barriers and (2) In-Situ Stabilization of Contaminated Soils. The main environmental concern at the CWL is a chromium plume resulting from disposal of chromic acid and chromic sulfuric acid into unlined pits. This program has investigated means of in-situ stabilization of chromium contaminated soils and placement of containment barriers around the CWL. The MWL contains a plume of tritiated water. In-situ immobilization of tritiated water with cementitious grouts was not considered to be a method with a high probability of success and was not pursued. This is discussed further in Section 5.0. Containment barriers for the tritium plume were investigated. FY 94 work focused on stabilization of chromium contaminated soil with blast furnace slag modified grouts to bypass the stage of pre-reduction of Cr(6), barriers for tritiated water containment at the MWL, continued study of barriers for the CWL, and jet grouting field trials for CWL barriers at an uncontaminated site at SNL. Cores from the FY 93 permeation grouting field trails were also tested in FY 94.

  5. Conditioning of Boron-Containing Low and Intermediate Level Liquid Radioactive Waste - 12041

    SciTech Connect

    Gorbunova, Olga A.; Kamaeva, Tatiana S.

    2012-07-01

    Improved cementation of low and intermediate level radioactive waste (ILW and LLW) aided by vortex electromagnetic treatment as well as silica addition was investigated. Positive effects including accelerated curing of boron-containing cement waste forms, improve end product quality, decreased product volume and reduced secondary LRW volume from equipment decontamination were established. These results established the possibility of boron-containing LRW cementation without the use of neutralizing alkaline additives that greatly increase the volume of the final product intended for long-term storage (burial). Physical (electromagnetic) treatment in a vortex mixer can change the state of LRW versus chemical treatment. By treating the liquid phase of cement solution only, instead of the whole solution, and using fine powder and nano-particles of ferric oxides instead of separable ferromagnetic cores for the activating agents the positive effect are obtained. VET for 1 to 3 minutes yields boron-containing LRW cemented products of satisfactory quality. Silica addition at 10 % by weight will accelerate curing and solidification and to decrease radionuclide leaching rates from boron-containing cement products. (authors)

  6. Evaluation of the thermomechanical behavior about a waste container/sleeve in salt

    SciTech Connect

    Waldman, H.

    1983-04-01

    This report deals with the very-near-field aspects of waste disposal in conceptual repositories within a salt medium and concentrates on the thermomechanical behavior around a drillhole containing a nuclear waste canister. Specifically, this includes an investigation of: (1) the expected closure of an unlined drillhole, and (2) the pressure buildup on a protective sleeve initially in direct contact with the drillhole wall. The results of the current study based on the disposal of unreprocessed spent fuel (SF) and a review of previous near-field studies based on the emplacement of high-level waste (HLW) are included. The current SF study uses a thermo/viscoelastic mechanical model involving an empirical creep law. Previous HLW studies were based on either a thermoelastic/plastic mechanical model or a thermo/viscoelastic model that did not include temperature dependence in the creep law. Several repository designs were considered with drillholes ranging from 50.8 cm to 61.0 cm in diameter. The thermomechanical behavior was modeled over a 25-year period after which retrieval was not expected to be a major concern. Sleeve pressures for the lined drillhole did not exceed 21 MPa and would not warrant specially designed sleeves. Unlined drillholes 53.3 cm in diameter can accommodate HLW packages up to 45 cm in diameter for at least 10 years while a 61.0-cm-diameter drillhole will accommodate SF waste packages up to 43 cm in diameter for at least 25 years.

  7. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: Final report

    SciTech Connect

    Spence, R.D.; Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Trotter, D.R.

    1993-09-01

    Stabilization/solidification technology is one of the most widely used techniques for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Cement-based products, commonly referred to as grouts, are the predominant materials of choice because of their low associated processing costs, compatibility with a wide variety of disposal scenarios, and ability to meet stringent processing and performance requirements. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % American Society for Testing and Materials (ASTM) Class F fly ash, and 4 wt % Type I-II-LA Portland cement. This blend is mixed with 106-AN at a mix ratio of 9 lb of dry-solids blend per gallon of waste. This report documents the final results of efforts at Oak Ridge National Laboratory in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

  8. Demonstration of close-coupled barriers for subsurface containment of buried waste

    SciTech Connect

    Heiser, J.; Dwyer, B.

    1995-11-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper will discuss the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration will take place at a cold site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington.

  9. Valorisation of different types of boron-containing wastes for the production of lightweight aggregates.

    PubMed

    Kavas, T; Christogerou, A; Pontikes, Y; Angelopoulos, G N

    2011-01-30

    Four boron-containing wastes (BW), named as Sieve (SBW), Dewatering (DBW), Thickener (TBW) and Mixture (MBW) waste, from Kirka Boron plant in west Turkey were investigated for the formation of artificial lightweight aggregates (LWA). The characterisation involved chemical, mineralogical and thermal analyses as well as testing of their bloating behaviour by means of heating microscopy. It was found that SBW and DBW present bloating behaviour whereas TBW and MBW do not. Following the above results two mixtures M1 and M2 were prepared with (in wt.%): 20 clay mixture, 40 SBW, 40 DBW and 20 clay mixture, 35 SBW, 35 DBW, 10 quartz sand, respectively. Two different firing modes were applied: (a) from room temperature till 760 °C and (b) abrupt heating at 760 °C. The obtained bulk density for M1 and M2 pellets is 1.2g/cm(3) and 0.9 g/cm(3), respectively. The analysis of microstructure with electron microscopy revealed a glassy phase matrix and an extended formation of both interconnected and isolated, closed pores. The results indicate that SBW and DBW boron-containing wastes combined with a clay mixture and quartz sand can be valorised for the manufacturing of lightweight aggregates. PMID:21075514

  10. Selection of candidate canister materials for high-level nuclear waste containment in a tuff repository

    SciTech Connect

    McCright, R.D.; Weiss, H.; Juhas, M.C.; Logan, R.W.

    1983-11-01

    A repository located at Yucca Mountain at the Nevada Test Site is a potential site for permanent geological disposal of high-level nuclear waste. The repository can be located in a horizon in welded tuff, a volcanic rock, which is above the static water level at this site. The environmental conditions in this unsaturated zone are expected to be air and water vapor dominated for much of the containment period. Type 304L stainless steel is the reference material for fabricating canisters to contain the solid high-level wastes. Alternative stainless alloys are considered because of possible susceptibility of 304L to localized and stress forms of corrosion. For the reprocessed glass wastes, the canisters serve as the recipient for pouring the glass with the result that a sensitized microstructure may develop because of the times at elevated temperatures. Corrosion testing of the reference and alternative materials has begun in tuff-conditioned water and steam environments. 21 references, 8 figures, 8 tables.

  11. In-situ containment and stabilization of buried waste. Annual report FY 1993

    SciTech Connect

    Allan, M.L.; Kukacka, L.E.

    1993-10-01

    In FY 1993 research continued on development and testing of grout materials for in-situ containment and stabilization of buried waste. Specifically, the work was aimed at remediation of the Chemical Waste Landfill (CWL) at Sandia National Laboratories (SNL) in Albuquerque, New Mexico as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). The work on grouting materials was initiated in FY 1992 and the accomplishments for that year are documented in the previous annual report (Allan, Kukacka and Heiser, 1992). The remediation plan involves stabilization of the chromium plume, placement of impermeable vertical and horizontal barriers to isolate the landfill and installation of a surface cap. The required depth of subsurface barriers is approximately 33 m (100 ft). The work concentrated on optimization of grout formulations for use as grout and soil cement barriers and caps. The durability of such materials was investigated, in addition to shrinkage cracking resistance, compressive and flexural strength and permeability. The potential for using fibers in grouts to control cracking was studied. Small scale field trials were conducted to test the practicality of using the identified formulations and to measure the long term performance. Large scale trials were conducted at Sandia as part of the Subsurface Barrier Emplacement Technology Program. Since it was already determined in FY 1992 that cementitious grouts could effectively stabilize the chromium plume at the CWL after pre-treatment is performed, the majority of the work was devoted to the containment aspect.

  12. Determination of BOD-values of starch-containing waste water by a BOD-biosensor.

    PubMed

    Reiss, M; Heibges, A; Metzger, J; Hartmeier, W

    1998-11-01

    The control of waste water plants is difficult or even impossible using the classical determination method for biological oxygen demand (BOD), because of its high time consumption of five days. A determination within some minutes is possible by microbial BOD-sensors. However, high molecular weight substances cannot be detected, a problem which can be overcome by the use of additional enzymes. For the application in a flow-through system to analyse starch containing waste water, alpha-amylase and amyloglucosidase were immobilized by adsorption to polystyrene or polypropylene carriers followed by crosslinking. Furthermore, covalent coupling to different nylon carriers, derivatives of chitin, silanized glass beads and silanized beads of foamed glass was tried. Chitin and Lewatit were the best suited carriers for the immobilization of alpha-amylase and amyloglucosidase. Two glass columns were filled with the immobilized enzymes and inserted into a commercial BOD-sensor containing the yeast Trichosporon cutaneum as biological component. The system was stable for more than two months under storage and one month under working conditions. A comparison of different starch types resulted in a hydrolysis of more than 80% in case of potato starch whereas grain starch was hydrolized only for 40-50%. Sensor-determined BOD-values of waste water with potato starch were nearly identical with BOD5-values resulting from the classical method. PMID:9842703

  13. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-02-26

    incineration or calcination, alkali sintering, and dissolution of sintered products in nitric acid. Insoluble residues are then mixed with vitrifying components and Pu sludges, vitrified, and sent for storage and disposal. Implementation of the intergovernmental agreement between Russia and the United States (US) regarding the utilization of 34 tons of weapons plutonium will also require treatment of Pu containing MOX fabrication wastes at the MCC radiochemical production plant.

  14. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  15. [Treatment of asbestos-containing waste products to prevent harm to the lungs ].

    PubMed

    Morimoto, Yasuo; Higashi, Toshiaki; Chiba, Osamu; Ishiwata, Hiroyuki; Takanami, Tetsuo

    2009-05-01

    The amount of industrial wastes with asbestos such as dismantled construction materials has increased. We have reviewed the effect of asbestos-containing products subjected to harmless treatment on the lungs. Usually, the harmless treatment of asbestos is confirmed by the disappearance of fibrous materials and crystal structures by electron microscopy and X-ray diffraction. However, it is very important to perform animal studies and in vitro studies in order to examine the effect of the treated asbestos-containing products on the lungs. From previous treatments of asbestos using acids or high temperature, almost treated materials tended to show decreased toxicity in vitro and in vivo studies. There are some reports of the adverse effects of the treatment. If new harmless treatments of asbestos are developed, it is necessary to perform animal studies and in vitro studies of asbestos-containing products using new harmless treatments. PMID:19502767

  16. A biological process effective for the conversion of CO-containing industrial waste gas to acetate.

    PubMed

    Kim, Tae Wan; Bae, Seung Seob; Lee, Jin Woo; Lee, Sung-Mok; Lee, Jung-Hyun; Lee, Hyun Sook; Kang, Sung Gyun

    2016-07-01

    Acetogens have often been observed to be inhibited by CO above an inhibition threshold concentration. In this study, a two-stage culture consisting of carboxydotrophic archaea and homoacetogenic bacteria is found to be effective in converting industrial waste gas derived from a steel mill process. In the first stage, Thermococcus onnurineus could grow on the Linz-Donawitz converter gas (LDG) containing ca. 56% CO as a sole energy source, converting the CO into H2 and CO2. Then, in the second stage, Thermoanaerobacter kivui could grow on the off-gas from the first stage culture, consuming the H2 and CO in the off-gas completely and producing acetate as a main product. T. kivui alone could not grow on the LDG gas. This work represents the first demonstration of acetate production using steel mill waste gas by a two-stage culture of carboxydotrophic hydrogenogenic microbes and homoacetogenic bacteria. PMID:27106591

  17. TECHNICAL EVALUATION OF THE SAFE TRANSPORTATION OF WASTE CONTAINERS COATED WITH POLYUREA

    SciTech Connect

    VAIL, T.S.

    2007-03-30

    This technical report is to evaluate and establish that the transportation of waste containers (e.g. drums, wooden boxes, fiberglass-reinforced plywood (FRP) or metal boxes, tanks, casks, or other containers) that have an external application of polyurea coating between facilities on the Hanford Site can be achieved with a level of onsite safety equivalent to that achieved offsite. Utilizing the parameters, requirements, limitations, and controls described in the DOE/RL-2001-36, ''Hanford Sitewide Transportation Safety Document'' (TSD) and the Department of Energy Richland Operations (DOE-RL) approved package specific authorizations (e.g. Package Specific Safety Documents (PSSDs), One-Time Requests for Shipment (OTRSs), and Special Packaging Authorizations (SPAS)), this evaluation concludes that polyurea coatings on packages does not impose an undue hazard for normal and accident conditions. The transportation of all packages on the Hanford Site must comply with the transportation safety basis documents for that packaging system. Compliance with the requirements, limitations, or controls described in the safety basis for a package system will not be relaxed or modified because of the application of polyurea. The inspection criteria described in facility/projects procedures and work packages that ensure compliance with Container Management Programs and transportation safety basis documentation dictate the need to overpack a package without consideration for polyurea. This technical report reviews the transportation of waste packages coated with polyurea and does not credit the polyurea with enhancing the structural, thermal, containment, shielding, criticality, or gas generating posture of a package. Facilities/Projects Container Management Programs must determine if a container requires an overpack prior to the polyurea application recognizing that circumstances newly discovered surface contamination or loss of integrity may require a previously un

  18. Part 1: Participatory Ergonomics Approach to Waste Container Handling Utilizing a Multidisciplinary Team

    SciTech Connect

    Zalk, D.M.; Tittiranonda, P.; Burastero, S.; Biggs, T.W.; Perry, C.M.; Tageson, R.; Barsnick, L.

    2000-02-07

    This multidisciplinary team approach to waste container handling, developed within the Grassroots Ergonomics process, presents participatory ergonomic interpretations of quantitative and qualitative aspects of this process resulting in a peer developed training. The lower back, shoulders, and wrists were identified as frequently injured areas, so these working postures were a primary focus for the creation of the workers' training. Handling procedures were analyzed by the team to identify common cycles involving one 5 gallon (60 pounds), two 5 gallons (60 and 54 pounds), 30 gallon (216 pounds), and 55 gallon (482 pounds) containers: lowering from transporting to/from transport vehicles, loading/unloading on transport vehicles, and loading onto pallet. Eleven experienced waste container handlers participated in this field analysis. Ergonomic exposure assessment tools measuring these field activities included posture analysis, posture targeting, Lumbar Motion Monitor{trademark} (LMM), and surface electromyography (sEMG) for the erector spinae, infraspinatus, and upper trapezius muscles. Posture analysis indicates that waste container handlers maintained non-neutral lower back postures (flexion, lateral bending, and rotation) for a mean of 51.7% of the time across all activities. The right wrist was in non-neutral postures (radial, ulnar, extension, and flexion) a mean of 30.5% of the time and the left wrist 31.4%. Non-neutral shoulder postures (elevation) were the least common, occurring 17.6% and 14.0% of the time in the right and left shoulders respectively. For training applications, each cycle had its own synchronized posture analysis and posture target diagram. Visual interpretations relating to the peak force modifications of the posture target diagrams proved to be invaluable for the workers' understanding of LMM and sEMG results (refer to Part II). Results were reviewed by the team's field technicians and their interpretations were developed into ergonomic

  19. Demonstration of close-coupled barriers for subsurface containment of buried waste

    SciTech Connect

    Dwyer, B.P.

    1996-05-01

    A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.

  20. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums must... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at...

  1. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums must... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at...

  2. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums must... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at...

  3. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums must... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at...

  4. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums must... CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste... container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at...

  5. Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste

    NASA Astrophysics Data System (ADS)

    Fedotov, M. A.; Gorbunova, O. A.; Fedorova, O. V.; Folmanis, G. E.; Kovalenko, L. V.

    2015-04-01

    Two ways of synthesis of non-detachable dispersed particles of magnetic materials useful for the boron-containing waste cementation process regulation were developed. Powder XRD showed that the method of carbothermic recovery of nanoscale iron hydroxide allows obtaining a mixture of iron oxides with content of the magnetic phase up to 70%. Method of low-temperature hydrogen reduction of the raw materials allows obtaining various compositions of a-iron and iron oxides with the possibility to change the size of the final particles in a wide range. The possibility of using composites of magnetic iron oxides and metal oxide compositions instead of ferromagnetic rods with VEP of boron-containing liquid radioactive waste in the fluidized field was studied. It was shown that the use of fine and nano particles of the iron oxides in the pre-treatment of the boron-containing LRW increases the strength of the final compounds and accelerates the cement setting compounds from 13 to 5-9 days.

  6. Towards zero discharge of chromium-containing leather waste through improved alkali hydrolysis.

    PubMed

    Mu, Changdao; Lin, Wei; Zhang, Mingrang; Zhu, Qingshi

    2003-01-01

    The treatment of chromium-containing leather waste (CCLW), the major solid waste generated at the post-tanning operations of leather processing, has the potential to generate value-added leather chemicals. Various alkali and enzymatic hydrolysis were compared, and calcium oxide was found to be important for effective (but still incomplete) hydrolysis. Three possible reasons are given for the incomplete hydrolysis under alkaline conditions. Data for 19 amino acids are presented for four different treatment products. On the basis of the results, a novel three-step CCLW treatment process is proposed. The gelatin extracted in the first step is chemically modified to produce leather finishing agents. The collagen hydrolysates isolated in the second step are used as proteinic retanning agents by chemical modification. The remaining chrome cake is further hydrolyzed with acids in the third step, and the obtained chromium-containing protein hydrolysates could be used for the preparation of chromium-containing retanning agents for leather industry. The proposed three-step process provides a feasible zero discharge process for the treatment of CCLW. PMID:14583246

  7. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  8. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D. ); Bullen, D.B. )

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion; sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.

  9. Crevice corrosion and pitting of high-level waste containers: Integration of deterministic and probabilistic models

    SciTech Connect

    Farmer, J.C.; McCright, R.D.

    1998-12-31

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as carbon steel or Alloy 400. An integrated predictive model is being developed to account for the effects of localized environmental conditions in the CRM-CAM crevice on the initiation and propagation of pits through the CRM.

  10. Site characterization and containment/remediation of acid mine drainage at an abandoned mine waste dump

    SciTech Connect

    Djahanguiri, F.; Snodgrass, J.; Koerth, J.

    1996-12-31

    This paper focuses on the preliminary results of laboratory tests to evaluate a new suspension grout consisting of a mixture of a naturally occurring lignite coal based wax {open_quotes}montan wax{close_quotes}, sodium bentonite {open_quotes}pure gold grout{close_quotes}, and water. The test program assesses the suitability of the grout for creating subsurface containment barriers in coal waste dump sites for acid mine seepage control to surface and ground waters. The laboratory activities evaluated the reduction in permeability that could be achieved in a coal waste dump site under optimum conditions and the compatibility of the grout with representative waste from the test site. Information on geological, geochemical and geophysical about the test site is presented. Laboratory formulation of the grout is complete and simulation of field condition is in progress. Pregrout geophysical surveys for determination of hydrogeologic conditions at the site are also completed. Based on geophysical surveys, a grout curtain is proposed which will consist of two rows of grout placement holes in an array across the seepage area toward Belt Creek in Montana, Post-grout geophysical survey will be carried out immediately after grouting work. Performance of the grout curtain will be monitored by collection of water samples from monitoring wells in the Belt Creek and seepage area.

  11. Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry.

    PubMed

    Rao, Jonnalagadda Raghava; Thanikaivelan, Palanisamy; Sreeram, Kalarical Janardhanan; Nair, Balachandran Unni

    2002-03-15

    Chromium-containing wastes from various industrial sectors are under critical review. Leather processing is one such industrial activity that generates chromium-bearing wastes in different forms. One of them is chrome shavings, and this contributes to an extent of 10% of the quantum of raw skins/hides processed, amounting to 0.8 million ton globally. In this study, the high protein content of chrome shavings has been utilized for reduction of chromium(VI) in the preparation of chrome tanning agent. This approach has been exploited for the development of two products: one with chrome shavings alone as reducing agent and the other with equal proportion of chrome shavings and molasses. The developed products exhibit more masking due to the formation of intermediate organic oligopeptides. This has been corroborated through the spectral, hydrolysis, and species-wise distribution studies. The formation of these organic masking agents helps in chrome tanning by shifting the precipitation point of chromium to relatively higher pH levels. Hence, the developed products find use as chrome tanning agents for leather processing, thus providing a means for better utilization of chrome shaving wastes. PMID:11944695

  12. Removal of organic dyes using Cr-containing activated carbon prepared from leather waste.

    PubMed

    Oliveira, Luiz C A; Coura, Camila Van Zanten; Guimarães, Iara R; Gonçalves, Maraisa

    2011-09-15

    In this work, hydrogen peroxide decomposition and oxidation of organics in aqueous medium were studied in the presence of activated carbon prepared from wet blue leather waste. The wet blue leather waste, after controlled pyrolysis under CO(2) flow, was transformed into chromium-containing activated carbons. The carbon with Cr showed high microporous surface area (up to 889 m(2)g(-1)). Moreover, the obtained carbon was impregnated with nanoparticles of chromium oxide from the wet blue leather. The chromium oxide was nanodispersed on the activated carbon, and the particle size increased with the activation time. It is proposed that these chromium species on the carbon can activate H(2)O(2) to generate HO radicals, which can lead to two competitive reactions, i.e. the hydrogen peroxide decomposition or the oxidation of organics in water. In fact, in this work we observed that activated carbon obtained from leather waste presented high removal of methylene blue dye combining the adsorption and oxidation processes. PMID:21752544

  13. The importance of criticality in the safety analysis of the spent-fuel waste container

    SciTech Connect

    Culbreth, W.G.; Zielinski, P.

    1993-12-31

    The storage of high-level spent reactor fuel in a proposed national geologic repository will require the construction of containers to be placed in boreholes drilled into the host rock. Federal regulations require that the fuel be maintained subcritical under normal or accident conditions. This is determined through the calculation of a neutron multiplication factor, k{sub eff}, that must remain below 0.95. Criticality will play an important role in the container design, the internal configuration of the fuel, and the selection of neutron poisons. An analysis of k{sub eff} should be a normal step in the conceptualization of new waste container designs. Unlike thermal effects in a proposed repository, criticality will remain a problem long after the 10,000 year lifetime of the facility. In this study, nuclear criticality has been determined for the proposed spent fuel container in various situations that include varying fuel enrichment and partial air gap flooding. Results will be presented to demonstrate the impact of these variables on the design of a safe spent fuel container.

  14. Production of technical-grade sodium citrate from glycerol-containing biodiesel waste by Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Vinokurova, Natalia G; Lunina, Julia N; Zelenkova, Nina F; Morgunov, Igor G

    2015-10-01

    The production of technical-grade sodium citrate from the glycerol-containing biodiesel waste by Yarrowia lipolytica was studied. Batch experiments showed that citrate was actively produced within 144 h, then citrate formation decreased presumably due to inhibition of enzymes involved in this process. In contrast, when the method of repeated batch cultivation was used, the formation of citrate continued for more than 500 h. In this case, the final concentration of citrate in the culture liquid reached 79-82 g/L. Trisodium citrate was isolated from the culture liquid filtrate by the addition of a small amount of NaOH, so that the pH of the filtrate increased to 7-8. This simple and economic isolation procedure gave the yield of crude preparation containing trisodium citrate 5.5-hydrate up to 82-86%. PMID:26141285

  15. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Strum, M.J.; Weiss, H.; Farmer, J.C. ); Bullen, D.B. )

    1988-06-01

    This volume surveys the effects of welding on the degradation modes of three austenitic alloys: Types 304L and 316L stainless steels and Alloy 825. These materials are candidates for the fabrication of containers for the long-term storage of high-level nuclear waste. The metallurgical characteristics of fusion welds are reviewed here and related to potential degradation modes of the containers. Three specific areas are discussed in depth: (1) decreased resistance to corrosion in the forms of preferential corrosion, sensitization, and susceptibility to stress corrosion cracking, (2) hot cracking in the heat-affected zone and the weld zone, and (3) formation of intermetallic phases. The austenitic alloys are ranked as follows in terms of overall weldability: Alloy 825 (best) > Type 316L stainless steel > Type 304L stainless steel (worst). 108 refs., 31 figs., 7 tabs.

  16. Radiation crosslinking of styrene-butadiene rubber containing waste tire rubber and polyfunctional monomers

    NASA Astrophysics Data System (ADS)

    Yasin, Tariq; Khan, Sara; Shafiq, Muhammad; Gill, Rohama

    2015-01-01

    The objective of this study was to investigate the influence of polyfunctional monomers (PFMs) and absorbed dose on the final characteristics of styrene-butadiene rubber (SBR) mixed with waste tire rubber (WTR). A series of SBR/WTR blends were prepared by varying the ratios of WTR in the presence of PFMs, namely trimethylolpropane trimethacrylate (TMPTMA) and trimethylolpropane triacrylate (TMPTA) and crosslinked using gamma rays. The physicochemical characteristics of the prepared blends were investigated. It was observed that tensile strength, hardness and gel content of the blends increased with absorbed dose while the blends containing TMPTA showed higher tensile strength, gel content and thermal stability as compared to the blends containing TMPTMA. Higher thermal stability was observed in the blends which were crosslinked by radiation as compared to the blends crosslinked by sulfur. These blends exhibited higher rate of swelling in organic solvents, whereas negligible swelling was observed in acidic and basic environment.

  17. Estimation of the atmospheric corrosion on metal containers in industrial waste disposal.

    PubMed

    Baklouti, M; Midoux, N; Mazaudier, F; Feron, D

    2001-08-17

    Solid industrial waste are often stored in metal containers filled with concrete, and placed in well-aerated warehouses. Depending on meteorological conditions, atmospheric corrosion can induce severe material damages to the metal casing, and this damage has to be predicted to achieve safe storage. This work provides a first estimation of the corrosivity of the local atmosphere adjacent to the walls of the container through a realistic modeling of heat transfer phenomena which was developed for this purpose. Subsequent simulations of condensation/evaporation of the water vapor in the atmosphere were carried out. Atmospheric corrosion rates and material losses are easily deduced. For handling realistic data and comparison, two different meteorological contexts were chosen: (1) an oceanic and damp atmosphere and (2) a drier storage location. Some conclusions were also made for the storage configuration in order to reduce the extent of corrosion phenomena. PMID:11489528

  18. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    SciTech Connect

    Thorp, D.T.; Geinitz, R.R.; Rivera, M.A.

    1998-03-03

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed.

  19. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D. ); Gdowski, G.E. )

    1988-06-01

    Three copper-based alloys, CDA 102 (oxygen-free, high-purity copper), CDA 613 (aluminum bronze), and CDA 715 (Cu-30Ni), are candidates for the fabrication of high-level radioactive-waste disposal containers. Waste will include spent fuel assemblies from reactors as well as borosilicate glass, and will be sent to the prospective repository site at Yucca Mountain in Nye County, Nevada. The decay of radionuclides will result in the generation of substantial heat and in fluxes of gamma radiation outside the containers. In this environment, container materials might degrade by atmospheric oxidation, general aqueous phase corrosion, localized corrosion (LC), and stress corrosion cracking (SCC). This volume is a critical survey of available data on pitting and crevice corrosion of the copper-based candidates. Pitting and crevice corrosion are two of the most common forms of LC of these materials. Data on the SCC of these alloys is surveyed in Volume 4. Pitting usually occurs in water that contains low concentrations of bicarbonate and chloride anions, such as water from Well J-13 at the Nevada Test Site. Consequently, this mode of degradation might occur in the repository environment. Though few quantitative data on LC were found, a tentative ranking based on pitting corrosion, local dealloying, crevice corrosion, and biofouling is presented. CDA 102 performs well in the categories of pitting corrosion, local dealloying, and biofouling, but susceptibility to crevice corrosion diminishes its attractiveness as a candidate. The cupronickel alloy, CDA 715, probably has the best overall resistance to such localized forms of attack. 123 refs., 11 figs., 3 tabs.

  20. Destruction behavior of hexabromocyclododecanes during incineration of solid waste containing expanded and extruded polystyrene insulation foams.

    PubMed

    Takigami, Hidetaka; Watanabe, Mafumi; Kajiwara, Natsuko

    2014-12-01

    Hexabromocyclododecanes (HBCDs) have been used for flame retardation mainly in expanded polystyrene (EPS) and extruded polystyrene (XPS) insulation foams. Controlled incineration experiments with solid wastes containing each of EPS and XPS were conducted using a pilot-scale incinerator to investigate the destruction behavior of HBCDs and their influence on the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs). EPS and XPS materials were respectively blended with refuse derived fuel (RDF) as input wastes for incineration. Concentrations of HBCDs contained in the EPS- and XPS-added RDFs, were 140 and 1100 mg kg(-1), respectively. In which γ-HBCD was dominant (68% of the total HBCD content) in EPS-added RDF and α-HBCD accounted for 73% of the total HBCDs in XPS-added RDF. During the incineration experiments with EPS and XPS, primary and secondary combustion zones were maintained at temperatures of 840 °C and 900 °C. The residence times of waste in the primary combustion zone and flue gas in the secondary combustion zone was 30 min and three seconds, respectively. HBCDs were steadily degraded in the combustion chambers and α-, β-, and γ-HBCD behaved similarly. Concentration levels of the total HBCDs in the bag filter exit gas for the two experiments with EPS and XPS were 0.7 and 0.6ngmN(-3), respectively. HBCDs were also not detected (<0.2 ng g(-1)) in the bottom and fly ash samples. From the obtained results, it was calculated that HBCDs were sufficiently destroyed in the whole incineration process with destruction efficiencies of more than 99.9999 for both of EPS and XPS cases. For PBDD/DFs, the levels detected in the bottom and fly ash samples were very low (0.028 ng g(-1) at maximum). In the case of XPS-added experiment, 2,3,7,8-TeBDD and 2,3,7,8-TeBDF were determined in the flue gas at levels (0.05-0.07 ng mN(-3)) slightly over the detection limits in the environmental emission gas samples, suggesting HBCDs in XPS are possibly a

  1. The pyrolytic-plasma method and the device for the utilization of hazardous waste containing organic compounds.

    PubMed

    Opalińska, Teresa; Wnęk, Bartłomiej; Witowski, Artur; Juszczuk, Rafał; Majdak, Małgorzata; Bartusek, Stanilav

    2016-11-15

    This paper is focused on the new method of waste processing. The waste, including hazardous waste, contain organic compounds. The method consists in two main processes: the pyrolysis of waste and the oxidation of the pyrolytic gas with a use of non-equilibrium plasma. The practical implementation of the method requires the design, construction and testing of the new device in large laboratory scale. The experiments were carried out for the two kinds of waste: polyethylene as a model waste and the electronic waste as a real waste. The process of polyethylene decomposition showed that the operation of the device is correct because 99.74% of carbon moles contained in the PE samples was detected in the gas after the process. Thus, the PE samples practically were pyrolyzed completely to hydrocarbons, which were completely oxidized in the plasma reactor. It turned out that the device is useful for decomposition of the electronic waste. The conditions in the plasma reactor during the oxidation process of the pyrolysis products did not promote the formation of PCDD/Fs despite the presence of the oxidizing conditions. An important parameter determining the efficiency of the oxidation of the pyrolysis products is gas temperature in the plasma reactor. PMID:27427894

  2. Solid waste containing persistent organic pollutants in Serbia: From precautionary measures to the final treatment (case study).

    PubMed

    Stevanovic-Carapina, Hristina; Milic, Jelena; Curcic, Marijana; Randjelovic, Jasminka; Krinulovic, Katarina; Jovovic, Aleksandar; Brnjas, Zvonko

    2016-07-01

    Sustainable solid waste management needs more dedicated attention in respect of environmental and human health protection. Solid waste containing persistent organic pollutants is of special concern, since persistent organic pollutants are persistent, toxic and of high risk to human health and the environment. The objective of this investigation was to identify critical points in the Serbian system of solid waste and persistent organic pollutants management, to assure the life cycle management of persistent organic pollutants and products containing these chemicals, including prevention and final destruction. Data were collected from the Serbian competent authorities, and led us to identify preventive actions for solid waste management that should reduce or minimise release of persistent organic pollutants into the environment, and to propose actions necessary for persistent organic pollutants solid waste. The adverse impact of persistent organic pollutants is multidimensional. Owing to the lack of treatment or disposal plants for hazardous waste in Serbia, the only option at the moment to manage persistent organic pollutants waste is to keep it in temporary storage and when conditions are created (primarily financial), such waste should be exported for destruction in hazardous waste incinerators. Meanwhile, it needs to be assured that any persistent organic pollutants management activity does not negatively impact recycling flows or disturb progress towards a more circular economy in Serbia. PMID:27281225

  3. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash.

    PubMed

    Lancellotti, Isabella; Kamseu, Elie; Michelazzi, Marco; Barbieri, Luisa; Corradi, Anna; Leonelli, Cristina

    2010-04-01

    Municipal solid waste incinerators every year produce tons of fly ashes which, differently from coal fly ashes, contain large amounts of toxic substances (heavy metals, dioxins, furans). The stabilization/solidification (S/S) technology known as geopolymerization is proposed with the purpose to bond physically and chemically incinerator fly ashes (IFA) in a solid matrix, in order to reduce pollutant mobility. The chemical stability of geopolymers with Si/Al ratio of 1.8-1.9 and Na/Al ratio of 1.0, synthesized by alkali activation of metakaolin and the addition of 20wt% of two different kinds of IFA, is presented. The concentration of the alkaline solution, water to solid ratio and curing process have been optimized. The room temperature consolidation of IFA containing geopolymers has been tested for leachability in water for 1day, accordingly to EN 12457 regulation and extended to 7days to increase the water attack on solid granules. Leachable metals in the test solution, determined by ICP_AES, fall within limit values set by regulation for non-dangerous waste landfill disposal. Geopolymeric matrix evolution with leaching time has been also evaluated in terms of pH and electrical conductivity increase in solution. PMID:19879748

  4. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants

    SciTech Connect

    Adrados, A.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Study of the influence of materials in the pyrolysis of real plastic waste samples. Black-Right-Pointing-Pointer Inorganic compounds remain unaltered. Black-Right-Pointing-Pointer Cellulosic components give rise to an increase in char formation. Black-Right-Pointing-Pointer Cellulosic components promote the production of aqueous phase. Black-Right-Pointing-Pointer Cellulosic components increase CO and CO{sub 2} contents in the gases. - Abstract: In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm{sup 3} reactor, swept with 1 L min{sup -1} N{sub 2}, at 500 Degree-Sign C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg{sup -1}). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO{sub 2}; their HHV is in the range of 18-46 MJ kg{sup -1}. The amount of CO-CO{sub 2} increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  5. Treatability studies and large-scale treatment of aqueous mixed waste containing heavy metals

    SciTech Connect

    Haefner, D.R.

    1995-12-01

    Wastes have accumulated at the Idaho National Engineering Laboratory through routine laboratory practices, experimental engineering operations, and decommissioning and decontamination of nuclear reactor facilities. A storage tank at the Test Area North held approximately 129,000 L of acidic wastewater and contained prohibited levels of lead and mercury. Radioactive constituents were also present; the most predominant being radiocesium Cs-137 and radiocobalt Co-60. Bench-scale studio were undertaken to evaluate ion exchange as a means of removing the contaminants. A set of breakthrough curves was obtained and identified capacity constraints, selectivities, and operating requirements of candidate resins. Treatment studies indicated that Purolite S-920 resin could effectively remove mercury, while Rohm and Haas` Amberlite 200-CH was used for lead and radionuclide removal. Based on these laboratory tests a full-scale facility, using multiple ion exchange columns, was designed and operated in the spring of 1994. The liquid effluents were discharged to an onsite evaporation pond and met RCRA disposal limits for hazardous metals and self-imposed radionuclide limits. All secondary wastes and residues were sampled and subjected to the to)dc characteristic leaching procedure. The resulting leachate concentrations were below RCRA discharge limits and, therefore, these will be disposed of at the onsite low-level disposal facility. After concluding the tank wastewater operations, enough reserve resin capacity was available to treat three additional mixed wastes residing onsite. These totaled about 1,900 L (500 gal) and contained prohibited levels of chromium, cadmium, and barium. Laboratory studies demonstrated that these heavy metals could also be removed by the existing resins. Treatment was performed at the full-scale facility with the effluents discharged to the evaporation pond.

  6. Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films.

    PubMed

    Mishra, R K; Ramasamy, K; Lim, S M; Ismail, M F; Majeed, A B A

    2014-08-01

    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications. PMID:24831081

  7. Hydrogenolysis of Glycerol to 1,2-Propanediol Over Clay Based Catalysts.

    PubMed

    Lee, Sang-Yong; Jung, Jae-Sun; Yang, Eun-Hyeok; Lee, Kwan-Young; Moon, Dong Ju

    2015-11-01

    1,2-propanediol (1,2-PDO) is one of the promising product among the valuable products derived from glycerol and it can be obtained by the catalytic hydrogenolysis of glycerol. Copper-supported clay-based catalysts were prepared with different pore sizes using various ratios of kaolin, Mg, and Al by coprecipitation and applied in the selective hydrogenolysis of glycerol to 1,2-PDO. In recent research, variations of pore volume and pore size could affect the diffusion of reagents within the catalyst due to the collision between reagents or pore wall and reagents. It changes selectivities of each product in hydrogenolysis of glycerol reaction. The physico-chemical properties of the catalysts were analyzed by XRD, N2 physisorption, TPR, CO2-TPD, SEM, and a mercury porosimeter. The Cu/TALCITE 4 catalyst showed 98% 1,2-PDO selectivity with 65% glycerol conversion under the optimized condition of 190 degrees C, 25 bar, and 20 wt% glycerol aqueous solution. It was found that the basic strength and meso-macro pore structure of the catalysts play an important role in glycerol conversion and 1,2-PDO selectivity. PMID:26726594

  8. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    PubMed

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications. PMID:26609925

  9. Synthesis and Characterization of the Hybrid Clay- Based Material Montmorillonite-Melanoidin: A Potential Soil Model

    SciTech Connect

    V Vilas; B Matthiasch; J Huth; J Kratz; S Rubert de la Rosa; P Michel; T Schäfer

    2011-12-31

    The study of the interactions among metals, minerals, and humic substances is essential in understanding the migration of inorganic pollutants in the geosphere. A considerable amount of organic matter in the environment is associated with clay minerals. To understand the role of organic matter in the environment and its association with clay minerals, a hybrid clay-based material (HCM), montmorillonite (STx-1)-melanoidin, was prepared from L-tyrosine and L-glutamic acid by the Maillard reaction. The HCM was characterized by elemental analysis, nuclear magnetic resonance, x-ray photoelectron spectroscopy (XPS), scanning transmission x-ray microscopy (STXM), and thermal analysis. The presence of organic materials on the surface was confirmed by XPS and STXM. The STXM results showed the presence of organic spots on the surface of the STx-1 and the characterization of the functional groups present in those spots. Thermal analysis confirmed the existence of organic materials in the montmorillonite interlayer, indicating the formation of a composite of melanoidin and montmorillonite. The melanoidin appeared to be located partially between the layers of montmorillonite and partially at the surface, forming a structure that resembles the way a cork sits on the top of a champagne bottle.

  10. Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project

    SciTech Connect

    Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J.

    1991-12-01

    This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

  11. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers

    SciTech Connect

    Vinson, D.W.; Nutt, W.M.; Bullen, D.B.

    1995-06-01

    Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

  12. Characterization of the Corrosion Behavior of Alloy 22 Regarding its Lifetime Performance as a Potential Nuclear Waste Container Material

    SciTech Connect

    Rebak, R B; McCright, D

    2002-06-04

    Alloy 22 (UNS N06022) was proposed for the corrosion resistant outer barrier of a two-layer waste package container for nuclear waste at the potential repository site at Yucca Mountain in Nevada (USA). A testing program is underway to characterize and quantify three main modes of corrosion that may occur at the site. Current results show that the containers would perform well under general corrosion, localized corrosion and environmentally assisted cracking (EAC). For example, the general corrosion rate is expected to be below 100 nm/year and the container is predicted to be outside the range of potential for localized corrosion and environmentally assisted cracking.

  13. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials

    SciTech Connect

    Luke, Dale Elden; Rogers, Adam Zachary; Hamp, S.

    2001-03-01

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing materials. Transportation regulations prohibit shipment of explosives and radioactive materials together. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials (NM), and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organization to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This "program level" roadmapping involves linking technology development (and deployment) efforts to the programs’ needs and requirements for dispositioning the material/waste that generates combustible gas through radiolysis and chemical decomposition. The roadmapping effort focused on needed technical & programmatic support to the baselines (and to alternatives to the baselines) where the probability of success is low (i.e., high uncertainty) and the consequences of failure are relatively high (i.e., high programmatic risk). A second purpose for roadmapping was to provide the basis for coordinating sharing of "lessons learned" from research and development (R&D) efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues.

  14. Testing of low temperature stabilization alternatives for salt-containing mixed wastes -- approach and results to date

    SciTech Connect

    Maio, V.; Loomis, G.; Biyani, R.K.; Smith, G.; Spence, R.; Wagh, A.

    1998-07-01

    Through its annual process of identifying technology deficiencies associated with waste treatment, the Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) determined that the former DOE weapons complex lacks efficient mixed waste stabilization technologies for salt containing wastes. The current method used to stabilize salt waste for compliant disposal is grouting with Portland cement. This method is inefficient since the highly soluble and reactive chloride, nitrate, and sulfate salts interfere with the hydration and setting processes associated with grouting. The following five alternative salt waste stabilization technologies were selected for MWFA development funding in FY97 and FY98: (1) Phosphate Bonded Ceramics, (2) Sol-gel, (3) Polysiloxane, (4) Polyester Resin, and (5) Enhanced Concrete. Comparable evaluations were planned for the stabilization development efforts. Under these evaluations each technology stabilized the same type of salt waste surrogates as specified by the MWFA. Final waste form performance data such as compressive strength, waste loading, and leachability can then be equally compared to the requirements originally specified. In addition to the selected test results provided in this paper, the performance of each alternative stabilization technology, will be documented in formal MWFA Innovative Technology Summary Reports (ITSRs).

  15. Irradiation corrosion of waste package container materials in air/steam environment

    SciTech Connect

    Anantatmula, R.P.; Colburn, R.P.

    1991-11-01

    A set of corrosion tests of the candidate waste container materials for the Basalt Waste Isolation Project (BWIP) was conducted in a moist air environment simulating the repository preclosure condition. The tests were performed over a four-month period with air, saturated with moisture at 50{degree}C, passing through test chambers holding specimens at 150{degree}C and 250{degree}C. The test materials included A27 cast carbon steel, A387 ferritic steel, oxygen-free copper and cupronickel 90-10. Each material was tested both with and without basalt/bentonite packing material adjacent to the specimens. For each combination of material, temperature and packing condition, tests were conducted at 10,000 R/hr and 100 R/hr radiation levels. All four materials tested at 250{degree}C showed corrosion rates as much as an order of magnitude higher in the high radiation field when compared with similar tests without irradiation. Typically, the corrosion rates were lower at the lower dose rates, but were significantly higher at 100 R/hr compared to the case without radiation. At 150{degree}C only pure copper showed enhanced corrosion due to gamma radiation. The presence of packing material adjacent to the specimens had no consistent effect on corrosion rate at either temperature.

  16. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  17. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics.

    PubMed

    Li, Lin; Zhang, Jingying; Lin, Jian; Liu, Junxin

    2015-10-01

    Waste gases containing sulfur compounds, such as hydrogen sulfide, sulfur dioxide, thioethers, and mercaptan, produced and emitted from industrial processes, wastewater treatment, and landfill waste may cause undesirable issues in adjacent areas and contribute to atmospheric pollution. Their control has been an area of concern and research for many years. As alternative to conventional physicochemical air pollution control technologies, biological treatment processes which can transform sulfur compounds to harmless products by microbial activity, have gained in popularity due to their efficiency, cost-effectiveness and environmental acceptability. This paper provides an overview of the current biological techniques used for the treatment of air streams contaminated with sulfur compounds as well as the advances made in the past year. The discussion focuses on bioreactor configuration and design, mechanism of operation, insights into the overall biological treatment process, and the characterization of the microbial species present in bioreactors, their populations and their interactions with the environment. Some bioreactor case studies are also introduced. Finally, the perspectives on future research and development needs in this research area were also highlighted. PMID:26250546

  18. Hydration of blended cement pastes containing waste ceramic powder as a function of age

    NASA Astrophysics Data System (ADS)

    Scheinherrová, Lenka; Trník, Anton; Kulovaná, Tereza; Pavlík, Zbyšek; Rahhal, Viviana; Irassar, Edgardo F.; Černý, Robert

    2016-07-01

    The production of a cement binder generates a high amount of CO2 and has high energy consumption, resulting in a very adverse impact on the environment. Therefore, use of pozzolana active materials in the concrete production leads to a decrease of the consumption of cement binder and costs, especially when some type of industrial waste is used. In this paper, the hydration of blended cement pastes containing waste ceramic powder from the Czech Republic and Portland cement produced in Argentina is studied. A cement binder is partially replaced by 8 and 40 mass% of a ceramic powder. These materials are compared with an ordinary cement paste. All mixtures are prepared with a water/cement ratio of 0.5. Thermal characterization of the hydrated blended pastes is carried out in the time period from 2 to 360 days. Simultaneous DSC/TG analysis is performed in the temperature range from 25 °C to 1000 °C in an argon atmosphere. Using this thermal analysis, we identify the temperature, enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates gels dehydration, portlandite, vaterite and calcite decomposition and their changes during the curing time. Based on thermogravimetry results, we found out that the portlandite content slightly decreases with time for all blended cement pastes.

  19. Prokaryotic complex of newly formed soils on nepheline-containing industrial waste

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Kalmykova, V. V.

    2010-06-01

    The characteristics are given of the prokaryotic complex participating in the processes of the primary soil formation on nepheline-containing waste and depending on the time of the waste disposal and degree of reclamation. The total population density of the bacteria determined with the method of fluorescent microscopy in “pure” sand ranged within 0.34—0.60 billion CFU/g soil; in the reclaimed sand under different vegatation communities, from 2.6 to 7.2 billion CFU/g soil. Gram-positive bacteria dominate in the prokaryotic complex of the nepheline sands, whereas the Grarrmegative ones dominate in the zonal soils. The bacteria predominating in the nepheline sands were classified on the basis of the comparative analysis of the nucleotide sequences in the 16S rRNA genes within the Actinobacteria class (Arthrobacter boritolerans, A. ramosus, Rhodococcusfascians, Micrococcus luteus, and Streptomyces spp.). The evolution of the microbial community in the nepheline sands in the course of their reclamation and in the course of their overgrowing by plants proceeds in way toward the microbial communities of the zonal soils on moraine deposits.

  20. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...

  1. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with Mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction ...

  2. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    SciTech Connect

    Hofstetter, K.J.; Sigg, R.

    1990-01-01

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in each of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.

  3. High resolution gamma-ray spectrometry of culverts containing transuranic waste at the Savannah River Site

    SciTech Connect

    Hofstetter, K.J.; Sigg, R.

    1990-12-31

    A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in each of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.

  4. Modeling the corrosion of high-level waste containers: CAM-CRM interface

    SciTech Connect

    Farmer, J. C., LLNL

    1998-06-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A516 or Monel 400. At the present time, Alloy C-22 and A516 are favored. This publication addresses the development of models to account for corrosion of Alloy C-22 surfaces exposed directly to the Near Field Environment (NFE), as well as to the exacerbated conditions in the CAM-CRM crevice.

  5. Stress corrosion cracking tests on high-level-waste container materials in simulated tuff repository environments

    SciTech Connect

    Abraham, T.; Jain, H.; Soo, P.

    1986-06-01

    Types 304L, 316L, and 321 austenitic stainless steel and Incoloy 825 are being considered as candidate container materials for emplacing high-level waste in a tuff repository. The stress corrosion cracking susceptibility of these materials under simulated tuff repository conditions was evaluated by using the notched C-ring method. The tests were conducted in boiling synthetic groundwater as well as in the steam/air phase above the boiling solutions. All specimens were in contact with crushed Topopah Spring tuff. The investigation showed that microcracks are frequently observed after testing as a result of stress corrosion cracking or intergranular attack. Results showing changes in water chemistry during test are also presented.

  6. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  7. Electrochemical Tests of Carbon Steel in Simulated Waste Containing Fenton's Reagent

    SciTech Connect

    ZAPP, PE

    2004-04-30

    Preliminary tests have been completed to assess the corrosivity of an in-tank process to decompose cesium and potassium tetraphenylborate in Tank 48H. Testing was requested by the Tank 48 Closure Team to ''Perform a corrosion study to assess the effects of reduced pH solution on Tank 48 components''. The initial corrosion tests were in support of the Fenton's reagent process with ferric ion. A second set of tests was performed with tetraamido macrocylcic ligand in place of ferric ion. A task plan was approved prior to the start of the experiments, which prescribed short-term electrochemical testing to determine the corrosion susceptibility of carbon steel to simulated waste containing Fenton's reagent.

  8. Hydrothermal transformations in an aluminophosphate glass matrix containing simulators of high-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.

    2016-05-01

    The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.

  9. Air-lift reactor system for the treatment of waste-gas-containing monochlorobenzene.

    PubMed

    Joshi, Pradnya R; Deshmukh, Sharvari C; Morone, Amruta P; Kanade, Gajanan; Pandey, R A

    2013-01-01

    An air-lift bioreactor (ALR) system, applied for the treatment of waste-gas-containing monochlorobenzene (MCB) was seeded with pure culture of Acinetobacter calcoaceticus, isolated from soil as a starter seed. It was found that MCB was biologically converted to chloride as chloride was mineralized in the ALR. After the built up of the biomass in the ALR, the reactor parameters which have major influence on the removal efficiency and elimination capacity were studied using response surface methodology. The data generated by running the reactor for 150 days at varying conditions were fed to the model with a target to obtain the removal efficiency above 95% and the elimination capacity greater than 60%. The data analysis indicated that inlet loading was the major parameter affecting the elimination capacity and removal efficiency of >95%. The reactor when operated at optimized conditions resulted in enhanced performance of the reactor. PMID:24617061

  10. Modeling the corrosion of high-level waste containers: CAM-CRM interface

    SciTech Connect

    Farmer, J.C.; Bedrossian, P.J.; McCright, R.D.

    1998-06-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological respository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A516 or Monel 400. At the present time, Alloy C-22 and A516 are favored. This publication addresses the development of models to account for corrosion of Alloy C-22 surfaces exposed directly to the Near Field Environmental (NFE), as well as to the exacerbated conditions in the CAM-CRM crevice.

  11. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission's full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  12. Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers

    SciTech Connect

    Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

    1992-02-01

    Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG&G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission`s full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

  13. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    SciTech Connect

    Jordan, J.; Flach, G.

    2012-03-29

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  14. Scale up issues involved with the ceramic waste form : ceramic-container interactions and ceramic cracking quantification.

    SciTech Connect

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P., Jr.

    1999-05-03

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits.

  15. Laboratory performance testing of an extruded bitumen containing a surrogate, sodium nitrate-based, low-level aqueous waste

    SciTech Connect

    Mattus, A.J.; Kaczmarsky, M.M.

    1986-12-15

    Laboratory results of a comprehensive, regulatory performance test program, utilizing an extruded bitumen and a surrogate, sodium nitrate-based waste, have been compiled at the Oak Ridge National Laboratory (ORNL). Using a 53 millimeter, Werner and Pfleiderer extruder, operated by personnel of WasteChem Corporation of Paramus, New Jersey, laboratory-scale, molded samples of type three, air blown bitumen were prepared for laboratory performance testing. A surrogate, low-level, mixed liquid waste, formulated to represent an actual on-site waste at ORNL, containing about 30 wt % sodium nitrate, in addition to eight heavy metals, cold cesium and strontium was utilized. Samples tested contained three levels of waste loading: that is, forty, fifty and sixty wt % salt. Performance test results include the ninety day ANS 16.1 leach test, with leach indices reported for all cations and anions, in addition to the EP Toxicity test, at all levels of waste loading. Additionally, test results presented also include the unconfined compressive strength and surface morphology utilizing scanning electron microscopy. Data presented include correlations between waste form loading and test results, in addition to their relationship to regulatory performance requirements.

  16. Neutron measurements around storage casks containing spent fuel and vitrified high-level radioactive waste at ZWILAG.

    PubMed

    Buchillier, T; Aroua, A; Bochud, F O

    2007-01-01

    Spectrometric and dosimetric measurements were made around a cask containing spent fuel and a cask containing high-level radioactive waste at the Swiss intermediate waste and spent fuel storage facility. A Bonner sphere spectrometer, an LB 6411 neutron monitor and an Automess Szintomat 6134A were used to characterise the n-gamma fields at several locations around the two casks. The results of these measurements show that the neutron fluence spectra around the cask containing radioactive waste are harder and higher in intensity than those measured in the vicinity of the spent fuel cask. The ambient dose equivalents measured with the LB 6411 neutron monitor are in good agreement with those obtained using the Bonner spheres, except for locations with soft neutron spectra where the monitor overestimates the neutron ambient dose equivalent by almost 50%. PMID:17494980

  17. MODELING THE CORROSION OF HIGH-LEVEL WASTE CONTAINERS CAM-CRM INTERFACE

    SciTech Connect

    Farmer, Joseph; McCright, Daniel

    1998-06-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as carbon steel or Monel400. Initially, the containers will be hot and dry due to the heat generated by radioactive decay. However, the temperature will eventually drop to levels where both humid air and aqueous phase corrosion will be possible. As the outer barrier is penetrated, uniform corrosion of the CRM will be possible in exfoliated areas. The possibility for crevice formation between the CAM and CRM will also exist. In the case of either Alloy 625 or C-22, a crevice will have to form before significant penetration of the CRM can occur. Crevice corrosion of the CRMs has been well documented. Lillard and Scully have induced crevice corrosion in Alloy 625 during exposure to artificial sea water. Jones and Wilde have prepared simulated crevice solutions of FeCl{sub 2}, NiCl{sub 2} and CrCl{sub 3}, and measured substantial pH suppression. Asphahani measured the dissolution rates of Alloys 625 and C-22 in such artificial crevice solutions at various temperatures. Others have observed no significant localized attack in less severe environments.

  18. Application of staged combustion and reburning to the co-firing of nitrogen-containing wastes

    SciTech Connect

    Linak, W.P.; Mulholland, J.A.; McSorley, J.A.; Hall, R.E.; Srivastava, R.K.

    1991-01-01

    The paper gives results of an evaluation of a 0.6 MW precombustion chamber burner, designed for in-furnace NOx control, high combustion efficiency, and retrofit applications, for use with high nitrogen content fuel/waste mixtures. The 250- to 750-ms residence time precombustion chamber burner mounted on a prototype watertube package boiler simulator used air staging and in-furnace natural gas reburning to control NOx emissions. The paper reports results of research in which the low NOx precombustor was used to examine the co-firing characteristics of a nitrogenated pesticide, containing dinoseb (2-sec-butyl-4,6 dinitrophenol) in a fuel-oil/xylene solvent. The dinoseb formulation as fired contained 6.4% nitrogen. NO emissions without in-furnace NOx control exceeded 4400 ppm (at 0% O2). When NOx controls in the form of air staging and natural gas reburning were used, these emissions were reduced to < 150 ppm (96% reduction). Average CO and total hydrocarbon emissions were typically < 15 and 2 ppm, respectively. No dinoseb was detected in any emission sample, and the destruction efficiency was determined to be > 99.99%. Mutagenicity studies of the dinoseb emissions showed that reburning (used for NOx control) reduced the mutagenic emission factor about 60-70% from that with air staging alone.

  19. Modeling the corrosion of high-level waste containers CAM-CRM interface

    SciTech Connect

    Farmer, J.C.; McCright, M.

    1997-12-09

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design,the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 625 and C-22, while the outer barrier is made of a corrosion allowance material (CAM) such as carbon steel or Monel 400. Initially, the containers will be hot and dry due to the heat generated by radioactive decay. However, the temperature will eventually drop to levels where both humid air and aqueous phase corrosion will be possible. As the outer barrier is penetrated, uniform corrosion of the CRM will be possible of exfoliated areas. The possibility of crevice formation between the CAM and CRM will also exist. In the case of either Alloy 625 or C-22, a crevice will have to form before significant penetration of the CRM can occur. Crevice corrosion of the CRMs has been well documented.

  20. Feasibility assessment of copper-base waste package container materials in a tuff repository

    SciTech Connect

    Acton, C.F.; McCright, R.D.

    1986-09-30

    This report discussed progress made during the second year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. Corrosion testing in potentially corrosive irradiated environments received emphasis during the feasibility study. Results of experiments to evaluate the effect of a radiation field on the uniform corrosion rate of the copper-base materials in repository-relevant aqueous environments are given as well as results of an electrochemical study of the copper-base materials in normal and concentrated J-13 water. Results of tests on the irradiation of J-13 water and on the subsequent formation of hydrogen peroxide are given. A theoretical study was initiated to predict the long-term corrosion behavior of copper in the repository. Tests were conducted to determine whether copper would adversely affect release rates of radionuclides to the environment because of degradation of the Zircaloy cladding. A manufacturing survey to determine the feasibility of producing copper containers utilizing existing equipment and processes was completed. The cost and availability of copper was also evaluated and predicted to the year 2000. Results of this feasibility assessment are summarized.

  1. Leachability of heavy metals from growth media containing source-separated municipal solid waste compost

    SciTech Connect

    Sawhney, B.L.; Bugbee, G.J.; Stilwell, D.E.

    1994-07-01

    The leaching of heavy metals in source-separated municipal solid waste (MSW) compost was determined by irrigation leaching of growth medium, admixed with varying amounts of compost, used for container grown plants. Perennial flowers (black-eyed Susan, Rudbeckia hirta L.) were grown in 2-L containers filled with the growth medium for a 10-wk period. Rainfall was supplemented with overhead irrigation to supply 2 cm of water per day. Leachates collected over each 2-wk period were analyzed for Cd, Cr, Cu, Ni, Pb, and Zn using atomic spectrometry. Concentrations of the heavy metals in the leachates increased with increasing proportions of MSW compost in the growth medium, but decreased with time of leaching. Leaching of the metals occurred at relatively high concentrations initially, followed by continued leaching at low concentrations. The initial leaching of heavy metals is attributed to their soluble or exchangeable forms and the subsequent slow leaching to the solid compounds. The concentrations of the heavy metals remained below the current drinking water standards in all treatments throughout the leaching period. The results thus suggest that contamination of groundwater with heavy metals from source-separated MSW compost applied as a soil amendment should be negligible, as the low concentrations in the leachates leaving the surface soil would be further attenuated by the subsoil. 29 refs., 6 figs., 1 tab.

  2. Leaching composted lignocellulosic wastes to prepare container media: feasibility and environmental concerns.

    PubMed

    Fornes, Fernando; Carrión, Carolina; García-de-la-Fuente, Rosana; Puchades, Rosa; Abad, Manuel

    2010-08-01

    The leaching of salt and mineral elements from three composts prepared with residual vegetable crop biomass (melon, pepper or zucchini) was studied using methacrylate columns and distilled water. The benefits of the leached composts to be used for ornamental potted plant production were also analysed. After leaching 5 container capacities of effluent, both the electrical conductivity and the concentration of soluble mineral elements in compost leachates decreased substantially and remained close to the target levels. Composts reacted differently to leaching due to differences in the raw waste sources and the composting process and hence, in their physical and chemical characteristics. At the end of the experiment, after pouring 8 container capacities of water, the leaching efficiency of the salts was 96%, 93% and 87% for melon, pepper and zucchini-based composts, respectively. Mineral elements differed in their ability to be removed from the composts; N (NH(4)(+) and NO(3)(-)), K(+), Na(+), Cl(-), and SO(4)(2-) were leached readily, whereas H(2)PO(4)(-), Ca(2+), and Mg(2+) were removed hardly. Leached composts showed a range of physico-chemical and chemical characteristics suitable for use as growing media constituents. Potted Calendula and Calceolaria plants grew in the substrates prepared with the leached composts better than in those made with the non-leached ones. Finally, special emphasis must be paid to the management of the effluents produced under commercial conditions to avoid environmental pollution. PMID:20456858

  3. Container Approval for the Disposal of Radioactive Waste with Negligible Heat Generation in the German Konrad Repository - 12148

    SciTech Connect

    Voelzke, Holger; Nieslony, Gregor; Ellouz, Manel; Noack, Volker; Hagenow, Peter; Kovacs, Oliver; Hoerning, Tony

    2012-07-01

    Since the license for the Konrad repository was finally confirmed by legal decision in 2007, the Federal Institute for Radiation Protection (BfS) has been performing further planning and preparation work to prepare the repository for operation. Waste conditioning and packaging has been continued by different waste producers as the nuclear industry and federal research institutes on the basis of the official disposal requirements. The necessary prerequisites for this are approved containers as well as certified waste conditioning and packaging procedures. The Federal Institute for Materials Research and Testing (BAM) is responsible for container design testing and evaluation of quality assurance measures on behalf of BfS under consideration of the Konrad disposal requirements. Besides assessing the container handling stability (stacking tests, handling loads), design testing procedures are performed that include fire tests (800 deg. C, 1 hour) and drop tests from different heights and drop orientations. This paper presents the current state of BAM design testing experiences about relevant container types (box shaped, cylindrical) made of steel sheets, ductile cast iron or concrete. It explains usual testing and evaluation methods which range from experimental testing to analytical and numerical calculations. Another focus has been laid on already existing containers and packages. The question arises as to how they can be evaluated properly especially with respect to lack of completeness of safety assessment and fabrication documentation. At present BAM works on numerous applications for container design testing for the Konrad repository. Some licensing procedures were successfully finished in the past and BfS certified several container types like steel sheet, concrete until cast iron containers which are now available for waste packaging for final disposal. However, large quantities of radioactive wastes had been placed into interim storage using containers which

  4. Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428

    SciTech Connect

    Busse, John; Keil, Karen; Staten, Jane; Miller, Neil; Barker, Michelle; MacDonell, Margaret; Peterson, John; Chang, Young-Soo; Durham, Lisa

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS under the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed evaluation of

  5. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  6. Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program

    SciTech Connect

    Not Available

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

  7. Preliminary technique assessment for nondestructive evaluation certification of the NNWSI [Nevada Nuclear Waste Storage Investigations] disposal container closure

    SciTech Connect

    Day, R.A.

    1988-12-31

    Under the direction of the Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) program, the Nevada Nuclear Waste Storage Investigations (NNWSI) project is evaluating a candidate repository site at Yucca Mountain, Nevada, for permanent disposal of high-level nuclear waste. The Lawrence Livermore National Laboratory (LLNL), a participant in the NNWSI project, is developing waste package designs to meet the NRC requirements. One aspect of this waste package is the nondestructive testing of the final closure of the waste container. The container closure weld can best be nondestructively examined (NDE) by a combination of ultrasonics and liquid penetrants. This combination can be applied remotely and can meet stringent quality control requirements common to nuclear applications. Further development in remote systems and inspection will be required to meet anticipated requirements for flaw detection reliability and sensitivity. New research is not required but might reduce cost or inspection time. Ultrasonic and liquid penetrant methods can examine all closure methods currently being considered, which include fusion welding and inertial welding, among others. These NDE methods also have a history of application in high radiation environments and a well developed technology base for remote operation that can be used to reduce development and design costs. 43 refs., 23 figs., 3 tabs.

  8. Physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry.

    PubMed

    Morgunov, Igor G; Kamzolova, Svetlana V

    2015-08-01

    In this study, physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry were studied by an investigation of growth dynamics, the consumption of glycerol, and the fatty acid fractions from waste as well as by measuring the activities of enzymes involved in the metabolism of waste. It was shown that Y. lipolytica realizes concurrent uptake of glycerol and the fatty acid fractions during conversion of glycerol-containing waste, although glycerol was utilized at a higher rate than fatty acids. Under optimal feeding of glycerol-containing waste by portions of 20 g l(-1), the citric acid production and the ratio between citric acid and isocitric acid depended on the strain used. It was revealed that wild strain Y. lipolytica VKM Y-2373 produced citrate and isocitrate with a ratio of 1.7:1, while the mutant strain Y. lipolytica NG40/UV7 synthesized presumably citric acid (122.2 g l(-1)) with a citrate-to-isocitrate ratio of 53:1 and the yield of 0.95 g g(-1). PMID:25846335

  9. DISPOSAL OF TRU WASTE FROM THE PLUTONIUM FINISHING PLANT IN PIPE OVERPACK CONTAINERS TO WIPP INCLUDING NEW SECURITY REQUIREMENTS

    SciTech Connect

    Hopkins, A.M.; Sutter, C.; Hulse, G.; Teal, J.

    2003-02-27

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site or, a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, Hanford incinerator ash and Sand, Slag and Crucible (SS&C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP.

  10. Disposal of TRU Waste from the PFP in pipe overpack containers to WIPP Including New Security Requirements

    SciTech Connect

    HOPKINS, A.M.

    2003-02-01

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site, or a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, hanford incinerator ash and Sand, Slag and Crucible (SS and C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP.

  11. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    SciTech Connect

    Almond, P. M.; Stefanko, D. B.; Langton, C. A.

    2013-03-01

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO4- in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases [Shuh, et al., 1994, Shuh, et al., 2000, Shuh, et al., 2003]. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O4-, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate was used as a non-radioactive surrogate for pertechnetate in simulated waste form samples. Depth discrete subsamples were cut from material exposed to Savannah River Site (SRS) field cured conditions. The subsamples were prepared and analyzed for both reduction capacity and chromium leachability. Results from field-cured samples indicate that the depth at which leachable chromium was detected advanced further into the sample exposed for 302 days compared to the sample exposed to air for 118 days (at least 50 mm compared to at least 20 mm). Data for only two exposure time intervals is currently available. Data for additional exposure times are required to develop an equation for the oxidation front progression. Reduction capacity measurements (per the Angus-Glasser method, which is a measurement of the ability of a material to chemically reduce Ce(IV) to Ce

  12. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  13. Scoping analyses of geochemical sealing of early cracks in a waste container and associated drip shield, Yucca Mountain, Nevada.

    PubMed

    Nicot, Jean-Philippe

    2005-06-01

    Early after final emplacement of the nuclear waste containers at the proposed Yucca Mountain, Nevada, high-level-waste repository, tiny cracks (less than 200 microm wide, 1 to 2 cm deep, and a few centimeters long at most) could appear in the containers and in the drip shield protecting them. Modeling calculations were performed to understand how fast those cracks could be sealed. Under dripping conditions, they are expected to be bridged with water. If cracks are located in the drip shield, any further dripping on the waste containers located underneath will be limited. If cracks are located in a container, potentially harmful radionuclides could only travel by diffusion. In addition, water-bridged cracks will be sealed through at least two processes: precipitation of calcite with minor silica following evaporative concentration of the water residing in the cracks and continuous corrosion of the crack walls. The sealing rate is calculated as the intersection of the time of emergence of the cracks, the water dripping rate, and the decreasing evaporation rate. The evaporative driving force declines as short-lived radioactive elements, having given up much of the heat affecting the repository, are progressively depleted from the waste. Depending on the crack initiation time and environmental conditions, crack sealing varies from a few tens of years to a few thousand years. Because environmental conditions in the vicinity of the cracks and at the crack scale have not been produced, a parametric method scaling drift scale conditions is used. PMID:15949609

  14. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    SciTech Connect

    Marusich, Robert M.

    2013-08-15

    The purpose of this report is to evaluate hydrogen generation within Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB), to establish plutonium (Pu) limits for PTOs based on hydrogen concentration in the inner-most container and to establish required configurations or validate existing or proposed configurations for PTOs. The methodology and requirements are provided in this report.

  15. Ceramic Coatings for Corrosion Resistant Nuclear Waste Container Evaluated in Simulated Ground Water at 90?C

    SciTech Connect

    Haslam, J J; Farmer, J C

    2004-03-31

    Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plain carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.

  16. Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite.

    SciTech Connect

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Headley, Thomas Jeffrey; Sanchez, Charles Anthony; Zhao, Hongting; Salas, Fred Manuel; Hasan, Mahmoud A.; Holt, Kathleen Caroline

    2003-08-01

    Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K{sub sp} > 10{sup -40}), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible.

  17. Evaluation of polymer inclusion membranes containing crown ethers for selective cesium separation from nuclear waste solution.

    PubMed

    Mohapatra, P K; Lakshmi, D S; Bhattacharyya, A; Manchanda, V K

    2009-09-30

    Transport behaviour of (137)Cs from nitric acid feed was investigated using cellulose triacetate plasticized polymer inclusion membrane (PIM) containing several crown ether carriers viz. di-benzo-18-crown-6 (DB18C6), di-benzo-21-crown-7 (DB21C7) and di-tert-butylbenzo-18-crown-6 (DTBB18C6). The PIM was prepared from cellulose triacetate (CTA) with various crown ethers and plasticizers. DTBB18C6 and tri-n-butyl phosphate (TBP) were found to give higher transport rate for (137)Cs as compared to other carriers and plasticizers. Effect of crown ether concentration, nitric acid concentration, plasticizer and CTA concentration on the transport rate of Cs was also studied. The Cs selectivity with respect to various fission products obtained from an irradiated natural uranium target was found to be heavily dependent on the nature of the plasticizer. The present work shows that by choosing a proper plasticizer, one can get either good transport efficiency or selectivity. Though TBP plasticized membranes showed good transport efficiency, it displayed poor selectivities. On the other hand, an entirely opposite separation behaviour was observed with 2-nitrophenyloctylether (NPOE) plasticized membranes suggesting the possible application of the later membranes for the removal of bulk (137)Cs from the nuclear waste. The stability of the membrane was tested by carrying out transport runs for nearly 25 days. PMID:19398153

  18. Modeling the corrosion of high-level waste containers: CAM-CRM interface

    SciTech Connect

    Bedrossian, P J; Farmer, J C; McCright, R D

    1998-06-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A5 16 or Monel 400. At the present time, Alloy C-22 and A516 are favored. This publication addresses the development of models to account for corrosion of Alloy C-22 surfaces exposed directly to the Near Field Environment (NFE), as well as to the exacerbated conditions in the CAM-CRM crevice. [5]. Haynes International has published corrosion rates of Alloys 625 and C-22 in artificial crevice solutions (5-10 wt. % FeCl,) at various temperatures (25, 50 and 75 C) [6,7]. In this case, the observed rates for Alloy C-22 appear to be due to passive dissolution. It is believed that Alloy C-22 must be at an electrochemical potential above the repassivation potential to initiate localized corrosion.

  19. Ca(2+) and OH(-) release of ceramsites containing anorthite and gehlenite prepared from waste lime mud.

    PubMed

    Qin, Juan; Yang, Chuanmeng; Cui, Chong; Huang, Jiantao; Hussain, Ahmad; Ma, Hailong

    2016-09-01

    Lime mud is a kind of solid waste in the papermaking industry, which has been a source of serious environmental pollution. Ceramsites containing anorthite and gehlenite were prepared from lime mud and fly ash through the solid state reaction method at 1050°C. The objective of this study was to explore the efficiency of Ca(2+) and OH(-) release and assess the phosphorus and copper ion removal performance of the ceramsites via batch experiments, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that Ca(2+) and OH(-) were released from the ceramsites due to the dissolution of anorthite, gehlenite and available lime. It is also concluded that gehlenite had stronger capacity for Ca(2+) and OH(-) release compared with anorthite. The Ca(2+) release could be fit well by the Avrami kinetic model. Increases of porosity, dosage and temperature were associated with increases in the concentrations of Ca(2+) and OH(-) released. Under different conditions, the ceramsites could maintain aqueous solutions in alkaline conditions (pH=9.3-10.9) and the release of Ca(2+) was not affected. The removal rates of phosphorus and copper ions were as high as 96.88% and 96.81%, respectively. The final pH values of both phosphorus and copper ions solutions changed slightly. The reuse of lime mud in the form of ceramsites is an effective strategy. PMID:27593276

  20. In-situ containment of buried waste at Brookhaven National Laboratory

    SciTech Connect

    Dwyer, B.P.; Heiser, J.; Stewart, W.; Phillips, S.

    1997-12-31

    The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale {open_quotes}cold test{close_quotes} demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL.

  1. Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite.

    SciTech Connect

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Headley, Thomas Jeffrey; Sanchez, Charles Anthony; Zhao, Hongting; Salas, Fred Manuel; Hasan, Mahmoud A.; Holt, Kathleen Caroline

    2004-04-01

    Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K{sub sp}>10{sup -40}), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible.

  2. Tertiary recycling of PVC-containing plastic waste by copyrolysis with cattle manure.

    PubMed

    Duangchan, Apinya; Samart, Chanatip

    2008-11-01

    The corrosion from pyrolysis of PVC in plastic waste was reduced by copyrolysis of PVC with cattle manure. The optimization of pyrolysis conditions between PVC and cattle manure was studied via a statistical method, the Box-Behnken model. The pyrolysis reaction was operated in a tubular reactor. Heating rate, reaction temperature and the PVC:cattle manure ratio were optimized in the range of 1-5 degrees C/min, 250-450 degrees C and the ratio of 1:1-1:5, respectively. The suitable conditions which provided the highest HCl reduction efficiency were the lowest heating rate of 1 degrees C/min, the highest reaction temperature of 450 degrees C, and the PVC:cattle manure ratio of 1:5, with reliability of more than 90%. The copyrolysis of the mixture of PVC-containing plastic and cattle manure was operated at optimized conditions and the synergistic effect was studied on product yields. The presence of manure decreased the oil yield by about 17%. The distillation fractions of oil at various boiling points from both the presence and absence of manure were comparable. The BTX concentration decreased rapidly when manure was present and the chlorinated hydrocarbon was reduced by 45%. However, the octane number of the gasoline fraction was not affected by manure and was in the range of 99-100. PMID:18314324

  3. Tertiary recycling of PVC-containing plastic waste by copyrolysis with cattle manure

    SciTech Connect

    Duangchan, Apinya Samart, Chanatip

    2008-11-15

    The corrosion from pyrolysis of PVC in plastic waste was reduced by copyrolysis of PVC with cattle manure. The optimization of pyrolysis conditions between PVC and cattle manure was studied via a statistical method, the Box-Behnken model. The pyrolysis reaction was operated in a tubular reactor. Heating rate, reaction temperature and the PVC:cattle manure ratio were optimized in the range of 1-5 deg. C/min, 250-450 deg. C and the ratio of 1:1-1:5, respectively. The suitable conditions which provided the highest HCl reduction efficiency were the lowest heating rate of 1 deg. C/min, the highest reaction temperature of 450 deg. C, and the PVC:cattle manure ratio of 1:5, with reliability of more than 90%. The copyrolysis of the mixture of PVC-containing plastic and cattle manure was operated at optimized conditions and the synergistic effect was studied on product yields. The presence of manure decreased the oil yield by about 17%. The distillation fractions of oil at various boiling points from both the presence and absence of manure were comparable. The BTX concentration decreased rapidly when manure was present and the chlorinated hydrocarbon was reduced by 45%. However, the octane number of the gasoline fraction was not affected by manure and was in the range of 99-100.

  4. CONCRETE CONTAINERS FOR LONG TERM STORAGE AND FINAL DISPOSAL OF TRU WASTE AND LONG LIVED ILW

    SciTech Connect

    Sakamoto, H.; Asano, H.; Tunaboylu, K.; Mayer, G.; Klubertanz, G.; Kobayashi, S.; Komuro, T.; Wagner, E.

    2003-02-27

    Transuranic (TRU) waste packaging development has been conducted since 1998 by the Radioactive Waste Management Funding and Research Centre (RWMC) to support the TRU waste disposal concept in Japan. In this paper, the overview of development status of the reinforced concrete package is introduced. This package has been developed in order to satisfy the Japanese TRU waste disposal concept based on current technology and to provide a low cost package. Since 1998, the basic design work (safety evaluation, manufacturing and handling procedure, economic evaluation, elemental tests etc.) have been carried out. As a result, the basic specification of the package was decided. This report presents the concept as well as the results of basic design, focused on safety analysis and handling procedure of the package. Two types of the packages exist: - Package-A: for non-heat generating TRU waste from reprocessing in 200 l drums and - Package-B: for heat generating TRU-waste from reprocessing.

  5. Containment barrier metals for high-level waste packages in a Tuff repository

    SciTech Connect

    Russell, E.W.; McCright, R.D.; O`Neal, W.C.

    1983-10-12

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package project is part of the US Department of Energy`s Civilian Radioactive Waste Management (CRWM) Program. The NNWSI project is working towards the development of multibarriered packages for the disposal of spent fuel and high-level waste in tuff in the unsaturated zone at Yucca Mountain at the Nevada Test Site (NTS). The final engineered barrier system design may be composed of a waste form, canister, overpack, borehole liner, packing, and the near field host rock, or some combination thereof. Lawrence Livermore National Laboratory`s (LLNL) role is to design, model, and test the waste package subsystem for the tuff repository. At the present stage of development of the nuclear waste management program at LLNL, the detailed requirements for the waste package design are not yet firmly established. In spite of these uncertainties as to the detailed package requirements, we have begun the conceptual design stage. By conceptual design, we mean design based on our best assessment of present and future regulatory requirements. We anticipate that changes will occur as the detailed requirements for waste package design are finalized. 17 references, 4 figures, 10 tables.

  6. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations.

    PubMed

    Jacukowicz-Sobala, Irena; Ociński, Daniel; Kociołek-Balawejder, Elżbieta

    2015-07-01

    Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. PMID:26060197

  7. FY 1985 status report on feasibility assessment of copper-base waste package container materials in a tuff repository

    SciTech Connect

    McCright, R.D.

    1985-09-30

    This report discusses progress made during the first year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. The expected corrosion and oxidation performances of oxygen-free copper, aluminum bronze, and 70% copper-30% nickel are presented; a test plan for determining whether copper or one of the alloys can meet the containment requirements is outlined. Some preliminary corrosion test data are presented and discussed. Fabrication and joining techniques for forming waste package containers are descibed. Preliminary test data and analyses indicate that copper and copper-base alloys have several attractive features as waste package container materials, but additional work is needed before definitive conclusions can be made on the feasibility of using copper or a copper-base alloy for containers. Plans for work to be undertaken in the second year are indicated.

  8. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    SciTech Connect

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degree}C and whether the cladding of the stored spent fuel ever exceeds 350{degree}C. Limiting the borehole to temperatures of 97{degree}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degree}C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degree}C for the full 1000-yr analysis period.

  9. 222-S radioactive liquid waste line replacement and 219-S secondary containment upgrade, Hanford Site, Richland, Washington

    SciTech Connect

    1995-01-01

    The U.S. Department of Energy (DOE) is proposing to: (1) replace the 222-S Laboratory (222-S) radioactive liquid waste drain lines to the 219-S Waste Handling Facility (219-S); (2) upgrade 219-S by replacing or upgrading the waste storage tanks and providing secondary containment and seismic restraints to the concrete cells which house the tanks; and (3) replace the transfer lines from 219-S to the 241-SY Tank Farm. This environmental assessment (EA) has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and the DOE Implementing Procedures for NEPA (10 CFR 1021). 222-S is used to perform analytical services on radioactive samples in support of the Tank Waste Remediation System and Hanford Site environmental restoration programs. Activities conducted at 222-S include decontamination of analytical processing and support equipment and disposal of nonarchived radioactive samples. These activities generate low-level liquid mixed waste. The liquid mixed waste is drained through pipelines in the 222-S service tunnels and underground concrete encasements, to two of three tanks in 219-S, where it is accumulated. 219-S is a treatment, storage, and/or disposal (TSD) unit, and is therefore required to meet Washington Administrative Code (WAC) 173-303, Dangerous Waste Regulations, and the associated requirements for secondary containment and leak detection. The service tunnels are periodically inspected by workers and decontaminated as necessary to maintain as low as reasonably achievable (ALARA) radiation levels. Although no contamination is reaching the environment from the service tunnels, the risk of worker exposure is present and could increase. 222-S is expected to remain in use for at least the next 30 years to serve the Hanford Site environmental cleanup mission.

  10. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    SciTech Connect

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-12-09

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date.

  11. Behavior of cement mortars containing an industrial waste from aluminium refining: Stability in Ca(OH){sub 2} solutions

    SciTech Connect

    Puertas, F.; Blanco-Varela, M.T.; Vazquez, T.

    1999-10-01

    The physical and chemical interaction between a solid industrial waste from aluminium refining and saturated Ca(OH){sub 2} solution, as well as the effects of substituting siliceous sand for the waste on the physical and mechanical properties of mortars were studied. The waste is a solid that contains reactive alumina capable of combining with the calcium hydroxide. These reactions result in stable and insoluble compounds. This alumina, together with the halite (also present in the waste composition), chemically react with a saturated solution of Ca(OH){sub 2}, giving as a main reaction product the so-called Friedel's salt (Ca{sub 4}Al{sub 2}Cl{sub 2}O{sub 6} {center{underscore}dot} 10 H{sub 2}O). Straetlingite and Si-hydrogarnets were among other products detected. The waste has a high specific surface area. The cement/waste mixtures therefore require a higher quantity of mixing water than cement/sand mixtures. The result is a decrease of the mechanical strengths and an increase of the total porosity. However, a decrease of the average size of the pores occurs, which can have a positive effect on the durability of the final material.

  12. Gaseous emissions from the combustion of a waste mixture containing a high concentration of N{sub 2}O

    SciTech Connect

    Dong Changqing Yang Yongping; Zhang Junjiao; Lu Xuefeng

    2009-01-15

    This paper is focused on reducing the emissions from the combustion of a waste mixture containing a high concentration of N{sub 2}O. A rate model and an equilibrium model were used to predict gaseous emissions from the combustion of the mixture. The influences of temperature and methane were considered, and the experimental research was carried out in a tabular reactor and a pilot combustion furnace. The results showed that for the waste mixture, the combustion temperature should be in the range of 950-1100 deg. C and the gas residence time should be 2 s or higher to reduce emissions.

  13. FORMATION OF TRANSIENT PUFFS FROM CONTAINED LIQUID WASTES IN A ROTARY KILN SIMULATOR

    EPA Science Inventory

    The paper gives results of a study of the generation of transient puffs resulting from the batch incineration of liquid waste into a 73 kW rotary kiln incinerator simulator. Liquid wastes investigated included toluene, methylene chloride, carbon tetrachloride, and No. 5 fuel oil....

  14. Microbial studies in the Canadian nuclear fuel waste management program.

    PubMed

    Stroes-Gascoyne, S; West, J M

    1997-07-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for permanent geological disposal of used nuclear fuel in Canada. This concept, based on a multibarrier system, would involve disposal of nuclear fuel waste in titanium or copper containers, surrounded by compacted clay-based buffer and backfill materials, in a vault 500-1000 m deep in granitic rock of the Canadian Shield. Subsurface environments will not be sterile and an experimental program was initiated in 1991 by AECL to address and quantify the potential effects of microbial action on the integrity of the disposal vault. This microbial program focuses on answering specific questions in areas such as the survival of bacteria in compacted clay-based buffer materials under relevant radiation, temperature and desiccation conditions; mobility of microbes in compacted buffer materials; the potential for microbially influenced corrosion of containers; microbial gas production in backfill material; introduction of nutrients as a result of vault excavation and operation; the presence and activity of microbes in deep granitic groundwaters; and the effects of biofilms on radionuclide migration in the geosphere. This paper summarizes the results to date from the research activities at AECL. PMID:9299719

  15. Cement-based materials as containment systems for ash from hospital waste incineration.

    PubMed

    Genazzini, C; Giaccio, G; Ronco, A; Zerbino, R

    2005-01-01

    Waste generation has increased considerably worldwide in the last decades. As a consequence, incineration became an alternative for reducing waste volume, leading to the generation of ash as a new type of waste. The new cement-ash composite systems have been tested for future applications in building materials. Having in mind the previous data and scientific reports, the objective of the present study is oriented to evaluate the additions of hospital waste ash in cement matrices to be potentially used as construction elements. This involved the assessment of the effect of the additions (different proportions of ash and metal-spiked ash) on the physico-mechanical properties of the building materials and the leachability of metals. The experiences show the feasibility of including hospital waste ashes in masonry blocks or other similar products. PMID:15993349

  16. Crystalline Phase Separation in Phosphate Containing Waste Glasses: Relevance to INEEL HAW

    SciTech Connect

    Jantzen, C.M.

    2000-09-21

    As part of the Tanks Focus Area's (TFA) effort to increase waste loading for high-level waste vitrification at various facilities in the Department of Energy (DOE) complex, the occurrence of phase separation in waste glasses spanning the Savannah River Site (SRS) and Idaho National Engineering and Environmental Laboratory (INEEL) composition ranges have been studied. The type of phase separation that occurs in the phosphate rich borosilicate waste glasses, such as those investigated for INEEL, crystallizes upon cooling. This type of phase separation mechanism is less well studied than amorphous phase separation in phosphate poor borosilicate waste glasses. Therefore, the type of phase separation, extent, and impact of phase separation on glass durability for a series of INEEL-type glasses were examined and the data statistically analyzed in this study.

  17. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    PubMed

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic. PMID:26524292

  18. INITIAL WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: MULTI-PURPOSE CANISTER WITH DISPOSAL CONTAINER (TBV)

    SciTech Connect

    J.R. Massari

    1995-10-06

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to: (1) Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts; (2) Demonstrate the established process by estimating the probability of criticality as a function of time since emplacement for an intact multi-purpose canister waste package (MPC-WP) configuration; (3) Identify the dominant sequences leading to waste package criticality for subsequent detailed analysis. The purpose of this analysis is to document and demonstrate the developed process as it has been applied to the MPC-WP. This revision is performed to correct deficiencies in the previous revision and provide further detail on the calculations performed. This analysis is similar to that performed for the uncanistered fuel waste package (UCF-WP, B00000000-01717-2200-00079).

  19. Conceptual design of retrieval systems for emplaced transuranic waste containers in a salt bed depository. Final report

    SciTech Connect

    Fogleman, S.F.

    1980-04-01

    The US Department of Energy and the Nuclear Regulatory Commission have jurisdiction over the nuclear waste management program. Design studies were previously made of proposed repository site configurations for the receiving, processing, and storage of nuclear wastes. However, these studies did not provide operational designs that were suitable for highly reliable TRU retrieval in the deep geologic salt environment for the required 60-year period. The purpose of this report is to develop a conceptual design of a baseline retrieval system for emplaced transuranic waste containers in a salt bed depository. The conceptual design is to serve as a working model for the analysis of the performance available from the current state-of-the-art equipment and systems. Suggested regulations would be based upon the results of the performance analyses.

  20. A process for containment removal and waste volume reduction to remediate groundwater containing certain radionuclides, toxic metals and organics. Final report

    SciTech Connect

    Buckley, L.P.; Killey, D.R.W.; Vijayan, S.; Wong, P.C.F.

    1992-09-01

    A project to remove groundwater contaminants by an improved treatment process was performed during 1990 October--1992 March by Atomic Energy of Canada Limited for the United States Department of Energy, managed by Argonne National Laboratory. The goal was to generate high-quality effluent while minimizing secondary waste volume. Two effluent target levels, within an order of magnitude, or less than the US Drinking Water Limit, were set to judge the process effectiveness. The program employed mixed waste feeds containing cadmium, uranium, lead, iron, calcium, strontium-85-90, cesium-137, benzene and trichlorethylene in simulated and actual groundwater and soil leachate solutions. A combination of process steps consisting of sequential chemical conditioning, cross-flow microfiltration and dewatering by low temperature-evaporation, or filter pressing were effective for the treatment of mixed waste having diverse physico-chemical properties. A simplified single-stage version of the process was implemented to treat ground and surface waters contaminated with strontium-90 at the Chalk River Laboratories site. Effluent targets and project goals were met successfully.

  1. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOEpatents

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  2. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOEpatents

    Pinson, P.A.

    1998-02-24

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs.

  3. [Fenton technique for oxidation treatment of solid-waste containing aniline].

    PubMed

    Hu, Li-Fang; Yao, Jun; Lou, Bin; He, Ruo; Shen, Dong-Sheng

    2008-01-01

    The catalytic oxidation of aniline was evaluated to provide the foundation for risk-based treatment of aniline-contaminated solid-waste using Fenton reagent (catalyzed hydrogen peroxide). The operating conditions of Fenton reaction were investigated and the factors of the chemical treatment were analyzed. The optimal conditions were following: 1.1 mL H2O2 per gram of dried solid waste, V (H2O2) 0.5-1.0 mL x min(-1), addition of Fenton reagent twice or three times at pH = 3.0 in 50 grams of waste, and the aniline removal rate is over 99.86% for 30 min reaction after reagent addition. Furthermore, mechanisms of affecting factors in solid-waste were analyzed; the key and controlling steps of reactions were expounded in the system, which provided safeguard for further treatment ranging from stabilization and solidification to landfill. PMID:18441925

  4. General and Localized Corrosion of Outer Barrier of High-Level Waste Container in Yucca Mountain

    SciTech Connect

    Farmer, J.; McCright, D.; Gdowski, G.; Wang, F.; Summers, T.; Bedrossian, P.; Horn, J.; Lian, T.; Estill, J.; Lingenfelter, A.; Halsey, W.

    2000-05-02

    As described in the License Application Design Selection Report, the recommended waste, package design is Engineering Design Alternative II (CRWMS M&O 1999). This design includes a double-wall waste package (WP) underneath a protective drip shield (DS). purpose and scope of the process-level model described here is to account for both general and localized corrosion of the waste package outer barrier (WPOB), which assumed to be Alloy 22 (UNS N06022-21Cr-13Mo-4Fe-3W-2C-Ni) (ASTM 1997a). This model will include several sub-models, which will account for dry oxidation (DOX), humid air corrosion (HAC), general corrosion (GC) in the aqueous phase, and localized corrosion (LC) the aqueous phase. This model serves as a feed to the waste package degradation (WAPDEG) code for performance, assessment.

  5. Determination of the Porosity Surfaces of the Disposal Room Containing Various Waste Inventories for WIPP PA.

    SciTech Connect

    Park, Byoung; Hansen, Francis D.

    2005-07-01

    This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of room closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper

  6. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report

    SciTech Connect

    Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.

    1993-09-01

    Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

  7. Catalytic oxidation of mixed wastes containing high organic content--emission reduction and the effect of steam.

    PubMed

    Chang, Li-Yang; Than, Chit; Morimoto, Hiromi; Williams, Philip G

    2006-01-01

    To resolve mixed organic and radioactive waste disposal problems, Lawrence Berkeley National Laboratory (LBNL) initiated a treatability study using the catalytic chemical oxidation (CCO) system to oxidize a mixed-waste stream and to confine tritium as part of LBNL's pollution prevention program. LBNL has also adopted a legal approach by seeking an equivalent waste-treatment determination for the CCO process, and by petitioning the United States Environmental Protection Agency (EPA) to delist F-coded treatment residues. The results of this study demonstrate that (1) the CCO process can treat aqueous wastes containing a broad range of organic chemicals and achieve more than 99.999% destruction efficiency; (2) greater than 99.9% trapping efficiency for tritiated water can be achieved using an emission-reduction system that also confines the vapor of hydrochloric acid or nitric acid to the liquid residue; and (3) neutralized treatment residues can be disposed of as low-level radioactive waste at a permitted facility after EPA has approved LBNL's petitions, or the tritium in the residues can be recycled. The high oxidation efficiency of the CCO process is mainly due to the optimized operating conditions of the CCO process and the combined effect of steam reforming in the oxidation cell and the catalytic oxidation of organic mixtures and CO in the Pt/Al2O3 catalyst bed. PMID:16401570

  8. Development of a testing method for asbestos fibers in treated materials of asbestos containing wastes by transmission electron microscopy

    SciTech Connect

    Yamamoto, Takashi; Kida, Akiko; Noma, Yukio; Terazono, Atsushi; Sakai, Shin-ichi

    2014-02-15

    Highlights: • A high sensitive and selective testing method for asbestos in treated materials of asbestos containing wastes was developed. • Asbestos can be determined at a limits are a few million fibers per gram and a few μg g{sup −1}. • High temperature melting treatment samples were determined by this method. Asbestos fiber concentration were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup 6} g{sup −1}. - Abstract: Appropriate treatment of asbestos-containing wastes is a significant problem. In Japan, the inertization of asbestos-containing wastes based on new treatment processes approved by the Minister of the Environment is promoted. A highly sensitive method for testing asbestos fibers in inertized materials is required so that these processes can be approved. We developed a method in which fibers from milled treated materials are extracted in water by shaking, and are counted and identified by transmission electron microscopy. Evaluation of this method by using asbestos standards and simulated slag samples confirmed that the quantitation limits are a few million fibers per gram and a few μg/g in a sample of 50 mg per filter. We used this method to assay asbestos fibers in slag samples produced by high-temperature melting of asbestos-containing wastes. Fiber concentrations were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup −6} f/g. Because the evaluation of treated materials by TEM is difficult owing to the limited amount of sample observable, this testing method should be used in conjunction with bulk analytical methods for sure evaluation of treated materials.

  9. US DOE-AECL cooperative program for development of high-level radioactive waste container fabrication, closure, and inspection techniques

    SciTech Connect

    Russell, E.W.

    1990-06-01

    The US Department of Energy (DOE) and Atomic Energy of Canada Limited (AECL) plan to initiate a cooperative research program on development of manufacturing processes for high-level radioactive waste containers. This joint program will benefit both countries in the development of processes for the fabrication, final closure in a hot-cell, and certification of the containers. Program activity objectives can be summarized as follows: to support the selection of suitable container fabrication, final closure, and inspection techniques for the candidate materials and container designs that are under development or are being considered in the US and Canadian repository programs; and to investigate these techniques for alternate materials and/or container designs, to be determined in future optimization studies relating to long-term performance of the waste packages. The program participants will carry out this work in a conditional phased approach, and the scope of work for subsequent years will evolve subject to developments in earlier years. The overall term of this cooperative program is planned to run roughly three years. 5 refs., 2 tabs.

  10. Mobile neutron/gamma waste assay system for characterization of waste containing transuranics, uranium, and fission/activation products

    SciTech Connect

    Davidson, D.R.; Haggard, D.; Lemons, C.

    1994-12-31

    A new integrated neutron/gamma assay system has been built for measuring 55-gallon drums at Pacific Northwest Laboratory. The system is unique because it allows simultaneous measurement of neutrons and gamma-rays. This technique also allows measurement of transuranics (TRU), uranium, and fission/activation products, screening for shielded Special Nuclear Material prior to disposal, and critically determinations prior to transportation. The new system is positioned on a platform with rollers and installed inside a trailer or large van to allow transportation of the system to the waste site instead of movement of the drums to the scanner. The ability to move the system to the waste drums is particularly useful for drum retrieval programs common to all DOE sites and minimizes transportation problems on the site. For longer campaigns, the system can be moved into a facility. The mobile system consists of two separate subsystems: a passive Segmented Gamma Scanner (SGS) and a {open_quotes}clam-shell{close_quotes} passive neutron counter. The SGS with high purity germanium detector and {sup 75}Se transmission source simultaneously scan the height of the drum allowing identification of unshieled {open_quotes}hot spots{close_quotes} in the drum or segments where the matrix is too dense for the transmission source to penetrate. Dense segments can flag shielding material that could be used to hide plutonium or uranium during the gamma analysis. The passive nuetron counter with JSR-12N Neutron Coincidence Analyzer measures the coincident neutrons from the spontaneous fission of even isotopes of plutonium. Because high-density shielding produces minimal absorption of neutrons, compared to gamma rays, the passive neutron portion of the system can detect shielded SNM. Measurements to evaluate the performance of the system are still underway at Pacific Northwest Laboratory.

  11. CONTAINMENT TECHNOLOGIES

    EPA Science Inventory

    Hazardous waste containment's primary objective is to isolate wastes deemed as hazardous from man and environmental systems of air, soil, and water. Hazardous wastes differ from other waste classifications due to their increased potential to cause human health effects or environ...

  12. Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials.

    PubMed

    Singh, Tony Sarvinder; Pant, K K

    2006-04-17

    Stabilization/solidification (S/S) is used as a pre-landfill waste treatment technology that aims to make hazardous industrial wastes safe for disposal. Cement-based solidification/stabilization technology is widely used because it offer assurance of chemical stabilization of many contaminants and produce a stable form of waste. The leaching behavior of arsenic from a solidified/stabilized waste was studied to obtain information about their potential environmental risk. Activated alumina (AA) contaminated with arsenic was used as a waste, which was stabilized/solidified (S/S) using ordinary portland cement (C), fly ash (FA), calcium hydroxide (CH) and various polymeric materials such as polystyrene and polymethyl methacrylate (PMMA). Toxicity characteristics leaching procedure (TCLP) and semi-dynamic leach tests were conducted to evaluate the leaching behavior of arsenic. Formations of calcite along with precipitate formation of calcium arsenite were found to be responsible for low leaching of arsenic from the stabilized/solidified samples. Effective diffusivity of arsenic ion from the matrix and leachablity index was also estimated. Minimum leaching of the contaminant was observed in matrix having AA+C+FA+CH due to the formation of calcite. PMID:16271283

  13. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect

    Not Available

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  14. Characterization of the properties of thermoplastic elastomers containing waste rubber tire powder

    SciTech Connect

    Zhang Shuling; Xin Zhenxiang; Zhang Zhenxiu; Kim, Jin Kuk

    2009-05-15

    The aim of this research was to recycle waste rubber tires by using powdering technology and treating the waste rubber tire powder with bitumen. It has been proven that the elongation at break, thermal stability and processing flowability of composites of polypropylene (PP), waste rubber tire powder (WRT) and bitumen composites are better than those of PP/WRT composite. A comparative study has been made to evaluate the influence of bitumen content and different compatibilizers on the properties of PP/WRT/bitumen composites, using a universal testing machine (UTM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and a capillary rheometer. The results suggested that the properties of PP/WRT/bitumen composites were dependent on the bitumen content and the kind of compatibilizer used.

  15. Alternative disposal for Investigation Derived Wastes (IDW) containing low activity source material

    SciTech Connect

    Downey, H.T.; Majer, T.

    2007-07-01

    As part of a Remedial Investigation (RI) at a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site, approximately 77,111 kg (85 tons) I would use the actual tons of investigation derived wastes (IDW) were generated from exploratory soil borings and as part of removal activities at a former drum burial area. Characterization of these materials indicated elevated concentrations of metals including uranium and thorium (source material). Concentrations of uranium and thorium were at levels less than 0.05% by mass, which is the threshold for exempt source material under Nuclear Regulatory Commission (NRC) regulations. Disposal of this material was evaluated as low-level radioactive waste and as exempt radioactive waste. The NRC has established a process for evaluation and review of exempt source material transfer and direct disposal in a Resource Conservation and Recovery Act (RCRA) landfill. These requests are normally approved if the dose to a member of the general public is unlikely to exceed 0.25 mSv per year (25 milli-rem per year). The soil was evaluated for disposal as exempt radioactive waste at a RCRA landfill, which included dose modeling to workers during transportation and disposal as well as potential dose to members of the public after closure of the disposal facility. These evaluations determined that the potential dose was very small, and review by the agreement state regulatory agency indicated that this disposal process should not result in any undue hazard to public health and safety or property. The advantage of this approach is that disposal of 77,111 kg (85 tons) of IDW at a RCRA landfill is estimated to result in a savings of $80,000 as compared to disposal as low-level radioactive waste. Alternative waste disposal of exempt source material provides more disposal options and can lead to significant cost savings. (authors)

  16. Replacing fish meal by food waste to produce lower trophic level fish containing acceptable levels of polycyclic aromatic hydrocarbons: Health risk assessments.

    PubMed

    Cheng, Zhang; Mo, Wing-Yin; Lam, Cheung-Lung; Choi, Wai-Ming; Wong, Ming-Hung

    2015-08-01

    This study aimed at using different types of food wastes (mainly containing cereal [food waste A] and meat meal [food waste B]) as major sources of protein to replace the fish meal used in fish feeds to produce quality fish. The traditional fish farming model used to culture low trophic level fish included: bighead, (Hypophthalmichthys nobilis), grass carp, (Ctenopharyngodon idellus), and mud carp, (Cirrhinus molitorella) of omnivorous chain. The results indicated that grass carp and bighead carp fed with food waste feeds were relatively free of PAHs. The results of health risk assessment showed that the fish fed with food waste feeds were safe for consumption from the PAHs perspective. PMID:25880597

  17. Clay-based affinity probes for selective cleanup and determination of aflatoxin B1 using nanostructured montmorillonite on quartz.

    PubMed

    Huebner, Henry J; Phillips, Timothy D

    2003-01-01

    A study was conducted to investigate the selective cleanup and determination of aflatoxin B1 (AfB1) from contaminated media. Composite adsorbents were formulated from calcium montmorillonite clay, which possesses a high affinity and enthalpy of adsorption for AfB1. Nanostructuring techniques were used to construct various formulations of the clay-based composite media. In AfB1 adsorption studies with prototypical affinity columns, these composites offered narrowly defined, reproducible capacity ranges. Composite recoveries of AfB1 from spiked grains exhibited linear trends that correlated well with the range of spike levels. Composite columns provided lower recoveries of AfB1 from naturally contaminated corn than did immunoaffinity columns; however, recoveries were consistent and purified extracts were free of interfering compounds, as determined by liquid chromatography with fluorescence detection. PMID:12852572

  18. Phase composition and elemental partitioning in glass-ceramics containing high-Na/Al high level waste

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Sorokaletova, A. N.; Nikonov, B. S.

    2012-05-01

    Mixtures of surrogates of high level waste with high sodium and aluminum contents and sodium-lithium borosilicate frit were melted in alumina crucibles in a resistive furnace followed by quenching of one portion of the melt and annealing of the residual material in a turned-off furnace. The annealed materials with waste loading of up to 45 wt.% contained minor spinel type phase and trace of nepheline (Na,K)AlSiO4. In the annealed materials contained waste oxides in amount of 50 wt.% and more nepheline and spinel were found to be major and minor phases, respectively. At high waste loadings two extra phases: Cs-aluminosilicate (CsAlSiO4) and mixed Na/Cs-aluminosilicate were found in amount of 3-5 vol.% each. The latter phase contains of up to ˜5.7 wt.% SO3 or 0.13 formula units S (Na0.75K0.05Cs0.29Ca0.02Sr0.02Al0.99Fe0.03Si0.76S0.13O4). Sulfur incorporation as S6+ or SO42- ions into crystal lattice may be facilitated in the presence of large-size Cs+ cations. Simplified suggested formula of this phase may be represented as Na0.8Cs0.3AlSi0.8S0.1O3.95. It was also synthesized by sintering of mixture of chemicals at 1300 °C and found to be instable at temperatures higher than 1300 °C.

  19. Solidification/stabilization of arsenic-containing waste: Leach tests and behavior of arsenic in the leachate

    SciTech Connect

    Dutre, V.; Vandecasteele, C.

    1995-07-01

    An industrial waste containing large amounts of arsenic (42 wt.{percent}) was studied. The waste was treated using solidification/stabilization technology (S/S) with cement and pozzolanic materials. Addition of lime appeared to be the major factor in reducing the concentration of arsenic in the leachate from the S/S materials through the formation of a slightly soluble calcium-arsenic compound in the leachate. To investigate the mechanism of leaching from the S/S waste, semi-dynamic leach tests were performed (ANSI/ANS 16.1), but no direct conclusions concerning the release mechanism could be drawn from these tests, as equilibrium was researched during the intervals of static leaching of which the semi-dynamic leach test consists. Therefore, static leach tests were carried out that gave much information about the behavior of arsenic in the leachate. Moreover, it is shown that arsenic in the leachate is mainly present as As(III) and evidence is presented for the formation of a CaHAsO{sub 3}-precipitate. It is concluded that semi-dynamic leach tests may give inaccurate information, if no preliminary study is made of the S/S waste-leachate equilibrium.

  20. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report

    SciTech Connect

    Vinson, D.W.; Bullen, D.B.

    1995-09-22

    One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys.

  1. Physical and mechanical properties of mortars containing PET and PC waste aggregates.

    PubMed

    Hannawi, Kinda; Kamali-Bernard, Siham; Prince, William

    2010-11-01

    Non-biodegradable plastic aggregates made of polycarbonate (PC) and polyethylene terephthalate (PET) waste are used as partial replacement of natural aggregates in mortar. Various volume fractions of sand 3%, 10%, 20% and 50% are replaced by the same volume of plastic. This paper investigates the physical and mechanical properties of the obtained composites. The main results of this study show the feasibility of the reuse of PC and PET waste aggregates materials as partial volume substitutes for natural aggregates in cementitious materials. Despite of some drawbacks like a decrease in compressive strength, the use of PC and PET waste aggregates presents various advantages. A reduction of the specific weight of the cementitious materials and a significant improvement of their post-peak flexural behaviour are observed. The calculated flexural toughness factors increase significantly with increasing volume fraction of PET and PC-aggregates. Thus, addition of PC and PET plastic aggregates in cementitious materials seems to give good energy absorbing materials which is very interesting for several civil engineering applications like structures subjected to dynamic or impact efforts. The present study has shown quite encouraging results and opened new way for the recycling of PC waste aggregate in cement and concrete composites. PMID:20417085

  2. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    DOEpatents

    Case, F.N.; Ketchen, E.E.

    1975-10-14

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.

  3. APPLICATION OF STAGED COMBUSTION AND REBURNING TO THE CO-FIRING OF NITROGEN-CONTAINING WASTES

    EPA Science Inventory

    The paper gives results of an evaluation of a 0.6 MW precombustion chamber burner, designed for in-furnace NOx control, high combustion efficiency, and retrofit applications, for use with high nitrogen content fuel/waste mixtures. he 250- to 750- ms residence time precombustion c...

  4. TECHNICAL RESOURCE DOCUMENT: TREATMENT TECHNOLOGIES FOR HALOGENATED ORGANIC CONTAINING WASTES. VOLUME 1

    EPA Science Inventory

    The halogenated organics technical resource document (TRD) is one of a series of five TRDs that are being prepared by the Hazardous Waste Engineering Research Laboratory. It provides information that can be used by environmental regulatory agencies and others as a source of techn...

  5. Recycled blocks with improved sound and fire insulation containing construction and demolition waste.

    PubMed

    Leiva, Carlos; Solís-Guzmán, Jaime; Marrero, Madelyn; García Arenas, Celia

    2013-03-01

    The environmental problem posed by construction and demolition waste (C&D waste) is derived not only from the high volume produced, but also from its treatment and disposal. Treatment plants receive C&D waste which is then transformed into a recycled mixed aggregate. The byproduct is mainly used for low-value-added applications such as land escape restoration, despite the high quality of the aggregate. In the present work, the chemical composition properties and grading curve properties of these aggregates are defined. Furthermore, the resulting recycled concrete with a high proportion of recycled composition, from 20% to 100% replacement of fine and coarse aggregate, is characterized physically and mechanically. An environmental study of the new construction material when all aggregates are substituted by C&D waste shows a low toxicity level, similar to that of other construction materials. The new material also has improved properties with respect to standard concrete such as high fire resistance, good heat insulation, and acoustic insulation. PMID:22784475

  6. EVALUATION OF CHEMICAL STABILIZATION AND SOLIDIFICATION PROCESSES FOR ARSENIC CONTAINING INDUSTRIAL WASTES AND SOILS

    EPA Science Inventory

    Arsenic is in many industrial raw materials, products, and wastes, and is a contaminant of concern in soil and groundwater at many remediation sites. Because arsenic readily changes valence state and reacts to form species with varying toxicity and mobility, effective treatment o...

  7. OCCURRENCE OF TRANSIENT PUFFS IN A ROTARY KILN INCINERATOR SIMULATOR. 2. CONTAINED LIQUID WASTES ON SORBENT

    EPA Science Inventory

    The paper gives results of a study of the generation of transient puffs resulting from the batch incineration of liquid waste into a 73 kW rotary kiln incinerator simulator. The liquid was added onto a sorbent, enclosed in cardboard cylinders that are introduced into the combusti...

  8. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect

    Kudinov, K.G.; Tretyakov, A.A.; Sorokin, Y.P.; Bondin, V.V.; Manakova, L.F.; Jardine, L.J.

    2001-12-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration

  9. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete.

    PubMed

    Sua-iam, Gritsada; Makul, Natt

    2013-10-15

    For several decades, cathode ray tubes (CRTs) were the primary display component of televisions and computers. The CRT glass envelope contains sufficient levels of lead oxide (PbO) to be considered hazardous, and there is a need for effective methods of permanently encapsulating this material during waste disposal. We examined the effect of adding limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) mixtures containing waste CRT glass. The SCC mixtures were prepared using Type 1 Portland cement at a constant cement content of 600 kg/m(3) and a water-to-cement ratio (w/c) of 0.38. CRT glass waste cullet was blended with river sand in proportions of 20 or 40% by weight. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. Addition of limestone powder improved the fresh and hardened properties. Pb leaching levels from the cured concrete were within US EPA allowable limits. PMID:23892134

  10. Environmental restoration and waste management site-specific plan for Richland Operations Office. [Contains glossary

    SciTech Connect

    Not Available

    1991-09-01

    This document was prepared to implement and support the US Department of Energy-Headquarters (DOE-HQ) national plan. The national plan, entitled Environmental Restoration and Waste Management Five-Year Plan (DOE 1990b) (hereinafter referred to as the DOE-HQ Five-Year Plan) is the cornerstone of the US Department of Energy's (DOE) long-term strategy in environmental restoration and waste management. The DOE-HQ Five-Year Plan addresses overall philosophy and environmental and waste-related activities under the responsibilities of the DOE Office of Environmental Restoration and Waste Management. The plan also reaffirms DOE-HQ goals to bring its nuclear sites into environmental compliance in cooperation with its regulators and the public, and to clean up and restore the environment by 2019 (the commitment for the Hanford Site is for one year sooner, or 2018). This document is part of the site-specific plan for the US Department of Energy-Richland Operations Office (DOE-RL). It is the first revision of the original plan, which was dated December 1989 (DOE-RL 1989a). This document is a companion document to the Overview of the Hanford Cleanup Five-Year Plan (DOE-RL 1989d) and The Hanford Site Environmental Restoration and Waste Management Five-Year Plan Activity Data Sheets (DOE-RL 1991). Although there are three documents that make up the complete DOE-RL plan, this detailed information volume was prepared so it could be used as a standalone document. 71 refs., 40 figs., 28 tabs.

  11. Effects of ammonia and phosphate limitation on the activated sludge treatment of calcium-containing chemical waste

    SciTech Connect

    Salanitro, J.P.; Sun, P.T.; Thornton, J.B.

    1983-02-01

    Laboratory-scale biotreaters were used to study the effects of NH/sub 3/-N and PO/sub 4/-P nutrients on the activated sludge treatment of a chemical waste containing soluble calcium (1300 mg/L). Units receiving high or low levels of NH/sub 3/-N and PO/sub 4/-P were similar in their ability to remove organic compounds from the waste. Adaptation of sludges to low PO/sub 4/-P levels (<0.1 mg/L effluent) resulted in a marked accumulation of CaCO/sub 3/ in the biosolids, whereas those receiving high PO/sub 4/-P (2-4 mg/L effluent) had little CaCO/sub 3/. Microscopic observations of CaCO/sub 3/ containing sludges showed substantial amounts of CaCO/sub 3/ crystals imbedded in the biomass. These floes also appeared to be enriched with nonfilamentous bacterial species in contrast to floes devoid of CaCO/sub 3/ which had a floe structure of filamentous and nonfilamentous organisms. Scanning electron micrographs of floes grown under low NH/sub 3/-N showed a microbial fibrillar network of exocellular material interconnecting cells in the floe matrix. The sludges adapted to low NH/sub 3/-N also produced higher amounts of extractable polysaccharide. CaCO/sub 3/ containing biosolids were more dense, larger, and settled better (low SVI, high ISV) than floes devoid of the precipitates. It is not known from these experiments whether PO/sub 4/-P or some inorganic or organic polymer produced by the floe bacteria are involved in inhibiting CaCO/sub 3/ precipitation in the activated sludge treatment of calcium-containing wastes.

  12. Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease.

    PubMed

    Kumar, Sunil; Mathur, Anisha; Singh, Varsha; Nandy, Suchismita; Khare, Sunil Kumar; Negi, Sangeeta

    2012-09-01

    The aim of present work was to bioremediate the waste cooking oil using a novel lipase produced in solid medium containing waste grease and wheat bran by Penicillium chrysogenum. Enzyme extracted with phosphate buffer was purified 10.6 and 26.28-fold after 90% ammonium sulfate precipitation and ion-exchange chromatography, respectively. The partial characterization of enzyme revealed its K(m) and V(max) value for p-nitrophenolpamitate as 0.4mM and 47.61 U/ml, respectively. The relative molecular mass of lipase was 40 kDa by SDS-PAGE and confirmed by zymogram. Purified lipase was most stable at 40°C and at 8.0 pH. Lipase activity was enhanced by metal ions such as Mg(2+), Fe(2+), Ca(2+) and non-ionic surfactant TritonX-100, while suppressed in the presence of SDS. Crude lipase was applied on cooking oil waste and the acid value was 26.92 mg/g. This showed that the enzyme could be employed for the bioremediation of used cooking oil. PMID:22770974

  13. Corrosion considerations of high-nickel alloys and titanium alloys for high-level radioactive waste disposal containers

    SciTech Connect

    Gdowski, G.E.; McCright, R.D.

    1991-07-01

    Corrosion resistant materials are being considered for the metallic barrier of the Yucca Mountain Project`s high-level radioactive waste disposal containers. High nickel alloys and titanium alloys have good corrosion resistance properties and are considered good candidates for the metallic barrier. The localized corrosion phenomena, pitting and crevice corrosion, are considered as potentially limiting for the barrier lifetime. An understanding of the mechanisms of localized corrosion of how various parameters affect it will be necessary for adequate performance assessments of candidate container materials. Examples of some of the concerns involving candidate container materials. Examples of some of the concerns of involving localized corrosion are discussed. The effects of various parameters, such as temperature and concentration of halide species, on localized corrosion are given. In addition concerns about aging of the protective oxide layer in the expected service temperature range (50 to 250{degrees}C) are presented. Also some mechanistic considerations of localized corrosion are given. 31 refs., 1 tab.

  14. Concerns on liquid mercury and mercury-containing wastes: a review of the treatment technologies for the safe storage.

    PubMed

    Rodríguez, Olga; Padilla, Isabel; Tayibi, Hanan; López-Delgado, Aurora

    2012-06-30

    Due to the adverse effects of mercury on human health and the environment, restrictive legislations and world-wide common efforts are now under way to reduce both the supply and demand of mercury. As a result, all excess Hg must be stored in safe conditions in secure places. This paper is an attempt to review the various treatment technologies types of liquid mercury (Hg(0)) and mercury-containing wastes, which can be used to store these residues in a safe way. The different treatments were classified as a function of the waste treated. The main treatments described are amalgamation, formation of sulfides, thermal treatments, vitrification, soil washing, sulfur polymer stabilization solidification, chemically bonded phosphate ceramics and other encapsulation processes, being highlighted the stabilization/solidification processes that are the treatments that provide better results, according to the consulted bibliography. PMID:22446074

  15. Method and article for primary containment of cesium wastes. [DOE patent application

    DOEpatents

    Angelini, P.; Lackey, W.J.; Stinton, D.P.; Blanco, R.E.; Bond, W.D.; Arnold, W.D. Jr.

    1981-09-03

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600/sup 0/C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1000/sup 0/C for a suitable duration.

  16. Fate and transport of phenol in a packed bed reactor containing simulated solid waste

    SciTech Connect

    Saquing, Jovita M.; Knappe, Detlef R.U.; Barlaz, Morton A.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Anaerobic column experiments were conducted at 37 Degree-Sign C using a simulated waste mixture. Black-Right-Pointing-Pointer Sorption and biodegradation model parameters were determined from batch tests. Black-Right-Pointing-Pointer HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. Black-Right-Pointing-Pointer The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of {approx}2. Black-Right-Pointing-Pointer Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictive models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention

  17. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer.

    PubMed

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328

  18. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO.

  19. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    PubMed Central

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328

  20. Methodologies for predicting the performance of Ni-Cr-Mo alloys proposed for high level nuclear waste containers

    SciTech Connect

    Dunn, D.S.; Cragnolino, G.A.; Sridhar, N.

    1999-07-01

    For the geologic disposal of the high level nuclear waste (HLW), aqueous corrosion is considered to be the most important factor in the long-term performance of containers, which are the main components of the engineered barrier subsystem. Container life, in turn, is important to the overall performance of the repository system. The proposed container designs and materials have evolved to include multiple barriers and highly corrosion resistant Ni-Cr-Mo alloys, such as Alloys 625 and C-22. Calculations of container life require knowledge of the initiation time and growth rate of localized corrosion. In the absence of localized corrosion, the rate of general or uniform dissolution, given by the passive current density of these materials, is needed. The onset of localized corrosion may be predicted by using the repassivation and corrosion potentials of the candidate container materials in the range of expected repository environments. In initial corrosion tests, chloride was identified as the most detrimental anionic species to the performance of Ni-Cr-Mo alloys. Repassivation potential measurements for Alloys 825, 625, and C-22, conducted over a wide range of chloride concentrations and temperatures, are reported. In addition, steady state passive current density, which will determine the container lifetime in the absence of localized corrosion, was measured for Alloy C-22 under various environmental conditions.

  1. Long-term performance of container materials for high-level waste: (Technical report, April 1982-August 1987)

    SciTech Connect

    Beavers, J.A.; Thompson, N.G.; Markworth, A.J.; Cialone, H.J.; Majumdar, B.S.; McCoy, J.K.

    1987-11-01

    This report describes the results of experimental and analytical studies of high-level waste container degradation. Corrosion and hydrogen embrittlement tests were conducted on selected materials to identify environmental and metallurgical factors that promote material degradation, especially stress-corrosion cracking. A major emphasis on overpack materials focused on cast and wrought low-carbon steels. Results of the corrosion work show that, to more completely identify potential failure modes, exposure environments must be further defined. Predictions of pitting rates based on models utilizing nonreactive walls may lead to rejection of carbon steel as a viable overpack material when, on the basis of performance, it may perform satisfactorily. Hydrogen embrittlement was shown to be promoted in regions of microstructural change such as the weld heat-affected zone. These findings show that hydrogen embrittlement is important to container integrity. A small portion of this task was devoted to studying the possible internal corrosion of the canister. It was found that Type 304L stainless steel will likely contain high-level waste glass for the retrieval period and probably the thermal period. Modeling studies focused on general corrosion and pitting corrosion, with the models being extended to account for more realistic conditions. Results show that pit wall reactivity is an important consideration in predicting corrosion rates. 102 refs., 132 figs., 57 tabs.

  2. Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms.

    PubMed

    Kohyama, Erina; Yoshimura, Akihiro; Aoshima, Daisuke; Yoshida, Toyokazu; Kawamoto, Hiroyoshi; Nagasawa, Toru

    2006-09-01

    This study aimed to construct an acetonitrile-containing waste treatment process by using nitrile-degrading microorganisms. To degrade high concentrations of acetonitrile, the microorganisms were newly acquired from soil and water samples. Although no nitrilase-producing microorganisms were found to be capable of degrading high concentrations of acetonitrile, the resting cells of Rhodococcus pyridinivorans S85-2 containing nitrile hydratase could degrade acetonitrile at concentrations as high as 6 M. In addition, an amidase-producing bacterium, Brevundimonas diminuta AM10-C-1, of which the resting cells degraded 6 M acetamide, was isolated. The combination of R. pyridinivorans S85-2 and B. diminuta AM10-C-1 was tested for the conversion of acetonitrile into acetic acid. The resting cells of B. diminuta AM10-C-1 were added after the first conversion involving R. pyridinivorans S85-2. Through this tandem process, 6 M acetonitrile was converted to acetic acid at a conversion rate of >90% in 10 h. This concise procedure will be suitable for practical use in the treatment of acetonitrile-containing wastes on-site. PMID:16402166

  3. Device and method for producing a containment barrier underneath and around in-situ buried waste

    DOEpatents

    Gardner, B.M.; Smith, A.M.; Hanson, R.W.; Hodges, R.T.

    1998-08-11

    An apparatus is described for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably on which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment. 15 figs.

  4. Device and method for producing a containment barrier underneath and around in-situ buried waste

    DOEpatents

    Gardner, Bradley M.; Smith, Ann M.; Hanson, Richard W.; Hodges, Richard T.

    1998-01-01

    An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably on which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

  5. Synthesis and characterization of novel lanthanide- and actinide-containing titanates and zircono-titanates; relevance to nuclear waste disposal

    SciTech Connect

    Shoup, S.L.S.

    1995-08-01

    Before experiments using actinide elements are performed, synthetic routes are tested using lanthanides of comparable ionic radii as surrogates. Compound and solid solution formation in several lanthanide-containing titanate and zircono-titanate systems have been established using X-ray diffraction (XRD) analysis, which helped to define interesting and novel experiments, some of which have been performed and are discussed, for selected actinide elements. The aqueous solubilities of several lanthanide- and actinide-containing compounds, representative of the systems studied, were tested in several leachants, including the WIPP {open_quotes}A{close_quotes} brine, following modified Materials Characterization Center procedures (MCC-3). The WIPP {open_quotes}A{close_quotes} brine is a synthetic substitute for that found in nature at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The concentrations of cerium, used as a surrogate for plutonium, leached by the WIPP {open_quotes}A{close_quotes} brine from all the cerium-containing compounds and solid solutions tested were below the Inductively Coupled Plasma (ICP) atomic emission spectrometry limit of detection (10 ppm) established for cerium in this brine. The concentrations of plutonium leached from the two plutonium-containing solid solutions were less than 1 ppm as determined by gross alpha counting and alpha pulse height analysis. Concentrations of strontium leached by the WIPP brine from stable strontium containing titanate compounds, studied as possible immobilizers of both {sup 90}Sr and actinide elements, were also quite low. These compound and solid solution formation investigations and the aqueous solubility studies suggest that the types of titanate and zircono-titanate compounds and solid solutions studied in this work appear to be useful as host matrices for nuclear waste immobilization.

  6. Development of integrated mechanistically-based degradation-mode models for performance assessment of high-level waste containers

    SciTech Connect

    Farmer, J C; McCright, R D; Estill, J C; Gordon, S R

    1998-11-02

    Alloy 22 [UNS NO60221] is now being considered for construction of high level waste containers to be emplaced at Yucca Mountain and elsewhere. In essence, this alloy is 21% Cr, 13% MO, 4% Fe, 3% W, 2% Co, with the balance being Ni. Variants without tungsten are also being considered. Detailed mechanistic models have been developed to account for the corrosion of Alloy 22 surfaces in crevices that will inevitably form. Such occluded areas experience substantial decreases in pH, with corresponding elevations in chloride concentration. Experimental work has been undertaken to validate the crevice corrosion model, including parallel studies with 304 stainless steel.

  7. A Prototype Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    NASA Astrophysics Data System (ADS)

    Kaiser, R.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnston, J. R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2014-03-01

    Cosmic-ray muons are highly-penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. This paper presents the prototype scintillating-fibre detector developed for this application at the University of Glasgow. Experimental results taken with test objects are shown in comparison to results from GEANT4 simulations. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.

  8. Development of integraded mechanistically-based degradation-mode models for performance assessment of high-level waste containers

    SciTech Connect

    Farmer, J. C., LLNL

    1998-06-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-tayer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A516 Gr 55 or Monel 400. At the present time, Alloy C- 22 and A516 Gr 55 are favored.

  9. Development of integrated mechanistically-based degradation-mode models for performance assessment of high-level waste containers

    SciTech Connect

    Bedrossian, P; Estill, J; Farmer, J; Hopper, R; Horn, J; Huang, J S; McCright, D; Roy, A; Wang, F; Wilfinger, K

    1999-02-08

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A516 Gr 55, a carbon steel, or Monel 400. At the present time, Alloy C-22 and A516 G4 55 are favored.

  10. Containment at the Source during Waste Volume Reduction of Large Radioactive Components Using Oxylance High-Temperature Cutting Equipment - 13595

    SciTech Connect

    Keeney, G. Neil

    2013-07-01

    As a waste-volume reduction and management technique, highly contaminated Control Element Drive Mechanism (CEDM) housings were severed from the Reactor Pressure Vessel Head (RPVH) inside the San Onofre Unit 2 primary containment utilizing Oxylance high-temperature cutting equipment and techniques. Presented are relevant data concerning: - Radiological profiles of the RPVH and individual CEDMs; - Design overviews of the engineering controls and the specialized confinement housings; - Utilization of specialized shielding; - Observations of apparent metallurgical-contamination coalescence phenomena at high temperatures resulting in positive control over loose-surface contamination conditions; - General results of radiological and industrial hygiene air sampling and monitoring; - Collective dose and personnel contamination event statistics; - Lessons learned. (author)

  11. New Systems for Waste Processing of Tritium-Containing Gases at the Savannah River Site

    SciTech Connect

    Poore, A.S.; Jacobs, W.D.

    2005-07-15

    A project to relocate and consolidate tritium processing activities from old, second generation buildings to newer buildings was initiated in the late 1990's at the Savannah River Site. The new waste gas processing systems located in the newer facility utilize recent technology, including metal getters, an innovative permeator design, and TCAP (Thermal Cycling Absorption Process) technology for removal of residual tritium prior to releasing the effluent to the environment. Startup testing results (using protium and deuterium) and corresponding lessons learned for these systems are presented. These systems have since successfully completed tritium startup testing and are operational.

  12. Demonstrating a Glass Ceramic route for the Immobilisation of Plutonium containing Wastes and Residues on the Sellafield Site

    SciTech Connect

    Scales, C.R.; Maddrell, E.R.; Gawthorpe, N.; Begg, B.D.; Moricca, S.; Day, R.A.; Stewart, M.A.

    2006-07-01

    A wide range of plutonium containing wastes and residues are currently stored on the Sellafield site. These wastes and residues arising from early fuel development activities at Sellafield are diverse in nature and in the absence of a long-term disposition strategy, ongoing storage represents a major financial commitment. An immobilisation technology is being developed, producing a glass ceramic wasteform that will be suitable for extended periods of storage and ultimate disposal. Hot isostatic pressing [HIP] has been chosen as the preferred consolidation route. Following demonstration of the chemical feasibility of the approach at ANSTO's Lucas Heights facility, the project will demonstrate the technology by designing and building a full-scale inactive facility at Nexia Solutions' Workington site supported by a small scale active facility in the Technology Centre (BTC) at Sellafield. Delivery of this technology will allow the project sponsors, British Nuclear Group, the option of engineering a full scale plant in order to immobilise the actual waste arisings and discharge the liability to site. (authors)

  13. Binding waste anthracite fines with Si-containing materials as an alternative fuel for foundry cupola furnaces.

    PubMed

    Huang, He; Fox, John T; Cannon, Fred S; Komarneni, Sridhar; Kulik, Joseph; Furness, Jim

    2011-04-01

    An alternative fuel to replace foundry coke in cupolas was developed from waste anthracite fines. Waste anthracite fines were briquetted with Si-containing materials and treated in carbothermal (combination of heat and carbon) conditions that simulated the cupola preheat zone to form silicon carbide nanowires (SCNWs). SCNWs can provide hot crushing strengths, which are important in cupola operations. Lab-scale experiments confirmed that the redox level of the Si-source significantly affected the formation of SiC. With zerovalent silicon, SCNWs were formed within the anthracite pellets. Although amorphous Si (+4) plus anthracite formed SiC, these conditions did not transform the SiC into nanowires. Moreover, under the test conditions, SiC was not formed between crystallized Si (+4) and anthracite. In a full-scale demonstration, bricks made from anthracite fines and zerovalent silicon successfully replaced a part of the foundry coke in a full-scale cupola. In addition to saving in fuel cost, replacing coke by waste anthracite fines can reduce energy consumption and CO2 and other pollution associated with conventional coking. PMID:21366305

  14. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH. PMID:24681408

  15. Characterizing Concentrations and Size Distributions of Metal-Containing Nanoparticles in Waste Water

    EPA Science Inventory

    Nanomaterials containing metals are finding increasing use in consumer, industrial, and medical products, and they are subsequently being released into the environment. Methods for detecting, quantifying, and characterizing these materials in complex matrices are critical for the...

  16. Pretreatment of Tc-Containing Waste and Its Effect on Tc-99 Leaching From Grouts

    SciTech Connect

    Aloy, Albert; Kovarskaya, Elena N.; Harbour, John R.; Langton, Christine A.; Holtzscheiter, E. William

    2007-07-01

    A salt solution (doped with Tc-99), that simulates the salt waste stream to be processed at the Saltstone Production Facility, was immobilized in grout waste forms with and without (1) ground granulated blast furnace slag and (2) pretreatment with iron salts. The degree of immobilization of Tc-99 was measured through monolithic and crushed grout leaching tests. Although Fe (+2) was shown to be effective in reducing Tc-99 to the +4 state, the strong reducing nature of the blast furnace slag present in the grout formulation dominated the reduction of Tc-99 in the cured grouts. An effective diffusion coefficient of 4.75 x 10{sup -12} (Leach Index of 11.4) was measured using the ANSI/ANS-16.1 protocol. The leaching results show that, even in the presence of a concentrated salt solution, blast furnace slag can effectively reduce pertechnetate to the immobile +4 oxidation state. The measured diffusivity was introduced into a flow and transport model (PORFLOW) to calculate the release of Tc-99 from a Saltstone Vault as a function of hydraulic conductivity of the matrix. (authors)

  17. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Farina, S.; Schulz Rodriguez, F.; Duffó, G.

    2013-07-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.

  18. Fate and transport of phenol in a packed bed reactor containing simulated solid waste.

    PubMed

    Saquing, Jovita M; Knappe, Detlef R U; Barlaz, Morton A

    2012-02-01

    An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictive models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls. PMID:22014583

  19. PRETREATMENT OF TC CONTAINING WASTE AND ITS EFFECT ON 99 TC LEACHING FROM GROUTS

    SciTech Connect

    Harbour, J

    2006-12-11

    A salt solution (doped with Tc-99), that simulates the salt waste stream to be processed at the Saltstone Production Facility, was immobilized in grout waste forms with and without (1) ground granulated blast furnace slag and (2) pretreatment with iron salts. The degree of immobilization of Tc-99 was measured through monolithic and crushed grout leaching tests. Although Fe (+2) was shown to be effective in reducing Tc-99 to the +4 state, the strong reducing nature of the blast furnace slag present in the grout formulation dominated the reduction of Tc-99 in the cured grouts. An effective diffusion coefficient of 4.75 x 10{sup -12} (Leach Index of 11.4) was measured using the ANSI/ANS-16.1 protocol. The leaching results show that, even in the presence of a concentrated salt solution, blast furnace slag can effectively reduce pertechnetate to the immobile +4 oxidation state. The measured diffusivity was introduced into a flow and transport model (PORFLOW) to calculate the release of Tc-99 from a Saltstone Vault as a function of hydraulic conductivity of the matrix.

  20. Utilization of cathode ray tube waste: encapsulation of PbO-containing funnel glass in Portland cement clinker.

    PubMed

    Lairaksa, Nirut; Moon, Anthony R; Makul, Natt

    2013-03-15

    The disposal of cathode ray tube (CRT) generates large quantities of leaded glass waste. The encapsulation of glass from the funnel portion of CRT in cement clinker was investigated. Samples of cement raw material containing 0 (control), 0.1, 0.2, 0.3, 0.4, or 0.5 wt% of CRT funnel glass ground to less than 75 μm were heated to 1480 °C in an electric furnace for 1.5 h at a heating rate of 5 °C/min to produce cement clinker. The Pb encapsulation and chemical composition of the clinkers were analysed using X-ray techniques and atomic absorption spectroscopy (AAS). The maximum PbO encapsulation occurred in mixtures containing 0.1 wt% funnel glass. PMID:23376301

  1. ESTIMATION OF RADIOLYTIC GAS GENERATION RATE FOR CYLINDRICAL RADIOACTIVE WASTE PACKAGES - APPLICATION TO SPENT ION EXCHANGE RESIN CONTAINERS

    SciTech Connect

    Husain, A.; Lewis, Brent J.

    2003-02-27

    Radioactive waste packages containing water and/or organic substances have the potential to radiolytically generate hydrogen and other combustible gases. Typically, the radiolytic gas generation rate is estimated from the energy deposition rate and the radiolytic gas yield. Estimation of the energy deposition rate must take into account the contributions from all radionuclides. While the contributions from non-gamma emitting radionuclides are relatively easy to estimate, an average geometry factor must be computed to determine the contribution from gamma emitters. Hitherto, no satisfactory method existed for estimating the geometry factors for a cylindrical package. In the present study, a formulation was developed taking into account the effect of photon buildup. A prototype code, called PC-CAGE, was developed to numerically solve the integrals involved. Based on the selected dimensions for a cylinder, the specified waste material, the photon energy of interest and a value for either the absorption or attenuation coefficient, the code outputs values for point and average geometry factors. These can then be used to estimate the internal dose rate to the material in the cylinder and hence to calculate the radiolytic gas generation rate. Besides the ability to estimate the rates of radiolytic gas generation, PC-CAGE can also estimate the dose received by the container material. This is based on values for the point geometry factors at the surface of the cylinder. PC-CAGE was used to calculate geometry factors for a number of cylindrical geometries. Estimates for the absorbed dose rate in container material were also obtained. The results for Ontario Power Generation's 3 m3 resin containers indicate that about 80% of the source gamma energy is deposited internally. In general, the fraction of gamma energy deposited internally depends on the dimensions of the cylinder, the material within it and the photon energy; the fraction deposited increases with increasing

  2. Model Based Structural Evaluation & Design of Overpack Container for Bag-Buster Processing of TRU Waste Drums

    SciTech Connect

    D. T. Clark; A. S. Siahpush; G. L. Anderson

    2004-07-01

    This paper describes a materials and computational model based analysis utilized to design an engineered “overpack” container capable of maintaining structural integrity for confinement of transuranic wastes undergoing the cryo-vacuum stress based “Bag-Buster” process and satisfying DOT 7A waste package requirements. The engineered overpack is a key component of the “Ultra-BagBuster” process/system being commercially developed by UltraTech International for potential DOE applications to non-intrusively breach inner confinement layers (poly bags/packaging) within transuranic (TRU) waste drums. This system provides a lower cost/risk approach to mitigate hydrogen gas concentration buildup limitations on transport of high alpha activity organic transuranic wastes. Four evolving overpack design configurations and two materials (low carbon steel and 300 series stainless) were considered and evaluated using non-linear finite element model analyses of structural response. Properties comparisons show that 300-series stainless is required to provide assurance of ductility and structural integrity at both room and cryogenic temperatures. The overpack designs were analyzed for five accidental drop impact orientations onto an unyielding surface (dropped flat on bottom, bottom corner, side, top corner, and top). The first three design configurations failed the bottom and top corner drop orientations (flat bottom, top, and side plates breached or underwent material failure). The fourth design utilized a protruding rim-ring (skirt) below the overpack’s bottom plate and above the overpack’s lid plate to absorb much of the impact energy and maintained structural integrity under all accidental drop loads at both room and cryogenic temperature conditions. Selected drop testing of the final design will be required to confirm design performance.

  3. Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: cement hydration, strength development and volume stability.

    PubMed

    Berger, Stéphane; Cau Dit Coumes, Céline; Le Bescop, Patrick; Damidot, Denis

    2011-10-30

    The potential of calcium sulfoaluminate (CSA) cement was investigated to solidify and stabilize wastes containing large amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration). Hydration of pastes and mortars prepared with a 0.5 mol/L ZnCl(2) mixing solution was characterized over one year as a function of the gypsum content of the binder and the thermal history of the material. Blending the CSA clinker with 20% gypsum enabled its rapid hydration, with only very small delay compared with a reference prepared with pure water. It also improved the compressive strength of the hardened material and significantly reduced its expansion under wet curing. Moreover, the hydrates assemblage was less affected by a thermal treatment at early age simulating the temperature rise and fall occurring in a large-volume drum of cemented waste. Fully hydrated materials contained ettringite, amorphous aluminum hydroxide, strätlingite, together with AFm phases (Kuzel's salt associated with monosulfoaluminate or Friedel's salt depending on the gypsum content of the binder), and possibly C-(A)-S-H. Zinc was readily insolubilized and could not be detected in the pore solution extracted from cement pastes. PMID:21889260

  4. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. PMID:24316812

  5. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers; Overview

    SciTech Connect

    Farmer, J.C.; McCright, R.D.; Kass, J.N.

    1988-06-01

    Three iron- to nickel-based austenitic alloys and three copper-based alloys are being considered as candidate materials for the fabrication of high-level radioactive-waste disposal containers. The austenitic alloys are Types 304L and 316L stainless steels and the high-nickel material Alloy 825. The copper-based alloys are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). Waste in the forms of both spent fuel assemblies from reactors and borosilicate glass will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides will result in the generation of substantial heat and gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including undesirable phase transformations due to a lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking; and transgranular stress corrosion cracking. Problems specific to welds, such as hot cracking, may also occur. A survey of the literature has been prepared as part of the process of selecting, from among the candidates, a material that is adequate for repository conditions. The modes of degradation are discussed in detail in the survey to determine which apply to the candidate alloys and the extent to which they may actually occur. The eight volumes of the survey are summarized in Sections 1 through 8 of this overview. The conclusions drawn from the survey are also given in this overview.

  6. Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)

    SciTech Connect

    Grutzeck, Michael W.

    2005-06-27

    Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to {approx}700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ({micro}m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''.

  7. Application of a passive electrochemical noise technique to localized corrosion of candidate radioactive waste container materials

    SciTech Connect

    Korzan, M.A.

    1994-05-01

    One of the key engineered barriers in the design of the proposed Yucca Mountain repository is the waste canister that encapsulates the spent fuel elements. Current candidate metals for the canisters to be emplaced at Yucca Mountain include cast iron, carbon steel, Incoloy 825 and titanium code-12. This project was designed to evaluate passive electrochemical noise techniques for measuring pitting and corrosion characteristics of candidate materials under prototypical repository conditions. Experimental techniques were also developed and optimized for measurements in a radiation environment. These techniques provide a new method for understanding material response to environmental effects (i.e., gamma radiation, temperature, solution chemistry) through the measurement of electrochemical noise generated during the corrosion of the metal surface. In addition, because of the passive nature of the measurement the technique could offer a means of in-situ monitoring of barrier performance.

  8. Analysis of the optimization possibilities to recover the powdery wastes containing iron and carbon

    NASA Astrophysics Data System (ADS)

    Popescu, Darius-Alexandru; Vilceanu, Lucia; Socalici, Ana

    2016-06-01

    Most industrial activities result in one or more secondary products and wastes besides the primary product, with a variety of uses. The iron & steel industry is highly energy intensive, but it is also a major source of environmental pollution with gases and dusts, especially the extractive branch. The researches aimed the recovery of the dust from the sintering plants and blast furnaces through the briquetting technology. Its recovery is required either for preventing the pollution or for reducing the consumption of raw materials. The mechanical properties are important for the quality of briquettes. We presented in this paper a series of mathematical correlations among the mechanical properties and the components of the briquetting batch, obtained using Excel spreadsheet and MATLAB programs. After analysing the results, we choose the optimal variation limits for the briquetting batch components.

  9. [Removal of Waste Gas Containing Mixed Chlorinated Hydrocarbons by the Biotrickling Filter].

    PubMed

    Chen, Dong-zhi; Miao, Xiao-ping; Ouyang, Du-juan; Ye, Jie-xu; Chen, Jian-meng

    2015-09-01

    An experimental investigation on purification of waste gas contaminated with a mixture of dichloromethane (DCM) and dichloroethane(1,2-DCA) was conducted in a biotrickling filter (BTF) inoculated with activated sludge of pharmaceuticals industry. Stable removal efficiency(RE) above 80% for DCM and above 75% for 1,2-DCA were achieved after 35 days, indicating that biofilm was developed. The best elimination capacity (EC) of DCM and 1,2-DCA were 13 g.(m3.h)-1 and 10 g.(m3.h)-1 respectively. And there was a linear relationship between the production of CO2 and mixed gas EC, the maximum mineralization rate of mixed gas stabled at 61. 2%. The interaction test indicated that DCM and 1,2-DCA would inhibit with each other. The changing of biomass of BTF during the operation process was also been studied. PMID:26717675

  10. Physical, Chemical and Structural Evolution of Zeolite - Containing Waste Forms Produced from Metakaolinite and Calcined HLW

    SciTech Connect

    Grutzeck, Michael

    2005-06-01

    During the seventh year of the current grant (DE-FG02-05ER63966) we completed an exhaustive study of cold calcination and began work on the development of tank fill materials to fill empty tanks and control residuals. Cold calcination of low and high NOx low activity waste (LAW) SRS Tank 44 and Hanford AN-107 simulants, respectively with metallic Al + Si powders was evaluated. It was found that a combination of Al and Si powders could be used as reducing agents to reduce the nitrate and nitrite content of both low and high NOx LAW to low enough levels to allow the LAW to be solidified directly by mixing it with metakaolin and allowing it to cure at 90 C. During room temperature reactions, NOx was reduced and nitrogen was emitted as N2 or NH3. This was an important finding because now one can pretreat LAW at ambient temperatures which provides a low-temperature alternative to thermal calcination. The significant advantage of using Al and Si metals for denitration/denitrition of the LAW is the fact that the supernate could potentially be treated in situ in the waste tanks themselves. Tank fill materials based upon a hydroceramic binder have been formulated from mixtures of metakaolinite, Class F fly ash and Class C flue gas desulphurization (FGD) ash mixed with various concentrations of NaOH solution. These harden over a period of hours or days depending on composition. A systematic study of properties of the tank fill materials (leachability) and ability to adsorb and hold residuals is under way.

  11. POTENTIAL FOR STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS CONTAINING HIGHLY CAUSTIC SOLUTIONS

    SciTech Connect

    Lam, P.; Stripling, C.; Fisher, D.; Elder, J.

    2010-04-26

    The evaporator recycle streams of nuclear waste tanks may contain waste in a chemistry and temperature regime that exceeds the current corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history found that two of these A537 carbon steel tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved tanks of similar construction. Therefore, it appears that the efficacy of stress relief of welding residual stress is the primary corrosion-limiting mechanism. The objective of this experimental program is to test A537 carbon steel small scale welded U-bend specimens and large welded plates (30.48 x 30.38 x 2.54 cm) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in these nuclear waste tanks. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test was completed after 12 weeks of immersion in a similar solution at 125 C except that the aluminate concentration was reduced to 0.3 M. Visual inspection of the plate revealed that stress corrosion cracking had not initiated from the machined crack tips in the weld or in the heat affected zone. NDE ultrasonic testing also confirmed subsurface cracking did not occur. Based on these results, it can be concluded that the environmental condition of these tests was unable to develop stress corrosion cracking within the test periods for the small welded U-bends and for the large plates, which were welded with an identical procedure as used in the construction of the actual nuclear waste tanks in the 1960s. The

  12. Military construction program economic analysis manual: Text and appendixes: Hazardous Waste Remedial Actions Program. [Contains glossary

    SciTech Connect

    Not Available

    1987-12-01

    This manual enables the US Air Force to comprehensively and systematically analyze alternative approaches to meeting its military construction requirements. The manual includes step-by-step procedures for completing economic analyses for military construction projects, beginning with determining if an analysis is necessary. Instructions and a checklist of the tasks involved for each step are provided; and examples of calculations and illustrations of completed forms are included. The manual explains the major tasks of an economic analysis, including identifying the problem, selecting realistic alternatives for solving it, formulating appropriate assumptions, determining the costs and benefits of the alternatives, comparing the alternatives, testing the sensitivity of major uncertainties, and ranking the alternatives. Appendixes are included that contain data, indexes, and worksheets to aid in performing the economic analyses. For reference, Volume 2 contains sample economic analyses that illustrate how each form is filled out and that include a complete example of the documentation required. 6 figs., 12 tabs.

  13. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    SciTech Connect

    Dabbs, Daniel M.; Aksay, I.A.

    2005-12-01

    In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting ''seed'' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The results of this work were recently published in Langmuir: D.M. Dabbs, U. Ramachandran, S. Lu, J. Liu, L.-Q. Wang, I.A. Aksay, ''Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid'' Langmuir, 21, 11690-11695 (2005). The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Citric acid, due to its unfavorable pKa values, was not expected to be useful with silicon-containing solutions. Here, the use of polyols was determined to be effective in maintaining silicon-containing particles under high pH conditions but at smaller size with respect to standard suspensions of silicon-containing particles. There were a number of difficulties working with highly alkaline silicon-containing solutions, particularly in solutions at or near the saturation limit. Small deviations in pH resulted in particle formation or dissolution in the absence of the organic agents. One of the more significant observations was that the polyols appeared to stabilize small particles of silicon oxyhydroxides across a wider range of pH, albeit this was difficult to quantify due to the instability of the solutions.

  14. Study of the reuse of treated wastewater on waste container washing vehicles.

    PubMed

    Vaccari, Mentore; Gialdini, Francesca; Collivignarelli, Carlo

    2013-02-01

    The wheelie bins for the collection of municipal solid waste (MSW) shall be periodically washed. This operation is usually carried out by specific vehicles which consume about 5000 L of water per day. Wastewater derived from bins washing is usually stored on the same vehicle and then discharged and treated in a municipal WWTP. This paper presents a study performed to evaluate the reuse of the wastewater collected from bins washing after it has been treated in a small plant mounted on the vehicle; the advantage of such a system would be the reduction of both vehicle dimension and water consumption. The main results obtained by coagulation-flocculation tests performed on two wastewater samples are presented. The addition of 2 mL/L of an aqueous solution of aluminum polychloride (18% w/w), about 35 mL/L of an aqueous solution of CaO (4% w/w) and 25 mL/L of an aqueous solution of an anionic polyelectrolyte (1 ‰ w/w) can significantly reduce turbidity and COD in treated water (to about 99% and 42%, respectively); the concomitant increase of UV transmittance at 254 nm (up to 15%) enables UV disinfection application by a series of two ordinary UV lamps. Much higher UV transmittance values (even higher than 80%) can be obtained by dosing powdered activated carbon, which also results in a greater removal of COD. PMID:23142511

  15. Isolating /sup 241/Am from waste solutions containing Al, Ca, Fe, and Cr

    SciTech Connect

    Gray, L.W.; Burney, G.A.; King, C.M.

    1982-01-01

    About 2.4 kg of /sup 241/Am contaminated with calcium and aluminum had been recovered from low-activity waste during recycle of 11% /sup 240/Pu. A process was developed and demonstrated to purify the americium before shipment as /sup 241/AmO/sub 2/. The americium and some of the calcium were batch extracted into 50% TBP-n-paraffin from 2.2M Al(NO/sub 3/)/sub 3/ - 0.3M HNO/sub 3/ solution in a canyon tank. Pregnant solvent was scrubbed first with 2.1M Al/sup 3 +/-0.3M Li/sup +/-6.7M NO/sub 3/- and then with 7M LiNO/sub 3/ to reduce the calcium content and to displace the aluminum. Americium was then stripped from the solvent with water and concentrated by evaporation. Before precipitating the americium with oxalic acid, the nitric acid was adjusted with NH/sub 4/OH to yield a 1M NH/sub 4/NO/sub 3/ solution. Recovery across the batch extraction step was 97.8%, while 93% of the calcium and >99% of the aluminum was rejected. Recovery across precipitation averaged >96% while producing a product which was >99.3% pure /sup 241/AmO/sub 2/. The major impurities were water, carbon, calcium, iron, and zinc.

  16. Redox calcination study of Synroc D powder containing simulated SRL waste

    SciTech Connect

    Chen, C.

    1982-07-27

    According to Ringwood (A.E. Ringwood, W. Sinclair, and G.M. McLaughlin, Nuclear Waste Immobilization, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-15147 (1979)), the iron oxidation state is important in controlling, the spinel mineralogy and composition if the amount of titania (TiO/sub 2/) consumed in spinel formation is to be minimized in favor of the formation of the Synroc phases, zirconolite, perovskite, and nepheline. In our redox calcination studies we observed that the iron oxidation state of FeO/Fe/sub 2/O/sub 3/ can be controlled by the redoxcalcining atmosphere. In a CO atmosphere, the oxidation state was reduced to less than 7 wt % Fe/sub 2/O/sub 3/. With appropriate CO/sub 2//CO gas mixtures the resultant iron oxidation states were in the range of 45 to 59 wt % Fe/sub 2/O/sub 3/. Direct rotary redox calcination of spray dried powder at 600/sup 0/C, without prior air calcination, showed increased redox efficiency when compared to powder that had been previously air calcined at 650/sup 0/C. We believe this is caused by a reduction in particle size. Rotary calcination at 800/sup 0/C in argon has no measurable reduction affect on the iron oxidation state of Synroc D powder.

  17. Decontamination of stainless steel canisters that contain high-level waste

    SciTech Connect

    Bray, L.A.; Thomas, N.M.

    1987-01-01

    At the West Valley Nuclear Services Company (WVNSC) in West Valley, New York, high-level radioactive waste (HLW) will be vitrified into a borosilicate glass form and poured into large, stainless steel canisters. During the filling process, volatile fission products, principally {sup 137}Cs, condense on the exterior of the canisters. The smearable contamination that remains on the canisters after they are filled and partially cooled must be removed from the canisters' exterior surfaces prior to their storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. A simple and effective method was developed for decontamination of HLW canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a reduction-oxidation system (Ce(III)/Ce(IV)) in nitric acid solution to chemically mill the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. Contaminated canisters are simply immersed in the solution at controlled temperature and Ce(IV) concentration levels.

  18. Evaluation of the use of solar irradiation for the decontamination of soils containing wood treating wastes

    SciTech Connect

    Dupont, R.R.; McLean, J.E.; Hoff, R.H.; Moore, W.M. )

    1990-08-01

    Laboratory evaluation of the efficacy of soil phase photodegradation of recalcitrant hazardous organic components of wood treating wastes is described. The photodecomposition of anthracene, biphenyl, 9H-carbazole, m-cresol, dibenzofuran, fluorene, pentachlorophenol, phenanthrene, pyrene and quinoline under UV and visible light was monitored over a 50-day reaction period in three test soils. Methylene blue, riboflavin, hydrogen peroxide, peat moss and diethylamine soil amendments were evaluated as to their effect on the enhancement of compound photoreaction rates in the test soil systems. Dark control samples monitored over the entire study period were utilized to quantify non-photo mediated reaction losses. Compounds losses in both the dark control and irradiated samples were found to follow first order kinetics, allowing the calculation of first order photodegradation reaction rate constants for each test soil/compound combination. Degradation due to photochemical activity was observed for all test compounds, with compound photolytic half-lives ranging from 7 to approximately 180 days. None of the soil amendments were found to improve soil phase photodegradation, although photosensitization by anthracene was shown to significantly enhance the rate of photodegradation of the other test compounds. Soil type, and its characteristic of internal reflectance, proved to be the most significant factor affecting compound degradation rates suggesting the necessity for site specific assessments of soil phase photodegradation potential.

  19. Tolerance to silver of an Aspergillus fumigatus strain able to grow on cyanide containing wastes.

    PubMed

    Sabatini, L; Battistelli, M; Giorgi, L; Iacobucci, M; Gobbi, L; Andreozzi, E; Pianetti, A; Franchi, R; Bruscolini, F

    2016-04-01

    We studied the strategy of an Aspergillus fumigatus strain able to grow on metal cyanide wastes to cope with silver. The tolerance test revealed that the Minimum Inhibitory Concentration of Ag(I) was 6mM. In 1mM AgNO3 aqueous solution the fungus was able to reduce and sequestrate silver into the cell in the form of nanoparticles as evidenced by the change in color of the biomass and Electron Microscopy observations. Extracellular silver nanoparticle production also occurred in the filtrate solution after previous incubation of the fungus in sterile, double-distilled water for 72h, therefore evidencing that culture conditions may influence nanoparticle formation. The nanoparticles were characterized by UV-vis spectrometry, X-ray diffraction and Energy Dispersion X-ray analysis. Atomic absorption spectrometry revealed that the optimum culture conditions for silver absorption were at pH 8.5.The research is part of a polyphasic study concerning the behavior of the fungal strain in presence of metal cyanides; the results provide better understanding for further research targeted at a rationale use of the microorganism in bioremediation plans, also in view of possible metal recovery. Studies will be performed to verify if the fungus maintains its ability to produce nanoparticles using KAg(CN)2. PMID:26705888

  20. Direct examination of cadmium bonding in rat tissues dosed with mine wastes and cadmium-containing solutions

    SciTech Connect

    Diacomanolis, V.; Ng, J. C.; Sadler, R.; Harris, H. H.; Nomura, M.; Noller, B. N.

    2010-06-23

    Direct examination by XANES and EXAFS of metal bonding in tissue can be demonstrated by examining cadmium uptake and bonding in animal tissue maintained at cryogenic temperatures. XANES at the K-edge of cadmium were collected at the Photon Factory Advanced Ring (PF-AR), NW10A beam line at KEK-Tsukuba-Japan. Rats fed with 1g mine waste containing 8-400 mg/kg cadmium per 200g body weight (b.w.) or dosed by oral gavage with either cadmium chloride solution alone (at 6 mg/kg b.w.) or in combination with other salts (As, Cu or Zn), 5 days/week for 6 weeks, had 0.1-7.5 and 8-86 mg/kg cadmium in the liver or kidney, respectively. Rats given intraperitoneally (ip) or intravenously (iv) 1-4 times with 1 mg/kg b.w. cadmium solution had 30-120 mg/kg cadmium in the liver or kidney. Tissues from rats were kept and transferred at cryogenic temperature and XANES were recorded at 20 K. The spectra for rat liver samples suggested conjugation of cadmium with glutathione or association with the sulfide bond (Cd-S) of proteins and peptides. EXAFS of rat liver fed by Cd and Zn solutions showed that Cd was clearly bound to S ligands with an inter-atomic distance of 2.54 A ring for Cd-S that was similar to cadmium sulfide with an inter-atomic distance of 2.52 A ring for Cd-S. Liver or kidney of rats fed with mine wastes did not give an edge in the XANES spectra indicating little uptake of cadmium by the animals. Longer and higher dosing regimen may be required in order to observe the same Cd-S bond in the rat tissue from mine wastes, including confirmation by EXAFS.

  1. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report

    SciTech Connect

    Luke, D.E.; Hamp, S.

    2002-01-04

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

  2. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report

    SciTech Connect

    Luke, Dale Elden; Hamp, S.

    2002-02-01

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen- containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organizations to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

  3. Three dimensional reconstruction of activity profiles in 220 liters radioactive waste packages containing super-compacted 100 liters drums

    SciTech Connect

    Van Velzen, L.P.M.; Maes, J.

    2007-07-01

    The 3DRedact project's main objective is the development of a non-destructive assay (NDA) system that can replace emission computer tomography (ECT) and transmission computer tomography (TCT) for the routine characterization of decayed radioactive waste 220 liters drums. The existing fast NDA scan system has been extended with a transmission system that fulfils the requirements of fast scan measurements. The design parameters and engineering are described. As a consequence of this extension the analyze program HOLIS had to be updated, so that HOLIS can make full advantage of the transmission data generated by the analysis of a 220 liters waste drum, containing different super compacted drums. The achievements of the new HOLIS version are presented. As a first assessment, based on the presented tests results, the accuracy of the calculated coordinates of hotspots can be assessed for all coordinates {+-} 1 cm and for the activity of the hot-spot {+-} 5 %. These accuracies are within the predefined requirements e.g. coordinates uncertainty {+-} 2 cm and activity less than 10 %. Further, additional safety systems have been installed to improve a healthy and save working environment. (authors)

  4. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, H.L.; Evans, R.J.

    1992-08-04

    A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

  5. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, Helena L.; Evans, Robert J.

    1992-01-01

    A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.

  6. A study of a container for long term storage of high level waste using finite elements

    SciTech Connect

    Ladkany, S.G. ); Kniss, B.R. )

    1992-01-01

    Designs of selected components for a container are evaluated based on conservative loads and assumptions. The items selected for evaluation are a pintle and possible container topheads. An existing pintle for use in another application is evaluated under a more severe axial load. The results show that the pintle is adequate with the existing design to a safety factor of at least three. Improvements are suggested which raises this safety factor to approximately six. Several flat tophead designs are evaluated for stress under an annular load. The parameter selected for evaluation is the thickness of the circular plate. Results from a 1.5 inch thick plate are below a safety factor of three. Results with a 2 inch plate are improved, but marginal. Analysis results indicate that a thicker pintle or a stiffer plate will improve the design. Several curved tophead shapes are analyzed under an annular load. The ASME flanged and dished shape displays more desirable properties than others. A critical parameter is identified and changed to provide acceptable stress levels.

  7. Development of integrated mechanistically-based degradation-mode models for performance assessment of high-level waste containers

    SciTech Connect

    Estill, J C; Farmer, J C; Gordon, S R; McCright, R D

    1998-12-21

    Alloy 22 [UNS NO60221] is now being considered for construction of high level waste containers to be emplaced at Yucca Mountain and elsewhere. In essence, this alloy is 20.0-22.5% Cr, 12.5-14.5% MO, 2.0-6.0% Fe, 2.5-3.5% W, with the balance being Ni. Other impurity elements include P, Si, S, Mn, Co and V. Cobalt may be present at a maximum concentration of 2.5%. Detailed mechanistic models have been developed to account for the corrosion of Alloy 22 surfaces in crevices that will inevitably form. Such occluded areas experience substantial decreases in pH, with corresponding elevations in chloride concentration. Experimental work has been undertaken to validate the crevice corrosion model, including parallel studies with 304 stainless steel.

  8. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water

    PubMed Central

    Maphutha, Selby; Moothi, Kapil; Meyyappan, M.; Iyuke, Sunny E.

    2013-01-01

    A carbon nanotube (CNT) integrated polymer composite membrane with a polyvinyl alcohol barrier layer has been prepared to separate oil from water for treatment of oil-containing waste water. The CNTs were synthesised using chemical vapour deposition, and a phase inversion method was employed for the blending of the CNTs in the polymer composite solution for casting of the membrane. Relative to the baseline polymer, an increase of 119% in the tensile strength, 77% in the Young's modulus and 258% in the toughness is seen for a concentration of 7.5% CNTs in the polymer composite. The permeate through the membrane shows oil concentrations below the acceptable 10 mg/L limit with an excellent throughput and oil rejection of over 95%. PMID:23518875

  9. Development of a Fuel Containing Material Removal and Waste Management Strategy for the Chernobyl Unit 4 Shelter

    SciTech Connect

    Tokarevsky, V. V.; Shibetsky, Y. A.; Leister, P.; Davison, W. R.; Follin, J. F.; McNair, J.; Lins, W.; Edler, G.

    2002-02-27

    A study was performed to develop a strategy for the removal of fuel-containing material (FCM) from the Chernobyl Unit 4 Shelter and for the related waste management. This study was performed during Phase 1 of the Shelter Implementation Plan (SIP) and was funded by the Chernobyl Shelter Fund. The main objective for Phase 2 of the SIP is to stabilize the Shelter and to construct a New Confinement (NC) by the year 2007. In addition, the SIP includes studies on the strategy and on the conceptual design implications of the removal of FCM from the Shelter. This is considered essential for the ultimate goal, the transformation of the Shelter into an environmentally safe system.

  10. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    SciTech Connect

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel.

  11. FITNESS-FOR-SERVICE ASSESSMENT FOR A RADIOACTIVE WASTE TANK THAT CONTAINS STRESS CORROSION CRACKS

    SciTech Connect

    Wiersma, B; James Elder, J; Rodney Vandekamp, R; Charles Mckeel, C

    2009-04-23

    Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The tanks are examined by ultrasonic (UT) methods for thinning, pitting, and stress corrosion cracking in order to assess fitness-for-service. During an inspection in 2002, ten cracks were identified on one of the tanks. Given the location of the cracks (i.e., adjacent to welds, weld attachments, and weld repairs), fabrication details (e.g., this tank was not stress-relieved), and the service history the degradation mechanism was stress corrosion cracking. Crack instability calculations utilizing API-579 guidance were performed to show that the combination of expected future service condition hydrostatic and weld residual stresses do not drive any of the identified cracks to instability. The cracks were re-inspected in 2007 to determine if crack growth had occurred. During this re-examination, one indication that was initially reported as a 'possible perpendicular crack <25% through wall' in 2002, was clearly shown not to be a crack. Additionally, examination of a new area immediately adjacent to other cracks along a vertical weld revealed three new cracks. It is not known when these new cracks formed as they could very well have been present in 2002 as well. Therefore, a total of twelve cracks were evaluated during the re-examination. Comparison of the crack lengths measured in 2002 and 2007 revealed that crack growth had occurred in four of the nine previously measured cracks. The crack length extension ranged from 0.25 to 1.8 inches. However, in all cases the cracks still remained within the residual stress zone (i.e., within two to three inches of the weld). The impact of the cracks that grew on the future service of Tank 15 was re-assessed. API-579 crack instability calculations were again performed, based on expected future service conditions and trended crack growth rates for the future tank service cycle. The analysis showed that the combined hydrostatic and weld

  12. Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.

    SciTech Connect

    Ehst, D.; Nuclear Engineering Division

    2010-08-04

    It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable

  13. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate.

    PubMed

    Aydın, Ahmet Alper; Aydın, Adnan

    2014-04-15

    Heavy metal containing sludges from wastewater treatment plants of electroplating industries are designated as hazardous waste since their improper disposal pose high risks to environment. In this research, heavy metal containing sludges of electroplating industries in an organized industrial zone of Istanbul/Turkey were used as real-sample model for development of an immobilization process with sodium tetraborate and sodium silicate as additives. The washed sludges have been precalcined in a rotary furnace at 900°C and fritted at three different temperatures of 850°C, 900°C and 950°C. The amounts of additives were adjusted to provide different acidic and basic oxide ratios in the precalcined sludge-additive mixtures. Leaching tests were conducted according to the toxicity characteristic leaching procedure Method 1311 of US-EPA. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and flame atomic absorption spectroscopy (FAAS) have been used to determine the physical and chemical changes in the products. Calculated oxide molar ratios in the precalcined sludge-additive mixtures and their leaching results have been used to optimize the stabilization process and to determine the intervals of the required oxide ratios which provide end-products resistant to leaching procedure of US-EPA. The developed immobilization-process provides lower energy consumption than sintering-vitrification processes of glass-ceramics. PMID:24530878

  14. A prototype scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Mahon, D. F.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2013-12-01

    Cosmic-ray muons are highly penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. A prototype scintillating-fibre detector has been developed for this application, consisting of two tracking modules above and below the volume to be assayed. Each module comprises two orthogonal planes of 2 mm fibres. The modular configuration allows the reconstruction of the initial and scattered muon trajectories which enable the container content, with respect to atomic number Z, to be determined. Fibre signals are read out by Hamamatsu H8500 MAPMTs with two fibres coupled to each pixel via dedicated pairing schemes developed to avoid space point ambiguities and retain the high spatial resolution of the fibres. A likelihood-based image reconstruction algorithm was developed and tested using a GEANT4 simulation of the prototype system. Images reconstructed from this simulation are presented in comparison with experimental results taken with test objects. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.

  15. Modeling pitting corrosion damage of high-level radioactive-waste containers, with emphasis on the stochastic approach

    SciTech Connect

    Henshall, G.A.; Halsey, W.G.; Clarke, W.L.; McCright, R.D.

    1993-01-01

    Recent efforts to identify methods of modeling pitting corrosion damage of high-level radioactive-waste containers are described. The need to develop models that can provide information useful to higher level system performance assessment models is emphasized, and examples of how this could be accomplished are described. Work to date has focused upon physically-based phenomenological stochastic models of pit initiation and growth. These models may provide a way to distill information from mechanistic theories in a way that provides the necessary information to the less detailed performance assessment models. Monte Carlo implementations of the stochastic theory have resulted in simulations that are, at least qualitatively, consistent with a wide variety of experimental data. The effects of environment on pitting corrosion have been included in the model using a set of simple phenomenological equations relating the parameters of the stochastic model to key environmental variables. The results suggest that stochastic models might be useful for extrapolating accelerated test data and for predicting the effects of changes in the environment on pit initiation and growth. Preliminary ideas for integrating pitting models with performance assessment models are discussed. These ideas include improving the concept of container ``failure``, and the use of ``rules-of-thumb`` to take information from the detailed process models and provide it to the higher level system and subsystem models. Finally, directions for future work are described, with emphasis on additional experimental work since it is an integral part of the modeling process.

  16. Fabrication development for high-level nuclear waste containers for the tuff repository; Phase 1 final report

    SciTech Connect

    Domian, H.A.; Holbrook, R.L.; LaCount, D.F. |

    1990-09-01

    This final report completes Phase 1 of an engineering study of potential manufacturing processes for the fabrication of containers for the long-term storage of nuclear waste. An extensive literature and industry review was conducted to identify and characterize various processes. A technical specification was prepared using the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC) to develop the requirements. A complex weighting and evaluation system was devised as a preliminary method to assess the processes. The system takes into account the likelihood and severity of each possible failure mechanism in service and the effects of various processes on the microstructural features. It is concluded that an integral, seamless lower unit of the container made by back extrusion has potential performance advantages but is also very high in cost. A welded construction offers lower cost and may be adequate for the application. Recommendations are made for the processes to be further evaluated in the next phase when mock-up trials will be conducted to address key concerns with various processes and materials before selecting a primary manufacturing process. 43 refs., 26 figs., 34 tabs.

  17. New thermodynamic data on the Hg-O-S system: With application to the thermal processing of mercury containing wastes

    SciTech Connect

    Fredrickson, G.L.; Hager, J.P.

    1996-12-31

    A modified transpiration reactor was used to measure the composition of the equilibrium gas phase formed above compounds in the Hg-O-S system at high temperatures (600 to 900K). A thermodynamic database ({Delta}G{degrees}{sub f}, {Delta}H{degrees}{sub f}, {Delta}S{degrees}{sub f}) for HgO, HgS, HgSO{sub 4}, Hg{sub 2}SO{sub 4}, HgSO{sub 4}-HgO, and HgSO{sub 4}{circ}2HgO was developed based on the experimental results. Prior to this study, only estimated data were available in the literature for the sulfates and oxysulfates at temperatures above 298K. A series of vapor pressure / stability diagrams were constructed from 473 to 973K with isobars of Hg(g), HgO(g), S{sub 2}(g), and SO{sub 3}(g). These diagrams were found to be significantly different than those available previously and do provide insight to the phase relations of importance during the thermal processing of Hg-containing wastes. The thermodynamic results were used to conduct a series of Gibbs energy minimization calculations for a thermal processor / afterburner system for the treatment of HgS-containing wastes. The retention of Hg in the discharge calcine was examined as a function of temperature and excess air. Hg was found to report to the calcine as HgSO{sub 4}, Hg{sub 2}SO{sub 4}, or HgSO{sub 4}-HgO depending on the process conditions, and Hg retention occurs at temperatures as high as 930K. The precipitation of Hg-containing phases from cooled afterburner discharge gas starts at approximately 900K and the cooling of the gas an additional 30K (to 870K) results in over 50% of the Hg being precipitated as HgSO{sub 4}-HgO. It was also determined that for small amounts of Hg present in sulfide concentrates during roasting, the Hg will be retained as HgSO{sub 4} or HgSO{sub 4}-HgO at temperatures as high as 870K. 8 refs., 30 figs., 3 tabs.

  18. An evaluation of the solidification/stabilization of industrial arsenic containing waste using extraction and semi-dynamic leach tests

    SciTech Connect

    Dutre, V.; Vandecasteele, C.

    1996-12-31

    Solidification/stabilization of an industrial waste material containing large amounts of arsenic, as As{sub 2}O{sub 3}, was studied. The waste was treated using solidification/stabilization (S/S) with cement, lime and blast-furnace slags in order to reduce the leachability of arsenic. In order to optimize the procedure for S/S, 10 different S/S samples, differing in amount and combination of the binder materials were prepared. On these samples, extraction tests were performed, showing that the arsenic concentration in the leachate is correlated with the pH and the calcium concentration due to the formation of slightly soluble CaHAsO{sub 3}. A semi-dynamic leach test was performed in order to obtain quantitative information on the long term leachability of the contaminants (As, Sb, Pb) from monolithic S/S samples. A linear relationship between the cumulative fractions released and the square root of the leach time was observed, indicating that diffusion is the release mechanism. From the diffusion coefficient, the influence of the binder materials on the leachability of the contaminants could be deduced. All the elements considered have a low mobility in all samples. Ca has the highest mobility followed by As and Sb, whereas Pb has the lowest mobility. It appeared that increasing the amount of calcium in the S/S samples lowers the leachability of arsenic, addition of lime being more effective than addition of cement. This conclusion is in good qualitative agreement with the extraction tests.

  19. Preparation and Characterization of a Calcium Phosphate Ceramic for the Immobilization of Chloride-containing Intermediate Level Waste

    SciTech Connect

    Metcalfe, Brian; Donald, Ian W.; Scheele, Randall D.; Strachan, Denis M.

    2003-12-01

    Attention has recently been given to the immobilization of special categories of radioactive wastes, some of which contain high concentrations of actinide chlorides. Although vitrification in phosphate glass has been proposed, this was rejected because of the high losses of chloride. On the basis of non-radioactive and, more recently, radioactive studies, we have shown that calcium phosphate is an effective host for immobilizing the chloride constituents [1]. In this instance, the chlorine is retained as chloride, rather than evolved as a chlorine-bearing gas. The immobilized product is in the form of a free-flowing, non-hygroscopic powder, in which the chlorides are chemically combined within the mineral phases chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Data from studies on non-radioactive simulated waste consisting of a mixture of CaCl2 and SmCl3, and radioactive simulated waste composed of CaCl2 with PuCl3 or PuCl3 and AmCl3, are presented and compared. The XRD data confirm the presence of chlorapatite and spodiosite in the non-radioactive and radioactive materials. The durability of all specimens was measured with a modified MCC-1 test. Releases of Cl after 28 days were 1.6 x 10-3 g m-2 for the non-radioactive specimens and 7 x 10-3 g m-2 for the Pu-bearing specimens. Releases of Ca after 28 days were 0.3 x 10-3 and 2.0 x 10-3 g m-2 for the non-radioactive composition and the Pu composition, respectively, whilst release of Pu from the radioactive specimens was lower for the mixed Pu/Am specimen at 1.2 x 10-5g m-2. The release of Am from the mixed Pu/Am composition was exceptionally low at 2.4 x 10-7 g m-2. Overall, the release rate data suggest that the ceramics dissolve congruently, followed by precipitation of Sm, Pu and Am as less soluble phases, possibly oxides or phosphates. The differences in behaviour noted between non-radioactive and radioactive specimens are interpreted in terms of the crystal chemistry of the individual systems.

  20. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.