These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Process for clean-burning fuel from low-rank coal  

DOEpatents

A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

1994-01-01

2

Process for clean-burning fuel from low-rank coal  

DOEpatents

A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

Merriam, N.W.; Sethi, V.; Brecher, L.E.

1994-06-21

3

Process for fine coal cleaning  

SciTech Connect

This patent describes a process for automatically controlling a fine coal cleaning and recovery circuit in which coal is separated from ash forming impurities in a flotation cell wherein the improvement comprises: placing a photoconductor in tailings from the flotation cell to monitor the coal recovery of the cell and automatically control the amount of additive supplied to the cell in response to the monitored coal recovery in the cell to optimize coal recovery from the cell; and sensing the level of the flotation product in the filter tub and automatically adjust the amount of flocculant supplied to the filter tub in response to the sensed product level to maximize coal recovery.

Fonseca, A.G.

1989-03-07

4

CRITERIA FOR ASSESSMENT OF ENVIRONMENTAL POLLUTANTS FROM COAL CLEANING PROCESSES  

EPA Science Inventory

The report describes the development of criteria for assessing environmental pollutants associated with coal cleaning processes. The primary problem concerns emissions of pollutants to all three media--air, water, and land--and assessing their effects on humans and the environmen...

5

Integrated coal cleaning, liquefaction, and gasification process  

DOEpatents

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01

6

Clean power generation from coal  

SciTech Connect

The chapter gives an overview of power generation from coal, describing its environmental impacts, methods of cleaning coal before combustion, combustion methods, and post-combustion cleanup. It includes a section on carbon dioxide capture, storage and utilization. Physical, chemical and biological cleaning methods are covered. Coal conversion techniques covered are: pulverized coal combustion, fluidized-bed combustion, supercritical boilers, cyclone combustion, magnetohydrodynamics and gasification. 66 refs., 29 figs., 8 tabs.

Butler, J.W.; Basu, P. [Dalhousie University, Halifax, NS (Canada). Dept. of Mechanical Engineering

2007-09-15

7

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect

The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

1997-04-25

8

ENVIRONMENTAL ASSESSMENT OF COAL CLEANING PROCESSES  

EPA Science Inventory

The report summarizes a 3-year evaluation of coal cleaning processes. It discusses: physical coal cleaning (PCC) technology; the potential role of PCC in producing coals for compliance with SO2 emission regulations; pollution controls for PCC plants; assessment criteria and test ...

9

Clean coal  

NSDL National Science Digital Library

Fossil fuels such as coal can be powerful polluters of the environment. This article, part of site on the future of energy, introduces students to methods being implemented to make burning coal a cleaner process. Students read about the 1986 creation of the Clean Coal Technology Program and the coal-burning improvements it generated. Definitions of key terms are available, and a link is provided to an ABC News article about bacteria that have been bioengineered to clean coal. Copyright 2005 Eisenhower National Clearinghouse

Project, Iowa P.

2004-01-01

10

Coal can be a Clean Fuel  

ERIC Educational Resources Information Center

Redevelopment and expansion of United States coal resources are economic necessities. Environmentalists' objections to the less expensive, available United States coal, that introduces large amounts of SOx and particulates into the air, may be overcome with the options of coal cleaning, tall stacks, material recovery and stack cleaning. (BT)

Environmental Science and Technology, 1975

1975-01-01

11

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28

12

Clean Coal?  

NSDL National Science Digital Library

This video and accompanying essay examine carbon capture and storage and clean-coal technology, providing statistics for overall annual U.S. consumption as well as average household usage. Turning solid coal into a clean-burning fuel gas (syngas) and capture and storage pros and cons are discussed.

Pbs, Wgbh -.; Domain, Teachers'

13

ASSESSMENT OF COAL CLEANING TECHNOLOGY: AN EVALUATION OF CHEMICAL COAL CLEANING PROCESSES  

EPA Science Inventory

The report assembles and assesses technical and economic information on chemical coal cleaning processes. Sufficient data was located to evaluate 11 processes in detail. It was found that chemical coal cleaning processes can remove up to 99% of the pyritic sulfur and 40% of the o...

14

Clean Coal Technologies  

NSDL National Science Digital Library

This site from the University of Kentucky's Center for Applied Energy Research explains clean coal technologies, including coal-to-liquids, synthetic natural gas, and carbon dioxide emissions. The presentation explores the benefits and processes of clean coal technologies (gasification, coal-to-liquids, synthetic natural gas, carbon capture & sequestration and integrated gasification combined cycle).

2011-03-16

15

Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction  

SciTech Connect

This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

NONE

1996-10-01

16

Design of novel coal mining\\/preparation systems for clean coal-based fuels. Final report  

Microsoft Academic Search

This report presents the results of the investigation deriving novel coal mining\\/preparation systems for clean coal-based fuel. Efforts include the examination of unit operation at each phase of surface mining, underground mining, transportation and preparation processes. Part of the study deals with the analysis of alternatives within each phase which have the strongest interface potential for mining\\/preparation. Part one discusses

J. H. Kelley; J. L. Chang; F. F. Peng; K. D. Schmidt; E. S. Whitley

1982-01-01

17

Development of the LICADO coal cleaning process  

SciTech Connect

Development of the liquid carbon dioxide process for the cleaning of coal was performed in batch, variable volume (semi-continuous), and continuous tests. Continuous operation at feed rates up to 4.5 kg/hr (10-lb/hr) was achieved with the Continuous System. Coals tested included Upper Freeport, Pittsburgh, Illinois No. 6, and Middle Kittanning seams. Results showed that the ash and pyrite rejections agreed closely with washability data for each coal at the particle size tested (-200 mesh). A 0.91 metric ton (1-ton) per hour Proof-of-Concept Plant was conceptually designed. A 181 metric ton (200 ton) per hour and a 45 metric ton (50 ton) per hour plant were sized sufficiently to estimate costs for economic analyses. The processing costs for the 181 metric ton (200 ton) per hour and 45 metric ton (50 ton) per hour were estimated to be $18.96 per metric ton ($17.20 per ton) and $11.47 per metric ton ($10.40 per ton), respectively for these size plants. The costs for the 45 metric ton per hour plant are lower because it is assumed to be a fines recovery plant which does not require a grinding circuit of complex waste handling system.

Not Available

1990-07-31

18

ENVIRONMENTAL ASSESSMENT OF COAL CLEANING PROCESSES: TECHNOLOGY OVERVIEW  

EPA Science Inventory

The report gives a background against which requirements for further developments of coal cleaning technology and control techniques for the associated pollutants can be established, as part of a review of U.S. coal cleaning process technologies and related technologies for envir...

19

Developmental research program for clean industrial and transportation fuels from coal  

Microsoft Academic Search

The integrated coal liquefaction facility was operated to first demonstrate solvent self-sufficiency on equilibrium paste solvent. A coal paste consisting of 70 weight percent hydrogenated start-up paste oil and 30 weight percent coal was used to generate an initial solvent inventory. This paste oil pool was then used for all subsequent operations. Solvent self-sufficiency on equilibrium solvent as monitored by

H. D. Schindler; R. H. Long

1979-01-01

20

Evaluation of Ultra Clean Fuels from Natural Gas  

SciTech Connect

ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

2006-02-28

21

EPA PROGRAM STATUS REPORT: SYNTHETIC FUELS FROM COAL, INCLUDING PROCESS OVERVIEW WITH EMPHASIS ON ENVIRONMENTAL CONSIDERATIONS  

EPA Science Inventory

The status of EPA's Synthetic Fuels from Coal Program as of July 1977 is presented. Processes with emphasis on environmental considerations are also described. This program is a part of EPA's interagency energy-related environmental research program directed toward providing the ...

22

Clean coal initiatives in Indiana  

USGS Publications Warehouse

Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, M.; Yu, Z.; Kramer, R.A.

2007-01-01

23

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 6, January--March 1994  

SciTech Connect

This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effectve replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States as well as for advanced combustars currently under development. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals fbr clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 51-month program which started on September 30, 1992. This report discusses the technical progress, made during the 6th quarter of the project from January 1 to March 31, 1994. The project has three major objectives: (1) The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. (3) A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

Smit, F.J.; Rowe, R.M.; Anast, K.R.; Jha, M.C.

1994-05-06

24

Clean Coal Diesel Demonstration Project  

SciTech Connect

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31

25

APPLICATION OF OIL AGGLOMERATION FOR EFFLUENT CONTROL FROM COAL CLEANING PLANTS  

EPA Science Inventory

The report discusses the potential applicability of oil agglomeration for the control of black water effluents from coal cleaning plants processing four different coals. Removal and recovery of the coal from each of the black waters produced aqueous suspensions of mineral matter ...

26

Coal cleaning program for Kazakstan  

SciTech Connect

In 1992 the United States Agency for International Development (USAID) started sponsoring general projects in the Energy and Environmental Sector to improve health and well-being, to improve the efficiency of the existing fuel and energy base, and to assist in the establishment of a strong private sector. Coal Cleaning Program, covered in this report, is one of the recently completed projects by Burns and Roe, which is a prime USAID contractor in the field of energy and environment for the NIS. The basis for coal cleaning program is that large coal resources exist in northeast Kazakstan and coal represents the major fuel for heat and electricity generation at present and in the foreseeable future. The coal mined at Karaganda and Ekibastuz, the two main coal mining areas of Kazakstan, currently contains up to 55% ash, whereas most boilers in Kazakstan are designed to fire a coal with an ash content no greater than 36%. The objective of the task was to determine optimum, state-of-the-art coal cleaning and mining processes which are applicable to coals in Kazakstan considering ultimate coal quality of 36% ash, environmental quality, safety and favorable economics.

Popovic, N. [Burns and Roe Enterprises, Oradell. NJ (United States); Daley, D.P. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Jacobsen, P.S. [Jacobsen (P. Stanley), Littleton, CO (United States)

1996-12-31

27

Advanced processes for premium low-rank coal/water fuel production  

SciTech Connect

Four coals were identified as good candidates for low-rank coal/water fuel production: Beulah lignite from North Dakota, Jacobs Ranch subbituminous coal from Wyoming, Spring Creek subbituminous coal from Montana, and Usibelli subbituminous coal from Alaska. Pilot-scale fuel preparation capabilities were developed to prepare sizable quantities of low-ash coal/water fuel from low-rank coals for advance combustion applications. This was accomplished using a preparation scheme which included physical and chemical cleaning, hot-water drying, size optimization and, in some cases, the use of additives. Low-rank coal/water fuels were prepared with less than 1.5 wt % ash and energy densities over 8000 Btu/lb, depending on the particle size distribution desired. Bench-and pilot-scale research supported the development of the production scheme. Rheological characterization of the CWF was performed with respect to particle size distribution, additives, and temperature. The effectiveness of process water treatment for the hot-water drying step was investigated. A single-stage activated sludge system was effective in treating process water effluent. 24 refs., 46 figs., 41 tabs.

Maas, D.J.; Potas, T.A.; Malterer, T.J.; DeWall, R.A.; Anderson, C.M.

1988-04-01

28

Hydrogen from Coal Edward Schmetz  

E-print Network

Hydrogen from Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U #12;Presentation Outline Hydrogen Initiatives Hydrogen from Coal Central Production Goal Why Coal Why Hydrogen Separation Membranes Coal-based Synthesis Gas Characteristics Technical Barriers

29

STUDIES ON SUCCESSIVE EXTRACTION OF COAL IN COAL DERIVED SOLVENTS UNDER AMBIENT CONDITIONS TO RECOVER VOLATILE MATTER (VOLATILIZABLE COMPONENTS) FROM COAL AND TO GET PARTIALLY DEVOLATILIZED RESIDUAL COAL AND SOLVENT REFINED COAL AS CLEAN AND DETOXIFIED FUELS  

Microsoft Academic Search

Effect of anthrecene oil, quinoline and liquid paraffin extraction on the swelling of Assam coal has been studied to find out the degree of cross-linking in the pretreated coals, and to assess the molecular effect of the these solvents in the solid mass of coal, on the flexibility of coal macromolecular aggregation and molecular dynamism. Effect of successive extractions using

D. K. Sharma; S. Mishra

1995-01-01

30

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

NASA Astrophysics Data System (ADS)

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm-2 degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm-2 degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk; Song, Xueyan; Chen, Yun; Shutthanandan, Vaithiyalingam; Engelhard, Mark; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-01

31

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30

32

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07

33

Repowering with clean coal technologies  

SciTech Connect

Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

1996-02-01

34

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 4  

SciTech Connect

This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the 4th quarter of the project from July 1 to September 30, 1993.

Smit, F.J.; Hogsett, R.F.; Jha, M.C.

1993-11-04

35

Regulating Pollution from a Fossil Fuel with Learning in the Clean Substitute  

Microsoft Academic Search

We develop a model to examine how environmental regulation in the form of a cap on aggregate emissions from a fossil fuel (e.g., coal) will affect the arrival of a clean substitute (e.g., solar energy). This clean substitute is an \\

Ujjayant Chakravorty; Andrew Leach; Michel Moreau

36

The study and practice of clean coal pressure filter and dewatering process  

SciTech Connect

This paper introduces the current status of dewatering of the flotation clean coal and the problems in China. The industrial application of the dewatering process and the newly developed clean coal pressure filter is represented. And the results indicated that this filter press possesses such advantages as fast speed in filter lower moisture in filter cake, convenience in operation, obvious saving on energy, etc. It will have a broad applications.

Xie, G.; Wu, L.; Ou, Z.

1999-07-01

37

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The early entrance coproduction plant study conducted in Phase I of the IMPPCCT project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there are minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the synthesis gas (syngas). However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase II is to conduct RD&T as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies will address the technical concerns that will make the IMPPCCT concept competitive with natural

Albert C. Tsang

2004-03-26

38

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30

39

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14

40

Coal Research  

NASA Technical Reports Server (NTRS)

Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

1986-01-01

41

Characterization of coal liquids derived from the H-coal process  

Microsoft Academic Search

Compositional data of coal liquid products derived from the H-Coal process were obtained. Two overhead products (one from the fuel oil mode of operation and the other from the syncrude mode of operation) were prepared by Hydrocarbon Research, Inc. from Illinois No. 6 coal. The compositional data of these products are tabulated, and characteristics of the materials are discussed. Separation

S. A. Holmes; P. W. Woodward; G. P. Jr. Sturm; J. W. Vogh; J. E. Dooley

1976-01-01

42

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Two project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, DOE approved the RD&T Plan submitted in the previous quarter. The RD&T Plan forms the basis for the Continuation Application to initiate the transition of the project from Phase I to Phase II. Potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis will be tested in slipstream units at the WREL facility during Phase II. A supplemental information package consisting of a revised Work Breakdown Structure and Budget Plan for Phase II and other necessary forms was also submitted. Agreement is being reached with DOE's patent attorney on the scope of the limited rights data to be provided under the Cooperative Agreement. Preparation of a comprehensive Final Report for Phase I of the project, which will consolidate the remaining deliverables including the Initial Feasibility Report, Concept Report, Site Analysis Report, Economic Analysis, and Preliminary Project Financing Plan, continued during the reporting period. Significant progress was made in the Subsystem Design Specification section of the report.

Albert Tsang

2003-10-14

43

Dry cleaning of Turkish coal  

SciTech Connect

This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

2008-07-01

44

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Task 6 -- Selective agglomeration laboratory research and engineering development for premium fuels  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and benchscale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report represents the findings of Subtask 6.5 Selective Agglomeration Bench-Scale Testing and Process Scale-up. During this work, six project coals, namely Winifrede, Elkhorn No. 3, Sunnyside, Taggart, Indiana VII, and Hiawatha were processed in a 25 lb/hr continuous selective agglomeration bench-scale test unit.

Moro, N.; Jha, M.C.

1997-06-27

45

Truck ramp construction from clean coal technology waste products  

SciTech Connect

The construction and performance of a truck ramp made from clean coal technology waste products are described. The specific waste product used in this project was generated at the power plant located on the campus of The Ohio State University in Columbus. The ramp is used by University vehicles depositing hard trash at a central disposal facility on the OSU campus. Laboratory tests which had been conducted on samples made from the power plant waste product clearly showed that, when the material is property compacted, strengths could be obtained that were much higher than those of the natural soils the clean coal waste would replace. In addition, the permeability and swelling characteristics of the waste product should make it an attractive alternative to importing select borrow materials. Based on the results of the laboratory tests, a decision was made to use the power plant waste in the truck ramp rather than the soil that was called for in the original design. Prior to the start of construction, the area on which the ramp was to be located was covered with an impermeable geomembrane. Drain lines were installed on top of the geomembrane so that water that might leach through the ramp could be collected. The waste product from the power plant was placed on the geomembrane in 20 to 30 centimeter lifts by University maintenance personnel without special equipment. A drain line was installed across the toe of the ramp to intercept surface runoff, and a wearing surface of 7 to 15 centimeters of crushed limestone was placed over the compacted ash. The finished ramp structure recycled approximately 180 metric tons of the power plant byproduct. After over a year in service there is no indication of erosion or rutting in the ramp surface. Tests performed on the leachate and runoff water have shown the high pH characteristic of these materials, but concentrations of metals fall below the established limits.

Wolfe, W.E. [Ohio State Univ., Columbus, OH (United States). Dept. of Civil Engineering; Beeghly, J.H. [Dravo Lime Co., Pittsburgh, PA (United States)

1993-12-31

46

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

Microsoft Academic Search

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project

Conocophillips

2007-01-01

47

EPA COAL CLEANING PROGRAM  

EPA Science Inventory

The report describes work during Fiscal Year 1979 by 12 organizations, both public and private, under EPA's Coal Cleaning Program, a program that explores the possibilities for wider use of coal as an environmentally acceptable energy source. Many aspects of coal were studied, in...

48

Upgrading low-rank coals using the liquids from coal (LFC) process  

SciTech Connect

Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

Nickell, R.E.; Hoften, S.A. van

1993-12-31

49

Jute Fiber Composites from Coal, Super Clean Coal, and Petroleum Vacuum Residue–Modified Phenolic Resin  

Microsoft Academic Search

Jute fiber composites were prepared with novolac and coal, phenolated-oxidized super clean coal (POS), petroleum vacuum residue (XVR)–modifiedphenol-formaldehyde (novolac) resin. Five different type of resins, i.e., coal, POS, and XVR-modified resins were used by replacing (10% to 50%) with coal, POS, and XVR. The composites thus prepared have been characterized by tensile strength, hardness, thermogravimetric analysis (TGA), Fourier-transfer infrared (FT-IR),

D. K. Sharma

2005-01-01

50

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-11-17

51

Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.  

SciTech Connect

The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a 72-hour round the clock production run for each of the three project coals (Hiawatha, Taggart, and Indiana VII). The parametric testing results confirmed that the Taggart coal ground to a D80 of 30 microns could be cleaned to 1 lb ash/MBtu, whereas the Hiawatha and Indiana Vil coals had to be ground to D80s of 40 and 20 microns, respectively, to be cleaned to 2 lb ash/MBtu. The percent solids, residence time, shear intensity (impeller tip speed and energy input per unit volume), and heptane dosage were the main variables that affected successful operation (phase inversion or microagglomerate formation in the high-shear reactor and their growth to 2-3 mm in size during low shear). Downward inclination of the vibrating screen and adequate spray water helped produce the low ash products. Btu recoveries were consistently greater than 98%. Two-stage steam stripping achieved about 99% heptane recovery for recycle to the process. Residual hydrocarbon concentrations were in the 3000 to 5000 ppm range on a dry solids basis.

Moro, N.` Jha, M.C.

1997-09-29

52

Generate clean fuels from downstream petrochemical operations  

SciTech Connect

Selective catalytic hydrogenations have become important tools in optimizing the overall economics of a steamcracker. A variety of processes and catalysts have been developed to a high standard. In the future, steamcracker downstream processing will become even more versatile. For example, isomerization can be used to adapt utilization of the C{sub 4} and C{sub 5} streams to the ever-changing demands of the market. An example of this trend is the skeletal isomerization of n-butenes to isobutylene, which is increasingly practiced in western countries. As the worldwide petrochemical industry evolved since the 1950s, the steamcracker became the predominant source for the major raw materials upon which the industry depends today. Currently, prices for steamcracker products are at profitable levels. Selective hydrogeneration processes for steam cracker applications can generate valuable transportation fuel components and intermediates.

Polanek, P; Artrip, D.; Mueller, H.J.; Kons, G. [BASF Aktiengesellschaft, Ludwigshafen (Germany)

1996-05-01

53

Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process  

SciTech Connect

Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Lovera, P.; Fleche, J. L. [CEA, DEN, DPC Saclay, F-91191 Gif-sur-Yvette (France); Lacroix, M. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Carra, O. [AREVA / NP, 10 Rue Juliette Recamier, 69003 Lyon (France); Dechelette, F. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Prele, G. [EDF/SEPTEN, 12-14 avenue Dutrievoz, 69628 Villeurbane Cedex (France); Rodriguez, G. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France)

2012-07-01

54

From metallurgical coal tailings to thermal fuel  

Microsoft Academic Search

McIntyre Mines in Canada recover coal from washery tailings slurry. The tailings are dewatered in Bird screen bowl centrifuges and thermally dried in Joy Holo-Flite dryers. The coal recovered is burned in a power station.

van den Broek

1982-01-01

55

Production of jet fuels from coal-derived liquids  

SciTech Connect

Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.

Knudson, C.L.

1990-06-01

56

Discussion of processes for the treatment of liquid wastes from fossil fuel powerplants  

Microsoft Academic Search

A discussion of processes for the treatment of liquid wastes from fossil fuel powerplants covers those for: treating maintenance cleaning wastes; calcium bisulfite or sulfate sludges formed by lime or limestone processes for removing sulfur dioxide from stack gases; coal pile and miscellaneous area run-off; fly-ash slurry treatment in an oil-fired station; bottom ash in coal-fired plants; and sanitary waste.

Brenman

1978-01-01

57

Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant  

NASA Technical Reports Server (NTRS)

Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

1976-01-01

58

Dewatering studies of fine clean coal  

SciTech Connect

The main objective of the present research program is to study and understand dewatering characteristics of ultrafine clean coal obtained using the advanced column flotation technique from the Kerr-McGee's Galatia preparation plant fine coal waste stream. It is also the objective of the research program to utilize the basic study results, i.e., surface chemical, particle shape particle size distribution, etc., in developing a cost-effective dewatering method. The ultimate objective is to develop process criteria to obtain a dewatered clean coal product containing less that 20 percent moisture, using the conventional vacuum dewatering equipment. (VC)

Parekh, B.K.

1991-01-01

59

Clean Fossil Energy Conversion Processes  

NASA Astrophysics Data System (ADS)

Absolute and per-capita energy consumption is bound to increase globally, leading to a projected increase in energy requirements of 50% by 2020. The primary source for providing a majority of the energy will continue to be fossil fuels. However, an array of enabling technologies needs to be proven for the realization of a zero emission power, fuel or chemical plants in the near future. Opportunities to develop new processes, driven by the regulatory requirements for the reduction or elimination of gaseous and particulate pollutant abound. This presentation describes the chemistry, reaction mechanisms, reactor design, system engineering, economics, and regulations that surround the utilization of clean coal energy. The presentation will cover the salient features of the fundamental and process aspects of the clean coal technologies in practice as well as in development. These technologies include those for the cleaning of SO2, H2S, NOx, and heavy metals, and separation of CO2 from the flue gas or the syngas. Further, new combustion and gasification processes based on the chemical looping concepts will be illustrated in the context of the looping particle design, process heat integration, energy conversion efficiency, and economics.

Fan, L.-S.

2007-03-01

60

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly progress report No. 10, January--March 1995  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and benchscale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by June, 1997. During Quarter 10 (January--March, 1995), preliminary work continued for the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant. Towards this end, laboratory flotation testing and refurbishing of the column have been started. The final version of the Subtask 4.2 Advanced Flotation Process Optimization Research topical report was issued, as was a draft version of the Subtask 4.3 report discussing the formulation of coal-water slurry fuels (CWF) from advanced flotation products. A number of product samples from Subtask 4.4 testing were sent to both Combustion Engineering and Penn State for combustion testing. The evaluation of toxic trace element analyses of column flotation products also continued. The detailed design of the 2 t/hr PDU was essentially completed with the approval of various process flow, plant layout, electrical, and vendor equipment drawings. The final version of the Subtask 6.5 -- Selective Agglomeration Bench-Scale Design and Test Plan Report was issued during this reporting quarter. Design and construction of this 25 lb/hr selective agglomeration test unit was completed and preliminary testing started. Construction of the 2 t/hr PDU began following the selection of TIC. The Industrial Company as the construction subcontractor.

Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

1995-04-27

61

Clean Coal Power Initiative  

SciTech Connect

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31

62

Clean fuel from bioconversion of solar energy  

SciTech Connect

Investigating the use of unicellular algae to produce glycolic acid for subsequent conversion to methane by anaerobic digestion, SRC (1) evaluated a defined medium that supports rapid autotrophic algae growth, (2) estimated the glycolic acid production rates of four genera of algae, choosing Chlorella pyrenoidosa and Chlamydomonas reinhardtii for further study, (3) determined the effects of temperature, pH, light source and intensity, and atmospheric CO/sub 2/ concentration on glycolic acid excretion of C. pyrenoidosa, (4) demonstrated the influence of varing CO/sub 2/ concentrations on the growth and glycolic acid production of C. pyrenoidosa and C. reinhardtii, (5) developed a procedure for separating and quantitating gylcolic acid in a culture medium, and (6) introduced a method of screening and isolating mutants of C. reinhardtii that produce more glycolic acid. Test results recommend further study of isolated mutants of C. reinhardtii in order to optimize the physiological conditions that would result in high levels of glycolic acid, and also exploration of the abiotic formation of formaldehyde from glycolic acid as another route to a usable fuel.

Feighner, S.D.; Rosenberg, A.; Mason, L.; Sikka, H.C.; Saxena, J.; Howard, P.H.

1981-12-01

63

Element geochemistry and cleaning potential of the No. 11 coal seam from Antaibao mining district  

Microsoft Academic Search

Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine,\\u000a Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution of the elements in the seam profile,\\u000a their geochemical partitioning behavior during the coal cleaning and the genetic relationships between the

Wenfeng Wang; Yong Qin; Dangyu Song; Shuxun Sang; Bo Jiang; Yanming Zhu; Xuehai Fu

2005-01-01

64

Apparatus for cleaning fossil fuel, such as coal and crude oil  

Microsoft Academic Search

An apparatus is described for the desulfurization of fossil fuels including crude oil and\\/or coal, the apparatus comprising: (a) a receptacle for containing the fossil fuel in a liquid medium, the receptacle having at least one opening for the inlet and one opening for the outlet of the fossil fuel; (b) a plurality of copper tubes which are aligned generally

1989-01-01

65

Clean carbon fuel from methane and carbon dioxide  

Microsoft Academic Search

Natural gas, which contains mostly methane, is generally largely available from wells in many parts of the US. Natural gas is a premium fuel, since it can be burned readily and cleanly. The main problem with methane is its storability and transportability. Pipelines are required, which if not available, are expensive to install. Methane being a cryogenic gas is not

M. Steinberg; E. W. Grohse

1988-01-01

66

Basic studies of coal to enhance its development as a clean fuel  

SciTech Connect

Coal is the most abundant source of energy. However, there is a need to develop cleaner, and more efficient, economical, and convenient coal conversion technologies. It is important to understand the organic chemical structure of coal for achieving real breakthroughs in the development of such coal conversion technologies. A novel computer-assisted modeling technique based on the analysis of {sup 13}C NMR and gel permeation chromatography has been applied to predict the average molecular structure of the acetylated product of a depolymerized bituminous Indian coal. The proposed molecular structure may be of practical use in understanding the mechanism of coal conversions during the processes of liquefaction, gasification, combustion, and carbonization.

Nabeel, A.; Khan, M.A.; Husain, S.; Krishnamacharyulu, B.; Rao, R.N.; Sharma, D.K.

2000-01-01

67

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two

Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2008-03-31

68

Sustainable development with clean coal  

SciTech Connect

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01

69

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 14, January--March 1996  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by June 1997. During Quarter 14 (January--March 1996), parametric testing of the 30-inch Microcel{trademark} flotation column at the Lady Dunn Plant continued under Subtask 3.2. Subtask 3. 3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter with parametric testing of the batch dewatering unit. Coal product moistures of 3 to 12 percent were achieved, with higher percent solids slurry feeds resulting in lower product moistures. For a given percent solids feed, the product moisture decreased with increasing butane to dry coal ratios. Stirring time, stirring rate, and settling time were all found to have little effect on the final moisture content. Continuing Subtask 6.4 work, investigating coal-water-fuel slurry formulation for coals cleaned by selective agglomeration, indicated that pH adjustment to 10 resulted in marginally better (lower viscosity) slurries for one of the two coals tested. Subtask 6.5 agglomeration bench-scale testing results indicate that the new Taggart coal requires a grind with a d{sub 80} of approximately 33 microns to achieve the 1 lb ash/MBtu product quality specification. Also under Subtask 6.5, reductions in the various trace element concentrations accomplished during selective agglomeration were determined. Work was essentially completed on the detailed design of the PDU selective agglomeration module under Task 7 with the issuing of a draft report.

Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

1996-04-30

70

CLEAN FUELS FROM AGRICULTURAL AND FORESTRY WASTES  

EPA Science Inventory

The report gives results of an experimental investigation of the operating parameters for a mobile waste conversion system based on the Georgia Tech Engineering Experiment Station's partial oxidation pyrolysis process. The object of the testing was to determine the combination of...

71

Clean Coal Technology Demonstration Program. Program update 1994  

SciTech Connect

The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

NONE

1995-04-01

72

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-05-17

73

Producing Liquid Fuels from Coal: Prospects and Policy Issues.  

National Technical Information Service (NTIS)

The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a comme...

D. S. Ortiz, F. Camm, J. T. Bartis

2008-01-01

74

Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal  

NASA Technical Reports Server (NTRS)

The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

Shah, R. P.; Corman, J. C.

1977-01-01

75

Group effects on fuel NOx emissisons from coal  

E-print Network

GROUP EFFECTS ON FUEL NOX EMISSIONS FROM COAL A Thesis by ANAND ANAKKARA VADAKKATH Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1991 Major Subject: Mechanical Engineering GROUP EFFECTS ON FUEL NOX EMISSIONS FROM COAL A Thesis by ANAND ANAKKARA VADAKKATH Approved ss to style and content by: K. Annamalai (Chair of Committee) Cr, R. Laster (Member) J. Wagne (Member...

Vadakkath, Anand Anakkara

2012-06-07

76

Surface magnetic enhancement for coal cleaning  

SciTech Connect

The fundamental chemistry for selective adsorption of magnetizing reagent on coal-associated minerals to enhance the magnetic susceptibilities of minerals have been established in Phase I study. The application of the results on coal cleaning is in progress in the Phase II study. Illinois No. 6, Ohio Lower Kittanning, and West Virginia Pocahontas coals are investigated during this reporting period to determine the most effective way of using the magnetizing method for coal cleaning. The results show that the best separation performance is obtained on finely ground coals. Up to 91% ash reduction (from 22% to 3.3% ash content) at 70% coal recovery can be obtained with the magnetizing approach when Illinois No. 6 coal is processed at 90% passing 500 mesh. Even at a coarser sizes such as 90% passing 200 mesh, 86% ash reduction with 71% coal recovery can still be obtained. Although the results are probably better than using the froth flotation method, direct comparison tests will be conducted in the next reporting period.

Hwang, J.Y.

1990-01-01

77

Physical cleaning of coal: present and developing methods  

SciTech Connect

In recent years much attention has been given to precombustion and postcombustion cleanup as means of controlling sulfur dioxide emissions from burning coal. Most processes for controlling sulfur dioxide emissions have entailed some form of either pretreatment by chemical desulfurization or posttreatment by stack gas scrubbing (flue gas desulfurization). Coal cleaning for precombustion cleanup has been overlooked except by a few dozen experts who advocate the merit of removing ash and inorganic sulfur (mainly pyrite) as a means of improving boiler performance and, with most coals, controlling objectionable pollutants. Many coals are amenable to cleaning using advanced technology at costs ranging from 25 to 50% of those for chemical desulfurization or stack gas scrubbing. Furthermore, physical cleaning wastes containing the worrisome trace elements can be disposed of safely in stable embankments and land fills. Thanks to the vision and the perseverance of a few researchers who never abandoned the old technology of coal preparation for the new technology of coal conversion, some significant advances have been made in cleaning coal. Instead of removing large sulfur balls, new processes are becoming available for removing micrometer-sized pyrite crystallites from powdered coal. This book describes the new methods and developments in physical coal cleaning that will permit us to replace natural gas and oil-fired utility boilers with coal-fired ones and also allow us to burn coal in home furnaces without the noxious gases and soot that many of us can remember. All ten chapters have been entered individually into EDB and ERA.

Liu, Y.A. (ed.)

1982-01-01

78

Development of the LICADO coal cleaning process. Final report, October 1, 1987--April 2, 1990  

SciTech Connect

Development of the liquid carbon dioxide process for the cleaning of coal was performed in batch, variable volume (semi-continuous), and continuous tests. Continuous operation at feed rates up to 4.5 kg/hr (10-lb/hr) was achieved with the Continuous System. Coals tested included Upper Freeport, Pittsburgh, Illinois No. 6, and Middle Kittanning seams. Results showed that the ash and pyrite rejections agreed closely with washability data for each coal at the particle size tested (-200 mesh). A 0.91 metric ton (1-ton) per hour Proof-of-Concept Plant was conceptually designed. A 181 metric ton (200 ton) per hour and a 45 metric ton (50 ton) per hour plant were sized sufficiently to estimate costs for economic analyses. The processing costs for the 181 metric ton (200 ton) per hour and 45 metric ton (50 ton) per hour were estimated to be $18.96 per metric ton ($17.20 per ton) and $11.47 per metric ton ($10.40 per ton), respectively for these size plants. The costs for the 45 metric ton per hour plant are lower because it is assumed to be a fines recovery plant which does not require a grinding circuit of complex waste handling system.

Not Available

1990-07-31

79

Process for cleaning and removal of sulfur compounds from low Btu fuel gases. Interim report, January--March 1976  

Microsoft Academic Search

It is proposed to remodel the PDU by incorporation of appropriate sub-systems to permit operation in continuous process mode. The PDU will be operated for a period of time sufficient to demonstrate process viability. It has been relocated to an inproved support facility and repaired to a state of near readiness for operation. During early pilot plant operation relatively high

R. H. Moore; D. C. Ham; G. E. Stegen

1976-01-01

80

EVALUATION OF PHYSICAL/CHEMICAL COAL CLEANING AND FLUE GAS DESULFURIZATION  

EPA Science Inventory

The report gives results of evaluations of physical coal cleaning (PCC), chemical coal cleaning (CCC), and coal cleaning combined with flue gas desulfurization (FGD). It includes process descriptions, cleaning performances, comparative capital investments, and annual revenue requ...

81

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

SciTech Connect

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24

82

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

SciTech Connect

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28

83

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

Microsoft Academic Search

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the

Hamid Farzan

2001-01-01

84

Direct analysis of organic compounds in aqueous by?products from fossil fuel conversion processes: Oil shale retorting, synthane coal gasification and coed coal liquefaction  

Microsoft Academic Search

Whole water samples are injected directly into a gas Chromatograph equipped with a packed Tenax?GC column. Polar compounds are separated with good resolution under the temperature programming conditions employed. The by?product water from oil shale retorting contains carboxylic acids in the homologous series ranging from acetic to decanoic acid. Various amides, cresols and phenol are present in trace amounts. Coal

C. H. Ho; B. R. Clark; M. R. Guerin

1976-01-01

85

Process for removing sulfur from coal  

DOEpatents

A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

Aida, T.; Squires, T.G.; Venier, C.G.

1983-08-11

86

Characteristics of American coals in relation to their conversion into clean-energy fuels. Final report. [1150 samples of US coals  

SciTech Connect

To further characterize the Nation's coals, the Penn State Coal Sample Bank and Data Base were expanded to include a total of 1150 coal samples. The Sample Bank includes full-seam channel samples as well as samples of lithotypes, seam benches, and sub-seam sections. To the extent feasible and appropriate basic compositional data were generated for each sample and validated and computerized. These data include: proximate analysis, ultimate analysis, sulfur forms analysis, calorific value, maceral analysis, vitrinite reflectance analysis, ash fusion analysis, free-swelling index determination, Gray-King coke type determination, Hardgrove grindability determination, Vicker's microhardness determination, major and minor element analysis, trace element analysis, and mineral species analysis. During the contract period more than 5000 samples were prepared and distributed. A theoretical and experimental study of the pyrolysis of coal has been completed. The reactivity of chars, produced from all ranks of American coals, has been studied with regard to reactivity to air, CO/sub 2/, H/sub 2/ and steam. Another area research has concerned the catalytic effect of minerals and various cations on the gasification processes. Combustion of chars, low volatile fuels, coal-oil-water-air emulsions and other subjects of research are reported here. The products of this research can be found in 23 DOE Technical Research Reports and 49 published papers. As another mechanism of technology transfer, the results have been conveyed via more than 70 papers presented at a variety of scientific meetings. References to all of these are contained in this report.

Spackman, W.; Davis, A.; Walker, P.L.; Lovell, H.L.; Vastola, F.J.; Given, P.H.; Suhr, N.H.; Jenkins, R.G.

1982-06-01

87

COAL CLEANING BY GAS AGGLOMERATION  

SciTech Connect

The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

1998-09-30

88

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect

This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

2002-12-31

89

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

1996-01-31

90

Transportation costs for new fuel forms produced from low rank US coals  

SciTech Connect

Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-09-01

91

Advanced physical fine coal cleaning spherical agglomeration. Final report  

SciTech Connect

The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

Not Available

1990-09-01

92

Management of solid wastes from the Limestone Injection Dry Scrubbing (LIDS) clean coal technology. Final report  

SciTech Connect

The objectives of this project were to characterize by-products from a pilot Limestone Injection Dry Scrubbing (LIDS) process and to develop processes directed toward the safe and economic use or disposal of these wastes. Because LIDS is a developing Clean Coal technology, a database of chemical and physical characteristics of the by-product was first developed. During the course of this project, it was found that the waste alone did not form high-strength products sufficient for use in construction and engineering applications. Therefore, the project was redirected to evaluate the by-product as a soil-cement and Portland cement raw material, agricultural liming agent, backfill/landfill material component, and mine reclamation/neutralizing agent. Based on these evaluations, the most viable uses for the LIDS byproduct include use in mine reclamation or as a neutralization agent. If soluble sulfites can be minimized by avoiding a dolomitic LIDS reagent, use as an agricultural liming agent has promise. Interest from an Ohio utility in the LIDS process suggests possible application of results at the demonstration or commercial stages.

Musiol, W.F. Jr.; Czuczwa, J.M.

1993-03-01

93

Development of a coal cleaning control system  

SciTech Connect

The US Department of Energy selected the Battelle-Electric Power Research Institute-Science Applications International Corporation team to evaluate and develop on-line slurry ash, percent solids, and sulfur analysis instrumentation and process control technology. The project's objectives were (1) to develop an accurate, versatile, easy to use, on-line coal slurry analyzer and (2) to develop control strategies for analysis, control, and optimization of advanced and conventional coal-cleaning plant. The project's scope included (1) the installation of a slurry test loop, ash, percent solids, and sulfur instruments; (2) evaluation of instrument accuracy with various coals, under various slurry conditions; and (3) assessment of the cost and benefits to be derived from on-line analysis and control 12 refs., 40 figs., 16 tabs.

Conkle, H.N.; Barnes, R.H.; Orban, J.E.; Webb, P.R.

1990-03-09

94

Engineering development of advanced physical fine coal cleaning for premium fuel applications: Subtask 3.3 - dewatering studies  

SciTech Connect

If successful, the novel Hydrophobic Dewatering (HD) process being developed in this project will be capable of efficiently removing moisture from fine coal without the expense and other related drawbacks associated with mechanical dewatering or thermal drying. In the HD process, a hydrophobic substance is added to a coal-water slurry to displace water from the surface of coal, while the spent hydrophobic substance is recovered for recycling. For this process to have commercialization potential, the amount of butane lost during the process must be small. Earlier testing revealed the ability of the hydrophobic dewatering process to reduce the moisture content of fine coal to a very low amount as well as the determination of potential butane losses by the adsorption of butane onto the coal surface. Work performed in this quarter showed that the state of oxidation affects the amount of butane adsorbed onto the surface of the coal and also affects the final moisture content. the remaining work will involve a preliminary flowsheet of a continuous bench-scale unit and a review of the economics of the system. 1 tab.

Yoon, R.H., Phillips, D.I., Sohn, S.M., Luttrell, G.H. [Virginia Polytechnic Inst. and State Univ., Center for Coal and Mineral Processing, Blacksburg, VA (United States)

1996-10-01

95

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Microsoft Academic Search

The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based

Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2008-01-01

96

Development of clean coal and clean soil technologies using advanced agglomeration techniques  

SciTech Connect

Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

Ignasiak, B.; Ignasiak, T.; Szymocha, K.

1990-01-01

97

Clean coal technology demonstration program: Program update 1996-97  

SciTech Connect

The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

NONE

1997-10-01

98

Illinois Clean Coal Institute`s high sulfur coal utilization research  

SciTech Connect

This paper is an overview of the state Coal Research Program, entitled {open_quotes}Center for Research on Sulfur in Coal{close_quotes} (CRSC) legislated in the early eighties with the objective of exploring novel technologies for removing sulfur from the high sulfur Illinois Basin coals. About 90 percent of the approximately 60 million annual tons of coal produced in Illinois is being shipped to electric utilities in 12 states from Florida to Wisconsin. The high sulfur coal in the Illinois Basin has been the focal point of many myths and imaginations created by individuals and environmental interest groups concerning the generation of acid rain. In August of 1992, the CRSC name was changed to the Illinois Clean Coal Institute (ICCI) with a broadened objective to include any and all research that would support new markets and the continued utilization of high sulfur coal as the base energy fuel for electric utilities.

Shockley, R.R. [Illinois Clean Coal Institute, Carterville, IL (United States)

1993-12-31

99

Catalytic hydrosolvation process converts coal to low-sulfur liquid fuel  

NASA Technical Reports Server (NTRS)

Development of the catalytic hydrosolvation process for converting coal to low-sulfur fuel oil is described in this paper. Coal impregnated with catalyst was slurried with oil, and the mixture was hydrogenated at a temperature of 475 C, and 30 min residence time under 3600 psi pressure. A ton of coal yielded 3.5 bbl of fuel oil containing 0.2% sulfur, with naphtha and C1-C4 hydrocarbon gases as byproducts. A preliminary economic evaluation of the process indicated potential for further development.

Qader, S. A.

1978-01-01

100

Producing liquid fuels from coal: prospects and policy issues  

SciTech Connect

The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

James T. Bartis; Frank Camm; David S. Ortiz

2008-07-01

101

Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals  

SciTech Connect

The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

Nabeel, A.; Khan, T.A.; Sharma, D.K. [Jamia Millia Islamia, New Delhi (India). Dept. of Chemistry

2009-07-01

102

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS?  

E-print Network

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS? TAD as ethanol from corn. When this corn ethanol is burned as a gasoline additive or fuel, its use amounts, and sulfur oxide emissions from the fossil fuels used to produce the ethanol. Key words: carbon dioxide, corn

Patzek, Tadeusz W.

103

Dimethyl ether (DME) from coal as a household cooking fuel in China  

E-print Network

pollution and health Combustion of solid fuels such as biomass and coal in household cooking in ChinaDimethyl ether (DME) from coal as a household cooking fuel in China Eric D. Larson Princeton be made from any carbonaceous feedstock, including natural gas, coal, or biomass, using established

104

Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report  

SciTech Connect

This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

1989-08-28

105

Clean coal technologies market potential  

Microsoft Academic Search

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting

Drazga

2007-01-01

106

Process for converting coal into liquid fuel and metallurgical coke  

DOEpatents

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01

107

Engineering development of advanced physical fine coal cleaning technologies: Froth flotation  

SciTech Connect

a study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This document is the eighth quarterly report prepared in accordance with the project reporting requirements covering the period from July 1,1990 to September 30, 1990. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. The data from the basic research on coal surfaces, bench scale testing and proof-of-concept scale testing will be utilized to design a final conceptual flowsheet. The economics of the flowsheet will be determined to enable industry to assess the feasibility of incorporating the advanced fine coal cleaning technology into the production of clean coal for generating electricity. 22 figs., 11 tabs.

Not Available

1990-01-01

108

40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Standards for pneumatic coal-cleaning equipment. 60.253 Section...SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a)...

2010-07-01

109

40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Standards for pneumatic coal-cleaning equipment. 60.253 Section...SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a)...

2011-07-01

110

40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Standards for pneumatic coal-cleaning equipment. 60.253 Section...SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a)...

2012-07-01

111

40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Standards for pneumatic coal-cleaning equipment. 60.253 Section...SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a)...

2013-07-01

112

Cleaning and utilization of coals for low emission at Swedish power plants  

SciTech Connect

The paper discusses coal utilization in Sweden. All hard coals have to be imported from other countries. Peat from domestic sources is used as a complement. environmental legislation and taxation on fuel and emissions are severe. This situation affects the procurement, preparation, handling and use of coal. The paper presents: R and D projects concerning deep cleaning of thermal coal; handling and treatment of coal used in PFBC boilers and for blast furnace injection; dust prevention for coal and peat briquettes; and procurement of col emphasizing quality and environmental issues.

Forssberg, K.S.E. [Luleaa Univ. of Technology (Sweden). Division of Mineral Processing; Ryk, L. [SGS Sweden Solid Fuels and Minerals, Stockholm (Sweden)

1995-10-01

113

A comparison of direct and indirect liquefaction technologies for making fluid fuels from coal  

Microsoft Academic Search

Direct and indirect liquefaction technologies for making synthetic liquid fuels from coal are com- pared. It is shown that although direct liquefaction conversion processes might be more energy- efficient, overall system efficiencies for direct and indirect liquefaction are typically comparable if end-use as well as production efficiencies are taken into account. It is shown that some synfuels derived via indirect

Robert H. Williams; Eric D. Larson

2003-01-01

114

Removal of mercury from coal via a microbial pretreatment process  

SciTech Connect

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16

115

Fossil Fuels: Coal  

NSDL National Science Digital Library

This lesson provides an introduction to the use of coal as an energy source. Topics include the history of coal usage, applications of coal as an energy source, and major suppliers of coal (the United States). There is also discussion of how coal is created, located, and produced, and technologies for burning it more cleanly. The lesson includes a hands-on activity in which students measure the ash content of various types of coal.

Pratte, John

116

Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

NONE

1997-05-01

117

Stoker test evaluations using clean pellet fuel  

SciTech Connect

A chain-grate stoker at the powerhouse of the Ohio State Reformatory was modified for use of clean pellet fuel for combustion demonstrations. Clean pellet fuel for the Mansfield tests was prepared from a series of production test runs at the Cleveland Research Center using relatively high sulfur industrial coal ranging from about 3.1 to 4.5% sulfur. Accordingly, pellets of a relatively high sulfur content were produced. Also, sulfur fixation in the pellets for the Mansfield tests was not as extensive as that from the Massillon tests. Subsequent small scale bench tests and prior pilot plant tests showed how this could be improved if necessary by use of alkaline additions. Table A provides a summary of modifications made on the Mansfield stoker along with the outcome and general observations. Through the use of the developed firing system stack conditions invariably remained free of visible emissions and black, sooty type smoke was not observed, verifying the smokeless nature of the fuel. Optimum conditions apparently exist for (a) ideal ignition, (b) sulfur emission minimization, and (c) particulate emission minimization. These reported test runs had the primary objective of demonstrating the capability of the fuel to continuously ignite and fire using a stoker-boiler designed for normal bituminous coal operating under a range of firing conditions. This was adequately demonstrated; however, the test runs were of insufficient duration to attain optimum firing conditions for all environmental control measures. Nevertheless, extensive sulfur and particulate arresting was evident and compliance conditions are attainable for more than about 75% of the counties of Ohio using coal that exceeds 3 1/2% sulfur for production of clean pellet fuel.

Marlowe, W.H.; Brody, C.W.; Ban, T.E.; Nelson, C.J.

1980-10-01

118

New Clean Coal Cycle Optimized Using Pinch Technology  

E-print Network

NEW CLEAN COAL CYCLE OPTIMIZED USING PINCH TECHNOLOGY A. P. ROSSITER, Linnhoff March I 0'00 ' nc., Houston, TX J. J. NNELL, The M. W. Kellogg Company, Houston, TX High thermal efficiency and low levels of environmental emissions... are priorities in the design of modern power plants. The M. W. Kellogg Company under funding from the Department of Ene~gy, has recently completed a study of a new coal fueled system that would achieve these o~jectives. During the course of study, P1nch...

Rossiter, A. P.; O'Donnell, J. J.

119

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2007-03-17

120

Synthesis and analysis of jet fuel from shale oil and coal syncrudes  

NASA Technical Reports Server (NTRS)

Thirty-two jet fuel samples of varying properties were produced from shale oil and coal syncrudes, and analyzed to assess their suitability for use. TOSCO II shale oil and H-COAL and COED syncrudes were used as starting materials. The processes used were among those commonly in use in petroleum processing-distillation, hydrogenation and catalytic hydrocracking. The processing conditions required to meet two levels of specifications regarding aromatic, hydrogen, sulfur and nitrogen contents at two yield levels were determined and found to be more demanding than normally required in petroleum processing. Analysis of the samples produced indicated that if the more stringent specifications of 13.5% hydrogen (min.) and 0.02% nitrogen (max.) were met, products similar in properties to conventional jet fuels were obtained. In general, shale oil was easier to process (catalyst deactivation was seen when processing coal syncrudes), consumed less hydrogen and yielded superior products. Based on these considerations, shale oil appears to be preferred to coal as a petroleum substitute for jet fuel production.

Gallagher, J. P.; Collins, T. A.; Nelson, T. J.; Pedersen, M. J.; Robison, M. G.; Wisinski, L. J.

1976-01-01

121

Desulfurizing Coal With an Alkali Treatment  

NASA Technical Reports Server (NTRS)

Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

Ravindram, M.; Kalvinskas, J. J.

1987-01-01

122

Reducing the moisture content of clean coals  

SciTech Connect

Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

Kehoe, D. (CQ, Inc., Homer City, PA (United States))

1992-12-01

123

Process to remove iron sulfide from coal to reduce pollution  

Microsoft Academic Search

A method is described for reducing the amount of sulfur present in coal which comprises grinding the coal to less than 100 microns, physically separating the fine coal rich fraction from the coarse pyrite rich coal fraction, diluting the coarse pyrite rich coal fraction with a liquid hydrocarbon carrier and then separating the high pyrite coal from the low coarse

Colli

1978-01-01

124

MEYERS PROCESS DEVELOPMENT FOR CHEMICAL DESULFURIZATION OF COAL. VOLUME I  

EPA Science Inventory

The report gives results of bench-scale development of the Meyers Process (for chemical removal of sulfur from coal) for desulfurization of both fine and coarse coal. More than 90% of the pyrite was removed from run-of-mine (ROM) fine coal and clean coarse coal, and more than 80%...

125

Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases  

SciTech Connect

The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

2001-11-06

126

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect

This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

2005-05-01

127

Coal processing and pollution control. [Glossary included  

Microsoft Academic Search

This book discusses the principles behind coal technology rather than just detailing processes and equipment. Chapters are presented on the supply and demand outlook; coal deposits of the US and their coal properties; coal mining techniques, costs, and environmental controls; coal transportation systems; coal preparation and cleaning; pyrolysis processes; gasification; liquefaction; combustion; air emissions; particulate control; flue gas desulfurization; acid

Edgar

1983-01-01

128

Development of alternative fuels from coal-derived syngas  

SciTech Connect

The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels development Unit (AFDU). The program will initially involve a continuation of the work performed under the Liquid Phase Methanol Program but will later draw upon information and technologies generated in current and future DOE-funded contracts, as well as test commercially available catalysts. 1 fig., 3 tabs.

Not Available

1991-03-22

129

Clean coal technology: Export finance programs  

SciTech Connect

Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

Not Available

1993-09-30

130

Advanced coal-fueled gas turbine systems  

Microsoft Academic Search

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO emissions from fuel-bound nitrogen, and greater understanding of deposition\\/erosion\\/corrosion and their control. Several Advanced Coal-Fueled

Wenglarz

1994-01-01

131

Materials from coal  

SciTech Connect

Carbon in the form of fossil fuels provides the world`s largest supply of energy for heat, electrical power, and transportation. These same resources are used as raw materials for the manufacture of a spectrum of chemicals and carbon materials. For some time, coal has experienced a greatly diminishing demand for non-fuel uses relative to the position it enjoyed until the middle of this century. However, there are several reasons to anticipate that the use of coal as a feedstock will increase in the future: coal is the most abundant fossil fuel; it is globally available; and it is obtained at low cost. The structure of coal lends itself to the production of a range of carbon materials that exhibit tremendous diversity in their structure and properties. Carbon can appear in crystalline forms as diamond and graphite, as disordered materials that are mostly related to the structure of graphite, as allotropes in the forms of closed-cage molecules, fullerenes and nanotubes, and as an almost infinite range of intermediate or mixed forms. A direct consequence is that carbons are utilized in essentially all branches of science and engineering, ranging from high technology applications to heavy industry and to medicine. Moreover, the carbon materials that are currently available or under development are continually being extended. While the production of carbons has a small impact on the demand for the various fossil resources, the availability of these higher added-value materials can have a profound effect on the efficient and environmentally acceptable use of energy. Examples include: the use of carbon fibers to produce strong, lightweight durable structures for use in land, sea, and air transportation; storage systems for fuels and electrical energy; advanced materials with high electrical and thermal conductivity; and adsorbents and catalysts for fuels and chemicals processing, and for the prevention or remediation of water and air pollution, much of which relates to energy production and use. This presentation will consider how coals can give rise to disordered and ordered carbons with different structures, properties, and fields of application, and illustrate their use in the production and use of clean energy from fossil fuels.

Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

1998-12-31

132

Method of producing a colloidal fuel from coal and a heavy petroleum fraction  

DOEpatents

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, James R. (Columbus, OH)

1983-08-09

133

Process for removal of hazardous air pollutants from coal  

DOEpatents

An improved process for removing mercury and other trace elements from coal containing pyrite by forming a slurry of finely divided coal in a liquid solvent capable of forming ions or radicals having a tendency to react with constituents of pyrite or to attack the bond between pyrite and coal and/or to react with mercury to form mercury vapors, and heating the slurry in a closed container to a temperature of at least about 50.degree. C. to produce vapors of the solvent and withdrawing vapors including solvent and mercury-containing vapors from the closed container, then separating mercury from the vapors withdrawn.

Akers, David J. (Indiana, PA); Ekechukwu, Kenneth N. (Silver Spring, MD); Aluko, Mobolaji E. (Burtonsville, MD); Lebowitz, Howard E. (Mountain View, CA)

2000-01-01

134

Clean fuels from biomass. [cellulose fermentation to methane  

NASA Technical Reports Server (NTRS)

The potential of growing crops as a source of fuels is examined, and it is shown that enough arable land is available in the U.S. so that, even with a modest rate of crop yield, the nation could be supplied by fuel crops. The technologies for fuel conversion are available; however, some R&D efforts are needed for scaling up design. Fuel crop economics are discussed and shown to be nonprohibitive.

Hsu, Y. Y.

1974-01-01

135

U-GAS process for production of hydrogen from coal  

Microsoft Academic Search

Today, hydrogen is produced mainly from natural gas and petroleum fractions. Tomorrow, because reserves of natural gas and oil are declining while demand continues to increase, they cannot be considered available for long-term, large-scale production of hydrogen. Hydrogen obtained from coal is expected to be the lowest cost, large-scale source of hydrogen in the future. The U-GAS coal gasification process

R. J. Dihu; J. G. Patel

1982-01-01

136

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-09-17

137

Environmental studies of materials from the H-coal liquefaction process development unit  

SciTech Connect

H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts well in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.

Cada, G.F.

1982-12-01

138

Clean Coal Technology Programs: Program Update 2009  

SciTech Connect

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01

139

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

Microsoft Academic Search

This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress

E. T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

2002-01-01

140

Clean coal: Global opportunities for small businesses  

SciTech Connect

The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

NONE

1998-01-01

141

Appalachian clean coal technology consortium  

SciTech Connect

Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. these included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. the tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0. 5 inches of cake thickness, this improvement was limited to 8% at the same reagent dosage. the results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering, The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

Yoon, R.-H.; Basim, B.; Luttrell, G.H.; Phillips, D.I. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Jiang, D.; Tao, D.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Meloy, T. [West Virginia Univ., Morgantown, WV (United States)

1997-01-28

142

Development of alternative fuels from coal-derived syngas  

SciTech Connect

The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

Brown, D.M.

1992-05-19

143

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992  

SciTech Connect

Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

Not Available

1993-01-01

144

Characterization and supply of coal based fuels  

SciTech Connect

Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base. Provide quality assurance for both the parent coals and the fuel forms. Deliver premium coal-based fuels to combustor developers as needed for their contract work. During the third quarter of this contract (May 1 through July 31, 1987) the primary activities were involved with: Completion and submission for approval by the DOE of the topical report describing the market survey, the coal selection and the fuel specification methodologies used in carrying out Task 1. The determination of the washability of the first five coals selected in Task 1. Upgrading and improvement of the pilot wash circuit to improve both the product quality and yield. Initiation of a data base survey to select an appropriate coal for the Vortec contract; and continuation of the coal procurement, cleaning, fuel preparation and delivery activities.

Not Available

1987-09-01

145

Modified approaches for high pressure filtration of fine clean coal  

SciTech Connect

Removal of moisture from fine (minus 28 mesh) clean coal to 20% or lower level is difficult using the conventional vacuum dewatering technique. High pressure filtration technique provides an avenue for obtaining low moisture in fine clean coal. This paper describes a couple of novel approaches for dewatering of fine clean coal using pressure filtration which provides much lower moisture in fine clean coal than that obtained using conventional pressure filter. The approaches involve (a) split stream dewatering and (b) addition of paper pulp to the coal slurry. For Pittsburgh No. 8 coal slurry, split stream dewatering at 400 mesh provided filter cake containing 12.9% moisture compared to 24.9% obtained on the feed material. The addition of paper pulp to the slurry provided filter cake containing about 17% moisture.

Yang, J.; Groppo, J.G.; Parekh, B.K. [Center for Applied Energy Research, Lexington, KY (United States)

1995-12-31

146

Applications of micellar enzymology to clean coal technology. [Laccase from Polyporus versicolor  

SciTech Connect

This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophen (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

Walsh, C.T.

1990-07-24

147

Clean Coal Technology Demonstration Program: Program update 1993  

SciTech Connect

The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

Not Available

1994-03-01

148

Applications of micellar enzymology to clean coal technology. Tenth quarterly report  

SciTech Connect

Full implementation of coal fuel sources will require more effective methods of providing ``clean coal`` as a fuel source. Methods must be developed to reduce the sulfur content of coal which significantly contributes to environmental pollution. This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

Walsh, C.T.

1992-04-29

149

Characterization and supply of coal based fuels  

SciTech Connect

Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

Not Available

1992-06-01

150

The economics of liquid transportation fuels from coal: Past, present and future  

SciTech Connect

This paper reviews the technologies for producing liquid transportation fuels from coal and traces their evolution. Estimates of how their economics have changed with continuing research and development are also given.

Gray, D.; Tomlinson, G.; ElSawy, A. [Mitre Corp., McLean, VA (United States)

1993-08-01

151

Comprehensive report to Congress: Clean Coal Technology Program: Blast furnace granulated coal injection system demonstration project: A project proposed by: Bethlehem Steel Corporation  

SciTech Connect

Bethlehem Steel Corporation (BSC), of Bethlehem, Pennsylvania, has requested financial assistance from DOE for the design, construction, and operation of a 2800-ton-per-day blast furnace granulated coal injection (BFGCI) system for each of two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. BFGCI technology involves injecting coal directly into an iron-making blast furnace and subsequently reduces the need for coke on approximately a pound of coke for pound of coal basis. BFGCI also increases blast furnace production. Coke will be replaced with direct coal injection at a rate of up to 400 pounds per NTHM. The reducing environment of the blast furnace enables all of the sulfur in the coal to be captured by the slag and hot metal. The gases exiting the blast furnace are cleaned by cyclones and then wet scrubbing to remove particulates. The cleaned blast furnace gas is then used as a fuel in plant processes. There is no measurable sulfur in the off gas. The primary environmental benefits derived from blast furnace coal injection result from the reduction of coke requirements for iron making. Reduced coke production will result in reduced releases of environmental contaminants from coking operations. 5 figs.

Not Available

1990-10-01

152

Process for removing pyritic sulfur from bituminous coals  

DOEpatents

A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

1990-01-01

153

Temperature-programmed decomposition desorption of mercury species over activated carbon sorbents for mercury removal from coal-derived fuel gas  

SciTech Connect

The mercury (Hg{sup 0}) removal process for coal-derived fuel gas in the integrated gasification combined cycle (IGCC) process will be one of the important issues for the development of a clean and highly efficient coal power generation system. Recently, iron-based sorbents, such as iron oxide (Fe{sub 2}O{sub 3}), supported iron oxides on TiO{sub 2}, and iron sulfides, were proposed as active mercury sorbents. The H{sub 2}S is one of the main impurity compounds in coal-derived fuel gas; therefore, H{sub 2}S injection is not necessary in this system. HCl is also another impurity in coal-derived fuel gas. In this study, the contribution of HCl to the mercury removal from coal-derived fuel gas by a commercial activated carbon (AC) was studied using a temperature-programmed decomposition desorption (TPDD) technique. The TPDD technique was applied to understand the decomposition characteristics of the mercury species on the sorbents. The Hg{sup 0}-removal experiments were carried out in a laboratory-scale fixed-bed reactor at 80-300{sup o}C using simulated fuel gas and a commercial AC, and the TPDD experiments were carried out in a U-tube reactor in an inert carrier gas (He or N{sub 2}) after mercury removal. The following results were obtained from this study: (1) HCl contributed to the mercury removal from the coal-derived fuel gas by the AC. (2) The mercury species captured on the AC in the HCl{sup -} and H{sub 2}S-presence system was more stable than that of the H{sub 2}S-presence system. (3) The stability of the mercury surface species formed on the AC in the H{sub 2}S-absence and HCl-presence system was similar to that of mercury chloride (HgClx) species. 25 refs., 12 figs., 1 tab.

M. Azhar Uddin; Masaki Ozaki; Eiji Sasaoka; Shengji Wu [Okayama University, Okayama (Japan). Faculty of Environmental Science and Technology

2009-09-15

154

Coagulation and filtration of solids from liquefied coal of SYNTHOIL process. [10 refs  

Microsoft Academic Search

In the SYNTHOIL process for converting coal to a low-sulfur, low-ash fuel oil, coal is liquefied and hydrodesulfurized catalytically by reaction with hydrogen in a turbulent-flow, packed-bed reactor. The gross liquid product is then centrifuged, or filtered, to remove unreacted coal and mineral matter. The de-ashed liquid is a low-sulfur, low-ash fuel oil. It has now been demonstrated that the

J. O. H. Newman; S. Akhtar; P. M. Yavorsky

1976-01-01

155

Recovery of minerals from US coals  

SciTech Connect

Projections show that domestic coal will serve for the majority of energy supplies during the next decades. Thorough chemical cleaning of this coal can be accomplished in long residence time, slurry transport systems to produce high-quality fuel product. Concurrently, mineral recovery from coals will supplement existing ores. This paper describes this concept and given preliminary engineering considerations for mineral recovery during transport operations.

Vanderborgh, N.E.

1982-01-01

156

Pulverized coal fuel injector  

DOEpatents

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01

157

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01

158

Obtaining of gas, liquid, and upgraded solid fuel from brown coals in supercritical water  

NASA Astrophysics Data System (ADS)

Two new conversion methods of brown coals in water steam and supercritical water (SCW) are proposed and investigated. In the first method, water steam or SCW is supplied periodically into the array of coal particles and then is ejected from the reactor along with dissolved conversion products. The second method includes the continuous supply of water-coal suspension (WCS) into the vertically arranged reactor from above. When using the proposed methods, agglomeration of coal particles is excluded and a high degree of conversion of coal into liquid and gaseous products is provided. Due to the removal of the main mass of oxygen during conversion in the composition of CO2, the high heating value of fuels obtained from liquid substantially exceeds this characteristic of starting coal. More than half of the sulfur atoms transfer into H2S during the SCW conversion already at a temperature lower than 450°C.

Vostrikov, A. A.; Fedyaeva, O. N.; Dubov, D. Yu.; Shishkin, A. V.; Sokol, M. Ya.

2013-12-01

159

Role of the Liquids From Coal process in the world energy picture  

SciTech Connect

ENCOAL Corporation, a wholly owned indirect subsidiary of Zeigler Coal Holding Company, has essentially completed the demonstration phase of a 1,000 Tons per day (TPD) Liquids From Coal (LFC{trademark}) plant near Gillette, Wyoming. The plant has been in operation for 4{1/2} years and has delivered 15 unit trains of Process Derived Fuel (PDF{trademark}), the low-sulfur, high-Btu solid product to five major utilities. Recent test burns have indicated the PDF{trademark} can offer the following benefits to utility customers: lower sulfur emissions, lower NO{sub x} emissions, lower utilized fuel costs to power plants, and long term stable fuel supply. More than three million gallons of Coal Derived Liquid (CDL{trademark}) have also been delivered to seven industrial fuel users and one steel mill blast furnace. Additionally, laboratory characteristics of CDL{trademark} and process development efforts have indicated that CDL{trademark} can be readily upgraded into higher value chemical feedstocks and transportation fuels. Commercialization of the LFC{trademark} is also progressing. Permit work for a large scale commercial ENCOAL{reg_sign} plant in Wyoming is now underway and domestic and international commercialization activity is in progress by TEK-KOL, a general partnership between SGI International and a Zeigler subsidiary. This paper covers the historical background of the project, describes the LFC{trademark} process and describes the worldwide outlook for commercialization.

Frederick, J.P.; Knottnerus, B.A. [ENCOAL Corp., Gillette, WY (United States)

1997-12-31

160

Coal liquefaction quenching process  

DOEpatents

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01

161

Process for selective grinding of coal  

DOEpatents

A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

Venkatachari, Mukund K. (San Francisco, CA); Benz, August D. (Hillsborough, CA); Huettenhain, Horst (Benicia, CA)

1991-01-01

162

Development of an extraction process for removal of heteroatoms from coal liquids. Final report  

SciTech Connect

The main goal of this contract was to develop an extraction process for upgrading coal liquids; and in doing so, to reduce the hydrogen requirement in downstream upgrading processes and to yield valuable byproducts. This goal was to be achieved by developing a novel carbon dioxide extraction process for heteroatom removal from coal-derived naphtha, diesel, and jet fuel. The research plan called for the optimization of three critical process variables using a statistically-designed experimental matrix. The commercial potential of the new process was to be evaluated by demonstrating quantitatively the effectiveness of heteroatom removal from three different feedstocks and by conducting a comparative economic analysis of alternate heteroatom removal technologies. Accomplishments are described for the following tasks: food procurement and analysis process variable screening studies; and process assessment.

Not Available

1994-04-01

163

Placid—A clean process for recycling lead from batteries  

NASA Astrophysics Data System (ADS)

The Placid process is a hydrometallurgical technique for recovering lead from spent battery pastes. The process, when used in combination with a pyrometallurgy process, has the potential to recover high-purity lead and offers significant environmental improvements.

Díaz, Gustavo; Andrews, David

1996-01-01

164

High temperature electrochemical separation of H sub 2 S from coal gasification process streams  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is economically attractive by the lack of adsorbents and the lack of a Claus process for sulfur recovery. Research conducted during the present quarter is highlighted, with an emphasis on progress towards the goal of an economically viable H{sub 2}S removal technology for use in coal gasification facilities providing polished fuel for co-generation coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. Polishing application of this technology to coal gasification synthesis gas has been demonstrated with H{sub 2}S removals as high as 89.1% recorded. No successful runs with stainless steel housings have yet been achieved. However, since stoichiometric CO{sub 2} removal with stainless steel housings has been achieved, H{sub 2}S removal is achievable.

Winnick, J.

1992-01-01

165

Dewatering studies of fine clean coal. Annual technical report, September 1, 1990--August 31, 1991  

SciTech Connect

The main objective of the present research program is to study and understand dewatering characteristics of ultrafine clean coal obtained using the advanced column flotation technique from the Kerr-McGee`s Galatia preparation plant fine coal waste stream. It is also the objective of the research program to utilize the basic study results, i.e., surface chemical, particle shape particle size distribution, etc., in developing a cost-effective dewatering method. The ultimate objective is to develop process criteria to obtain a dewatered clean coal product containing less that 20 percent moisture, using the conventional vacuum dewatering equipment. (VC)

Parekh, B.K.

1991-12-31

166

Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue  

DOEpatents

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, J.R.

1981-11-13

167

Integrated Fuel Cell/Coal Gasifier  

NASA Technical Reports Server (NTRS)

Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.

Ferrall, J. F.

1985-01-01

168

After the Clean Air Mercury Eule: prospects for reducing mercury emissions from coal-fired power plants  

SciTech Connect

Recent court decisions have affected the EPA's regulation of mercury emissions from coal burning, but some state laws are helping to clear the air. In 2005, the US EPA issued the Clean Air Mercury Rule (CAMR), setting performance standards for new coal-fired power plants and nominally capping mercury emissions form new and existing plants at 38 tons per year from 2010 to 2017 and 15 tpy in 2018 and thereafter; these down from 48.5 tpy in 1999. To implement the CAMR, 21 states with non-zero emissions adopted EPA's new source performance standards and cap and trade program with little or no modification. By December 2007, 23 other states had proposed or adopted more stringent requirements; 16 states prohibited or restricted interstate trading of mercury emissions. On February 2008, the US Court of Appeal for the District of Columbia Circuit unanimously vacated the CAMR. This article assesses the status of mercury emission control requirements for coal-fired power plants in the US in light of this decision, focusing on state actions and prospects for a new federal rule. 34 refs., 1 fig.

Jana B. Milford; Alison Pienciak [University of Colorado at Boulder, CO (United States)

2009-04-15

169

Clean fuels from biomass. [feasibility of converting plant systems to fuels  

NASA Technical Reports Server (NTRS)

The feasibility of converting biomass to portable fuels is studied. Since plants synthesize biomass from H2O and CO2 with the help of solar energy, the conversion methods of pyrolysis, anaerobic fermentation, and hydrogenation are considered. Cost reduction methods and cost effectiveness are emphasized.

Hsu, Y. Y.

1974-01-01

170

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26

171

Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.  

PubMed

Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems. PMID:23301852

Chen, Luguang; Bhattacharya, Sankar

2013-02-01

172

Passamaquoddy Innovative Clean Coal Technology Program: Public design report  

SciTech Connect

The Passamaquoddy Technology Recovery Scrubber{trademark} was conceived and developed specifically to address two problems experienced by the Dragon cement plant; meeting increasingly stringent gas emission limits for sulfur dioxide, and disposing of kiln dust, containing alkali oxides, which had to be wasted in order to avoid kiln operating and product quality problems. The idea involved making the kiln dust into a slurry in order to leach out the species (primarily potassium and sulfur) which rendered it unacceptable for return to kiln feed. This slurry, the liquid part of which is an alkaline solution, acts as a scrubbing reagent for SO{sub 2} in the flue gas while CO{sub 2} in the gas serves to precipitate soluble calcium and release sulfate for combination with the potassium. The effect of the process is to scrub SO{sub 2} from kiln flue gas, extract the volatile species from the dust allowing it to be returned to the kiln, and yield a leachate comprising potassium sulfate which can be crystallized (using heat recovered from the flue gas) and sold as fertilizer. Apart from widespread application in the cement industry, it was evident that, if the process could be demonstrated, its potential would extend to any plant burning fossil fuel where an alkaline waste either occurs intrinsically or can be juxtaposed. Obvious candidates appeared to include the pulp and paper industry and waste incineration. The chemistry was proved in a 1/100th scale pilot plant using actual kiln dust and a slip stream of kiln gas. A full scale demonstration installation was commissioned in 1989 by CDN (USA), the owners of the Dragon plant with the financial support of the US Department of Energy under its innovative Clean Coal Technology Program.

Not Available

1993-08-01

173

Removal of sulfur and HAPs from coal using water extraction  

SciTech Connect

To date, no economically feasible process for organic sulfur and hazardous air pollutant (HAP) precursor removal from coal has been developed. However, a hydrothermal method based on supercritical water extraction techniques developed at the University of North Dakota Energy and Environmental Research Center (UNDEERC) with support from the Illinois Clean Coal Institute (ICCI), USDOE and the Center for Air Toxic Metals (CATM) has shown promise. Analytical (milligram) scale supercritical water extraction of sulfur from Illinois high sulfur bituminous coals were used to evaluate the sulfur and HAPs removal effectiveness of the process. Multigram extractions were used to establish effective conditions, and the multi-kilogram pilot scale extraction provided evidence of the scale-up potential of the technology. Tests at the multigram scale resulted in production of low sulfur (as low as 0.5% S, mf) coal solids, first, at supercritical conditions, e.g., 450 C and 400 atm (5,880 psig), then at conditions below the critical pressure, e.g., 420 C and 156 atm (2,300 psig). Even milder conditions of 400 C and 156 atm (2,300 psig) resulted in sulfur values of 0.8% S. IBC-102 containing 3.1% S was extracted with supercritical water resulting in a sulfur value of 0.7 wt% in the recovered solids. Extraction of IBC-102 at subcritical pressure of 420 C and 156 atm (2,300 psi) resulted in a sulfur content of 0.49%. The tar obtained from extracted coal had sulfur values ranging from 1.4 wt% to 6.5 wt%, but when treated by catalytic desulfurization, was quantitatively recovered with a sulfur value of 0.6 wt%. Selected HAP (Se, Hg, Cd, Cl) removal from IBC coals resulted in decreases of as much as 57% of the Se, 99% of Hg, 85% of As, and 73% of Cl in coal solids, but was determined to be coal dependent. Freshly mined coals were also tested and gave similar results. In later tests emphasis was on hydrothermal treatment of physically cleaned coal. Batch testing on the pilot scale, which consisted of hydrothermal treatment of physically cleaned freshly mined Illinois coal followed by on-line catalytic desulfurization of the tar, resulted in a reconstituted product which was easily briquetted. Analysis showed the briquettes to have 1.6% S (1.2% organic sulfur), 3.7% ash and a heating value of 14,475 Btu/lb. The focus of the economic evaluation has been primarily on the coal cleaning. The cost effectiveness of conventional coal cleaning, froth flotation, selective agglomeration, and hydrothermal treatment have been preliminarily compared. The primary cost of coal cleaning incurred by the utility company is an incremental increase in the price of fuel. This can range from $2 to over $30 per ton of coal. Coal cleaning, however, also offers a number of benefits to the utility in the form of lower SO{sub 2} emissions, lower operating and maintenance costs resulting from reduced ash content, and lower waste disposal costs. Of the advanced coal cleaning methods, the hydrothermal treatment shows the most promise, both in terms of achievable mercury levels, and in cost. Taking a credit of $100/ton SO{sub 2} removed, the cost of mercury removal ranged from $40,000 to $84,000/lb Hg removed. This is within the range of costs of $4,920 to $70,000/lb Hg removed presented by EPA in its recent report to congress as the projected cost of mercury control in utility applications. Future work at the EERC will focus on optimizing the hydrothermal treatment process and developing more accurate cost estimates.

Timpe, R.; Mann, M. [Energy and Environmental Research Center (United States); Ho, K. [Illinois Clean Coal Inst., IL (United States)

1998-12-31

174

ANALYTICAL METHODS FOR HAZARDOUS ORGANICS IN LIQUID WASTES FROM COAL GASIFICATION AND LIQUEFACTION PROCESSES  

EPA Science Inventory

This study was conducted by the University of Southern California group to provide methods for the analysis of coal liquefaction wastes from coal conversion processing plants. Several methods of preliminary fractionation prior to analysis were considered. The most satisfactory me...

175

SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER  

EPA Science Inventory

The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

176

Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996  

SciTech Connect

The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities were focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies were conducted by Virginia Tech`s Center for Coal and Minerals Processing and a spiral model was developed by West Virginia University. For the University of Kentucky the advisory board approved a project entitled: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Project management and administration will be provided by Virginia Tech., for the first year. Progress reports for coal dewatering and destabilization of flotation froth studies are presented in this report.

Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Jiang, X.; Tao, D.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Meloy, T. [West Virginia Univ., Morgantown, WV (United States)

1996-10-01

177

Some aspects of coal pyrolysis for liquid and solid fuels production  

Microsoft Academic Search

The application of coal pyrolysis to production of syncrude and boiler fuel is illustrated and potential sources of coals for pyrolysis are identified. Pyrolysis technology is described, particularly the TOSCOAL process which pyrolyzes coal in a rotary drum using a ceramic heat carrier. Char made by the TOSCOAL process from a western U.S. coal has been shown to be essentially

J. F. McMahon; S. J. Sawyer; J. P. Van Hook

1984-01-01

178

Steam generator cleaning using chemical cleaning processes  

Microsoft Academic Search

The chemical cleaning of steam generators (SGs) for the removal of tube deposits and sludge has become a widely accepted practice. Two US utilities have now applied a process developed by Electric Power Research Institute (EPRI) as part of their SG maintenance program with very positive results. Several European utilities have also chemically cleaned SGs using a process developed by

P. M. Olson; C. A. Swift

1987-01-01

179

Serial biological conversion of coal to liquid fuels  

SciTech Connect

Water soluble coal products produced by the action of coal solubilizing organisms LSC and H12 were obtained and used in a second biological process for conversion to alcohol fuels. Several sources of natural inocula were screened and studied for their ability to produce fuels from solubilized coal. Alcohols and organic acids were produced from cultures obtained from sewage sludge and sheep and rumen fluid. The sheep rumen culture, in addition to producing alcohols and acids, was capable of totally eliminating color from the culture medium indicating significant breakdown of the solubilized coal. 12 refs., 9 figs., 59 tabs.

Not Available

1991-02-01

180

Clean coal. U.S.-China cooperation in energy security  

SciTech Connect

This work discusses how coal fits into the strategies of the USA and China to attain energy security while avoiding adverse environmental impacts. It begins by describing China's policy choices for clean coal, before discussing the implications of a clean coal strategy for China. The U.S. choices in a coal-based strategy of energy security is then covered. Finally, a joint US-China clean coal strategy, including the technology sharing option, is discussed.

Wendt, D.

2008-05-15

181

Algae fuel clean electricity generation  

SciTech Connect

The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

O'Sullivan, D.

1993-02-08

182

Characterization of coal water slurry sprays from a positive displacement fuel injection system  

E-print Network

pressurized chamber equipped with windows. High speed movies and instantaneous fuel line pressures were obtained. For injection pressures of order 30 MPa or higher, the sprays were similar for coal water slurry, diesel fuel and water. The time until... the center core of the spray broke-up (break-up time) was determined from both the movies and from a model using fuel line pressures. Results from these two different procedures were in good agreement. For the base conditions the break-up time was about 0...

Kumar Seshadri, Ajoy

2012-06-07

183

Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000  

SciTech Connect

The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

NONE

2000-09-01

184

Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process  

SciTech Connect

The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

Not Available

1992-02-15

185

Innovative Clean Coal Technologies (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process  

SciTech Connect

The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

Not Available

1992-05-15

186

Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process  

SciTech Connect

The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

Not Available

1990-08-06

187

Innovative Clean Coal Technology: Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process  

SciTech Connect

The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT-121 relative to competing technology.

Not Available

1990-11-15

188

Separation of products from mild coal gasification processes  

SciTech Connect

The primary mild coal gasification product mixture containing noncondensible gas, high-boiling hydrocarbon vapors and entrained fines is difficult to process into the desired pure products: gas, liquids, and dry solids. This challenge for mild coal gasification process development has been studied by surveying the technical literature for suitable separations processes and for similar issues in related processes. The choice for a first-stage solids separation step is standard cyclones, arranged in parallel trains for large-volume applications in order to take advantage of the higher separation efficiency of smaller cyclones. However, mild gasification pilot-plant data show entrainment of ultrafine particles for which standard cyclones have poor separation efficiency. A hot secondary solids separation step is needed for the ultrafine entrainment in order to protect the liquid product from excessive amounts of contaminating solids. The secondary solids separation step is similar to many high-temperature flue-gas applications with an important complicating condition: Mild gasifier vapors form coke on surfaces in contact with the vapors. Plugging of the filter medium by coke deposition is concluded to be the main product separation problem for mild gasification. Three approaches to solution of this problem are discussed in the order of preference: (1) a barrier filter medium made of a perforated foil that is easy to regenerate, (2) a high-efficiency cyclone coupled with recycle of a solids-containing tar fraction for coking/cracking in the gasifier, and (3) a granular moving bed filter with regeneration of the bed material. The condensation of oil vapors diluted by noncondensible gas is analyzed thermodynamically, and the conclusion is that existing commercial oil fractionator designs are adequate as long as the vapor stream does not contain excessive amounts of solids. 34 refs., 4 figs.

Wallman, P.H.

1991-09-11

189

Novel use of residue from direct coal liquefaction process  

SciTech Connect

Direct coal liquefaction residue (DCLR) is, commonly, designed to be used as a feed stock for gasification or combustion. Use of DCLR as a value added product is very important for improving overall economy of direct coal liquefaction processes. This study shows that the DCLR may be used as a pavement asphalt modifier. The modification ability is similar to that of Trinidad Lake Asphalt (TLA), a superior commercial modifier. Asphalts modified by two DCLRs meet the specifications of ASTM D5710 and BSI BS-3690 designated for the TLA-modified asphalts. The required addition amount for the DCLRs tested is less than that for TLA due possibly to the high content of asphaltene in DCLRs. Different compatibility was observed for the asphalts with the same penetration grade but from the different origin. Different components in the DCLR play different roles in the modification. Positive synergetic effects among the fractions were observed, which may due to the formation of the stable colloid structure. Unlike polymer-type modifier, the structure of asphalt-type modifier has a similarity with petroleum asphalts which favors the formation of a stable dispersed polar fluid (DPF) colloid structure and improves the performance of pavement asphalt. 12 refs., 1 fig., 6 tabs.

Jianli Yang; Zhaixia Wang; Zhenyu Liu; Yuzhen Zhang [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion

2009-09-15

190

ENVIRONMENTAL ASSESSMENT DATA BASE FOR COAL LIQUEFACTION TECHNOLOGY: VOLUME I. SYSTEMS FOR 14 LIQUEFACTION PROCESSES  

EPA Science Inventory

The two-volume report, prepared as part of an overall environmental assessment (EA) program for the technology involved in the conversion of coal to clean liquid fuels, and the Standards of Practice Manual for the Solvent Refined Coal Liquefaction Process (EPA-600/7-78-091) repre...

191

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 15, October--December 1992  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; re-analyzed the samples from the pilot-scale ash deposition tests of the first nine feed coals and BCFs using a modified CCSEM technique; updated the topical summary report; and prepared for upcoming tests of new BCFs being produced.

Chow, O.K.; Nsakala, N.Y.

1993-03-01

192

Micro-agglomerate flotation for deep cleaning of coal  

SciTech Connect

We are investigating the use of a hybrid process - Micro-agglomerate flotation - which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 [mu]m in size) rather than individual coal particles (1--10 [mu]m) the problems of froth overload and water/mineral carryover should be significantly alleviated. Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale. In principle, it should be possible to achieve both high selectivity and high yield at reasonable cost. The process requires only conventional, off-the-shelf equipment and reagent usage (oil, surfactants, etc.) should be small. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

Chander, S.; Hogg, R.

1993-01-01

193

Coal cleaning residues and Fe-minerals implications  

Microsoft Academic Search

In the present investigation, a study was undertaken to understand the origin of Fe-minerals presents in Brazilian coal mining\\u000a and to understand the environmental implication and the chemical heterogeneity in the study area. Coal cleaning residue samples\\u000a rich in clays, quartz, sulphides, carbonates, sulphates, etc. were sampled from Lauro Muller, Urussanga, Treviso, Siderópolis,\\u000a and Criciúma cities in the Santa Catarina

Luis F. O. Silva; Felipe Macias; Marcos L. S. Oliveira; M. Kátia da Boit; Frans Waanders

2011-01-01

194

Continuous coking of residual oil and production of gaseous fuel and smokeless solid fuels from coal  

SciTech Connect

Coal and residual oil are simultaneously processed in a reactor with a combustion zone at the bottom and a fluidized bed on top of it. The residual oil is injected into heat exchange relationship with the top of the fluidized bed where it is cracked with heat generated by the combustion.

Yan, T.Y.; Whitehurst

1985-08-06

195

Thermal stability of some aircraft turbine fuels derived from oil shale and coal  

NASA Technical Reports Server (NTRS)

Thermal stability breakpoint temperatures are shown for 32 jet fuels prepared from oil shale and coal syncrudes by various degrees of hydrogenation. Low severity hydrotreated shale oils, with nitrogen contents of 0.1 to 0.24 weight percent, had breakpoint temperatures in the 477 to 505 K (400 to 450 F) range. Higher severity treatment, lowering nitrogen levels to 0.008 to 0.017 weight percent, resulted in breakpoint temperatures in the 505 to 533 K (450 to 500 F) range. Coal derived fuels showed generally increasing breakpoint temperatures with increasing weight percent hydrogen, fuels below 13 weight percent hydrogen having breakpoints below 533 K (500 F). Comparisons are shown with similar literature data.

Reynolds, T. W.

1977-01-01

196

Catalytic Ammonia Decomposition for Coal-Derived Fuel Gases  

SciTech Connect

The objective of this study is to develop and demonstrate catalytic approaches for decomposing a significant percentage (up to 90 percent) of the NH{sub 3} present in fuel gas to N{sub 2} and H{sub 2} at elevated temperatures (550 to 900{degrees}C). The NH{sub 3} concentration considered in this study was {similar_to}1,800 to 2,000 ppmv, which is typical of oxygen-blown, entrained-flow gasifiers such as the Texaco coal gasifier being employed at the TECO Clean Coal Technology Demonstration plant. Catalysts containing Ni, Co, Mo, and W were candidates for the study. Before undertaking any experiments, a detailed thermodynamic evaluation was conducted to determine the concentration of NH{sub 3} in equilibrium with the Texaco gasifier coal gas. Thermodynamic evaluations were also performed to evaluate the stability of the catalytic phases (for the various catalysts under consideration) under NH3 decomposition conditions to be used in this study. Two catalytic approaches for decomposing NH{sub 3} have been experimentally evaluated. The first approach evaluated during the early phases of this project involved the screening of catalysts that could be combined with the hot-gas desulfurization sorbents (e.g., zinc titanate) for simultaneous NH{sub 3} and H{sub 2}S removal. In a commercial system, this approach would reduce capital costs by eliminating a process step. The second approach evaluated was high-temperature catalytic decomposition at 800 to 900{degrees} C. In a commercial hot-gas cleanup system this could be carried out after radiative cooling of the gas to 800 to 900{degrees}C but up stream of the convective cooler, the hot particulate filter, and the hot-gas desulfurization reactor. Both approaches were tested in the presence of up to 7,500 ppmv H{sub 2}S in simulated fuel gas or actual fuel gas from a coal gasifier.

Gangwal, S.K.; Gupta, R.P.; Portzer, J.W.; Turk, B.S. [Research Triangle Inst., Research Triangle Park, NC (United States); Krishnan, G.N. [SRI International, Menlo Park, CA (United States); Hung, S.L.; Ayala, R.E. [General Electric Co., Schenectady, NY (United States). Corporate Research and Development Center

1996-12-31

197

Enhanced gravity separators: New alternatives for fine coal cleaning  

SciTech Connect

A new generation of centrifugal enhanced gravity separators is now available for fine coal cleaning. Commercially available units include the Falcon Concentrator, Kelsey Jig, Knelson Concentrator and Mozley Multi-Gravity Separator. These devices, which were originally developed in the minerals processing industry, are capable of upgrading particles once believed to be too fine for water-based gravity separators. In the case of coal, efficient separations have been achieved down to particle sizes of 325 mesh and finer. These units are particularly well-suited for pyritic sulfur removal because of the large density difference between pyrite and coal. This article describes the basic working principles of this new generation of gravity separators and provides a review of the advantages and limitations of each for fine coal processing. Topics addressed in this article include separation performance, unit capacity, and process economics.

Luttrell, G.H.; Phillips, D.I. [Virginia Polytechnic Institute, Blacksburg, VA (United States); Honaker, R.Q. [Southern Illinois Univ., Carbondale, IL (United States)

1995-08-01

198

Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass  

SciTech Connect

This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation?s urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

Huffman, Gerald

2012-12-31

199

Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation  

SciTech Connect

In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

1990-01-01

200

Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions  

SciTech Connect

Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

Zhang, J.J.; Smith, K.R. [University of Medicine & Dentistry New Jersey, Piscataway, NJ (United States). School of Public Health

2007-06-15

201

Introduction of clean coal technology in Japan  

SciTech Connect

Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

Takashi Kiga [Japan Coal Energy Center (JCOAL), Tokyo (Japan). R and D Department

2008-01-15

202

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation  

SciTech Connect

Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

Jiang, C.

1993-12-31

203

A Course in Coal Science and Technology.  

ERIC Educational Resources Information Center

This course introduces graduate students and advanced undergraduates to coal science and technology. Topics include: (1) the nature and occurrence of coal, (2) its chemical and physical characteristics, (3) methods of cleaning and preparing coal, and (4) processes for converting coal into clean solid, liquid, and gaseous fuels, as well as coke.…

Wheelock, T. D.

1978-01-01

204

Flotation machine and process for removing impurities from coals  

DOEpatents

The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal.

Szymocha, Kazimierz (Edmonton, CA); Ignasiak, Boleslaw (Edmonton, CA); Pawlak, Wanda (Edmonton, CA); Kulik, Conrad (Newark, CA); Lebowitz, Howard E. (Mountain View, CA)

1995-01-01

205

Flotation machine and process for removing impurities from coals  

DOEpatents

The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal. 4 figs.

Szymocha, K.; Ignasiak, B.; Pawlak, W.; Kulik, C.; Lebowitz, H.E.

1997-02-11

206

Flotation machine and process for removing impurities from coals  

DOEpatents

The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other mineral particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal. 4 figs.

Szymocha, K.; Ignasiak, B.; Pawlak, W.; Kulik, C.; Lebowitz, H.E.

1995-12-05

207

Flotation machine and process for removing impurities from coals  

DOEpatents

The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal.

Szymocha, Kazimierz (Edmonton, CA); Ignasiak, Boleslaw (Edmonton, CA); Pawlak, Wanda (Edmonton, CA); Kulik, Conrad (Newark, CA); Lebowitz, Howard E. (Mountain View, CA)

1997-01-01

208

PAH emissions from combustion of coal liquids in industrial furnace  

Microsoft Academic Search

The possible environmental impact of substituting fuel oils derived from coal instead of petroleum was investigated using an industrial furnace. Emphasis was placed on the emissions of polynuclear aromatic hydrocarbons (PAH). The nonpetroleum fuel oil (ECLP-SS) was produced from Texas lignite coal by the Exxon Donor Solvent Process at the Exxon Coal Liquefaction Pilot Plant. The effects of furnace loading

R. M. Schirmer; M. D. Gill; D. A. Nickeson

1983-01-01

209

Reducing the moisture content of clean coals  

SciTech Connect

Volume four contains the results of an Empire State Electric Energy Research corporation and Electric Power Research Institute (EPRI) funded investigation to evaluate the effects and economics of applying ultrasonic waves to commercial-scale dewatering and classifying of fine coal. Pre-treating minus 28 mesh Upper Freeport Seam coal using an ultrasonic tray device improved subsequent dewatering by a vacuum disc filter after thickening in a cyclone, but it did not improve dewatering by a screen-bowl centrifuge after cycloning. Dewatering of Pittsburgh Seam coal also improved when the coal was ultrasonically treated, but it only manifested during thickening in the cyclone. Cycloning also increased the removal of fine, high-ash content clay particles from Pittsburgh Seam coal. In contrast, ultrasonically-treating Upper Freeport Seam coal did not improve subsequent classifying by a rapped sieve bend. Based on a specific example of results in this test work for Upper Freeport Seam coal, using an ultrasonic tray to aid dewatering of finely-sized coal can be economically beneficial. For other coals and dewatering devices, however, the economics for using ultrasonic trays to enhance fine coal dewatering will differ.

Raleigh, C.E. (CQ, Inc., Homer City, PA (United States))

1992-11-01

210

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

Microsoft Academic Search

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to

N. R. Sefer; J. A. Russell

1981-01-01

211

RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS  

SciTech Connect

This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the extraction products indicated that they had the requisite properties of viable carbon-product precursors.

Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

2002-03-31

212

Evaluation of coal pretreatment prior to co-processing  

SciTech Connect

The Western Research Institute is currently developing a mild gasification process for the recovery of a stabilized char product for use as a fuel. A liquid product of limited value is produced during the mild gasification process that may be suited as a co-processing vehicle for coal-oil co-processing. Research was conducted to evaluate co-processing of this mild gasification liquid with coal. The two major areas of research discussed in this report are: (1) coal pretreatment with a coal-derived liquid to induce coal swelling and promote catalyst dispersion and (2) co-processing coal that has been thermally pretreated in the presence of the mild gasification liquid. The results of the investigation to evaluate co-processing of coal that has been thermally pretreated in the presence of the mild gasification liquid indicate that the thermal pretreatment adversely affected the coal-oil co-processing under hydrogen pressure. Thermally pretreated coals co-processed under a hydrogen atmosphere and without benefit of catalyst exhibited about 86 wt % conversion as compared to 96 wt % for coal that was only thermally dried. The addition of the iron pentacarbonyl catalyst precursor to the thermally pretreated coals did improve the conversion to near that of the dried coal. Results from analysis of the product obtained from co-processing the Illinois No. 6 coal showed it was upgraded in terms of oxygen content and hydrogen to carbon atomic ratio when compared to the mild gasification liquid.

Guffey, F.D.; Barbour, F.A.; Blake, R.F.

1991-12-01

213

Evaluation of the genotoxicity of process stream extracts from a coal gasification system  

SciTech Connect

Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays (CHO/HGPRT and Ames). The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems.

Shimizu, R.W.; Benson, J.M.; Li, A.P.; Henderson, R.F.; Brooks, A.L.

1984-01-01

214

Conceptual design of coal-fueled diesel system for stationary power applications  

SciTech Connect

A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

Not Available

1989-05-01

215

Methodology for comparing the health effects of electricity generation from uranium and coal fuels  

SciTech Connect

A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

Rhyne, W.R.; El-Bassioni, A.A.

1981-12-08

216

ASSESSMENT OF COAL CLEANING TECHNOLOGY: FINAL REPORT  

EPA Science Inventory

The report gives results of tests at seven coal preparation plants to evaluate the performance of froth flotation cells and dense-medium cyclones in removing ash and sulfur (S) from fine coal (Minus 28 mesh). Flotation circuits tested at four plants showed substantial reductions ...

217

Catalytic coal liquefaction process  

DOEpatents

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

Garg, D.; Sunder, S.

1986-12-02

218

Catalytic coal liquefaction process  

DOEpatents

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

1986-01-01

219

Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 March 1995--31 May 1995  

SciTech Connect

Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a run-of-mine coal sample collected from Amax Coal Company`s Delta Coal mine using column flotation and an enhanced gravity separator as separate units and in circuitry arrangements. The {minus}60 mesh run-of-mine sample having an ash content of about 22% was cleaned to 6% while achieving a very high energy recovery of about 87% and a sulfur rejection value of 53% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Packed-Column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

Honaker, R.Q.; Paul, B.C.; Mohanty, M.K.; Wang, D.

1995-12-31

220

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01

221

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01

222

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

SciTech Connect

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

Sefer, N.R.; Russell, J.A.

1981-12-01

223

Chemical cleaning of Slovak brown coal by GACL (Grinding and Aqueous Caustic Leaching)  

SciTech Connect

The desulfuration of coal by chemical methods is accomplished by different reagents of acid or alkaline character. The study of the processes applying hot alkaline solutions to purification of coal is not a recent development. As early as during the second World War this process was used in Germany on purpose to prepare from coal a low-ash product suited to production of electrode carbon. It has been stated in a paper published by U.S. Bureau of Mines that one can reduce the content of ash in coal from original 98% to 0.7% by using 10% NaOH at increased pressure and temperature of 225 C. The application of NaOH solutions at increased temperatures (150--250 C) and pressures (0.6--2.5 MPa) were investigated in several laboratories. Another possibility of using alkaline medium for cleaning of coal involves atmospheric pressure. Molten NaOH (or its mixture with KOH) is used and the effective temperature is about 400 C. The ability of molten NaOH to desulfurate coal has been known for more than three decades. The liberation of the pyritic sulfur starts at temperatures above 150 C while the organic sulfur is released from the coal matrix at temperatures above 200 C. The process known as MCL (Molten Caustic Leaching) was for the first time tested by TRW in cooperation with US Department of Energy in the Seventies. The objective was to remove mineral components, pyritic and organic sulfur by using the reaction of coal with a mixture of molten sodium and potassium hydroxide. For leaching time of 60--180 min and temperatures of 370--400 C the effectiveness of MCL process of removal of individual components was as follows: 90--95% of pyritic sulfur, 70--90% of organic sulfur and 90--99% of ash. The MCL process was also effectively applied for treatment of Slovak brown coal in previous work. Because of the presence of sulfidic admixtures in coal and the fact that organic sulfur is built in the matrix of coal and from the view-point of chemical cleaning also exhibits refractory character, the possibility of verifying the principle of such pretreatment offers itself for coal as well. The aim of this work is to apply the new GACL process (Grinding and Aqueous Caustic Leaching) to brown coal Novaky, and to determine how effectively this process lowers ash, sulfur and arsenic levels.

Balaz, P.; Turcaniova, L. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Geotechnics; Frommel, E.A.; Martello, D.V. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Kern, D.G.; LaCount, R.B. [Virolac Industries, Waynesburg, PA (United States)

1998-12-31

224

Proof of concept for integrating oxy-fuel combustion and the removal of all pollutants from a coal fired flame  

SciTech Connect

The USDOE/Albany Research Center and Jupiter Oxygen Corporation, working together under a Cooperative Research and Development Agreement, have demonstrated proof-of-concept for the integration of Jupiter’s oxy-fuel combustion and an integrated system for the removal of all stack pollutants, including CO2, from a coal-fired flame. The components were developed using existing process technology with the addition of a new oxy-coal combustion nozzle. The results of the test showed that the system can capture SOx, NOx, particulates, and even mercury as a part of the process of producing liquefied CO2 for sequestration. This is part of an ongoing research project to explore alternative methods for CO2 capture that will be applicable to both retrofit and new plant construction.

Ochs, Thomas L.; Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Gross, Alex (Jupiter Oxygen Corp.); Summers, Cathy A.; Simmons, William (CoalTeck LLC); Schoenfield, Mark (Jupiter Oxygen Corp.); Turner, Paul C.

2005-01-01

225

Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Final technical report  

SciTech Connect

Through the mid-1980s, Air Products has brought the liquid phase approach to a number of other synthesis gas reactions where effective heat management is a key issue. In 1989, in response to DOE`s PRDA No. DE-RA22-88PC88805, Air Products proposed a research and development program entitled ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal Derived Syngas.`` The proposal aimed at extending the LPMEOH experience to convert coal-derived synthesis gas to other useful fuels and chemicals. The work proposed included development of a novel one-step synthesis of dimethyl ether (DME) from syngas, and exploration of other liquid phase synthesis of alternative fuel directly from syngas. The one-step DME process, conceived in 1986 at Air Products as a means of increasing syngas conversion to liquid products, envisioned the concept of converting product methanol in situ to DME in a single reactor. The slurry reactor based liquid phase technology is ideally suited for such an application, since the second reaction (methanol to DME) can be accomplished by adding a second catalyst with dehydration activity to the methanol producing reactor. An area of exploration for other alternative fuels directly from syngas was single-step slurry phase synthesis of hydrocarbons via methanol and DME as intermediates. Other possibilities included the direct synthesis of mixed alcohols and mixed ethers in a slurry reactor.

Not Available

1993-02-01

226

Ultrafine coal single stage dewatering and briquetting process  

SciTech Connect

The primary goal of the current physical coal cleaning process is to reduce the ash and sulfur content from the coal, that is, to remove the mineral particles from the coal. In order to separate mineral from coal particles efficiently, the finely disseminated mineral matter must be liberated from the coal matrix with the help of an ultrafine grinding operation. The coal becomes very difficult to dewater because of the small particle size produced. Difficulty in coal transportation as well as in its storage and handling at the utility plants are also problems associated with the small coal particles resulting from ultrafine grinding. During this project, several types of coal samples with various particle size distributions have been tested for use in the dewatering and briquetting processes. Furthermore, various bitumen emulsions have been tested to determine the optimum dewatering reagent. These dewatering and pelletizing tests were carried out using a lab-scale hydraulic compacting device. Discharge from the dewatering and briquetting processes was tested to determine compliance with current federal and state requirements. The influence of bitumen emulsion on the sulfur content of coal pellets made were also examined. In addition, a ram extruder which can be operated continuously to simulate a rotary press operation, has been built and is currently being tested for use in the fine coal dewatering and pelletizing process.

Wilson, J.W.; Ding, Y.; Tobey, M. [Univ. of Missouri, Rolla, MO (United States). Mining Engineering Dept.

1995-12-31

227

Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification  

NASA Technical Reports Server (NTRS)

Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

1979-01-01

228

Catalytic methods in coal processing to syn-gas, carboneous and liquid fuels contributing to sustainable development  

Microsoft Academic Search

The processes of brown coal autothermal carbonization and steam gasification in a fluidized bed of catalytically active materials, catalytic hydrogenation of brown coal and its mixtures with waste polyolefines and sapropelitic coal liquefaction have been studied. The application of fluidized bed of iron-containing materials, which are able to catalyse the volatives oxidation provides the autothermal conditions of coal carbonization without

B. N. Kuznetsov

2009-01-01

229

Coal desulfurization process  

NASA Technical Reports Server (NTRS)

A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

1978-01-01

230

Clean salt process final report  

SciTech Connect

A process has been demonstrated in the laboratory for separating clean, virtually non-radioactive sodium nitrate from Hanford tank waste using fractional crystallization. The name of the process is the Clean Salt Process. Flowsheet modeling has shown that the process is capable of reducing the volume of vitrified low activity waste (LAW) by 80 to 90 %. Construction of the Clean Salt processing plant would cost less than $1 10 million, and would eliminate the need for building a $2.2 billion large scale vitrification plant planned for Privatization Phase 11. Disposal costs for the vitrified LAW would also be reduced by an estimated $240 million. This report provides a summary of five years of laboratory and engineering development activities, beginning in fiscal year 1992. Topics covered include laboratory testing of a variety of processing options; proof-of-principle demonstrations with actual waste samples from Hanford tanks 241-U-110 (U-110), 241-SY-101 (101-SY), and 241-AN-102 (102-AN); descriptions of the primary solubility phase diagrams that govem the process; a review of environmental regulations governing disposition of the reclaimed salt and an assessment of the potential beneficial uses of the reclaimed salt; preliminary plant design and construction cost estimates. A detailed description is given for the large scale laboratory demonstration of the process using waste from tank 241-AW-101 (101-AW), a candidate waste for 0044vitrification during Phase I Privatization.

Herting, D.L.

1996-09-30

231

POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING  

SciTech Connect

Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would suffer from low throughput capacities and high maintenance requirements. In general, surface area-based separators (e.g., shaking tables, magnetic drum separator, electrodynamic separator, etc.) have lower throughput capacities than volume-based separators (e.g., flotation cell, dense-medium bath, cyclones, etc.) by an order of magnitude. Furthermore, the electrodes of the laboratory unit need to be cleaned frequently, creating a high maintenance requirement if it is scaled-up to a commercial unit. The bench-scale continuous TES unit developed at NETL, on the other hand, separates positively and negatively charged particles by splitting the gaseous stream containing these particles in an electric field by means of a flow splitter, so that the oppositely charged particles can be directed into different compartments. This device is fundamentally different from the laboratory unit in that the former is a surface area-based separator, while the latter is a volume-based separator. The bench-scale unit is referred to as an entrained flow separator by the in-house researchers at NETL. Thus, the entrained flow TES unit is a significant improvement over the laboratory unit with regard to throughput capacity. In the present work, the entrained flow separator concept will be utilized for developing a proof-of concept (POC) separator that can be scaled-up to commercial size units. To accomplish this, it is necessary to develop a bench-scale separator that can achieve high Btu recoveries while maintaining the high degree of separation efficiencies. It is the objective of the present investigation to develop an efficient separator by studying the mechanisms of triboelectrification and investigating better ways of separating the charged particles. An important criterion for developing efficient separators is that they not only provide high separation efficiencies but also have high throughput capacities, which are essential ingredients for successful commercialization.

R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

2001-04-30

232

Coal gasification: Kellogg's coal gasification process  

Microsoft Academic Search

Gasification of coal in a bath of molten sodium carbonate through which ; steam is passed is the basis of the Kellogg Coal Gasification process. The bath ; of moiten salt strongly catalyzes the basic steam- coal reaction permi tting ; essentially complete gasificntion of coal at reduced temperature. The molten ; salt can be used to supply heat to

W. C. Schreiner; G. T. Skaperdas

1973-01-01

233

EFFECT OF PHYSICAL COAL CLEANING ON SULFUR CONTENT AND VARIABILITY  

EPA Science Inventory

The report gives results of a statistical analysis of the sulfur content and heating value data for 53 different coal-source/cleaning-plant combinations, both to document the operational effectiveness of commercial coal cleaning plants in reducing sulfur and enhancing heating val...

234

EVALUATION OF CONVENTIONAL AND ADVANCED COAL CLEANING TECHNIQUES  

EPA Science Inventory

The report assesses the capability, cost, and environmental effects of coal cleaning to reduce sulfur dioxide (SO2) emissions. It is the culmination of a 4-year program directed by EPA's AEERL. The report includes evaluations of SO2 emission reductions by cleaning coals on a stat...

235

Clean Coal Technology Programs: Program Update 2003 (Volume 1)  

SciTech Connect

Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2003-12-01

236

Coal-water mixture fuel burner  

DOEpatents

The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

Brown, T.D.; Reehl, D.P.; Walbert, G.F.

1985-04-29

237

Economics of fuel gas from coal: an update including the British Gas Corporation's slagging gasifier. Final report  

Microsoft Academic Search

This report presents the results of an economic screening study for British Gas Corporation's oxygen-blown, slagging, coal gasification process to produce intermediate Btu fuel gas, and an update of the economic sections of an earlier report (EPRI AF-244) which included air and oxygen blown Lurgi moving bed, U-Gas fluidized bed and Combustion Engineering's entrained processes for fuel gas production. This

K. Chandra; B. McElmurry; S. Smelser

1978-01-01

238

Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas  

SciTech Connect

As part of the DOE-sponsored contract Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas'' experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbon mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al[sub 2]O[sub 3] methanol synthesis catalyst, developed in Air Products' laboratories, has the highest performance in terms of rate and selectivity for C[sub 2+]-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.

Underwood, R.P.

1993-01-01

239

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2005-03-31

240

TECHNOLOGY ASSESSMENT REPORT FOR INDUSTRIAL BOILER APPLICATIONS: COAL CLEANING AND LOW SULFUR COAL  

EPA Science Inventory

The report assesses the use of three pollution control technologies--low sulfur coals, physical coal cleaning (PCC), and chemical coal cleaning (CCC)--to comply with SO2 emission regulations. It is one of a series to be used in determining the technological basis for a new source...

241

Investigation of operating variables in the fine coal dewatering and briquetting process  

SciTech Connect

Illinois basin coals contain minerals, including pyrite, which are finely disseminated in micron-size particles. To liberate these mineral matters from the coal matrix, an ultra-fine grinding operation is required, followed by a wet physical cleaning process, such as column flotation. However, the resulting product possesses large surface areas that conventional dewatering techniques cannot perform effectively, and this creates transportation, storage and handling problems at utility plants. To take full advantage of these cleaning technologies, a new dewatering and coal consolidation method must be developed at the downstream end of the deep coal-cleaning process. Following an initial study at the University of Missouri-Rolla (UMR), briquetting was chosen to perform the dual purpose of dewatering and consolidating the fine coal. A bitumen-based emulsion, Orimulsion, proved to be an effective binder and dewatering agent in the briquetting process that assisted in the expulsion of water from the fine coal.

Kan, S.W.; Wilson, J.W.; Dharman, T. [Univ. of Missouri, Rolla, MO (United States)

1998-04-01

242

ASSESSMENT OF PHYSICAL COAL CLEANING PRACTICES FOR SULFUR REMOVAL  

EPA Science Inventory

The report gives results of a study of the current level of coal cleaning activity in the U.S. n 1983, the U.S. DOE's Energy Information Administration (EIA) expanded coal data collection activities to include information on the extent and type of coal preparation conducted in ea...

243

PHYSICAL COAL CLEANING FOR UTILITY BOILER SO2 EMISSION CONTROL  

EPA Science Inventory

The report examines physical coal cleaning as a control technique for sulfur oxides emissions. It includes an analysis of the availability of low-sulfur coal and of coal cleanable to compliance levels for alternate New Source Performance Standards (NSPS). Various alternatives to ...

244

Process for electrochemically gasifying coal  

DOEpatents

A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

Botts, T.E.; Powell, J.R.

1985-10-25

245

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

Paul A. Erickson

2006-01-01

246

Evaluation of the genotoxicity of process stream extracts from a coal gasification system  

SciTech Connect

Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays. The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. Coke oven main extract produced fewer revertants in bacteria than the raw gas sample. However, the coke oven main extract was more genotoxic in the two eukaryotic systems (CHL/SCE and CHO/HGPRT) than was the raw gas sample. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems. 24 references, 3 figures, 2 tables.

Shimizu, R.W.; Benson, J.M.; Li, A.P.; Henderson, R.F.; Brooks, A.L.

1984-01-01

247

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

SciTech Connect

The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

2002-09-20

248

Fuel properties of bituminous coal and pyrolytic oil mixture  

NASA Astrophysics Data System (ADS)

Investigation on the thermal decomposition kinetics of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0,70:30,60:40,0:100) was conducted using a Thermogravimetric Analyzer (TGA). The materials consisted of Clermont bituminous coal (Australia) and bio-oil (also known as pyrolytic oil) from the source of Empty Fruit Bunch (EFB) that was thermally converted by means of pyrolysis. Thermal decomposition of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under non-isothermal conditions from room temperature to 1000°C at heating rate of 10°C/min. The apparent activation energy (Ea.) and pre-exponential factor (A) were calculated from the experimental results by using an Arrhenius-type kinetic model which first-order decomposition reaction was assumed. All kinetic parameters were tabulated based on the TG data obtained from the experiment. It was found that, the CBS fuel has higher reactivity than Clermont coal fuel during pyrolysis process, as the addition of pyrolytic oil will reduce the Ea values of the fuel. The thermal profiles of the mixtures showed potential trends that followed the characteristics of an ideal slurry fuel where high degradation rate is desirable. Among the mixture, the optimum fuel was found at the ratio of 60:40 of pyrolytic oil/coal mixtures with highest degradation rate. These findings may contribute to the development of a slurry fuel to be used in the vast existing conventional power plants.

Hamdan, Hazlin; Sharuddin, Munawar Zaman; Daud, Ahmad Rafizan Mohamad; Syed-Hassan, Syed Shatir A.

2014-10-01

249

Process for the separation of chlorine, fluorine and sulphur from fuel gas flue or exhaust gas  

SciTech Connect

Fuel gas produced in a coal distillation or gasification plant is fed to a power plant and chlorine, fluorine, sulphur and compounds thereof in the fuel gas are separated from the fuel gas, and also from flue or exhaust gas emanating from the power plant, in two stages. In a first stage, chlorine and fluorine and their compounds are separated, preferably in the dry using alkali metal or alkaline earth metal oxides, hydroxides or carbonates, in a separator. In a second stage sulphur and its compounds, together with further chlorine, fluorine and their compounds, if any, produced in the power plant, are removed from the flue or exhaust gas from the power plant in a desulphurizing plant. This two stage process is thermally more efficient and less costly than a process in which the chlorine fluorine sulphur and their compounds are all removed at once from the fuel gas.

Poller, J.; Weinziel, K.

1984-09-18

250

Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment  

SciTech Connect

In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatment of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.

Robbins, G.A.; Winschel, R.A.; Burke, F.P. [CONSOL, Inc., Library, PA (United States). Research and Development Dept.] [CONSOL, Inc., Library, PA (United States). Research and Development Dept.; Derbyshire, F.L.; Givens, E.N. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research] [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Hu, J.; Lee, T.L.K. [Hydrocarbon Research, Inc., Lawrenceville, NJ (United States)] [Hydrocarbon Research, Inc., Lawrenceville, NJ (United States); Miller, J.E.; Stephens, H.P. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Peluso, M. [LDP Associates, Hamilton Square, NJ (United States)] [LDP Associates, Hamilton Square, NJ (United States)

1996-09-01

251

COMPARISON OF PARTICLE SIZE DISTRIBUTIONS AND ELEMENTAL PARTITIONING FROM THE COMBUSTION OF PULVERIZED COAL AND RESIDUAL FUEL OIL  

EPA Science Inventory

The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...

252

Coal liquefaction process  

DOEpatents

A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

1983-01-01

253

Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 December 1994--28 February 1995  

SciTech Connect

Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a PCB feed sample collected from Central Illinois Power`s Newton Power Station using column flotation and an enhanced gravity separator as separate units and in a circuitry arrangement. The PCB feed sample having a low ash content of about 12% was further cleaned to 6% while achieving a very high energy recovery of about 90% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Microcel column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

Honaker, R.Q.; Paul, B.C.; Wang, D.

1995-12-31

254

Innovative Clean Coal Technology Program: Coke oven gas cleaning demonstration project, Bethlehem Steel Corporation Sparrows Point Plant, Baltimore County, Maryland: Environmental Assessment  

SciTech Connect

This Assessment has been prepared by the US Department of Energy (DOE) to evaluate environmental issues associated with a project that will be cost-shared by DOE and private industry under the Innovative Clean Coal Technology Program. The proposed action is a coke oven gas cleaning technology demonstration project proposed to be installed and operated at the Bethlehem Steel Corporation, Sparrows Point Plant, in Baltimore County, Maryland. Alternatives to the proposed action, which include no action, delayed action, and the use of alternate sites or technologies, are discussed. Three basic steel manufacturing operations are carried out at the Sparrows Point Plant: (1) pyrolytic conversion of coal to coke (carbon) in coke ovens; (2) combination of coke, iron ore, and limestone in a blast furnace to produce iron; and (3) refinement of iron to steel in oxygen or open-hearth furnaces. The Coke Works at the plant consists of three operational coke batteries and two Coal Chemicals plants. Bituminous coal is heated in a coke oven in the absence of air to remove its volatile components. About 70% of the coal feed is converted to coke; the remaining 30% consists of by-product gases and vapors. These by-product gases are treated in the Coal Chemicals plants to recover usable and marketable products, including coke oven gas, which is used to fuel the ovens and furnaces within the plant. The analysis concluded that no significant, environmental impacts would result from the proposed project. 12 refs., 11 figs., 10 tabs.

Not Available

1989-12-01

255

A fresh look at coal-derived liquid fuels  

SciTech Connect

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15

256

LEARN MORE @ CENTRALINA CLEAN FUELS COALITION  

E-print Network

LEARN MORE @ ETHANOL E85 CENTRALINA CLEAN FUELS COALITION www.4cleanfuels.com GROWTH ENERGY www fuel made by fermenting plant-based sugars. Corn is the primary feedstock for ethanol in the U blend of ethanol and gasoline. A fuel sensor regulates the air/fuel ratio to optimize performance

257

Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing  

PubMed Central

High-throughput sequencing (HTS) yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig) genes, which are variable and often highly mutated. This paper describes Ig High-Throughput Sequencing Cleaner (Ig-HTS-Cleaner), a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig Insertion—Deletion Identifier (Ig-Indel-Identifier), a program for identifying legitimate and artifact insertions and/or deletions (indels). Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets. PMID:23293637

Michaeli, Miri; Noga, Hila; Tabibian-Keissar, Hilla; Barshack, Iris; Mehr, Ramit

2012-01-01

258

Some aspects of coal pyrolysis for liquid and solid fuels production  

SciTech Connect

The application of coal pyrolysis to production of syncrude and boiler fuel is illustrated and potential sources of coals for pyrolysis are identified. Pyrolysis technology is described, particularly the TOSCOAL process which pyrolyzes coal in a rotary drum using a ceramic heat carrier. Char made by the TOSCOAL process from a western U.S. coal has been shown to be essentially identical to the parent coal with respect to combustion reactivity. The technical and economic parameters of a projected commercial scale TOSCOAL coal pyrolysis facility are summarized.

McMahon, J.F.; Sawyer, S.J.; Van Hook, J.P.

1984-08-01

259

Deposition from a coal-water slurry fueled gas turbine combustor  

Microsoft Academic Search

A two-stage coal-water slurry fueled high-pressure gas turbine combustion system employing a primary zone with a hot refractory wall and an internal slag removal system has been designed, built and tested. The molten ash or slag is largely removed internally by aerodynamic means using a form of jet impaction. Some small amount of the mineral matter in the coal, however,

D. J. White; R. T. LeCren

1985-01-01

260

Organic Sulfur and HAP Removal from Coal with Subcritical Water  

SciTech Connect

To date, no economically feasible organic sulfur and hazardous air pollutant (HAP) precursor removal process has been developed; however, an effective sulfur and selected HAP removal process is needed to enhance the utilization of high-sulfur coals and to comply with increasingly stringent regulations. Subcritical water has been shown by the Energy & Environmental Research Center (EERC) researchers on this project to be an extremely effective fluid for the removal of organic sulfur from coals. A multigram reactor designed and built at the EERC for supercritical water extraction was used to scale up from milligram-sized samples to 10-20 grams of coal charge. Work performed during this project year resulted in production of low-sulfur (as low as 0.5% S) extracted coal first at supercritical conditions, i.e., 450{degrees}C and 400 atm (5880 psig), but then at conditions below the critical conditions, i.e., 420{degrees}C and 156 atm (2300 psig). Still milder conditions of 400{degrees}C and 156 atm (2300 psig) resulted in sulfur values similar to those of obtained under the supercritical conditions. IBC-102 extracted with supercritical water had a sulfur value of 0.7 wt%. Extraction of IBC-102 at subcritical conditions of 420{degrees}C and 156 atm (2300 psig) resulted in a sulfur content of 0.490A. The tar obtained from the extracted coal had sulfur values ranging from 1.4 to 6.5 wt% and when treated by catalytic desulfurization, tar was quantitatively recovered with a sulfur value of 0.6 wt%. Float-sink physical cleaning of IBC-102 with Certigrav 1.4 reduced the sulfur content of the coal to 1.5 wt% in a recovered float fraction of 83.3%. Approximately 300 lb of IBC-102 was obtained for use in preparing 100 lb of low-sulfur fuel. Float- sink cleaning on a sample of this new coal returned 87.1 wt% as float fraction, with 1.7 wt% sulfur. 158 lb of physically cleaned IBC-102 was used for the continuous process test on the pilot scale. An additional 150 lb of physically cleaned coal slurry was received from Dr. R. Honaker of southern Illinois University (SIU) for testing in the continuous unit. The hydrothermal process development unit (PDU) in the continuous mode was used to prepare 100 lb of low-sulfur fuel from physically cleaned IBC-102 at three temperatures (300{degrees}, 325{degrees} and 340{degrees}C) and a pressure of 2300 psig. Residence time was controlled by flow rate. Treating a swelling coal such as IBC-102 required a slurry with low solids loading to prevent plugging due to expansion during residence in the reactor. In this preliminary test with physically cleaned IBC-102, the sulfur content was decreased by as much as one-third, few volatiles were lost, and mercury and selenium levels were decreased by 87% and 46%, respectively.

NONE

1996-12-31

261

Coal liquefaction processes and development requirements analysis for synthetic fuels production  

NASA Technical Reports Server (NTRS)

Focus of the study is on: (1) developing a technical and programmatic data base on direct and indirect liquefaction processes which have potential for commercialization during the 1980's and beyond, and (2) performing analyses to assess technology readiness and development trends, development requirements, commercial plant costs, and projected synthetic fuel costs. Numerous data sources and references were used as the basis for the analysis results and information presented.

1980-01-01

262

Process for coal liquefaction in staged dissolvers  

DOEpatents

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

1983-01-01

263

R D for the storage, transport, and handling of coal-based fuels  

SciTech Connect

The product of several advanced physical coal cleaning processes is a dry ultra-fine coal (DC), in the order of 10 microns mean mass diameter. To utilize this fuel commercially, cost-effective, environmentally safe systems must be provided for the storage, transport, and handling of this finely divided form of fuel. The objective of the project described herein is the development of total logistics systems for DC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DC for residential, commercial, and industrial uses. (VC)

Not Available

1990-01-01

264

DEVELOPMENT OF OTM SYNGAS PROCESS AND TESTING OF SYNGAS-DERIVED ULTRA-CLEAN FUELS IN DIESEL ENGINES AND FUEL CELLS  

SciTech Connect

This topical report summarizes work accomplished for the Program from January 1 through September 15, 2001 in the following task areas: Task 1--materials development; Task 2--composite element development; Task 3--tube fabrication; Task 4--reactor design and process optimization; Task 5--catalyst development; Task 6--P-1 operation; Task 8--fuels and engine testing; and Task 10--project management. OTM benchmark material, LCM1, exceeds the commercial oxygen flux target and was determined to be sufficiently robust to carry on process development activities. Work will continue on second-generation OTM materials that will satisfy commercial life targets. Three fabrication techniques for composite elements were determined to be technically feasible. These techniques will be studied and a lead manufacturing process for both small and large-scale elements will be selected in the next Budget Period. Experiments in six P-0 reactors, the long tube tester (LTT) and the P-1 pilot plant were conducted. Significant progress in process optimization was made through both the experimental program and modeling studies of alternate reactor designs and process configurations. Three tailored catalyst candidates for use in OTM process reactors were identified. Fuels for the International diesel engine and Nuvera fuel cell tests were ordered and delivered. Fuels testing and engine development work is now underway.

E.T. (Skip) Robinson; James P. Meagher; Ravi Prasad

2001-10-31

265

Innovative clean coal technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process  

SciTech Connect

The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. In both greenfield and retrofit situations demonstrations of the following innovative design approaches will further reduce the cost and provide a clear advantage to CT-121 relative to competing technologies. Use of fiberglass reinforced plastic (FRP) to construct the absorber vessel, wet ducts, and chimney (stack), elimination of flue gas reheat, elimination of the spare absorber, and use of a single vessel for simultaneous particulate and SO{sub 2} removal. The demonstration will be performed at Georgia Power Company's Plant Yates Unit No. 1 (100 MW capacity) near Newman, Georgia. The project is being conducted in the following three phases: Phase 1 -- Permitting and Preliminary Engineering; Phase 2 -- Detailed Engineering, Construction, and Startup; and Phase 3 -- Operation, Testing and Disposition. Since April, all environmental permits and FAA approvals have been granted by the issuing authorities with the exception of the gypsum stack design and operating plan permit which is expected within the next 60 days. Phase 2 activities reached a peak during the April--June quarter as major components were fabricated and delivered to the site. Internal installation and finishing work continues on Jet Bubbling Reactor while the Fiberglass-Reinforced Plastic chimney only lacks the last few support steel pieces to be complete. Concrete work continues, including containment sumps, ball mill foundation and duct supports. The limestone slurry tank has been finished and acoustically tested but will require additional work on the floor before it will be acceptable. Also, a mechanical contractor has been selected and should begin work in August. There have also been numerous visitors to the site from the Southern Company, DOE, EPRI, Bechtel and Chiyoda. 1 fig.

Not Available

1991-08-15

266

Coal-deashing process  

SciTech Connect

Natural coal containing inorganic impurities may be deashed by the selective flocculation process using a novel flocculant which is a water-soluble or water-dispersible copolymer having a molecular weight from about 100,000 to about 30,000,000 comprising a hydrophilic monomeric unit having a solubility in water greater than 15% by weight at 20/sup 0/ C. and a hydrophobic monomeric unit having a solubility in water less than 10% by weight at 20/sup 0/ C. in proportions of 99:1 to 20:80% by weight.

Ishizuka, T.; Hotta, H.; Nishimura, Y.

1984-03-20

267

Process for low mercury coal  

DOEpatents

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01

268

Process for low mercury coal  

DOEpatents

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04

269

[Alternative fuel vehicles for clean cities]. Final report from the City of Philadelphia Managing Director`s Office  

SciTech Connect

The City of Philadelphia was awarded a grant for the ``development of a Public Information Component for the Clean Cities Program involving alternative fuels usage within the city of Philadelphia and the surrounding counties in the Philadelphia region``. During the summer of 1993, it was felt that the public needed considerable information on the costs, benefits, emission data, conversion information, and infrastructure requirements. Embodied in the 1993 proposal was the notion that a model could be developed within some type of structure charged with the tasks of market introduction of alternative fuels in the Greater Philadelphia area in a concerted, comprehensive way. As originally envisioned, in executing this grant, the City had several objectives in mind. Among these were the following: the organizing of various media events to showcase alternative fuels usage; (2) to begin a networking process with fleet managers in the area; (3) to provide sources of information to fleet managers and others interested in, and concerned with the conversion to alternative fuels; (4) documentation on research and analysis associated with alternative fuels.

Hadalski, J.M.

1995-09-30

270

High temperature electrochemical separation of H{sub 2}S from coal gasification process streams. Quarterly progress report, April 1, 1992--June 30, 1992  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed using the funds from this grant. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is economically attractive by the lack of adsorbents and the lack of a Claus process for sulfur recovery. Research conducted during the present quarter is here highlighted, with an emphasis on progress towards the goal of an economically viable H{sub 2}S removal technology for use in coal gasification facilities providing polished fuel for co-generation coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities.

Winnick, J.

1992-10-01

271

Highly active catalysts from inexpensive raw materials for coal gasification  

Microsoft Academic Search

The present review article focuses on novel methods of converting inexpensive raw materials to active catalysts for low-temperature coal gasification, which can produce clean fuels and valuable feedstock with high thermal efficiency. Precipitation methods using NH3, urea, and Ca(OH)2 make it possible to prepare active, Cl-free iron catalysts on brown coals from an aqueous solution of FeCl3 as the major

Yasuo Ohtsuka; Kenji Asami

1997-01-01

272

Upgraded Coal Interest Group  

SciTech Connect

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08

273

Synchronized droplet size measurements of intermittent coal-water slurry diesel sprays from an electronically-controlled accumulator fuel injection system  

E-print Network

of multiscattering bias was minimal. Coal-water slurry fuel with 50% coal loading by mass containing 5gm volume mean diameter coal particles was used. Injection pressures were ranged from 28 to II 0 MPa. Three different nozzle orifice diameters, 0.2, 0.4, and 0...

Terracina, Dwayne Paul

2012-06-07

274

Final report spent nuclear fuel retrieval system primary cleaning development testing  

SciTech Connect

Developmental testing of the primary cleaning station for spent nuclear fuel (SNF) and canisters is reported. A primary clean machine will be used to remove the gross sludge from canisters and fuel while maintaining water quality in the downstream process area. To facilitate SNF separation from canisters and minimize the impact to water quality, all canisters will be subjected to mechanical agitation and flushing with the Primary Clean Station. The Primary Clean Station consists of an outer containment box with an internally mounted, perforated wash basket. A single canister containing up to 14 fuel assemblies will be loaded into the wash basket, the confinement box lid closed, and the wash basket rotated for a fixed cycle time. During this cycle, basin water will be flushed through the wash basket and containment box to remove and entrain the sludge and carry it out of the box. Primary cleaning tests were performed to provide information concerning the removal of sludge from the fuel assemblies while in the basin canisters. The testing was also used to determine if additional fuel cleaning is required outside of the fuel canisters. Hydraulic performance and water demand requirements of the cleaning station were also evaluated. Thirty tests are reported in this document. Tests demonstrated that sludge can be dislodged and suspended sufficiently to remove it from the canister. Examination of fuel elements after cleaning suggested that more than 95% of the exposed fuel surfaces were cleaned so that no visual evidence of remained. As a result of testing, recommendations are made for the cleaning cycle. 3 refs., 16 figs., 4 tabs.

Ketner, G.L.; Meeuwsen, P.V.

1997-09-01

275

Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report  

SciTech Connect

The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

NONE

1995-09-01

276

Emissions Resulting from the Full-Scale Cofiring of Pelletized Refuse-Derived Fuel and Coal  

E-print Network

Full-scale cofiring tests of binder-enhanced pellets of densified, refuse-derived fuel (dRDF) and high-sulfur coal were conducted during June and July of 1987 in Boiler #5 at Argonne National Laboratory. These tests were conducted with industry...

Ohlsson, O. O.; Daugherty, K.; Venables, B.

277

Development of an Advanced Fine Coal Suspension Dewatering Process  

SciTech Connect

With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake is subjected to pressure for a short time, the free water present is released from the filter cake. Laboratory studies have shown that depending on the coal type a filter cake containing about 15% moisture could be obtained using the two-stage filtration technique. It was also noted that applying intermittent breaks in vacuum force during cake formation, which disturbed the cake structure, helped in removing moisture from the filter cakes. In this project a novel approach of cleaning coal using column flotation was also developed. With this approach the feed capacity of the column is increased significantly, and the column was also able to recover coarser size coal which usually gets lost in the process. The outcome of the research benefits the coal industry, utility industry, and indirectly the general public. The benefits can be counted in terms of clean energy, cleaner environment, and lower cost power.

B. K. Parekh; D. P. Patil

2008-04-30

278

Coal Liquefaction desulfurization process  

DOEpatents

In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

Givens, Edwin N. (Bethlehem, PA)

1983-01-01

279

Performance characterization of an atmospheric pressure combustor for ultra-clean coal water mixtures  

SciTech Connect

The Department of Energy has initiated a program to investigate the potential for coal-water mixtures to serve as direct substitutes for liquid petroleum and natural gas in combustion processes. As a part of this overall DOE effort, the Morgantown Energy Technology Center is investigating the feasibility for the combustion of ultra-clean, coal-water mixtures (UCCWM's) in gas turbines. A necessary goal of this program is to develop an understanding of the chemistry of the products of combustion (POC) of UCCWM's. Both experimental and modeling efforts are in progress to investigate POC chemistry. Based on these results, specifications for a UCCWM turbine fuel can be developed. Initial tests to characterize the POC from UCCWM were performed in an atmospheric combustion rig. This pilot-scale experimental combustion rig, configured to provide a high degree of combustion efficiency, was designed and constructed at METC to simulate the primary characteristics of combustion in a gas turbine combustor. The characterization of POC from UCCWM's was accomplished by on-line and extractive techniques. These measurements include gas composition, alkali levels, POC particle mass loading and size distribution, and complete chemical and physical characterization of the POC particles. A POC slipstream taken isokinetically from a plug flow region immediately downstream of the combustion zone provided the necessary samples for analysis. In addition, a water-cooled probe provided particulate and gaseous samples from various locations within the combustion zone. These data provide information on the rate of particle burnout and uniformity of combustion within the flame. POC data generated from this combustion rig and the general impact of the turbine performance are presented in this paper. 6 figures, 4 tables.

Waltermire, D.M.; Grimm, U.; Anderson, R.J.

1983-04-01

280

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15

281

Mulled Coal: A beneficiated coal form for use as a fuel or fuel intermediate  

SciTech Connect

During the past quarter Energy International has evaluated additional mull formulations with varying reagent additives, mixing times, and particle sizes. The Environmental Review was completed and conceptual designs developed for the Mull Preparation and CWF Conversion Systems. As these technical developments move toward commercial application, the needs for coordinated efforts and integrated requirements have become increasingly apparent. Systems are vitally needed to integrate energy delivery systems from the raw resource through processing to application and end use. Problems have been encountered in the preparation of conventional coal-water fuels that mutually satisfy the requirements for storage stability, handling, preparation, atomization, combustion, and economics. Experience has been slow in evolving generic technologies or products and coal-specific requirements and specifications continue to dominate the development. Thus, prospects for commercialization remain highly specific to the coal, the processor, and the end use. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas. This is attributable to the beneficiated coal being produced in very fine particles with a high surface area, modified surface characteristics, reduced particle size distribution range, and high inherent moisture.

Not Available

1991-09-01

282

Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants  

SciTech Connect

One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

2001-01-01

283

Jet fuels from synthetic crudes  

NASA Technical Reports Server (NTRS)

An investigation was conducted to determine the technical problems in the conversion of a significant portion of a barrel of either a shale oil or a coal synthetic crude oil into a suitable aviation turbine fuel. Three syncrudes were used, one from shale and two from coal, chosen as representative of typical crudes from future commercial production. The material was used to produce jet fuels of varying specifications by distillation, hydrotreating, and hydrocracking. Attention is given to process requirements, hydrotreating process conditions, the methods used to analyze the final products, the conditions for shale oil processing, and the coal liquid processing conditions. The results of the investigation show that jet fuels of defined specifications can be made from oil shale and coal syncrudes using readily available commercial processes.

Antoine, A. C.; Gallagher, J. P.

1977-01-01

284

Electrochemical polishing of hydrogen sulfide from coal synthesis gas  

Microsoft Academic Search

An advanced process has been developed for the separation of H2S from coal gasification product streams through an electrochemical membrane. This technology is developed for use in coal gasification facilities providing fuel for cogeneration coal fired electrical power facilities and molten carbonate fuel cell (MCFC) electrical power facilities. H2S is removed from the syn-gas by reduction to the sulfide ion

S. R. Alexander; J. Winnick

1994-01-01

285

Electrochemical polishing of hydrogen sulfide from coal synthesis gas  

Microsoft Academic Search

An advanced process has been developed for the separation of HâS from coal gasification product streams through an electrochemical membrane. This technology is developed for use in coal gasification facilities providing fuel for cogeneration coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. HâS is removed from the syn-gas by reduction to the sulfide ion and

E. F. Gleason; J. Winnick

1995-01-01

286

Surface magnetic enhancement for coal cleaning. Quarterly technical progress report No. 8, November 1, 1989--January 31, 1990  

SciTech Connect

The fundamental chemistry for selective adsorption of magnetizing reagent on coal-associated minerals to enhance the magnetic susceptibilities of minerals have been established in Phase I study. The application of the results on coal cleaning is in progress in the Phase II study. Illinois No. 6, Ohio Lower Kittanning, and West Virginia Pocahontas coals are investigated during this reporting period to determine the most effective way of using the magnetizing method for coal cleaning. The results show that the best separation performance is obtained on finely ground coals. Up to 91% ash reduction (from 22% to 3.3% ash content) at 70% coal recovery can be obtained with the magnetizing approach when Illinois No. 6 coal is processed at 90% passing 500 mesh. Even at a coarser sizes such as 90% passing 200 mesh, 86% ash reduction with 71% coal recovery can still be obtained. Although the results are probably better than using the froth flotation method, direct comparison tests will be conducted in the next reporting period.

Hwang, J.Y.

1990-12-31

287

Micro-agglomerate flotation for deep cleaning of coal. Final report  

SciTech Connect

The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 {micro}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. In this investigation a hybrid process--Micro-agglomerate flotation--which is a combination of oil-agglomeration and froth flotation was studied. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles and to use froth flotation to separate these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units will be relatively large agglomerates (30--50 {micro}m in size) rather than fine coal particles (1--10 {micro}m) the problems of froth overload and water/mineral carryover should be significantly alleviated. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is demonstrated in this study that the process is very sensitive to fluctuations in operating parameters. It is necessary to maintain precise control over the chemistry of the liquid phases as well as the agitation conditions in order to promote selectivity. Both kinetics as well as thermodynamic factors play a critical role in determining overall system response.

Chander, S.; Hogg, R.

1997-01-15

288

Chemicals from coal. Utilization of coal-derived phenolic compounds  

SciTech Connect

This article provides an overview for possible utilization of coal-derived phenolic compounds. Phenolic compounds are abundant in coal-derived liquids. Coal-derived phenolic compounds include phenol, cresol, catechol, methylcatechol, naphthol, and their derivatives. Liquids from coal liquefaction, pyrolysis, gasification, and carbonization are potential sources of phenolic chemicals, although certain processing and separation are needed. There are opportunities for coal-based phenolic chemicals, because there are existing industrial applications and potential new applications. Currently the petrochemical industry produces phenol in multi-step processes, and new research and development has resulted in a one-step process. Selective methylation of phenol can produce a precursor for aromatic engineering plastics. Catalytic oxidation of phenol has been commercialized recently for catechol production. There are potential new uses of phenol that could replace large-volume multi-step chemical processes that are based on benzene as the starting material. New chemical research on coal and coal-derived liquids can pave the way for their non-fuel uses for making chemicals and materials.

Song, C.; Schobert, H.H.

1999-07-01

289

Chemical cleaning of coal by molten caustic leaching after pretreatment by low-temperature devolatilization  

DOEpatents

Pretreatment of coal by devolatization at temperatures ranging from about 420.degree. C. to about 450.degree. C. for from about 10 minutes to about 30 minutes before leaching with molten caustic leads to a significant reduction in carbonate formation, greatly reducing the cost of cleaning coal on a per ton basis.

Chriswell, Colin D. (Slater, IA); Kaushik, Surender M. (Socorro, NM); Shah, Navin D. (Houston, TX); Markuszewski, Richard (Ames, IA)

1989-08-22

290

Coal liquefaction process streams characterization and evaluation: Analysis of coal-derived synthetic crude from HRI CTSL Run CC-15 and HRI Run CMSL-2  

SciTech Connect

Under subcontract from CONSOL Inc. (US DOE Contract No. DE-AC22-89PC89883), IIT Research Institute, National Institute for Petroleum and Energy Research applied a suite of petroleum inspection tests to two direct coal liquefactions net product oils produced in two direct coal liquefaction processing runs. Two technical reports, authored by NIPER, are presented here. The following assessment briefly describes the two coal liquefaction runs and highlights the major findings of the project. It generally is concluded that the methods used in these studies can help define the value of liquefaction products and the requirements for further processing. The application of these methods adds substantially to our understanding of the coal liquefaction process and the chemistry of coal-derived materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of this contract.

Sturm, G.P. Jr.; Kim, J.; Shay, J. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)

1994-01-01

291

Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation  

Microsoft Academic Search

In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy\\/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary

K. Antrobus; M. Platts; L. Harbold; R. Kornosky

1990-01-01

292

Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers  

SciTech Connect

This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

1996-09-01

293

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

SciTech Connect

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30

294

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

NONE

1992-12-31

295

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Third quarterly technical progress report 1992  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3} and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

Not Available

1992-11-01

296

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3] and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

Not Available

1992-11-01

297

Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, October 1993--December 1993  

SciTech Connect

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal.

NONE

1995-06-01

298

Test results from the co-firing of coal water slurry fuel in a 32 megawatt pulverized coal boiler  

SciTech Connect

In late 1993, Pennsylvania Electric Company (Penelec) conducted a series of combustion tests on a utility scale boiler at the Seward Power Generating Station located in western Pennsylvania. These tests involved the co-firing of low solids coal water slurry (CWS) with conventional pulverized coal (pc) in Seward`s No. 14 Boiler. The No. 14 Boiler at Seward was manufactured by Babcock & Wilcox in 1950. The steam flow is 330,000 lbs/hr at 700 PSI and 845{degrees}F superheat. There are two B&W Model E-56 pulverizers. Each pulverizer has a capacity of approximately 8-10 tons/hr. There are two levels of three front-fired burners each. The bottom level is the {open_quotes}A{close_quotes} level supplied by the No. 14A Pulverizer. The top level is the {open_quotes}B{close_quotes} level supplied by the No. 14B Pulverizer. The ppc burner capacity is approximately 3 tons/hr. There are six oil guns (one per burner) which are rated Class One and burn No. 2 fuel oil at about 1.25 GPM each.

Battista, J.J.; Bradish, T. [Pennsylvania Electric Co., Johnstown, PA (United States); Zawadzki, E.A. [Management and Technical Systems, Wexford, PA (United States)

1994-12-31

299

Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993  

SciTech Connect

This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

Hoffman, G.P. [ed.

1994-07-01

300

Trace and major element pollution originating from coal ash suspension and transport processes.  

PubMed

Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport. PMID:11341293

Popovic, A; Djordjevic, D; Polic, P

2001-04-01

301

High temperature electrochemical separation of H sub 2 S from coal gasification process streams  

Microsoft Academic Search

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed using the funds from this grant. HâS is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of HâS without

Winnick

1991-01-01

302

Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report  

SciTech Connect

This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

1989-04-28

303

Literature survey of properties of synfuels derived from coal  

NASA Technical Reports Server (NTRS)

A literature survey of the properties of synfuels for ground-based turbine applications is presented. The four major concepts for converting coal into liquid fuels (solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction), and the most important concepts for coal gasification (fixed bed, fluidized bed, entrained flow, and underground gasification) are described. Upgrading processes for coal derived liquid fuels are also described. Data presented for liquid fuels derived from various processes, including H-coal, synthoil, solvent refined coal, COED, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Typical composition, and property data is also presented for low and medium-BTU gases derived from the various coal gasification processes.

Flores, F.

1982-01-01

304

Characterization and supply of coal based fuels  

SciTech Connect

Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. This quarter, work continued on washability studies, deashing and coal delivery requirements.

Not Available

1988-12-01

305

Development of OTM Syngas Process and Testing of Syngas Derived Ulta-clean Fuels in Diesel Engines and Fuel Cells Budget Period 3  

SciTech Connect

This topical report summarizes work accomplished for the Program from January 1, 2003 through December 31,2004 in the following task areas: Task 1--Materials Development; Task 2--Composite Development; Task 4--Reactor Design and Process Optimization; Task 8--Fuels and Engine Testing; 8.1 International Diesel Engine Program; and Task IO: Program Management. Most of the key technical objectives for this budget period were achieved. Only partial success was achieved relative to cycle testing under pressure Major improvements in material performance and element reliability have been achieved. A breakthrough material system has driven the development of a compact planar reactor design capable of producing either hydrogen or syngas. The planar reactor shows significant advantages in thermal efficiency and costs compared to either steam methane reforming with CO{sub 2} recovery or autothermal reforming. The fuel and engine testing program is complete The single cylinder test engine evaluation of UCTF fuels begun in Budget Period 2 was finished this budget period. In addition, a study to evaluate new fuel formulations for an HCCl engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; Siv Aasland; Kjersti Kleveland; Ann Hooper; Leo Bonnell; John Hemmings; Jack Chen; Bart A. Van Hassel

2004-12-31

306

Appalachian Clean Coal Technology Consortium: Technical progress report, October 1--December 31, 1995  

SciTech Connect

In the dewatering project, two different approaches are taken. One approach involves displacing the water on the surface of coal by a hydrophobic substance that can be readily recovered and recycled. This novel concept, referred to as the Hydrophobic Dewatering (HD) process, is based on improved understanding of the surface chemistry of dewatering. The other approach is to use disposable dewatering substances in mechanical dewatering. The objectives of the proposed work are (1) to test the HD process on a variety of coals from the Appalachian coal fields, and (2) to identify suitable dewatering reagents that would enable mechanical dewatering to reduce the moisture to the levels satisfactory to electrical utilities and other coal users. The objective of the spiral separation project is to use computer modeling to develop better, more efficient spiral designs for coal cleaning. The fully-developed model will predict spiral performance based on variations in spiral profile, flow rate, and pitch. Specific goals are to: (1) design spirals capable of making separations at a specific gravity of 1.5, and (2) broaden the size range at which spirals make effective separations.

NONE

1996-04-23

307

Progress on coal-derived fuels for aviation systems  

NASA Technical Reports Server (NTRS)

Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

Witcofski, R. D.

1978-01-01

308

Factors affecting the export of high-sulfur coal from the Eastern Interior Basin. Prepared by the Congressional Research Service Library of Congress  

Microsoft Academic Search

Domestic market losses for Eastern Interior Basin coal may not preclude a future for high-sulfur coal because of growing international demand. New markets will develop as coal-cleaning and synthetic-fuel processes improve. Cement industries throughout the world accept large amounts of higher-sulfur coals for their baking processes. Low-sulfur emissions are possible, with little or no loss in energy content, by blending

Thompson

1981-01-01

309

Process for removal of mineral particulates from coal-derived liquids  

DOEpatents

Suspended mineral solids are separated from a coal-derived liquid containing the solids by a process comprising the steps of: (a) contacting said coal-derived liquid containing solids with a molten additive having a melting point of 100.degree.-500.degree. C. in an amount of up to 50 wt. % with respect to said coal-derived liquid containing solids, said solids present in an amount effective to increase the particle size of said mineral solids and comprising material or mixtures of material selected from the group of alkali metal hydroxides and inorganic salts having antimony, tin, lithium, sodium, potassium, magnesium, calcium, beryllium, aluminum, zinc, molybdenum, cobalt, nickel, ruthenium, rhodium or iron cations and chloride, iodide, bromide, sulfate, phosphate, borate, carbonate, sulfite, or silicate anions; and (b) maintaining said coal-derived liquid in contact with said molten additive for sufficient time to permit said mineral matter to agglomerate, thereby increasing the mean particle size of said mineral solids; and (c) recovering a coal-derived liquid product having reduced mineral solids content. The process can be carried out with less than 5 wt. % additive and in the absence of hydrogen pressure.

McDowell, William J. (Knoxville, TN)

1980-01-01

310

Process for the production of ethylene and other hydrocarbons from coal  

DOEpatents

A process for the production of economically significant amounts of ethyl and other hydrocarbon compounds, such as benzene, from coal is disclosed wherein coal is reacted with methane at a temperature in the approximate range of 500.degree. C. to 1100.degree. C. at a partial pressure less than about 200 psig for a period of less than 10 seconds. Ethylene and other hydrocarbon compounds may be separated from the product stream so produced, and the methane recycled for further production of ethylene. In another embodiment, other compounds produced, such as by-product tars, may be burned to heat the recycled methane.

Steinberg, Meyer (Huntington Station, NY); Fallon, Peter (East Moriches, NY)

1986-01-01

311

High temperature electrochemical separation of H sub 2 S from coal gasification process streams  

Microsoft Academic Search

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed. HâS is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of HâS without cooling the gas stream and with

Winnick

1992-01-01

312

34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

313

35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

314

Coal myths and environmental realities: Industrial fuel-use decisions in a time of change  

SciTech Connect

This book deals with two inconsistent myths that persistently surround industrial use of coal. The first myth is that the Clean Air Act effectively precludes use of coal; the second, that industrial use of coal will expand rapidly. Through analysing fuel-use decisions actually made by industry, Mr. Alm concludes that environmental quality standards have played a minor role in industrial choice of fuel. Historically, natural gas and oil have been both less costly and more convenient fuels for industry to use.

Alm, A.L.

1984-01-01

315

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

SciTech Connect

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31

316

Effective utilization of remote coal through dimethyl ether synthesis  

Microsoft Academic Search

Dimethyl ether (DME) is a clean and sustainable alternative fuel that can be produced from natural gas, coal or other organic resources through syngas. The properties of DME are suitable for the production of power generation fuel, transportation fuel, home fuel and chemicals. Production of DME fuel from unutilized natural gas or coal resources in remote areas will contribute in

Y Adachi; M Komoto; I Watanabe; Y Ohno; K Fujimoto

2000-01-01

317

Comparison of cleaning processes with respect to cleaning efficiency  

NASA Astrophysics Data System (ADS)

Photomask technology has attained feature sizes of about 50nm and below. Whereas the main feature size is still above 70-80nm at 20nm technology node recently reported e.g. by Toppan Printing Company as developed, assist features for this node are in the range of 50-60nm. One of the critical aspects of this technology development is the cleaning process. Processes are supposed to clean off contamination and particles down to a defect size of about 40nm and at the same time prevent damage to assist features in the same size range. Due to obvious trade offs between cleaning power and Feature Damage Probability (FPD), this task becomes tricky. Improvement of cleaning processes by raising the power of megasonic (MS) cleaning, or adjusting the speed and size of droplets for spray cleaning occurs at the expense of increased feature damage. Prolongation of physical cleaning steps does not necessarily leads to improvement of the cleaning as shown previously. Susceptibility to feature damage occurs predicatively according to dimension and orientation. This allows us to extrapolate a Feature Damage Limit (FDL) which approximates the smallest feature size for which a process has an acceptable probability of success. In a practical sense, the most advantageous approach seems to be to adjust the cleaning power to the maximum allowed by the FDP and then optimize to the lowest process time necessary to reach expected cleaning efficiency. Since there are several alternative physical cleaning principles, we have to pick the best one for a given application. At this point we have to raise the question of how to compare the cleaning efficiency of processes. The goal of this work is to provide a method for evaluation and comparison of cleaning efficiency between physical cleaning processes and demonstrate the method on an example. We will focus on comparing two physical cleaning processes 1MHz megasonic and binary spray process.

Nesladek, Pavel; Osborne, Steve; Rode, Thomas

2011-03-01

318

40 CFR 88.104-94 - Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks.  

...operating on clean alternative fuel, flexible- and dual...operating on conventional fuel, flexible- and dual-fueled...prior to conversion. (1) Gaseous-fueled, diesel-fueled, and electric clean-fuel vehicles are waived from...

2014-07-01

319

A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells  

Microsoft Academic Search

Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at

1996-01-01

320

Coal-fueled diesel locomotive test  

Microsoft Academic Search

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine

B. D. Hsu; R. E. McDowell; G. L. Confer

1993-01-01

321

Production of gaseous fuel from refuse plastic fuel via co-pyrolysis using low-quality coal and catalytic steam gasification  

Microsoft Academic Search

In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal\\u000a catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more

Ho-Jun Song; Jaehoon Lee; Ankur Gaur; Jong-Jin Park; Jin-Won Park

2010-01-01

322

High Temperature Electrochemical Polishing of H(2)S from Coal Gasification Process Streams.  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification streams through an electrochemical membrane is being perfected. H{sub 2}S is removed from a synthetic gas stream, split into hydrogen, which enriches the exiting syngas, and sulfur, which is condensed downstream from an inert sweep gas stream. The process allows for continuous removal of H{sub 2}S without cooling the gas stream while allowing negligible pressure loss through the separator. Moreover, the process is economically attractive due to the elimination of the need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation.

Winnick, J.

1997-12-31

323

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01

324

ANALYSIS OF FLY ASH PRODUCED FROM COMBUSTION OF REFUSE-DERIVED FUEL AND COAL MIXTURES (JOURNAL VERSION)  

EPA Science Inventory

Mixtures of coal and refuse-derived fuel (RDF) were burned and the fly ash was collected and analyzed for concentration trends with respect to RDF/coal ratio and particle size. RDF contributes more Cs, Mn, Sb, and Pb to the fly ash while coal contributes greater amounts of As, Br...

325

Preliminary investigation of the effects of coal-water slurry fuels on the combustion in GE coal fueled diesel engine (Task 1. 1. 2. 2. 1, Fuels)  

SciTech Connect

In prior work with the coal fired diesel research engine, a necessity to determine the sensitivity of the engine to a wider range of fuels was resolved and included in the R and D Test Plan submitted on 2/9/89. In general, the economic viability and universal acceptance of the commercial engine will be a factor of its ability to tolerate the widest range of source fuels with minimal fuel beneficiation. As detailed in the R and D Test Plan, a preliminary investigation on the effects of coal-water slurry (CWS) fuels on the combustion in a GE single cylinder test engine was conducted. The following conclusions are obtained from this investigation. All the test CWS fuels were successfully burned in the GE engine combustion system. They include: 3 to 15 microns mean particle size; 0.7 to 2.8% ash level; KY Blue Gem and PA Mariana bituminous coal, WY Kemmer and Spring Creek Sub-Bituminous coal; coal beneficiated with physical and chemical processes; two kinds of additives for OTISCA CWS; and burnout is not effected by ash or particle size within the test range. For each kind of CWS fuel, the detail design parameters of the fuel injection system has to be compatible. With sufficiently high fuel injection pressure, the 3 micron mean particle size OTISCA fuel burns faster than the 5 micron ones. For OTISCA fuel, the burn rate using Ammonium Lignosulfonate as additive is faster than using Ammonium Condensed Naphthalene Sulfonate. Appendices contain data on heat release, fuel characterization reports from two laboratories, general engine test data, and particulate size distribution. 3 refs.

Not Available

1990-06-01

326

Incorporation of catalytic dehydrogenation into Fischer–Tropsch synthesis of liquid fuels from coal to minimize carbon dioxide emissions  

Microsoft Academic Search

Synthesis gas (syngas) produced from coal typically has hydrogen to carbon monoxide ratios in the range of approximately 0.7–1.1, depending on the gasification method. In order to produce liquid fuels from this syngas by Fischer–Tropsch synthesis (FTS), these ratios must be raised to 2.0 or higher. If this is accomplished by the water–gas shift reaction, the traditional method, large emissions

Gerald P. Huffman

2011-01-01

327

Reduction of environmental pollution from fuel and target manufacturing processes  

Microsoft Academic Search

Nuclear fuel and target manufacturing processes in the 300 Area generate potential environmental pollutants. Efforts to eliminate or reduce their harmful effects have been pursued for many years by the Raw Materials and Raw Materials Technology departments with assistance from other groups, primarily the Project and Health Physics departments. This report documents: methods adopted to reduce pollution; cost of these

Hardt

1976-01-01

328

High temperature electrochemical separation of H sub 2 S from coal gasification process streams  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed using the funds from this grant. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of H{sub 2}S without cooling the gas stream and with neglible pressure loss through the separator. The process is economically attractive by the lack of adsorbents and the lack of a Claus process for sulfur recovery.

Winnick, J.

1991-01-01

329

Selective flotation of inorganic sulfides from coal  

DOEpatents

Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

Miller, Kenneth J. (Floreffe, PA); Wen, Wu-Wey (Murrysville, PA)

1989-01-01

330

Selective flotation of inorganic sulfides from coal  

DOEpatents

Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

Miller, K.J.; Wen, Wu-Wey

1988-05-31

331

Symbiotic Nuclear—Coal Systems for Production of Liquid Fuels  

NASA Astrophysics Data System (ADS)

The notion of safety is not confined to the technological or non-proliferation aspects. It covers also the elements of energy policy: irrational reactions of societies, emotions, egoistic interests of more or less powerful pressure of economical and external political factors. One should be conscious that the country's privilege of being equipped by the Nature with rich resources of oil or gas is not solely economical, but even more a political one. Simultaneously, the gradual depletion of world hydrocarbons that draws behind irrevocable price increase has to be expected within the time scale of exploitation of power plants (now amounted to ~60 years). Therefore consequences of energy policy last much longer than the perspectives the political or economical decision makers are planning and acting within and the public is expecting successes and finally evaluating them. The world oil and gas resources are geopolitically very non-uniformly distributed, in contrast to coal and uranium. Since the level of energy self-sufficiency of the EU is highest for coal, the old idea of synfuels production from coal is recalled. Yet, in view of limits to the CO2 emissions in the EU another method has to be used here than the conventional coal liquefaction just applied in China. Simultaneously, an interesting evolution of energy prices was be observed, namely an increase in that of motor fuels in contrast to that of electricity remaining well stable. This fact suggests that the use of electricity (mainly the off-peak load), generated without emissions of CO2 for production of liquid fuels can prove reasonable. Thus, the essence of the presented idea of coal-nuclear symbiosis lies in the supply of energy in the form of H2, necessary for this process, from a nuclear reactor. Particularly, in the present option H2 is obtained by electrolytic water splitting supplying also O2 as a precious by-product in well mature and commercially available already since decades, Light Water Reactors (LWRs). The direct coal hydrogenation (Bergius method) has been proposed as the optimum process for liquid fuels production, as distinct by the best hydrogen economy, thus reducing the consumption of need nuclear energy. The present concept allows for simultaneous achievement of a number of aims: production of motor fuels without CO2 emissions (thus without carbon tax) based upon domestic energy carriers — coals, supply of the electricity produced in the nuclear power plant to the national grid to cover the peak demand. Such concept broadens the palette of liquid fuels supply, thus heightens energy safety of the country or e.g. whole of the EU. In an emergency case (for instance — disturbances of gas deliveries) the supply of produced H2 directly to the gas grid is also not excluded too. The performed preliminary cost evaluation indicates that the coal—nuclear symbiont can be well economic. Finally, the most radical option of coal-nuclear alliance is mentioned — the production of liquid fuels in the Fischer—Tropsch process from CO2 as a raw material sequestered from a coal power plant. The latter would use the oxy-combustion technique profiting on the O2 obtained earlier together with H2 what would facilitate the sequestration of CO2 at the plant. Unfortunately, this variant requires for reduction of CO2 to C much more hydrogen, achievable effectively in High Temperature Reactors commercially still unavailable. But on the basis of coal alone great resources — natural, technological and human of the coal sector can be best utilized too. Summarizing: the coal-nuclear synergy is the optimum far-sighted concept of safe development of the EU energy and fuels sector.

Taczanowski, S.

332

Thermal expansion of slag and fly ash from coal gasification in IGCC power plant  

Microsoft Academic Search

Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and

M. Aineto; A. Acosta; J. Ma. Rincón; M. Romero

2006-01-01

333

Innovative process for concentration of fine particle coal slurries. Final technical report, September 1, 1995--August 31, 1996  

SciTech Connect

Williams Technologies, Inc. And Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be concentrated to greater than 60 weight percent and remixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project was to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology can enable Illinois coal producers and users to realize significant cost and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. Testing was also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back- filled, eliminating the need for tailings ponds. During the grant period, a laboratory-scale test apparatus (up to 3 GPM feed rate) was assembled and operated to demonstrate process performance over a range of feed temperatures and pressures. A dilute coal/water slurry from Consol, Inc.`s Rend Lake Preparation Plant was concentrated with the process to a maximum recorded solids loading of 61.9% solids by weight. Analytical results from the concentrate were evaluated by Destec Energy for suitability as an IGCC fuel.

Rajchel, M.; Ehrlinger, H.P.; Harnett, D.; Fonseca, A.; Maurer, R.

1997-05-01

334

Report to the United States Congress clean coal technology export markets and financing mechanisms  

SciTech Connect

This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

Not Available

1994-05-01

335

Process by means of which moulded coke can be obtained from non-cokable coals  

SciTech Connect

Process is claimed for the preparation of a moulded coke according to which agglomerates are heated in a non-oxidizing atmosphere, this process being characterized in that the agglomerates are prepared by compression from a paste containing: from 60 to 85% by weight of non-cokable coals, from 10 to 30% by weight of agglutinating coals having a swelling index greater than 2, and from 5 to 13% by weight of binder, which paste, when heated at 6/sup 0/C per minute in the Arnu dilatometer gives a contraction of between 3 and 15%, preferably between 5 and 10% and a swelling of zero or near 0, and in that the agglomerates are heated in a non-oxidizing atmosphere from a temperature of about 100/sup 0/C to a temperature of at least about 700/sup 0/C, with a rate of heating of between 7 and 14/sup 0/C/minute.

Degrave, R.; Marchasson, M.

1980-04-08

336

Enhanced bioremediation of PAH contaminated soils from coal processing sites  

SciTech Connect

The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared.

Joshi, M.M.; Lee, S. [Univ. of Akron, OH (United States)

1995-12-31

337

Development of a database characterizing U. S. coal reserves by their sulfur reduction potential through physical coal cleaning  

Microsoft Academic Search

Abatement of sulfur emissions from coal combustion at utility and nonutility sources remains a significant policy objective of the Environmental Protection Agency (EPA). This paper describes the development of a database that provides estimates of potential SOâ reduction and associated abatement costs that can be achieved through the physical cleaning of U.S. coals. The database characterizes nearly 38,000 distinct U.S.

C. Minnucci; B. S. Resnick; A. J. Herhal; J. Jones

1987-01-01

338

Clean Coal Technology: Upgrading of Low-Rank Coals.  

National Technical Information Service (NTIS)

The goal of the CCT program is to furnish the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilizing technologies. These technologies will mitigate the economic and environmental impediments that ...

1997-01-01

339

Process for hydrogenating coal and coal solvents  

DOEpatents

A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

Tarrer, Arthur R. (Auburn, AL); Shridharani, Ketan G. (Auburn, AL)

1983-01-01

340

Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels.  

PubMed

Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and ?(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The ?(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The ?(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest ?(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process. PMID:21047059

Borrok, David M; Gieré, Reto; Ren, Minghua; Landa, Edward R

2010-12-01

341

Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels  

USGS Publications Warehouse

Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and ?(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The ?(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The ?(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest ?(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process.

Borrok, D.M.; Gieré, R.; Ren, M.; Landa, E.R.

2010-01-01

342

Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same  

DOEpatents

A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

Burnet, George (Ames, IA); Gokhale, Ashok J. (College Station, TX)

1990-07-10

343

Energy Systems Engineering 1 Clean Coal Technologies  

E-print Network

2801- 3000 3001- 3200 3201- 3400 3401- 3600 3601- 3800 3801- above Net Heat Rate (kcal/kWh) No Engineering 8 Summary Table Criteria Average Min Max 1 Heat rate (kcal/kWh) 3220 2490 6340 2 Efficiency 27 of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

Banerjee, Rangan

344

Coal liquefaction process streams characterization and evaluation  

SciTech Connect

CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1992-03-01

345

Appalachian Clean Coal Technology Consortium. Technical progress report, January 1--March 31, 1996  

SciTech Connect

The Appalachian Clean Coal Technology Consortium has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The research to be performed by the University of Kentucky has recently been defined as: A Study of Novel Approaches for Destabilization of Flotation Froth. Accomplishments to date of these three projects are presented in this report.

NONE

1996-05-23

346

Combustion studies of coal-derived solid fuels. Part IV. Correlation of ignition temperatures from thermogravimetry and free-floating experiments  

USGS Publications Warehouse

The usefulness of TG as an efficient and practical method to characterize the combustion properties of fuels used in large-scale combustors is of considerable interest. Relative ignition temperatures of a lignite, an anthracite, a bituminous coal and three chars derived from this coal were measured by a free-floating technique. These temperatures were correlated with those estimated from TG burning profiles of the fuels. ?? 1992.

Rostam-Abadi, M.; DeBarr, J. A.; Chen, W. T.

1992-01-01

347

Innovative Clean Coal Technologies (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process. Quarterly report No. 8, January--March 1992  

SciTech Connect

The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

Not Available

1992-05-15

348

Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process. Quarterly report No. 7, October--December 1991  

SciTech Connect

The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

Not Available

1992-02-15

349

Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process. Quarterly report No. 1, April--June 1990  

SciTech Connect

The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

Not Available

1990-08-06

350

Innovative Clean Coal Technology: Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process. Quarterly report No. 2, July--September 1990  

SciTech Connect

The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT-121 relative to competing technology.

Not Available

1990-11-15

351

Clean Coal Technology Demonstration Program: Program Update 2000  

SciTech Connect

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2001-04-01

352

The reduced environmental liability of clean coal technologies  

SciTech Connect

In this paper the authors will discuss the waste stream minimization that future commercially operated clean coal technologies can effect. They will explore the ability of these now-beginning-to-mature technologies to reduce those aspects of the emission streams that have greatest potential for what the authors term as environmental liability. Environmental liability is manifested in a variety of forms. There are both current liabilities and future liabilities. In addition, uncertainties may reside in future anticipated regulatory compliance and the costs of such compliance. Exposure to liability translates into perceived risk which creates an air of uncertainty to the power industry and its lenders who provide the capital to build new power plants. In the context of electric power generation, newer, high efficiency power generation technologies developed in the course of the Clean Coal Technology Program of the US Department of Energy result in reduced waste stream emissions when compared against more aging conventional combustion technologies. This paper will discuss how the introduction of new clean coal technologies will help balance the conflict between adverse environmental impact and the global demand for increased energy. The authors will discuss how clean coal technologies will facilitate compliance with future air standards that may otherwise expose power producers to modification and cleanup costs, noncompliance penalties, or premature shut down.

Leslie, A.C.D. [Energetics, Inc., Columbia, MD (United States); McMillen, M. [Energetics, Inc., Washington, DC (United States)

1997-08-01

353

Clean Coal Technology Demonstration Program: Program Update 2001  

SciTech Connect

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

Assistant Secretary for Fossil Energy

2002-07-30

354

Changes in pressure loss and face velocity of ceramic candle filters caused by reverse cleaning in hot coal gas filtration  

Microsoft Academic Search

Hot coal gas filtration using ceramic candle filters with off-line cleaning showed rapid changes in pressure loss and face velocity during filter cleaning, due to the injection of cleaning gas and the decrease of filtration area. These changes had the capacity to affect facilities which are sensitive to pressure change and filter durability. From this point of view, on-line pulse

S. Itoa; T. Tanakaa; S. Kawamurab

1998-01-01

355

Refinery hydrogen management for clean fuels production  

Microsoft Academic Search

This paper presents a new method for refineries to make most efficient use of hydrogen. Hydrogen is an important utility in the production of clean fuels such as low-sulfur gasoline and diesel. The methodology is based upon mathematical optimisation of a superstructure and maximises the amount of hydrogen recovered across a site. The techniques account fully for pressure constraints as

N Hallale; F Liu

2001-01-01

356

DEMAND FOR CLEAN FUEL CAR IN NORWAY  

Microsoft Academic Search

Forecasting demand for clean fuel vehicles has become important task for car manufacturer, for utility companies, and for evaluation of the necessary incentive schemes for their penetration in the market. Furthermore it is important to carefully evaluate the impacts of these different incentives on the possible outgrowth of reliance on car, its consequences for public transportation and future spatial development.

Farideh Ramjerdi

357

Clean coal reference plants: Atmospheric CFB. Topical report, Task 1  

SciTech Connect

The Clean Coal Technology Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the US energy marketplace with a number of advanced, more efficient and environmentally responsive coal-using technologies. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which correspond to the center`s areas of technology development, including atmospheric fluidized bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. A measure of success in the CCT program will be the commercial acceptance of the new technologies being demonstrated. The dissemination of project information to potential users is being accomplished by producing a series of reference plant designs which will provide the users a basis for the selection of technologies applicable to their future energy requirements. As a part of DOE`s monitoring and evaluation of the CCT Projects, Gilbert/Commonwealth (G/C) has been contracted to assist in this effort by producing the design of a commercial size Reference Plant, utilizing technologies developed in the CCT Program. This report, the first in a series, describes the design of a 400 MW electric power plant, utilizing an atmospheric pressure, circulating fluidized bed combustor (ACFB) similar to the one which was demonstrated at Colorado-Ute`s Nucla station, funded in Round 1 of the CCT Program. The intent of the reference plant design effort was to portray a commercial power plant with attributes considered important to the utility industry. The logical choice for the ACFB combustor was Pyropower since they supplied the ACFB for the Nucla Project.

Rubow, L.N.; Harvey, L.E.; Buchanan, T.L.; Carpenter, R.G.; Hyre, M.R.; Zaharchuk, R.

1992-06-01

358

Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2  

E-print Network

Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2 Morwell Brown Coal seam3 4 Elodie Salmon a, c , Françoise Behar a , François Lorant methane is generated in abundance as the main hydrocarbon from such a structural46 component of wood

Paris-Sud XI, Université de

359

Coal pyrolysis process  

Microsoft Academic Search

Method and apparatus for pyrolyzing agglomerative coals which comprises introducing a fluidized bed of hot char particles into a pyrolysis chamber or reactor, and injecting upwardly into the chamber a high velocity jet of agglomerative coal particles in a carrier gas, the fluidized hot char particles surrounding the high velocity coal jet and heating the coal particles to yield gaseous

1981-01-01

360

Combustion and fuel characterization of coal-water fuels  

SciTech Connect

Pittsburgh Energy Technology Center (PETC) of the Department of Energy initiated a comprehensive effort in 1982 to develop the necessary performance and cost data and to assess the commercial viability of coal water fuels (CWFs) as applied to representative utility and industrial units. The effort comprised six tasks beginning with coal resource evaluation and culminating in the assessment of the technical and economic consequences of switching representative commercial units from oil to state-of-the-art CWF firing. Extensive bench, pilot and commercial-scale tests were performed to develop necessary CWF combustion and fireside performance data for the subsequent boiler performance analyses and retrofit cost estimates. This report (Volume 2) provides a review of the fuel selection and procurement activities. Included is a discussion on coal washability, transport of the slurry, and characterization. 20 figs., 26 tabs.

Not Available

1989-07-01

361

Literature survey of properties of synfuels derived from coal  

NASA Technical Reports Server (NTRS)

A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

1980-01-01

362

Characterization and supply of coal based fuels. Quarterly report, May 1, 1987--July 31, 1987  

SciTech Connect

Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base. Provide quality assurance for both the parent coals and the fuel forms. Deliver premium coal-based fuels to combustor developers as needed for their contract work. During the third quarter of this contract (May 1 through July 31, 1987) the primary activities were involved with: Completion and submission for approval by the DOE of the topical report describing the market survey, the coal selection and the fuel specification methodologies used in carrying out Task 1. The determination of the washability of the first five coals selected in Task 1. Upgrading and improvement of the pilot wash circuit to improve both the product quality and yield. Initiation of a data base survey to select an appropriate coal for the Vortec contract; and continuation of the coal procurement, cleaning, fuel preparation and delivery activities.

Not Available

1987-09-01

363

Appalachian Clean Coal Technology Consortium. Final report, October 10, 1994--March 31, 1997  

SciTech Connect

The Appalachian Clean Coal Technology Consortium is a group comprised of representatives from the Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky Center for Applied Energy Research, that was formed to pursue research in areas related to the treatment and processing of fine coal. Each member performed research in their respective areas of expertise and the report contained herein encompasses the results that were obtained for the three major tasks that the Consortium undertook from October, 1994 through March, 1997. In the first task, conducted by Virginia Polytechnic Institute, novel methods (both mechanical and chemical) for dewatering fine coal were examined. In the second task, the Center for Applied Energy Research examined novel approaches for destabilization of [highly stable] flotation froths. And in the third task, West Virginia University developed physical and mathematical models for fine coal spirals. The Final Report is written in three distinctive chapters, each reflecting the individual member`s task report. Recommendations for further research in those areas investigated, as well as new lines of pursuit, are suggested.

Yoon, R.H.; Parekh, B.K.; Meloy, T.

1997-12-31

364

US refiners choosing variety of routes to produce clean fuels  

SciTech Connect

Passage of the Clean Air Act Amendments of 1990 has prompted US refiners to install new facilities to comply with stricter specifications for gasoline and diesel fuel. Refiners are choosing a number of routes to produce these clean fuels. A roundup of the types of new facilities being built will provide a reference for those refiners who have not yet begun such projects, and an overview of the difficulties U.S. refiners are facing. Only those processing options known to be in design, construction, or operation will be presented.

Ragsdale, R. (Bechtel Corp., Houston, TX (United States))

1994-03-21

365

Natural gas buses: Separating myth from fact (Clean Cities alternative fuel information series fact sheet)  

SciTech Connect

Increasing numbers of transit agencies across North America are making the choice to convert their bus fleets to compressed natural gas (CNG), and even more are seriously considering it. Natural gas buses now account for at least 20{percent} of all new bus orders. However, it becomes difficult for fleet operators to fairly evaluate the potential benefits of an alternative fuel program if they are confronted with misinformation or poor comparisons based on false assumptions. This fact sheet addresses some of the most common misconceptions that seem to work their way into anecdotal stories, media reports, and even some poorly researched white papers and feasibility studies. It is an expanded version of information that was presented on behalf of the U.S. Department of Energy at the South Coast Air Basin Alternative Fuel and Electric Transit Bus Workshop in Diamond Bar, California, on March 15, 2000.

Parish, R.

2000-04-27

366

Fuel Cells as Clean Energy Converters  

Microsoft Academic Search

A fuel cell is a device in which the energy of a fuel is converted directly into electricity direct current by an electrochemical reaction without resorting to a burning process, rather than to heat by a combustion reaction. The chemical energy of the fuel is released in the form of an electrical energy instead of heat when the fuel is

A. Demirbas

2007-01-01

367

Combustion and fuel characterization of coal-water fuels  

SciTech Connect

This five-year research project was established to provide sufficient data on coal-water fuel (CWF) chemical, physical, and combustion properties to assess the potential for commercial firing in furnaces designed for gas or oil firing. Extensive laboratory testing was performed at bench-scale, pilot-scale (4 {times} 10{sup 6}Btu/hr) and commercial-scale (25 {times} 10{sup 6} to 50 {times} 10{sup 6}Btu/hr) on a cross-section of CWFs. Fuel performance characteristics were assessed with respect to coal properties, level of coal beneficiation, and slurry formulation. The performance of four generic burner designs was also assessed. Boiler performance design models were applied to analyze the impacts associated with conversion of seven different generic unit designs to CWF firing. Equipment modifications, operating limitations, and retrofit costs were determined for each design when utilizing several CWFs. Unit performance analyses showed significantly better load capacity for utility and industrial boilers as the CWF feed coal ash content is reduced to 5% or 2.6%. In general, utility units had more attractive capacity limits and retrofit costs than the industrial boilers and process heaters studied. Economic analyses indicated that conversion to CWF firing generally becomes feasible when differential fuel costs are above $1.00/10{sup 6}Btu. 60 figs., 24 tabs.

Chow, O.K.; Gralton, G.W.; Lachowicz, Y.V.; Laflesh, R.C.; Levasseur, A.A.; Liljedahl, G.N.

1989-02-01

368

{open_quotes}Methods for the determination of the Clean Air Act Title III metallic HAPS in coal  

SciTech Connect

The Clean Air Act was amended in 1990 and additional requirements were added to Title III {open_quotes}Air Toxics.{close_quotes} Title III identified one hundred eighty-nine hazardous air pollutants (HAPS) and Congress directed the EPA to study the effects of emissions of these HAPS on public health and the environment. EPA is to report to Congress in the fall of 1995 concerning their findings and make recommendations regarding fossil fuel fired combustion units. The outcome of the EPA recommendations will be of great interest to coal producers and users. Of the one hundred eighty-nine listed HAPS, eleven are trace metals found in coal. The producers and users may be required to analyze coal for these HAPS, to determine if selective mining and/or beneficiation can lower their occurrence, to determine their fate in the combustion process, etc. Indeed many coal companies have begun to study their reserves to aid the EPA investigation. Currently there are no EPA promulgated test methodologies for these elements in coal. Moreover, the American Society for Testing Materials (ASTM) does not provide standards for the analyses of all of the eleven HAPS either. In view of this lack of standardized analytical protocols the commercial laboratory is left with finding the best methods for meeting these analytical needs. This paper describes how Standard Laboratories, Inc. as a whole and particularly its Environmental Laboratory Division has met this need.

Snider, J. [Standard Laboratories, Inc., Evansville, IN (United States)

1995-08-01

369

State Clean Energy Practices: Renewable Fuel Standards  

SciTech Connect

The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

Mosey, G.; Kreycik, C.

2008-07-01

370

Coal cleaning residues and Fe-minerals implications.  

PubMed

In the present investigation, a study was undertaken to understand the origin of Fe-minerals presents in Brazilian coal mining and to understand the environmental implication and the chemical heterogeneity in the study area. Coal cleaning residue samples rich in clays, quartz, sulphides, carbonates, sulphates, etc. were sampled from Lauro Muller, Urussanga, Treviso, Siderópolis, and Criciúma cities in the Santa Catarina State and a total of 19 samples were collected and Mössbauer, XRD, SEM/EDX, and TEM analyses were conducted on the samples. The major Fe-minerals identified are represented by the major minerals chlorite, hematite, illite, and pyrite, while the minor minerals include, ankerite, chalcopyrite, goethite, hematite, jarosite, maghemite, magnetie, marcasite, melanterite, natrojarosite, oligonite, pyrrhotite, rozenite, schwertmannite, siderite, and sideronatrile. Pyrite is relatively abundant in some cases, making up to around 10% of the mineral matter in several samples. The sulphates minerals such as jarosite and others, probably represent oxidation products of pyrite, developed during exposure or storage. PMID:20127406

Silva, Luis F O; Macias, Felipe; Oliveira, Marcos L S; da Boit, M Kátia; Waanders, Frans

2011-01-01

371

Appalachian clean coal technology consortium. Quarterly report, July 1, 1995--September 30, 1995  

SciTech Connect

The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are being conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The most promising approach to improving spiral separation efficiency is through extensive computer modeling of fluid and solids flow in the various operating regions of the spiral. Accomplishments for these two tasks are described.

NONE

1995-11-20

372

High temperature electrochemical separation of H{sub 2}S from coal gasification process streams. Quarterly progress report, January 1, 1992--March 31, 1992  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is economically attractive by the lack of adsorbents and the lack of a Claus process for sulfur recovery. Research conducted during the present quarter is highlighted, with an emphasis on progress towards the goal of an economically viable H{sub 2}S removal technology for use in coal gasification facilities providing polished fuel for co-generation coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. Polishing application of this technology to coal gasification synthesis gas has been demonstrated with H{sub 2}S removals as high as 89.1% recorded. No successful runs with stainless steel housings have yet been achieved. However, since stoichiometric CO{sub 2} removal with stainless steel housings has been achieved, H{sub 2}S removal is achievable.

Winnick, J.

1992-08-01

373

Distributed renewable power from biomass and other waste fuels  

NASA Astrophysics Data System (ADS)

The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

Lyons, Chris

2012-03-01

374

Coal use and fuel utilization in the industrial, commercial, and residential sectors  

Microsoft Academic Search

The reduction of premium fuel use through the introduction of coal and improved fuel utilization techniques in boilers, furnaces, and process heaters in the industrial, commercial, and residential sectors is the goal of many current research and development efforts. For refit applications the first consideration for coal utilization is in the direct substitution of powdered coal for premium fuel. In

R. Isler; J. Batey; A. Beaufrere; T. Butcher; P. Marnell; C. Waide

1981-01-01

375

Characterization and preparation of Dipka coal from Korba coalfield in India  

SciTech Connect

The Korba coalfield is one of the most important non-coking coalfields in India because of large reserves and high annual production. The Dipka coal, from Korba coalfield, will be cleaned in the first private, non-coking coal washery being constructed in Bilaspur, India, as a joint venture of U.S. and Indian companies. The US Agency for International Development (USAID) has assisted these companies in an effort to demonstrate advanced coal beneficiation methods at this washery. Because of increasing dependence on coal-based power generation in India, coal production and preparation play an important role in this country`s economy and environmental management. USAID, through US Department of Energy, is providing the necessary technical support in activities related to coal preparation in India. An overview of these activities will be presented. An analysis of the Dipka coal was performed with emphasis on a large sample recently collected. The effects of raw coal variability and crushing on washability characteristics and energy recovery in coal preparation were studied. This study was conducted at the Federal Energy Technology Center (FETC) in Pittsburgh. Based on an analysis conducted and flowsheets developed at FETC, the Dipka coal was cleaned at the Central Fuel Research Institute`s pilot-plant in Dhanbad (India). The economic benefits of Dipka coal cleaning for power generation and the status of Bilaspur Washery construction and operation will be highlighted.

Gollakota, S.; Rao, N.; Duerbrouck, A. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Staats, G. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

1998-12-31

376

Prototype Commercial Coal/Oil Co-Processing Plant Project  

SciTech Connect

With the successful demonstration of the Co-Processing Process for simultaneously converting and upgrading Ohio coal and Cold Lake atmospheric resid, a hydrotreating program was subcontracted out to Sun Refining and Marketing by Ohio Clean Fuels to define operating conditions that will produce a distillate product meeting 0.05 wt % sulfur and a naphtha product with 1 wppm nitrogen maximum. Two hydrotreating runs were carried out: one on a 350/650{degree}F distillate blend and other on the C5/350{degree}F co-pro naphtha. Both runs scoped process conditions by varying temperature, pressure and space velocity while maintaining hydrogen treat gas rate constant at 1,000 SCF/Barrel. Each run took about 30 days to complete and consisted of a test matrix of 8 conditions and a referee'' condition at the beginning and the end of the run, and as well, several other optimal conditions to define further information. While catalyst life test were originally planned, they were not carried out due to lack of funds. The tests identified hydrotreating conditions that can effectively reduce distillate blend sulfur from 0.55 wt % to as low as 0.15 wt % sulfur. The co-pro naphtha was denitrogenated from 46 wppm to below 1 wppm with mild hydrotreating conditions. There were anomalies in the results in that lower feed space velocities resulted in higher product nitrogen. 3 refs., 9 figs., 16 tabs.

Not Available

1990-03-01

377

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes  

SciTech Connect

This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

1982-01-01

378

Study of fine and ultrafine particles for coal cleaning  

SciTech Connect

During the second quarter of work on this new project, critical review of the literature continued. Several new references related to gravity separation were identified and evaluated. A synopsis was assembled to summarize techniques developed by various researchers for the float/sink separation of ultrafine coal. In the reviewed literature, it was commonly concluded that substantial improvements in washability results for ultrafine coals can be obtained only through the application of dynamic (centrifugal) procedures, and through the use of dispersing aids such as ultrasound and surfactants. These results suggest the presence of physicochemical phenomena, typical of colloidal systems. In theoretical studies this quarter, the effects of Brownian motion on fine particle sedimentation have been identified and theoretically quantitated. The interaction between Brownian and gravitational forces was calculated, and a model was prepared to permit estimation of critical particle size in float/sink separations. In laboratory studies this quarter, aliquots of Upper Freeport coal were prepared and subjected to laboratory float/sink separations to investigate the relative effectiveness of static and centrifugal techniques for fine and ultrafine coal. This series will verify results of earlier work and provide a basis for comparing the effects which may result from further modifications to the separation techniques resulting from insights gained in the basic phenomena governing float/sink processes. 15 refs., 6 figs., 1 tab.

Birlingmair, D.; Buttermore, W.; Chmielewski, T.; Pollard, J.

1990-04-01

379

Interaction of nickel-based SOFC anodes with trace contaminants from coal-derived synthesis gas  

NASA Astrophysics Data System (ADS)

New and efficient methods of producing electrical energy from natural resources have become an important topic for researchers. Integrated gasification and fuel cell (IGFC) systems offer a fuel-flexible, high-efficiency method of energy generation. Specifically, in coal gasification processes, coal can be changed into a high-quality gaseous fuel suitable for feeding solid oxide fuel cells (SOFCs). However, trace species found in coal synthesis gas (syngas) may have a deleterious effect on the performance of nickel-based SOFC anodes. Generally, the cost of removing these species down to parts per million (ppm) levels is high. The purpose of this research is to determine the highest amount of contaminant that results in a low rate (˜1% per 1000 h) of cell performance degradation, allowing the SOFC to produce usable power for 40,000 hours. The cell performance degradation rate was determined for benzene, naphthalene, and mercury-doped syngas based on species concentration. Experimental data are fitted with degradation models to predict cell lifetime behavior. From these results, the minimum coal syngas cleanup required for these trace materials is determined. It is found that for a final cell voltage of 0.6 V, naphthalene and benzene must be cleaned to 360 ppm and less than 150 ppm, respectively. No additional cleaning is required for mercury beyond established environmental standards. Additionally, a detailed attack and recovery mechanism is proposed for the hydrocarbon species and their interaction with the fuel cell. This mechanism is proposed by considering the type of degradation models predicted and how carbon would interact with the Ni-YSZ anode to justify those models. The mechanism postulates that carbon is diffusing into the nickel structure, creating a metal solution. Once the nickel is saturated, the carbon begins to deposit on the nickel surface, reducing the electrode active area. The formation of metal solutions and the deposition of carbon results in reduced cell productivity.

Hackett, Gregory Allen

380

Liquid Fuels from Coal: From R&D to an Industry  

ERIC Educational Resources Information Center

Government support of coal liquefaction Research and Development has created the conditions that make possible the development of needed technology. With the proper government incentives, pioneer plants will lead to lower costs, and this, plus rising prices, will create the conditions necessary to develop a multi-plant industry. (Author/MA)

Swabb, L. E., Jr.

1978-01-01

381

Heterogeneous catalytic process for alcohol fuels from syngas. Final technical report  

SciTech Connect

The primary objective of this project has been the pursuit of a catalyst system which would allow the selective production from syngas of methanol and isobutanol. It is desirable to develop a process in which the methanol to isobutanol weight ratio could be varied from 70/30 to 30/70. The 70/30 mixture could be used directly as a fuel additive, while, with the appropriate downstream processing, the 30/70 mixture could be utilized for methyl tertiary-butyl ether (MTBE) synthesis. The indirect manufacture of MTBE from a coal derived syngas to methanol and isobutanol process would appear to be a viable solution to MTBE feedstock limitations. To become economically attractive, a process fro producing oxygenates from coal-derived syngas must form these products with high selectivity and good rates, and must be capable of operating with a low-hydrogen-content syngas. This was to be accomplished through extensions of known catalyst systems and by the rational design of novel catalyst systems.

Dombek, B.D.

1996-03-01

382

Process for recovery of palladium from nuclear fuel reprocessing wastes  

DOEpatents

Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

Campbell, D.O.; Buxton, S.R.

1980-06-16

383

Process for recovery of palladium from nuclear fuel reprocessing wastes  

DOEpatents

Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M, (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound, (c) heating the solution at reflux temperature until precipitation is complete, and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

Campbell, David O. (Oak Ridge, TN); Buxton, Samuel R. (Wartburg, TN)

1981-01-01

384

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

SciTech Connect

This report describes activities for the seventh quarter of work performed under this agreement. We await approval from the Swedish pressure vessel board to allow us to proceed with the procurement of the vessel for super atmospheric testing. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2005-01-01

385

Coal recovery process  

DOEpatents

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01

386

Coal liquefaction and hydrogenation: Processes and equipment. (Latest citations from the US Patent database). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning methods, processes, and apparatus for coal liquefaction and hydrogenation. Included are patents for catalytic two-stage, catalytic single-step, fixed-bed, hydrogen-donor, internal heat transfer, and multi-phase processes. Topics also include catalyst production, catalyst recovery, desulfurization, pretreatment of coals, energy recovery processes, solvent product separation, hydrogenating gases, and pollution control. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01

387

Dewatering: Coal and mineral processing. (Latest citations from the COMPENDEX database). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology of dewatering. Included is coverage of techniques, processes, and evaluations applied to coal processing, coal slurry preparation, ash treatments, and processing of other mineral ores. Mechanical devices, heating devices, filtering techniques, air drying, the use of surfactants and flocculants, and design techniques in dewatering systems are discussed. Dewatering of peats, sewage sludges, and industrial sludges are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-05-01

388

Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)  

SciTech Connect

Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

Not Available

1992-06-01

389

Processing, Characterization & Performance of Eight Fuels from Lipids  

Microsoft Academic Search

Test quantities of ethyl and methyl esters of four renewable fuels were processed, characterized and performance tested. Canola, rapeseed, soybean oils, and beef tallow were the feedstocks for the methyl and ethyl esters. Previous results have shown methyl esters to be a suitable replacement for diesel fuel; however, much less has been known about the ethyl esters. A complete set

C. L. Peterson; D. L. Reece; B. L. Hammond; J. Thompson; S. M. Beck

390

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01

391

Method of extracting coal from a coal refuse pile  

DOEpatents

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01

392

Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, September 28, 1996--March 27, 1997  

SciTech Connect

The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. Preliminary pilot-scale NO{sub x} reduction catalyst tests were conducted when firing natural gas in Penn State`s down-fired combustor. This is the first step in the scale-up of bench-scale results obtained in Phase II to the demonstration boiler scale when firing coal. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio. The evaluation of deeply-cleaned coal as boiler fuel included installing a ribbon mixer into Penn State`s micronized coal-water mixture circuit for reentraining filter cake. In addition, three cleaned coals were received from CQ Inc. and three cleaned coals were received from Cyprus-Amax.

Miller, B.G.; Miller, S.F.; Pisupati, S.V. [and others

1997-07-22

393

Healy Clean Coal Project. Quarterly technical progress report number 27, July 1--September 30, 1997  

SciTech Connect

The Healy Clean Coal Project, selected by the US Department of Energy under Round 3 of the Clean Coal Technology Program is currently in construction. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the US Department of Energy. Construction is 99.8% complete and scheduled for physical completion on November 15, 1997, with startup activity concluding in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides, sulfur dioxide, and particulates from this 50 megawatt plant are expected to be significantly lower than current standards. The primary objective of the project is to demonstrate a new power plant design which features the innovative integration of an advanced combustor and heat recovery system coupled with both high- and low-temperature emission control processes. Equipment includes entrained combustion slagging systems coupled with a boiler which will produce low NOx levels, and function as a limestone calciner and first-stage SO{sub 2} remover in addition to its heat recovery function; a single spray dryer absorber vessel for second-stage SO{sub 2} removal; a baghouse for third-stage SO{sub 2} and particulate removal; and a lime activation system which recovers unused reagent from particulate collected in the baghouse.

NONE

1998-02-01

394

Novel Fuel Cells for Coal Based Systems  

SciTech Connect

The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

Thomas Tao

2011-12-31

395

A correlation for calculating HHV from proximate analysis of solid fuels  

Microsoft Academic Search

Higher heating value (HHV) and composition of biomass, coal and other solid fuels, are important properties which define the energy content and determine the clean and efficient use of these fuels. There exists a variety of correlations for predicting HHV from ultimate analysis of fuels. However, the ultimate analysis requires very expensive equipments and highly trained analysts. The proximate analysis

Jigisha Parikh; S. A. Channiwala; G. K. Ghosal

2005-01-01

396

Enzymantic Conversion of Coal to Liquid Fuels  

SciTech Connect

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31

397

Effect of tar fractions from coal gasification on nickel-yttria stabilized zirconia and nickel-gadolinium doped ceria solid oxide fuel cell anode materials  

NASA Astrophysics Data System (ADS)

The allowable tar content in gasification syngas is one of the key questions for the exploitation of the full potential of fuel cell concepts with integrated gasification systems. A better understanding of the interaction between tars and the SOFC anodes which leads to carbon formation and deposition is needed in order to design systems where the extent of gas cleaning operations is minimized. Model tar compounds (toluene, benzene, naphthalene) have been used in experimental studies to represent those arising from biomass/coal gasification. However, the use of toluene as a model tar overestimates the negative impact of a real gasification tar on SOFC anode degradation associated with carbon formation. In the present work, the effect of a gasification tar and its distillation fractions on two commercially available fuel cell anodes, Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium doped ceria), is reported. A higher impact of the lighter tar fractions was observed, in terms of more carbon formation on the anodes, in comparison with the whole tar sample. The characterization of the recovered tars after contact with the anode materials revealed a shift towards a heavier molecular weight distribution, reinforcing the view that these fractions have reacted on the anode.

Lorente, E.; Berrueco, C.; Millan, M.; Brandon, N. P.

2013-11-01

398

Control of pyrite surface chemistry in physical coal cleaning  

SciTech Connect

The successful separation of pyrite from coal by flotation is dependent to a large extent upon the selectivity of the process, and the use of a pyrite depressant is one of the most important and cost-effective techniques for achieving this. This report evaluates the effects of three factors on the floatability of pyrite. These are (1) the superficial oxidation of pyrite, (2) the contamination of pyrite surfaces by carbonaceous matter, and (3) pulp redox potentials. XPS (x-ray photoelectron spectroscopy) and IR spectrometry have been used to identify surface reaction products. Microflotation, laboratory-scale conventional flotation and microbubble column flotation were used to quantify the effects of these factors. It was found that low (reducing) pulp potentials are effective depressants of pyrite (more so for fresh, unoxidized samples than for oxidized samples), whilst at the same time do not materially affect coal flotation.

Luttrell, G.H.; Yoon, R.H.; Ou, Z.S.

1992-06-24

399

Combustion and fuel characterization of coal-water fuels  

SciTech Connect

Activities conducted under this contract include studies on the combustion and fireside behavior of numerous coal-water fuels (CWFs). The work has been broken down into the following areas: Task 1 -- Selection of Candidate Fuels; Task 2 -- Bench Scale Tests; Task 3 -- CWF Preparation and Supply; Task 4 -- Combustion Characterization; Task 5 -- Ash Deposition and Performance Testing; Task 6 -- Commercial Applications. This report covers Task 6, the study of commercial applications of CWFs as related to the technical and economic aspects of the conversion of existing boilers and heaters to CWF firing. This work involves the analysis of seven units of various sizes and configurations firing several selected CWFs. Three utility boilers, two industrial boilers, and two process heater designs are included. Each of the units was considered with four primary selected CWFs. A fifth fuel was considered for one of the utility units. A sixth fuel, a microfine grind CWF, was evaluated on two utility units and one industrial unit. The particular fuels were chosen with the objective of examining the effects of coal source, ash level, ash properties, and beneficiation on the CWF performance and economics of the seven units. 10 refs., 81 figs., 80 tabs.

Beal, H.R.; Gralton, G.W.; Gronauer, T.W.; Liljedahl, G.N.; Love, B.F.

1987-06-01

400

MEETING REPORT: ADVANCED FOSSIL FUELS SECTOR GROUP, LAS VEGAS, 25 AUGUST 1976  

EPA Science Inventory

The general areas of concern were: Advanced oil processing; Chemical coal cleaning; Synthetic fuels environmental assessment; Synthetic fuels control technology development; High temperature/high pressure particulate treatment; Environmental processes and effects....