Science.gov

Sample records for clean power generation

  1. Clean power generation from coal

    SciTech Connect

    Butler, J.W.; Basu, P.

    2007-09-15

    The chapter gives an overview of power generation from coal, describing its environmental impacts, methods of cleaning coal before combustion, combustion methods, and post-combustion cleanup. It includes a section on carbon dioxide capture, storage and utilization. Physical, chemical and biological cleaning methods are covered. Coal conversion techniques covered are: pulverized coal combustion, fluidized-bed combustion, supercritical boilers, cyclone combustion, magnetohydrodynamics and gasification. 66 refs., 29 figs., 8 tabs.

  2. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  3. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  4. Impact of coal cleaning on the cost of new coal-fired power generation. Final report. [Comparison of 7 hypothetical power generation cases

    SciTech Connect

    Folz, D.J.; Goodman, P.O.; Sybert, L.

    1981-03-01

    Seven hypothetical power-generation cases were studied to estimate the cost effect in each case of coal cleaning. Three levels of coal preparation - no cleaning, partial cleaning, and intensive cleaning - were used to perform the analysis. Two-unit, 1000-MW power plants operating at 70% average load factor were assumed. These power plants were designed to comply with the proposed NSPS for SO/sub 2/ emissions (85% removal/24-hour averaging) under the 1977 Clean Air Act Amendments. Diverse coals and plant locations were selected. The estimated capital costs of the coal cleaning plants were consistently less than 5% of the capital costs estimated for the corresponding power-plants. In 6 of the 7 study cases, the utilization of coal cleaning reduced overall capital costs, and in 5 cases the busbar-cost savings introduced by the use of cleaned coal more than offset the incremental cost of coal cleaning. In terms of 30-year levelized costs, the use of cleaned coal was estimated to be responsible for net busbar-cost savings of up to 2 mills/net kWh in the 5 cases where coal cleaning appeared cost effective. These results are considered conservative, since certain economic benefits of using cleaned coal (e.g., improved power plant availability and operability) were not included in the cost estimates due to lack of sufficient data.

  5. The role of clean coal technologies in post-2000 power generation

    SciTech Connect

    Salvador, L.A.; Bajura, R.A.; Mahajan, K.

    1994-07-01

    A substantial global market for advanced power systems is expected to develop early in the next century for both repowering and new capacity additions, Although natural gas-fueled systems, such as gas turbines, are expected to dominate in the 1990`s, coal-fueled systems are expected to emerge in the 2000`s as systems of choice for base-load capacity because of coal`s lower expected cost. Stringent environmental regulations dictate that all advanced power systems must be clean, economical, and efficient in order to meet both the environmental and economic performance criteria of the future. Recognizing these needs, the DOE strategy is to carry out an effective RD&D program, in partnership with the private sector, to demonstrate these technologies for commercial applications in the next century. These technologies are expected to capture a large portion of the future power generation market. The DOE: expects that, domestically, advanced power systems products will be selected on the basis of varying regional needs and the needs of individual utilities. A large international demand is also expected for the new products, especially in developing nations.

  6. Green Cleaning Label Power

    ERIC Educational Resources Information Center

    Balek, Bill

    2012-01-01

    Green cleaning plays a significant and supportive role in helping education institutions meet their sustainability goals. However, identifying cleaning products, supplies and equipment that truly are environmentally preferable can be daunting. The marketplace is inundated with products and services purporting to be "green" or environmentally…

  7. Research of laser cleaning technology for steam generator tubing

    NASA Astrophysics Data System (ADS)

    Hou, Suixa; Luo, Jijun; Xu, Jun; Yuan, Bo

    2010-10-01

    Surface cleaning based on the laser-induced breakdown of gas and subsequent shock wave generation can remove small particles from solid surfaces. Accordingly, several studies in steam generator tubes of nuclear power plants were performed to expand the cleaning capability of the process. In this work, experimental apparatus of laser cleaning was designed in order to clean heat tubes in steam generator. The laser cleaning process is monitored by analyzing acoustic emission signal experimentally. Experiments demonstrate that laser cleaning can remove smaller particles from the surface of steam generator tubes better than other cleaning process. It has advantages in saving on much manpower and material resource, and it is a good cleaning method for heat tubes, which can be real-time monitoring in laser cleaning process of heat tubes by AE signal. As a green cleaning process, laser cleaning technology in equipment maintenance will be a good prospect.

  8. EFFECTS OF A 'CLEAN' COAL-FIRED POWER GENERATING STATION ON FOUR COMMON WISCONSIN LICHEN SPECIES

    EPA Science Inventory

    Algal plasmolysis percentages and other morphological characteristics of Parmelia bolliana, P. caperata, P. rudecta, and Physicia millegrana were compared for specimens growing near to and far from a rural coal-fired generating station in south central Wisconsin. SO2 levels were ...

  9. Effects of a clean coal-fired power generating station on four common Wisconsin lichen species

    SciTech Connect

    Will-Wolf, S.

    1980-01-01

    Algal plasmolysis percentages and other morphological characteristics of Parmelia bolliana Muell. Arg., P. caperata (L.) Ach., P. rudecta Ach., and Physcia millegrana Degel. were compared for specimens growing near to and far from a rural coal-fired generating station in south central Wisconsin. SO/sup 2/ levels were 389 ..mu..g/m/sup 3/, maximum 1 hr level, and 5-9 ..mu..g/m/sup 3/, annual averages. Parmelia bolliana and P. caperata showed evidence of morphological alterations near the station; P. rudecta and Physcia millegrana did not.

  10. EPA`s clean air power initiative

    SciTech Connect

    Critchfield, L.R.

    1997-12-31

    The Clean Air Power Initiative (CAPI) is a multi-stakeholder project intended to improve air pollution control efforts involving the power generating industry. This paper documents the progress made in the first year of the initiative, which included a number of meetings with interested stakeholders and development and analysis of alternative approaches for more efficient and effective pollution control. The project`s goal is to develop an integrated regulatory strategy or three major pollutants emitted from electric power generators; namely, sulfur dioxide, nitrogen oxides, and, potentially, mercury. Major reductions in these pollutants are expected to be needed to reduce the detrimental health effects of ground-level ozone, fine particles, and hazardous air pollutants and reduce the environmental effects of acidification, eutrophication, ecosystem, crop, and materials damage, and regional haze. The Clean Air Power Initiative has considered, where feasible, new approaches to pollution control that recognize the long-range transport of many air pollutants and the economic benefits of emissions trading. The project was initiated by EPA`s Assistant Administrator for Air and Radiation in 1995. As individual companies develop and implement strategies to participate in more competitive power markets, they could benefit from greater certainty in being able to plan for and reduce costs of future environmental regulations. The EPA is interested in reinventing its regulatory approach to reduce the number, administrative complexity, and cost of its requirements while improving the likelihood of achieving environmental results.

  11. 78 FR 33406 - Clean River Power MR-1, LLC, Clean River Power MR-2, LLC, Clean River Power MR-3, LLC, Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. P-13404-002, P-13405-002, P-13406-002, P-13407-002, P- 13408-002, and P-13411-002] Clean River Power MR-1, LLC, Clean River Power MR-2, LLC, Clean River Power...

  12. Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine

    NASA Astrophysics Data System (ADS)

    Talebi Anaraki, Saber

    The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

  13. Energy Servers Deliver Clean, Affordable Power

    NASA Technical Reports Server (NTRS)

    2010-01-01

    K.R. Sridhar developed a fuel cell device for Ames Research Center, that could use solar power to split water into oxygen for breathing and hydrogen for fuel on Mars. Sridhar saw the potential of the technology, when reversed, to create clean energy on Earth. He founded Bloom Energy, of Sunnyvale, California, to advance the technology. Today, the Bloom Energy Server is providing cost-effective, environmentally friendly energy to a host of companies such as eBay, Google, and The Coca-Cola Company. Bloom's NASA-derived Energy Servers generate energy that is about 67-percent cleaner than a typical coal-fired power plant when using fossil fuels and 100-percent cleaner with renewable fuels.

  14. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  15. 77 FR 68757 - Clean River Power MR-1, LLC; Clean River Power MR-2, LLC; Clean River Power MR-3, LLC; Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. P-13404-002, P-13405-002, P-13406-002, P-13407-002, P- 13408-002, P-13411-002, and P-13412-002] Clean River Power MR-1, LLC; Clean River Power MR-2, LLC;...

  16. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  17. Geothermal Power Generation

    SciTech Connect

    2007-11-15

    The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

  18. High-Power Ultrasound in Surface Cleaning and Decontamination

    NASA Astrophysics Data System (ADS)

    Awad, Sami B.

    High-power ultrasound is being widely utilized for decontamination in different industrial applications. The same technology is also being investigated as an effective tool for cleaning of components in the decontamination of produce. An understanding of the basic technology and how it works in cleaning various industrial parts should help in applying it on a large scale in the food industry. The technology has evolved throughout the past four decades. Different frequencies were developed and are now industrially available. The frequency range is from 20 kHz to 1 MHz. Current sound technology provides a uniform ultrasonic activity throughout the cleaning vessel, which was a major disadvantage in the earlier technology. The two main driving forces that affect cleaning of surfaces are cavitation and acoustic streaming. Both are generated as a result of the direct interaction of high-frequency sound waves with fluids.

  19. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  20. Modifying steam generator corrosion behavior via chemical cleaning

    SciTech Connect

    Sweeney, K.; Neese, K.

    1994-12-31

    A steam generator chemical cleaning program was conducted in Palo Verde nuclear generating station (PVNGS) units 2 and 3 in 1994. This effort represented the first full-bundle chemical cleaning of a recirculating steam generator in the United States. The objectives of the process were: (1) to remove deposits in the upper bundle regions, which were identified by eddy-current analysis and linked to a free-span outside-diameter stress corrosion cracking (ODSCC) condition; (2) to remove tube scale deposits that interfere with heat transfer and may contain undesirable contaminants; (3) to remove deposits from the surface of the tube sheet and the flow distribution plate; and (4) to remove deposits from the drilled hole crevices in the FDP, which may be contributing to low recirculation ratios and upper bundle transition boiling. The Electric Power Research Institute/Steam Generator Owners` Group low-temperature process, modified to include {open_quotes}crevice cleaning{close_quotes} and {open_quotes}passivation{close_quotes} steps, was selected as the best method. Babock & Wilcox Nuclear Technologies was selected as the vendor.

  1. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  2. Analysis of the Impacts of the Clean Power Plan

    EIA Publications

    2015-01-01

    This report responds to an August 2014 request to the U.S. Energy Information Administration (EIA) from Representative Lamar Smith, Chairman of the U.S. House of Representatives Committee on Science, Space, and Technology, for an analysis of the Environmental Protection Agency's (EPA) proposed Clean Power Plan under which states would be required to develop plans to reduce carbon dioxide (CO2) emissions rates from existing fossil-fired electricity generating units.

  3. Water Power for a Clean Energy Future

    SciTech Connect

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  4. Integrated flue gas cleaning for the next regulatory generation

    SciTech Connect

    Vincent, H.; Jones, G.

    1995-12-31

    Before the end of this decade, utilities and other major power producers burning solid/liquid fuels can expect the promulgation of further regulations mandated by the 1990 Clean Air Act Amendments. In particular, Title III, ``Air Toxics`` provision could profoundly change the manner how power producers will need to evaluate compliance technology options. Integrated gas cleaning concepts will be necessary to achieve compliance, maximize existing gas cleaning assets, and for the avoidance of pollution transfer. The paper describes several integrated gas cleaning concepts for multi-pollutant control for high sulfur coal, low sulfur coal, and oil burning power plants.

  5. Wind power generating system

    SciTech Connect

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  6. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  7. Electrical power generating system. [for windpowered generation

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  8. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE

  9. ZETA Potential Induced Particle Generation in SC2 Cleaning

    NASA Astrophysics Data System (ADS)

    Mun, Seong Yeol; Yoon, Ki Chae; An, Byeong Woo

    2002-12-01

    After etch and photo resist (PR) strip, particle and byproduct removal treatment is inevitable. SC1/SC2 cleaning process is one of the useful wet cleaning processes to remove them. In most cases, the equipment is batch type (25 or 50 wafers dip into bath) in which particles lifted from edge or backside of wafer move into chip easily by the stream of chemical. Especially in the process of film like Si3N4 with high dielectric constant, the particle issue is more serious. Following SC1 cleaning (main chemical is NH4OH), SC2 cleaning (main chemical is HCl) causes particles to be attached to wafer. The lifted particles in SC1 cleaning are attached to wafer strongly by ZETA potential, which is enhanced when the PH of chemical is lower than 4 (PH of SC2 chemical is about 1.3). SC2 cleaning after SC1 cleaning is not desirable process sequence. But, SC2 chemical is useful for removing metal contamination generated in etch equipment during the etch process. Skipping SC2 cleaning is desirable in the process which metal contamination has no impact on. But, if you want to use SC2 cleaning or other acid chemical (PH below 4) for a guarantee of quality of device, it should be processed before SC1 cleaning.

  10. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  11. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  12. Oscillating fluid power generator

    DOEpatents

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  13. Assessing the environmental impact of energy generating clean coal technologies

    SciTech Connect

    Leslie, A.C.D.; McMillen, M.; Pell, J.

    1995-12-01

    The Clean Coal Technology (CCT) Program of the U.S. Department of Energy (DOE) is a partnership between government and industry designed for cleaner and more efficient use of coal, both for electric power generation and industrial applications. Approximately seven billion dollars have been committed to the CCT program (two and half-billion dollars from DOE and the rest by industry). The potential environmental effects of CCT projects are subject to review because a proposal by DOE to cost-share a CCT project constitutes a {open_quotes}major federal action{close_quotes} under section 102(2)(c) of NEPA. Consequently, by virtue of numerous NEPA impact evaluations of CCT projects, a great deal has been learned about environmental impact analyses for coal combustion sources. In the course of NEPA review of CCT projects, air quality is often a significant environmental issue. This paper focuses on CCT air quality issues from a NEPA perspective, including Prevention of Significant Deterioration, New Source Review, atmospheric visibility, global climate change, and acidic deposition. The analyses of the impacts of the proposed action, alternative actions, and cumulative effects will be examined. (It is a {open_quotes}given{close_quotes} that any action must comply with Federal and State requirements and the provision of the Clean Air Act and other regulatory statues.) NEPA is not a permitting process, but rather it is a process to provide decision makers with the information they require make an informed decision about the potential environmental consequences of undertaking an action. The NEPA review of environmental effects has been instrumental in effectuating beneficial changes in some past CCT projects-changes that have mitigated potentially adverse environmental impacts. Accordingly, NEPA has served as a constructive analytical tool, with similar implications for other actions related to the electric power generation industry that are subject to environmental review.

  14. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  15. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  16. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  17. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  18. Update-processing steam generator cleaning solvent at Palo Verde

    SciTech Connect

    Peters, G.

    1996-10-01

    Framatome Technologies Inc.(FTI) recently completed the steam generator chemical cleanings at the Palo Verde Nuclear Generating Station Units 1, 2 and 3. Over 500,000 gallons of low-level radioactive solvents were generated during these cleanings and were processed on-site. Chemical cleaning solutions containing high concentrations of organic chelating wastes are difficult to reduce in volume using standard technologies. The process that was ultimately used at Palo Verde involved three distinct processing steps: The evaporation step was conducted using FTI`s submerged combustion evaporator (SCE) that has also been successfully used at Arkansas Nuclear One - Unit 1, Three Mile Island - Unit 1, and Oconee on similar waste. The polishing step of the distillate used ultrafiltration (UF) and reverse osmosis (RO) technology that was also used extensively by Ontario Hydro to assist in their processing of chemical cleaning solvent. This technology, equipment, and operations personnel were provided by Zenon Environmental, Inc. The concentrate from the evaporator was absorbed with a special {open_quotes}peat moss{close_quotes} based media that allowed it to be shipped and buried at the Environcare of Utah facility. This is the first time that this absorption media or burial site has been used for chemical cleaning solvent.

  19. Waterwheel power generator

    SciTech Connect

    Smith, J.

    1982-08-17

    An electrical power generation system includes a waterwheel contained within a housing enclosure above a water collection compartment, a water discharge nozzle in alignment with the waterwheel, means for delivering water to the discharge nozzle including a pump for returning water from the collection compartment, a portion of the output of the waterwheel being used to drive the pump, wherein the waterwheel includes fin elements having inclined water entrapping flange portions and is supported by means of an adjustable support to maintain the waterwheel dynamically balanced and in alignment with the discharge nozzle.

  20. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  1. Photovoltaic power generation

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard J.

    1993-03-01

    The wide acceptance and utilization of the photovoltaic generation of electrical power depends on our ability to reduce the cost of photovoltaic systems. This, in turn, largely hinges on our ability to decrease the cost of production of solar cells and panels while at the same time increasing their conversion efficiency. A short tutorial on solar cells is followed by a discussion of the types of solar cells that are presently being investigated for cost reduction and efficiency improvement. Many types of cells are under investigation as are a wide range of materials. Impressive efficiency improvements have been achieved for many types of cells that are potentially low cost in large-volume production.

  2. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  3. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    PubMed

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization. PMID:26646606

  4. Electrochemical power generator

    SciTech Connect

    Shirogami, T.; Ueno, M.

    1985-05-07

    An electrochemical power generator is disclosed which is composed of a plurality of unit cells stacked with interconnectors interposed therebetween; said unit cells being each composed of an anode consisting of a porous carbon plate having on its one surface a plurality of grooves constituting gas passages and on its other surface an anode catalyst layer; a cathode formed on its one surface with a cathode catalyst layer and applied on its other surface a hydrophobic material powder consisting of fluoropolymer resin; and an electrolyte layer interposed between the anode and the cathode in such a manner that its two surfaces are allowed to come into contact, respectively; said anode catalyst layer and said cathode catalyst layer, the electrolyte layer being prepared by causing an acidic electrolyte to be impregnated into an inorganic compound powder having heat resistance and chemical resistance; the interconnectors being each compressed of a high density carbon plate and having, on each surface coming into contact with the cathode, a plurality of grooves for gas passages, being used as an anode-active material, of a gas consisting mainly of hydrogen and, as a cathode-active material, of an oxidizing gas. First ribs and second ribs wider than said first ribs are formed between adjacent ones of the grooves of the anode substrate, and a catalyst is dispersed in the cathode substrate over a range extending from a boundary between a surface of contact of the cathode substrate with the cathode catalyst layer up to a point located inside the cathode substrate.

  5. PWR steam generator chemical cleaning. Phase II. Final report

    SciTech Connect

    Not Available

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively.

  6. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    SciTech Connect

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  7. 76 FR 5411 - Clean Energy and Power, Inc., Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... COMMISSION Clean Energy and Power, Inc., Order of Suspension of Trading January 27, 2011. It appears to the... securities of Clean Energy and Power, Inc. (``Clean Energy'') because it has not filed any periodic reports since the period ended September 30, 2007. Clean Energy is quoted on the Pink Sheets operated by...

  8. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  9. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    SciTech Connect

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  10. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    SciTech Connect

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  11. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (ESTSC)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  12. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Knowles, G.; Carroll, J.

    1983-01-01

    A subscale model of a photovoltaic power system employing spectral splitting and 1000:1 concentration was fabricated and tested. The 10-in. aperture model demonstrated 15.5% efficiency with 86% of the energy produced by a GaAs solar cell and 14% of the energy produced by an Si cell. The calculated efficiency of the system using the same solar cells, but having perfect optics, would be approximately 20%. The model design, component measurements, test results, and mathematical model are presented.

  13. High power microwave generator

    SciTech Connect

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  14. Spin Seebeck power generators

    SciTech Connect

    Cahaya, Adam B.; Tretiakov, O. A.; Bauer, Gerrit E. W.

    2014-01-27

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  15. Solar power generating system

    SciTech Connect

    Watson, J.C.

    1981-08-18

    A volatile liquid is circulated through a normally closed circuit, including expansion tubes within an expansion chamber where the sun's rays are focused on the tubes to heat the liquid, transforming it to an expanding gas to drive a fluid-operated motor, also in the circuit. The motor may drive a mechanical load or an electric generator. The generator drives a pump which compresses the gas back to a liquid state and returns the same to a reservoir and to the inlets of the expansion tubes in the expansion chamber. An air reservoir which is pressurized by a pump driven by the fluid operated motor has its outlet connected to the motor inlet so that during periods of darkness or cloud cover in which the volatile liquid is not expanded into a gas, the pressurized air will be automatically fed into the motor to continue to drive the same. A gimbal system automatically controlled by sun tracking devices supports the expansion chamber to continually focus the sun's rays onto the expansion tubes, regardless of the relative position of the sun and the base on which the gimbal system is mounted.

  16. Wind Power Charged Aerosol Generator

    SciTech Connect

    Marks, A.M.

    1980-07-01

    This describes experimental results on a Charged Aerosol Wind/Electric Power Generator, using Induction Electric Charging with a water jet issuing under water pressure from a small diameter (25-100 ..mu..m) orifice.

  17. Tide operated power generating apparatus

    SciTech Connect

    Kertzman, H. Z.

    1981-02-03

    An improved tide operated power generating apparatus is disclosed in which a hollow float, rising and falling with the ocean tide, transmits energy to a power generator. The improvement comprises means for filling the float with water during the incoming tide to provide a substantial increase in the float dead weight during the outgoing tide. Means are further provided to then empty the float before the outgoing tide whereby the float becomes free to rise again on the next incoming tide.

  18. Signal generator makes clean sweeps to 20 GHz

    NASA Astrophysics Data System (ADS)

    Browne, J.

    1986-02-01

    In the case of most swept frequency generators, approximately eight hours are required to calibrate the device, and a complex assortment of equipment is needed. The present article is concerned with a programmable sweep generator for which the calibration process is performed automatically in 15 minutes with the aid of an extra GPIB line dedicated to the control of a frequency counter and a power meter/power sensor combination. The signal generator has a frequency range from 2 to 20 GHz, a frequency resolution of 100 kHz, sweep times from 10 ms to 33 s, and a maximum levelled output power of 10 dBm at 18 GHz and 7 dBm at 20 GHz.

  19. Thermophotovoltaic and thermoelectric portable power generators

    NASA Astrophysics Data System (ADS)

    Chan, Walker R.; Waits, Christopher M.; Joannopoulos, John D.; Celanovic, Ivan

    2014-06-01

    The quest for developing clean, quiet, and portable high energy density, and ultra-compact power sources continues. Although batteries offer a well known solution, limits on the chemistry developed to date constrain the energy density to 0.2 kWh/kg, whereas many hydrocarbon fuels have energy densities closer to 13 kWh/kg. The fundamental challenge remains: how efficiently and robustly can these widely available chemical fuels be converted into electricity in a millimeter to centimeter scale systems? Here we explore two promising technologies for high energy density power generators: thermophotovoltaics (TPV) and thermoelectrics (TE). These heat to electricity conversion processes are appealing because they are fully static leading to quiet and robust operation, allow for multifuel operation due to the ease of generating heat, and offer high power densities. We will present some previous work done in the TPV and TE fields. In addition we will outline the common technological barriers facing both approaches, as well as outline the main differences. Performance for state of the art research generators will be compared as well as projections for future practically achievable systems. A viable TPV or TE power source for a ten watt for one week mission can be built from a <10% efficient device which is achievable with current state of the art technology such as photonic crystals or advanced TE materials.

  20. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  1. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  2. The Fourth Generation of Nuclear Power

    SciTech Connect

    Lake, James Alan

    2000-11-01

    The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

  3. Taming power: Generative historical consciousness.

    PubMed

    Winter, David G

    2016-04-01

    Power is a necessary dimension of all human enterprises. It can inspire and illuminate, but it can also corrupt, oppress, and destroy. Therefore, taming power has been a central moral and political question for most of human history. Writers, theorists, and researchers have suggested many methods and mechanisms for taming power: through affiliation and love, intellect and reason, responsibility, religion and values, democratic political structures, and separation of powers. Historical examples and social science research suggest that each has some success, but also that each is vulnerable to being hijacked by power itself. I therefore introduce generative historical consciousness (GHC) as a concept and measure that might help to secure the benefits of power while protecting against its outrages and excesses. I conclude by discussing the role that GHC may have played in the peaceful resolution of the Cuban Missile Crisis of 1962. PMID:26011649

  4. Solid state pulsed power generator

    SciTech Connect

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  5. Pressurized circulating fluidized-bed combustion for power generation

    SciTech Connect

    Weimer, R.F.

    1995-08-01

    Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

  6. Power generator design for the billings MHD demonstration project

    SciTech Connect

    Pian, C.C.P.; Kessler, R.; Schmitt, E.W.; Morrison, D.J.

    1993-12-31

    The proposed design of the MHD Power generator for the Billings MHD Demonstration Project is presented. The Billings MHD Demonstration Project, proposed by the MHD Development Corporation (MDC) for the U.S. Department of Energy`s Clean Coal Technology V Program, will demonstrate the significant environmental advantages and efficiency potential of MHD electric power generation. A diagonally-loaded, supersonic MHD generator channel is proposed. The generator channel has a thermal input of 250 MW, is 11 meters long and produces 28.5 MW gross power output at the nominal design operating condition. The gasdynamic, gas-side, and mechanical designs of the proposed generator are derived from the design of the 50 MW{sub t} proof-of-concept MHD generator, currently undergoing long duration testing at the CDIF test facility. The design and operation of the proposed generator will be typical of those anticipated in future commercial MHD generator channels.

  7. Underwater cleaning techniqued used for removal of zebra mussels at the FitzPatrick Nuclear Power Plant

    SciTech Connect

    Hobbs, B.; Kahabka, J.

    1995-06-01

    This paper discusses the use of a mechanical brush cleaning technology recently used to remove biofouling from the Circulating Water (CW) System at New York Power Authority`s James A. FitzPatrick Nuclear Power Plant. The FitzPatrick plant had previously used chemical molluscicide to treat zebra mussels in the CW system. Full system treatment was performed in 1992 with limited forebay/screenwell treatment in 1993. The New York Power Authority (NYPA) decided to conduct a mechanical cleaning of the intake system in 1994. Specific project objectives included: (1) Achieve a level of surface cleaniness greater than 98%; (2) Remove 100% of debris, both existing sediment and debris generated as a result of cleaning; (3) Inspect all surfaces and components, identifying any problem areas; (4) Complete the task in a time frame within the 1994-95 refueling outage schedule window, and; (5) Determine if underwater mechanical cleaning is a cost-effective zebra mussel control method suitable for future application at FitzPatrick. A pre-cleaning inspection, including underwater video photography, was conducted of each area. Cleaning was accomplished using diver-controlled, multi-brush equipment included the electro-hydraulic powered Submersible Cleaning and Maintenance Platform (SCAMP), and several designs of hand-held machines. The brushes swept all zebra mussels off surfaces, restoring concrete and metal substrates to their original condition. Sensitive areas including pump housings, standpipes, sensor piping and chlorine injection tubing, were cleaned without degradation. Submersible vortex vacuum pumps were used to remove debris from the cavity. More than 46,000 ft{sup 2} of surface area was cleaned and over 460 cubic yards of dewatered debris were removed. As each area was completed, a post-clean inspection with photos and video was performed.

  8. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  9. Remote plasma cleaning of optical surfaces: Cleaning rates of different carbon allotropes as a function of RF powers and distances

    NASA Astrophysics Data System (ADS)

    Cuxart, M. González; Reyes-Herrera, J.; Šics, I.; Goñi, A. R.; Fernandez, H. Moreno; Carlino, V.; Pellegrin, E.

    2016-01-01

    An extended study on an advanced method for the cleaning of carbon contaminations from large optical surfaces using a remote inductively coupled low-pressure RF plasma source (GV10x DownStream Asher) is reported. Technical and scientific features of this scaled up cleaning process are analysed, such as the cleaning efficiency for different carbon allotropes (amorphous and diamond-like carbon) as a function of feedstock gas, RF power (from 30 to 300 W), and source-object distances (415 to 840 mm). The underlying physical phenomena for these functional dependences are discussed.

  10. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  11. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  12. Desalination apparatus with power generation

    SciTech Connect

    Humiston, G.F.

    1981-11-24

    An apparatus for desalinating ocean waters by distillation and furnishing electrical power, utilizes an evaporator, barometric leg conduits, a closed condenser, ocean water circulating circuits for circulating warm surface water to the evaporator and cool ocean water to the condenser and using the mass flow of vapors evolved from the evaporator to drive a prime mover which in turn drives an electrical generator. A portion of the electrical power so-generated is used to control the operation of respective pumps and valves in the apparatus. The liquid level of the condensate water is controlled in a barometric leg condensate outlet conduit. The system is also provided with a vacuum pump at least for initiating a reduced pressure and particle separator channel means is provided to prevent liquid entrainment in the condenser.

  13. Magma energy for power generation

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  14. Thermoelectric power generator for variable thermal power source

    SciTech Connect

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  15. Power generating system and method utilizing hydropyrolysis

    DOEpatents

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  16. Thermoelectric cooling and power generation

    PubMed

    DiSalvo

    1999-07-30

    In a typical thermoelectric device, a junction is formed from two different conducting materials, one containing positive charge carriers (holes) and the other negative charge carriers (electrons). When an electric current is passed in the appropriate direction through the junction, both types of charge carriers move away from the junction and convey heat away, thus cooling the junction. Similarly, a heat source at the junction causes carriers to flow away from the junction, making an electrical generator. Such devices have the advantage of containing no moving parts, but low efficiencies have limited their use to specialty applications, such as cooling laser diodes. The principles of thermoelectric devices are reviewed and strategies for increasing the efficiency of novel materials are explored. Improved materials would not only help to cool advanced electronics but could also provide energy benefits in refrigeration and when using waste heat to generate electrical power. PMID:10426986

  17. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  18. Advanced piggyback water power generator

    SciTech Connect

    Wiggs, B.R.

    1988-02-16

    A power generating system is described including: a central boat containing gearing and electric and/or power generation equipment, with a forward angled-back deflection screen and a rear non-angled deflection screen, with a smaller outrigger pontoon on each respective side of the central boat, with closed cell, waterproof, plastic foam filling in the central boat and pontoons, and with the bow of the respective outrigger pontoons angled so as to completely turn water away from, and to the outside of, the space and/or incoming water area between each such respective pontooon and the central boat. There are legs with cone shaped bottoms and with wheels attached, with the wheels extending slightly below the cone shaped bottoms; paddle wheels on each side of the central boat, between the central boat, and respective outrigger pontoons, with 90 degree spaced, flat, paddle blades, and with a solid, disk division vertically dividing each respective side paddle wheel in half and extending at right angles to, and from, the central axle, to the outside extreme end of the paddle blades, with each such half of the equally divided paddle wheel being constructed so that the 90 degree spaced paddle blades in one half are offset by 45 degrees from the 90 degree space paddle blades in the other half, and with the extreme ends of each such set of divided paddle wheels being enclosed via a similar solid.

  19. Electronic load for testing power generating devices

    NASA Technical Reports Server (NTRS)

    Friedman, E. B.; Stepfer, G.

    1968-01-01

    Instrument tests various electric power generating devices by connecting the devices to the input of the load and comparing their outputs with a reference voltage. The load automatically adjusts until voltage output of the power generating device matches the reference.

  20. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect

    Thomas Lynch

    2004-01-07

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and

  1. Wearable Triboelectric Generator for Powering the Portable Electronic Devices.

    PubMed

    Cui, Nuanyang; Liu, Jinmei; Gu, Long; Bai, Suo; Chen, Xiaobo; Qin, Yong

    2015-08-26

    A cloth-base wearable triboelectric nanogenerator made of nylon and Dacron fabric was fabricated for harvesting body motion energy. Through the friction between forearm and human body, the generator can turn the mechanical energy of an arm swing into electric energy and power an electroluminescent tubelike lamp easily. The maximum output current and voltage of the generator reach up to 0.2 mA and 2 kV. Furthermore, this generator can be easily folded, kneaded, and cleaned like a common garment. PMID:25494528

  2. Bedding disposal cabinet for containment of aerosols generated by animal cage cleaning procedures.

    PubMed Central

    Baldwin, C L; Sabel, F L; Henke, C B

    1976-01-01

    Laboratory tests with aerosolized spores and animal room tests with uranine dye indicate the effectiveness of a prototype bedding disposal cabinet in reducing airborne contamination generated by cage cleaning procedures. Images PMID:826219

  3. Bedding disposal cabinet for containment of aerosols generated by animal cage cleaning procedures.

    PubMed

    Baldwin, C L; Sabel, F L; Henke, C B

    1976-02-01

    Laboratory tests with aerosolized spores and animal room tests with uranine dye indicate the effectiveness of a prototype bedding disposal cabinet in reducing airborne contamination generated by cage cleaning procedures. PMID:826219

  4. Low cost space power generation

    NASA Technical Reports Server (NTRS)

    Olsen, Randall B.

    1991-01-01

    The success of this study has given a method of fabricating durable copolymer films without size limitations. Previously, only compression molded samples were durable enough to generate electrical energy. The strengthened specimens are very long lived materials. The lifetime was enhanced at least a factor of 1,300 in full pyroelectric conversion cycle experiments compared with extruded, non-strengthened film. The new techniques proved so successful that the lifetime of the resultant copolymer samples was not fully characterized. The lifetime of these new materials is so long that accelerated tests were devised to probe their durability. After a total of more than 67 million high voltage electrical cycles at 100 C, the electrical properties of a copolymer sample remained stable. The test was terminated without any detectable degradation to allow for other experiments. One must be cautious in extrapolating to power cycle performance, but 67 million electrical cycles correspond to 2 years of pyroelectric cycling at 1 Hz. In another series of experiments at reduced temperature and electrical stress, a specimen survived over one-third of a billion electrical cycles during nearly three months of continuous testing. The radiation-limited lifetimes of the copolymer were shown to range from several years to millions of years for most earth orbits. Thus, the pyroelectric copolymer has become a strong candidate for serious consideration for future spacecraft power supplies.

  5. Future trends in power generation cost by power resource

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The Japan Energy Economy Research Institute has been evaluating power generation cost by each power resource every year focusing on nuclear power generation. The Institute is surveying the cost evaluations by power resources in France, Britain and the U.S.A., the nuclear generation advanced nations. The OECD is making power generation cost estimation using a hypothesis which uniforms basically the conditions varying in different member countries. In model power generation cost calculations conducted by the Ministry of International Trade and Industry of Japan, nuclear power generation is the most economical system in any fiscal year. According to recent calculations performed by the Japan Energy Economy Research Institute, the situation is such that it is difficult to distinguish the economical one from others among the power generation systems in terms of generation costs except for thermal power generation. Economic evaluations are given on estimated power generation costs based on construction costs for nuclear and thermal power plants, nuclear fuel cycling cost, and fuel cost data on petroleum, LNG and coal. With regard to the future trends, scenario analyses are made on generation costs, that assume fluctuations in fuel prices and construction costs, the important factors to give economic influence on power generation.

  6. Wave activated power generation system

    SciTech Connect

    Ono, Y.

    1983-08-09

    A wave activated power generation system of the float type is disclosed, comprising at least one piston-cylinder device having an anchored cylinder and a piston slidable in the cylinder and cooperating with the cylinder to form a pumping chamber above the piston and a low pressure chamber below the piston. The cylinder has an intake port and an exhaust port both formed at an upper port thereof to communicate with the pumping chamber and each provided with a check valve. A float is connected through a cable to the piston of the piston- cylinder device. A pair of fluid storages are connected to the intake port and the exhaust port of the pumping chamber, respectively. A waterwheel generator is driven by the fluid flowing from one of the fluid storages to another. A pressure regulating device is connected to the low pressure chamber so as to maintain the low pressure chamber at a pressure lower than the pressure in the pumping chamber, the difference in pressure ceaselessly applying a downward force on the piston to keep the cable in a tensed condition.

  7. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect

    Gary Harmond; Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are

  8. The Power Scorecard: Helping consumers use the power of choice in new competitive electricity markets to choose the clean energy they want

    SciTech Connect

    Swanson, S.; Marston, J.; Hirsh, N.; Carter, S.; Grant, W.; Smiley, S.B.

    1999-07-01

    The Pace Energy Project and the Green Group environmental organizations have developed the Power Scorecard, an environmental rating tool that ranks, on a scale of zero to ten, the relative environmental quality of electricity products. The Power Scorecard will provide consumers facing retail electricity choice with objective information on the relative environmental quality of all electricity products available in competitive retail markets. It enables consumers who value superior environmental quality to find clean electricity products. It enables service providers selling clean products, including especially those with grid connected PV supplies, to show consumers the environmental advantages of their products. Power Scorecard addresses eight environmental impact air, water and land issue based criteria. Power Scorecard scores are assigned to products based on the proportion of the product's mix provided by each generating resource. Plans are in place to apply the Power Scorecard initially to retail markets in California and Pennsylvania in 1999.

  9. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    SciTech Connect

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  10. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  11. Innovative gasification technology for future power generation

    SciTech Connect

    Mahajan, K.; Shadle, L.J.; Sadowski, R.S.

    1995-07-01

    Ever tightening environmental regulations have changed the way utility and non-utility electric generation providers currently view their fuels choices. While coal is still, by far, the major fuel utilized in power production, the general trend over the past 20 years has been to switch to low-sulfur coal and/or make costly modifications to existing coal-fired facilities to reach environmental compliance. Unfortunately, this approach has led to fragmented solutions to balance our energy and environmental needs. To date, few integrated gasification combined-cycle (IGCC) suppliers have been able to compete with the cost of other more conventional technologies or fuels. One need only look at the complexity of many IGCC approaches to understand that unless a view toward IEC is adopted, the widespread application of such otherwise potentially attractive technologies will be unlikely in our lifetime. Jacobs-Sirrine Engineers and Riley Stoker Corporation are working in partnership with the Department of Energy`s Morgantown Energy Technology Center to help demonstrate an innovative coal gasification technology called {open_quotes}PyGas{trademark},{close_quotes} for {open_quotes}pyrolysis-gasification{close_quotes}. This hybrid variation of fluidized-bed and fixed-bed gasification technologies is being developed with the goal to efficiently produce clean gas at costs competitive with more conventional systems by incorporating many of the principles of IEC within the confines of a single-gasifier vessel. Our project is currently in the detailed design stage of a 4 ton-per-hour gasification facility to be built at the Fort Martin Station of Allegheny Power Services. By locating the test facility at an existing coal-fired plant, much of the facility infrastructure can be utilized saving significant costs. Successful demonstration of this technology at this new facility is a prerequisite to its commercialization.

  12. Electronic power generators for ultrasonic frequencies

    NASA Technical Reports Server (NTRS)

    Ciovica, D.

    1974-01-01

    The design and construction of an ultrasonic frequency electronic power generator are discussed. The principle design elements of the generator are illustrated. The generator provides an inductive load with an output power of two kilowatts and a variable output frequency in the fifteen to thirty KiloHertz range. The method of conducting the tests and the results obtained with selected materials are analyzed.

  13. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  14. Piezoelectric Energy Harvesting: A Green and Clean Alternative for Sustained Power Production

    ERIC Educational Resources Information Center

    Cook-Chennault, Kimberly Ann; Thambi, Nithya; Bitetto, Mary Anne; Hameyie, E. B.

    2008-01-01

    Providing efficient and clean power is a challenge for devices that range from the micro to macro in scale. Although there has been significant progress in the development of micro-, meso-, and macro-scale power supplies and technologies, realization of many devices is limited by the inability of power supplies to scale with the diminishing sizes…

  15. Thermoelectric power generator with intermediate loop

    SciTech Connect

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  16. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon E.; Crane, Douglas Todd

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  17. Pulse power applications of flux compression generators

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Caird, R. S.; Erickson, D. J.; Freeman, B. L.

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.

  18. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  19. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)

    SciTech Connect

    Albert C. Tsang

    2004-03-26

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the

  20. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    SciTech Connect

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator

  1. Bioinspired Multifunctional Paper-Based rGO Composites for Solar-Driven Clean Water Generation.

    PubMed

    Lou, Jinwei; Liu, Yang; Wang, Zhongyong; Zhao, Dengwu; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil; Zhang, Wang; Zhang, Di; Tao, Peng; Shang, Wen; Deng, Tao

    2016-06-15

    Reusing polluted water through various decontamination techniques has appeared as one of the most practical approaches to address the global shortage of clean water. Rather than relying on single decontamination mechanism, herein we report the preparation and utilization of paper-based composites for multifunctional solar-driven clean water generation that is inspired by the multiple water purification approaches in biological systems. The reduced graphene oxide (rGO) sheets within such composites can efficiently remove organic contaminants through physical adsorption mechanism. Under solar irradiation, the floating rGO composites can instantly generate localized heating, which not only can directly generate clean water through distillation mechanism but also significantly enhance adsorption removal performance with the assistance of upward vapor flow. Such porous-structured paper-based composites allow for facile incorporation of photocatalysts to regenerate clean water out of contaminated water with combined adsorption, photodegradation, and interfacial heat-assisted distillation mechanisms. Within a homemade all-in-one water treatment device, the practical applicability of the composites for multifunctional clean water generation has been demonstrated. PMID:27228106

  2. Replacing methyl chloroform for cleaning turbine generator components and NDE applications

    SciTech Connect

    Bailey, K.P.; O'Shanka, J.J.; Corley, T.J. . Power Generation Business Unit); Sadhir, R.K. )

    1993-08-01

    Industrial applications of methyl chloroform (1,1,1-trichloroethane) have proven to be a significant concern to the environment. As a chlorofluorocarbon (CFC), the chemical is classified by the Environmental Protection Agency as an ozone-layer-depleting substance (OLDS). CFCs are effective cleaners of organic-based materials (oils, greases, cutting fluids, etc.). The Westinghouse Power Generation Business Unit (PGBU) has taken a proactive approach to this problem and instituted two programs in 1991 and 1992 to eliminate their consumption of CFCs. The scope of the first program was to establish an alternate cleaner for the removal of oil on generator stator windings. The second program built on the work of the first program, extending the scope to include general purpose cleaning of various contaminants prior to and at the completion of nondestructive examinations (NDE). The article that follows details the methodology, results, discussions, and conclusions of the second program and the data extrapolated from the first program. The specific NDE qualification requirements are highlighted in the methodology section.

  3. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect

    Doug Strickland; Albert Tsang

    2002-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas

  4. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  5. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  6. Gas cleaning system and method

    DOEpatents

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  7. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  8. Probabilistic Evaluation of Wind Power Generation

    NASA Astrophysics Data System (ADS)

    Muhamad Razali, N. M.; Misbah, Muizzuddin

    2013-06-01

    The power supplied by wind turbine generators (WTG) is widely random following the stochastic nature of weather conditions. For planning and decision making purposes, understanding and evaluation of the behaviour and distribution of WTG's output power are crucial. Monte Carlo simulation enables the realization of artificial futures by generating a huge number of sample paths of outcomes to perform this analysis. The paper presents an algorithm developed for a random wind speed generator governed by the probability density function of Weibull distribution and evaluates the WTG's output by using the power curve of wind turbines. The method may facilitate assessment of suitable turbine site as well as generator selection and sizing.

  9. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  10. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  11. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are

  12. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect

    Albert Tsang

    2003-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Two project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment

  13. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, Kingsbury III; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2011-03-22

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  14. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2013-11-05

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  15. Power Plant Emission Reductions Using a Generation Performance Standard

    EIA Publications

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  16. Keeping condensers clean

    SciTech Connect

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  17. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    SciTech Connect

    Burford, D.P.

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of the scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.

  18. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  19. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  20. New US clean-power plan under fire

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2015-09-01

    The Obama administration has announced an initiative to mitigate the effects of climate change that it describes as “the first ever national standards to limit carbon pollution from power plants”.

  1. 2005 clean coal and power conference. Conference proceedings

    SciTech Connect

    2005-07-01

    The theme of the conference was 'The paradox: today's coal technologies versus tomorrow's promise'. The sessions covered: today's technologies, tomorrow's potential; economic stability; energy security; transition to sustainable energy future; new coal power technologies leading to zero emission coal; existing power plants - improved performance through use of new technology; and carbon capture and storage R & D - challenges and opportunities. Some of the papers only consist of the viewgraphs/overheads.

  2. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Energy Regulatory Commission Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy, Inc.; Constellation Power Source Generation, Inc.; Criterion Power..., CER Generation II, LLC, Constellation Mystic Power, LLC, Constellation NewEnergy, Inc.,...

  3. Coal-burning magnetohydrodynamic power generation

    SciTech Connect

    Kessler, R.; Hals, F. )

    1992-01-01

    In this paper, coal-burning magnetohydrodynamic (MHD) electric power generation technology is described, and its economic and environmental advantages are discussed. advanced MHD/steam plants can achieve efficiencies of 55%-60% with less environmental intrusion than form conventional coal-burning steam plants. The national program for development of MHD power generation is outlined and the development status of individual components and subsystems is presented.

  4. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  5. Geothermal energy: clean power from the Earth's heat

    USGS Publications Warehouse

    Duffield, Wendell A.; Sass, John H.

    2003-01-01

    Societies in the 21st century require enormous amounts of energy to drive the machines of commerce and to sustain the lifestyles that many people have come to expect. Today, most of this energy is derived from oil, natural gas, and coal, supplemented by nuclear power. Local exceptions exist, but oil is by far the most common source of energy worldwide. Oil resources, however, are nonrenewable and concentrated in only a few places around the globe, creating uncertainty in long-term supply for many nations. At the time of the Middle East oil embargo of the 1970s, about a third of the United States oil supply was imported, mostly from that region. An interruption in the flow of this import disrupted nearly every citizen’s daily life, as well as the Nation’s economy. In response, the Federal Government launched substantial programs to accelerate development of means to increasingly harness “alternative energies”—primarily biomass, geothermal, solar, and wind. The new emphasis on simultaneously pursuing development of several sources of energy recognized the timeless wisdom found in the proverb of “not putting all eggs in one basket.” This book helps explain the role that geothermal resources can play in helping promote such diversity and in satisfying our Nation’s vast energy needs as we enter a new millennium. For centuries, people have enjoyed the benefits of geothermal energy available at hot springs, but it is only through technological advances made during the 20th century that we can tap this energy source in the subsurface and use it in a variety of ways, including the generation of electricity. Geothermal resources are simply exploitable concentrations of the Earth’s natural heat (thermal energy). The Earth is a bountiful source of thermal energy, continuously producing heat at depth, primarily by the decay of naturally occurring radioactive isotopes—principally of uranium, thorium, and potassium—that occur in small amounts in all rocks

  6. Generation of sonic power during welding

    NASA Technical Reports Server (NTRS)

    Mc Campbell, W. M.

    1969-01-01

    Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.

  7. Review of pulsed rf power generation

    SciTech Connect

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies.

  8. Apparatus and method for thermal power generation

    DOEpatents

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  9. COMPREHENSIVE STANDARDS: THE POWER GENERATION CASE

    EPA Science Inventory

    This study presents an illustrative data base of material quantities and environmental effluents in the fuel cycles for alternative technologies of thermally generated power. The entire fuel cycle for each of the alternative ten technologies is outlined for a representative power...

  10. Agent-Based Modleing of Power Plants Placement to Evaluate the Clean Energy Standard Goal

    SciTech Connect

    Omitaomu, Olufemi A

    2014-01-01

    There is a political push for utilities to supply a specified share of their electricity sales from clean energy resources under the clean energy standard (CES). The goal is to achieve 80% clean energy by 2035. However, there are uncertainties about the ability of the utility industry to ramp up quickly even with the incentives that will be provided. Water availability from the streams is one of the major factors. The contiguous United States is divided into eighteen water regions, and multiple states share water from a single water region. Consequently, water usage decisions made in one state (located upstream of a water region that crosses multiple states) will greatly impact what is available downstream in another state. In this paper, an agent-based modeling approach is proposed to evaluate the clean energy standard goal for water-dependent energy resources. Specifically, using a water region rather than a state boundary as a bounding envelope for the modeling and starting at the headwaters, virtual power plants are placed based on the conditions that there is: (i) suitable land to site a particular power plant, (ii) enough water that meet regulatory guidelines within 20 miles of the suitable land, and (iii) a 20-mile buffer zone from an existing or a virtual power plant. The results obtained are discussed in the context of the proposed clean energy standard goal for states that overlap with one water region.

  11. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  12. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  13. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  14. Reliability of Maximal Back Squat and Power Clean Performances in Inexperienced Athletes.

    PubMed

    Comfort, Paul; McMahon, John J

    2015-11-01

    The aim of the study was to determine between-session reliability of maximal weight lifted during the back squat and power clean, in inexperienced athletes, and to identify the smallest detectable difference between sessions. Forty-four collegiate athletes (men: n = 32; age: 21.5 ± 2.0 years; height: 180.0 ± 6.1 cm; body mass: 81.01 ± 7.42 kg; women: n = 12; age: 21.0 ± 1.9 years; height: 169.0 ± 5.2 cm; body mass: 62.90 ± 7.46 kg) participated in this study. One repetition maximum (1RM) back squat and power cleans were each performed twice on separate days, 3-5 days apart. Paired samples' t tests revealed no significant differences between trial 1 and trial 2 of the power clean (70.55 ± 24.24 kg, 71.22 ± 23.87 kg, p > 0.05, power = 0.99) and the back squat (130.32 ± 34.05 kg, 129.82 ± 34.07 kg, p > 0.05, power = 1.0). No differences in reliability or measurement error were observed between men and women. Intraclass correlation coefficients (ICCs) demonstrated a high reliability (ICC = 0.997, p < 0.001) for between-session 1RM power clean with an R of 0.987; similarly, high reliability was observed for between-session back squat performances (ICC = 0.994, p < 0.001), with an R of 0.978. The smallest detectable difference between sessions for both measures were ∼5%, highlighting that coaches and researchers should look for a change of >5% to identify a meaningful change in both maximal back squat and power clean performance. PMID:25559912

  15. Power costs of thirteen electric generation technologies

    SciTech Connect

    Lang, R.C.; Doyle, J.F.

    1983-01-01

    This paper reports on a study performed for the Bonneville Power Administration (BPA) to estimate as consistently as possible the cost of future generating technologies using renewable and conventional resources and highly fuel-efficient systems. The primary objective of the study was to evaluate future generating technologies by calculating the 30-yr. levelized busbar power costs of each technology on a consistent basis. Esimates for capital costs, operating costs, project schedules, fuel costs, annual energy generation and cost uncertainty were developed for the busbar power cost analysis. The study was designed to produce the most objective and consistent cost estimates possible for all of the generating technologies. The analysis of the uncertainty in capital cost and project schedule shows that there is a high level of uncertainty in the future costs for the developing technologies. Includes 5 tables.

  16. Reinventing electric utilities: Competition, citizen action, and clean power

    SciTech Connect

    Smeloff, E.; Asmus, P.

    1996-12-01

    The authors consider the challenges for citizens and the utility industry in this new era of competition. Through an in-depth case study of the Sacramento Municipal Utility District (SMUD), a once-troubled utility that is now widely regarded as a model for energy efficiency and renewable energy development, they explore the changes that have occurred in the utility industry, and the implications of those changes for the future. The SMUD portrait is complemented by regional case studies of Portland General Electric and the Washington Public Power Supply System, the New England Electric Service, Northern States Power, the Electricity Reliability Council of Texas, and others that highlight the efforts of citizen groups and utilities to eliminate unproductive and environmentally damaging sources of power and to promote the use of new, cleaner energy technologies. The authors present and explain some of the fundamental principles that govern restructuring, while acknowledging that solutions will depend upon the unique resource needs, culture, and utility structure of each particular region.

  17. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  18. LIFE: a sustainable solution for developing safe, clean fusion power.

    PubMed

    Reyes, Susana; Dunne, Mike; Kramer, Kevin; Anklam, Tom; Havstad, Mark; Mazuecos, Antonio Lafuente; Miles, Robin; Martinez-Frias, Joel; Deri, Bob

    2013-06-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, refueling, accountability, and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. This paper presents an overview of the delivery plan and the preconceptual design of the LIFE facility with emphasis on the key safety design principles being adopted. In order to illustrate the favorable safety characteristics of the LIFE design, some initial accident analysis results are presented that indicate potential for a more attractive licensing regime than that of current fission reactors. PMID:23629070

  19. Remote-site power generation opportunities for Alaska

    SciTech Connect

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  20. The application of power ultrasound to the surface cleaning of silica and heavy mineral sands.

    PubMed

    Farmer, A D; Collings, A F; Jameson, G J

    2000-10-01

    Power ultrasound may be used in the processing of minerals to clean their surfaces of oxidation products and fine coatings, mainly through the large, but very localised, forces produced by cavitation. Results of the application of power ultrasound to remove iron-rich coatings from the surfaces of silica sand used in glass making and to improve the electrostatic separation of mineral sand concentrates through lowering the resistivity of the conducting minerals (ilmenite and rutile) are presented. Parameters affecting ultrasonic cleaning, such as input power and levels of reagent addition, are discussed. In particular, we present data showing the relationship between power input and the particle size of surface coatings removed. This can be explained by the Derjaguin approximation for the energy of interaction between a sphere and a flat surface. PMID:11062883

  1. Flywheel-powered X-ray generator

    NASA Technical Reports Server (NTRS)

    Siedband, M. P.

    1984-01-01

    The use of a small flywheel appears to be a practical alternative to other power sources for mobile X-ray system applications. A 5 kg flywheel has been constructed which runs at 10 krpm and stores 30 KJ while requiring less than 500 W to bring the system up to speed. The wheel is coupled to an aircraft alternator and can yield pulsed power levels over 50 KWp. The aircraft alternator has the advantage of high frequency output which has also permitted the design of smaller high voltage transformers. A series of optical sensors detecting shaft position function as an electronic commutator so that the alternator may operate as a motor to bring the wheel up to operating speed. The system permits the generation of extremely powerful X-rays from a variety of low power sources such as household power outlets, automobile batteries or sources of poorly regulated electrical power such as those found in third world countries.

  2. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-01-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics. PMID:25804132

  3. Thermoelectric Fabrics: Toward Power Generating Clothing

    NASA Astrophysics Data System (ADS)

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z.; Donelson, Richard; Lin, Tong

    2015-03-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  4. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  5. Thermoelectric Fabrics: Toward Power Generating Clothing

    PubMed Central

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z.; Donelson, Richard; Lin, Tong

    2015-01-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics. PMID:25804132

  6. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  7. The Meteosat Second Generation (MSG) power system

    SciTech Connect

    Haines, J.E.; Levins, D.; Robben, A.; Sepers, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement, the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.

  8. 75 FR 71429 - Clean River Power 15, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ENERGY REGULATORY COMMISSION Project No. 13874-000 Clean River Power 15, LLC; Notice of Preliminary Permit Application Accepted.... On October 22, 2010, Clean River Power 15, LLC filed an application for a preliminary...

  9. 75 FR 71427 - Clean River Power 11, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Clean River Power 11, LLC; Notice of Preliminary Permit Application Accepted.... On October 15, 2010, Clean River Power 11, LLC filed an application for ] a preliminary...

  10. 75 FR 71427 - Clean River Power 12, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Clean River Power 12, LLC; Notice of Preliminary Permit Application Accepted.... On October 15, 2010, Clean River Power 12, LLC filed an application for a preliminary...

  11. 75 FR 70223 - Clean River Power 13, LLC; Project No. 13864-000; Notice of Preliminary Permit Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Clean River Power 13, LLC; Project No. 13864-000; Notice of Preliminary... Applications November 9, 2010. On October 15, 2010, Clean River Power 13, LLC filed an application for...

  12. 75 FR 71428 - Clean River Power 14, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Clean River Power 14, LLC; Notice of Preliminary Permit Application Accepted.... On October 15, 2010, Clean River Power 14, LLC filed an application for a preliminary...

  13. 75 FR 70226 - Clean River Power 16, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Clean River Power 16, LLC; Notice of Preliminary Permit Application Accepted.... On October 22, 2010, Clean River Power 16, LLC filed an application for a preliminary...

  14. Aircraft photovoltaic power-generating system

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.

  15. Analysis of S.1844, the Clear Skies Act of 2003; S. 843, the Clean Air Planning Act of 2003; and S. 366, the Clean Power Act of 2003

    EIA Publications

    2004-01-01

    Senator James M. Inhofe requested that the Energy Information Administration (EIA) undertake analysis of S.843, the Clean Air Planning Act of 2003, introduced by Senator Thomas Carper; S.366, the Clean Power Act of 2003, introduced by Senator James Jeffords; and S.1844, the Clear Skies Act of 2003, introduced by Senator James M. Inhofe. The EIA received this request on March 19, 2004. This Service Report responds to his request.

  16. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  17. Reliability of the one-repetition-maximum power clean test in adolescent athletes.

    PubMed

    Faigenbaum, Avery D; McFarland, James E; Herman, Robert E; Naclerio, Fernando; Ratamess, Nicholas A; Kang, Jie; Myer, Gregory D

    2012-02-01

    Although the power clean test is routinely used to assess strength and power performance in adult athletes, the reliability of this measure in younger populations has not been examined. Therefore, the purpose of this study was to determine the reliability of the 1-repetition maximum (1RM) power clean in adolescent athletes. Thirty-six male athletes (age 15.9 ± 1.1 years, body mass 79.1 ± 20.3 kg, height 175.1 ±7.4 cm) who had >1 year of training experience in weightlifting exercises performed a 1RM power clean on 2 nonconsecutive days in the afternoon following standardized procedures. All test procedures were supervised by a senior level weightlifting coach and consisted of a systematic progression in test load until the maximum resistance that could be lifted for 1 repetition using proper exercise technique was determined. Data were analyzed using an intraclass correlation coefficient (ICC[2,k]), Pearson correlation coefficient (r), repeated measures analysis of variance, Bland-Altman plot, and typical error analyses. Analysis of the data revealed that the test measures were highly reliable demonstrating a test-retest ICC of 0.98 (95% confidence interval = 0.96-0.99). Testing also demonstrated a strong relationship between 1RM measures in trials 1 and 2 (r = 0.98, p < 0.0001) with no significant difference in power clean performance between trials (70.6 ± 19.8 vs. 69.8 ± 19.8 kg). Bland-Altman plots confirmed no systematic shift in 1RM between trials 1 and 2. The typical error to be expected between 1RM power clean trials is 2.9 kg, and a change of at least 8.0 kg is indicated to determine a real change in lifting performance between tests in young lifters. No injuries occurred during the study period, and the testing protocol was well tolerated by all the subjects. These findings indicate that 1RM power clean testing has a high degree of reproducibility in trained male adolescent athletes when standardized testing procedures are followed and qualified

  18. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W.; Christenson, Todd R.

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  19. Wind power generation and dispatch in competitive power markets

    NASA Astrophysics Data System (ADS)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  20. Simulation of the flue gas cleaning system of an RDF incineration power plant.

    PubMed

    Jannelli, E; Minutillo, M

    2007-01-01

    Because of the stringent pollutant emission standards introduced with the European Union guidelines for waste incineration, it is very important to optimize the flue gas cleaning systems which are able to result in a low environmental impact according to the emission limits. In this paper a thermochemical model has been proposed for the simulation of the flue gas cleaning system of an RDF incineration plant. The model simulates the operation of the flue-gas treatment section and the combustion section by using a simplified approach. The combustion includes the grate incinerator and the post-combustion chamber, while the cleaning section includes the NO(x) reduction process (urea injection) and the scrubbing of SO(2) and HCl (Ca(OH)(2) as sorbent). The modelling has been conducted by means of ASPEN PLUS code. The simulation results have been validated with the operating data. The model proposed by the authors can be a useful tool in both evaluating the efficiency of the gas cleaning system by verifying the environmental pollution of an incinerator power plant in nominal operating conditions and in forecasting the efficiency of the cleaning system in off-design operating conditions. PMID:16750619

  1. Thermoelectric unicouple used for power generation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Zoltan, Andrew (Inventor); Zoltan, Leslie (Inventor); Snyder, Jeffrey (Inventor)

    2004-01-01

    A high-efficiency thermoelectric unicouple is used for power generation. The unicouple is formed with a plurality of legs, each leg formed of a plurality of segments. The legs are formed in a way that equalizes certain aspects of the different segments. Different materials are also described.

  2. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  3. Method and apparatus for thermal power generation

    DOEpatents

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  4. Global Climate Change - The Power Generation Challenge

    EPA Science Inventory

    The planet continues to warm; O.5 C from the 1970’s to the 2000’s. Also, worldwide CO2 emissions have increased at a 3% annual growth rate from 2000 to 2010. Such emissions are driven by fossil fuel combustion, especially in the power generation sector, & especial...

  5. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  6. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemens high temperature process

    SciTech Connect

    Verma, K.; MacNeil, C.; Odar, S.; Kuhnke, K.

    1997-02-01

    This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pitting and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators.

  7. Optical generation of radio-frequency power

    SciTech Connect

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

  8. Thermoelectric power generation system optimization studies

    NASA Astrophysics Data System (ADS)

    Karri, Madhav A.

    A significant amount of energy we consume each year is rejected as waste heat to the ambient. Conservative estimates place the quantity of energy wasted at about 70%. Converting the waste heat into electrical power would be convenient and effective for a number of primary and secondary applications. A viable solution for converting waste heat into electrical energy is to use thermoelectric power conversion. Thermoelectric power generation is based on solid state technology with no moving parts and works on the principle of Seebeck effect. In this work a thermoelectric generator (TEG) system simulator was developed to perform various parametric and system optimization studies. Optimization studies were performed to determine the effect of system size, exhaust and coolant ow conditions, and thermoelectric material on the net gains produced by the TEG system and on the optimum TEG system design. A sports utility vehicle was used as a case study for the application of TEG in mobile systems.

  9. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  10. Recent advances in RF power generation

    SciTech Connect

    Tallerico, P.J.

    1990-01-01

    This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

  11. Thermoelectric power generation for hybrid-electric vehicle auxiliary power

    NASA Astrophysics Data System (ADS)

    Headings, Leon M.; Washington, Gregory N.; Midlam-Mohler, Shawn; Heremans, Joseph P.

    2009-03-01

    The plug-in hybrid-electric vehicle (PHEV) concept allows for a moderate driving range in electric mode but uses an onboard range extender to capitalize on the high energy density of fuels using a combustion-based generator, typically using an internal combustion engine. An alternative being developed here is a combustion-based thermoelectric generator in order to develop systems technologies which capitalize on the high power density and inherent benefits of solid-state thermoelectric power generation. This thermoelectric power unit may find application in many military, industrial, and consumer applications including range extension for PHEVs. In this research, a baseline prototype was constructed using a novel multi-fuel atomizer with diesel fuel, a conventional thermoelectric heat exchange configuration, and a commercially available bismuth telluride module (maximum 225°C). This prototype successfully demonstrated the viability of diesel fuel for thermoelectric power generation, provided a baseline performance for evaluating future improvements, provided the mechanism to develop simulation and analysis tools and methods, and highlighted areas requiring development. The improvements in heat transfer efficiency using catalytic combustion were evaluated, the system was redesigned to operate at temperatures around 500 °C, and the performance of advanced high temperature thermoelectric modules was examined.

  12. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  13. Isotope powered stirling generator for terrestrial applications

    NASA Astrophysics Data System (ADS)

    Tingey, Garth L.; Sorensen, Gerald C.; Ross, Brad A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  14. Isotope powered stirling generator for terrestrial applications

    SciTech Connect

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-20

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  15. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  16. Coal Gasification for Power Generation, 3. edition

    SciTech Connect

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  17. Autonomous Document Cleaning--A Generative Approach to Reconstruct Strongly Corrupted Scanned Texts.

    PubMed

    Dai, Zhenwen; Lücke, Jörg

    2014-10-01

    We study the task of cleaning scanned text documents that are strongly corrupted by dirt such as manual line strokes, spilled ink, etc. We aim at autonomously removing such corruptions from a single letter-size page based only on the information the page contains. Our approach first learns character representations from document patches without supervision. For learning, we use a probabilistic generative model parameterizing pattern features, their planar arrangements and their variances. The model's latent variables describe pattern position and class, and feature occurrences. Model parameters are efficiently inferred using a truncated variational EM approach. Based on the learned representation, a clean document can be recovered by identifying, for each patch, pattern class and position while a quality measure allows for discrimination between character and non-character patterns. For a full Latin alphabet we found that a single page does not contain sufficiently many character examples. However, even if heavily corrupted by dirt, we show that a page containing a lower number of character types can efficiently and autonomously be cleaned solely based on the structural regularity of the characters it contains. In different example applications with different alphabets, we demonstrate and discuss the effectiveness, efficiency and generality of the approach. PMID:26352627

  18. Methods for generating hydroelectric power development alternatives

    SciTech Connect

    Chang, Shoou-yuh; Liaw, Shu-liang; Sale, M.J.; Railsback, S.F.

    1989-01-01

    Hydropower development on large rivers can result in a number of environmental impacts, including potential reductions in dissolved oxygen (DO) concentrations. This study presents a methodology for generating different hydropower development alternatives for evaluation. This methodology employs a Streeter-Phelps model to simulate DO, and the Bounded Implicit Enumeration algorithm to solve an optimization model formulated to maximize hydroelectric energy production subject to acceptable DO limits. The upper Ohio River basin was used to illustrate the use and characteristics of the methodology. The results indicate that several alternatives which meet the specified DO constraints can be generated efficiently, meeting both power and environmental objectives. 17 refs., 2 figs., 1 tab.

  19. A market focus. [The changing power generation equipment market

    SciTech Connect

    Burr, M.T.

    1991-10-01

    This article is a compilation of the views of the changing power generation equipment market by executives of ASEA-Brown Boveri, General Electric Power Generation, Siemans Power Generation Group, and Westinghouse Electric Corporation Power Generation unit. The topics of the article include a changing market, the home market, the turnkey supplier, and back to baseload.

  20. Unregulated generation relationships at Niagara Mohawk Power Corporation

    SciTech Connect

    Schrayshuen, H.

    1995-10-01

    This paper examines the contractual and mandated power generation pricing relationships between an electric utility and unregulated power generation stations. The topics of the paper include types of generation facilities, current capacity of unregulated generators, rights to power markets, utility planning, responding to a changing market, power purchase agreement relationships, enforcement and renegotiation.

  1. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    PubMed

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-01

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs. PMID:24595200

  2. Heat Management in Thermoelectric Power Generators.

    PubMed

    Zebarjadi, M

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one. PMID:27033717

  3. Heat Management in Thermoelectric Power Generators

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2016-04-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one.

  4. Network integration of distributed power generation

    NASA Astrophysics Data System (ADS)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  5. Heat Management in Thermoelectric Power Generators

    PubMed Central

    Zebarjadi, M.

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one. PMID:27033717

  6. Assessment of Japan's Optimal Power Generation Mix Considering Massive Deployment of Variable Renewable Power Generation

    NASA Astrophysics Data System (ADS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    This paper analyzes Japan's optimal power generation mix considering massive deployment of solar photovoltaic (PV) system and wind power generation. The extensive introduction of PV system and wind power system are expected to play an important role in addressing energy security and climate change concern in Japan. Considering this expected large-scale deployment of PV system in electric power system, it is necessary to investigate the optimal power generation mix which is technologically capable of controlling and accommodating the intermittent output-power fluctuation inherently derived from PV and wind energy system. On these backgrounds, we develop optimal power generation mix model, explicitly analyzing the impact of output fluctuation in variable renewable in detailed resolution of time interval like 10 minutes at consecutive 365 days, with the role of stationary battery technology incorporated. Simulation results reveal that considerable deployment of those variable renewables do not necessarily require the scale of battery capacity similar as that of variable renewable capacity, due to quick load following treatment by thermal power plants, pumped-storage hydro power and battery technology over renewable output fluctuation.

  7. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  8. Utility interconnection issues for wind power generation

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  9. Cummins Power Generation SECA Phase 1

    SciTech Connect

    Charles Vesely

    2007-08-17

    The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

  10. 76 FR 55799 - Approval of Clean Air Act Prevention of Significant Deterioration Permit Issued to Avenal Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... AGENCY 40 CFR Part 52 Approval of Clean Air Act Prevention of Significant Deterioration Permit Issued to Avenal Power Center, LLC To Construct the Avenal Energy Project AGENCY: Environmental Protection Agency... decision granting the Clean Air Act Prevention of Significant Deterioration (PSD) permit...

  11. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    SciTech Connect

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  12. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  13. Wind powered generator with cyclic airfoil latching

    SciTech Connect

    Bair, P.

    1981-12-01

    A wind powered generator rotatable about a vertical axis is described. A plurality of vertically disposed airfoils are provided, the airfoils being rotatable about a vertical axis parallel to the axis of the generator. The airfoils are selectively latched to be disposed perpendicularly of the wind direction during one phase of their revolution about the generator axis and are selectively unlatched to be permitted to rotate into a position generally parallel to the wind direction during other phases of their revolution. The latching and unlatching of the airfoils is determined by the wind direction and is effected by electronic means which determine the point of latching and unlatching as a function of the wind direction measured by a wind vane. The airfoils may comprise sails composed of a flexible material stretched into a predetermined shape on a frame.

  14. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Astrophysics Data System (ADS)

    Bailey, S.; Landis, G.; Raffaelle, R.; Hepp, A.

    2002-01-01

    A recent NASA program, Space Solar Power Exploratory Research and Technology (SERT), investigated the technologies needed to provide cost-competitive ground baseload electrical power from space based solar energy conversion. This goal mandated low cost, light weight gigawatt (GW) power generation. Investment in solar power generation technologies would also benefit high power military, commercial and science missions. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the moon or mars, space based lasers or radar, or as large earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or as in the SERT program, potentially beaming power to the earth itself. This paper will discuss requirements for the two latter options, the current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies which may impact the future choice of space solar cells for a high power mission application. The space world has primarily transitioned to commercially available III-V (GaInP/GaAs/Ge) cells with 24-26% air mass zero (AMO) efficiencies. Research in the III-V multi-junction solar cells has focused on fabricating either lattice-mismatched materials with optimum stacking bandgaps or new lattice matched materials with optimum bandgaps. In the near term this will yield a 30% commercially available space cell and in the far term possibly a 40% cell. Cost reduction would be achieved if these cells could be grown on a silicon rather than a germanium substrate since the substrate is ~65% of the cell cost or, better yet, on a polyimide or possibly a ceramic substrate. An overview of multi-junction cell characteristics will be presented here. Thin film cells require substantially less material and have promised the advantage of large area, low cost manufacturing. However, space cell requirements

  15. Foundations for the Fourth Generation of Nuclear Power

    SciTech Connect

    Lake, James Alan

    2000-11-01

    Plentiful, affordable electrical energy is a critically important commodity to nations wishing to grow their economy. Energy, and more specifically electricity, is the fuel of economic growth. More than one-third of the world’s population (more than 2 billion people), however, live today without access to any electricity. Further, another 2 billion people in the world exist on less than 100 watts of electricity per capita. By comparison, the large economies of Japan and France use more than 800 watts of electricity per capita, and the United States uses nearly 1500 watts of electricity per capita. As the governments of developing nations strive to improve their economies, and hence the standard of living of their people, electricity use is increasing. Several forecasts of electrical generation growth have concluded that world electricity demand will roughly double in the next 20–25 years, and possibly triple by 2050. This electrical generation growth will occur primarily in the rapidly developing and growing economies in Asia and Latin America. This net growth is in addition to the need for replacement generating capacity in the United States and Europe as aging power plants (primarily fossil-fueled) are replaced. This very substantial worldwide electricity demand growth places the issue of where this new electricity generation capacity is to come from squarely in front of the developed countries. They have a fundamental desire (if not a moral obligation) to help these developing countries sustain their economic growth and improve their standard of living, while at the same time protecting the energy (and economic) security of their own countries. There are currently 435 power reactors generating about 16 percent of the world’s electricity. We know full well that nuclear power shows great promise as an economical, safe, and emissions-free source of electrical energy, but it also carries at least the perception of great problems, from public safety to dealing

  16. Miniature Gas-Turbine Power Generator

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  17. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  18. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  19. Efficient coal-based power generation in India: A market opportunity

    SciTech Connect

    Gollakota, S.; Rao, N.; Staats, G.; Sinha, K.

    1998-07-01

    The planned addition of over 100,000 MW power generation capacity in India in the next 10 years will provide attractive business opportunities for independent power producers, engineering and consulting companies, and equipment manufacturers in the US. The US Agency for International Development (USAID) is providing, through the US Department of Energy (DOE), necessary technical and project development support to the government stakeholders (Indian Ministries of Power and Coal) and private stakeholders (Ahmedabad Electric Co. and Bombay Suburban Electric Supply) for identifying and promoting advanced clean coal technologies. Implementation of advanced technologies improves electric power generation efficiency and economics, and environmental management in India (e.g., reduces emissions of greenhouse gases and particulates, and increases byproduct utilization). This paper presents a brief overview of the coal-based power generation and related technical support activities being provided in India by the DOE's Federal Energy Technology Center and its support contractor, Burns and Roe Services Corporation.

  20. Integrated control of next generation power system

    SciTech Connect

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  1. Neutron generator power supply modeling in EMMA

    SciTech Connect

    Robinson, A.C.; Farnsworth, A.V.; Montgomery, S.T.; Peery, J.S; Merewether, K.O.

    1996-12-01

    Sandia National Laboratories has prime responsibility for neutron generator design and manufacturing, and is committed to developing predictive tools for modeling neutron generator performance. An important aspect of understanding component performance is explosively driven ferroelectric power supply modeling. EMMA (ElectroMechanical Modeling in ALEGRA) is a three dimensional compile time version of Sandia`s ALEGRA code. The code is built on top of the general ALEGRA framework for parallel shock-physics computations but also includes additional capability for modeling the electric potential field in dielectrics. The overall package includes shock propagation due to explosive detonation, depoling of ferroelectric ceramics, electric field calculation and coupling with a general lumped element circuit equation system. The AZTEC parallel iterative solver is used to solve for the electric potential. The DASPK differential algebraic equation package is used to solve the circuit equation system. Sample calculations are described.

  2. Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables

    SciTech Connect

    Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

    2012-06-01

    In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

  3. Learning the Hang Power Clean: Kinetic, Kinematic, and Technical Changes in Four Weightlifting Naive Athletes.

    PubMed

    Haug, William B; Drinkwater, Eric J; Chapman, Dale W

    2015-07-01

    The investment in learning required to reach benefit with weightlifting training is currently not well understood in elite athletes. The purpose of this investigation was to quantify changes in vertical jump power production and kinematic variables in hang power clean (HPC) performance during the learning process from a naive state in a multiple single-subject research design. Four elite athletes undertook HPC learning for approximately 20-30 minutes twice per week over a 169-day period. Changes in parameters of vertical power production during squat jump (SJ) and countermovement jump (CMJ) were monitored from baseline (day 0) and at 3 additional occasions. Hang power clean movement kinematics and bar path traces were monitored from day 35 and at 3 additional occasions particular to the individual's periodized training plan. Descriptive statistics were reported within athletes as mean ± SD. We observed a 14.1-35.7% (SJ) and a -14.4 to 20.5% (CMJ) gain in peak power across the 4 jump testing occasions with improvements over the first 4 weeks (SJ: 9.2-32.6%; CMJ: -2.91 to 20.79%). Changes in HPC movement kinematics and barbell path traces occurred for each athlete indicating a more rearward-directed center of pressure over the concentric phase, greater double knee bend during the transition phase, decreased maximal plantar flexion, and minimal vertical displacement of body mass with HPC learning. Considering the minimal investment of 4 weeks to achieve increases in vertical power production, the benefits of training with HPC justified the associated time costs for these 4 elite athletes. PMID:25559908

  4. HangOut: generating clean PSI-BLAST profiles for domains with long insertions

    PubMed Central

    Kim, Bong-Hyun; Cong, Qian; Grishin, Nick V.

    2010-01-01

    Summary: Profile-based similarity search is an essential step in structure-function studies of proteins. However, inclusion of non-homologous sequence segments into a profile causes its corruption and results in false positives. Profile corruption is common in multidomain proteins, and single domains with long insertions are a significant source of errors. We developed a procedure (HangOut) that, for a single domain with specified insertion position, cleans erroneously extended PSI-BLAST alignments to generate better profiles. Availability: HangOut is implemented in Python 2.3 and runs on all Unix-compatible platforms. The source code is available under the GNU GPL license at http://prodata.swmed.edu/HangOut/ Contact: kim@chop.swmed.edu; grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20413635

  5. Rotary-Atomizer Electric Power Generator

    NASA Astrophysics Data System (ADS)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  6. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... thermoelectric generating stations. Increased demands for electric power throughout the East Coast can be... and thermoelectric generation. The direct and indirect effects of existing and proposed...

  7. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... thermoelectric generating stations. Increased demands for electric power throughout the East Coast can be... and thermoelectric generation. The direct and indirect effects of existing and proposed...

  8. Off-Gas Generation Rate during Chemical Cleaning Operations at the Savannah River Site - 12499

    SciTech Connect

    Wiersma, Bruce J.; Subramanian, Karthik H.; Ketusky, Edward T.

    2012-07-01

    The enhanced chemical cleaning process (ECC) is being developed at the Savannah River Site (SRS) to remove the residual radioactive sludge heel that remains in a liquid waste storage tank. Oxalic acid is the chemical agent utilized for this purpose. However, the acid also corrodes the carbon steel tank wall and cooling coils. If the oxalic acid has little interaction with the sludge, hydrogen gas could conceivably evolve at cathodic areas due to the corrosion of the carbon steel. Scenarios where hydrogen evolution could occur during ECC include the initial filling of the tank prior to agitation and near the end of the process when there is little or no sludge present. The purpose of this activity was to provide a bounding estimate for the hydrogen generation rate during the ECC process. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. The tests were performed with polished ASTM A285 Grade C carbon steel coupons. This steel is representative of the Type I and II waste tanks at SRS. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 deg. C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound limit on the maximum

  9. New power politics will determine generation's path

    SciTech Connect

    Maize, K.; Neville, A.; Peltier, R.

    2009-01-15

    The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

  10. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  11. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  12. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  13. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  14. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  15. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  16. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  17. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  18. Report of workshop on clean and inexhaustible space solar power at unispace III conference

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Mankins, J.; Erb, B.; Vassaux, D.; Pignolet, G.; Kassing, D.; Collins, P.

    2001-12-01

    The third United Nations Global Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) was held from 19 to 30 July, 1999 at Vienna, Austria. The theme of the Conference was "Space Benefits for Humanity in the Twenty-first Century". The IAF Power Committee organized the Workshop on Clean and Inexhaustible Space Solar Power (SSP) as a part of the Technical Forum. At the beginning of the workshop, current research and potential interactions of SSP with the environment were presented, together with the outlook for worldwide energy requirements. The feasibility, benefits and disadvantages of SSP were discussed for different countries, especially developing countries. Presentations included reports on field research in equatorial countries and China. Useful findings and recommendations were submitted to the relevant committees at UNISPACE concerning international cooperation and collaboration on both political and technical issues in order to realize SSP in the near future.

  19. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  20. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  1. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  2. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  3. Diagnostics on the COBRA pulsed power generator

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Chalenski, D. A.; Chandler, K. M.; Douglass, J. D.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; McBride, R. D.; Pikuz, S. A.

    2006-10-01

    The COBRA pulsed power generator has a variable current pulse wave form and amplitude (95-180ns rise time, up to 1MA peak current). It was designed to study wire array Z pinches and X pinches, including plasma formation, pinch implosion dynamics, and pinch plasma parameters as a function of current rise time. These loads have been studied using an extensive set of diagnostics with spatial and/or temporal resolution. The set of electrical diagnostics on the COBRA generator includes Rogowski coils to monitor the total load current and the current through individual return current posts, and there is also an inductive voltage monitor. A set of extreme ultraviolet and x-ray detectors is used to study the load radiation. Wire array and X pinch plasma formation and dynamics are studied using two-frame, point projection X-pinch x-ray imaging as well as with multiframe laser probing. Flat potassium acid phtalate crystal (KAP), convex, extreme luminosity imaging conical spectrograph, and focusing spectrograph with spatial resolution with mica crystal, pinhole cameras, and a camera with a slit and a step filter set (slip step-wedge camera) can be used in each pulse to monitor the x-ray emission from the X pinch(es) and arrays in several spectral bands.

  4. Diagnostics on the COBRA pulsed power generator

    SciTech Connect

    Shelkovenko, T. A.; Chalenski, D. A.; Chandler, K. M.; Douglass, J. D.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; McBride, R. D.; Pikuz, S. A.

    2006-10-15

    The COBRA pulsed power generator has a variable current pulse wave form and amplitude (95-180 ns rise time, up to 1 MA peak current). It was designed to study wire array Z pinches and X pinches, including plasma formation, pinch implosion dynamics, and pinch plasma parameters as a function of current rise time. These loads have been studied using an extensive set of diagnostics with spatial and/or temporal resolution. The set of electrical diagnostics on the COBRA generator includes Rogowski coils to monitor the total load current and the current through individual return current posts, and there is also an inductive voltage monitor. A set of extreme ultraviolet and x-ray detectors is used to study the load radiation. Wire array and X pinch plasma formation and dynamics are studied using two-frame, point projection X-pinch x-ray imaging as well as with multiframe laser probing. Flat potassium acid phtalate crystal (KAP), convex, extreme luminosity imaging conical spectrograph, and focusing spectrograph with spatial resolution with mica crystal, pinhole cameras, and a camera with a slit and a step filter set (slip step-wedge camera) can be used in each pulse to monitor the x-ray emission from the X pinch(es) and arrays in several spectral bands.

  5. Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report

    SciTech Connect

    Zinaman, O.; Miller, M.; Bazilian, M.

    2014-04-01

    This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

  6. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  7. Power generation from nuclear reactors in aerospace applications

    SciTech Connect

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  8. Generator powered electrically heated diesel particulate filter

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  9. Calculation of guaranteed mean power from wind turbine generators

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1981-01-01

    A method for calculating the 'guaranteed mean' power output of a wind turbine generator is proposed. The term 'mean power' refers to the average power generated at specified wind speeds during short-term tests. Correlation of anemometers, the method of bins for analyzing non-steady data, the PROP Code for predicting turbine power, and statistical analysis of deviations in test data from theory are discussed. Guaranteed mean power density for the Clayton Mod-OA system was found to be 8 watts per square meter less than theoretical power density at all power levels, with a confidence level of 0.999. This amounts to 4 percent of rated power.

  10. Direct charge radioisotope activation and power generation

    DOEpatents

    Lal, Amit; Li, Hui; Blanchard, James P.; Henderson, Douglass L.

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  11. Advanced gasification-based biomass power generation

    SciTech Connect

    Williams, R.H.; Larson, E.D.

    1993-12-31

    A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

  12. Power generation for offshore oil production

    SciTech Connect

    Chellini, R.

    1997-01-01

    French industry has played a major role in supplying surface equipment for the exploitation of the N`Kossa oil field, located in deep waters (150-300 m) some 60 km offshore the Congo Coast. This immense reservoir (7 km long, 4 km wide, 3000 m under the seabed) was discovered in 1984, and production of oil and LPG started recently. Production of crude oil, which will peak 5 million tons in 1998, and LPG, reaching 300000 tons in 1999, is expected to continue for a period of 30 years. The NKP floating barge used for production is considered a world first in many aspects. It was designed by CTIP Geoproduction (TPG) for the operator, ELF Congo, and was constructed in Marseilles. The barge, which features a prestressed concrete hull, has a bearing capacity of 330000 tons. It is 220 long and 46 m wide, providing a deck area of one hectare. All production facilities as well as living quarters for 160 people are housed on the barge which, for construction purposes, was subdivided into six modules. This paper describes the design of the power generation module. 3 figs.

  13. Recent progress in zirconia-based fuel cells for power generation

    SciTech Connect

    Singhal, S.C.

    1992-01-01

    High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

  14. Recent progress in zirconia-based fuel cells for power generation

    SciTech Connect

    Singhal, S.C.

    1992-12-01

    High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

  15. An introduction to the design, commissioning and operation of nuclear air cleaning systems for Qinshan Nuclear Power Plant

    SciTech Connect

    Xinliang Chen; Jiangang Qu; Minqi Shi

    1995-02-01

    This paper introduces the design evolution, system schemes and design and construction of main nuclear air cleaning components such as HEPA filter, charcoal adsorber and concrete housing etc. for Qinshan 300MW PWR Nuclear Power Plant (QNPP), the first indigenously designed and constructed nuclear power plant in China. The field test results and in-service test results, since the air cleaning systems were put into operation 18 months ago, are presented and evaluated. These results demonstrate that the design and construction of the air cleaning systems and equipment manufacturing for QNPP are successful and the American codes and standards invoked in design, construction and testing of nuclear air cleaning systems for QNPP are applicable in China. The paper explains that the leakage rate of concrete air cleaning housings can also be assured if sealing measures are taken properly and embedded parts are designed carefully in the penetration areas of the housing and that the uniformity of the airflow distribution upstream the HEPA filters can be achieved generally no matter how inlet and outlet ducts of air cleaning unit are arranged.

  16. The changing face of international power generation

    SciTech Connect

    Lindsay, I.

    1997-12-31

    The author limits his remarks to a discussion of the international generator`s marketplace, especially aimed at the developing countries. He discusses future global electricity demand, generating capacity build, its financing issues, and to the commercial generating opportunities which now abound outside the US.

  17. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  18. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  19. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  20. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35), or spills....

  1. ENVIRONMENTAL ASSESSMENT OF COAL CLEANING PROCESSES: HOMER CITY POWER COMPLEX TESTING

    EPA Science Inventory

    The report describes a preliminary, preoperational environmental survey conducted at a newly constructed advanced physical coal cleaning plant near Homer City, PA. The work is part of a comprehensive environmental assessment of physical and chemical coal cleaning processes perfor...

  2. Power Generation: The Next 30 Years

    ERIC Educational Resources Information Center

    Holcomb, Robert W.

    1970-01-01

    Discusses pollution problems associated with power production. Estimates power consumption in the 1980's and the availability of fossil and nuclear fuel resources. Emphasizes needed research on air pollution, nuclear pollution, and thermal pollution. (EB)

  3. Ames Lab 101: Next Generation Power Lines

    ScienceCinema

    Russell, Alan

    2012-08-29

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  4. Bias present in US federal agency power plant CO2 emissions data and implications for the US clean power plan

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Huang, J.; Coltin, K.

    2016-06-01

    Power plants constitute roughly 40% of carbon dioxide (CO2) emissions in the United States. Climate change science, air pollution regulation, and potential carbon trading policies rely on accurate, unbiased quantification of these large point sources. Two US federal agencies—the Department of Energy and the Environmental Protection Agency—tabulate the emissions from US power plants using two different methodological approaches. We have analyzed those two data sets and have found that when averaged over all US facilities, the median percentage difference is less than 3%. However, this small difference masks large, non-Gaussian, positive and negative differences at individual facilities. For example, over the 2001–2009 time period, nearly one-half of the facilities have monthly emission differences that exceed roughly ±6% and one-fifth exceed roughly ±13%. It is currently not possible to assess whether one, or both, of the datasets examined here are responsible for the emissions difference. Differences this large at the individual facility level raise concerns regarding the operationalization of policy within the United States such as the recently announced Clean Power Plan. This policy relies on the achievement of state-level CO2 emission rate targets. When examined at the state-level we find that one-third of the states have differences that exceed 10% of their assigned reduction amount. Such levels of uncertainty raise concerns about the ability of individual states to accurately quantify emission rates in order to meet the regulatory targets.

  5. Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Capital costs

    SciTech Connect

    Veil, J.A.

    1993-01-01

    Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of total US steam electric generating capacity operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report describes alternatives available to nuclear and coal-fired plants currently operating under variances. Data from 38 plants representing 14 companies are used to estimate the national cost of implementing such alternatives. Although there are other alternatives, most affected plants would be retrofitted with cooling towers. Assuming that all plants currently operating under variances would install cooling towers, the national capital cost estimate for these retrofits ranges from $22.7 billion to $24.4 billion (in 1992 dollars). The second report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. Little justification has been found for removing the Section 316(a) variance from the CWA.

  6. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  7. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  8. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  9. Economics of wind-farm power generation in India

    SciTech Connect

    Sinha, C.S.; Kandpal, T.C. . Centre of Energy Studies)

    1990-01-01

    The financial aspects of wind power generation in India are examined. The cost estimate scaling function for horizontal axis wind turbines (HAWT) is empirically obtained. Other cost components have also been examined and effort is made to generate a cost function for wind farms with grid connected HAWT wind energy conversion systems. The cost function is then used to compute the cost of wind generated electricity from the wind farms in India and the results are compared with the reported cost of generation from the wind farms. The potential of wind-farm power generation is discussed in the light of the cost of power generation by selected conventional technologies in India.

  10. Potential of wind power projects under the Clean Development Mechanism in India

    PubMed Central

    Purohit, Pallav; Michaelowa, Axel

    2007-01-01

    Background So far, the cumulative installed capacity of wind power projects in India is far below their gross potential (≤ 15%) despite very high level of policy support, tax benefits, long term financing schemes etc., for more than 10 years etc. One of the major barriers is the high costs of investments in these systems. The Clean Development Mechanism (CDM) of the Kyoto Protocol provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO2 emissions at lowest cost that also promotes sustainable development in the host country. Wind power projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development, if developed correctly. Results Our estimates indicate that there is a vast theoretical potential of CO2 mitigation by the use of wind energy in India. The annual potential Certified Emissions Reductions (CERs) of wind power projects in India could theoretically reach 86 million. Under more realistic assumptions about diffusion of wind power projects based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 41 to 67 million and 78 to 83 million by 2020. Conclusion The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of wind power projects is not likely to reach its maximum estimated potential in another 15 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced. PMID:17663772

  11. Alternative power generation concepts for space

    SciTech Connect

    Brandhorst, H.W. Jr.; Juhasz, A.J.; Jones, B.I.

    1994-09-01

    With the advent of the NASA Space Station, there has emerged a general realization that large quantities of power in space are necessary and, in fact, enabling. This realization has led to the examination of alternative options to the ubiquitous solar array/battery power system. Several factors led to the consideration of solar dynamic and nuclear power systems. These include better scaling to high power levels, higher efficiency conversion and storage subsystems, and lower system specific mass. The objective of this paper is to present the results of trade and optimization studies that high-light the potential of solar and nuclear dynamic systems relative to photovoltaic power systems.

  12. Monolithic fuel cell based power source for burst power generation

    SciTech Connect

    Fee, D.C.; Blackburn, P.E.; Busch, D.E.; Dees, D.W.; Dusek, J.; Easler, T.E.; Ellingson, W.A.; Flandermeyer, B.K.; Fousek, R.J.; Heiberger, J.J.; Majumdar, S.; McPheeters, C.C.; Mrazek, F.C.; Picciolo, J.J.; Singh, J.P.; Poeppel, R.B.

    1988-01-01

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The requisite high power, long-duration bursts appear achievable with appropriate development of the concept. A monolithic fuel cell/nuclear reactor system clearly possesses several advantages. Fabrication methods, performance advantages, and applications are discussed in this report.

  13. Underwater vehicle propulsion and power generation

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2008-01-01

    An underwater vehicle includes a shaft with a propeller disposed thereon; a generator/motor having a stator and a rotor, the rotor being operable to rotate with the propeller; at least one energy storage device connected to the generator/motor; and a controller for setting the generator/motor in a charge mode, a propulsion mode and an idle mode.

  14. Generating Functions for the Powers of Fibonacci Sequences

    ERIC Educational Resources Information Center

    Terrana, D.; Chen, H.

    2007-01-01

    In this note, based on the Binet formulas and the power-reducing techniques, closed forms of generating functions for the powers of Fibonacci sequences are presented. The corresponding results are extended to some other famous sequences as well.

  15. Generator and rechargeable battery system for pedal powered vehicles

    SciTech Connect

    Ryan, D.

    1985-11-26

    A generator and rechargeable battery system for use with pedal powered vehicles, such as bicycles, and where either the generator or battery can intermittently power a load such as a lighting system of the vehicle in one mode of operation, and in which the generator can recharge the battery in another mode of operation. A simple selection switch which is manually operable by the operator of the vehicle enables selection between powering of the load or recharging of the battery.

  16. Clean coal technologies market potential

    SciTech Connect

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  17. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  18. Efficient millimeter wave 1140 GHz/ diode for harmonic power generation

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Epitaxial gallium arsenide diode junction formed in a crossed waveguide structure operates as a variable reactance harmonic generator. This varactor diode can generate power efficiently in the low-millimeter wavelength.

  19. Unalaska geothermal exploration project. Electrical power generation analysis. Final report

    SciTech Connect

    Not Available

    1984-04-01

    The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

  20. The CAIR vacatur raises uncertainty in the power generation industry

    SciTech Connect

    Dan Weiss; John Kinsman

    2008-12-15

    On 11 July 2008, the U.S. Court of Appeals for the District of Columbia issued a unanimous decision vacating the entire Clean Air Interstate Rule (CAIR) and the associated federal implementation plan. The upset of this program to reduce power plant sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx) emissions in the eastern United States was a great surprise, creating operational and planning turmoil in the industry. 4 refs.

  1. Wastewater generated during cleaning/washing procedures in a wood-floor industry: toxicity on the microalgae Desmodesmus subspicatus.

    PubMed

    Laohaprapanon, S; Kaczala, F; Salomon, P S; Marques, M; Hogland, W

    2012-01-01

    In industries based on dry processes, such as wood floor and wood furniture manufacture, wastewater is mainly generated after cleaning of surfaces, storage tanks and machinery. Owing to the small volumes, onsite treatment options and potential environmental risks posed to aquatic ecosystems due to discharge of these wastewaters are seldom investigated. In the present study, the effects of cleaning wastewater streams generated at two wood floor production lines on Desmodesmus subspicatus were investigated. The microalgae was exposed to different wastewater concentrations (100, 50, 25, 12.5 and 6.25% v:v) and the algae growth evaluation was based on in vivo chlorophyll fluorescence, cell density, cell size (number of cells/colony) and cell ratio (length/width). Inhibitory effects of the tested wastewaters on the microalgae were positively related to concentration and negatively related to exposure time. The EC50,24 h of blade cleaning wastewater (BCW) and floor cleaning wastewater (FCW) were 3.36 and 5.87% (v:v), respectively. No negative effect on cell colony formation was caused by BCW, whereas an increase of 90% unicellular cells was observed in FCW concentrations below 50% (v:v). At the lowest concentration (3.13% v:v) where no growth inhibition was observed, both wastewater streams caused changes in cell dimensions by increasing cell length and width. To conclude, wastewaters generated during cleaning procedures in the wood floor industries can have severe environmental impacts on aquatic organisms, even after high dilution. Therefore, these wastewaters must be treated before being discharged into water bodies. PMID:23393987

  2. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Landis, Geoffrey; Hepp, Aloysius; Raffaelle, Ryne

    2002-01-01

    This paper discusses requirements for large earth orbiting power stations that can serve as central utilities for other orbiting spacecraft, or for beaming power to the earth itself. The current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies that may impact the future choice of space solar cells for high power mission applications are addressed.

  3. Study of Low Voltage Ride Through Performance for Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Hirawata, Ryoya; Kai, Takaaki

    Recently, the introduction of wind power generation is increasing rapidly. The ratio of wind power generation to the capacity of a total generation is getting higher and higher. When the phase-to-phase fault occurs in the power system, the frequency of power system is lower due to disconnecting of the wind power generation with doubly fed induction generator (DFIG). Therefore, the power system might become unstable. This paper describes the LVRT (low voltage ride through) performance improvement scheme of the wind power generation with DFIG. The wind power generation is disconnected from the grid in case of the power system fault. It is independently in operation from the grid by controlling of the inverter equipped in the generation. After clearance of the power system fault, the wind power generation is immediately re-connected to the grid. As a result, instability in the power system disappears. The performance of LVRT is confirmed by using simulation software PSCAD/EMTDC. The simulation result shows an excellent result to the three-phase short-circuit fault of the voltage dip 100%.

  4. Dependences of Generator Parameters on Pulsed Power Ice Breaking

    NASA Astrophysics Data System (ADS)

    Ihara, Satoshi; Kominato, Yuichi; Fukuda, Kazuyuki; Yamabe, Chobei; Ushio, Shuki

    In this research, investigation on breaking of ice using a pulsed power generator as a navigation of ice-breaker at ice-covered ocean, was described. In these experiments, pulsed arc discharge was formed by Marx generator. In order to investigate the dependence of input energy required for ice breaking on circuit parameters of generator, the capacitance of generator was changed. The input energy for ice-breaking was calculated from waveforms of electric power. It was found that the input energy for ice-breaking decreased as the peak power increased with decrease of the capacitance of generator.

  5. New generation low power radiation survey instruments

    SciTech Connect

    Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Umbarger, C.J.; Wolf, M.A.

    1984-02-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and powersaving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Use of a capacitor as a power source eliminates many problems commonly associated with battery-operated instruments, such as having to open the case to change batteries, battery storage life, availability of batteries in the field, and some savings in weight. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments.

  6. CONTROL OF WASTE AND WATER POLLUTION FROM POWER PLANT FLUE GAS CLEANING SYSTEMS: FIRST ANNUAL R AND D REPORT

    EPA Science Inventory

    The report summarizes and assesses the state of research and development in the fields of non-regenerable flue gas cleaning (FGC) waste treatment, utilization, and disposal, as well as water reuse technology, for coal-fired utility power plants. Significant results cover: (1) che...

  7. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  8. Comprehensive report to Congress, Clean Coal Technology program: Pinon Pine IGCC Power Project

    SciTech Connect

    Not Available

    1992-06-01

    The objective of the proposed project is to demonstrate an advanced IGCC system based upon the air-blown, fluidized-bed KRW gasifier with in-bed desulfurization using limestone sorbent and an external fixed- bed zinc ferrite sulfur removal system. Sierra Pacific Power Company (SPPC) requested financial assistance from DOE for the design, construction, and operation of a nominal 800 ton-per-day (86-Megawatt gross), air blown integrated gasification combined-cycle (IGCC) demonstration plant. The project, named the Pinon Pine IGCC Power Project, is to be located at SPPC's Tracy Station, a power generation facility located on a rural 400-acre plot about 17 miles east of Reno. The demonstration plant will produce electrical power for the utility grid. The project, including the demonstration phase, will last 96 months at a total cost of $269,993,100. DOE's share of the project cost will be 50 percent, or $134,996,550.

  9. Demystifying new generation silicon high power FETs

    NASA Astrophysics Data System (ADS)

    McIntyre, S.

    1984-04-01

    In the early 70s, an American company developed a shadow-masked version of a power FET which delivered approximately 5 watts at 2 GHz. By 1975, there was considerable interest in the 'V' groove FET. VMOS was particularly suited for RF work. The ISOFET combines today the short channel and low capacitance of the first developments with some of the process techniques developed for the VMOS structure. Similarities and differences between current ISOFET and bipolar power transistors are examined. It is pointed out that, with good power and gain up through 500 MHz, the power FET can be an excellent choice for the RF designer, especially for wideband exciters. Attention is given to dc biasing, RF FET models, coaxial transformers for wideband matching, wideband circuit design, a 40 watt ISOFET amplifier, power FETs in a pulse amplifier, and developments and remaining challenges for the near future.

  10. Resolution of the mixed waste issue for EDTA-based steam generator chemical cleaning waste solutions

    SciTech Connect

    Reid, R.D.; Schneidmiller, D.

    1996-12-31

    The valence state of chromium in an EDTA-based iron oxide removal solvent waste was determined under various storage conditions. The solvent is used to remove deposits from the secondary sides of nuclear power plant steam generators and was developed under the sponsorship of the Electric Power Research Institute and the Steam Generator Owners Group. Chromium is typically present in such waste at a level greater than 5 ppm, thus creating the possibility that the waste could be subject to regulatory control as a hazardous waste under RCRA. Additionally, the waste typically contains trace levels of radioactivity, and could potentially be classified as mixed waste. In the past, interim processing has been used to reduce the chromium concentration in the waste to allow storage for greater than 90 days without the waste being subject to regulatory control. Extended storage prior to final processing and disposal is routinely required. However, the results reported clearly show that any chromium in the waste is exclusively trivalent and will remain so indefinitely under any credible storage scenario. Thus, the waste qualifies for the trivalent chromium exclusion provided under RCRA. Further, the results show that the valence state of chromium in the waste cannot be changed without extraordinary effort.

  11. China power - thermal coal and clean coal technology export. Topical report

    SciTech Connect

    Binsheng Li

    1996-12-31

    China is the world`s fourth largest electric power producer, and is expected to surpass Japan within the next two years to become the third largest power producer. During the past 15 years, China`s total electricity generation more than tripled, increasing from about 300 TWh to about 1,000 TWh. Total installed generating capacity grew at an average of 8.2 percent per year, increasing from 66 to 214 GW. The share of China`s installed capacity in Asia increased from 21 to 31 percent. The Chinese government plans to continue China`s rapid growth rate in the power sector. Total installed capacity is planned to reach 300 GW by 2000, which will generate 1,400 TWh of electricity per year. China`s long-term power sector development is subject to great uncertainty. Under the middle scenario, total capacity is expected to reach 700 GW by 2015, with annual generation of 3,330 TWh. Under the low and high scenarios, total capacity will reach 527-1,005 GW by 2015. The high scenario representing possible demand. To achieve this ambitious scenario, dramatic policy changes in favor of power development are required; however, there is no evidence that such policy changes will occur at this stage. Even under the high scenario, China`s per capita annual electricity consumption would be only 3,000 kWh by 2015, less than half of the present per capita consumption for OECD countries. Under the low scenario, electricity shortages will seriously curb economic growth.

  12. Industry perspectives on increasing the efficiency of coal-fired power generation

    SciTech Connect

    Torrens, I.M.; Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  13. A Vector Control for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation due to high efficiently for wind energy capture. An inverter system is required to control wind turbine speed and power factor in those generators. The inverter rating of the synchronous generator equals to generator rating. However, DFIG has the advantage that the inverter rating is about 25% to the generator rating. The paper describes a vector control of DFIG inter-connected to power line. The performance of proposed vector control is examined using power system simulation software PSCAD/EMTDC for the DFIG inter-connected to 6.6kv distribution line. The results show good dynamic responses and high accuracy to the stator active power control and the stator reactive power control.

  14. Synchrophasor Applications for Wind Power Generation

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  15. Microwave power generation by magnetic superlattices

    NASA Astrophysics Data System (ADS)

    Littlejohn, S.; Nogaret, A.; Davies, S. R.; Henini, M.; Beere, H. E.; Ritchie, D. A.

    2011-12-01

    We report on microwave power emission by ballistic electrons as they cross a region of spatially inhomogeneous magnetic field. Magnetic finger gates were fabricated at the surface of high mobility GaAs/AlGaAs Hall bars embedded in a coplanar waveguide. By modulating the current injected through the Hall bar and measuring the second harmonic of the signal rectified by a Schottky detector, we obtain the microwave power emitted by the superlattice. This power (˜6 W m-2) is compared to the fluorescence of electron spins that undergo spin resonance as they cross domains of opposite magnetic field.

  16. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized. PMID:17788466

  17. Thermal analysis of thermoelectric power generator; Including thermal stresses

    NASA Astrophysics Data System (ADS)

    Al-Merbati, Abdulrahman Salman

    In recent years, the energy demand is increasing leads to use and utilization of clean energy becomes target of countries all over the world. Thermoelectric generator is one type of clean energy generators which is a solid-state device that converts heat energy into electrical energy through the Seebeck effect. With availability of, heat from different sources such as solar energy and waste energy from systems, thermoelectric research becomes important research topic and researchers investigates efficient means of generating electricity from thermoelectric generators. One of the important problems with a thermoelectric is development of high thermal stresses due to formation of temperature gradient across the thermoelectric generator. High thermal stress causes device failure through cracks or fractures and these short comings may reduce the efficiency or totally fail the device. In this thesis work, thermodynamic efficiency and thermal stresses developed in thermoelectric generator are analyzed numerically. The bismuth telluride (Bi2Te3) properties are used in simulation. Stress levels in thermoelectric device pins are computed for various pin geometric configurations. MASTER.

  18. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Power generation responsibilities. 431.4 Section 431.4 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT,...

  19. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect

    Paul Tubel

    2004-02-01

    The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

  20. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Power generation estimates. 431.6 Section... BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall submit annually on or before April 15 to Western and Contractors, an estimated annual operation schedule for...

  1. Nuclear power generation and fuel cycle report 1997

    SciTech Connect

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  2. Speed tolerant alternator system for wind or hydraulic power generation

    SciTech Connect

    Jallen, G.A.

    1984-07-24

    A wind electric generator employs a freewheeling clutch and an induction generator having several synchronous speeds. By selecting the synchronous speed as a function of the ambient wind speed, the generator can be made to operate more efficiently and without overloading. The freewheeling clutch which connects the generator to the wind turbine prevents the generator from acting as a motor when connected to a power grid, and wasting energy in turning the wind turbine.

  3. Alternative approaches to space-based power generation

    NASA Technical Reports Server (NTRS)

    Gregory, D. L.

    1977-01-01

    Satellite Power Stations (SPS) would generate electrical power in space for terrestrial use. Their geosynchronous orbit location permits continuous microwave power transmission to ground receiving antenna farms. Eight approaches to the generation of the electrical power to be transmitted were investigated. Configurations implementing these approaches were developed through an optimization process intended to yield the lowest cost for each. A complete program was baselined for each approach, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed, including the associated launches, orbital assembly, and maintenance operations. The required electric power charges to amortize these costs were calculated. They range from 26 to 82 mills/kWh (ground busbar).

  4. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  5. Nuclear power generation and fuel cycle report 1996

    SciTech Connect

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  6. A permanent-magnet generator for wind power applications

    SciTech Connect

    Soederlund, L.; Eriksson, J.T.; Salonen, J.; Vihriaelae, H.; Peraelae, R.

    1996-07-01

    In order to achieve a gearless construction of the wind energy conversion system (WECS) a low-speed, i.e., multipole, generator is required. This paper examines an axial-field permanent-magnet synchronous wind power generator (PMWG) mainly from the magnetic viewpoint. Both mechanical and electromagnetic designs are described as well as some primary test results concerning the model generators having nominal power of 5 and 10 kW.

  7. Concepts for central solar electric power generation

    NASA Technical Reports Server (NTRS)

    Kintigh, J. K.

    1974-01-01

    The investigation reported was conducted to select the best conceptual design of a power plant for the dynamic conversion of solar heat to electricity. Conversion of thermal energy to electricity was to be an accomplished with conventional turbomachinery. Questions of site selection are discussed along with solar energy collection systems, aspects of candidate system definition, and reference systems.

  8. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  9. On-line mechanical tube cleaning for steam electric power plants. Final report

    SciTech Connect

    Not Available

    1994-02-18

    In July 1991, Superior I.D. Tube Cleaners, Inc. (SIDTEC{trademark}) received a grant through the Department of Energy and the Energy Related Invention Program to conduct a long term demonstration of a proprietary technology for on-line mechanical condenser tube cleaning in thermal Power plants on open or once-through cooling water systems where the warmed condenser cooling water is discharged through a canal. The purpose of the demonstration was to confirm and establish the use of this mechanical method as an alternative to the application of chemical biocides in condenser cooling water for the control of biofouling, the growth of micro-organisms which can reduce a unit`s operating efficiency. The SIDTEC on-line mechanical tube cleaner, the Rocket{trademark}, is used to physically remove accumulated deposits on the water side of the main steam condenser, and the non-intrusive tube cleaner recovery system, the Skimmer{trademark}, is used to recover and recirculate tube cleaners. The periodic circulation of tube cleaners can maintain optimum condenser cleanliness and improve unit heat rate. Thermal power plants which discharge condenser cooling water through a canal now have a viable alternative to the chemical treatment of condenser cooling water, whether the principal foulant is biofouling, chemical scaling, silting, or a combination of the three. At prices competitive with scale inhibitors, and a fraction of competing mechanical systems, this technology is provided as a service requiring no capital investment; minimal retrofit modifications to plant structures or equipment; can be installed and maintained without a unit shutdown; does not add any restrictions in the cooling water system; and is environmentally benign.

  10. Protective, Modular Wave Power Generation System

    SciTech Connect

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  11. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  12. 2. Credit PEM. View of Martinsburg Power Company steam generating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit PEM. View of Martinsburg Power Company steam generating plant. From right to left: original 1889 generating building, transformer room, new generating room and, adjacent to draft stack is boiler room addition. Photo c. 1911. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  13. RF power generation for future linear colliders

    SciTech Connect

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  14. Alternative power generation concepts for space

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Juhasz, Albert J.; Jones, Barbara I.

    1986-01-01

    Trade and optimization studies that highlight the potential of solar and nuclear dynamic systems relative to photovoltaic power systems are summarized. The solar dynamic case is the LEO Stirling system, while the nuclear system is the SP-100 system goal. Nuclear systems have the potential for the lightest weight, least area, sunlight independent, radiation-durable system. Solar dynamic systems pose a stiff challenge to photovoltaic systems in the midaltitudes because of their insensitivity to the Van Allen radiation belts. While the initial operational capability space station power system is only slightly superior to the SOA PV system, with development focused on the key technologies, advanced solar dynamic systems are fully competitive in LEO midaltitudes with the advanced photovoltaic systems. Advances in energy storage systems (100 Whrs/kg required) are essential.

  15. Clean Coal Diesel Demonstration Project

    SciTech Connect

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  16. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the

  17. Solar powered Stirling cycle electrical generator

    NASA Astrophysics Data System (ADS)

    Shaltens, Richard K.

    1991-03-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  18. Solar powered Stirling cycle electrical generator

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  19. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  20. A mechatronic power boosting design for piezoelectric generators

    SciTech Connect

    Liu, Haili; Liang, Junrui Ge, Cong

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  1. A mechatronic power boosting design for piezoelectric generators

    NASA Astrophysics Data System (ADS)

    Liu, Haili; Liang, Junrui; Ge, Cong

    2015-10-01

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  2. Combined fuel and air staged power generation system

    SciTech Connect

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  3. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  4. Hydrogen-based power generation from bioethanol steam reforming

    SciTech Connect

    Tasnadi-Asztalos, Zs. Cormos, C. C. Agachi, P. S.

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  5. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future. PMID:23403587

  6. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  7. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    NASA Astrophysics Data System (ADS)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  8. Tri-State Generation and Transmission Association's Springverville unit 3 earns POWER's highest honor

    SciTech Connect

    Peltier, R.

    2006-09-15

    It is said that pioneers take the arrows. In the case of Springerville Unit 3 - a 418 MW(net) expansion of a Tucson Electric Power facility in Arizona and the first pulverized coal-fired units built in the US in more than decade, the arrows were many. Although Tri-State (the developer), Tuscon Electric (the host), and Bechtel Power (the EPC contractor) were wounded by delayed deliveries of major equipment, bankruptcy of a major supplier, and a labor shortage, the companies showed their pioneering spirit and completed the project ahead of schedule. For ushering in a new generation of clean and desperately needed baseload capacity, Springerville Unit 3 is POWER magazine's 2006 Plant of the Year. 9 figs.

  9. Solar power satellites: our next generation of satellites will deliver the sun's energy to Earth

    NASA Astrophysics Data System (ADS)

    Flournoy, Don M.

    2009-12-01

    The paper addresses the means for gathering energy from sunlight in space and transmitting it to Earth via Solar Power Satellites. The motivating factor is that the output of our sun is the largest potential energy source available, with the capability of providing inexhaustible quantities of clean electrical energy to every location on Earth. The challenge is that considerable financial, intellectual and diplomatic resources must be focused on designing and implementing new types of energy infrastructures in space and on the ground. These include: 1) next-generation space platforms, arrays, and power transmission systems; 2) more flexible and powerful launch vehicles for delivering materials to space; 3) specialized receivers, converters and storage systems on earth, and the in-orbit position allocations, spectrum and software that make these systems work together efficiently and safely.

  10. Optimal generator bidding strategies for power and ancillary services

    NASA Astrophysics Data System (ADS)

    Morinec, Allen G.

    As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a

  11. Cleaning of optical components for high-power laser-based firing systems

    SciTech Connect

    Sparrow, B.D.; Hendrix, J.L.

    1993-08-01

    This report discusses the progress of AlliedSignal Inc., Kansas City Division (KCD), in addressing the issues of cleaning of hardware and optical components for laser-based firing sets. These issues are acceptability of cleaning processes and techniques of other government programs to the quality, reliability, performance, stockpile life, materials compatibility issues, and, perhaps most important, environmentally conscious manufacturing requirements of the Department of Energy (DOE). A review of ``previous cleaning art`` is presented using Military Standards (MIL STDs) and Military Interim Specifications (MISs) as well as empirical data compiled by the authors. Observations on processes and techniques used in building prototype hardware and plans for future work are presented.

  12. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  13. US power plant carbon standards and clean air and health co-benefits

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Buonocore, Jonathan J.; Levy, Jonathan I.; Lambert, Kathleen F.; Burtraw, Dallas; Reid, Stephen B.; Fakhraei, Habibollah; Schwartz, Joel

    2015-06-01

    Carbon dioxide emissions standards for US power plants will influence the fuels and technologies used to generate electricity, alter emissions of pollutants such as sulphur dioxide and nitrogen oxide, and influence ambient air quality and public health. We present an analysis of how three alternative scenarios for US power plant carbon standards could change fine particulate matter and ozone concentrations in ambient air, and the resulting public health co-benefits. The results underscore that carbon standards to curb global climate change can also provide immediate local and regional health co-benefits, but the magnitude depends on the design of the standards. A stringent but flexible policy that counts demand-side energy efficiency towards compliance yields the greatest health benefits of the three scenarios analysed.

  14. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  15. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  16. APPLICATION OF MEMBRANE TECHNOLOGY TO POWER GENERATION WATERS

    EPA Science Inventory

    Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment waste...

  17. Handbook of photovoltaic power generating design for introduction

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The purpose of this handbook is to survey the ways to introduce photovoltaic power generation with specifying a certain region of introduction by international cooperation. Various cases of load requirements and load patterns are taken up for more efficient designing of equipment. When actually introducing photovoltaic power generating facilities, more detailed analyses of the situation would be necessary, but this handbook is effective in investigating and comparing basic designs and possible regions of introduction. Presented are illustrated overall designing procedures of photovoltaic power generating facilities and examples in cases of DC load and AC load. This handbook includes assumed load formats, calculation of storage battery capacity, required capacity of photovoltaic cell, selection of photovoltaic cell module, selection of storage battery, selection of inverter, selection of charge controller, list of possible regions, and amounts and durations of insolation in the selected regions, as data for designing photovoltaic power generation for introduction.

  18. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  19. Coal-gasification combined-cycle power generation

    SciTech Connect

    Roberts, J.A.

    1984-06-01

    Rolls-Royce has joined forces with Foster Wheeler to offer a modern power plant that integrates the benefits of coal gasification with the efficiency advantages of combined-cycle power generation. Powered by fuel gas from two parallel Lurgi slagging gasifiers, the 150-MW power station employs two Rolls-Royce SK60 gas-turbine generating sets. The proposed plant is designed for continuous power generation and should operate efficiently down to one-third of its rated capacity. Rolls estimates that the installed cost for this station would be lower than that for a conventional coal-fired station of the same output with comparable operating costs. Cooling water requirements would be less than half those of a coal-fired station.

  20. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    SciTech Connect

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  1. Novel power saving architecture for FBG based OCDMA code generation

    NASA Astrophysics Data System (ADS)

    Osadola, Tolulope B.; Idris, Siti K.; Glesk, Ivan

    2013-10-01

    A novel architecture for generating incoherent, 2-dimensional wavelength hopping-time spreading optical CDMA codes is presented. The architecture is designed to facilitate the reuse of optical source signal that is unused after an OCDMA code has been generated using fiber Bragg grating based encoders. Effective utilization of available optical power is therefore achieved by cascading several OCDMA encoders thereby enabling 3dB savings in optical power.

  2. Integrating wind generation into Northern States Power`s system

    SciTech Connect

    Hinschberger, G.A.

    1995-09-01

    Wind monitoring identified an area in southwestern Minnesota where the annual average wind speeds were about 16 miles per hour. This annual average was approximately 1 mile per hour higher than any other area NSP had monitored. Since this location was close to NSP`s service territory and to NSP`s transmission system, they installed a wind research test facility on the system in 1986. The purpose of the test facility, which consisted of three 65 kW turbines, was to examine the performance of commercial wind turbines in the climate of the upper midwest. As a result of what was learned from the research facility and given the customers` increasing interest in emission-free energy resources like wind, NSP proceeded with plans to develop 100 MW of wind generation by 1998. The 25 MW project, which is owned and operated by KENETECH Windpower, Inc., was the first step in meeting that goal.

  3. Lamp for generating high power ultraviolet radiation

    DOEpatents

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  4. Atmospheric pressure gasification process for power generation

    SciTech Connect

    Morris, M.

    1996-12-31

    Since 1987 TPS Termiska Processer AB has been working on the development of both a biomass-fueled circulating fluidized bed (CFB) gasification process and a downstream dolomite catalytic tar removal process. The combined process has been developed in a 2 MWth pilot plant which was built originally for investigating the use of the product gas in a diesel motor cogeneration plant. A prototype gasification plant comprising two waste-fueled 15 MWth CFB gasifiers has been installed in Greve-in-Chianti, Italy. Since 1990, TPS has been working on the development of a biomass-fueled integrated gasification combined-cycle scheme utilizing both a CFB gasifier and a CFB tar cracker. In 1992, TPS was contracted by the Global Environmental Facility (GEF) to perform work for Phase II of the Brazilian BIG-GT (Biomass Integrated Gasification-Gas Turbine) project. This stage of the project involved both experimental and engineering studies and the basic engineering for a 30 MWe eucalyptus-fueled power plant in Brazil. The plant is based on the GE LM 2500 gas turbine. During this stage of the project the TPS process was in competition with a process from a pressurized gasification technology vendor. However, in 1995 TPS was selected for participation in Phase III of the project. Phase III of the project includes construction and commissioning of the plant. Involvement in the Brazilian BIG-GT project has served as a springboard for the participation of TPS in similar projects in the Netherlands and the UK. In the UK, ARBRE Energy Limited is constructing a coppice-fueled 8 MWe plant with support from the EU THERMIE program and the UKs NFFO (Non Fossil Fuel Obligation). The design contract will be awarded in late 1996. In the Netherlands, a number of projects for biomass and wastes are being pursued by TPS in cooperation with Royal Schelde of the Netherlands.

  5. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  6. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  7. Development and commercialization of hot gas filters for power generation applications

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Alvin, M.A.; Bachovchin, D.M.; Newby, R.A.

    1995-12-31

    Westinghouse is conducting a broad development program under US Department of Energy (DOE) and corporate program initiatives to commercialize hot gas filtration (HGF) for power generation. Coal and biomass gasification combined cycles (GCC), and Pressurized Fluidized Bed Combustion (PFBC) are advanced power generation cycles that will use HGF to achieve maximum performance. Westinghouse, in conjunction with DOE are participating in several pilot and demonstration test programs in which hot gas filter systems are integrated and operated in coal derived gas streams. This paper reports on HGF testing conducted over the past year in the following pilot plant facilities: At the PFBC Hot Gas Clean Slipstream facility installed at the Tidd 70-MWe bubbling-PFBC Clean Coal Demonstration Plant; at the Ahlstrom 10 Mwt Circulating-PFBC facility located in Karhula, Finland; at the Advanced-PFBC subpilot facility located at the Foster Wheeler Development Corporation Livingston, NJ site; at the Biomass subpilot gasification facility located at the Institute of Gas Technology (IGT). Test results include operating experience on both conventional and advanced candle filter elements.

  8. Modeling the Ocean Tide for Tidal Power Generation Applications

    NASA Astrophysics Data System (ADS)

    Kawase, M.; Gedney, M.

    2014-12-01

    Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the

  9. Low Power Pulse Generator Design Using Hybrid Logic

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Fa; Hwang, Yin-Tsung; Sheu, Ming-Hwa

    A low power pulse generator design using hybrid logic realization of a 3-input NAND gate is presented. The hybrid logic approach successfully shortens the critical path along the discharging transistor stack and thus reduces the short circuit power consumption during the pulse generation. The combination of pass transistor and full CMOS logic styles in one NAND gate design also helps minimize the required transistor size, which alleviates the loading capacitance of clock tree as well. Simulation results reveal that, compared with prior work, our design can achieve 20.5% and 23% savings respectively in power and circuit area.

  10. Terms of reference (Mahreb power generation). Export trade information

    SciTech Connect

    Not Available

    1991-12-01

    The Government of Yemen has decided to use the Natural Gas discovered at Mareb for Power Generation by building a new power station plant with an initial installed capacity of 180MW plant utilizing open cycles gas turbines. The purpose of the study is to identify a least cost generation and transmission program (commencing with an initial 180MW open cycle gas turbine station) which will satisfy the forecast power demands of the Republic of Yemen (ROY) at minimum present value capital and operating cost over the period up to 2015 in accordance with agreed technical criteria.

  11. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  12. Informing Next Generation Dark Matter and Neutrino Detector Designs with MiniCLEAN

    NASA Astrophysics Data System (ADS)

    Benson, Christopher; The Miniclean Collaboration

    2016-03-01

    Single phase, zero field, liquid noble gas scintillator detectors are a simple, scalable and cost effective approach for dark matter and neutrino detection. The operation of MiniCLEAN, a dark matter detector currently commissioning with a liquid argon target at SNOLAB in Canada, will help inform the design of a future multi-ton experiment. The technical objectives of MiniCLEAN's role as a technology demonstrator will be discussed.A key enabling technology for many detectors is the use of the common wavelength shifting medium Tetraphenyl Butadiene (TPB). Thin films of TPB are used to shift ultraviolet scintillation light into the visible spectrum for detection and event reconstruction. The wavelength shifting (WLS) efficiency and emission spectrum has been previously measured down to 120 nm. To build liquid noble gas scintillator detectors with lighter elements (Ne, He) that use TPB as a WLS medium, the wavelength shifting efficiency must be known closer to 80 nm. The current status and preliminary results of wavelength shifting efficiency measurements down to 45nm will also be presented.

  13. Railguns powered by explosive driven flux compression generators

    SciTech Connect

    Fowler, C.M.; Zimmermann, E.L.; Cummings, C.E.; Davidson, R.F.; Foley, E.; Hawke, R.S.; Kerrisk, J.F.; Parker, J.V.; Parsons, W.M.; Peterson, D.R.

    1986-11-01

    Explosive driven flux compression generators (FCG's) are single-shot devices that convert part of the energy of high explosives into electromagnetic energy. Some classes of these generators have served quite well as railgun power sources. In this paper and the following paper the authors describe strip and helical type FCG's, both of which are in use in the Los Alamos railgun program. Advantages and disadvantages these generators have for railgun power supplies are discussed, together with experimental results obtained and some of the diagnostics found particularly useful.

  14. Is It Better to Burn or Bury Waste for Clean Electricity Generation?

    EPA Science Inventory

    The generation of electricity through renewables has increased 5% since 2002. Although considerably less prominent than solar and wind, the use of municipal solid waste (MSW) to generate electricity represents roughly 14 percent of U.S. non-hydro renewable electricity generation....

  15. A numerical investigation of a thermodielectric power generation system

    NASA Astrophysics Data System (ADS)

    Sklar, Akiva A.

    The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that

  16. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  17. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  18. A Study on Optimal Operation of Power Generation by Waste

    NASA Astrophysics Data System (ADS)

    Sugahara, Hideo; Aoyagi, Yoshihiro; Kato, Masakazu

    This paper proposes the optimal operation of power generation by waste. Refuse is taken as a new energy resource of biomass. Although some fossil fuel origin refuse like plastic may be mixed in, CO2 emission is not counted up except for above fossil fuel origin refuse for the Kyoto Protocol. Incineration is indispensable for refuse disposal and power generation by waste is environment-friendly and power system-friendly using synchronous generators. Optimal planning is a key point to make much of this merit. The optimal plan includes refuse incinerator operation plan with refuse collection and maintenance scheduling of refuse incinerator plant. In this paper, it has been made clear that the former plan increases generation energy through numerical simulations. Concerning the latter plan, a method to determine the maintenance schedule using genetic algorithm has been established. In addition, taking environmental load of CO2 emission into account, this is expected larger merits from environment and energy resource points of view.

  19. Clinical aspects of the health disturbances in Chernobyl Nuclear Power Plant accident clean-up workers (liquidators) from Latvia.

    PubMed

    Eglite, M E; Zvagule, T J; Rainsford, K D; Reste, J D; Curbakova, E V; Kurjane, N N

    2009-06-01

    The health status of some 6,000 workers from Latvia who went to clean-up the Chernobyl Nuclear Power Plant (CNPP) site following the explosion on 26 April 1986 has been analyzed. The data on these workers have been recorded in the Latvian State Register of Occupational disease patients and people exposed to ionizing radiation due to Chernobyl NPP accident (Latvian State Register) that was established in 1994. From these data, estimates have been made of external ionizing radiation to which these workers were exposed together with observations on the impact of exposure to heavy metals (especially lead and zinc) and radioactive isotopes released during the reactor 'meltdown'. These factors along with psycho-emotional and social-economic stresses account for a marked excess of mortality and morbidity in the group of CNPP accident clean-up workers compared with that of the non-exposed normal Latvian population adjusted for age and sex. The number of diseases or conditions in the CNPP accident clean-up workers has progressively risen from an average of 1.3 in 1986 to 10.9 in 2007. This exceeds for the Latvian population when adjusted for age and sex. The most serious conditions affect the nervous, digestive, respiratory, cardiovascular, endocrine (especially thyroid) and immunological systems. While the morbidity associated with diseases of the respiratory and digestive systems has decreased in recent years that in the other systems is increasing. In recent years, there has been an increased occurrence of cancers affecting the thyroid, prostate and stomach. Clinical and laboratory investigations suggest that surviving CNPP accident clean-up workers exhibit signs of immuno-inflammatory reactions causing premature aging with evidence of autoimmune diseases and immunological deficiencies or abnormalities. It is suggested that the CNPP accident clean-up workers may have a specific syndrome, the 'Chernobyl post-radiation neurosomatic polypathy', due to sustained oxidant

  20. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

    NASA Astrophysics Data System (ADS)

    McLinko, Ryan M.; Sagar, Basant V.

    2009-12-01

    Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic cells and transmit that power to ground based stations. Solar cells in orbit are not hindered by weather, clouds, or night. The energy generated by this process is clean and pollution-free. Although the concept of space-based solar power was initially proposed nearly 40 years ago, the level of technology in photovoltaics, power transmission, materials, and efficient satellite design has finally reached a level of maturity that makes solar power from space a feasible prospect. Furthermore, new strategies in methods for solar energy acquisition and transmission can lead to simplifications in design, reductions in cost and reduced risk. This paper proposes using a distributed array of small satellites to collect power from the Sun, as compared to the more traditional SSP design that consists of one monolithic satellite. This concept mitigates some of SSP's most troublesome historic constraints, such as the requirement for heavy lift launch vehicles and the need for significant assembly in space. Instead, a larger number of smaller satellites designed to collect solar energy are launched independently. A high frequency beam will be used to aggregate collected power into a series of transmission antennas, which beam the energy to Earth's surface at a lower frequency. Due to the smaller power expectations of each satellite and the relatively short distance of travel from low earth orbit, such satellites can be designed with smaller arrays. The inter-satellite rectenna devices can also be smaller and lighter in weight. Our paper suggests how SSP satellites can be designed small enough to fit within ESPA standards and therefore use rideshare to achieve orbit. Alternatively, larger versions could be launched on Falcon 9s or on Falcon 1s with booster stages

  1. Alliance created to study wind-generated power potential

    SciTech Connect

    Not Available

    1991-01-15

    Wind-generated power may get a boost from a new consortium of companies that have joined together to expand the potential across the country for this cheap, renewable energy source. Niagara Mohawk Power Corporation has announced that it will join with the Pacific Gas and Electric Company (PG{ampersand}E), the Electric Power Research Institute (EPRI) and US Windpower, Inc., in developing an advanced, 33-meter, variable-speed wind turbine that reduced the cost and improves the power quality of wind energy. The majority of the estimated $20 million cost will be provided by US Windpower.

  2. Integrated engine-generator for aircraft secondary power.

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    The integrated engine-generator concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power-conversion equipment and generator controls are conveniently located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. The available generating capacity permits use of electrically driven engine accessories. This reduces or eliminates the need for an external gearbox on the engine, thereby simplifying the engine and nacelle assembly and increasing aircraft design flexibility. The nacelle diameter can then be decreased, resulting in less aerodynamic drag and reduced takeoff gross weight.

  3. Power fluctuations smoothing and regulations in wind turbine generator systems

    NASA Astrophysics Data System (ADS)

    Babazadehrokni, Hamed

    Wind is one of the most popular renewable energy sources and it has the potential to become the biggest energy source in future. Since the wind does not always blow constantly, the output wind power is not constant which may make some problem for the power grid. According to the grid code which is set by independent system operator, ISO, wind turbine generator systems need to follow some standards such as the predetermined acceptable power fluctuations. In order to smooth the output powers, the energy storage system and some power electronics modules are employed. The utilized power electronics modules in the wind turbine system can pursue many different goals, such as maintaining the voltage stability, frequency stability, providing the available and predetermined output active and reactive power. On the other side, the energy storage system can help achieving some of these goals but its main job is to store the extra energy when not needed and release the stored energy when needed. The energy storage system can be designed in different sizes, material and also combination of different energy storage systems (hybrid designs). Combination of power electronics devises and also energy storage system helps the wind turbine systems to smooth the output power according to the provided standards. In addition prediction of wind speed may improve the performance of wind turbine generator systems. In this research study all these three topics are studied and the obtained results are written in 10 papers which 7 of them are published and three of them are under process.

  4. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2011-12-01

    Pressure retarded osmosis has the potential to utilize the free energy of mixing when fresh river water flows into the sea for clean and renewable power generation. Here, we present a systematic investigation of the performance limiting phenomena in pressure retarded osmosis--external concentration polarization, internal concentration polarization, and reverse draw salt flux--and offer insights on the design criteria of a high performance pressure retarded osmosis power generation system. Thin-film composite polyamide membranes were chemically modified to produce a range of membrane transport properties, and the water and salt permeabilities were characterized to determine the underlying permeability-selectivity trade-off relationship. We show that power density is constrained by the trade-off between permeability and selectivity of the membrane active layer. This behavior is attributed to the opposing influence of the beneficial effect of membrane water permeability and the detrimental impact of reverse salt flux coupled with internal concentration polarization. Our analysis reveals the intricate influence of active and support layer properties on power density and demonstrates that membrane performance is maximized by tailoring the water and salt permeabilities to the structural parameters. An analytical parameter that quantifies the relative influence of each performance limiting phenomena is employed to identify the dominant effect restricting productivity. External concentration polarization is shown to be the main factor limiting performance at high power densities. Enhancement of the hydrodynamic flow conditions in the membrane feed channel reduces external concentration polarization and thus, yields improved power density. However, doing so will also incur additional operating costs due to the accompanying hydraulic pressure loss. This study demonstrates that by thoughtful selection of the membrane properties and hydrodynamic conditions, the detrimental

  5. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Steenken, W. G.; Yuhas, A. J.

    1996-01-01

    The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.

  6. A self-sensing magnetorheological damper with power generation

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2012-02-01

    Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.

  7. Analytical predictions of RTG power degradation. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Noon, E. L.; Raag, V.

    1979-01-01

    The DEGRA computer code that is based on a mathematical model which predicts performance and time-temperature dependent degradation of a radioisotope thermoelectric generator is discussed. The computer code has been used to predict performance and generator degradation for the selenide Ground Demonstration Unit (GDS-1) and the generator used in the Galileo Project. Results of parametric studies of load voltage vs generator output are examined as well as the I-V curve and the resulting predicted power vs voltage. The paper also discusses the increased capability features contained in DEGRA2 and future plans for expanding the computer code performance.

  8. On-line diagnostic system for power generators

    SciTech Connect

    Skormin, V.A.; Goodenough, G.S.; Huber, R.K.

    1996-12-31

    A novel approach to diagnostics of a power generator is developed. It utilizes readily available data acquired by the existing computer-based monitoring/control system. Diagnostic procedures detect various trends in the generator data and interpret these trends in the generator data and interpret these trends as changes in the generator performance caused by incipient failures. Results of trend analyses, subjected to statistical validation, facilitate failure prediction and identification thus providing the justification for service when needed. The procedures are incorporated in a diagnostic system implemented in a PC interfaced with the existing VAX-based process monitoring and control system. The diagnostic system provides graphical display of the diagnostic messages.

  9. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  10. D0 Experimental Area Emergency Backup Power and Generator Test

    SciTech Connect

    Markley, D.; /Fermilab

    1991-01-24

    The DO experimental area has a generator designated as emergency power. This generator provides power for critical loads and starts automatically upon loss of commercial power. This note concerns the testing of this generator. A list of loads is attached to this note. One of the loads on the emergency power grid is a 10KVA Uninterruptable Power Supply(UPS). The UPS powers the cryogenic controls and Oxygen deficiency hazard equipment(ODH) and has a minimum rating of 20 minutes while on its batteries(to cover the transfer time to/from the emergency generator). Jan 23,1991 at 1640 hrs this system was tested under the supervision of the Terry Ross, Marv Johnson, Dan Markley, Kelly Dixon, and John Urbin. The power feeder to the emergency power grid at DO was disconnected. The generator responded immediately and was supplying power to the emergency power grid in less than 10 seconds. During the 10 seconds that there was no power on the emergency grid the UPS switched on its inverter and provided uninterrupted power to the cryogenic control system and the ODH system. All of the motorized equipment shut off instrument air compressor, vacuum pumps 1 and 2, insulating vacuum blower, glycol cooling pumps, cooling tower fan, and Exhaust Fan 7(EF7). Upon reengagement of power to the grid from the emergency generator, all of the motorized loads started back up with the exception of vacuum pumps 1 and 2, and the UPS inverter turned off. Vacuum pumps 1 and 2 were delay started 20 seconds by the cryogenic control system as not to cause too large of a surge in power by all of the inductive loads starting at once. The DO building elevator which is also on emergency power was test run while the emergency generator was on line with all other emergency loads. The emergency generator current was 140 amps with all loads on line and running except the building elevator. This load of 140 amps is 27% of the generator's capacity. The cryogenic control and ODH system continued to function

  11. Fixed pitch wind turbine control to generate the maximum power

    NASA Astrophysics Data System (ADS)

    Martinez Rodrigo, Fernando

    This Doctoral Thesis firstly shows the state of the art about wind power, wind turbines and alternating current generators. A part is intended for the state of the art of the commercial small wind turbines: their applications, the technology used, the elements topology according to the application type, the investigation lines in this field, the political respects that have an influence in using or not small turbines, and lastly it analyses in detail four commercial small turbines. One chapter contains the models and equations of the alternating current generators used in the Doctoral Thesis, which are the induction generator and the permanent magnets generator. Other chapter explains some methods to control the alternating current generators speed. Chapter 7 is oriented to the induction machines speed estimators. These estimators will let to eliminate the generators speed sensor. In the Thesis, some of them are simulated to test their behaviour. It presents an original analysis, which is oriented to choose the most right estimators for such an application as small wind turbines. Chapter 8 introduces the control systems developed for wind turbines. They let to extract the maximum power for every wind speed. The base of all of them is the algorithm proposed in the Thesis. Some control systems are proposed for squirrel cage induction generators and permanent magnets generators, which use voltage source and current source schemes. Some of them use generator speed sensors and others use speed estimators. The schemes do not need wind speed sensor.

  12. Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation

    NASA Astrophysics Data System (ADS)

    Ohara, B.; Wagner, M.; Kunkle, C.; Watson, P.; Williams, R.; Donohoe, R.; Ugarte, K.; Wilmoth, R.; Chong, M. Zachary; Lee, H.

    2015-06-01

    Recent reports on improved efficiencies of solar thermoelectric generation (STEG) systems have generated interest in STEGs as a competitive power generation system. In this paper, the design of a combined cooling and power utilizing concentrated solar power is discussed. Solar radiation is concentrated into a receiver connected to thermoelectric modules, which are used as a topping cycle to generate power and high grade heat necessary to run an absorption chiller. Modeling of the overall system is discussed with experimental data to validate modeling results. A numerical modeling approach is presented which considers temperature variation of the source and sink temperatures and is used to maximize combined efficiency. A system is built with a demonstrated combined efficiency of 32% in actual working conditions with power generation of 3.1 W. Modeling results fell within 3% of the experimental results verifying the approach. An optimization study is performed on the mirror concentration ration and number of modules for thermal load matching and is shown to improve power generation to 26.8 W.

  13. Electric energy production by particle thermionic-thermoelectric power generators

    NASA Technical Reports Server (NTRS)

    Oettinger, P. E.

    1980-01-01

    Thermionic-thermoelectric power generators, composed of a thin layer of porous, low work function material separating a heated emitter electrode and a cooler collector electrode, have extremely large Seebeck coefficients of over 2 mV/K and can provide significant output power. Preliminary experiments with 20-micron thick (Ba Sr Ca)O coatings, limited by evaporative loss to temperatures below 1400 K, have yielded short circuit current densities of 500 mA/sq cm and power densities of 60 mW/ sq cm. Substantially more output is expected with cesium-coated refractory oxide particle coatings operating at higher temperatures. Practical generators will have thermal-to-electrical efficiencies of 10 to 20%. Further increases can be gained by cascading these high-temperature devices with lower temperature conventional thermoelectric generators.

  14. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  15. Experiments on H2-O2MHD power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1980-01-01

    Magnetohydrodynamic power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments, it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator. Peak power densities of greater than 100 MW/cu M were achieved.

  16. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating

  17. Design of a hybrid wind power storage and generation system for a remote community

    SciTech Connect

    Devgan, S.S.; Walker, D.R. Jr.

    1995-12-31

    There are thousands of small communities in various parts of the world, even in developed countries, that are too far away to be economically connected to an electric supply system. Clean water is essential for health and well being and electric energy is essential for economic development of the community. This paper describes the design of a {open_quotes}hybrid{close_quotes} Wind/Diesel power generation and storage system. and the electric power distribution system for a small rural community of 50 persons and live stock. The most cost effective and reliable system designed to satisfy reasonable growth over the next twenty-five years consists of three 10 kW wind turbines, a 30 kWh storage battery and a 17.5 kW backup diesel generator. This paper also describe efforts to train a neural network to predict wind power over the next time interval and few more time intervals. This is very essential for significant penetration of wind power systems.

  18. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  19. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  20. Scanning beam switch experiment for intense rf power generation

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley, Jr.; Babcock, Steven R.; Wilson, J. M.; Adler, Richard J.

    1991-04-01

    1407_57The SBS_1 experiment at Sandia National Laboratories is designed to demonstrate the feasibility of the Scanning Beam Switch for high-power rf generation. The primary application is to pulsed rf linacs and high-frequency induction accelerators. It is expected that the apparatus will generate rf output power exceeding 100 MW at 50 MHz over a 5 microsecond(s) pulse. The device can operate as an oscillator or high gain amplifier. To achieve the capability for long-macropulse and high-duty-cycle operation, SBS_1 uses a large dispenser cathode and vacuum triode input driver.

  1. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  2. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  3. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, Mark M.

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  4. 89. Photocopied August 1978. POWER HOUSE, GENERATOR ROOM, VIEW LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. Photocopied August 1978. POWER HOUSE, GENERATOR ROOM, VIEW LOOKING EAST FROM ABOUT THE CENTER, FEBRUARY 26, 1918, AFTER MICHIGAN NORTHERN HAD BROUGHT THE GENERATOR INSTALLATION UP TO FULL CAPACITY. THE NARROW PANEL WESTINGHOUSE SWITCHBOARD INSTALLED IN 1916-17 IS AT THE UPPER RIGHT. THE NEW GENERAL ELECTRIC GENERATORS ARE BELOW THE GALLERY. NOTE THE D.C. EXCITER UNIT ON EXTENDED SHAFT ON THE UNIT IN THE FOREGROUND. A SIMILAR TYPE OF INSTALLATION WAS FOUND AT PENSTOCKS 45 THROUGH 48 AND 62 THROUGH 73. WHAT SEEM TO BE EXTENDED SHAFT UNITS IN THE BACKGROUND ARE MERELY THE OLD STANLEY ALTERNATORS BEFORE THEY HAD BEEN REMOVED FROM THE GENERATOR ROOM. (878) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  5. Electrical Power Generation by Mechanically Modulating Electrical Double Layers

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Moon, Jong Kyun

    2014-11-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system and for understanding the interfacial charge distribution in solid-liquid interfaces in the near future. This work was supported by Center for Soft and Living Matter through IBS prgram in Korea.

  6. Coal as an option for power generation in US territories of the Pacific

    SciTech Connect

    Borg, I. Y.

    1981-11-30

    A survey of general considerations relating to the use of coal in US territories and trust territories of the Pacific suggests that coal is a viable option for power generation. Future coal supplies, principally from Australia and the west coast of America, promise to be more than adequate, but large bulk carriers will probably not be able to land coal directly because of inadequate port facilities. Hence, smaller than Panamax-class vessels (60,000 dwt) or some arrangement utilizing self-loading barges or lighters would have to be used. Except for Guam, with peak power requirements on the order of 175 MW/sub e/, most territories have current, albeit inadequate, installations of 1 to 25 MW/sub e/ Turnkey, conventional-coal-fired, electrical-power generating systems are available in that size range. US environmental laws are now applicable to Guam and American Samoa; the trust territories are exempt. However, the small power requirements of many small islands will qualify for exemption from the New Source Performance Standards called for in the Clean Air Act. The principal problems with coal use in the territories, apart from the shallow draft of most harbors, are the limited amount of land available and the high capital costs associated with conversion. Ocean dumping of ash and sludge can be permitted under existing Environmental Protection Agency regulations, and barge-mounted power installations are not out of the question. The feasibility of converting from oil-fired to coal-fired electrical-power generating systems must be determined with site-specific information.

  7. Controlled power transfer from wind driven reluctance generator

    SciTech Connect

    Rahim, Y.H.A.; Al-Sabbagh, A.M.L.

    1997-12-01

    The paper describes the dynamic performance of a wind driven reluctance generator connected to an electric network of large capacity. A controller that makes possible the regular flow of power to the network has been considered. Controller parameters that successfully suppress unwanted mechanical and electrical stresses and overshoots due to wind gust, have been estimated. The performance of the controller has also been examined for short-circuit faults at the terminals of the generators.

  8. The next generation of power reactors - safety characteristics

    SciTech Connect

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs.

  9. Technical Manual for the SAM Biomass Power Generation Model

    SciTech Connect

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  10. Effect of nonlinear electromechanical interaction upon wind power generator behavior

    NASA Astrophysics Data System (ADS)

    Selyutskiy, Yury D.; Klimina, Liubov A.

    2014-12-01

    A mathematical model is developed for describing a small horizontal axis wind turbine with electric generator, such that the electromechanical interaction is non-linear in current. Dependence of steady regimes of the system upon parameters of the model is studied. In particular, it is shown that increase of wind speed causes qualitative restructuring of the set of steady regimes, which leads to considerable change in behavior of the wind power generator. The proposed model is verified against data obtained in experiments.

  11. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  12. Power facility with a built-in multipolar MHD generator

    SciTech Connect

    Kovalev, K.L.; Markina, T.A.

    1995-05-01

    The scheme of a power facility with a built-in multipolar MHD generator is discussed. In most papers devoted to airborne high-power MHD generators (self-contained or built into the nozzle of the propulsion unit), MHD channels are discussed that are based on a two-pole scheme. The processes of energy conversion in these MHD generators are usually accompanied by disturbances of flow in the entire channel volume, which, in many cases, is undesirable for the operation of power facilities. Depending on the number of pairs of poles, the proposed facility makes it possible to accomplish MHD conversion both in the nozzle peripheral zone and in the central part of the flow. An analysis of the methods and results of calculations of volume MHD effects for finite Hall parameters {beta} and MHD-interaction s, as well as of the output characteristics of multipolar MHD generators equipped with electrode modules of different types are given. A comparison of the theoretical and experimental data is made. A scheme involving an advanced propulsion unit fired with cryogenic fuel H{sub 2}+O{sub 2} and a built-in multipolar MHD generator is considered. The problems of using built-in multipolar MHD generators in propulsion units utilizing other fuel pairs are discussed.

  13. Contributions from space technology to central power generation

    NASA Technical Reports Server (NTRS)

    Dicks, J. B., Jr.

    1972-01-01

    The central power crisis, and the present and relatively near-time contributions that aerospace technology is making to help solve this crisis are discussed. The principal emphasis is placed on the prospects of aerospace derived magnetohydrodynamic (MHD) large scale power generation. The strides that the Soviet Union is making in this field with the startup of the new U-25 plant near Moscow, having a total power capability of 75 MW, are reviewed. A much smaller program in the U.S. is outlined, and prospects of future benefits are discussed.

  14. Power Delivery from an Actual Thermoelectric Generation System

    NASA Astrophysics Data System (ADS)

    Kaibe, Hiromasa; Kajihara, Takeshi; Nagano, Kouji; Makino, Kazuya; Hachiuma, Hirokuni; Natsuume, Daisuke

    2014-06-01

    Similar to photovoltaic (PV) and fuel cells, thermoelectric generators (TEGs) supply direct-current (DC) power, essentially requiring DC/alternating current (AC) conversion for delivery as electricity into the grid network. Use of PVs is already well established through power conditioning systems (PCSs) that enable DC/AC conversion with maximum-power-point tracking, which enables commercial use by customers. From the economic, legal, and regulatory perspectives, a commercial PCS for PVs should also be available for TEGs, preferably as is or with just simple adjustment. Herein, we report use of a PV PCS with an actual TEG. The results are analyzed, and proper application for TEGs is proposed.

  15. A numerical investigation of a thermodielectric power generation system

    NASA Astrophysics Data System (ADS)

    Sklar, Akiva A.

    The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that

  16. Photovoltaic power conditioners: Development, evolution, and the next generation

    SciTech Connect

    Bulawka, A.; Krauthamer, S.; Das, R.; Bower, W.

    1994-07-01

    Market-place acceptance of utility-connected photovoltaic (PV) power generation systems and their accelerated installation into residential and commercial applications are heavily dependent upon the ability of their power conditioning subsystems (PCS) to meet high reliability, low cost, and high performance goals. Many PCS development efforts have taken place over the last 15 years, and those efforts have resulted in substantial PCS hardware improvements. These improvements, however, have generally fallen short of meeting many reliability, cost and performance goals. Continuously evolving semiconductor technology developments, coupled with expanded market opportunities for power processing, offer a significant promise of improving PCS reliability, cost and performance, as they are integrated into future PCS designs. This paper revisits past and present development efforts in PCS design, identifies the evolutionary improvements and describes the new opportunities for PCS designs. The new opportunities are arising from the increased availability and capability of semiconductor switching components, smart power devices, and power integrated circuits (PICS).

  17. ''An assessment of integrated gasification combined cycle power generation''

    SciTech Connect

    Hauber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-11-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. This study was managed by Argonne National Laboratory for the U.S. Department of Energy, Office of Coal Utilization. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2,150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules.

  18. Assessment of integrated gasification combined cycle power generation

    SciTech Connect

    Huber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-01-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules. 8 figures, 12 tables.

  19. {open_quotes}The next generations of Tampella Power`s CFB boilers{close_quotes}

    SciTech Connect

    Alliston, M.G.

    1995-12-31

    The next generation of Tampella Power Corporation`s CFB boilers is discussed in outline form. The following topics are outlined: CFB boiler advantages, CFB boiler fuel flexibility and CYMIC boiler construction.

  20. Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-12-01

    We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56 MHz, 5.2 kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  1. Vibration power generator for a linear MR damper

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan

    2010-10-01

    The paper describes the structure and the results of numerical calculations and experimental tests of a newly developed vibration power generator for a linear magnetorheological (MR) damper. The generator consists of permanent magnets and coil with foil winding. The device produces electrical energy according to Faraday's law of electromagnetic induction. This energy is applied to vary the damping characteristics of the MR damper attached to the generator by the input current produced by the device. The objective of the numerical calculations was to determine the magnetic field distribution in the generator as well as the electric potential and current density in the generator's coil during the idle run and under the load applied to the MR damper control coil. The results of the calculations were used during the design and manufacturing stages of the device. The objective of the experimental tests carried out on a dynamic testing machine was to evaluate the generator's efficiency and to compare the experimental and predicted data. The experimental results demonstrate that the engineered device enables a change in the kinetic energy of the reciprocal motion of the MR damper which leads to variations in the damping characteristics. That is why the generator may be used to build up MR damper based vibration control systems which require no external power.

  2. A Study on Sequence Generation Powers of Small Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kamikawa, Naoki; Umeo, Hiroshi

    A model of cellular automata (CA) is considered to be a well-studied non-linear model of complex systems in which an infinite one-dimensional array of finite state machines (cells) updates itself in a synchronous manner according to a uniform local rule. A sequence generation problem on the CAs has been studied and many scholars proposed several real-time sequence generation algorithms for a variety of non-regular sequences such as prime, Fibonacci, and {2n|n=1,2,3,...} sequences etc. The paper describes the sequence generation powers of CAs having a small number of states, focusing on the CAs with one, two, and three internal states, respectively. The authors enumerate all of the sequences generated by two-state CAs and present several non-regular sequences that can be generated in real-time by three-state CAs, but not generated by any two-state CA. It is shown that there exists a sequence generation gap among the powers of those small CAs.

  3. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  4. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Power requirements, generating sources. 111.10-4 Section 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... services include cooking, heating, air conditioning (where installed), domestic refrigeration,...

  5. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Power requirements, generating sources. 111.10-4 Section 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... services include cooking, heating, air conditioning (where installed), domestic refrigeration,...

  6. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Power requirements, generating sources. 111.10-4 Section 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... services include cooking, heating, air conditioning (where installed), domestic refrigeration,...

  7. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power requirements, generating sources. 111.10-4 Section 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... services include cooking, heating, air conditioning (where installed), domestic refrigeration,...

  8. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Power requirements, generating sources. 111.10-4 Section 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... services include cooking, heating, air conditioning (where installed), domestic refrigeration,...

  9. POLLUTION CONTROL FOR UTILITY POWER GENERATION, 1990-2020

    EPA Science Inventory

    The paper discusses pollution control for utility power generation between the years 1990 and 2020, when the major anticipated environmental challenges facing the utility industry will be acid deposition control in the near term and global warming mitigation in the longer term. T...

  10. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Using water for power generation. 418.16 Section 418.16 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OPERATING CRITERIA AND PROCEDURES FOR THE NEWLANDS RECLAMATION PROJECT, NEVADA Operations and Management § 418.16 Using...

  11. Explosive flux compression generators for rail gun power sources

    SciTech Connect

    Fowler, C.M.; Peterson, D.R.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; King, J.C.

    1980-01-01

    A class of explosive magnetic flux compression generators is described that has been used successfully to power rail guns. A program to increase current magnitudes and pulse lengths is outlined. Various generator loss terms are defined and plans to overcome some of them are discussed. Included are various modifications of the conventional strip generators that are more resistant to undesirable expansion of generator components from magnetic forces. Finally, an integral rail gun is discussed that has coaxial geometry. Integral rail guns utilize the rails themselves as flux compression generator elements and, under ideal conditions, are theoretically capable of driving projectiles to arbitrarily high velocities. Integral coaxial rail guns should be superior in some regards to their square bore counterparts.

  12. Solar Stirling power generation - Systems analysis and preliminary tests

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  13. Experiments on H2-O2 MHD power generation

    NASA Astrophysics Data System (ADS)

    Smith, J. M.

    1980-06-01

    MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid have been carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments are conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator.

  14. Triboelectric generators and sensors for self-powered wearable electronics.

    PubMed

    Ha, Minjeong; Park, Jonghwa; Lee, Youngoh; Ko, Hyunhyub

    2015-04-28

    In recent years, the field of wearable electronics has evolved at a rapid pace, requiring continued innovation in technologies in the fields of electronics, energy devices, and sensors. In particular, wearable devices have multiple applications in healthcare monitoring, identification, and wireless communications, and they are required to perform well while being lightweight and having small size, flexibility, low power consumption, and reliable sensing performances. In this Perspective, we introduce two recent reports on the triboelectric generators with high-power generation achieved using flexible and lightweight textiles or miniaturized and hybridized device configurations. In addition, we present a brief overview of recent developments and future prospects of triboelectric energy harvesters and sensors, which may enable fully self-powered wearable devices with significantly improved sensing capabilities. PMID:25790302

  15. High average power supercontinuum generation in a fluoroindate fiber

    NASA Astrophysics Data System (ADS)

    Swiderski, J.; Théberge, F.; Michalska, M.; Mathieu, P.; Vincent, D.

    2014-01-01

    We report the first demonstration of Watt-level supercontinuum (SC) generation in a step-index fluoroindate (InF3) fiber pumped by a 1.55 μm fiber master-oscillator power amplifier (MOPA) system. The SC is generated in two steps: first ˜1 ns amplified laser diode pulses are broken up into soliton-like sub-pulses leading to initial spectrum extension and then launched into a fluoride fiber to obtain further spectral broadening. The pump MOPA system can operate at a changeable repetition frequency delivering up to 19.2 W of average power at 2 MHz. When the 8-m long InF3 fiber was pumped with 7.54 W at 420 kHz, output average SC power as high as 2.09 W with 27.8% of slope efficiency was recorded. The achieved SC spectrum spread from 1 to 3.05 μm.

  16. 75 FR 32504 - Notice of Lodging of Proposed Consent Decree With American Municipal Power, Inc. Under the Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... regulations, which occurred at the R.H. Gorsuch Generating Station, a coal-fired power plant owned and... the power plant and operation of the plant in violation of the Prevention of Significant Deterioration... Act, 42 U.S.C. 7661 et seq., and the Title V permit for the plant. The complaint alleges that...

  17. Dry cleaning of Turkish coal

    SciTech Connect

    Cicek, T.

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

  18. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect

    Not Available

    2010-12-01

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  19. Operational maintenance data for power generation distribution and HVAC components

    SciTech Connect

    Hollis, H.D.; Hale, P.S. Jr.; Arno, R.G.; Briggs, S.J.

    1995-12-31

    This paper describes the culmination of a 24,000 man hour effort to collect operational and maintenance data on 239 power generation, power distribution and HVAC items, including gas turbine generators, diesel engine generators, switch gear assemblies, cables, boilers, piping, valves and chillers. This program was designed to determine the effects of new technology equipment, i.e., equipment installed after 1971, on availability. The central hypothesis was that this new equipment would exhibit a significant increase in availability, with corresponding decreases in required maintenance and the occurrence of failures. Information was obtained on a variety of commercial and industrial facility types (including office buildings, hospitals, water treatment facilities, prisons, utilities, manufacturing facilities, school universities and bank computer centers), with varying degrees of maintenance quality.

  20. Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  1. Photoconductive switching for HPM (High Power Microwave) generation

    NASA Astrophysics Data System (ADS)

    Pocha, M. D.; Hofer, W. W.

    Photoconductive switching has been explored at LLNL and demonstrated to be a viable technology for high power microwave (HPM) generation. This technology enables the development of compact, portable, and efficient HPM sources. At LLNL we have successfully switched 35 KV in less than 200 ps using laser triggered, 1 x 5 x 20 mm GaAs switches. Based on these results we are developing an HPM generator with applications for HPM weapons and high power, wideband radar. The paper will discuss the physics limits and tradeoffs in the application of this technology. Among the topics discussed will be switching efficiency, candidate switch materials, laser requirements, applicable laser technologies, generator configurations, and cooling requirements and techniques. In addition to presenting theoretical and practical considerations, the paper will discuss on-going work at LLNL and elsewhere.

  2. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  3. Photoconductive switching for HPM (high power microwave) generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-01-01

    Photoconductive switching has been explored at LLNL and demonstrated to be a viable technology for high power microwave (HPM) generation. This technology enables the development of compact, portable, and efficient HPM sources. At LLNL we have successfully switched 35 KV in <200 ps using laser triggered, 1 {times} 5 {times} 20 mm GaAs switches. Based on these results we are developing an HPM generator with applications for HPM weapons and high power, wideband radar. The paper will discuss the physics limits and tradeoffs in the application of this technology. Among the topics discussed will be switching efficiency, candidate switch materials, laser requirements, applicable laser technologies, generator configurations, and cooling requirements and techniques. In addition to presenting theoretical and practical considerations, the paper will discuss on-going work at LLNL and elsewhere. 11 refs., 2 figs., 1 tab.

  4. Generation adequacy assessment of power systems with significant wind generation: A system planning and operations perspective

    NASA Astrophysics Data System (ADS)

    D'Annunzio, Claudine

    One of the great challenges to increasing the use of wind generation is the need to ensure generation adequacy. In this dissertation, we address that need by investigating and assessing the planning and operational generation adequacy of power systems with significant wind generation. At the onset of this dissertation, key metrics are presented for determining a power system's generation adequacy assessment based on loss-of-load analytical methods. With these key metrics understood, a detailed methodology is put forward on how to integrate wind plants in the assessment's framework. Then, through the examination of a case study, we demonstrate that wind generation does contribute capacity to the system generation adequacy. Indeed, results indicates that at wind penetration levels of less than 5%, a wind plant's reliability impact is comparable to an energy equivalent conventional unit. We then show how to quantify a wind plant's capacity contribution by using the effective load carrying capability metric (ELCC), providing a detailed description of how to implement this metric in the context of wind generation. However, as certain computational setbacks are inherent to the metric, a novel noniterative approximation is proposed and applied to various case studies. The accuracy of the proposed approximation is evaluated in a comparative study by contrasting the resulting estimates to conventionally-computed ELCC values and the wind plant's capacity factor. The non-iterative method is shown to yield accurate ELCC estimates with relative errors averaging around 2%. Case study findings also suggest the importance of period-specific ELCC calculations to better evaluate the variable capacity contribution of wind plants. Even when considering a well-planned system in which wind generation has been appropriately integrated in the adequacy assessment, wind plants do create significant challenges in maintaining generation adequacy on an operational level. To address these

  5. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (≈ 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  6. Skutterudite Thermoelectric Generator for Electrical Power Generation from Automotive Waste Heat

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory

    2012-02-01

    Filled skutterudites are state-of-the- art thermoelectric (TE) materials for electrical power generation from waste heat. They have suitable intrinsic transport properties as measured by the thermoelectric figure of merit ZT = S^2σT/κ (S = Seebeck coefficient, σ = electrical conductivity, T = temperature, and κ = thermal conductivity) and good mechanical strength for operation at vehicle exhaust gas temperatures of >550 C. We have demonstrated TE electrical power generation on a production test vehicle equipped with a fully functional prototype TE generator (TEG). It was assembled with TE modules fabricated from filled skutterudites synthesized at GM. Our results and analysis show that improvement in total power generated can be achieved by enhanced thermal and electrical interfaces and contacts. A substantial T decrease along the exhaust gas flow results in a large variation of voltage, current, and power output for each TE module depending on its position in the module array. Total TEG output power depends directly on the position-dependent T profile via the temperature dependence of both ZT and Carnot efficiency. Total TEG power output also depends on how the modules are connected in parallel or series combinations because mismatch in output voltage and/or internal resistance among the modules degrades the performance of the entire array. Uniform T profiles and consistent TE module internal resistances improve overall TEG performance.

  7. Nonlinear power flow control applications to conventional generator swing equations subject to variable generation.

    SciTech Connect

    Robinett, Rush D., III; Wilson, David Gerald

    2010-05-01

    In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. In particular, this approach extends the work done by developing a formulation which applies to a larger set of Hamiltonian Systems that has Nearly Hamiltonian Systems as a subset. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The FACTS/storage device is required to operate as both a generator and load (energy storage) on the power system in this design. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generator system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate.

  8. GeoPowering the West - The Bountiful, Clean Energy Source for the West

    SciTech Connect

    2002-04-01

    GeoPowering the West will contribute to the overall increased use of domestic renewable energy resources, as recommended in the National Energy Policy, by: - Doubling the number of states with geothermal electric power facilities from four to eight by 2010, and Supplying the heat or power needs of 5 million Western homes and businesses by 2015.Geothermal Energy Program Office of Energy.

  9. Nonlinear spectral cleaning of few-cycle pulses via cross-polarized wave (XPW) generation

    NASA Astrophysics Data System (ADS)

    Jullien, A.; Durfee, C. G.; Trisorio, A.; Canova, L.; Rousseau, J.-P.; Mercier, B.; Antonucci, L.; Chériaux, G.; Albert, O.; Lopez-Martens, R.

    2009-08-01

    The characterization of a temporal filter based on cross-polarized wave generation working in the few-optical-cycle regime is presented. We show that this device dramatically improves the spectral quality of the ultrashort seed pulses, opening the way to the production of sub-10 fs pulses with high incoherent and coherent contrast. The dispersion compensation conditions for an optimized behavior of the process are experimentally and theoretically discussed.

  10. Cleaning and utilization of coals for low emission at Swedish power plants

    SciTech Connect

    Forssberg, K.S.E.; Ryk, L.

    1995-10-01

    The paper discusses coal utilization in Sweden. All hard coals have to be imported from other countries. Peat from domestic sources is used as a complement. environmental legislation and taxation on fuel and emissions are severe. This situation affects the procurement, preparation, handling and use of coal. The paper presents: R and D projects concerning deep cleaning of thermal coal; handling and treatment of coal used in PFBC boilers and for blast furnace injection; dust prevention for coal and peat briquettes; and procurement of col emphasizing quality and environmental issues.

  11. Is it better to burn or bury waste for clean electricity generation?

    PubMed

    Kaplan, P Ozge; Decarolis, Joseph; Thorneloe, Susan

    2009-03-15

    The use of municipal solid waste (MSW) to generate electricity through landfill-gas-to-energy (LFGTE) and waste-to-energy (WTE) projects represents roughly 14% of U.S. nonhydro renewable electricity generation. Although various aspects of LFGTE and WTE have been analyzed in the literature, this paper is the first to present a comprehensive set of life-cycle emission factors per unit of electricity generated for these energy recovery options. In addition, sensitivity analysis is conducted on key inputs (e.g., efficiency of the WTE plant landfill gas management schedules, oxidation rate, and waste composition) to quantify the variability in the resultant life-cycle emissions estimates. While methane from landfills results from the anaerobic breakdown of biogenic materials, the energy derived from WTE results from the combustion of both biogenic and fossil materials. The greenhouse gas emissions for WTE ranges from 0.4 to 1.5 MTCO2e/MWh, whereas the most agressive LFGTE scenerio results in 2.3 MTCO2e/MWh. WTE also produces lower NO(x) emissions than LFGTE, whereas SO(x) emissions depend on the specific configurations of WTE and LFGTE. PMID:19368161

  12. Proceedings of the 1999 international joint power generation conference (PWR-Vol. 34). Volume 2: Power

    SciTech Connect

    Penfield, S.R. Jr.; Hayes, R.H.; McMullen, R.

    1999-07-01

    Papers are arranged under the following topical sections: Benefits of software application in plant optimization; Combined cycle power plants; Recent improvements in power generation operations; Efficiency and capacity improvements for steam turbines; Condenser and heat exchange performance and fouling; Performance testing, monitoring and evaluation; Steam turbine/generator system--maintance, life assesments and upgrades; System design evaluations; Steam generators; Turbines for combined cycle and cogeneration; Case studies on steam turbine/generator problems and solutions; Condenser and feedwater heater operation and maintenance; Risked based and reliability programs for plant applications; Improving operating flexibility of steam turbine/generators (minimizing startup time, load changing, etc.); New techniques and innovations in heat transfer systems; Case studies in reliability based maintenance; and Risk analysis applied to steam turbine/generator systems. Papers within scope have been processed separately for inclusion on the database.

  13. Power Generation Evaluated on a Bismuth Telluride Unicouple Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi

    2015-06-01

    The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.

  14. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    NASA Astrophysics Data System (ADS)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  15. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect

    Scalzo, A.J.; Bannister, R.L.; DeCorso, M.; Howard, G.S.

    1996-04-01

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  16. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  17. A novel control and physical realization of a clean hybrid hydrogen fuel-cell/battery low-power personal electric vehicle

    NASA Astrophysics Data System (ADS)

    Watkins, Andrew N.

    With the rapid continuation of global warming, high concentrations of pollutants, and foreign oil conflicts, the green energy push has now begun to manifest into great advancements in renewable or clean energies. Fuel-cells have a promising future for mobile power such as the automotive industry, distributed generation, and portable auxiliary power supplies. The type of fuel-cell that has the most focus today is the hydrogen Proton Exchange Membrane (PEM) fuel-cell. It is widely accepted that a fuel-cell cannot effectively supply a dynamic load on its own. In order to correct this drawback and make the fuel-cell system useful for all occasions, a hybrid FC/storage device system needs to be implemented. In this type of system, a balance is created between the high-energy fuel-cell and the high-power storage devices. In this thesis, a hybrid fuel-cell system topology favorable for use in a "personal" electric vehicle such as a scooter is proposed. This topology consists of a fuel-cell connected directly to the batteries and load via a DC link converter. The converter is used to manage the flow of power within the system. In order to have this flow of power to be stable and within operational limits of the devices, a novel adaptive control algorithm implementing six transfer functions based on six major operating conditions is developed. The development of the adaptive algorithm and the implementation of hardware tests were carried out by Matlab/Simulink and dSPACE. The results of the tests showed that the control algorithm was successful at regulating power flow as well as facilitating DC link stability and accuracy at the major operating points.

  18. Wavelength-Selective Photovoltaics for Power-generating Greenhouses

    NASA Astrophysics Data System (ADS)

    Carter, Sue; Loik, Michael; Shugar, David; Corrado, Carley; Wade, Catherine; Alers, Glenn

    2014-03-01

    While photovoltaic (PV) technologies are being developed that have the potential for meeting the cost target of 0.50/W per module, the cost of installation combined with the competition over land resources could curtail the wide scale deployment needed to generate the Terrawatts per year required to meet the world's electricity demands. To be cost effective, such large scale power generation will almost certainly require PV solar farms to be installed in agricultural and desert areas, thereby competing with food production, crops for biofuels, or the biodiversity of desert ecosystems. This requirement has put the PV community at odds with both the environmental and agricultural groups they would hope to support through the reduction of greenhouse gas emissions. A possible solution to this challenge is the use of wavelength-selective solar collectors, based on luminescent solar concentrators, that transmit wavelengths needed for plant growth while absorbing the remaining portions of the solar spectrum and converting it to power. Costs are reduced through simultaneous use of land for both food and power production, by replacing the PV cells by inexpensive long-lived luminescent materials as the solar absorber, and by integrating the panels directly into existing greenhouse or cold frames. Results on power generation and crop yields for year-long trials done at academic and commercial greenhouse growers in California will be presented.

  19. Induction generator-induction motor wind-powered pumping system

    SciTech Connect

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  20. Prototype Combined Heater/Thermoelectric Power Generator for Remote Applications

    NASA Astrophysics Data System (ADS)

    Champier, D.; Favarel, C.; Bédécarrats, J. P.; Kousksou, T.; Rozis, J. F.

    2013-07-01

    This study presents a prototype thermoelectric generator (TEG) developed for remote applications in villages that are not connected to the electrical power grid. For ecological and economic reasons, there is growing interest in harvesting waste heat from biomass stoves to produce some electricity. Because regular maintenance is not required, TEGs are an attractive choice for small-scale power generation in inaccessible areas. The prototype developed in our laboratory is especially designed to be implemented in stoves that are also used for domestic hot water heating. The aim of this system is to provide a few watts to householders, so they have the ability to charge cellular phones and radios, and to get some light at night. A complete prototype TEG using commercial (bismuth telluride) thermoelectric modules has been built, including system integration with an electric DC/DC converter. The DC/DC converter has a maximum power point tracker (MPPT) driven by an MC9SO8 microcontroller, which optimizes the electrical energy stored in a valve-regulated lead-acid battery. Physical models were used to study the behavior of the thermoelectric system and to optimize the performance of the MPPT. Experiments using a hot gas generator to simulate the exhaust of the combustion chamber of a stove are used to evaluate the system. Additionally, potential uses of such generators are presented.

  1. Road electric generation system with use of solar power

    SciTech Connect

    Meiarashi, S.; Ohara, Toshimasa

    1997-09-01

    The temperature of road pavement surface becomes more than 70 C because of the solar power in summer. The characteristics of asphalt pavement on heat transfer and the relatively huge occupation with urban area have caused the heat-island phenomena. The phenomena increase the temperature and the energy consumption for conditioners. Road administrators have to keep the road pavement surface out of freezing in winter. For the purpose, the use of dusting powder becomes popular in recent days. However, the negative influence of the huge amount of the powder could not be ignored, for instance, corrosion of steel bridge and cars, water pollution, and soil pollution. Another way is a road heating system. The enormous electric energy consumption prevents the system from becoming popular. The authors have devised the new system that generates electric power and works as a road heating system. The authors call the system as ``Road Electric Generation System (REGS).`` The basic principal of the electric generation and road heating is Seebeck and Pertier effect, respectively. In this paper, the authors have calculated the electric power generated by the system, road surface temperature after introducing the system, and the heat radiation from the road surface.

  2. Design and analysis of solar thermoelectric power generation system

    NASA Astrophysics Data System (ADS)

    Vatcharasathien, Narong; Hirunlabh, Jongjit; Khedari, Joseph; Daguenet, Michel

    2005-09-01

    This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.

  3. The SCONOx catalytic absorption system: Combined CO, NOx, and SOx control for power generation

    SciTech Connect

    MacDonald, R.J.; Girdlestone, T.

    1998-07-01

    Goal Line Environmental Technologies has revolutionized the pollution control industry with its SCONOx{trademark} Catalytic Absorption System for Power Generation. The system has been installed at Sunlaw Energy Corporation's Federal Cogeneration Plant since December 20, 1996, with average NOx readings of less than 2 ppm and average CO readings of less than 1 ppm in base load operation. This plant is a 30 MW facility that fires a GE LM2500 gas turbine. The SCONOx{trademark} system uses a single catalyst for both CO and NOx control. It oxidizes CO to CO{sub 2} and NO to NO{sub 2}, and the NO{sub 2} is then absorbed onto the surface of the catalyst. Just as a sponge absorbs water and must be wrung out periodically, the SCONOx{trademark} catalyst must be periodically regenerated. This is accomplished by passing a dilute hydrogen gas across the surface of the catalyst in the absence of oxygen. Nitrogen oxides are broken down into nitrogen and water vapor, and this is exhausted up the stack instead of NOx. No ammonia or other hazardous materials are required in the process. Goal Line's SCOCOx{trademark} Sulfur Removal System works in a similar manner, sub favors the absorption of sulfur compounds instead of NOx. The SCONOx{trademark}/SCOSOx{trademark} system is a breakthrough in CO, NOx, and SOx control technology that makes it possible to have clean air without the use of ammonia or other hazardous materials. This paper will describe the development of the system and full-scale operational results, as well as focusing on the implications that SCONOx{trademark} as an ultra-clean pollution control technology has on the power generation industry.

  4. A Study on the Optimal Generation Mix Based on Portfolio Theory with Considering the Basic Condition for Power Supply

    NASA Astrophysics Data System (ADS)

    Kato, Moritoshi; Zhou, Yicheng

    This paper presents a novel method to analyze the optimal generation mix based on portfolio theory with considering the basic condition for power supply, which means that electricity generation corresponds with load curve. The optimization of portfolio is integrated with the calculation of a capacity factor of each generation in order to satisfy the basic condition for power supply. Besides, each generation is considered to be an asset, and risks of the generation asset both in its operation period and construction period are considered. Environmental measures are evaluated through restriction of CO2 emissions, which are indicated by CO2 price. Numerical examples show the optimal generation mix according to risks such as the deviation of capacity factor of nuclear power or restriction of CO2 emissions, the possibility of introduction of clean coal technology (IGCC, CCS) or renewable energy, and so on. The results of this work will be possibly applied as setting the target of the generation mix for the future according to prospects of risks of each generation and restrictions of CO2 emissions.

  5. Membrane-based processes for sustainable power generation using water.

    PubMed

    Logan, Bruce E; Elimelech, Menachem

    2012-08-16

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. PMID:22895336

  6. Final results for the EPRI-DOE-SCS Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    SciTech Connect

    Burford, D.P.

    1997-12-31

    The Yates Clean Coal Project was a co-funded Clean Coal Technology effort, sponsored by the US Department of Energy, the Electric Power Research Institute and Southern Company Services (EPRI-DOE-SCS) to evaluate a retrofit wet-limestone-based, sulfur dioxide (SO{sub 2}) scrubbing system in treating the hot flue gases of a coal-fired, 110MW electric utility boiler. This Project tested the operational limits of Chiyoda`s CT-121 Jet Bubbling Reactor System (JBR ) at Georgia Power`s Plant Yates from 1992 through 1994. Although the original test plan called for a very conservative assessment, the CT-121 system proved robust, so it was tested at widely varying conditions. Fuel sulfur content was varied between 1.5% to 4.3%, various limestone sources at several grind sizes were used, particulate removal and air toxics performance were measured and by-product gypsum soil amendment experimentation was conducted. In all cases, the CT-121 system gave encouraging results with predictably high SO{sub 2} removals (95--99%) and particulate removals (99+%) at all conditions with high reliability. Closed loop operations (no liquids treated, none discharged) called for the extensive application of corrosion impervious, fiberglass reinforced plastics (FRP) that was also very successful. Gypsum by-product proved to be significant as a soil enhancement and was granted a plant food license by the State of Georgia. So far, the Yates Project has received several awards from industry and environmental groups for its performance including Power Plant of the Year in 1994 from Power magazine.

  7. Coal gasification for power generation. 2nd ed.

    SciTech Connect

    2006-10-15

    The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

  8. A novel electromechanical approach to constant frequency power generation

    NASA Astrophysics Data System (ADS)

    Dishner, Bryan; Morris, Angela

    An alternate design approach to the hydrochemical constant speed drive (CSD) used on aircraft to drive synchronous generators at constant speed has been evaluated. The alternative design replaces hydraulic devices with advanced technology permanent magnet (PM) motor/generators which rely on power semiconductors in the speed compensation link to produce a constant speed output to the synchronous generator. The feasibility study for the product, electrically compensated CSD (ECCSD), has been demonstrated. The ECCSD program demonstrates the basic axial gear differential CSD concept of passing the power and speed trimming functions through gearing, while at the same time efficiently accomplishing the closed-loop speed control function electromechanically with small, high-speed motors. The ECCSD configuration chosen for development uses a 50,000 rev/min PM generator and a 50,000 rev/min motor. A thyristor-based AC-to-DC converter conditions the PM generator output. A transistor-based brushless DC-type motor drive is used with the PM motor. The hardware is described, and test results are presented.

  9. Experimental and analytical investigation of a fluidic power generator

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Beauchamp, R. B.

    1981-01-01

    A combined experimental and analytical investigation was performed to understand the various fluid processes associated with the conversion of flow energy into electric power in a fluidic generator. Experiments were performed under flight-simulated laboratory conditions and results were compared with those obtained in the free-flight conditions. It is concluded that the mean mass flow critically controlled the output of the fluidic generator. Cross-correlation of the outputs of transducer data indicate the presence of a standing wave in the tube; the mechanism of oscillation is an acoustic resonance tube phenomenon. A linearized model was constructed coupling the flow behavior of the jet, the jet-layer, the tube, the cavity, and the holes of the fluidic generator. The analytical results also show that the mode of the fluidic power generator is an acoustical resonance phenomenon with the frequency of operation given by f approx = a/4L, where f is the frequency of jet swallowing, a is the average speed of sound in the tube, and L is the length of the tube. Analytical results further indicated that oscillations in the fluidic generator are always damped and consequently there is a forcing of the system in operation.

  10. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100).

    PubMed

    Schirmer, M; Walz, M-M; Vollnhals, F; Lukasczyk, T; Sandmann, A; Chen, C; Steinrück, H-P; Marbach, H

    2011-02-25

    We have investigated the lithographic generation of TiO(x) nanostructures on Si(100) via electron-beam-induced deposition (EBID) of titanium tetraisopropoxide (TTIP) in ultra-high vacuum (UHV) by scanning electron microscopy (SEM) and local Auger electron spectroscopy (AES). In addition, the fabricated nanostructures were also characterized ex situ via atomic force microscopy (AFM) under ambient conditions. In EBID, a highly focused electron beam is used to locally decompose precursor molecules and thereby to generate a deposit. A drawback of this nanofabrication technique is the unintended deposition of material in the vicinity of the impact position of the primary electron beam due to so-called proximity effects. Herein, we present a post-treatment procedure to deplete the unintended deposits by moderate sputtering after the deposition process. Moreover, we were able to observe the formation of pure titanium oxide nanocrystals (<100 nm) in situ upon heating the sample in a well-defined oxygen atmosphere. While the nanocrystal growth for the as-deposited structures also occurs in the surroundings of the irradiated area due to proximity effects, it is limited to the pre-defined regions, if the sample was sputtered before heating the sample under oxygen atmosphere. The described two-step post-treatment procedure after EBID presents a new pathway for the fabrication of clean localized nanostructures. PMID:21242619

  11. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100)

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Walz, M.-M.; Vollnhals, F.; Lukasczyk, T.; Sandmann, A.; Chen, C.; Steinrück, H.-P.; Marbach, H.

    2011-02-01

    We have investigated the lithographic generation of TiOx nanostructures on Si(100) via electron-beam-induced deposition (EBID) of titanium tetraisopropoxide (TTIP) in ultra-high vacuum (UHV) by scanning electron microscopy (SEM) and local Auger electron spectroscopy (AES). In addition, the fabricated nanostructures were also characterized ex situ via atomic force microscopy (AFM) under ambient conditions. In EBID, a highly focused electron beam is used to locally decompose precursor molecules and thereby to generate a deposit. A drawback of this nanofabrication technique is the unintended deposition of material in the vicinity of the impact position of the primary electron beam due to so-called proximity effects. Herein, we present a post-treatment procedure to deplete the unintended deposits by moderate sputtering after the deposition process. Moreover, we were able to observe the formation of pure titanium oxide nanocrystals (<100 nm) in situ upon heating the sample in a well-defined oxygen atmosphere. While the nanocrystal growth for the as-deposited structures also occurs in the surroundings of the irradiated area due to proximity effects, it is limited to the pre-defined regions, if the sample was sputtered before heating the sample under oxygen atmosphere. The described two-step post-treatment procedure after EBID presents a new pathway for the fabrication of clean localized nanostructures.

  12. Automatic control system by power distribution in a power-generating reactor

    SciTech Connect

    Aleksakov, A.N.; Podlazov, L.N.; Ryabov, V.I.; Shevchenko, V.V.; Postnikov, V.V.

    1980-12-01

    The development of the theoretical principles of construction of these systems and of sufficiently detailed nonlinear dynamic numerical models of a power-generation unit with an RBMK reactor have allowed a consistent procedure to be produced for the engineering synthesis of an (local automated control) LAC-LEP (local emergency protection) system. The LAC system facilitates the shaping and maintenance of the desired power distribution in the whole volume of the reactor. In emergency situations, the LAC-LEP system qualitatively reduces the power to a safe level and effectively suppresses the power warpings in one-half of the reactor, which are characteristic for these reactors.

  13. Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture

    SciTech Connect

    Zitney, S.

    2012-01-01

    Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2

  14. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect

    McDermott, K.A.; Bailey, K.A.; South, D.W.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  15. Nanodevices for generating power from molecules and batteryless sensing

    SciTech Connect

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2015-06-09

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  16. Nanodevices for generating power from molecules and batteryless sensing

    SciTech Connect

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2014-07-15

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  18. Integration of 2-Dimensional Materials for Thermoelectric Power Generation

    NASA Astrophysics Data System (ADS)

    Alsaffar, Fadhel; Al Hussain, Abdulrahman; Amer, Moh. R.; Center of Exclence for Green Nanotechnologies Collaboration; Department of Electrical Engineering (UCLA) Collaboration

    Recent developments in nanomaterial research have significantly progressed the performance of thermoelectric devices. Theoretical investigations of the thermoelectic properties of 2-Dimentional monolayers demonstrate a high figure of merit (ZT) .. Here, we investigate the integration of these 2-Dimensional materials for power generation applications using solar heat. We show that using black phosphorus monolayer (phosphorene) as the p-type material, and Molybdenum disulfide (MoS2) monolayers as the n-type material, we get an effective figure of merit (ZT) at least (1.5) with a conversion efficiency of 13% at 280oC. Our results suggest that the integration of various 2-Dimensional materials is a promising approach for commercial thermoelectric power generation applications.

  19. Power generation properties of Direct Flame Fuel Cell (DFFC)

    NASA Astrophysics Data System (ADS)

    Endo, S.; Nakamura, Y.

    2014-11-01

    This paper investigated the effect of cell temperature and product species concentration induced by small-jet flame on the power generation performance of Direct Flame Fuel Cell (DFFC). The cell is placed above the small flame and heated product gas is impinged toward it and this system is the simplest and smallest unit of the power generation device to be developed. Equivalence ratio (phi) and the distance between the cell and the burner surface (d) are considered as main experimental parameters. It turns out that open circuit voltage (OCV) increases linearly with the increase of temperature in wide range of equivalence ratios. However, it increases drastically at which the equivalence ratio became small (phi <= 2.0) showing inner flame clearly. This result suggests that OCV depends on not only cell temperature but also the species concentration exposed to the cell. It is suggested that Nernst equation might work satisfactory to predict OCV of DFFC.

  20. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  1. Photonic microwave generation with high-power photodiodes.

    PubMed

    Fortier, Tara M; Quinlan, Franklyn; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

    2013-05-15

    We utilized and characterized high-power, high-linearity modified unitraveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division (OFD). When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve a 10 GHz signal power of +14 dBm. Using these diodes, we generated a 10 GHz microwave tone with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz.We also characterized the electrical response, amplitude-to-phase conversion, saturation, and residual noise of the MUTC photodiodes. PMID:23938920

  2. Optimisation studies of a wind power generation system

    NASA Astrophysics Data System (ADS)

    Wong, Ka Chung

    2009-12-01

    In this research, direct control algorithms for wind power generation of doubly fed induction generators (DFIGs), including synchronization and power generation, are developed. Mathematical models, computer simulation, and experimental results are included for the validation of various schemes being studied. The algorithms developed are model-based designs with direct feedback of the control variables to minimize the number of parameters and to simplify numerical operations, with no compromise in performance. A direct voltage control scheme for the synchronization of DFIGs to grids is therefore presented. The proposed scheme is a single loop design with no current control loops, and only those parameters which are required for tuning the voltage controller are needed. In comparison with conventional control schemes for DFIGs, the proposed controller requires no mathematical coordinate transformation of currents and hence is simpler and faster. Direct torque control of DFIGs with constant switching frequency is also developed in the research. The control scheme utilizes direct feedback of torque and reactive power, which can be evaluated in any coordinate frames. The proposed scheme inherits the simplicity of classical direct torque control scheme, but not the disadvantages of classical schemes such as variable switching frequencies and relatively poor steady state accuracy. Overall, the power quality of power generation is improved in the proposed scheme. Direct torque control of DFIGs in grids with large source impedances is proposed. The control method automatically adjusts the controller parameters in accordance to changes in grid voltage, in that the control performance and dynamics of the power generation systems are decoupled from fluctuations in the grid voltage, which is a common constraint in wind farms having weak connection to grids due to the presence of long transmission lines. A control scheme for DFIGs to operate in grids with voltage unbalance is

  3. Car companies look to generate power from waste heat

    NASA Astrophysics Data System (ADS)

    Schirber, Michael

    2008-04-01

    You might think that the steam engine is an outdated technology that had its heyday centuries ago, but in fact steam is once again a hot topic with vehicle manufacturers. Indeed, the next generation of hybrid cars and trucks may incorporate some form of steam power. Honda, for example, has just released details of a new prototype hybrid car that recharges its battery using a steam engine that exploits waste heat from the exhaust pipe.

  4. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  5. High gain amplifiers: Power oscillations and harmonic generation

    SciTech Connect

    Dattoli, G.; Ottaviani, P. L.; Pagnutti, S.

    2007-08-01

    We discuss the power oscillations in saturated high gain free electron laser amplifiers and show that the relevant period can be written in terms of the gain length. We use simple arguments following from the solution of the pendulum equation in terms of Jacobi elliptic functions. Nontrivial effects due to nonlinear harmonic generation and inhomogeneous broadening are discussed too, as well as the saturated dynamics of short pulses.

  6. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  7. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  8. Design and construction of a compact portable pulsed power generator

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Zheng, Xia; Zou, Jian; Wang, Jian-zhong; Zhang, Tian-jue; Jiang, Xing-dong

    2011-12-01

    The low impedance compact pulsed power generators are considered as potential drivers for X-pinch based phase contrast imaging and extreme ultraviolet (EUV) source for lithography. The designed pulsed power generator should provide square-like wave on low impedance load (1-2 Ω) with current amplitude of 100 kA in burst mode. The pulse width of the current wave is 60 ns, and the rise time of the wave should be less than 30 ns. The dimensions of the machine are restricted to be no larger than ˜2 × 1 × 1.5 m, according to the specific potential application of the machine. We adopted a solution based on Marx generator combined with low impedance pulse forming line and V/N type gas switch technology to obtain the required high intensity and fast rise-time current wave. Special efforts have been made to reduce the inductance of V/N switch and low impedance load section, and thus to obtain fast rise time and high peak current, during both physical and mechanical design stages. The high power transient signal diagnostic system, consisting of a capacitive voltage divider and a metal film based current monitor, and the calibration of the diagnostic system are also outlined.

  9. SLAC Next-Generation High Availability Power Supply

    SciTech Connect

    Bellomo, P.; MacNair, D.; ,

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  10. Solar thermoelectric power generation for Mercury orbiter missions

    NASA Technical Reports Server (NTRS)

    Swerdling, M.; Raag, V.

    1979-01-01

    Mercury orbiter mission study results have shown that conventional silicon solar cell array technology is not adequate to produce power because of expected temperatures which range from -90 C to +285 C in about 50 minutes for 16 sun eclipses/day. The solar thermoelectric generator (STG), which requires relatively high temperatures, is being developed as a replacement power source. Several thermoelectric technologies (i.e., lead telluride alloys, bismuth telluride, selenide, and silicon-germanium alloys have been examined for their suitability. Solar concentrator configurations (i.e., flat plate, Fresnel lens, mini-cone, and Cassegrain types) were also studied as candidates for increasing incident radiation during Mercury orbital operations. Detailed results are presented, and show that an STG design based on the use of silicon-germanium alloy thermoelectric material and using high-voltage thermopiles with individual miniconical concentrators presents the optimum combination of technology and configuration for minimizing power source mass.

  11. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect

    Xu, B. Fobelets, K.

    2014-06-07

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 Ω cm resistivity n- and p-type bulk, converting ~4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  12. The impact of flue gas cleaning technologies in coal-fired power plants on the CCN distribution and cloud properties in Germany

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Vogel, B.; Junkermann, W.; Brachert, L.; Schaber, K.

    2013-05-01

    Gas-cleaning technologies used in modern coal-fired power plants cause an unintended nucleation of H2SO4 aerosol droplets during the cleaning process. As a result, high concentrations of ultra-fine aerosol droplets are emitted into the atmosphere. In this study, the impact of these emissions on the atmospheric aerosol distribution, on the cloud condensation nuclei number concentration, and consequently on cloud properties is investigated. Therefore, a sophisticated modeling framework is used combining regional simulations of the atmospheric aerosol distribution and its impact on cloud properties with detailed process simulations of the nucleation during the cleaning process inside the power plant. Furthermore, the simulated aerosol size distributions downwind of the coal-fired power plants are compared with airborne aerosol measurements performed inside the plumes.

  13. 76 FR 36914 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, TC Ravenswood, LLC, v. New York...

  14. 76 FR 36910 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, TC Ravenswood, LLC. v. New York...

  15. 76 FR 34692 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, TC Ravenswood, LLC; v. New York...

  16. Transient Current Analysis of Induction Generators for Wind Power Generating System

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Sueyoshi, Norihide; Uezato, Katsumi; Fujita, Hideki

    In recent year, non-conventional energy generation is coming up for effective use of natural energy, such as wind energy. Induction generators consisting squirrel-cage rotors are widly used as wind generators because of their salient features like robust rotor design, simple in the construction, maintenance free operation, etc. However these induction generators will draw large transient inrush current, several times as large as the machine rated current, the instant when they are connected to utility grid or restored after the fault clearance. Under such situations, there will be a severe voltage fluctuations in the power system. In this paper, we present transient analysis of induction generators before and after a three-phase fault conditions. Theoretical discission is developed to determine the initial phase angle and the time at which maximum transient currents flow in the system.

  17. Wind turbine generator interaction with diesel generators on an isolated power system

    NASA Technical Reports Server (NTRS)

    Scott, G. W.; Wilreker, V. F.; Shaltens, R. K.

    1983-01-01

    The results of a dynamic interaction investigation to characterize any disturbances caused by interfacing the Mod 0A wind turbine (150 kW configuration) with the Block Island utility diesel generator grid are reported. The tests were run when only two diesel generators were on line, and attention was given to power, frequency, and voltage time profiles. The interconnected system was examined in the start-up and synchronization phase, normal shutdown and cut-out of the wind turbine, during fixed pitch generation, and during variable pitch operation. Governors were installed on the diesel generators to accommodate the presence of wind-derived electricity. The blade pitch control was set to maintain power at 150 kW or below. Power and voltage transients were insignificant during start-up and shutdown, and frequency aberrations were within the range caused by load fluctuations. It is concluded that wind turbine generation can be successfully implemented by an isolated utility, even with a significant penetration to the total grid output.

  18. Wind turbine generator interaction with diesel generators on an isolated power system

    SciTech Connect

    Scott, G.W.; Wilreker, V.F.

    1983-01-01

    The results of a dynamic interaction investigation to characterize any disturbances caused by interfacing the Mod 0A wind turbine (150 kW configuration) with the Block Island utility diesel generator grid are reported. The tests were run when only two diesel generators were on line, and attention was given to power, frequency, and voltage time profiles. The interconnected system was examined in the start-up and synchronization phase, normal shutdown and cut-out of the wind turbine, during fixed pitch generation, and during variable pitch operation. Governors were installed on the diesel generators to accommodate the presence of wind-derived electricity. The blade pitch control was set to maintain power at 150 kW or below. Power and voltage transients were insignificant during start-up and shutdown, and frequency aberrations were within the range caused by load fluctuations. It is concluded that wind turbine generation can be successfully implemented by an isolated utility, even with a significant penetration to the total grid output. 5 references.

  19. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect

    Not Available

    2010-12-01

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  20. RTGs - The powering of Ulysses. [Radio-isotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Mastal, E. F.; Campbell, R. W.

    1990-01-01

    The radio-isotope thermoelectric generator (RTG) for Ulysses' electronic supply is described noting that lack of sufficient sunlight renders usual solar cell power generation ineffective due to increased distance from sun. The history of the RTG in the U.S.A. is reviewed citing the first RTG launch in 1961 with an electrical output of 2.7 W and the improved Ulysses RTG, which provides 285 W at mission beginning and 250 W at mission end. The RTG concept is discussed including the most recent RTG technology developed by the DOE, the General Purpose Heat Source RTG (GPHS-RTG). The system relies upon heat generated by radioactive decay using radioactive plutonium-238, which is converted directly to energy using the Seebeck method.

  1. Supplementary steam - A viable hydrogen power generation concept

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lee, J. C.

    1979-01-01

    Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.

  2. The reduction of dioxin emissions from the processes of heat and power generation.

    PubMed

    Wielgosiński, Grzegorz

    2011-05-01

    The first reports that it is possible to emit dioxins from the heat and power generation sector are from the beginning of the 1980s. Detailed research proved that the emission of dioxins might occur during combustion of hard coal, brown coal, and furnace oil as well as coke-oven gas. The emission of dioxins occurs in wood incineration; wood that is clean and understood as biomass; or, in particular, wood waste (polluted). This paper thoroughly discusses the mechanism of dioxin formation in thermal processes, first and foremost in combustion processes. The parameters influencing the quantity of dioxins formed and the dependence of their quantity on the conditions of combustion are highlighted. Furthermore, the methods of reducing dioxin emissions from combustion processes (primary and secondary) are discussed. The most efficacious methods that may find application in the heat and power generation sector are proposed; this is relevant from the point of view of the implementation of the Stockholm Convention resolutions in Poland with regard to persistent organic pollutants. PMID:21608491

  3. Adapting a GIS-Based Multicriteria Decision Analysis Approach for Evaluating New Power Generating Sites

    SciTech Connect

    Omitaomu, Olufemi A; Blevins, Brandon R; Jochem, Warren C; Mays, Gary T; Belles, Randy; Hadley, Stanton W; Harrison, Thomas J; Bhaduri, Budhendra L; Neish, Bradley S; Rose, Amy N

    2012-01-01

    There is a growing need to site new power generating plants that use cleaner energy sources due to increased regulations on air and water pollution and a sociopolitical desire to develop more clean energy sources. To assist utility and energy companies as well as policy-makers in evaluating potential areas for siting new plants in the contiguous United States, a geographic information system (GIS)-based multicriteria decision analysis approach is presented in this paper. The presented approach has led to the development of the Oak Ridge Siting Analysis for power Generation Expansion (OR-SAGE) tool. The tool takes inputs such as population growth, water availability, environmental indicators, and tectonic and geological hazards to provide an in-depth analysis for siting options. To the utility and energy companies, the tool can quickly and effectively provide feedback on land suitability based on technology specific inputs. However, the tool does not replace the required detailed evaluation of candidate sites. To the policy-makers, the tool provides the ability to analyze the impacts of future energy technology while balancing competing resource use.

  4. Enhanced power quality based single phase photovoltaic distributed generation system

    NASA Astrophysics Data System (ADS)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  5. Direct fuel cell - A high proficiency power generator for biofuels

    SciTech Connect

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-12-31

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products.

  6. Studying the effectiveness of using pneumoimpulsive technology for cleaning the platen surfaces of the PK-38 boiler at the Nazarovo district power station

    NASA Astrophysics Data System (ADS)

    Agliulin, S. G.; Nikolaev, S. F.; Zvegintsev, V. I.; Yurkin, I. A.; Shabanov, I. I.; Palkin, V. F.; Sergienko, S. P.; Vlasov, S. M.

    2014-09-01

    A new pneumoimpulsive technology, central to which is an impact effect of air jet on ash deposits, was proposed for carrying out continuous preventive cleaning of the platens installed in the steam superheater primary and secondary paths of the PK-38 boiler at the Nazarovo district power station. The pneumoimpulsive cleaning system was mounted in the PK-38 boiler unit no. 6A, and the cleaning system tests were carried out during field operation of the boiler. Owing to the use of the proposed cleaning system, long-term (for no less than 3 months of observations) slag-free operation of the platen surfaces was achieved in the range of steam loads from 215 to 235 t/h with the average load equal to 225 t/h at furnace gas temperatures upstream of the platens equal to 1220-1250°C.

  7. Electrodynamic Tethers. 1: Power Generator in LEO. 2: Thrust for Propulsion and Power Storage

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1984-01-01

    An electrodynamic tether consists of a long insulated wire in space whose orbital motion cuts across lines of magnetic flux to produce an induce voltage that in typical low orbits averages about 200 v/km. Such a system should be capable of generating substantial electrical power, at the expense of IXB drag acting on its orbital energy. If a reverse current is driven against the induced voltage, the system should act as a motor producing IXB thrust. A reference system was designed, capable of generating 20 KW of power into an electrical load located anywhere along the wire at the expense of 2.6N (20,000 J/sec) drag on the wire. In an ideal system, the conversion between mechanical and electrical energy would reach 100% efficiency. In the actual system part of the 20 KW is lost to internal resistance of the wire, plasma and ionosphere, while the drag force is increased by residual air drag. The 20 KW PMG system as designed is estimated to provide 18.7 KW net power to the load at total drag loss of 20.4 KJ/sec, or an overall efficiency of 92%. Similar systems using heavier wire appear capable of producing power levels in excess of 1 Megawatt at voltages of 2-4 KV, with conversion efficiency between mechanical and electrical power better than 95%. The hollow cathode based system should be readily reversible from generator to motor operation by driving a reverse current using onboard power.

  8. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    NASA Astrophysics Data System (ADS)

    Sritram, P.; Treedet, W.; Suntivarakorn, R.

    2015-12-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m3/min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m3/min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency.

  9. Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts

    SciTech Connect

    Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

    1993-01-01

    Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

  10. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  11. FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation

    SciTech Connect

    Zitney, S.E.

    2006-11-01

    This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of

  12. Model biogas steam reforming in a thin Pd-supported membrane reactor to generate clean hydrogen for fuel cells

    NASA Astrophysics Data System (ADS)

    Iulianelli, A.; Liguori, S.; Huang, Y.; Basile, A.

    2015-01-01

    Steam reforming of a model biogas mixture is studied for generating clean hydrogen by using an inorganic membrane reactor, in which a composite Pd/Al2O3 membrane separates part of the produced hydrogen through its selective permeation. The characteristics of H2 perm-selectivity of the fresh membrane is expressed in terms of H2/N2 ideal selectivity, in this case equal to 4300. Concerning biogas steam reforming reaction, at 380 °C, 2.0 bar H2O:CH4 = 3:1, GHSV = 9000 h-1 the permeate purity of the recovered hydrogen is around 96%, although the conversion (15%) and hydrogen recovery (>20%) are relatively low; on the contrary, at 450 °C, 3.5 bar H2O:CH4 = 4:1, GHSV = 11000 h-1 the conversion is increased up to more than 30% and the recovery of hydrogen to about 70%. This novel work constitutes a reference study for new developments on biogas steam reforming reaction in membrane reactors.

  13. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.

    PubMed

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Tai-Shung

    2016-02-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by Escherichia coli adhesion and Staphylococcus aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m(2) in comparison to an average value of 3.6 W/m(2) for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes. PMID:26630043

  14. High peak power optical pulses generated with a monolithic master-oscillator power amplifier.

    PubMed

    Wenzel, Hans; Schwertfeger, Sven; Klehr, Andreas; Jedrzejczyk, Daniel; Hoffmann, Thomas; Erbert, Götz

    2012-06-01

    We present results on a monolithic semiconductor-based master-oscillator power amplifier (MOPA) combining a distributed-feedback (DFB) laser and a tapered amplifier on a single chip. The MOPA reaches an output power of almost 12 W at an emission wavelength around 1064 nm in continuous-wave operation. Pulses with a length of around 100 ps can be obtained either by injecting nanosecond current pulses into the tapered amplifier alone or into both the DFB laser and the tapered amplifier. In the latter case, pulses with a width of 84 ps, a peak power of 42 W, and a spectral width of 160 pm are generated. PMID:22660042

  15. A Framework for Assessing the Commercialization of Photovoltaic Power Generation

    NASA Astrophysics Data System (ADS)

    Yaqub, Mahdi

    An effective framework does not currently exist with which to assess the viability of commercializing photovoltaic (PV) power generation in the US energy market. Adopting a new technology, such as utility-scale PV power generation, requires a commercialization assessment framework. The framework developed here assesses the economic viability of a set of alternatives of identified factors. Economic viability focuses on simulating the levelized cost of electricity (LCOE) as a key performance measure to realize `grid parity', or the equivalence between the PV electricity prices and grid electricity prices for established energy technologies. Simulation results confirm that `grid parity' could be achieved without the current federal 30% investment tax credit (ITC) via a combination of three strategies: 1) using economies of scale to reduce the LCOE by 30% from its current value of 3.6 cents/kWh to 2.5 cents/kWh, 2) employing a longer power purchase agreement (PPA) over 30 years at a 4% interest rate, and 3) improving by 15% the "capacity factor", which is the ratio of the total annual generated energy to the full potential annual generation when the utility is continuously operating at its rated output. The lower than commercial-market interest rate of 4% that is needed to realize `grid parity' is intended to replace the current federal 30% ITC subsidy, which does not have a cash inflow to offset the outflow of subsidy payments. The 4% interest rate can be realized through two proposed finance plans: The first plan involves the implementation of carbon fees on polluting power plants to produce the capital needed to lower the utility PPA loan term interest rate from its current 7% to the necessary 4% rate. The second plan entails a proposed public debt finance plan. Under this plan, the US Government leverages its guarantee power to issue bonds and uses the proceeds to finance the construction and operation of PV power plants with PPA loan with a 4% interest rate for a

  16. New Marsulex technology significantly cuts power generation costs

    SciTech Connect

    Walsh, M.A. Jr.

    1999-07-01

    As utility deregulation becomes reality, successful generators of electricity will significantly lower bus bar cost of power by a creative combination of low cost fuel and the application of Marsulex Environmental Technologies'(MET) patented Ammonia Scrubbing Technology. Because fuel constitutes the largest component of generation cost, substantial reductions can be achieved by firing low cost fuels such as petroleum coke. This option has been historically handicapped by sulfur dioxide emission limitations and related economics. MET's proprietary ammonium sulfate technology now enables the use of low cost, 5--7% sulfur fuels without the associated sulfur penalty. The MET technology can reduce generation costs by 25% or more on a typical coal fired unit and does not require any capital outlay by the generator. In addition, this concept can also serve as the cornerstone of a Phase 2 SO{sub 2} compliance strategy, or provide the winning edge in a bid for generation assets. This paper will outline this unique commercial and technical solution and provide economic examples of this cost-cutting strategy.

  17. New Marsulex technology significantly cuts power generation costs

    SciTech Connect

    Walsh, M.A.

    1999-07-01

    As utility deregulation becomes reality, successful generators of electricity will significantly lower bus bar cost of power by a creative combination of low cost fuel and the application of Marsulex Environmental Technologies' (MET) patented Ammonia Scrubbing Technology. Because fuel constitutes the largest component of generation cost, substantial reductions can be achieved by firing low cost fuels such as petroleum coke. Tis option has been historically handicapped by sulfur dioxide emission limitations and related economics. MET's proprietary ammonium sulfate technology now enables the use of low cost, 5-7-% sulfur fuels without the associated sulfur penalty. The MET technology can reduce generation costs by 25% or more on a typical coal fired unit and does not require any capital outlay by the generator. In addition, this concept can also serve as the cornerstone of a Phase 2 SO{sub 2} compliance strategy, or provide the winning edge in a bid for generation assets. This paper will outline this unique commercial and technical solution and provide economic examples of this cost-cutting strategy.

  18. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  19. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    PubMed

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-01

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°. PMID:25622310

  20. A carbon-air battery for high power generation.

    PubMed

    Yang, Binbin; Ran, Ran; Zhong, Yijun; Su, Chao; Tadé, Moses O; Shao, Zongping

    2015-03-16

    We report a carbon-air battery for power generation based on a solid-oxide fuel cell (SOFC) integrated with a ceramic CO2-permeable membrane. An anode-supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high-temperature CO2-permeable membrane composed of a CO3(2-) mixture and an O(2-) conducting phase (Sm(0.2)Ce(0.8)O(1.9)) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel-utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm(-2) was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials. PMID:25620573

  1. Investigation of Maximum Power Point Tracking for Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Phillip, Navneesh; Maganga, Othman; Burnham, Keith J.; Ellis, Mark A.; Robinson, Simon; Dunn, Julian; Rouaud, Cedric

    2013-07-01

    In this paper, a thermoelectric generator (TEG) model is developed as a tool for investigating optimized maximum power point tracking (MPPT) algorithms for TEG systems within automotive exhaust heat energy recovery applications. The model comprises three main subsystems that make up the TEG system: the heat exchanger, thermoelectric material, and power conditioning unit (PCU). In this study, two MPPT algorithms known as the perturb and observe (P&O) algorithm and extremum seeking control (ESC) are investigated. A synchronous buck-boost converter is implemented as the preferred DC-DC converter topology, and together with the MPPT algorithm completes the PCU architecture. The process of developing the subsystems is discussed, and the advantage of using the MPPT controller is demonstrated. The simulation results demonstrate that the ESC algorithm implemented in combination with a synchronous buck-boost converter achieves favorable power outputs for TEG systems. The appropriateness is by virtue of greater responsiveness to changes in the system's thermal conditions and hence the electrical potential difference generated in comparison with the P&O algorithm. The MATLAB/Simulink environment is used for simulation of the TEG system and comparison of the investigated control strategies.

  2. Update on use of mine pool water for power generation.

    SciTech Connect

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that

  3. Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.

    2005-01-01

    This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.

  4. New Power Plants Try to Avoid Coal or Scrub It "Clean"

    ERIC Educational Resources Information Center

    Basken, Paul

    2009-01-01

    After spending $133-million to build a new award-winning technological gem of a power plant, officials at the University of Massachusetts at Amherst are expecting their fuel bills to rise by $7-million a year. And yet they are very proud of the accomplishment. The reasons for the higher energy costs involve a complicated mix of technology,…

  5. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    SciTech Connect

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  6. High-resolution emissions of CO2 from power generation in the USA

    NASA Astrophysics Data System (ADS)

    PéTron, Garielle; Tans, Pieter; Frost, Gregory; Chao, Danlei; Trainer, Michael

    2008-12-01

    Electricity generation accounts for close to 40% of the U.S. CO2 emissions from fossil fuel burning, making it the economic sector with the largest source of CO2. Since the late 1990s, the Environmental Protection Agency Clean Air Markets Division (EPA CAMD) has kept a repository of hourly CO2 emission data for most power plants in the conterminous United States. In this study, the CAMD CO2 data are used to derive a high spatiotemporal resolution CO2 emissions inventory for the electricity generation sector (inventory available on request). Data from 1998 to 2006 have been processed. This unique inventory can be used to improve the understanding of the carbon cycle at fine temporal and spatial scales. The CAMD data set provides the first quantitative estimates of the diurnal and seasonal cycles of the emissions as well as the year to year variability. Emissions peak in the summertime owing to the widespread use of air conditioning. Summertime emissions are in fact highly correlated with the daily average temperature. In conjunction with the EPA Emissions and Generation Resource Integrated Database (eGRID), we have derived high-resolution maps of CO2 emissions by fossil fuel burned (coal, gas, oil) for the year 2004. The CAMD data set also reflects regional anomalies in power generation such as the August 2003 blackout in the northeastern United States and the 2000-2001 increase in production in California. We recommend that all sectors of the economy report similar high-resolution CO2 emissions because of their great usefulness both for carbon cycle science and for greenhouse gases emissions mitigation and regulation.

  7. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  8. A high power ZnO thin film piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  9. Department of Energy power generation programs for natural gas

    SciTech Connect

    Bajura, R.A.

    1995-04-01

    The U.S. Department of Energy (DOE) is sponsoring two major programs to develop high efficiency, natural gas fueled power generation technologies. These programs are the Advanced Turbine Systems (ATS) Program and the Fuel Cell Program. While natural gas is gaining acceptance in the electric power sector, the improved technology from these programs will make gas an even more attractive fuel, particularly in urban areas where environmental concerns are greatest. Under the auspices of DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE), the 8-year ATS Program is developing and will demonstrate advanced gas turbine power systems for both large central power systems and smaller industrial-scale systems. The large-scale systems will have efficiencies significantly greater than 60 percent, while the industrial-scale systems will have efficiencies with at least an equivalent 15 percent increase over the best 1992-vintage technology. The goal is to have the system ready for commercial offering by the year 2000.

  10. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    SciTech Connect

    Ueno, Toshiyuki

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  11. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    NASA Astrophysics Data System (ADS)

    Ueno, Toshiyuki

    2015-05-01

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm3 under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm3. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  12. Electrodynamic Tether Propulsion and Power Generation at Jupiter

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Johnson, L.; Moore, J.; Bagenal, F.

    1998-01-01

    The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N and power levels as high as 1 MW.

  13. Survivable solar power-generating systems for use with spacecraft

    SciTech Connect

    Nakamura, T.

    1992-02-18

    This patent describes a solar power-generating system for use on board spacecraft. It comprises: optical means positioned to collect and concentrate solar energy flux; a flexible solar energy flux transmission line for conducting the concentrated solar energy flux towards a solar energy converter; solar energy conversion means including an array of photovoltaic cells for converting the solar energy flux to electrical power to be applied to on-board equipment of the spacecraft; a protective enclosure positioned about the photovoltaic cells for substantially shielding the photovoltaic cells from destructive radiation and particulate matter. This patent also describes the system wherein the energy conversion means further includes devices for converting solar energy flux into other forms of energy. It comprises: optical switch means for selectively distributing the gathered solar energy flux to various ones of the devices in accordance with the needs of the on-board equipment.

  14. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  15. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    SciTech Connect

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants from the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.

  16. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    SciTech Connect

    Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R.

    2010-07-15

    In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

  17. Power generation from furfural using the microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Liu, Guangli; Zhang, Renduo; Zhang, Cuiping

    Furfural is a typical inhibitor in the ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In the literature, no report has shown that furfural can be utilized as the fuel to produce electricity in the microbial fuel cell (MFC), a device that uses microbes to convert organic compounds to generate electricity. In this study, we demonstrated that electricity was successfully generated using furfural as the sole fuel in both the ferricyanide-cathode MFC and the air-cathode MFC. In the ferricyanide-cathode MFC, the maximum power densities reached 45.4, 81.4, and 103 W m -3, respectively, when 1000 mg L -1 glucose, a mixture of 200 mg L -1 glucose and 5 mM furfural, and 6.68 mM furfural were used as the fuels in the anode solution. The corresponding Coulombic efficiencies (CE) were 4.0, 7.1, and 10.2% for the three treatments, respectively. For pure furfural as the fuel, the removal efficiency of furfural reached up to 95% within 12 h. In the air-cathode MFC using 6.68 mM furfural as the fuel, the maximum values of power density and CE were 361 mW m -2 (18 W m -3) and 30.3%, respectively, and the COD removal was about 68% at the end of the experiment (about 30 h). Increase in furfural concentrations from 6.68 to 20 mM resulted in increase in the maximum power densities from 361 to 368 mW m -2, and decrease in CEs from 30.3 to 20.6%. These results indicated that some toxic and biorefractory organics such as furfural might still be suitable resources for electricity generation using the MFC technology.

  18. Cost effective clean power generation burning high ash and/or high sulfur coals

    SciTech Connect

    Ashworth, R.A.; Sanyal, A.

    1998-07-01

    In the future, new air pollution control technologies will be required by coal-fired electric utilities and industrial boiler owners to meet more stringent environmental constraints. The CAIRE{trademark} (acronym for Controlled Air Emissions) combustor technology offers the benefit of reducing SO{sub 2} by some 70 to 90% and lowering NO{sub x} emission levels to 0.30 lb/10{sup 6} Btu or less, better than the best conventional low NO{sub x} burners on the market today. It also incorporates the advantage of a cyclone-fired unit by reducing particulate carryover into the boiler and downstream equipment by some 75 to 80%. This means that low cost, high sulfur and/or high ash coals may be fired in this combustor without the penalty of increased SO{sub 2} emissions, ash fouling and higher particulate stack emissions. The CAIRE{trademark} combustor may be retrofitted to electric utility boilers at a cost per ton of SO{sub 2} removed that is less than the price of SO{sub 2} allowance credits and less than the cost of switching from Eastern to Western US coal.

  19. Feasibility Investigation for a Solar Power Generation Facility

    NASA Technical Reports Server (NTRS)

    Nathan, Lakshmi

    2010-01-01

    The Energy Policy Act of 2005 states that by fiscal year 2013, at least 7.5% of the energy consumed by the government must be renewable energy. In an effort to help meet this goal, Johnson Space Center (JSC) is considering installing a solar power generation facility. The purpose of this project is to conduct a feasibility investigation for such a facility. Because Kennedy Space Center (KSC) has a solar power generation facility, the first step in this investigation is to learn about KSC's facility and obtain information on how it was constructed. After collecting this information, the following must be determined: the amount of power desired, the size of the facility, potential locations for it, and estimated construction and maintenance costs. Contacts with JSC's energy provider must also be established to determine if a partnership would be agreeable to both parties. Lastly, all of this data must be analyzed to decide whether or not JSC should construct the facility. The results from analyzing the data collected indicate that a 200 kW facility would provide enough energy to meet 1% of JSC's energy demand. This facility would require less than 1 acre of land. In the map below, potential locations are shown in green. The solar power facility is projected to cost $2 M. So far, the information collected indicates that such a facility could be constructed. The next steps in this investigation include contacting JSC's energy provider, CenterPoint Energy, to discuss entering a partnership; developing a life cycle cost analysis to determine payback time; developing more detailed plans; and securing funding.

  20. Generation of high-power laser light with Gigahertz splitting.

    PubMed

    Unks, B E; Proite, N A; Yavuz, D D

    2007-08-01

    We demonstrate the generation of two high-power laser beams whose frequencies are separated by the ground state hyperfine transition frequency in (87)Rb. The system uses a single master diode laser appropriately shifted by high frequency acousto-optic modulators and amplified by semiconductor tapered amplifiers. This produces two 1 W laser beams with a frequency spacing of 6.834 GHz and a relative frequency stability of 1 Hz. We discuss possible applications of this apparatus, including electromagnetically induced transparency-like effects and ultrafast qubit rotations. PMID:17764314