Sample records for cleave complex clustered

  1. Photoinduced release of Zn2+ with ZinCleav-1: a nitrobenzyl-based caged complex.

    PubMed

    Bandara, H M Dhammika; Kennedy, Daniel P; Akin, Elif; Incarvito, Christopher D; Burdette, Shawn C

    2009-09-07

    Caged complexes are metal ion chelators that release analytes when exposed to light of a specific wavelength. The synthesis and properties of ZinCleav-1, a cage for Zn(2+) that fragments upon photolysis, is reported. The general uncaging strategy involves integrating a nitrobenzyl group on the backbone of the ligand so that a carbon-heteroatom bond is cleaved by the photoreaction. The caged complex was obtained using a new synthetic strategy involving a Strecker synthesis to prepare a key aldehyde intermediate. ZinCleav-1 has a K(d) of 0.23 pM for Zn(2+) as measured by competitive titration with [Zn(PAR)(2)] (PAR = 4-(2-pyridyl-2-azo) resorcinol). The quantum yield for ZinCleav-1 is 2.4% and 0.55% for the apo and Zn(2+) complex, respectively. The ability of ZinCleav-1 to increase free [Zn(2+)] is calculated theoretically using the binding constants for the uncaged photoproducts, and demonstrated practically by using a fluorescent sensor to image the liberated Zn(2+). Free Zn(2+) may function as a neurotransmitter and have a role in the pathology of several neurological diseases. Studying these physiological functions remains challenging because Zn(2+) is silent to most common spectroscopic techniques. We expect ZinCleav-1 to be the first in a class of caged complexes that will facilitate biological investigations.

  2. Caspase-2 Is Localized at the Golgi Complex and Cleaves Golgin-160 during Apoptosis

    PubMed Central

    Mancini, Marie; Machamer, Carolyn E.; Roy, Sophie; Nicholson, Donald W.; Thornberry, Nancy A.; Casciola-Rosen, Livia A.; Rosen, Antony

    2000-01-01

    Caspases are an extended family of cysteine proteases that play critical roles in apoptosis. Animals deficient in caspases-2 or -3, which share very similar tetrapeptide cleavage specificities, exhibit very different phenotypes, suggesting that the unique features of individual caspases may account for distinct regulation and specialized functions. Recent studies demonstrate that unique apoptotic stimuli are transduced by distinct proteolytic pathways, with multiple components of the proteolytic machinery clustering at distinct subcellular sites. We demonstrate here that, in addition to its nuclear distribution, caspase-2 is localized to the Golgi complex, where it cleaves golgin-160 at a unique site not susceptible to cleavage by other caspases with very similar tetrapeptide specificities. Early cleavage at this site precedes cleavage at distal sites by other caspases. Prevention of cleavage at the unique caspase-2 site delays disintegration of the Golgi complex after delivery of a pro-apoptotic signal. We propose that the Golgi complex, like mitochondria, senses and integrates unique local conditions, and transduces pro-apoptotic signals through local caspases, which regulate local effectors. PMID:10791974

  3. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  4. In situ investigation of the mobility of small gold clusters on cleaved MgO surfaces

    NASA Technical Reports Server (NTRS)

    Metois, J. J.; Heinemann, K.; Poppa, H.

    1976-01-01

    The mobility of small clusters of gold (about 10 A in diameter) on electron-beam-cleaved MgO surfaces was studied by in situ transmission electron microscopy under controlled vacuum and temperature conditions. During the first 10 min following a deposition at room temperature, over 10 per cent of the crystallites moved over short distances (about 20 A) discontinuously, with a velocity greater than 150 A/sec. Eighty per cent of the mobility events were characterized by the avoidance of proximity of other crystallites, and this was tentatively explained as the result of repulsive elastic forces between the interacting crystallites.

  5. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cura, Vincent; Gangloff, Monique; Eiler, Sylvia

    2008-01-01

    A new crystallization strategy: the presence of cleaved thioredoxin fusion is critical for crystallization of the estrogen nuclear receptor ligand binding domain in complex with synthetic ligands. This novel technique should be regarded as an interesting alternative for crystallization of difficult proteins. The ligand-binding domain (LBD) of human oestrogen receptor α was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage andmore » its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD–ligand–coactivator peptide complexes at 2.3 Å resolution. This technique is likely to be applicable to other low-solubility proteins.« less

  6. Cleaved-edge-overgrowth nanogap electrodes.

    PubMed

    Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc

    2011-02-11

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  7. Glutathione-complexed [2Fe-2S] clusters function in Fe-S cluster storage and trafficking.

    PubMed

    Fidai, Insiya; Wachnowsky, Christine; Cowan, J A

    2016-10-01

    Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe-S cluster transfer reactions. UV-vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe-S cluster proteins, thereby supporting a possible physiological role for such centers.

  8. Cleaved-coupled nanowire lasers

    PubMed Central

    Gao, Hanwei; Fu, Anthony; Andrews, Sean C.; Yang, Peidong

    2013-01-01

    The miniaturization of optoelectronic devices is essential for the continued success of photonic technologies. Nanowires have been identified as potential building blocks that mimic conventional photonic components such as interconnects, waveguides, and optical cavities at the nanoscale. Semiconductor nanowires with high optical gain offer promising solutions for lasers with small footprints and low power consumption. Although much effort has been directed toward controlling their size, shape, and composition, most nanowire lasers currently suffer from emitting at multiple frequencies simultaneously, arising from the longitudinal modes native to simple Fabry–Pérot cavities. Cleaved-coupled cavities, two Fabry–Pérot cavities that are axially coupled through an air gap, are a promising architecture to produce single-frequency emission. The miniaturization of this concept, however, imposes a restriction on the dimensions of the intercavity gaps because severe optical losses are incurred when the cross-sectional dimensions of cavities become comparable to the lasing wavelength. Here we theoretically investigate and experimentally demonstrate spectral manipulation of lasing modes by creating cleaved-coupled cavities in gallium nitride (GaN) nanowires. Lasing operation at a single UV wavelength at room temperature was achieved using nanoscale gaps to create the smallest cleaved-coupled cavities to date. Besides the reduced number of lasing modes, the cleaved-coupled nanowires also operate with a lower threshold gain than that of the individual component nanowires. Good agreement was found between the measured lasing spectra and the predicted spectral modes obtained by simulating optical coupling properties. This agreement between theory and experiment presents design principles to rationally control the lasing modes in cleaved-coupled nanowire lasers. PMID:23284173

  9. Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2017-05-01

    Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] × 105 M⊙ can accrete more than 105 M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.

  10. Competitive cluster growth in complex networks.

    PubMed

    Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S

    2006-06-01

    In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.

  11. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  12. Mathematical modelling of complex contagion on clustered networks

    NASA Astrophysics Data System (ADS)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  13. Laser fiber cleaving techniques: effects on tip morphology and power output.

    PubMed

    Vassantachart, Janna M; Lightfoot, Michelle; Yeo, Alexander; Maldonado, Jonathan; Li, Roger; Alsyouf, Muhannad; Martin, Jacob; Lee, Michael; Olgin, Gaudencio; Baldwin, D Duane

    2015-01-01

    Proper cleaving of reusable laser fibers is needed to maintain optimal functionality. This study quantifies the effect of different cleaving tools on power output of the holmium laser fiber and demonstrates morphologic changes using microscopy. The uncleaved tips of new 272 μm reusable laser fibers were used to obtain baseline power transmission values at 3 W (0.6 J, 5 Hz). Power output for each of four cleaving techniques-11-blade scalpel, scribe pen cleaving tool, diamond cleaving wheel, and suture scissors-was measured in a single-blinded fashion. Dispersion of light from the fibers was compared with manufacturer specifications and rated as "ideal," "acceptable," or "unacceptable" by blinded reviewers. The fiber tips were also imaged using confocal and scanning electron microscopy. Independent samples Kruskal-Wallis test and chi square were used for statistical analysis (α<0.05). New uncleaved fiber tips transmitted 3.04 W of power and were used as a reference (100%). The scribe pen cleaving tool produced the next highest output (97.1%), followed by the scalpel (83.4%), diamond cleaving wheel (77.1%), and suture scissors (61.7%), a trend that was highly significant (P<0.001). On pairwise comparison, no difference in power output was seen between the uncleaved fiber tips and those cleaved with the scribe pen (P=1.0). The rating of the light dispersion patterns from the different cleaving methods followed the same trend as the power output results (P<0.001). Microscopy showed that the scribe pen produced small defects along the fiber cladding but maintained a smooth, flat core surface. The other cleaving techniques produced defects on both the core and cladding. Cleaving techniques produce a significant effect on the initial power transmitted by reusable laser fibers. The scribe pen cleaving tool produced the most consistent and highest average power output.

  14. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.

    2008-12-01

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  15. A novel complex networks clustering algorithm based on the core influence of nodes.

    PubMed

    Tong, Chao; Niu, Jianwei; Dai, Bin; Xie, Zhongyu

    2014-01-01

    In complex networks, cluster structure, identified by the heterogeneity of nodes, has become a common and important topological property. Network clustering methods are thus significant for the study of complex networks. Currently, many typical clustering algorithms have some weakness like inaccuracy and slow convergence. In this paper, we propose a clustering algorithm by calculating the core influence of nodes. The clustering process is a simulation of the process of cluster formation in sociology. The algorithm detects the nodes with core influence through their betweenness centrality, and builds the cluster's core structure by discriminant functions. Next, the algorithm gets the final cluster structure after clustering the rest of the nodes in the network by optimizing method. Experiments on different datasets show that the clustering accuracy of this algorithm is superior to the classical clustering algorithm (Fast-Newman algorithm). It clusters faster and plays a positive role in revealing the real cluster structure of complex networks precisely.

  16. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mena, Natalia P.; Millennium Institute of Cell Dynamics and Biotechnology, Santiago; Bulteau, Anne Laure

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters aremore » involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given

  17. A machine learning approach for ranking clusters of docked protein‐protein complexes by pairwise cluster comparison

    PubMed Central

    Pfeiffenberger, Erik; Chaleil, Raphael A.G.; Moal, Iain H.

    2017-01-01

    ABSTRACT Reliable identification of near‐native poses of docked protein–protein complexes is still an unsolved problem. The intrinsic heterogeneity of protein–protein interactions is challenging for traditional biophysical or knowledge based potentials and the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy member. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function) but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near‐native from incorrect clusters. The results show that our approach is able to identify clusters containing near‐native protein–protein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking performance. Proteins 2017; 85:528–543. © 2016 Wiley Periodicals, Inc. PMID:27935158

  18. TOSCA-based orchestration of complex clusters at the IaaS level

    NASA Astrophysics Data System (ADS)

    Caballer, M.; Donvito, G.; Moltó, G.; Rocha, R.; Velten, M.

    2017-10-01

    This paper describes the adoption and extension of the TOSCA standard by the INDIGO-DataCloud project for the definition and deployment of complex computing clusters together with the required support in both OpenStack and OpenNebula, carried out in close collaboration with industry partners such as IBM. Two examples of these clusters are described in this paper, the definition of an elastic computing cluster to support the Galaxy bioinformatics application where the nodes are dynamically added and removed from the cluster to adapt to the workload, and the definition of an scalable Apache Mesos cluster for the execution of batch jobs and support for long-running services. The coupling of TOSCA with Ansible Roles to perform automated installation has resulted in the definition of high-level, deterministic templates to provision complex computing clusters across different Cloud sites.

  19. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity.

    PubMed

    Mena, Natalia P; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C; Núñez, Marco T

    2011-06-03

    Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Clustering biomolecular complexes by residue contacts similarity.

    PubMed

    Rodrigues, João P G L M; Trellet, Mikaël; Schmitz, Christophe; Kastritis, Panagiotis; Karaca, Ezgi; Melquiond, Adrien S J; Bonvin, Alexandre M J J

    2012-07-01

    Inaccuracies in computational molecular modeling methods are often counterweighed by brute-force generation of a plethora of putative solutions. These are then typically sieved via structural clustering based on similarity measures such as the root mean square deviation (RMSD) of atomic positions. Albeit widely used, these measures suffer from several theoretical and technical limitations (e.g., choice of regions for fitting) that impair their application in multicomponent systems (N > 2), large-scale studies (e.g., interactomes), and other time-critical scenarios. We present here a simple similarity measure for structural clustering based on atomic contacts--the fraction of common contacts--and compare it with the most used similarity measure of the protein docking community--interface backbone RMSD. We show that this method produces very compact clusters in remarkably short time when applied to a collection of binary and multicomponent protein-protein and protein-DNA complexes. Furthermore, it allows easy clustering of similar conformations of multicomponent symmetrical assemblies in which chain permutations can occur. Simple contact-based metrics should be applicable to other structural biology clustering problems, in particular for time-critical or large-scale endeavors. Copyright © 2012 Wiley Periodicals, Inc.

  1. RNA-cleaving properties of human apurinic/apyrimidinic endonuclease 1 (APE1)

    PubMed Central

    Kim, Wan-Cheol; King, Dustin; Lee, Chow H.

    2010-01-01

    We have recently identified apurinic/apyrimidinic endonuclease 1 (APE1) as an endoribonuclease that cleaves c-myc mRNA in vitro and regulates c-myc mRNA levels and half-life in cells. This study was undertaken to further unravel the RNA-cleaving properties of APE1. Here, we show that APE1 cleaves RNA in the absence of divalent metal ions and, at 2 mM, Zn2+, Ni2+, Cu2+, or Co2+ inhibited the endoribonuclease activity of APE1. APE1 is able to cleave CD44 mRNA, microRNAs (miR-21, miR-10b), and three RNA components of SARS-corona virus (orf1b, orf3, spike) suggesting that, when challenged, it can cleave any RNAs in vitro. APE1 does not cleave strong doublestranded regions of RNA and it has a strong preference for 3’ of pyrimidine, especially towards UA, CA, and UG sites at single-stranded or weakly paired regions. It also cleaves RNA weakly at UC, CU, AC, and AU sites in single-stranded or weakly paired regions. Finally, we found that APE1 can reduce the ability of the Dicer enzyme to process premiRNAs in vitro. Overall, this study has revealed some previously unknown biochemical properties of APE1 which has implications for its role in vivo. PMID:21968700

  2. The globular cluster system of NGC 1316. IV. Nature of the star cluster complex SH2

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Husemann, B.; Hilker, M.; Puzia, T. H.; Bresolin, F.; Gómez, M.

    2017-05-01

    Context. The light of the merger remnant NGC 1316 (Fornax A) is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the Hii region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. Aims: We want to investigate the nature of this star cluster complex. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. Methods: We used the Integral Field Unit (IFU) of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory in high dispersion mode to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. Results: The line ratios of different spectra vary, indicating highly structured Hii regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. Conclusions: The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field

  3. Bleomycin Can Cleave an Oncogenic Noncoding RNA.

    PubMed

    Angelbello, Alicia J; Disney, Matthew D

    2018-01-04

    Noncoding RNAs are pervasive in cells and contribute to diseases such as cancer. A question in biomedical research is whether noncoding RNAs are targets of medicines. Bleomycin is a natural product that cleaves DNA; however, it is known to cleave RNA in vitro. Herein, an in-depth analysis of the RNA cleavage preferences of bleomycin A5 is presented. Bleomycin A5 prefers to cleave RNAs with stretches of AU base pairs. Based on these preferences and bioinformatic analysis, the microRNA-10b hairpin precursor was identified as a potential substrate for bleomycin A5. Both in vitro and cellular experiments demonstrated cleavage. Importantly, chemical cleavage by bleomycin A5 in the microRNA-10b hairpin precursors occurred near the Drosha and Dicer enzymatic processing sites and led to destruction of the microRNA. Evidently, oncogenic noncoding RNAs can be considered targets of cancer medicines and might elicit their pharmacological effects by targeting noncoding RNA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A density-based clustering model for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang; Li, Yantao; Qu, Zehui

    2018-04-01

    Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.

  5. Optimized catalytic DNA-cleaving ribozymes

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1996-01-01

    The present invention discloses nucleic acid enzymes capable of cleaving nucleic acid molecules, including single-stranded DNA, in a site-specific manner under physiologic conditions, as well as compositions including same. The present invention also discloses methods of making and using the disclosed enzymes and compositions.

  6. Delta ribozyme has the ability to cleave in transan mRNA.

    PubMed Central

    Roy, G; Ananvoranich, S; Perreault, J P

    1999-01-01

    We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy. PMID:9927724

  7. The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters.

    PubMed

    Goodwin, P J; Agar, J N; Roll, J T; Roberts, G P; Johnson, M K; Dean, D R

    1998-07-21

    The nifE and nifN gene products from Azotobacter vinelandii form an alpha2beta2 tetramer (NifEN complex) that is required for the biosynthesis of the nitrogenase FeMo cofactor. In the current model for NifEN complex organization and function, the complex is structurally analogous to the nitrogenase MoFe protein and provides an assembly site for a portion of FeMo cofactor biosynthesis. In this work, gene fusion and immobilized metal-affinity chromatography strategies were used to elevate the in vivo production of the NifEN complex and to facilitate its rapid and efficient purification. The NifEN complex produced and purified in this way exhibits an FeMo cofactor biosynthetic activity similar to that previously described for the NifEN complex purified by traditional chromatography methods. UV-visible, EPR, variable-temperature magnetic circular dichroism, and resonance Raman spectroscopies were used to show that the NifEN complex contains two identical [4Fe-4S]2+ clusters. These clusters have a predominantly S = 1/2 ground state in the reduced form, exhibit a reduction potential of -350 mV, and are likely to be coordinated entirely by cysteinyl residues on the basis of spectroscopic properties and sequence comparisons. A model is proposed where each NifEN complex [4Fe-4S] cluster is bridged between a NifE-NifN subunit interface at a position analogous to that occupied by the P clusters in the nitrogenase MoFe protein. In contrast to the MoFe protein P clusters, the NifEN complex [4Fe-4S] clusters are proposed to be asymmetrically coordinated to the NifEN complex where NifE cysteines-37, -62, and -124 and NifN cysteine-44 are the coordinating ligands. On the basis of a homology model of the three-dimensional structure of the NifEN complex, the [4Fe-4S] cluster sites are likely to be remote from the proposed FeMo cofactor assembly site and are unlikely to become incorporated into the FeMo cofactor during its assembly.

  8. A Glutaredoxin·BolA Complex Serves as an Iron-Sulfur Cluster Chaperone for the Cytosolic Cluster Assembly Machinery*♦

    PubMed Central

    Frey, Avery G.; Palenchar, Daniel J.; Wildemann, Justin D.; Philpott, Caroline C.

    2016-01-01

    Cells contain hundreds of proteins that require iron cofactors for activity. Iron cofactors are synthesized in the cell, but the pathways involved in distributing heme, iron-sulfur clusters, and ferrous/ferric ions to apoproteins remain incompletely defined. In particular, cytosolic monothiol glutaredoxins and BolA-like proteins have been identified as [2Fe-2S]-coordinating complexes in vitro and iron-regulatory proteins in fungi, but it is not clear how these proteins function in mammalian systems or how this complex might affect Fe-S proteins or the cytosolic Fe-S assembly machinery. To explore these questions, we use quantitative immunoprecipitation and live cell proximity-dependent biotinylation to monitor interactions between Glrx3, BolA2, and components of the cytosolic iron-sulfur cluster assembly system. We characterize cytosolic Glrx3·BolA2 as a [2Fe-2S] chaperone complex in human cells. Unlike complexes formed by fungal orthologs, human Glrx3-BolA2 interaction required the coordination of Fe-S clusters, whereas Glrx3 homodimer formation did not. Cellular Glrx3·BolA2 complexes increased 6–8-fold in response to increasing iron, forming a rapidly expandable pool of Fe-S clusters. Fe-S coordination by Glrx3·BolA2 did not depend on Ciapin1 or Ciao1, proteins that bind Glrx3 and are involved in cytosolic Fe-S cluster assembly and distribution. Instead, Glrx3 and BolA2 bound and facilitated Fe-S incorporation into Ciapin1, a [2Fe-2S] protein functioning early in the cytosolic Fe-S assembly pathway. Thus, Glrx3·BolA is a [2Fe-2S] chaperone complex capable of transferring [2Fe-2S] clusters to apoproteins in human cells. PMID:27519415

  9. Photodissociation Studies of Metal-Containing Clusters and Complexes

    NASA Astrophysics Data System (ADS)

    Pilgrim, Jeffrey Scott

    1995-01-01

    There have been two major areas of investigation for researchers working with laser ablation in molecular beams. The first area is the study of weakly-bound complexes. These complexes are bound by electrostatic interactions. In the present study the weakly bound interactions of the rare gases with the magnesium ion are investigated with electronic spectroscopy. The second major area is the study of metal and metal-containing clusters. Examples of previous investigations are the alkali metal clusters and the fullerenes. The present investigation is on metal -carbon clusters. The so-called metallo-carbohedrenes and metal-carbon nanocrystals are studied. Resonance enhanced photodissociation spectroscopy is used to obtain electronic excitation spectra of the Mg^+-rare gas species in the ultraviolet region. This investigation is facilitated by a reflectron time-of-flight mass spectrometer. The interaction of the rare gas with the metal ion is attributed to a "solvation" of the atomic ion transition. Simple bonding arguments predict that the excited state is more bound than the ground state for these complexes. This will result in a shift of the complex vibronic origin to lower energy from the atomic ion transition. This is exactly what is observed in the experiment with progressively larger shifts for the heavier rare gases. The electronic excitation spectra allow the vibrational frequencies and anharmonicities for these complexes to be obtained for the excited state. In turn, the excited state bond dissociation energies can be determined. Finally, conservation of energy allows calculation of the ground state bond dissociation energies. In the metal-carbon systems the stability of the metallo-carbohedrene, met-car, stoichiometry is shown to extend into the transition period at least to the iron group. Photodissociation with a 532 nm laser causes a loss of metal atoms for met-cars formed with first row transition metals and a loss of metal-carbon units for met

  10. Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase

    DOE PAGES

    McAndrew, Ryan P.; Sathitsuksanoh, Noppadon; Mbughuni, Michael M.; ...

    2016-11-30

    Stilbenes are diphenyl ethene compounds produced naturally in a wide variety of plant species and some bacteria. Stilbenes are also derived from lignin during kraft pulping. Stilbene cleavage oxygenases (SCOs) cleave the central double bond of stilbenes, forming two phenolic aldehydes. Here in this paper, we report the structure of an SCO. The X-ray structure of NOV1 from Novosphingobium aromaticivorans was determined in complex with its substrate resveratrol (1.89 Å), its product vanillin (1.75 Å), and without any bound ligand (1.61 Å). The enzyme is a seven-bladed β-propeller with an iron cofactor coordinated by four histidines. In all three structures,more » dioxygen is observed bound to the iron in a side-on fashion. These structures, along with EPR analysis, allow us to propose a mechanism in which a ferric-superoxide reactswith substrate activated by deprotonation of a phenol group at position 4 of the substrate, which allows movement of electron density toward the central double bond and thus facilitates reaction with the ferric superoxide electrophile. Correspondingly, NOV1 cleaves a wide range of other stilbene-like compounds with a 4'-OH group, offering potential in processing some solubilized fragments of lignin into monomer aromatic compounds.« less

  11. The TRPM7 chanzyme is cleaved to release a chromatin modifying kinase

    PubMed Central

    Krapivinsky, Grigory; Krapivinsky, Luba; Manasian, Yunona; Clapham, David E.

    2014-01-01

    SUMMARY TRPM7 is a ubiquitous ion channel and kinase, a unique ‘chanzyme’, required for proper early embryonic development. It conducts Zn2+, Mg2+, Ca2+ as well as monovalent cations, and contains a functional serine/threonine kinase at its carboxyl terminus. Here, we show that in normal tissues and cell lines, the kinase is proteolytically cleaved from the channel domain in a cell type-specific manner. These TRPM7 Cleaved Kinase fragments (M7CKs) translocate to the nucleus and bind multiple components of chromatin remodeling complexes, including Polycomb group proteins. In the nucleus, the kinase phosphorylates specific serines/threonines of histones. M7CK-dependent phosphorylation of H3Ser10 at promoters of TRPM7-dependent genes correlates with their activity. We also demonstrate that cytosolic free [Zn2+] is TRPM7-dependent and regulates M7CK binding to transcription factors containing zinc-finger domains. These findings suggest that TRPM7-mediated modulation of intracellular Zn2+ concentration couples ion channel signaling to epigenetic chromatin covalent modifications that affect gene expression patterns. PMID:24855944

  12. Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes

    PubMed Central

    Degn, Søren E.; Kjaer, Troels R.; Kidmose, Rune T.; Jensen, Lisbeth; Hansen, Annette G.; Tekin, Mustafa; Jensenius, Jens C.; Andersen, Gregers R.; Thiel, Steffen

    2014-01-01

    Defining mechanisms governing translation of molecular binding events into immune activation is central to understanding immune function. In the lectin pathway of complement, the pattern recognition molecules (PRMs) mannan-binding lectin (MBL) and ficolins complexed with the MBL-associated serine proteases (MASP)-1 and MASP-2 cleave C4 and C2 to generate C3 convertase. MASP-1 was recently found to be the exclusive activator of MASP-2 under physiological conditions, yet the predominant oligomeric forms of MBL carry only a single MASP homodimer. This prompted us to investigate whether activation of MASP-2 by MASP-1 occurs through PRM-driven juxtaposition on ligand surfaces. We demonstrate that intercomplex activation occurs between discrete PRM/MASP complexes. PRM ligand binding does not directly escort the transition of MASP from zymogen to active enzyme in the PRM/MASP complex; rather, clustering of PRM/MASP complexes directly causes activation. Our results support a clustering-based mechanism of activation, fundamentally different from the conformational model suggested for the classical pathway of complement. PMID:25197071

  13. Novel approaches to pin cluster synchronization on complex dynamical networks in Lur'e forms

    NASA Astrophysics Data System (ADS)

    Tang, Ze; Park, Ju H.; Feng, Jianwen

    2018-04-01

    This paper investigates the cluster synchronization of complex dynamical networks consisted of identical or nonidentical Lur'e systems. Due to the special topology structure of the complex networks and the existence of stochastic perturbations, a kind of randomly occurring pinning controller is designed which not only synchronizes all Lur'e systems in the same cluster but also decreases the negative influence among different clusters. Firstly, based on an extended integral inequality, the convex combination theorem and S-procedure, the conditions for cluster synchronization of identical Lur'e networks are derived in a convex domain. Secondly, randomly occurring adaptive pinning controllers with two independent Bernoulli stochastic variables are designed and then sufficient conditions are obtained for the cluster synchronization on complex networks consisted of nonidentical Lur'e systems. In addition, suitable control gains for successful cluster synchronization of nonidentical Lur'e networks are acquired by designing some adaptive updating laws. Finally, we present two numerical examples to demonstrate the validity of the control scheme and the theoretical analysis.

  14. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  15. Mesotrypsin has evolved four unique residues to cleave trypsin inhibitors as substrates [Mesotrypsin has evolved to cleave trypsin inhibitors as substrates using four unique residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alloy, Alexandre P.; Kayode, Olumide; Wang, Ruiying

    Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursormore » protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. As a result, these findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.« less

  16. Mesotrypsin has evolved four unique residues to cleave trypsin inhibitors as substrates [Mesotrypsin has evolved to cleave trypsin inhibitors as substrates using four unique residues

    DOE PAGES

    Alloy, Alexandre P.; Kayode, Olumide; Wang, Ruiying; ...

    2015-07-14

    Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursormore » protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. As a result, these findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.« less

  17. Oxygen-Centered Hexatantalum Tetradecaimido Cluster Complexes

    PubMed Central

    Krinsky, Jamin L.; Anderson, Laura L.; Arnold, John; Bergman, Robert G.

    2008-01-01

    The syntheses and characterization of several octahedral hexatantalum cluster compounds of formula (ArN)14Ta6O are described (Ar = Ph, p-MeC6H4, p-MeOC6H4, p-t-BuC6H4, p-BrC6H4, m-ClC6H4). Treatment of Bn3Ta=N-t-Bu (Bn = CH2C6H5) or pentakis(dimethylamido)tantalum with an excess of the appropriate aniline and stoichiometric water or tantalum oxide afforded varying yields of arylimido clusters. The structures of two species were confirmed by X-ray diffraction (XRD), while the identity of the central oxygen atom was elucidated by electrospray mass spectrometry (MS) using 17O/18O-enriched material. The title species are very air- and moisture-sensitive but quite thermally stable in solution. Experimentally determined optical properties and oxidation/reduction potentials, as well as some computational results, indicate that they possess an electronic structure wherein the highest occupied molecular orbitals are ligand-centered, while the lowest unoccupied orbitals are metal-centered and delocalized throughout the tantalum cage. Whereas chemical oxidation resulted in cluster decomposition, reduction with decamethylcobaltocene yielded stable salts of formula [Cp*2Co][(ArN)14Ta6O] (Ar = Ph, Ar = p-MeC6H4). Small-molecule reactivity studies on one of these clusters showed that its imido functionalities are moderately reactive toward oxide donors but inert with respect to metallaheterocycle-forming processes. Clean imido/oxo exchange was observed with aldehydes and ketones, leading cleanly to organic imines with no soluble byproducts being observed. This exchange was also observed with a rhenium oxo compound (generating an imidorhenium complex as the only soluble species). All 14 imido groups were transferred in these reactions, and no mixed-ligand cluster intermediates were ever observed. PMID:18163614

  18. Studying the Effect of a Composition of the Cluster Core in High-Radiopacity Cluster Complexes of Rhenium on Their Acute Toxicity In Vivo.

    PubMed

    Pozmogova, T N; Krasil'nikova, A A; Ivanov, A A; Shestopalov, M A; Gyrylova, S N; Shestopalova, L V; Shestopaloiv, A M; Shkurupy, V A

    2016-05-01

    An in vivo study was performed to evaluate the dependence of acute toxicity of high-radiopacity and luminescent octahedral cluster complexes of rhenium after intravenous injection on a composition of the cluster core. Changes in mouse body weight, water and food consumption, degree of intoxication, and morphological changes in the visceral organs were studied after intravenous injection of the following cluster complexes with various internal ligands (S, Se, or Te): Na4[{Re 6 Te 8 }(CN)6], Na4[{Re 6 Se 8 }(CN)6], and Na4[{Re 6 S 8 }(CN)6]. The Na4[{Re 6 S 8 } (CN)6] cluster complex was shown to be the safest for animals.

  19. Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex.

    PubMed

    Boniecki, Michal T; Freibert, Sven A; Mühlenhoff, Ulrich; Lill, Roland; Cygler, Miroslaw

    2017-11-03

    Iron-sulfur (Fe/S) clusters are essential protein cofactors crucial for many cellular functions including DNA maintenance, protein translation, and energy conversion. De novo Fe/S cluster synthesis occurs on the mitochondrial scaffold protein ISCU and requires cysteine desulfurase NFS1, ferredoxin, frataxin, and the small factors ISD11 and ACP (acyl carrier protein). Both the mechanism of Fe/S cluster synthesis and function of ISD11-ACP are poorly understood. Here, we present crystal structures of three different NFS1-ISD11-ACP complexes with and without ISCU, and we use SAXS analyses to define the 3D architecture of the complete mitochondrial Fe/S cluster biosynthetic complex. Our structural and biochemical studies provide mechanistic insights into Fe/S cluster synthesis at the catalytic center defined by the active-site Cys of NFS1 and conserved Cys, Asp, and His residues of ISCU. We assign specific regulatory rather than catalytic roles to ISD11-ACP that link Fe/S cluster synthesis with mitochondrial lipid synthesis and cellular energy status.

  20. RNase P cleaves transient structures in some riboswitches.

    PubMed

    Altman, Sidney; Wesolowski, Donna; Guerrier-Takada, Cecilia; Li, Yong

    2005-08-09

    RNase P from Escherichia coli cleaves the coenzyme B12 riboswitch from E. coli and a similar one from Bacillus subtilis. The cleavage sites do not occur in any recognizable structure, as judged from theoretical schemes that have been drawn for these 5' UTRs. However, it is possible to draw a scheme that is a good representation of the E. coli cleavage site for RNase P and for the cleavage site in B. subtilis. These data indicate that transient structures are important in RNase P cleavage and in riboswitch function. Coenzyme B12 has a small inhibitory effect on E. coli RNase P cleavage of the E. coli riboswitch. Both E. coli RNase P and a partially purified RNase P from Aspergillus nidulans mycelia succeeded in cleaving a putative arginine riboswitch from A. nidulans. The cleavage site may be a representative of another model substrate for eukaryotic RNase P. This 5' UTR controls splicing of the arginase mRNA in A. nidulans. Four other riboswitches in E. coli were not cleaved by RNase P under the conditions tested.

  1. RNase P cleaves transient structures in some riboswitches

    PubMed Central

    Altman, Sidney; Wesolowski, Donna; Guerrier-Takada, Cecilia; Li, Yong

    2005-01-01

    RNase P from Escherichia coli cleaves the coenzyme B12 riboswitch from E. coli and a similar one from Bacillus subtilis. The cleavage sites do not occur in any recognizable structure, as judged from theoretical schemes that have been drawn for these 5′ UTRs. However, it is possible to draw a scheme that is a good representation of the E. coli cleavage site for RNase P and for the cleavage site in B. subtilis. These data indicate that transient structures are important in RNase P cleavage and in riboswitch function. Coenzyme B12 has a small inhibitory effect on E. coli RNase P cleavage of the E. coli riboswitch. Both E. coli RNase P and a partially purified RNase P from Aspergillus nidulans mycelia succeeded in cleaving a putative arginine riboswitch from A. nidulans. The cleavage site may be a representative of another model substrate for eukaryotic RNase P. This 5′ UTR controls splicing of the arginase mRNA in A. nidulans. Four other riboswitches in E. coli were not cleaved by RNase P under the conditions tested. PMID:16061811

  2. Near-infrared study of new embedded clusters in the Carina complex

    NASA Astrophysics Data System (ADS)

    Oliveira, R. A. P.; Bica, E.; Bonatto, C.

    2018-05-01

    We analyse the nature of a sample of stellar overdensities that we found projected on the Carina complex. This study is based on the Two Micron All Sky Survey photometry and involves the photometry decontamination of field stars, elaboration of intrinsic colour-magnitude diagrams [CMDs; J × (J - Ks)], colour-colour diagrams (J - H) × (H - Ks), and radial density profiles, in order to determine the structure and the main astrophysical parameters of the best candidates. The verification of an overdensity as an embedded cluster requires a CMD consistent with a PMS content and MS stars, if any. From these results, we are able to verify if they are, in fact, embedded clusters. The results were, in general, rewarding: in a sample of 101 overdensities, the analysis provided 15 candidates, of which three were previously catalogued as clusters (CCCP-Cl 16, Treasure Chest, and FSR 1555), and the 12 remaining are discoveries that provided significant results, with ages not above 4.5 Myr and distances compatible with the studied complex. The resulting values for the differential reddening of most candidates were relatively high, confirming that these clusters are still (partially or fully) embedded in the surrounding gas and dust, as a rule within a shell. Histograms with the distribution of the masses, ages, and distances were also produced, to give an overview of the results. We conclude that all the 12 newly found embedded clusters are related to the Carina complex.

  3. Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels.

    PubMed

    Sun, Zhuohua; Barta, Katalin

    2018-06-21

    The structural complexity of lignocellulose offers unique opportunities for the development of entirely new, energy efficient and waste-free pathways in order to obtain valuable bio-based building blocks. Such sustainable catalytic methods - specifically tailored to address the efficient conversion of abundant renewable starting materials - are necessary to successfully compete, in the future, with fossil-based multi-step processes. In this contribution we give a summary of recent developments in this field and describe our "cleave and couple" strategy, where "cleave" refers to the catalytic deconstruction of lignocellulose to aromatic and aliphatic alcohol intermediates, and "couple" involves the development of novel, sustainable transformations for the formation of C-C and C-N bonds in order to obtain a range of attractive products from lignocellulose.

  4. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  5. Cluster formation by allelomimesis in real-world complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Juanico, Dranreb Earl; Monterola, Christopher; Saloma, Caesar

    2005-04-01

    Animal and human clusters are complex adaptive systems and many organize in cluster sizes s that obey the frequency distribution D(s)∝s-τ . The exponent τ describes the relative abundance of the cluster sizes in a given system. Data analyses reveal that real-world clusters exhibit a broad spectrum of τ values, 0.7 (tuna fish schools) ⩽τ⩽4.61 (T4 bacteriophage gene family sizes). Allelomimesis is proposed as an underlying mechanism for adaptation that explains the observed broad τ spectrum. Allelomimesis is the tendency of an individual to imitate the actions of others and two cluster systems have different τ values when their component agents display unequal degrees of allelomimetic tendencies. Cluster formation by allelomimesis is shown to be of three general types: namely, blind copying, information-use copying, and noncopying. Allelomimetic adaptation also reveals that the most stable cluster size is formed by three strongly allelomimetic individuals. Our finding is consistent with available field data taken from killer whales and marmots.

  6. Thiol surface complexation on growing CdS clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swayambunathan, V.; Hayes, D.; Schmidt, K.H.

    1990-05-09

    The growth of small CdS colloidal particles has been initiated by pulse radiolytic release of sulfide from thiol (3-mercapto-1,2-propanediol, RSH) in the presence of Cd{sup 2+} ions. The kinetics and stoichiometry of the ensuring reactions were followed by conductivity, absorption spectroscopy, and light-scattering techniques. The final CdS product has been identified by electron diffraction. The formation of Cd-thiolate complexes at the surface of the particles is indicated by conductivity and by energy dispersive analysis of X-ray (EDAX) results. The rate of formation of CdS clusters is strongly pH dependent due to the pH effect on the stability of Dd{sup 2+}/HS{supmore » {minus}} complexes. At low pHs (4.0-5.3) the growth mechanism is proposed to be primarily a cluster-molecule process. At this pH range Cd{sup 2+} ions at the CdS particle surface complex with thiolate ions stronger than in the bulk of the solution. The size control of the particles by thiols is proposed to result from a competition of thiolate ions with HS{sup {minus}} ions for cadmium ions at the surface of the growing particles.« less

  7. Prospects of molybdenum and rhenium octahedral cluster complexes as X-ray contrast agents.

    PubMed

    Krasilnikova, Anna A; Shestopalov, Michael A; Brylev, Konstantin A; Kirilova, Irina A; Khripko, Olga P; Zubareva, Kristina E; Khripko, Yuri I; Podorognaya, Valentina T; Shestopalova, Lidiya V; Fedorov, Vladimir E; Mironov, Yuri V

    2015-03-01

    Investigation of new X-ray contrast media for radiography is an important field of science since discovering of X-rays in 1895. Despite the wide diversity of available X-ray contrast media the toxicity, especially nephrotoxicity, is still a big problem to be solved. The octahedral metal-cluster complexes of the general formula [{M6Q8}L6] can be considered as quite promising candidates for the role of new radiocontrast media due to the high local concentration of heavy elements, high tuning ability of ligand environment and low toxicity. To exemplify this, the X-ray computed tomography experiments for the first time were carried out on some octahedral cluster complexes of molybdenum and rhenium. Based on the obtained data it was proposed to investigate the toxicological proprieties of cluster complex Na2H8[{Re6Se8}(P(CH2CH2CONH2)(CH2CH2COO)2)6]. Observed low cytotoxic and acute toxic effects along with rapid renal excretion of the cluster complex evidence its perspective as an X-ray contrast media for radiography. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Plasmin-Cleaved β-2-Glycoprotein 1 Is an Inhibitor of Angiogenesis

    PubMed Central

    Sakai, Taro; Balasubramanian, Krishnakumar; Maiti, Sourindra; Halder, Jyotsna B.; Schroit, Alan J.

    2007-01-01

    β-2-Glycoprotein 1, an abundant plasma glycoprotein, binds anionic cell surfaces and functions as a regulator of thrombosis. Here, we show that cleavage of the kringle domain at Lys317/Thr318 switches its function to a regulator of angiogenesis. In vitro, the cleaved protein specifically inhibited the proliferation and migration of endothelial cells. The protein was without effect on preformed endothelial cell tubes. In vivo, the cleaved protein inhibited neovascularization into subcutaneously implanted Matrigel and Gelfoam sponge implants and the growth of orthotopically injected tumors. Collectively, these data indicate that plasmin-cleaved β-2-glycoprotein 1 is a potent antiangiogenic and antitumor molecule of potential therapeutic significance. PMID:17872974

  9. Clustering determines the dynamics of complex contagions in multiplex networks

    NASA Astrophysics Data System (ADS)

    Zhuang, Yong; Arenas, Alex; Yaǧan, Osman

    2017-01-01

    We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex networks. The model is intended to understand spread of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is especially useful in problems related to spreading and percolation. The results present nontrivial dependencies between the clustering coefficient of the networks and its average degree. In particular, several phase transitions are shown to occur depending on these descriptors. Generally speaking, our findings reveal that increasing clustering decreases the probability of having global cascades and their size, however, this tendency changes with the average degree. There exists a certain average degree from which on clustering favors the probability and size of the contagion. By comparing the dynamics of complex contagions over multiplex networks and their monoplex projections, we demonstrate that ignoring link types and aggregating network layers may lead to inaccurate conclusions about contagion dynamics, particularly when the correlation of degrees between layers is high.

  10. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    PubMed Central

    Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.

    2015-01-01

    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518

  11. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex.

    PubMed

    Fox, Nicholas G; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A; Barondeau, David P

    2015-06-30

    Iron-sulfur (Fe-S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe-S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe-S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe-S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe-S assembly complex. Here the kinetics of Fe-S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe-S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe-S assembly complex.

  12. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions.

    PubMed

    Dong, Jing-fei; Moake, Joel L; Nolasco, Leticia; Bernardo, Aubrey; Arceneaux, Wendy; Shrimpton, Corie N; Schade, Alicia J; McIntire, Larry V; Fujikawa, Kazuo; López, José A

    2002-12-01

    Thrombotic thrombocytopenic purpura (TTP) is a devastating thrombotic disorder caused by widespread microvascular thrombi composed of platelets and von Willebrand factor (VWF). The disorder is associated with a deficiency of the VWF-cleaving metalloprotease, ADAMTS-13, with consequent accumulation of ultralarge (UL) VWF multimers in the plasma. ULVWF multimers, unlike plasma forms of VWF, attach spontaneously to platelet GP Ibalpha, a component of the GP Ib-IX-V complex. We have found that ULVWF multimers secreted from stimulated endothelial cells (ECs) remained anchored to the endothelial surface where platelets and Chinese hamster ovary cells expressing the GP Ib-IX-V complex attached to form long beads-on-a-string structures in the presence of fluid shear stresses in both the venous (2.5 dyne/cm(2)) and arterial (20 and 50 dyne/cm(2)) ranges. Although measurement of the activity of the ADAMTS-13 VWF-cleaving metalloprotease in vitro requires prolonged incubation of the enzyme with VWF under nonphysiologic conditions, EC-derived ULVWF strings with attached platelets were cleaved within seconds to minutes in the presence of normal plasma (containing approximately 100% ADAMTS-13 activity) or in the presence of partially purified ADAMTS-13. By contrast, the strings persisted for the entire period of perfusion (10 minutes) in the presence of plasma from patients with TTP containing 0% to 10% ADAMTS-13 activity. These results suggest that cleavage of EC-derived ULVWF multimers by ADAMTS-13 is a rapid physiologic process that occurs on endothelial cell surfaces.

  13. Into the complexity of coseismic landslide clustering

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Uchida, Taro; Hovius, Niels

    2014-05-01

    Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides are more uniformly distributed on hillslopes [1]. In theory, rainfall induced landslides should even occur downslope preferentially, where pore pressure induced by groundwater flows is the highest. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial variation of the landslide position (on hillslopes) within the epicentral area for the cases of the 1999 Chichi, the 2004 Niigata and the 2008 Iwate earthquakes. We show that landslide clustering is not uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232.

  14. A Complex Between Biotin Synthase and The Iron-Sulfur Cluster Assembly Chaperone HscA That Enhances In Vivo Cluster Assembly†

    PubMed Central

    Reyda, Michael R.; Fugate, Corey J.; Jarrett, Joseph T.

    2009-01-01

    Biotin synthase (BioB) is an iron-sulfur enzyme that catalyzes the last step in biotin biosynthesis, the insertion of sulfur between the C6 and C9 carbons of dethiobiotin to complete the thiophane ring of biotin. Recent in vitro experiments suggest that the sulfur is derived from a [2Fe-2S]2+ cluster within BioB, and that the remnants of this cluster dissociate from the enzyme following each turnover. In order for BioB to catalyze multiple rounds of biotin synthesis, the [2Fe-2S]2+ cluster in BioB must be reassembled, a process that could be carried out in vivo by the ISC or SUF iron-sulfur cluster assembly systems. The bacterial ISC system includes HscA, an Hsp70-class molecular chaperone, whose yeast homolog has been shown to play an important but nonessential role in assembly of mitochondrial FeS clusters in S. cerevesiae. In the present work we show that in E. coli, HscA significantly improves the efficiency of the in vivo assembly of the [2Fe-2S]2+ cluster on BioB under conditions of low to moderate iron. In vitro, we show that HscA binds with increased affinity to BioB missing one or both FeS clusters, with a maximum of two HscA molecules per BioB dimer. BioB binds to HscA in an ATP/ADP-independent manner and a high affinity complex is also formed with a truncated form of HscA that lacks the nucleotide binding domain. Further, the BioB:HscA complex binds the FeS cluster scaffold protein IscU in a noncompetitive manner, generating a complex that contains all three proteins. We propose that HscA plays a role in facilitating the transfer of FeS clusters from IscU into the appropriate target apoproteins such as biotin synthase, perhaps by enhancing or prolonging the requisite protein:protein interaction. PMID:19821612

  15. Stellar Clusters in the NGC 6334 Star-Forming Complex

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.; Martin, Amanda L.; McNeill, Collin J.; Broos, Patrick S.; Garmire, Gordon P.

    2009-07-01

    The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000-30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with ~10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.

  16. Cleaved CD147 shed from the surface of malignant melanoma cells activates MMP2 produced by fibroblasts.

    PubMed

    Hatanaka, Miho; Higashi, Yuko; Fukushige, Tomoko; Baba, Naoko; Kawai, Kazuhiro; Hashiguchi, Teruto; Su, Juan; Zeng, Weiqi; Chen, Xiang; Kanekura, Takuro

    2014-12-01

    Cluster of differentiation 147 (CD147)/basigin on the malignant tumor cell surface is critical for tumor proliferation, invasiveness, metastasis, and angiogenesis. CD147 expressed on malignant melanoma cells can induce tumor cell invasion by stimulating the production of matrix metalloproteinases (MMPs) by surrounding fibroblasts. Membrane vesicles, microvesicles and exosomes have attracted attention, as vehicles of functional molecules and their association with CD147 has been reported. Cleaved CD147 fragments released from tumor cells were reported to interact with fibroblasts. We investigated the intercellular mechanisms by which CD147 stimulates fibroblasts to induce MMP2 activity. CD147 was knocked-down using short hairpin RNA (shRNA). The stimulatory effect of CD147 in cell culture supernatants, microvesicles, and exosomes on the enzymatic activity of MMP2 was examined by gelatin zymography. Supernatants from A375 control cells induced increased enzymatic activity of fibroblasts; such activity was significantly lower in CD147 knock-down cells. Cleaved CD147 plays a pivotal role in stimulating fibroblasts to induce MMP2 activity. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. A clustering algorithm for determining community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Yu, Wei; Li, ShiJun

    2018-02-01

    Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.

  18. The Ether-Cleaving Methyltransferase System of the Strict Anaerobe Acetobacterium dehalogenans: Analysis and Expression of the Encoding Genes▿

    PubMed Central

    Schilhabel, Anke; Studenik, Sandra; Vödisch, Martin; Kreher, Sandra; Schlott, Bernhard; Pierik, Antonio Y.; Diekert, Gabriele

    2009-01-01

    Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases. PMID:19011025

  19. Diffuse radio emission in the complex merging galaxy cluster Abell2069

    NASA Astrophysics Data System (ADS)

    Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.

    2015-03-01

    Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.

  20. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs

    DOE PAGES

    Michalska, Karolina; Gucinski, Grant C.; Garza-Sanchez, Fernando; ...

    2017-08-11

    Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxinmore » specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Altogether, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.« less

  1. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalska, Karolina; Gucinski, Grant C.; Garza-Sanchez, Fernando

    Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxinmore » specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Altogether, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.« less

  2. Ionization of doped helium nanodroplets: Complexes of C60 with water clusters

    NASA Astrophysics Data System (ADS)

    Denifl, S.; Zappa, F.; Mähr, I.; Mauracher, A.; Probst, M.; Urban, J.; Mach, P.; Bacher, A.; Bohme, D. K.; Echt, O.; Märk, T. D.; Scheier, P.

    2010-06-01

    Water clusters are known to undergo an autoprotonation reaction upon ionization by photons or electron impact, resulting in the formation of (H2O)nH3O+. Ejection of OH cannot be quenched by near-threshold ionization; it is only partly quenched when clusters are complexed with inert gas atoms. Mass spectra recorded by electron ionization of water-doped helium droplets show that the helium matrix also fails to quench OH loss. The situation changes drastically when helium droplets are codoped with C60. Charged C60-water complexes are predominantly unprotonated; C60(H2O)4+ and (C60)2(H2O)4+ appear with enhanced abundance. Another intense ion series is due to C60(H2O)nOH+; dehydrogenation is proposed to be initiated by charge transfer between the primary He+ ion and C60. The resulting electronically excited C60+∗ leads to the formation of a doubly charged C60-water complex either via emission of an Auger electron from C60+∗, or internal Penning ionization of the attached water complex, followed by charge separation within {C60(H2O)n}2+. This mechanism would also explain previous observations of dehydrogenation reactions in doped helium droplets. Mass-analyzed ion kinetic energy scans reveal spontaneous (unimolecular) dissociation of C60(H2O)n+. In addition to the loss of single water molecules, a prominent reaction channel yields bare C60+ for sizes n=3, 4, or 6. Ab initio Hartree-Fock calculations for C60-water complexes reveal negligible charge transfer within neutral complexes. Cationic complexes are well described as water clusters weakly bound to C60+. For n=3, 4, or 6, fissionlike desorption of the entire water complex from C60(H2O)n+ energetically competes with the evaporation of a single water molecule.

  3. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    PubMed

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  4. Directed clustering coefficient as a measure of systemic risk in complex banking networks

    NASA Astrophysics Data System (ADS)

    Tabak, Benjamin M.; Takami, Marcelo; Rocha, Jadson M. C.; Cajueiro, Daniel O.; Souza, Sergio R. S.

    2014-01-01

    Recent literature has focused on the study of systemic risk in complex networks. It is clear now, after the crisis of 2008, that the aggregate behavior of the interaction among agents is not straightforward and it is very difficult to predict. Contributing to this debate, this paper shows that the directed clustering coefficient may be used as a measure of systemic risk in complex networks. Furthermore, using data from the Brazilian interbank network, we show that the directed clustering coefficient is negatively correlated with domestic interest rates.

  5. Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis.

    PubMed

    Cohen, Mitchell J; Grossman, Adam D; Morabito, Diane; Knudson, M Margaret; Butte, Atul J; Manley, Geoffrey T

    2010-01-01

    Advances in technology have made extensive monitoring of patient physiology the standard of care in intensive care units (ICUs). While many systems exist to compile these data, there has been no systematic multivariate analysis and categorization across patient physiological data. The sheer volume and complexity of these data make pattern recognition or identification of patient state difficult. Hierarchical cluster analysis allows visualization of high dimensional data and enables pattern recognition and identification of physiologic patient states. We hypothesized that processing of multivariate data using hierarchical clustering techniques would allow identification of otherwise hidden patient physiologic patterns that would be predictive of outcome. Multivariate physiologic and ventilator data were collected continuously using a multimodal bioinformatics system in the surgical ICU at San Francisco General Hospital. These data were incorporated with non-continuous data and stored on a server in the ICU. A hierarchical clustering algorithm grouped each minute of data into 1 of 10 clusters. Clusters were correlated with outcome measures including incidence of infection, multiple organ failure (MOF), and mortality. We identified 10 clusters, which we defined as distinct patient states. While patients transitioned between states, they spent significant amounts of time in each. Clusters were enriched for our outcome measures: 2 of the 10 states were enriched for infection, 6 of 10 were enriched for MOF, and 3 of 10 were enriched for death. Further analysis of correlations between pairs of variables within each cluster reveals significant differences in physiology between clusters. Here we show for the first time the feasibility of clustering physiological measurements to identify clinically relevant patient states after trauma. These results demonstrate that hierarchical clustering techniques can be useful for visualizing complex multivariate data and may provide new

  6. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    NASA Astrophysics Data System (ADS)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  7. Adaptive fuzzy leader clustering of complex data sets in pattern recognition

    NASA Technical Reports Server (NTRS)

    Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.

  8. Mesotrypsin Has Evolved Four Unique Residues to Cleave Trypsin Inhibitors as Substrates.

    PubMed

    Alloy, Alexandre P; Kayode, Olumide; Wang, Ruiying; Hockla, Alexandra; Soares, Alexei S; Radisky, Evette S

    2015-08-28

    Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursor protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. These findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. 3' fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3.

    PubMed

    Yoshikawa, Manabu; Iki, Taichiro; Tsutsui, Yasuhiro; Miyashita, Kyoko; Poethig, R Scott; Habu, Yoshiki; Ishikawa, Masayuki

    2013-03-05

    trans-acting small interfering RNAs (tasiRNAs) are plant-specific endogenous siRNAs produced via a unique pathway whose first step is the microRNA (miRNA)-programmed RNA-induced silencing complex (RISC)-mediated cleavage of tasiRNA gene (TAS) transcripts. One of the products is subsequently transformed into tasiRNAs by a pathway that requires several factors including SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6. Here, using in vitro assembled ARGONAUTE (AGO)1-RISCs, we show that SGS3 is recruited onto RISCs only when they bind target RNA. Following cleavage by miRNA173 (miR173)-programmed RISC, SGS3 was found in complexes containing cleaved TAS2 RNA and RISC. The 3' cleavage fragment (the source of tasiRNAs) was protected from degradation in this complex. Depletion of SGS3 did not affect TAS2 RNA cleavage by miR173-programmed RISC, but did affect the stability of the 3' cleavage fragment. When the 3' nucleotide of 22-nt miR173 was deleted or the corresponding nucleotide in TAS2 RNA was mutated, the complex was not observed and the 3' cleavage fragment was degraded. Importantly, these changes in miR173 or TAS2 RNA are known to lead to a loss of tasiRNA production in vivo. These results suggest that (i) SGS3 associates with AGO1-RISC via the double-stranded RNA formed by the 3'-terminal nucleotides of 22-nt miR173 and corresponding target RNA, which probably protrudes from the AGO1-RISC molecular surface, (ii) SGS3 protects the 3' cleavage fragment of TAS2 RNA from degradation, and (iii) the observed SGS3-dependent stabilization of the 3' fragment of TAS2 RNA is key to tasiRNA production.

  10. Community detection in complex networks using proximate support vector clustering

    NASA Astrophysics Data System (ADS)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-03-01

    Community structure, one of the most attention attracting properties in complex networks, has been a cornerstone in advances of various scientific branches. A number of tools have been involved in recent studies concentrating on the community detection algorithms. In this paper, we propose a support vector clustering method based on a proximity graph, owing to which the introduced algorithm surpasses the traditional support vector approach both in accuracy and complexity. Results of extensive experiments undertaken on computer generated networks and real world data sets illustrate competent performances in comparison with the other counterparts.

  11. Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex.

    PubMed

    Tsai, Chi-Lin; Barondeau, David P

    2010-11-02

    Cellular depletion of the human protein frataxin is correlated with the neurodegenerative disease Friedreich's ataxia and results in the inactivation of Fe-S cluster proteins. Most researchers agree that frataxin functions in the biogenesis of Fe-S clusters, but its precise role in this process is unclear. Here we provide in vitro evidence that human frataxin binds to a Nfs1, Isd11, and Isu2 complex to generate the four-component core machinery for Fe-S cluster biosynthesis. Frataxin binding dramatically changes the K(M) for cysteine from 0.59 to 0.011 mM and the catalytic efficiency (k(cat)/K(M)) of the cysteine desulfurase from 25 to 7900 M⁻¹s⁻¹. Oxidizing conditions diminish the levels of both complex formation and frataxin-based activation, whereas ferrous iron further stimulates cysteine desulfurase activity. Together, these results indicate human frataxin functions with Fe(2+) as an allosteric activator that triggers sulfur delivery and Fe-S cluster assembly. We propose a model in which cellular frataxin levels regulate human Fe-S cluster biosynthesis that has implications for mitochondrial dysfunction, oxidative stress response, and both neurodegenerative and cardiovascular disease.

  12. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  13. Redox Potential and C-H Bond Cleaving Properties of a Nonheme FeIV=O Complex in Aqueous Solution

    PubMed Central

    Wang, Dong; Zhang, Mo; Bühlmann, Philippe; Que, Lawrence

    2010-01-01

    High-valent iron-oxo intermediates have been identified as the key oxidants in the catalytic cycles of many nonheme enzymes. Among the large number of synthetic FeIV=O complexes characterized to date, [FeIV(O)(N4Py)]2+ (1) exhibits the unique combination of thermodynamic stability, allowing its structural characterization by X-ray crystallography, and oxidative reactivity sufficient to cleave C-H bonds as strong as those in cyclohexane (DC-H = 99.3 kcal mol-1). However, its redox properties are not yet well understood. In this work, the effect of protons on the redox properties of 1 has been investigated electrochemically in nonaqueous and aqueous solutions. While the cyclic voltammetry of 1 in CH3CN is complicated by coupling of several chemical and redox processes, the FeIV/III couple is reversible in aqueous solution with E1/2 = +0.41 V vs. SCE at pH 4 and involves the transfer of one electron and one proton to give the FeIII-OH species. This is in fact the first example of reversible electrochemistry to be observed for this family of nonheme oxoiron(IV) complexes. C-H bond oxidations by 1 have been studied in H2O and found to have reactions rates that depend on the C-H bond strength but not on the solvent. Furthermore, our electrochemical results have allowed a DO-H value of 78(2) kcal mol-1 to be calculated for the FeIII-OH unit derived from 1. Interestingly, although this DO-H value is 6-11 kcal mol-1 lower than those corresponding to oxidants such as [FeIV(O)(TMP)] (TMP = tetramesitylporphinate), [RuIV(O)(bpy)2(py)]2+ (bpy = bipyridine, py = pyridine) and the tert-butylperoxyl radical, the oxidation of dihydroanthracene by 1 occurs at a rate comparable to those for these other oxidants. This comparison suggests that the nonheme N4Py ligand environment confers a kinetic advantage over the others that enhances the C-H bond cleavage ability of 1. PMID:20476758

  14. Identifying driving gene clusters in complex diseases through critical transition theory

    NASA Astrophysics Data System (ADS)

    Wolanyk, Nathaniel; Wang, Xujing; Hessner, Martin; Gao, Shouguo; Chen, Ye; Jia, Shuang

    A novel approach of looking at the human body using critical transition theory has yielded positive results: clusters of genes that act in tandem to drive complex disease progression. This cluster of genes can be thought of as the first part of a large genetic force that pushes the body from a curable, but sick, point to an incurable diseased point through a catastrophic bifurcation. The data analyzed is time course microarray blood assay data of 7 high risk individuals for Type 1 Diabetes who progressed into a clinical onset, with an additional larger study requested to be presented at the conference. The normalized data is 25,000 genes strong, which were narrowed down based on statistical metrics, and finally a machine learning algorithm using critical transition metrics found the driving network. This approach was created to be repeatable across multiple complex diseases with only progression time course data needed so that it would be applicable to identifying when an individual is at risk of developing a complex disease. Thusly, preventative measures can be enacted, and in the longer term, offers a possible solution to prevent all Type 1 Diabetes.

  15. Experimental and Metabolic Modeling Evidence for a Folate-Cleaving Side-Activity of Ketopantoate Hydroxymethyltransferase (PanB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiaville, Jennifer J.; Frelin, Océane; García-Salinas, Carolina

    Tetrahydrofolate (THF) and its one-carbon derivatives, collectively termed folates, are essential cofactors, but are inherently unstable. While it is clear that chemical oxidation can cleave folates or damage their pterin precursors, very little is known about enzymatic damage to these molecules or about whether the folate biosynthesis pathway responds adaptively to damage to its end-products. The presence of a duplication of the gene encoding the folate biosynthesis enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (FolK) in many sequenced bacterial genomes combined with a strong chromosomal clustering of the folK gene with panB, encoding the 5,10-methylene-THF-dependent enzyme ketopantoate hydroxymethyltransferase, led us to infer that PanBmore » has a side activity that cleaves 5,10-methylene-THF, yielding a pterin product that is recycled by FolK. Genetic and metabolic analyses of Escherichia coli strains showed that overexpression of PanB leads to accumulation of the likely folate cleavage product 6-hydroxymethylpterin and other pterins in cells and medium, and—unexpectedly—to a 46% increase in total folate content. In silico modeling of the folate biosynthesis pathway showed that these observations are consistent with the in vivo cleavage of 5,10-methylene-THF by a side-activity of PanB, with FolK-mediated recycling of the pterin cleavage product, and with regulation of folate biosynthesis by folates or their damage products.« less

  16. Alignment and integration of complex networks by hypergraph-based spectral clustering

    NASA Astrophysics Data System (ADS)

    Michoel, Tom; Nachtergaele, Bruno

    2012-11-01

    Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.

  17. Alignment and integration of complex networks by hypergraph-based spectral clustering.

    PubMed

    Michoel, Tom; Nachtergaele, Bruno

    2012-11-01

    Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.

  18. Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson's disease.

    PubMed

    Zhang, Zhentao; Kang, Seong Su; Liu, Xia; Ahn, Eun Hee; Zhang, Zhaohui; He, Li; Iuvone, P Michael; Duong, Duc M; Seyfried, Nicholas T; Benskey, Matthew J; Manfredsson, Fredric P; Jin, Lingjing; Sun, Yi E; Wang, Jian-Zhi; Ye, Keqiang

    2017-08-01

    Aggregated forms of α-synuclein play a crucial role in the pathogenesis of synucleinopathies such as Parkinson's disease (PD). However, the molecular mechanisms underlying the pathogenic effects of α-synuclein are not completely understood. Here we show that asparagine endopeptidase (AEP) cleaves human α-synuclein, triggers its aggregation and escalates its neurotoxicity, thus leading to dopaminergic neuronal loss and motor impairments in a mouse model. AEP is activated and cleaves human α-synuclein at N103 in an age-dependent manner. AEP is highly activated in human brains with PD, and it fragments α-synuclein, which is found aggregated in Lewy bodies. Overexpression of the AEP-cleaved α-synuclein 1-103 fragment in the substantia nigra induces both dopaminergic neuronal loss and movement defects in mice. In contrast, inhibition of AEP-mediated cleavage of α-synuclein (wild type and A53T mutant) diminishes α-synuclein's pathologic effects. Together, these findings support AEP's role as a key mediator of α-synuclein-related etiopathological effects in PD.

  19. Human replication protein Cdc6 is selectively cleaved by caspase 3 during apoptosis

    PubMed Central

    Pelizon, Cristina; d’Adda di Fagagna, Fabrizio; Farrace, Lorena; Laskey, Ronald A.

    2002-01-01

    In eukaryotes, the initiation of DNA replication involves the ordered assembly on chromatin of pre-replicative complexes (pre-RCs), including the origin recognition complex (ORC), Cdc6, Cdt1 and the minichromosome maintenance proteins (MCMs). In light of its indispensable role in the formation of pre-RCs, Cdc6 binding to chromatin represents a key step in the regulation of DNA replication and cell proliferation. Here, we study the human Cdc6 (HuCdc6) protein during programmed cell death (apoptosis). We find that HuCdc6, but not HuOrc2 (a member of the ORC) or HuMcm5 (one of the MCMs), is specifically cleaved in several human cell lines induced to undergo apoptosis by a variety of stimuli. Expression of caspase-uncleavable mutant HuCdc6 attenuates apoptosis, delaying cell death. Therefore, an important function for cleavage of HuCdc6 is to prevent a wounded cell from replicating and to facilitate death. PMID:12151338

  20. Respiratory chain supercomplexes associate with the cysteine desulfurase complex of the iron–sulfur cluster assembly machinery

    PubMed Central

    Böttinger, Lena; Mårtensson, Christoph U.; Song, Jiyao; Zufall, Nicole; Wiedemann, Nils; Becker, Thomas

    2018-01-01

    Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity. PMID:29386296

  1. A Co16 cluster and a 1-D Mn chain complex supported by benzohydroxamic acid.

    PubMed

    Cao, Yanyuan; Chen, Yanmei; Li, Lei; Gao, Dandan; Liu, Wei; Hu, Hailiang; Li, Wu; Li, Yahong

    2013-08-14

    The syntheses, crystal structures and magnetic properties are described for a {Co16} cluster [Co(II)16O(OH)2(bha)12(PhCO2)4(Phen)2(MeOH)4]·2MeOH (1) and a 1-D Mn(II) chain complex [Mn(Hbha)2]n·(2MeOH)n (2) (H2bha = benzohydroxamic acid; Phen = 1,10-phenanthroline). The 1 : 1 : 0.5 reaction of Co(O2CMe)2·4H2O, H2bha and 1,10-phenanthroline in MeOH at 100 °C under autogenous pressure gave cluster 1. Complex 2 was obtained from the 1 : 1 reaction mixture of Mn(O2CMe)2·2H2O and H2bha in MeOH under solvothermal conditions. The {Co16} cluster can be thought as a face-centered cube with two wings. The H2bha ligands show hydroximic form in 1 and exhibit hydroxamic mode in 2. The hydroximate ligands in 1 display three distinct binding modes, one of which is novel. Variable-temperature solid-state dc magnetic susceptibility studies have been performed in the 2.0-300 K range for complexes 1 and 2. Antiferromagnetic M(II)···M(II) exchange interactions were found for both 1 and 2. This work also demonstrates that solvothermal method is a potential synthetic approach for the design and growth of high nuclearity clusters or chain complexes of the H2bha ligand.

  2. Fluoroquinolone-Gyrase-DNA Complexes

    PubMed Central

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M.; Hiasa, Hiroshi; Marks, Kevin R.; Kerns, Robert J.; Berger, James M.; Drlica, Karl

    2014-01-01

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases. PMID:24497635

  3. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction.

    PubMed

    Wagner, Tristan; Koch, Jürgen; Ermler, Ulrich; Shima, Seigo

    2017-08-18

    In methanogenic archaea, the carbon dioxide (CO 2 ) fixation and methane-forming steps are linked through the heterodisulfide reductase (HdrABC)-[NiFe]-hydrogenase (MvhAGD) complex that uses flavin-based electron bifurcation to reduce ferredoxin and the heterodisulfide of coenzymes M and B. Here, we present the structure of the native heterododecameric HdrABC-MvhAGD complex at 2.15-angstrom resolution. HdrB contains two noncubane [4Fe-4S] clusters composed of fused [3Fe-4S]-[2Fe-2S] units sharing 1 iron (Fe) and 1 sulfur (S), which were coordinated at the CCG motifs. Soaking experiments showed that the heterodisulfide is clamped between the two noncubane [4Fe-4S] clusters and homolytically cleaved, forming coenzyme M and B bound to each iron. Coenzymes are consecutively released upon one-by-one electron transfer. The HdrABC-MvhAGD atomic model serves as a structural template for numerous HdrABC homologs involved in diverse microbial metabolic pathways. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA.

    PubMed

    Xu, Li; Zhao, Lixia; Gao, Yandi; Xu, Jing; Han, Renzhi

    2017-03-17

    Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system has emerged in recent years as a highly efficient RNA-guided gene manipulation platform. Simultaneous editing or transcriptional activation/suppression of different genes becomes feasible with the co-delivery of multiple guide RNAs (gRNAs). Here, we report that multiple gRNAs linked with self-cleaving ribozymes and/or tRNA could be simultaneously expressed from a single U6 promoter to exert genome editing of dystrophin and myosin binding protein C3 in human and mouse cells. Moreover, this strategy allows the expression of multiple gRNAs for synergistic transcription activation of follistatin when used with catalytically inactive dCas9-VP64 or dCas9-p300core fusions. Finally, the gRNAs linked by the self-cleaving ribozymes and tRNA could be expressed from RNA polymerase type II (pol II) promoters such as generic CMV and muscle/heart-specific MHCK7. This is particularly useful for in vivo applications when the packaging capacity of recombinant adeno-associated virus is limited while tissue-specific delivery of gRNAs and Cas9 is desired. Taken together, this study provides a novel strategy to enable tissue-specific expression of more than one gRNAs for multiplex gene editing from a single pol II promoter. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Complete characterization of the stability of cluster synchronization in complex dynamical networks.

    PubMed

    Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi

    2016-04-01

    Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.

  6. Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen

    2013-08-01

    Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

  7. Embedded Clusters

    NASA Astrophysics Data System (ADS)

    Ascenso, Joana

    The past decade has seen an increase of star formation studies made at the molecular cloud scale, motivated mostly by the deployment of a wealth of sensitive infrared telescopes and instruments. Embedded clusters, long recognised as the basic units of coherent star formation in molecular clouds, are now seen to inhabit preferentially cluster complexes tens of parsecs across. This chapter gives an overview of some important properties of the embedded clusters in these complexes and of the complexes themselves, along with the implications of viewing star formation as a molecular-cloud scale process rather than an isolated process at the scale of clusters.

  8. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

    PubMed

    Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

    2017-08-31

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

  9. 3′ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3

    PubMed Central

    Yoshikawa, Manabu; Iki, Taichiro; Tsutsui, Yasuhiro; Miyashita, Kyoko; Poethig, R. Scott; Habu, Yoshiki; Ishikawa, Masayuki

    2013-01-01

    trans-acting small interfering RNAs (tasiRNAs) are plant-specific endogenous siRNAs produced via a unique pathway whose first step is the microRNA (miRNA)-programmed RNA-induced silencing complex (RISC)–mediated cleavage of tasiRNA gene (TAS) transcripts. One of the products is subsequently transformed into tasiRNAs by a pathway that requires several factors including SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6. Here, using in vitro assembled ARGONAUTE (AGO)1–RISCs, we show that SGS3 is recruited onto RISCs only when they bind target RNA. Following cleavage by miRNA173 (miR173)-programmed RISC, SGS3 was found in complexes containing cleaved TAS2 RNA and RISC. The 3′ cleavage fragment (the source of tasiRNAs) was protected from degradation in this complex. Depletion of SGS3 did not affect TAS2 RNA cleavage by miR173-programmed RISC, but did affect the stability of the 3′ cleavage fragment. When the 3′ nucleotide of 22-nt miR173 was deleted or the corresponding nucleotide in TAS2 RNA was mutated, the complex was not observed and the 3′ cleavage fragment was degraded. Importantly, these changes in miR173 or TAS2 RNA are known to lead to a loss of tasiRNA production in vivo. These results suggest that (i) SGS3 associates with AGO1–RISC via the double-stranded RNA formed by the 3′-terminal nucleotides of 22-nt miR173 and corresponding target RNA, which probably protrudes from the AGO1–RISC molecular surface, (ii) SGS3 protects the 3′ cleavage fragment of TAS2 RNA from degradation, and (iii) the observed SGS3-dependent stabilization of the 3′ fragment of TAS2 RNA is key to tasiRNA production. PMID:23417299

  10. Probing the Dragonfish star-forming complex: the ionizing population of the young massive cluster Mercer 30

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Borissova, J.; Ramírez Alegría, S.; Hanson, M. M.; Trombley, C.; Figer, D. F.; Davies, B.; Garcia, M.; Kurtev, R.; Urbaneja, M. A.; Smith, L. C.; Lucas, P. W.; Herrero, A.

    2016-05-01

    It has recently been claimed that the nebula, Dragonfish, is powered by a superluminous but elusive OB association. However, systematic searches in near-infrared photometric surveys have found many other cluster candidates in this region of the sky. Among these, the first confirmed young massive cluster was Mercer 30, where Wolf-Rayet stars were found.We perform a new characterization of Mercer 30 with unprecedented accuracy, combining NICMOS/HST and VVV photometric data with multi-epoch ISAAC/VLT H- and K-band spectra. Stellar parameters for most of spectroscopically observed cluster members are found through precise non-LTE atmosphere modeling with the CMFGEN code. Our spectrophotometric study for this cluster yields a new, revised distance of d = (12.4 ± 1.7) kpc and a total of QHMc30 ≈ 6.70 × 1050 s-1 Lyman ionizing photons. A cluster age of (4.0 ± 0.8) Myr is found through isochrone fitting, and a total mass of (1.6 ± 0.6) × 104M⊙ is estimated, thanks to our extensive knowledge of the post-main-sequence population. As a consequence, membership of Mercer 30 to the Dragonfish star-forming complex is confirmed, allowing us to use this cluster as a probe for the whole complex, which turns out to be extremely large (~400 pc across) and located at the outer edge of the Sagittarius-Carina spiral arm (~11 kpc from the Galactic center). The Dragonfish complex hosts 19 young clusters or cluster candidates (including Mercer 30 and a new candidate presented in this work) and an estimated minimum of nine field Wolf-Rayet stars. All these contributions account for, at least 73% of the ionization of the Dragonfish nebula and leaves little or no room for the alleged superluminous OB association; alternative explanations are discussed. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs IDs 179.B-2002, 081.D-0471, 083.D-0765, 087.D-0957, and 089.D-0989.

  11. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks

    PubMed Central

    Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin

    2017-01-01

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211

  12. Immunoexpression of cleaved caspase-3 shows lower apoptotic area indices in lip carcinomas than in intraoral cancer.

    PubMed

    Leite, Ana Flávia Schueler de Assumpção; Bernardo, Vagner Gonçalves; Buexm, Luisa Aguirre; Fonseca, Eliene Carvalho da; Silva, Licínio Esmeraldo da; Barroso, Danielle Resende Camisasca; Lourenço, Simone de Queiroz Chaves

    2016-01-01

    This study aimed to evaluate apoptosis by assessing cleaved caspase-3 immunoexpression in hyperplastic, potentially malignant disorder (PMD), and malignant tumors in intraoral and lower lip sites. A retrospective study using paraffin blocks with tissues from patients with inflammatory fibrous hyperplasia (IFH), actinic cheilitis, oral leukoplakia, lower lip and intraoral squamous cell carcinoma (SCC) was performed. The tissues were evaluated by immunohistochemical analysis with anti-cleaved caspase-3 antibody. Apoptotic area index was then correlated with lesion type. From 120 lesions assessed, 55 (46%) were cleaved caspase-3-positive. The SCC samples (n=40) had the highest apoptotic area indices (n=35; 87.5%). Significant differences were detected between SCCs and PMDs (p=0.0003), as well as SCCs and IFHs (p=0.001), regarding caspase-3 immunopositivity. Carcinomas of the lower lip had lower apoptotic area indices than intraoral cancer (p=0.0015). Cleaved caspase-3 immunoexpression showed differences in oral SCCs and PMDs and demonstrated a distinct role of apoptosis in carcinogenesis of intraoral and lower lip cancer. In future, the expression of cleaved caspase-3 with other target molecules in oral cancer may be helpful in delineating the prognosis and treatment of these tumors.

  13. Adult Speakers' Tongue-Palate Contact Patterns for Bilabial Stops within Complex Clusters

    ERIC Educational Resources Information Center

    Zharkova, Natalia; Schaeffler, Sonja; Gibbon, Fiona E.

    2009-01-01

    Previous studies using Electropalatography (EPG) have shown that individuals with speech disorders sometimes produce articulation errors that affect bilabial targets, but currently there is limited normative data available. In this study, EPG and acoustic data were recorded during complex word final sps clusters spoken by 20 normal adults. A total…

  14. The nature of the air-cleaved mica surface

    NASA Astrophysics Data System (ADS)

    Christenson, Hugo K.; Thomson, Neil H.

    2016-06-01

    The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO2 and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K2CO3 per nm2, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K2CO3, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion, electrolyte effects on surface conductivity, and two-dimensional crystal nucleation.

  15. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy.

    PubMed

    Baran, Timothy M; Foster, Thomas H

    2014-02-01

    For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D90) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180-8080 J in order to deposit 90 J/cm(2) in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270-2350 J (333-1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485-3600 J were required, compared to ten flat cleaved

  16. Generation and characterization of antibodies specific for caspase-cleaved neo-epitopes: a novel approach

    PubMed Central

    Ai, X; Butts, B; Vora, K; Li, W; Tache-Talmadge, C; Fridman, A; Mehmet, H

    2011-01-01

    Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity. PMID:21881607

  17. The impact of polyploidy on the evolution of a complex NB-LRR resistance gene cluster in soybean

    USDA-ARS?s Scientific Manuscript database

    A comparative genomics approach was used to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max), common bean (Phaseolus vulgaris), and other legumes. In soybean, the cluster is associated with several disease resistance (R) genes of known function including Rpg1...

  18. Immunoexpression of cleaved caspase-3 shows lower apoptotic area indices in lip carcinomas than in intraoral cancer

    PubMed Central

    LEITE, Ana Flávia Schueler de Assumpção; BERNARDO, Vagner Gonçalves; BUEXM, Luisa Aguirre; da FONSECA, Eliene Carvalho; da SILVA, Licínio Esmeraldo; BARROSO, Danielle Resende Camisasca; LOURENÇO, Simone de Queiroz Chaves

    2016-01-01

    ABSTRACT Objective This study aimed to evaluate apoptosis by assessing cleaved caspase-3 immunoexpression in hyperplastic, potentially malignant disorder (PMD), and malignant tumors in intraoral and lower lip sites. Material and Methods A retrospective study using paraffin blocks with tissues from patients with inflammatory fibrous hyperplasia (IFH), actinic cheilitis, oral leukoplakia, lower lip and intraoral squamous cell carcinoma (SCC) was performed. The tissues were evaluated by immunohistochemical analysis with anti-cleaved caspase-3 antibody. Apoptotic area index was then correlated with lesion type. Results From 120 lesions assessed, 55 (46%) were cleaved caspase-3-positive. The SCC samples (n=40) had the highest apoptotic area indices (n=35; 87.5%). Significant differences were detected between SCCs and PMDs (p=0.0003), as well as SCCs and IFHs (p=0.001), regarding caspase-3 immunopositivity. Carcinomas of the lower lip had lower apoptotic area indices than intraoral cancer (p=0.0015). Conclusions Cleaved caspase-3 immunoexpression showed differences in oral SCCs and PMDs and demonstrated a distinct role of apoptosis in carcinogenesis of intraoral and lower lip cancer. In future, the expression of cleaved caspase-3 with other target molecules in oral cancer may be helpful in delineating the prognosis and treatment of these tumors. PMID:27556207

  19. γ-secretase composed of PS1/Pen2/Aph1a can cleave Notch and APP in the absence of Nicastrin

    PubMed Central

    Zhao, Guojun; Liu, Zhenyi; Ilagan, Ma. Xenia G.; Kopan, Raphael

    2010-01-01

    γ-secretase is a multiprotein intramembrane-cleaving protease with a growing list of protein substrates including the Notch receptors and the amyloid precursor protein. The four components of γ-secretase complex - presenilin (PS), nicastrin (NCT), Pen2, and Aph1 - are all thought to be essential for activity. The catalytic domain resides within PS proteins; NCT has been suggested to be critical for substrate recognition; the contributions of Pen2 and Aph1 remain unclear. The role of NCT has been challenged recently by the observation that a critical residue (E332) in NCT, thought to be essential for γ-secretase activity, is instead involved in complex maturation. Here we report that NCT is dispensable for γ-secretase activity. NCT-independent γ-secretase activity can be detected in two independent NCT-deficient MEF lines, and blocked by the γ-secretase inhibitors DAPT and L-685,458. This catalytic activity requires prior ectodomain shedding of the substrate, and can cleave ligand-activated endogenous Notch receptors, indicating presence at the plasma membrane. siRNA knockdown experiments demonstrated that NCT-independent γ-secretase activity requires the presence of PS1, Pen2 and Aph1a but can tolerate knockdown of PS2 or Aph1b. We conclude that a PS1/Pen2/Aph1a trimeric complex is an active enzyme, displaying similar biochemical properties to those of γ-secretase and roughly 50% of its activity when normalized to PS1 NTF levels. This PS1/Pen2/Aph1a complex, however, is highly unstable. Thus, NCT acts to stabilize γ-secretase, but is not required for substrate recognition. PMID:20130175

  20. Interdependence of laminin-mediated clustering of lipid rafts and the dystrophin complex in astrocytes.

    PubMed

    Noël, Geoffroy; Tham, Daniel Kai Long; Moukhles, Hakima

    2009-07-17

    Astrocyte endfeet surrounding blood vessels are active domains involved in water and potassium ion transport crucial to the maintenance of water and potassium ion homeostasis in brain. A growing body of evidence points to a role for dystroglycan and its interaction with perivascular laminin in the targeting of the dystrophin complex and the water-permeable channel, aquaporin 4 (AQP4), at astrocyte endfeet. However, the mechanisms underlying such compartmentalization remain poorly understood. In the present study we found that AQP4 resided in Triton X-100-insoluble fraction, whereas dystroglycan was recovered in the soluble fraction in astrocytes. Cholesterol depletion resulted in the translocation of a pool of AQP4 to the soluble fraction indicating that its distribution is indeed associated with cholesterol-rich membrane domains. Upon laminin treatment AQP4 and the dystrophin complex, including dystroglycan, reorganized into laminin-associated clusters enriched for the lipid raft markers GM1 and flotillin-1 but not caveolin-1. Reduced diffusion rates of GM1 in the laminin-induced clusters were indicative of the reorganization of raft components in these domains. In addition, both cholesterol depletion and dystroglycan silencing reduced the number and area of laminin-induced clusters of GM1, AQP4, and dystroglycan. These findings demonstrate the interdependence between laminin binding to dystroglycan and GM1-containing lipid raft reorganization and provide novel insight into the dystrophin complex regulation of AQP4 polarization in astrocytes.

  1. The G305 star-forming complex: the central star clusters Danks 1 and Danks 2

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Clark, J. S.; Trombley, Christine; Figer, Donald F.; Najarro, Francisco; Crowther, Paul A.; Kudritzki, Rolf-Peter; Thompson, Mark; Urquhart, James S.; Hindson, Luke

    2012-01-01

    The G305 H II complex (G305.4+0.1) is one of the most massive star-forming structures yet identified within the Galaxy. It is host to many massive stars at all stages of formation and evolution, from embedded molecular cores to post-main-sequence stars. Here, we present a detailed near-infrared analysis of the two central star clusters Danks 1 and Danks 2, using Hubble Space Telescope+NICMOS imaging and Very Large Telescope+ISAAC spectroscopy. We find that the spectrophotometric distance to the clusters is consistent with the kinematic distance to the G305 complex, an average of all measurements giving a distance of 3.8 ± 0.6 kpc. From analysis of the stellar populations and the pre-main-sequence stars, we find that Danks 2 is the elder of the two clusters, with an age of 3+3- 1 Myr. Danks 1 is clearly younger with an age of 1.5+1.5- 0.5 Myr, and is dominated by three very luminous H-rich Wolf-Rayet stars which may have masses ≳100 M⊙. The two clusters have mass functions consistent with the Salpeter slope, and total cluster masses of 8000 ± 1500 and 3000 ± 800 M⊙ for Danks 1 and Danks 2, respectively. Danks 1 is significantly the more compact cluster of the two, and is one of the densest clusters in the Galaxy with log (ρ/M⊙ pc-3) = 5.5+0.5- 0.4. In addition to the clusters, there is a population of apparently isolated Wolf-Rayet stars within the molecular cloud's cavity. Our results suggest that the star-forming history of G305 began with the formation of Danks 2, and subsequently Danks 1, with the origin of the diffuse evolved population currently uncertain. Together, the massive stars at the centre of the G305 region appear to be clearing away what is left of the natal cloud, triggering a further generation of star formation at the cloud's periphery.

  2. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.

    PubMed

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene

    2017-03-06

    The distribution of potassium (K + ) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K + ions prefer to minimize the number of nearest neighbour K + ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K + distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  3. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baran, Timothy M., E-mail: timothy.baran@rochester.edu; Foster, Thomas H.

    Purpose: For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Methods: Treatment planning software for iPDT was developed based on graphics processing unit enhanced Montemore » Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D{sub 90}) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. Results: When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180–8080 J in order to deposit 90 J/cm{sup 2} in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270–2350 J (333–1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485

  4. Towards a methodology for cluster searching to provide conceptual and contextual "richness" for systematic reviews of complex interventions: case study (CLUSTER).

    PubMed

    Booth, Andrew; Harris, Janet; Croot, Elizabeth; Springett, Jane; Campbell, Fiona; Wilkins, Emma

    2013-09-28

    Systematic review methodologies can be harnessed to help researchers to understand and explain how complex interventions may work. Typically, when reviewing complex interventions, a review team will seek to understand the theories that underpin an intervention and the specific context for that intervention. A single published report from a research project does not typically contain this required level of detail. A review team may find it more useful to examine a "study cluster"; a group of related papers that explore and explain various features of a single project and thus supply necessary detail relating to theory and/or context.We sought to conduct a preliminary investigation, from a single case study review, of techniques required to identify a cluster of related research reports, to document the yield from such methods, and to outline a systematic methodology for cluster searching. In a systematic review of community engagement we identified a relevant project - the Gay Men's Task Force. From a single "key pearl citation" we conducted a series of related searches to find contextually or theoretically proximate documents. We followed up Citations, traced Lead authors, identified Unpublished materials, searched Google Scholar, tracked Theories, undertook ancestry searching for Early examples and followed up Related projects (embodied in the CLUSTER mnemonic). Our structured, formalised procedure for cluster searching identified useful reports that are not typically identified from topic-based searches on bibliographic databases. Items previously rejected by an initial sift were subsequently found to inform our understanding of underpinning theory (for example Diffusion of Innovations Theory), context or both. Relevant material included book chapters, a Web-based process evaluation, and peer reviewed reports of projects sharing a common ancestry. We used these reports to understand the context for the intervention and to explore explanations for its relative

  5. FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACS J1149.6+2223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.

    2016-03-10

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z  =  0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight.more » The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less

  6. Frontier Fields Clusters: Deep Chandra Observations of the Complex Merger MACS J1149.6+2223

    DOE PAGES

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.; ...

    2016-03-04

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. Here, we present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z = 0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the linemore » of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. Lastly, if the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less

  7. Cluster-Expansion Model for Complex Quinary Alloys: Application to Alnico Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Zhou, Lin; Tang, Wei; Kramer, Matthew J.; Anderson, Iver E.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-11-01

    An accurate and transferable cluster-expansion model for complex quinary alloys is developed. Lattice Monte Carlo simulation enabled by this cluster-expansion model is used to investigate temperature-dependent atomic structure of alnico alloys, which are considered as promising high-performance non-rare-earth permanent-magnet materials for high-temperature applications. The results of the Monte Carlo simulations are consistent with available experimental data and provide useful insights into phase decomposition, selection, and chemical ordering in alnico. The simulations also reveal a previously unrecognized D 03 alloy phase. This phase is very rich in Ni and exhibits very weak magnetization. Manipulating the size and location of this phase provides a possible route to improve the magnetic properties of alnico, especially coercivity.

  8. Heterojunction photodiode on cleaved SiC

    NASA Astrophysics Data System (ADS)

    Solovan, Mykhailo M.; Farah, John; Kovaliuk, Taras T.; Brus, Viktor V.; Mostovyi, Andrii I.; Maistruk, Eduard V.; Maryanchuk, Pavlo D.

    2018-01-01

    Graphite/n-SiC Shottky diodes were prepared by means of the recently proposed technique based on the transferring of drawn graphite films onto the n-SiC single crystal substrate. Current-voltage characteristics were measured and analyzed. High quality ohmic contancts were prepared by the DC magnetron sputtering of Ni thin films onto cleaved n-type SiC single crystal substrates. The height of the potential barrier and the series resistance of the graphite/n-SiC junctions were measured and analysed. The dominant current transport mechanisms through the diodes were determined. There was shown that the dominant current transport mechanisms through the graphite/n-SiC Shottky diodes were the multi-step tunnel-recombination at forward bias and the tunnelling mechanisms at reverse bias.

  9. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering.

    PubMed

    Boissel, Sandrine; Jarjour, Jordan; Astrakhan, Alexander; Adey, Andrew; Gouble, Agnès; Duchateau, Philippe; Shendure, Jay; Stoddard, Barry L; Certo, Michael T; Baker, David; Scharenberg, Andrew M

    2014-02-01

    Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.

  10. Clustering in complex directed networks

    NASA Astrophysics Data System (ADS)

    Fagiolo, Giorgio

    2007-08-01

    Many empirical networks display an inherent tendency to cluster, i.e., to form circles of connected nodes. This feature is typically measured by the clustering coefficient (CC). The CC, originally introduced for binary, undirected graphs, has been recently generalized to weighted, undirected networks. Here we extend the CC to the case of (binary and weighted) directed networks and we compute its expected value for random graphs. We distinguish between CCs that count all directed triangles in the graph (independently of the direction of their edges) and CCs that only consider particular types of directed triangles (e.g., cycles). The main concepts are illustrated by employing empirical data on world-trade flows.

  11. Invariant Chain Complexes and Clusters as Platforms for MIF Signaling

    PubMed Central

    Lindner, Robert

    2017-01-01

    Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking. PMID:28208600

  12. Human dipeptidyl peptidase III acts as a post-proline-cleaving enzyme on endomorphins.

    PubMed

    Barsun, Marina; Jajcanin, Nina; Vukelić, Bojana; Spoljarić, Jasminka; Abramić, Marija

    2007-03-01

    Dipeptidyl peptidase III (DPP III) is a zinc exopeptidase with an implied role in the mammalian pain-modulatory system owing to its high affinity for enkephalins and localisation in the superficial laminae of the spinal cord dorsal horn. Our study revealed that this human enzyme hydrolyses opioid peptides belonging to three new groups, endomorphins, hemorphins and exorphins. The enzymatic hydrolysis products of endomorphin-1 were separated and quantified by capillary electrophoresis and the kinetic parameters were determined for human DPP III and rat DPP IV. Both peptidases cleave endomorphin-1 at comparable rates, with liberation of the N-terminal Tyr-Pro. This is the first evidence of DPP III acting as an endomorphin-cleaving enzyme.

  13. Adaptive fixed-time control for cluster synchronisation of coupled complex networks with uncertain disturbances

    NASA Astrophysics Data System (ADS)

    Jiang, Shengqin; Lu, Xiaobo; Cai, Guoliang; Cai, Shuiming

    2017-12-01

    This paper focuses on the cluster synchronisation problem of coupled complex networks with uncertain disturbances under an adaptive fixed-time control strategy. To begin with, complex dynamical networks with community structure which are subject to uncertain disturbances are taken into account. Then, a novel adaptive control strategy combined with fixed-time techniques is proposed to guarantee the nodes in the communities to desired states in a settling time. In addition, the stability of complex error systems is theoretically proved based on Lyapunov stability theorem. At last, two examples are presented to verify the effectiveness of the proposed adaptive fixed-time control.

  14. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    PubMed

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  15. Efficient and Accurate Algorithm for Cleaved Fragments Prediction (CFPA) in Protein Sequences Dataset Based on Consensus and Its Variants: A Novel Degradomics Prediction Application.

    PubMed

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Hajj, Hazem; Kobeissy, Firas H

    2017-01-01

    Degradomics is a novel discipline that involves determination of the proteases/substrate fragmentation profile, called the substrate degradome, and has been recently applied in different disciplines. A major application of degradomics is its utility in the field of biomarkers where the breakdown products (BDPs) of different protease have been investigated. Among the major proteases assessed, calpain and caspase proteases have been associated with the execution phases of the pro-apoptotic and pro-necrotic cell death, generating caspase/calpain-specific cleaved fragments. The distinction between calpain and caspase protein fragments has been applied to distinguish injury mechanisms. Advanced proteomics technology has been used to identify these BDPs experimentally. However, it has been a challenge to identify these BDPs with high precision and efficiency, especially if we are targeting a number of proteins at one time. In this chapter, we present a novel bioinfromatic detection method that identifies BDPs accurately and efficiently with validation against experimental data. This method aims at predicting the consensus sequence occurrences and their variants in a large set of experimentally detected protein sequences based on state-of-the-art sequence matching and alignment algorithms. After detection, the method generates all the potential cleaved fragments by a specific protease. This space and time-efficient algorithm is flexible to handle the different orientations that the consensus sequence and the protein sequence can take before cleaving. It is O(mn) in space complexity and O(Nmn) in time complexity, with N number of protein sequences, m length of the consensus sequence, and n length of each protein sequence. Ultimately, this knowledge will subsequently feed into the development of a novel tool for researchers to detect diverse types of selected BDPs as putative disease markers, contributing to the diagnosis and treatment of related disorders.

  16. T. thermophila group I introns that cleave amide bonds

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1997-01-01

    The present invention relates to nucleic acid enzymes or enzymatic RNA molecules that are capable of cleaving a variety of bonds, including phosphodiester bonds and amide bonds, in a variety of substrates. Thus, the disclosed enzymatic RNA molecules are capable of functioning as nucleases and/or peptidases. The present invention also relates to compositions containing the disclosed enzymatic RNA molecule and to methods of making, selecting, and using such enzymes and compositions.

  17. CgII cleaves DNA using a mechanism distinct from other ATP-dependent restriction endonucleases

    PubMed Central

    Toliusis, Paulius; Silanskas, Arunas; Szczelkun, Mark D.

    2017-01-01

    Abstract The restriction endonuclease CglI from Corynebacterium glutamicum recognizes an asymmetric 5′-GCCGC-3′ site and cleaves the DNA 7 and 6/7 nucleotides downstream on the top and bottom DNA strands, respectively, in an NTP-hydrolysis dependent reaction. CglI is composed of two different proteins: an endonuclease (R.CglI) and a DEAD-family helicase-like ATPase (H.CglI). These subunits form a heterotetrameric complex with R2H2 stoichiometry. However, the R2H2·CglI complex has only one nuclease active site sufficient to cut one DNA strand suggesting that two complexes are required to introduce a double strand break. Here, we report studies to evaluate the DNA cleavage mechanism of CglI. Using one- and two-site circular DNA substrates we show that CglI does not require two sites on the same DNA for optimal catalytic activity. However, one-site linear DNA is a poor substrate, supporting a mechanism where CglI complexes must communicate along the one-dimensional DNA contour before cleavage is activated. Based on experimental data, we propose that adenosine triphosphate (ATP) hydrolysis by CglI produces translocation on DNA preferentially in a downstream direction from the target, although upstream translocation is also possible. Our results are consistent with a mechanism of CglI action that is distinct from that of other ATP-dependent restriction-modification enzymes. PMID:28854738

  18. Regulation of human Nfu activity in Fe-S cluster delivery-characterization of the interaction between Nfu and the HSPA9/Hsc20 chaperone complex.

    PubMed

    Wachnowsky, Christine; Liu, Yushi; Yoon, Taejin; Cowan, J A

    2018-01-01

    Iron-sulfur cluster biogenesis is a complex, but highly regulated process that involves de novo cluster formation from iron and sulfide ions on a scaffold protein, and subsequent delivery to final targets via a series of Fe-S cluster-binding carrier proteins. The process of cluster release from the scaffold/carrier for transfer to the target proteins may be mediated by a dedicated Fe-S cluster chaperone system. In human cells, the chaperones include heat shock protein HSPA9 and the J-type chaperone Hsc20. While the role of chaperones has been somewhat clarified in yeast and bacterial systems, many questions remain over their functional roles in cluster delivery and interactions with a variety of human Fe-S cluster proteins. One such protein, Nfu, has recently been recognized as a potential interaction partner of the chaperone complex. Herein, we examined the ability of human Nfu to function as a carrier by interacting with the human chaperone complex. Human Nfu is shown to bind to both chaperone proteins with binding affinities similar to those observed for IscU binding to the homologous HSPA9 and Hsc20, while Nfu can also stimulate the ATPase activity of HSPA9. Additionally, the chaperone complex was able to promote Nfu function by enhancing the second-order rate constants for Fe-S cluster transfer to target proteins and providing directionality in cluster transfer from Nfu by eliminating promiscuous transfer reactions. Together, these data support a hypothesis in which Nfu can serve as an alternative carrier protein for chaperone-mediated cluster release and delivery in Fe-S cluster biogenesis and trafficking. © 2017 Federation of European Biochemical Societies.

  19. Identification of ribozymes within a ribozyme library that efficiently cleave a long substrate RNA.

    PubMed Central

    Campbell, T B; Cech, T R

    1995-01-01

    Positions 2-6 of the substrate-binding internal guide sequence (IGS) of the L-21 Sca I form of the Tetrahymena thermophila intron were mutagenized to produce a GN5 IGS library. Ribozymes within the GN5 library capable of efficient cleavage of an 818-nt human immunodeficiency virus type 1 vif-vpr RNA, at 37 degrees C, were identified by ribozyme-catalyzed guanosine addition to the 3' cleavage product. Three ribozymes (IGS = GGGGCU, GGCUCC, and GUGGCU) within the GN5 library that actively cleaved the long substrate were characterized kinetically and compared to the wild-type ribozyme (GGAGGG) and two control ribozymes (GGAGUC and GGAGAU). The two control ribozymes have specific sites within the long substrate, but were not identified during screening of the library. Under single-turnover conditions, ribozymes GGGGCU, GGCUCC, and GUGGCU cleaved the 818-nt substrate 4- to 200-fold faster than control ribozymes. Short cognate substrates, which should be structureless and therefore accessible to ribozyme binding, were cleaved at similar rates by all ribozymes except GGGGCU, which showed a fourfold rate enhancement. The rate of cleavage of long relative to short substrate under single-turnover conditions suggests that GGCUCC and GUGGCU were identified because of accessibility to their specific cleavage sites within the long substrate (substrate-specific effects), whereas GGGGCU was identified because of an enhanced rate of substrate binding despite a less accessible site in the long substrate. Even though screening was performed with 100-fold excess substrate (relative to total ribozyme), the rate of multiple-turnover catalysis did not contribute to identification of trans-cleaving ribozymes in the GN5 library. PMID:7489519

  20. ssDNA-dsRNAs are cleaved at the next to its chimera-junction point by an unknown RNase activity.

    PubMed

    Mochizuki, Shinichi; Higuchi, Sadaharu; Sakurai, Kazuo

    2012-11-30

    We found that there is an unknown aspect in serum RNases that cleaves ssDNA-dsRNA and ssRNA-dsRNA. In the first step, RNase cleaves the phosphodiester linkage between the first and second RNA, where the first one is connected to the single stranded RNA or DNA. In the second step, the ssRNA overhang attached siRNA is cleaved. When the 2' hydroxyl of the first RNA was replaced with methoxy, the cleavage did not occur. This RNase activity can be considered related to defense system against exogenous genetic materials. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Higher-order clustering in networks

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Benson, Austin R.; Leskovec, Jure

    2018-05-01

    A fundamental property of complex networks is the tendency for edges to cluster. The extent of the clustering is typically quantified by the clustering coefficient, which is the probability that a length-2 path is closed, i.e., induces a triangle in the network. However, higher-order cliques beyond triangles are crucial to understanding complex networks, and the clustering behavior with respect to such higher-order network structures is not well understood. Here we introduce higher-order clustering coefficients that measure the closure probability of higher-order network cliques and provide a more comprehensive view of how the edges of complex networks cluster. Our higher-order clustering coefficients are a natural generalization of the traditional clustering coefficient. We derive several properties about higher-order clustering coefficients and analyze them under common random graph models. Finally, we use higher-order clustering coefficients to gain new insights into the structure of real-world networks from several domains.

  2. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    NASA Astrophysics Data System (ADS)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  3. Posttranslational processing of the prohormone-cleaving Kex2 protease in the Saccharomyces cerevisiae secretory pathway.

    PubMed

    Wilcox, C A; Fuller, R S

    1991-10-01

    The Kex2 protease of the yeast Saccharomyces cerevisiae is a prototypical eukaryotic prohormone-processing enzyme that cleaves precursors of secreted peptides at pairs of basic residues. Here we have established the pathway of posttranslational modification of Kex2 protein using immunoprecipitation of the biosynthetically pulse-labeled protein from a variety of wild-type and mutant yeast strains as the principal methodology. Kex2 protein is initially synthesized as a prepro-enzyme that undergoes cotranslational signal peptide cleavage and addition of Asn-linked core oligosaccharide and Ser/Thr-linked mannose in the ER. The earliest detectable species, I1 (approximately 129 kD), undergoes rapid amino-terminal proteolytic removal of a approximately 9-kD pro-segment yielding species I2 (approximately 120 kD) before arrival at the Golgi complex. Transport to the Golgi complex is marked by extensive elaboration of Ser/Thr-linked chains and minor modification of Asn-linked oligosaccharide. During the latter phase of its lifetime, Kex2 protein undergoes a gradual increase in apparent molecular weight. This final modification serves as a marker for association of Kex2 protease with a late compartment of the yeast Golgi complex in which it is concentrated about 27-fold relative to other secretory proteins.

  4. [Autism Spectrum Disorder and DSM-5: Spectrum or Cluster?].

    PubMed

    Kienle, Xaver; Freiberger, Verena; Greulich, Heide; Blank, Rainer

    2015-01-01

    Within the new DSM-5, the currently differentiated subgroups of "Autistic Disorder" (299.0), "Asperger's Disorder" (299.80) and "Pervasive Developmental Disorder" (299.80) are replaced by the more general "Autism Spectrum Disorder". With regard to a patient-oriented and expedient advising therapy planning, however, the issue of an empirically reproducible and clinically feasible differentiation into subgroups must still be raised. Based on two Autism-rating-scales (ASDS and FSK), an exploratory two-step cluster analysis was conducted with N=103 children (age: 5-18) seen in our social-pediatric health care centre to examine potentially autistic symptoms. In the two-cluster solution of both rating scales, mainly the problems in social communication grouped the children into a cluster "with communication problems" (51 % and 41 %), and a cluster "without communication problems". Within the three-cluster solution of the ASDS, sensory hypersensitivity, cleaving to routines and social-communicative problems generated an "autistic" subgroup (22%). The children of the second cluster ("communication problems", 35%) were only described by social-communicative problems, and the third group did not show any problems (38%). In the three-cluster solution of the FSK, the "autistic cluster" of the two-cluster solution differentiated in a subgroup with mainly social-communicative problems (cluster 1) and a second subgroup described by restrictive, repetitive behavior. The different cluster solutions will be discussed with a view to the new DSM-5 diagnostic criteria, for following studies a further specification of some of the ASDS and FSK items could be helpful.

  5. A transcriptional blueprint for a spiral-cleaving embryo.

    PubMed

    Chou, Hsien-Chao; Pruitt, Margaret M; Bastin, Benjamin R; Schneider, Stephan Q

    2016-08-05

    The spiral cleavage mode of early development is utilized in over one-third of all animal phyla and generates embryonic cells of different size, position, and fate through a conserved set of stereotypic and invariant asymmetric cell divisions. Despite the widespread use of spiral cleavage, regulatory and molecular features for any spiral-cleaving embryo are largely uncharted. To address this gap we use RNA-sequencing on the spiralian model Platynereis dumerilii to capture and quantify the first complete genome-wide transcriptional landscape of early spiral cleavage. RNA-sequencing datasets from seven stages in early Platynereis development, from the zygote to the protrochophore, are described here including the de novo assembly and annotation of ~17,200 Platynereis genes. Depth and quality of the RNA-sequencing datasets allow the identification of the temporal onset and level of transcription for each annotated gene, even if the expression is restricted to a single cell. Over 4000 transcripts are maternally contributed and cleared by the end of the early spiral cleavage phase. Small early waves of zygotic expression are followed by major waves of thousands of genes, demarcating the maternal to zygotic transition shortly after the completion of spiral cleavages in this annelid species. Our comprehensive stage-specific transcriptional analysis of early embryonic stages in Platynereis elucidates the regulatory genome during early spiral embryogenesis and defines the maternal to zygotic transition in Platynereis embryos. This transcriptome assembly provides the first systems-level view of the transcriptional and regulatory landscape for a spiral-cleaving embryo.

  6. Friction imprint effect in mechanically cleaved BaTiO{sub 3} (001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Christian J.; Maryland Nanocenter, University of Maryland, College Park, Maryland 20742; Ebeling, Daniel

    2014-09-28

    Adsorption, chemisorption, and reconstruction at the surfaces of ferroelectric materials can all contribute toward the pinning of ferroelectric polarization, which is called the electrical imprint effect. Here, we show that the opposite is also true: freshly cleaved, atomically flat surfaces of (001) oriented BaTiO{sub 3} exhibit a persistent change in surface chemistry that is driven by ferroelectric polarization. This surface modification is explored using lateral force microscopy (LFM), while the ferroelectric polarization is probed using piezoresponse force microscopy. We find that immediately after cleaving BaTiO{sub 3}, LFM reveals friction contrast between ferroelectric domains. We also find that this surface modificationmore » remains after the ferroelectric domain distribution is modified, resulting in an imprint of the original ferroelectric domain distribution on the sample surface. This friction imprint effect has implications for surface patterning as well as ferroelectric device operation and failure.« less

  7. Cluster Analysis Identifies Distinct Pathogenetic Patterns in C3 Glomerulopathies/Immune Complex-Mediated Membranoproliferative GN.

    PubMed

    Iatropoulos, Paraskevas; Daina, Erica; Curreri, Manuela; Piras, Rossella; Valoti, Elisabetta; Mele, Caterina; Bresin, Elena; Gamba, Sara; Alberti, Marta; Breno, Matteo; Perna, Annalisa; Bettoni, Serena; Sabadini, Ettore; Murer, Luisa; Vivarelli, Marina; Noris, Marina; Remuzzi, Giuseppe

    2018-01-01

    Membranoproliferative GN (MPGN) was recently reclassified as alternative pathway complement-mediated C3 glomerulopathy (C3G) and immune complex-mediated membranoproliferative GN (IC-MPGN). However, genetic and acquired alternative pathway abnormalities are also observed in IC-MPGN. Here, we explored the presence of distinct disease entities characterized by specific pathophysiologic mechanisms. We performed unsupervised hierarchical clustering, a data-driven statistical approach, on histologic, genetic, and clinical data and data regarding serum/plasma complement parameters from 173 patients with C3G/IC-MPGN. This approach divided patients into four clusters, indicating the existence of four different pathogenetic patterns. Specifically, this analysis separated patients with fluid-phase complement activation (clusters 1-3) who had low serum C3 levels and a high prevalence of genetic and acquired alternative pathway abnormalities from patients with solid-phase complement activation (cluster 4) who had normal or mildly altered serum C3, late disease onset, and poor renal survival. In patients with fluid-phase complement activation, those in clusters 1 and 2 had massive activation of the alternative pathway, including activation of the terminal pathway, and the highest prevalence of subendothelial deposits, but those in cluster 2 had additional activation of the classic pathway and the highest prevalence of nephrotic syndrome at disease onset. Patients in cluster 3 had prevalent activation of C3 convertase and highly electron-dense intramembranous deposits. In addition, we provide a simple algorithm to assign patients with C3G/IC-MPGN to specific clusters. These distinct clusters may facilitate clarification of disease etiology, improve risk assessment for ESRD, and pave the way for personalized treatment. Copyright © 2018 by the American Society of Nephrology.

  8. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

    PubMed

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-05-02

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

  9. Are we all doing it wrong? Influence of stripping and cleaving methods of laser fibers on laser lithotripsy performance.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2015-03-01

    We assessed whether stripping and cleaving the laser fiber tip with specialized tools, namely laser fiber strippers, or ceramic or metal scissors, would influence lithotripsy performance. Laser fiber tips were stripped with a specialized laser fiber stripper or remained coated. The tips were then cleaved with metal or ceramic scissors. Laser lithotripsy experiments were performed with the 4 fiber tip combinations using an automated laser fragmentation testing system with artificial stones made of plaster of Paris or BegoStone Plus (Bego, Lincoln, Rhode Island). High frequency-low pulse energy (20 Hz and 0.5 J) and low frequency-high pulse energy (5 Hz and 2.0 J) settings were used for 30 seconds. Fissure width, depth and volume, and laser fiber tip photos were analyzed. Coated laser fiber tips always achieved significantly higher ablation volumes (sometimes greater than 50%) than stripped laser fiber tips (p <0.00001) regardless of cleaving scissor type, stone material or lithotripter setting. Coated fiber tips cleaved with metal scissors ablated as well as those cleaved with ceramic scissors (p = 0.16). However, stripped fibers were much less ablative when they were cut with metal scissors compared to ceramic scissors (p <0.00001). Harder stone material decreased ablation volume (p <0.00001). Low frequency-high pulse energy settings were an average of 3 times more ablative than high frequency-low pulse energy settings (p <0.00001). Stripping the fibers, a harder stone material and low frequency-high pulse energy settings were associated with increased fiber tip degradation. Coated laser fibers provided better lithotripsy performance and metal scissors were as good as ceramic scissors to cleave coated fibers. This knowledge may improve and simplify the way that laser lithotripsy procedures are done worldwide. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency.

    PubMed

    Farhan, Sali M K; Wang, Jian; Robinson, John F; Lahiry, Piya; Siu, Victoria M; Prasad, Chitra; Kronick, Jonathan B; Ramsay, David A; Rupar, C Anthony; Hegele, Robert A

    2014-01-01

    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology.

  11. Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.

    2017-09-01

    Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only

  12. Crystal structure of Pistol, a class of self-cleaving ribozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Laura A.; Wang, Jimin; Steitz, Thomas A.

    2017-01-17

    Small self-cleaving ribozymes have been discovered in all evolutionary domains of life. They can catalyze site-specific RNA cleavage, and as a result, they have relevance in gene regulation. Comparative genomic analysis has led to the discovery of a new class of small self-cleaving ribozymes named Pistol. We report the crystal structure of Pistol at 2.97-Å resolution. Our results suggest that the Pistol ribozyme self-cleavage mechanism likely uses a guanine base in the active site pocket to carry out the phosphoester transfer reaction. The guanine G40 is in close proximity to serve as the general base for activating the nucleophile bymore » deprotonating the 2'-hydroxyl to initiate the reaction (phosphoester transfer). Furthermore, G40 can also establish hydrogen bonding interactions with the nonbridging oxygen of the scissile phosphate. The proximity of G32 to the O5' leaving group suggests that G32 may putatively serve as the general acid. The RNA structure of Pistol also contains A-minor interactions, which seem to be important to maintain its tertiary structure and compact fold. Our findings expand the repertoire of ribozyme structures and highlight the conserved evolutionary mechanism used by ribozymes for catalysis.« less

  13. Low-energy collisions of helium clusters with size-selected cobalt cluster ions

    NASA Astrophysics Data System (ADS)

    Odaka, Hideho; Ichihashi, Masahiko

    2017-04-01

    Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102-4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80015-0

  14. Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis.

    PubMed

    Baglietto, Gabriel; Gigante, Guido; Del Giudice, Paolo

    2017-01-01

    Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the 'mean-shift' algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters' centroids offer a parsimonious parametrization of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network's state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and

  15. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    PubMed Central

    Ellis, Stephanie J.; Lostchuck, Emily; Goult, Benjamin T.; Bouaouina, Mohamed; Fairchild, Michael J.; López-Ceballos, Pablo; Calderwood, David A.; Tanentzapf, Guy

    2014-01-01

    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. PMID:25393120

  16. Adaptive capacity of geographical clusters: Complexity science and network theory approach

    NASA Astrophysics Data System (ADS)

    Albino, Vito; Carbonara, Nunzia; Giannoccaro, Ilaria

    This paper deals with the adaptive capacity of geographical clusters (GCs), that is a relevant topic in the literature. To address this topic, GC is considered as a complex adaptive system (CAS). Three theoretical propositions concerning the GC adaptive capacity are formulated by using complexity theory. First, we identify three main properties of CAS s that affect the adaptive capacity, namely the interconnectivity, the heterogeneity, and the level of control, and define how the value of these properties influence the adaptive capacity. Then, we associate these properties with specific GC characteristics so obtaining the key conditions of GCs that give them the adaptive capacity so assuring their competitive advantage. To test these theoretical propositions, a case study on two real GCs is carried out. The considered GCs are modeled as networks where firms are nodes and inter-firms relationships are links. Heterogeneity, interconnectivity, and level of control are considered as network properties and thus measured by using the methods of the network theory.

  17. On the complexity of some quadratic Euclidean 2-clustering problems

    NASA Astrophysics Data System (ADS)

    Kel'manov, A. V.; Pyatkin, A. V.

    2016-03-01

    Some problems of partitioning a finite set of points of Euclidean space into two clusters are considered. In these problems, the following criteria are minimized: (1) the sum over both clusters of the sums of squared pairwise distances between the elements of the cluster and (2) the sum of the (multiplied by the cardinalities of the clusters) sums of squared distances from the elements of the cluster to its geometric center, where the geometric center (or centroid) of a cluster is defined as the mean value of the elements in that cluster. Additionally, another problem close to (2) is considered, where the desired center of one of the clusters is given as input, while the center of the other cluster is unknown (is the variable to be optimized) as in problem (2). Two variants of the problems are analyzed, in which the cardinalities of the clusters are (1) parts of the input or (2) optimization variables. It is proved that all the considered problems are strongly NP-hard and that, in general, there is no fully polynomial-time approximation scheme for them (unless P = NP).

  18. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface

    PubMed Central

    Matsui, Fumihiko; Eguchi, Ritsuko; Nishiyama, Saki; Izumi, Masanari; Uesugi, Eri; Goto, Hidenori; Matsushita, Tomohiro; Sugita, Kenji; Daimon, Hiroshi; Hamamoto, Yuji; Hamada, Ikutaro; Morikawa, Yoshitada; Kubozono, Yoshihiro

    2016-01-01

    From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections of the layers 3.3 Å and 5.7 Å above the photoelectron emitter C atom and the stacking structures were determined as AB- and AA-type, respectively. The intercalant metal atom layer was found between two AA-stacked graphenes. The K atomic image revealing 2 × 2 periodicity, occupying every second centre site of C hexagonal columns, was reconstructed, and the Ca 2p peak intensity in the photoelectron spectra of (Ca, K)C8 from the cleaved surface was less than a few hundredths of the K 2p peak intensity. These observations indicated that cleavage preferentially occurs at the KC8 layers containing no Ca atoms. PMID:27811975

  19. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    NASA Astrophysics Data System (ADS)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  20. Experimental and theoretical study of the pyrrole cluster photochemistry: Closing the {pi}{sigma}{sup *} dissociation pathway by complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poterya, Viktoriya; Profant, Vaclav; Farnik, Michal

    Photolysis of size selected pyrrole clusters has been investigated and compared to the photolysis of an isolated pyrrole molecule. Experimentally, size distributions of different mean cluster sizes (n=3 and n>>5) have been prepared in supersonic expansions and the clusters were photolyzed at 243 and 193 nm. The kinetic energy distributions of the H photofragments have been measured. The distributions exhibit a bimodal character with fast and slow H-fragment peaks similar to the spectra of the bare molecule. However, with increasing cluster size the slow component gains intensity with respect to the fast one. A similar effect is observed with increasingmore » the excitation energy from 243 to 193 nm. Theoretical calculations at the CASSCF/CASPT2 level have been performed for bare and complexed pyrroles (pyrrole is complexed with an argon atom and with another pyrrole unit). Combination of theoretical and experimental approaches leads to the conclusion that the direct dissociative pathway along the {pi}{sigma}{sup *} potential energy surface in the N-H stretch coordinate is closed by the presence of the solvent molecule. This pathway is an important channel leading to the fast H atoms in the dissociation of the bare molecule. The solvent molecule influences significantly the electronic structure in the Rydberg-type {pi}{sigma}{sup *} state while it has little influence on the valence states. The slow channel is mostly populated by the out-of-plane deformation mode which is also not influenced by solvation. We have also studied other possible reaction channels in pyrrole clusters (hydrogen transfer, dimerization). The present study shows that more insight into the bulk behavior of biologically relevant molecules can be gained from cluster studies.« less

  1. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    DOE PAGES

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; ...

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN) 3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  2. Crystallization and preliminary X-ray diffraction analysis of the CRISPR-Cas RNA-silencing Cmr complex.

    PubMed

    Osawa, Takuo; Inanaga, Hideko; Numata, Tomoyuki

    2015-06-01

    Clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNA (crRNA) and CRISPR-associated (Cas) proteins constitute a prokaryotic adaptive immune system (CRISPR-Cas system) that targets and degrades invading genetic elements. The type III-B CRISPR-Cas Cmr complex, composed of the six Cas proteins (Cmr1-Cmr6) and a crRNA, captures and cleaves RNA complementary to the crRNA guide sequence. Here, a Cmr1-deficient functional Cmr (CmrΔ1) complex composed of Pyrococcus furiosus Cmr2-Cmr3, Archaeoglobus fulgidus Cmr4-Cmr5-Cmr6 and the 39-mer P. furiosus 7.01-crRNA was prepared. The CmrΔ1 complex was cocrystallized with single-stranded DNA (ssDNA) complementary to the crRNA guide by the vapour-diffusion method. The crystals diffracted to 2.1 Å resolution using synchrotron radiation at the Photon Factory. The crystals belonged to the triclinic space group P1, with unit-cell parameters a = 75.5, b = 76.2, c = 139.2 Å, α = 90.3, β = 104.8, γ = 118.6°. The asymmetric unit of the crystals is expected to contain one CmrΔ1-ssDNA complex, with a Matthews coefficient of 2.03 Å(3) Da(-1) and a solvent content of 39.5%.

  3. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.

    PubMed

    Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2016-12-01

    Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Transformation of dinitrosyl iron complexes [(NO)2Fe(SR)2]- (R = Et, Ph) into [4Fe-4S] Clusters [Fe4S4(SPh)4]2-: relevance to the repair of the nitric oxide-modified ferredoxin [4Fe-4S] clusters.

    PubMed

    Tsou, Chih-Chin; Lin, Zong-Sian; Lu, Tsai-Te; Liaw, Wen-Feng

    2008-12-17

    Transformation of dinitrosyl iron complexes (DNICs) [(NO)(2)Fe(SR)(2)](-) (R = Et, Ph) into [4Fe-4S] clusters [Fe(4)S(4)(SPh)(4)](2-) in the presence of [Fe(SPh)(4)](2-/1-) and S-donor species S(8) via the reassembling process ([(NO)(2)Fe(SR)(2)](-) --> [Fe(4)S(3)(NO)(7)](-) (1)/[Fe(4)S(3)(NO)(7)](2-) (2) --> [Fe(4)S(4)(NO)(4)](2-) (3) --> [Fe(4)S(4)(SPh)(4)](2-) (5)) was demonstrated. Reaction of [(NO)(2)Fe(SR)(2)](-) (R = Et, Ph) with S(8) in THF, followed by the addition of HBF(4) into the mixture solution, yielded complex [Fe(4)S(3)(NO)(7)](-) (1). Complex [Fe(4)S(3)(NO)(7)](2-) (2), obtained from reduction of complex 1 by [Na][biphenyl], was converted into complex [Fe(4)S(4)(NO)(4)](2-) (3) along with byproduct [(NO)(2)Fe(SR)(2)](-) via the proposed [Fe(4)S(3)(SPh)(NO)(4)](2-) intermediate upon treating complex 2 with 1.5 equiv of [Fe(SPh)(4)](2-) and the subsequent addition of 1/8 equiv of S(8) in CH(3)CN at ambient temperature. Complex 3 was characterized by IR, UV-vis, and single-crystal X-ray diffraction. Upon addition of complex 3 to the CH(3)CN solution of [Fe(SPh)(4)](-) in a 1:2 molar ratio at ambient temperature, the rapid NO radical-thiyl radical exchange reaction between complex 3 and the biomimetic oxidized form of rubredoxin [Fe(SPh)(4)](-) occurred, leading to the simultaneous formation of [4Fe-4S] cluster [Fe(4)S(4)(SPh)(4)](2-) (5) and DNIC [(NO)(2)Fe(SPh)(2)](-). This result demonstrates a successful biomimetic reassembly of [4Fe-4S] cluster [Fe(4)S(4)(SPh)(4)](2-) from NO-modified [Fe-S] clusters, relevant to the repair of DNICs derived from nitrosylation of [4Fe-4S] clusters of endonuclease III back to [4Fe-4S] clusters upon addition of ferrous ion, cysteine, and IscS.

  5. Substrate-Triggered Formation and Remarkable Stability of the C-H-Cleaving Chloroferryl Intermediate in the Aliphatic Halogenase, SyrB2†

    PubMed Central

    Matthews, Megan L.; Krest, Courtney M.; Barr, Eric W.; Vaillancourt, Frédéric H.; Walsh, Christopher T.; Green, Michael T.; Krebs, Carsten; Bollinger, J. Martin

    2009-01-01

    Aliphatic halogenases activate O2, cleave α-ketoglutarate (αKG) to CO2 and succinate, and form haloferryl [X-Fe(IV)=O; X = Cl, Br] complexes that cleave aliphatic C-H bonds to install halogens during the biosynthesis of natural products by non-ribosomal peptide synthetases (NRPSs). For the related αKG-dependent dioxygenases, it has been shown that reaction of the Fe(II) cofactor with O2 to form the C-H-cleaving ferryl complex is “triggered” by binding of the target substrate. In this study, we have tested for and defined structural determinants of substrate triggering (ST) in the halogenase, SyrB2, from the syringomycin E biosynthetic NRPS of Pseudomonas syringae B301D. As for other halogen ases, the substrate of SyrB2 is complex, consisting of l-Thr tethered via thioester linkage to a covalently bound phosphopantetheine (PPant) cofactor of a carrier protein, SyrB1. Without an appended amino acid, SyrB1 does not trigger formation of the chloroferryl intermediate state in SyrB2, even in the presence of free l-Thr or its analogues, but SyrB1 charged either by l-Thr or by any of several non-native amino acids does trigger the reaction by as much as 8,000-fold (for l-Thr-S-SyrB1). Triggering efficacy is sensitive to the structures of both the amino acid and the carrier protein, being diminished by 5–20-fold when the native l-Thr is replaced by another amino acid and by ∼ 40-fold when SyrB1 is replaced by a heterologous carrier protein, CytC2. The directing effect of the carrier protein and consequent tolerance for profound modifications to the target amino acid allow the chloroferryl state to be formed in the presence of substrates that perturb the ratio of its two putative coordination isomers, lack the target C-H bond (l-Ala-S-SyrB1), or contain a C-H bond of enhanced strength (l-cyclopropylglycyl-S-SyrB1). For the latter two cases, the SyrB2 chloroferryl state so formed exhibits unprecedented stability (t1/2 = 30 – 110 min at 0 °C), can be trapped in

  6. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity

    PubMed Central

    Rand, Tim A.; Ginalski, Krzysztof; Grishin, Nick V.; Wang, Xiaodong

    2004-01-01

    RNA interference is carried out by the small double-stranded RNA-induced silencing complex (RISC). The RISC-bound small RNA guides the RISC complex to identify and cleave mRNAs with complementary sequences. The proteins that make up the RISC complex and cleave mRNA have not been unequivocally defined. Here, we report the biochemical purification of RISC activity to homogeneity from Drosophila Schnieder 2 cell extracts. Argonaute 2 (Ago-2) is the sole protein component present in the purified, functional RISC. By using a bioinformatics method that combines sequence-profile analysis with predicted protein secondary structure, we found homology between the PIWI domain of Ago-2 and endonuclease V and identified potential active-site amino acid residues within the PIWI domain of Ago-2. PMID:15452342

  7. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity.

    PubMed

    Rand, Tim A; Ginalski, Krzysztof; Grishin, Nick V; Wang, Xiaodong

    2004-10-05

    RNA interference is carried out by the small double-stranded RNA-induced silencing complex (RISC). The RISC-bound small RNA guides the RISC complex to identify and cleave mRNAs with complementary sequences. The proteins that make up the RISC complex and cleave mRNA have not been unequivocally defined. Here, we report the biochemical purification of RISC activity to homogeneity from Drosophila Schnieder 2 cell extracts. Argonaute 2 (Ago-2) is the sole protein component present in the purified, functional RISC. By using a bioinformatics method that combines sequence-profile analysis with predicted protein secondary structure, we found homology between the PIWI domain of Ago-2 and endonuclease V and identified potential active-site amino acid residues within the PIWI domain of Ago-2.

  8. Friedreich's Ataxia Variants I154F and W155R Diminish Frataxin-Based Activation of the Iron-Sulfur Cluster Assembly Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Chi-Lin; Bridwell-Rabb, Jennifer; Barondeau, David P

    2011-11-07

    Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease that has been linked to defects in the protein frataxin (Fxn). Most FRDA patients have a GAA expansion in the first intron of their Fxn gene that decreases protein expression. Some FRDA patients have a GAA expansion on one allele and a missense mutation on the other allele. Few functional details are known for the ~15 different missense mutations identified in FRDA patients. Here in vitro evidence is presented that indicates the FRDA I154F and W155R variants bind more weakly to the complex of Nfs1, Isd11, and Isu2 and thereby are defectivemore » in forming the four-component SDUF complex that constitutes the core of the Fe-S cluster assembly machine. The binding affinities follow the trend Fxn ~ I154F > W155F > W155A ~ W155R. The Fxn variants also have diminished ability to function as part of the SDUF complex to stimulate the cysteine desulfurase reaction and facilitate Fe-S cluster assembly. Four crystal structures, including the first for a FRDA variant, reveal specific rearrangements associated with the loss of function and lead to a model for Fxn-based activation of the Fe-S cluster assembly complex. Importantly, the weaker binding and lower activity for FRDA variants correlate with the severity of disease progression. Together, these results suggest that Fxn facilitates sulfur transfer from Nfs1 to Isu2 and that these in vitro assays are sensitive and appropriate for deciphering functional defects and mechanistic details for human Fe-S cluster biosynthesis.« less

  9. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored product pests

    USDA-ARS?s Scientific Manuscript database

    Cereals have storage proteins with high amounts of the amino acids glutamine and proline. Therefore, storage pests need to have digestive enzymes that are efficient in hydrolyzing these types of proteins. Post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored product pe...

  10. High-throughput purification of recombinant proteins using self-cleaving intein tags.

    PubMed

    Coolbaugh, M J; Shakalli Tang, M J; Wood, D W

    2017-01-01

    High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3*

    PubMed Central

    Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith

    2015-01-01

    Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. PMID:26109071

  12. RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3.

    PubMed

    Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith

    2015-08-07

    Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. NEW CONSTRAINTS ON A COMPLEX RELATION BETWEEN GLOBULAR CLUSTER COLORS AND ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powalka, Mathieu; Lançon, Ariane; Puzia, Thomas H.

    We present an analysis of high-quality photometry for globular clusters (GCs) in the Virgo cluster core region, based on data from the Next Generation Virgo Cluster Survey (NGVS) pilot field, and in the Milky Way (MW), based on Very Large Telescope/X-Shooter spectrophotometry. We find significant discrepancies in color–color diagrams between sub-samples from different environments, confirming that the environment has a strong influence on the integrated colors of GCs. GC color distributions along a single color are not sufficient to capture the differences we observe in color–color space. While the average photometric colors become bluer with increasing radial distance to themore » cD galaxy M87, we also find a relation between the environment and the slope and intercept of the color–color relations. A denser environment seems to produce a larger dynamic range in certain color indices. We argue that these results are not due solely to differential extinction, Initial Mass Function variations, calibration uncertainties, or overall age/metallicity variations. We therefore suggest that the relation between the environment and GC colors is, at least in part, due to chemical abundance variations, which affect stellar spectra and stellar evolution tracks. Our results demonstrate that stellar population diagnostics derived from model predictions which are calibrated on one particular sample of GCs may not be appropriate for all extragalactic GCs. These results advocate a more complex model of the assembly history of GC systems in massive galaxies that goes beyond the simple bimodality found in previous decades.« less

  14. New Constraints on a Complex Relation between Globular Cluster Colors and Environment

    NASA Astrophysics Data System (ADS)

    Powalka, Mathieu; Puzia, Thomas H.; Lançon, Ariane; Peng, Eric W.; Schönebeck, Frederik; Alamo-Martínez, Karla; Ángel, Simón; Blakeslee, John P.; Côté, Patrick; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Ferrarese, Laura; Grebel, Eva K.; Guhathakurta, Puragra; Gwyn, S. D. J.; Kuntschner, Harald; Lim, Sungsoon; Liu, Chengze; Lyubenova, Mariya; Mihos, J. Christopher; Muñoz, Roberto P.; Ordenes-Briceño, Yasna; Roediger, Joel; Sánchez-Janssen, Rubén; Spengler, Chelsea; Toloba, Elisa; Zhang, Hongxin

    2016-09-01

    We present an analysis of high-quality photometry for globular clusters (GCs) in the Virgo cluster core region, based on data from the Next Generation Virgo Cluster Survey (NGVS) pilot field, and in the Milky Way (MW), based on Very Large Telescope/X-Shooter spectrophotometry. We find significant discrepancies in color-color diagrams between sub-samples from different environments, confirming that the environment has a strong influence on the integrated colors of GCs. GC color distributions along a single color are not sufficient to capture the differences we observe in color-color space. While the average photometric colors become bluer with increasing radial distance to the cD galaxy M87, we also find a relation between the environment and the slope and intercept of the color-color relations. A denser environment seems to produce a larger dynamic range in certain color indices. We argue that these results are not due solely to differential extinction, Initial Mass Function variations, calibration uncertainties, or overall age/metallicity variations. We therefore suggest that the relation between the environment and GC colors is, at least in part, due to chemical abundance variations, which affect stellar spectra and stellar evolution tracks. Our results demonstrate that stellar population diagnostics derived from model predictions which are calibrated on one particular sample of GCs may not be appropriate for all extragalactic GCs. These results advocate a more complex model of the assembly history of GC systems in massive galaxies that goes beyond the simple bimodality found in previous decades.

  15. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Xu, Yi-Jun

    2016-03-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  16. Fractal vein distributions within a fault-fracture mesh in an exhumed accretionary mélange, Chrystalls Beach Complex, New Zealand

    NASA Astrophysics Data System (ADS)

    Fagereng, Åke

    2011-05-01

    A well developed fault-fracture mesh is observed in the Chrystalls Beach Complex, an accretionary mélange within the Otago Schist on the South Island of New Zealand. In this study, an analysis of vein thicknesses and clustering of veins is presented. Both shear and extension veins have a power-law thickness distribution. Measures of vein spacing best fit a power-law distribution, but a small data set limits this interpretation to a small fractal range. Vein clustering varies from random to moderately clustered between outcrops, and is the greatest where a large proportion of relatively competent blocks occurs within the mélange. Fractures are distributed within the mélange matrix, and this localized deformation requires heterogeneity in rheology and/or fluid pressure distribution, whereas pervasive, distributed deformation occurs in relatively homogeneous rock. The overall trend of this deformation being mainly accommodated by thin veins required that new fractures formed preferentially over refracturing existing veins, which highlights the distributed nature of deformation within a fault-fracture mesh. The predominance of new fractures may result from vein material being stronger than the cleaved wall rock, such that wall rock failure occurred instead of reopening of pre-existing shear and extension veins.

  17. Meprin A impairs epithelial barrier function, enhances monocyte migration, and cleaves the tight junction protein occludin

    PubMed Central

    Bao, Jialing; Yura, Renee E.; Matters, Gail L.; Bradley, S. Gaylen; Shi, Pan; Tian, Fang

    2013-01-01

    Meprin metalloproteases are highly expressed at the luminal interface of the intestine and kidney and in certain leukocytes. Meprins cleave a variety of substrates in vitro, including extracellular matrix proteins, adherens junction proteins, and cytokines, and have been implicated in a number of inflammatory diseases. The linkage between results in vitro and pathogenesis, however, has not been elucidated. The present study aimed to determine whether meprins are determinative factors in disrupting the barrier function of the epithelium. Active meprin A or meprin B applied to Madin-Darby canine kidney (MDCK) cell monolayers increased permeability to fluorescein isothiocyanate-dextran and disrupted immunostaining of the tight junction protein occludin but not claudin-4. Meprin A, but not meprin B, cleaved occludin in MDCK monolayers. Experiments with recombinant occludin demonstrated that meprin A cleaves the protein between Gly100 and Ser101 on the first extracellular loop. In vivo experiments demonstrated that meprin A infused into the mouse bladder increased the epithelium permeability to sodium fluorescein. Furthermore, monocytes from meprin knockout mice on a C57BL/6 background were less able to migrate through an MDCK monolayer than monocytes from their wild-type counterparts. These results demonstrate the capability of meprin A to disrupt epithelial barriers and implicate occludin as one of the important targets of meprin A that may modulate inflammation. PMID:23804454

  18. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    PubMed Central

    Liu, Siqi; Xu, Yi-Jun

    2016-01-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters–TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability. PMID:26947754

  19. Characterization of the interaction between subunits of the botulinum toxin complex produced by serotype D through tryptic susceptibility of the isolated components and complex forms.

    PubMed

    Suzuki, Tomonori; Watanabe, Toshihiro; Mutoh, Shingo; Hasegawa, Kimiko; Kouguchi, Hirokazu; Sagane, Yoshimasa; Fujinaga, Yukako; Oguma, Keiji; Ohyama, Tohru

    2005-05-01

    The 650 kDa large toxin complex (L-TC) produced by Clostridium botulinum serotype D strain 4947 (D-4947) has a subunit structure composed of unnicked components, i.e. neurotoxin (NT), non-toxic non-haemagglutinin (NTNHA) and three haemagglutinin subcomponents (HA-70, HA-33 and HA-17). In this study, subunit interactions were investigated through the susceptibilities of the toxin components to limited trypsin proteolysis. Additionally, complex forms were reconstituted in vitro by various combinations of individual components. Trypsin treatment of intact D-4947 L-TC led to the formation of mature L-TC with nicks at specific sites of each component, which is usually observed in other strains of serotype D. NT, NTNHA and HA-17 were cleaved at their specific sites in either the single or complex forms, but HA-33 showed no sign of proteolysis. Unlike the other components, HA-70 was digested into random fragments as a single form, but it was cleaved into two fragments in the complex form. Based on the relative position of exposed or hidden regions of the individual components in the complex derived from their tryptic susceptibilities, an assembly model is proposed for the arrangement of individual subunits in the botulinum L-TC.

  20. The Limited Role of Number of Nested Syntactic Dependencies in Accounting for Processing Cost: Evidence from German Simplex and Complex Verbal Clusters

    PubMed Central

    Bader, Markus

    2018-01-01

    This paper presents three acceptability experiments investigating German verb-final clauses in order to explore possible sources of sentence complexity during human parsing. The point of departure was De Vries et al.'s (2011) generalization that sentences with three or more crossed or nested dependencies are too complex for being processed by the human parsing mechanism without difficulties. This generalization is partially based on findings from Bach et al. (1986) concerning the acceptability of complex verb clusters in German and Dutch. The first experiment tests this generalization by comparing two sentence types: (i) sentences with three nested dependencies within a single clause that contains three verbs in a complex verb cluster; (ii) sentences with four nested dependencies distributed across two embedded clauses, one center-embedded within the other, each containing a two-verb cluster. The results show that sentences with four nested dependencies are judged as acceptable as control sentences with only two nested dependencies, whereas sentences with three nested dependencies are judged as only marginally acceptable. This argues against De Vries et al.'s (2011) claim that the human parser can process no more than two nested dependencies. The results are used to refine the Verb-Cluster Complexity Hypothesis of Bader and Schmid (2009a). The second and the third experiment investigate sentences with four nested dependencies in more detail in order to explore alternative sources of sentence complexity: the number of predicted heads to be held in working memory (storage cost in terms of the Dependency Locality Theory [DLT], Gibson, 2000) and the length of the involved dependencies (integration cost in terms of the DLT). Experiment 2 investigates sentences for which storage cost and integration cost make conflicting predictions. The results show that storage cost outweighs integration cost. Experiment 3 shows that increasing integration cost in sentences with two

  1. The Limited Role of Number of Nested Syntactic Dependencies in Accounting for Processing Cost: Evidence from German Simplex and Complex Verbal Clusters.

    PubMed

    Bader, Markus

    2017-01-01

    This paper presents three acceptability experiments investigating German verb-final clauses in order to explore possible sources of sentence complexity during human parsing. The point of departure was De Vries et al.'s (2011) generalization that sentences with three or more crossed or nested dependencies are too complex for being processed by the human parsing mechanism without difficulties. This generalization is partially based on findings from Bach et al. (1986) concerning the acceptability of complex verb clusters in German and Dutch. The first experiment tests this generalization by comparing two sentence types: (i) sentences with three nested dependencies within a single clause that contains three verbs in a complex verb cluster; (ii) sentences with four nested dependencies distributed across two embedded clauses, one center-embedded within the other, each containing a two-verb cluster. The results show that sentences with four nested dependencies are judged as acceptable as control sentences with only two nested dependencies, whereas sentences with three nested dependencies are judged as only marginally acceptable. This argues against De Vries et al.'s (2011) claim that the human parser can process no more than two nested dependencies. The results are used to refine the Verb-Cluster Complexity Hypothesis of Bader and Schmid (2009a). The second and the third experiment investigate sentences with four nested dependencies in more detail in order to explore alternative sources of sentence complexity: the number of predicted heads to be held in working memory (storage cost in terms of the Dependency Locality Theory [DLT], Gibson, 2000) and the length of the involved dependencies (integration cost in terms of the DLT). Experiment 2 investigates sentences for which storage cost and integration cost make conflicting predictions. The results show that storage cost outweighs integration cost. Experiment 3 shows that increasing integration cost in sentences with two

  2. Calcium EXAFS Establishes the Mn-Ca Cluster in the Oxygen-Evolving Complex of Photosystem II†

    PubMed Central

    Cinco, Roehl M.; Holman, Karen L. McFarlane; Robblee, John H.; Yano, Junko; Pizarro, Shelly A.; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K.

    2014-01-01

    The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared subsequent to Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 Å, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is ~ 3.5 Å distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster. PMID:12390018

  3. Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi

    Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing,more » Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.« less

  4. Crystal growth of Bi{sub 2}Te{sub 3} and noble cleaved (0001) surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Golyashov, V.A.

    2016-04-15

    A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field. The phase purity and bulk structural quality of the crystal have been verified by XRD analysis and rocking curve observation. The atomically smooth Bi{sub 2}Te{sub 3}(0001) surface with an excellent crystallographic quality is formed by cleavage in the air. The chemical and microstructural properties of the surface have been evaluated with RHEED, AFM, STM, SE and XPS. The Bi{sub 2}Te{sub 3}(0001) cleaved surface is formed by atomically smooth terraces with the height of the elemental step of ~1.04±0.1 nm, asmore » estimated by AFM. There is no surface oxidation process detected over a month keeping in the air at normal conditions, as shown by comparative core level photoelectron spectroscopy. - Graphical abstract: A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field and the Bi{sub 2}Te{sub 3}(0001) cleaved surface has been evaluated with RHEED, AFM, STM, SE and XPS. - Highlights: • High-quality Bi{sub 2}Te{sub 3} crystal of 10 mm in diameter and 50 mm long have been grown. • The high-purity cleaved Bi{sub 2}Te{sub 3}(0001) surface has been evaluated by RHEED, AFM, STM and XPS methods. • The Bi{sub 2}Te{sub 3} surface covered by atomically smooth (0001) terraces is chemically stable for a long time.« less

  5. Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I.

    PubMed

    Le Breton, Nolwenn; Wright, John J; Jones, Andrew J Y; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2017-11-15

    Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A( 1 H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.

  6. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    PubMed

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  7. ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.

    PubMed

    Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi

    2015-01-01

    Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks.

  8. Interactions of iron-bound frataxin with ISCU and ferredoxin on the cysteine desulfurase complex leading to Fe-S cluster assembly.

    PubMed

    Cai, Kai; Frederick, Ronnie O; Tonelli, Marco; Markley, John L

    2018-06-01

    Frataxin (FXN) is involved in mitochondrial iron‑sulfur (Fe-S) cluster biogenesis and serves to accelerate Fe-S cluster formation. FXN deficiency is associated with Friedreich ataxia, a neurodegenerative disease. We have used a combination of isothermal titration calorimetry and multinuclear NMR spectroscopy to investigate interactions among the components of the biological machine that carries out the assembly of iron‑sulfur clusters in human mitochondria. Our results show that FXN tightly binds a single Fe 2+ but not Fe 3+ . While FXN (with or without bound Fe 2+ ) does not bind the scaffold protein ISCU directly, the two proteins interact mutually when each is bound to the cysteine desulfurase complex ([NFS1] 2 :[ISD11] 2 :[Acp] 2 ), abbreviated as (NIA) 2 , where "N" represents the cysteine desulfurase (NFS1), "I" represents the accessory protein (ISD11), and "A" represents acyl carrier protein (Acp). FXN binds (NIA) 2 weakly in the absence of ISCU but more strongly in its presence. Fe 2+ -FXN binds to the (NIA) 2 -ISCU 2 complex without release of iron. However, upon the addition of both l-cysteine and a reductant (either reduced FDX2 or DTT), Fe 2+ is released from FXN as consistent with Fe 2+ -FXN being the proximal source of iron for Fe-S cluster assembly. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Adaptive Scaling of Cluster Boundaries for Large-Scale Social Media Data Clustering.

    PubMed

    Meng, Lei; Tan, Ah-Hwee; Wunsch, Donald C

    2016-12-01

    The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters.

  10. Complexes of DNA bases and Watson-Crick base pairs with small neutral gold clusters.

    PubMed

    Kryachko, E S; Remacle, F

    2005-12-08

    The nature of the DNA-gold interaction determines and differentiates the affinity of the nucleobases (adenine, thymine, guanine, and cytosine) to gold. Our preliminary computational study [Kryachko, E. S.; Remacle, F. Nano Lett. 2005, 5, 735] demonstrates that two major bonding factors govern this interaction: the anchoring, either of the Au-N or Au-O type, and the nonconventional N-H...Au hydrogen bonding. In this paper, we offer insight into the nature of nucleobase-gold interactions and provide a detailed characterization of their different facets, i.e., geometrical, energetic, and spectroscopic aspects; the gold cluster size and gold coordination effects; proton affinity; and deprotonation energy. We then investigate how the Watson-Crick DNA pairing patterns are modulated by the nucleobase-gold interaction. We do so in terms of the proton affinities and deprotonation energies of those proton acceptors and proton donors which are involved in the interbase hydrogen bondings. A variety of properties of the most stable Watson-Crick [A x T]-Au3 and [G x C]-Au3 hybridized complexes are described and compared with the isolated Watson-Crick A x T and G x C ones. It is shown that enlarging the gold cluster size to Au6 results in a rather short gold-gold bond in the Watson-Crick interbase region of the [G x C]-Au6 complex that bridges the G x C pair and thus leads to a significant strengthening of G x C pairing.

  11. The complex star cluster system of NGC 1316 (Fornax A)

    NASA Astrophysics Data System (ADS)

    Sesto, Leandro A.; Faifer, Favio R.; Forte, Juan C.

    2016-10-01

    This paper presents Gemini-gri' high-quality photometry for cluster candidates in the field of NGC 1316 (Fornax A) as part of a study that also includes GMOS spectroscopy. A preliminary discussion of the photometric data indicates the presence of four stellar cluster populations with distinctive features in terms of age, chemical abundance and spatial distribution. Two of them seem to be the usually old (metal poor and metal rich) populations typically found in elliptical galaxies. In turn, an intermediate-age (5 Gyr) globular cluster population is the dominant component of the sample (as reported by previous papers). We also find a younger cluster population with a tentative age of ≈ 1 Gyr.

  12. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway.

    PubMed

    Saito, Yuichiro; Takeda, Jun; Adachi, Kousuke; Nobe, Yuko; Kobayashi, Junya; Hirota, Kouji; Oliveira, Douglas V; Taoka, Masato; Isobe, Toshiaki

    2014-01-01

    Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNA(Ser-Met). To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNA(Ser-Met), suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry-based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute "Domain 1" in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.

  13. RNase MRP Cleaves Pre-tRNASer-Met in the tRNA Maturation Pathway

    PubMed Central

    Adachi, Kousuke; Nobe, Yuko; Kobayashi, Junya; Hirota, Kouji; Oliveira, Douglas V.; Taoka, Masato; Isobe, Toshiaki

    2014-01-01

    Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP. PMID:25401760

  14. Hausdorff clustering

    NASA Astrophysics Data System (ADS)

    Basalto, Nicolas; Bellotti, Roberto; de Carlo, Francesco; Facchi, Paolo; Pantaleo, Ester; Pascazio, Saverio

    2008-10-01

    A clustering algorithm based on the Hausdorff distance is analyzed and compared to the single, complete, and average linkage algorithms. The four clustering procedures are applied to a toy example and to the time series of financial data. The dendrograms are scrutinized and their features compared. The Hausdorff linkage relies on firm mathematical grounds and turns out to be very effective when one has to discriminate among complex structures.

  15. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction.

    PubMed

    Han, Wenyuan; Li, Yingjun; Deng, Ling; Feng, Mingxia; Peng, Wenfang; Hallstrøm, Søren; Zhang, Jing; Peng, Nan; Liang, Yun Xiang; White, Malcolm F; She, Qunxin

    2017-02-28

    The CRISPR (clustered regularly interspaced short palindromic repeats) system protects archaea and bacteria by eliminating nucleic acid invaders in a crRNA-guided manner. The Sulfolobus islandicus type III-B Cmr-α system targets invading nucleic acid at both RNA and DNA levels and DNA targeting relies on the directional transcription of the protospacer in vivo. To gain further insight into the involved mechanism, we purified a native effector complex of III-B Cmr-α from S. islandicus and characterized it in vitro. Cmr-α cleaved RNAs complementary to crRNA present in the complex and its ssDNA destruction activity was activated by target RNA. The ssDNA cleavage required mismatches between the 5΄-tag of crRNA and the 3΄-flanking region of target RNA. An invader plasmid assay showed that mutation either in the histidine-aspartate acid (HD) domain (a quadruple mutation) or in the GGDD motif of the Cmr-2α protein resulted in attenuation of the DNA interference in vivo. However, double mutation of the HD motif only abolished the DNase activity in vitro. Furthermore, the activated Cmr-α binary complex functioned as a highly active DNase to destroy a large excess DNA substrate, which could provide a powerful means to rapidly degrade replicating viral DNA. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Cationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2'-bipyridine

    PubMed Central

    Lichtenthaler, Martin R.; Stahl, Florian; Kratzert, Daniel; Heidinger, Lorenz; Schleicher, Erik; Hamann, Julian; Himmel, Daniel; Weber, Stefan; Krossing, Ingo

    2015-01-01

    Group 13 MI compounds often disproportionate into M0 and MIII. Here, however, we show that the reaction of the MI salt of the weakly coordinating alkoxyaluminate [GaI(C6H5F)2]+[Al(ORF)4]− (RF=C(CF3)3) with 2,2'-bipyridine (bipy) yields the paramagnetic and distorted octahedral [Ga(bipy)3]2+•{[Al(ORF)4]−}2 complex salt. While the latter appears to be a GaII compound, both, EPR and DFT investigations assign a ligand-centred [GaIII{(bipy)3}•]2+ radical dication. Surprisingly, the application of the heavier homologue [InI(C6H5F)2]+[Al(ORF)4]− leads to aggregation and formation of the homonuclear cationic triangular and rhombic [In3(bipy)6]3+, [In3(bipy)5]3+ and [In4(bipy)6]4+ metal atom clusters. Typically, such clusters are formed under strongly reductive conditions. Analysing the unexpected redox-neutral cationic cluster formation, DFT studies suggest a stepwise formation of the clusters, possibly via their triplet state and further investigations attribute the overall driving force of the reactions to the strong In−In bonds and the high lattice enthalpies of the resultant ligand stabilized [M3]3+{[Al(ORF)4]−}3 and [M4]4+{[Al(ORF)4]−}4 salts. PMID:26478464

  17. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis

    PubMed Central

    Williamson, Benjamin H.; Kerns, Robert J.; Berger, James M.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) infects one-third of the world’s population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. To better explain known differences in fluoroquinolone action, the crystal structures of the WT Mtb DNA gyrase cleavage core and a fluoroquinolone-sensitized mutant were determined in complex with DNA and five fluoroquinolones. The structures, ranging from 2.4- to 2.6-Å resolution, show that the intrinsically low susceptibility of Mtb to fluoroquinolones correlates with a reduction in contacts to the water shell of an associated magnesium ion, which bridges fluoroquinolone–gyrase interactions. Surprisingly, the structural data revealed few differences in fluoroquinolone–enzyme contacts from drugs that have very different activities against Mtb. By contrast, a stability assay using purified components showed a clear relationship between ternary complex reversibility and inhibitory activities reported with cultured cells. Collectively, our data indicate that the stability of fluoroquinolone/DNA interactions is a major determinant of fluoroquinolone activity and that moieties that have been appended to the C7 position of different quinolone scaffolds do not take advantage of specific contacts that might be made with the enzyme. These concepts point to new approaches for developing quinolone-class compounds that have increased potency against Mtb and the ability to overcome resistance. PMID:26792525

  18. Polyglycine hydrolases: fungal b-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...

  19. Complexity and dynamics of topological and community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Berec, Vesna

    2017-07-01

    Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system's modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters - communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system's collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.

  20. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Rickard, David T.

    2005-10-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.

  1. Bacteriophage-derived CHAP domain protein, P128, kills Staphylococcus cells by cleaving interpeptide cross-bridge of peptidoglycan.

    PubMed

    Sundarrajan, Sudarson; Raghupatil, Junjappa; Vipra, Aradhana; Narasimhaswamy, Nagalakshmi; Saravanan, Sanjeev; Appaiah, Chemira; Poonacha, Nethravathi; Desai, Srividya; Nair, Sandhya; Bhatt, Rajagopala Narayana; Roy, Panchali; Chikkamadaiah, Ravisha; Durgaiah, Murali; Sriram, Bharathi; Padmanabhan, Sriram; Sharma, Umender

    2014-10-01

    P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains. © 2014 The Authors.

  2. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  3. Reconstitution and structure of a bacterial Pnkp1RnlHen1 RNA repair complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei; Selvadurai, Kiruthika; Huang, Raven H.

    Ribotoxins cleave essential RNAs for cell killing, and RNA repair neutralizes the damage inflicted by ribotoxins for cell survival. We report a new bacterial RNA repair complex that performs RNA repair linked to immunity. This new RNA repair complex is a 270-kDa heterohexamer composed of three proteins—Pnkp1, Rnl and Hen1—that are required to repair ribotoxin-cleaved RNA in vitro. The crystal structure of the complex reveals the molecular architecture of the heterohexamer as two rhomboid-shaped ring structures of Pnkp1–Rnl–Hen1 heterotrimer fused at the Pnkp1 dimer interface. The four active sites required for RNA repair are located on the inner rim ofmore » each ring. Furthermore, the architecture and the locations of the active sites of the Pnkp1–Rnl–Hen1 heterohexamer suggest an ordered series of repair reactions at the broken RNA ends that confer immunity to recurrent damage.« less

  4. Efficient electronic structure theory via hierarchical scale-adaptive coupled-cluster formalism: I. Theory and computational complexity analysis

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.

    2018-03-01

    A novel reduced-scaling, general-order coupled-cluster approach is formulated by exploiting hierarchical representations of many-body tensors, combined with the recently suggested formalism of scale-adaptive tensor algebra. Inspired by the hierarchical techniques from the renormalisation group approach, H/H2-matrix algebra and fast multipole method, the computational scaling reduction in our formalism is achieved via coarsening of quantum many-body interactions at larger interaction scales, thus imposing a hierarchical structure on many-body tensors of coupled-cluster theory. In our approach, the interaction scale can be defined on any appropriate Euclidean domain (spatial domain, momentum-space domain, energy domain, etc.). We show that the hierarchically resolved many-body tensors can reduce the storage requirements to O(N), where N is the number of simulated quantum particles. Subsequently, we prove that any connected many-body diagram consisting of a finite number of arbitrary-order tensors, e.g. an arbitrary coupled-cluster diagram, can be evaluated in O(NlogN) floating-point operations. On top of that, we suggest an additional approximation to further reduce the computational complexity of higher order coupled-cluster equations, i.e. equations involving higher than double excitations, which otherwise would introduce a large prefactor into formal O(NlogN) scaling.

  5. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain.

    PubMed

    Zornetta, Irene; Azarnia Tehran, Domenico; Arrigoni, Giorgio; Anniballi, Fabrizio; Bano, Luca; Leka, Oneda; Zanotti, Giuseppe; Binz, Thomas; Montecucco, Cesare

    2016-07-22

    The genome of Weissella oryzae SG25T was recently sequenced and a botulinum neurotoxin (BoNT) like gene was identified by bioinformatics methods. The typical three-domains organization of BoNTs with a N-terminal metalloprotease domain, a translocation and a cell binding domains could be identified. The BoNT family of neurotoxins is rapidly growing, but this was the first indication of the possible expression of a BoNT toxin outside the Clostridium genus. We performed molecular modeling and dynamics simulations showing that the 50 kDa N-terminal domain folds very similarly to the metalloprotease domain of BoNT/B, whilst the binding part is different. However, neither the recombinant metalloprotease nor the binding domains showed cross-reactivity with the standard antisera that define the seven serotypes of BoNTs. We found that the purified Weissella metalloprotease cleaves VAMP at a single site untouched by the other VAMP-specific BoNTs. This site is a unique Trp-Trp peptide bond located within the juxtamembrane segment of VAMP which is essential for neurotransmitter release. Therefore, the present study identifies the first non-Clostridial BoNT-like metalloprotease that cleaves VAMP at a novel and relevant site and we propose to label it BoNT/Wo.

  6. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  7. A Mutation in UL15 of Herpes Simplex Virus 1 That Reduces Packaging of Cleaved Genomes▿

    PubMed Central

    Yang, Kui; Wills, Elizabeth G.; Baines, Joel D.

    2011-01-01

    Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of UL15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a UL15-null virus or a virus lacking UL15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pUL15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage. PMID:21880766

  8. STS-30 MS Cleave monitors fluids experiment apparatus (FEA) equipment

    NASA Image and Video Library

    1989-05-08

    STS030-02-018 (4-8 May 1989) --- A 35mm overall scene of the operations devoted to the fluids experiment apparatus (FEA) aboard Atlantis for NASA’s STS-30 mission. Astronaut Mary L. Cleave, mission specialist, is seen with the computer which is instrumental in the carrying out of a variety of materials science experiments. Rockwell International is engaged in a joint endeavor agreement with NASA’s Office of Commercial Programs in the field of floating zone crystal growth and purification research. The March 1987 agreement provides for microgravity experiments to be performed in the company’s Microgravity Laboratory, the FEA. An 8 mm camcorder which documented details inside the apparatus is visible at bottom of the frame.

  9. Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex.

    PubMed

    Falcone, Marta; Kefalidis, Christos E; Scopelliti, Rosario; Maron, Laurent; Mazzanti, Marinella

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Toxin MqsR Cleaves Single-Stranded mRNA with Various 5 Ends

    DTIC Science & Technology

    2016-08-24

    either protein ORIGINAL RESEARCH Toxin MqsR cleaves single- stranded mRNA with various 5’ ends Nityananda Chowdhury1,*, Brian W. Kwan1,*, Louise C...in which a single 5′- GCU site was predicted to be single- stranded (ssRNA), double- stranded (dsRNA), in the loop of a stem - loop (slRNA), or in a...single- stranded 5′- GCU sites since cleavage was approximately 20- fold higher than cleavage seen with the 5′- GCU site in the stem - loop and

  11. DICON: interactive visual analysis of multidimensional clusters.

    PubMed

    Cao, Nan; Gotz, David; Sun, Jimeng; Qu, Huamin

    2011-12-01

    Clustering as a fundamental data analysis technique has been widely used in many analytic applications. However, it is often difficult for users to understand and evaluate multidimensional clustering results, especially the quality of clusters and their semantics. For large and complex data, high-level statistical information about the clusters is often needed for users to evaluate cluster quality while a detailed display of multidimensional attributes of the data is necessary to understand the meaning of clusters. In this paper, we introduce DICON, an icon-based cluster visualization that embeds statistical information into a multi-attribute display to facilitate cluster interpretation, evaluation, and comparison. We design a treemap-like icon to represent a multidimensional cluster, and the quality of the cluster can be conveniently evaluated with the embedded statistical information. We further develop a novel layout algorithm which can generate similar icons for similar clusters, making comparisons of clusters easier. User interaction and clutter reduction are integrated into the system to help users more effectively analyze and refine clustering results for large datasets. We demonstrate the power of DICON through a user study and a case study in the healthcare domain. Our evaluation shows the benefits of the technique, especially in support of complex multidimensional cluster analysis. © 2011 IEEE

  12. Nucleophilic ring opening of bridging thietanes in open triosmium cluster complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, R.D.; Belinski, J.A.

    1992-07-01

    The complexes Os{sub 3}(CO){sub 9}({mu}{sub 3}-S)[{mu}-SCH{sub 2}CMe{sub 2}CMe{sub 2}CH{sub 2}] (1) and Os{sub 3}(CO){sub 9}({mu}{sub 3}-S)[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}] (2) were obtained from the reactions of Os{sub 3}(CO){sub 10}({mu}{sub 3}-S) with 3,3-dimethylthietane (DMT) and thietane, respectively, at -42 {degree}C in the presence of Me{sub 3}NO. Compound 1 was characterized by a single-crystal X-ray diffraction analysis and was found to contain a DMT group bridging two of the nonbonded metal atoms in the open cluster of three metal atoms by using both lone pairs of electrons on the sulfur atom. Compound 1 reacted with bis(triphenylphosphine)nitrogen(1+) chloride ([PPN]Cl) at 25 {degrees}C tomore » yield the salt [PPN][Os{sub 3}-(CO){sub 9}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}Cl)({mu}{sub 3}-S)] (3; 76%), in which the chloride ion was added to one of the methylene groups of the DMT ring in a process that caused the ring to open by cleavage of one of the carbon-sulfur bonds. A 4-chloro-3,3-dimethylpropanethiolate ligand bridges the open edge of the anionic triosmium cluster. Compound 3 was converted to the neutral complex Os{sub 3}(CO){sub 9}[{mu}-SCH{sub 2}CMe{sub 2}CMe{sub 2}CH{sub 2}Cl]({mu}{sub 3}-S)({mu}-H) (4) by reaction with HCl at 25 {degrees}C. Compound 4 is structurally similar to 3, except that is contains a hydride ligand bridging one of the two metal-metal bonds. Compounds 1 and 2 react with HCl in CH{sub 2}Cl{sub 2} solvent to yield the neutral compounds 4 and Os{sub 3}(CO){sub 9}[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}Cl]({mu}{sub 3}-S)({mu}-H) (5) in 89% and 90% yields, respectively, in one step. 11 refs., 3 figs., 10 tabs.« less

  13. Characterization of the ScAlMgO4 cleaving layer by X-ray crystal truncation rod scattering

    NASA Astrophysics Data System (ADS)

    Hanada, Takashi; Tajiri, Hiroo; Sakata, Osami; Fukuda, Tsuguo; Matsuoka, Takashi

    2018-05-01

    ScAlMgO4—easily cleaved in c-plane—forms a natural superlattice structure of a ScO2 layer and two Al0.5Mg0.5O layers stacking along c-axis. ScAlMgO4 is one of the RAMO4-type layered multicomponent oxides and a promising lattice-matching substrate material for InGaN and ZnO. Identification of the topmost layer and the surface atomic structure of the cleaved ScAlMgO4 (0001) are investigated by the X-ray crystal truncation rod scattering method. It is confirmed that ScAlMgO4 is cleaved between the two Al0.5Mg0.5O layers. The two parts separated at this interlayer are inversion symmetric to each other and without surface charge. This prevents parallel-plate-capacitor-like electrostatic force during the cleavage. Two different mechanisms are proposed for the two types of cleavage caused by the impact of a wedge and by the in-plane stress due to an overgrown thick GaN film. It is also revealed that about 10%-20% of the topmost O atoms are desorbed during a surface cleaning at 600 °C in ultra-high vacuum. Surface observations using reflection high-energy electron diffraction are possible only after the high-temperature cleaning because the electrical conduction caused by the oxygen deficiency prevents the charge-up of the insulating sample.

  14. The Hidden Fortress: structure and substructure of the complex strong lensing cluster SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune; Schrabback, Tim; Jullo, Eric; Ota, Naomi; Kochanek, Christopher S.; Dai, Xinyu; Ofek, Eran O.; Richards, Gordon T.; Blandford, Roger D.; Falco, Emilio E.; Fohlmeister, Janine

    2013-02-01

    We present Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) observations of SDSS J1029+2623, a three-image quasar lens system produced by a foreground cluster at z = 0.584. Our strong lensing analysis reveals six additional multiply imaged galaxies in addition to the multiply imaged quasar. We confirm the complex nature of the mass distribution of the lensing cluster, with a bimodal dark matter distribution which deviates from the Chandra X-ray surface brightness distribution. The Einstein radius of the lensing cluster is estimated to be θE = 15.2 ± 0.5 arcsec for the quasar redshift of z = 2.197. We derive a radial mass distribution from the combination of strong lensing, HST/ACS weak lensing and Subaru/Suprime-cam weak lensing analysis results, finding a best-fitting virial mass of Mvir = 1.55+ 0.40- 0.35 × 1014 h- 1 M⊙ and a concentration parameter of cvir = 25.7+ 14.1- 7.5. The lensing mass estimate at the outer radius is smaller than the X-ray mass estimate by a factor of ˜2. We ascribe this large mass discrepancy to shock heating of the intracluster gas during a merger, which is also suggested by the complex mass and gas distributions and the high value of the concentration parameter. In the HST image, we also identify a probable galaxy, GX, in the vicinity of the faintest quasar image C. In strong lens models, the inclusion of GX explains the anomalous flux ratios between the quasar images. The morphology of the highly elongated quasar host galaxy is also well reproduced. The best-fitting model suggests large total magnifications of 30 for the quasar and 35 for the quasar host galaxy, and has an AB time delay consistent with the measured value.

  15. Ripple formation on atomically flat cleaved Si surface with roughness of 0.038 nm rms by low-energy Ar{sup 1+} ion bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlovy, Shahjada A.; Mahmud, S. F.; Yanagimoto, K.

    The authors have conducted research regarding ripple formation on an atomically flat cleaved Si surface by low-energy Ar{sup +} ion bombardment. The cleaved atomically flat and smooth plane of a Si wafer was obtained by cutting vertically against the orientation of a Si (100) wafer. Next, the cleaved surface was sputtered by a 1 keV Ar{sup +} ion beam at ion-incidence angles of 0 deg., 60 deg., 70 deg., and 80 deg. The results confirm the successful ripple formation at ion-incidence angles of 60 deg. - 80 deg. and that the wavelength of the ripples increases with the increase ofmore » the ion-incidence angle, as well as the inverse of ion doses. The direction of the ripple also changes from perpendicular to parallel to the projection of the ion-beam direction along the surface with the increasing ion-incidence angle. The authors have also observed the dose effects on surface roughness of cleaved Si surface at the ion-incidence angle of 60 deg., where the surface roughness increases with the increased ion dose. Finally, to understand the roughening mechanism, the authors studied the scaling behavior, measured the roughness exponent {alpha}, and compared the evolution of scaling regimes with Cuerno's one-dimensional simulation results.« less

  16. A cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of Photosystem II.

    PubMed

    Shutova, Tatiana; Klimov, Vyacheslav V; Andersson, Bertil; Samuelsson, Göran

    2007-06-01

    The hypothesis presented here for proton transfer away from the water oxidation complex of Photosystem II (PSII) is supported by biochemical experiments on the isolated PsbO protein in solution, theoretical analyses of better understood proton transfer systems like bacteriorhodopsin and cytochrome oxidase, and the recently published 3D structure of PS II (Pdb entry 1S5L). We propose that a cluster of conserved glutamic and aspartic acid residues in the PsbO protein acts as a buffering network providing efficient acceptors of protons derived from substrate water molecules. The charge delocalization of the cluster ensures readiness to promptly accept the protons liberated from substrate water. Therefore protons generated at the catalytic centre of PSII need not be released into the thylakoid lumen as generally thought. The cluster is the beginning of a localized, fast proton transfer conduit on the lumenal side of the thylakoid membrane. Proton-dependent conformational changes of PsbO may play a role in the regulation of both supply of substrate water to the water oxidizing complex and the resultant proton transfer.

  17. Lipid Clustering Correlates with Membrane Curvature as Revealed by Molecular Simulations of Complex Lipid Bilayers

    PubMed Central

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S. P.

    2014-01-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins. PMID:25340788

  18. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    PubMed

    Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S P

    2014-10-01

    Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  19. Orientation of Calcium in the Mn4Ca Cluster of the Oxygen-Evolving Complex Determined Using Polarized Strontium EXAFS of Photosystem II Membranes†

    PubMed Central

    Cinco, Roehl M.; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; Holman, Karen L. McFarlane; Sauer, Kenneth; Yachandra, Vittal K.

    2014-01-01

    The oxygen-evolving complex of photosystem II (PS II) in green plants and algae contains a cluster of four Mn atoms in the active site, which catalyzes the photoinduced oxidation of water to dioxygen. Along with Mn, calcium and chloride ions are necessary cofactors for proper functioning of the complex. The current study using polarized Sr EXAFS on oriented Sr-reactivated samples shows that Fourier peak II, which fits best to Mn at 3.5 Å rather than lighter atoms (C, N, O, or Cl), is dichroic, with a larger magnitude at 10° (angle between the PS II membrane normal and the X-ray electric field vector) and a smaller magnitude at 80°. Analysis of the dichroism of the Sr EXAFS yields a lower and upper limit of 0° and 23° for the average angle between the Sr–Mn vectors and the membrane normal and an isotropic coordination number (number of Mn neighbors to Sr) of 1 or 2 for these layered PS II samples. The results confirm the contention that Ca (Sr) is proximal to the Mn cluster and lead to refined working models of the heteronuclear Mn4Ca cluster of the oxygen-evolving complex in PS II. PMID:15491134

  20. Clustervision: Visual Supervision of Unsupervised Clustering.

    PubMed

    Kwon, Bum Chul; Eysenbach, Ben; Verma, Janu; Ng, Kenney; De Filippi, Christopher; Stewart, Walter F; Perer, Adam

    2018-01-01

    Clustering, the process of grouping together similar items into distinct partitions, is a common type of unsupervised machine learning that can be useful for summarizing and aggregating complex multi-dimensional data. However, data can be clustered in many ways, and there exist a large body of algorithms designed to reveal different patterns. While having access to a wide variety of algorithms is helpful, in practice, it is quite difficult for data scientists to choose and parameterize algorithms to get the clustering results relevant for their dataset and analytical tasks. To alleviate this problem, we built Clustervision, a visual analytics tool that helps ensure data scientists find the right clustering among the large amount of techniques and parameters available. Our system clusters data using a variety of clustering techniques and parameters and then ranks clustering results utilizing five quality metrics. In addition, users can guide the system to produce more relevant results by providing task-relevant constraints on the data. Our visual user interface allows users to find high quality clustering results, explore the clusters using several coordinated visualization techniques, and select the cluster result that best suits their task. We demonstrate this novel approach using a case study with a team of researchers in the medical domain and showcase that our system empowers users to choose an effective representation of their complex data.

  1. Interaction between Nbp35 and Cfd1 proteins of cytosolic Fe-S cluster assembly reveals a stable complex formation in Entamoeba histolytica.

    PubMed

    Anwar, Shadab; Dikhit, Manas Ranjan; Singh, Krishn Pratap; Kar, Rajiv Kumar; Zaidi, Amir; Sahoo, Ganesh Chandra; Roy, Awadh Kishore; Nozaki, Tomoyoshi; Das, Pradeep; Ali, Vahab

    2014-01-01

    Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any

  2. Evolving optical second-harmonic anisotropy at the cleaved Bi2Se3 surface

    NASA Astrophysics Data System (ADS)

    An, Yong; Green, Avery; Diebold, Alain

    Bismuth selenide (Bi2Se3) is a centrosymmetric topological insulator with conducting surface states. The surface states have been studied by various electrical and optical techniques in air, but ambience effects and surface aging have not been adequately addressed. Optical second-harmonic generation (SHG) is a suitable probe for the Bi2Se3 surface because SHG arises from symmetry breaking at the surface and thus should detect surface states preferentially over bulk states. However, a strong time dependence of SHG is often observed, hampering the detection and investigation of the surface states. Here we find a new phenomenon in which the major and minor intensity lobes of a measured rotational-anisotropy SHG pattern from a cleaved Bi2Se3 (111) surface can significantly change with time and eventually switch their amplitudes. This switching provides a means for tracking the progress of surface oxidation inside a quintuple layer of Bi2Se3. We also perform pump-probe SHG experiments, comparatively on freshly cleaved and oxidized Bi2Se3 surfaces, to study charge dynamics at the oxide/Bi2Se3 interface and to detect spin polarization of photoexcited surface states in the Bi2Se3 topological insulator. This work was supported by the SRC NRI Institute for Nanoelectronics Discovery and Exploration (INDEX).

  3. Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier.

    PubMed

    Menzel, Claudia; Bernkop-Schnürch, Andreas

    2018-01-15

    The use of mucus permeating drug carrier systems being able to overcome the mucus barrier can lead to a remarkable enhancement in bioavailability. One promising approach is the design of mucolytic enzyme decorated carrier systems (MECS). These systems include micro- and nanoparticles as well as self-emulsifying drug delivery systems (SEDDS) decorated with mucin cleaving enzymes such as papain (PAP) or bromelain (BRO). MECS are able to cross the mucus barrier in a comparatively efficient manner by cleaving mucus substructures in front of them on their way to the epithelium. Thereby these enzymes hydrolyze peptide bonds of mucus glycoproteins forming tiny holes or passages through the mucus. In various in vitro and in vivo studies MECS proved to be superior in their mucus permeating properties over nanocarriers without enzyme decoration. PAP decorated nanoparticles, for instance, remained 3h after oral administration to an even 2.5-fold higher extend in rat small intestine than the corresponding undecorated nanoparticles permeating the intestinal mucus gel layer to a much lower degree. As MECS break up the mucus network only locally without destroying its overall protective barrier function, even long term treatments with such systems seem feasible. Within this review article we address different drug carrier systems decorated with various types of enzymes, their particular pros and cons and potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Enzymes that cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravit, Nancy G.; Schmidt, Katherine A.

    The patent application relates to isolated polypeptides that specifically cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides, and to cDNAs encoding the polypeptides. The patent application also relates to nucleic acid constructs, expression vectors and host cells comprising the cDNAs, as well as methods of producing and using the isolated polypeptides for treating pulp and biomass to increase soluble saccharide yield and enrich lignin fractions.

  5. LBSizeCleav: improved support vector machine (SVM)-based prediction of Dicer cleavage sites using loop/bulge length.

    PubMed

    Bao, Yu; Hayashida, Morihiro; Akutsu, Tatsuya

    2016-11-25

    Dicer is necessary for the process of mature microRNA (miRNA) formation because the Dicer enzyme cleaves pre-miRNA correctly to generate miRNA with correct seed regions. Nonetheless, the mechanism underlying the selection of a Dicer cleavage site is still not fully understood. To date, several studies have been conducted to solve this problem, for example, a recent discovery indicates that the loop/bulge structure plays a central role in the selection of Dicer cleavage sites. In accordance with this breakthrough, a support vector machine (SVM)-based method called PHDCleav was developed to predict Dicer cleavage sites which outperforms other methods based on random forest and naive Bayes. PHDCleav, however, tests only whether a position in the shift window belongs to a loop/bulge structure. In this paper, we used the length of loop/bulge structures (in addition to their presence or absence) to develop an improved method, LBSizeCleav, for predicting Dicer cleavage sites. To evaluate our method, we used 810 empirically validated sequences of human pre-miRNAs and performed fivefold cross-validation. In both 5p and 3p arms of pre-miRNAs, LBSizeCleav showed greater prediction accuracy than PHDCleav did. This result suggests that the length of loop/bulge structures is useful for prediction of Dicer cleavage sites. We developed a novel algorithm for feature space mapping based on the length of a loop/bulge for predicting Dicer cleavage sites. The better performance of our method indicates the usefulness of the length of loop/bulge structures for such predictions.

  6. The Complexities of Implementing Cluster Supply Chain - Case Study of JCH

    NASA Astrophysics Data System (ADS)

    Xue, Xiao; Zhang, Jibiao; Wang, Yang

    As a new type of management pattern, "cluster supply chain" (CSC) can help SMEs to face the global challenges through all kinds of collaboration. However, a major challenge in implementing CSC is the gap between theory and practice in the field. In an effort to provide a better understanding of this emerging phenomenon, this paper presents the implementation process of CSC in the context of JingCheng Mechanical & Electrical Holding co., ltd.(JCH) as a case study. The cast study of JCH suggests that the key problems in the practice of cluster supply chain: How do small firms use cluster supply chain? Only after we clarify the problem, the actual construction and operation of cluster supply chain does show successful results as it should be.

  7. Prokaryotic Gene Clusters: A Rich Toolbox for Synthetic Biology

    PubMed Central

    Fischbach, Michael; Voigt, Christopher A.

    2014-01-01

    Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be “mixed-and-matched” to create a designer organism. PMID:21154668

  8. Specialization of the DNA-Cleaving Activity of a Group I Ribozyme Through In Vitro Evolution

    NASA Technical Reports Server (NTRS)

    Tsang, Joyce; Joyce, Gerald F.

    1996-01-01

    In an earlier study, an in vitro evolution procedure was applied to a large population of variants of the Tetrahymena group 1 ribozyme to obtain individuals with a 10(exp 5)-fold improved ability to cleave a target single-stranded DNA substrate under simulated physiological conditions. The evolved ribozymes also showed a twofold improvement, compared to the wild-type, in their ability to cleave a single-stranded RNA substrate. Here, we report continuation of the in vitro evolution process using a new selection strategy to achieve both enhanced DNA and diminished RNA-cleavage activity. Our strategy combines a positive selection for DNA cleavage with a negative selection against RNA binding. After 36 "generations" of in vitro evolution, the evolved population showed an approx. 100-fold increase in the ratio of DNA to RNA-cleavage activity. Site-directed mutagenesis experiment confirmed the selective advantage of two covarying mutations within the catalytic core of ribozyme that are largely responsible for this modified behavior. The population of ribozymes has now undergone a total of 63 successive generations of evolution, resulting in an average 28 mutations relative to the wild-type that are responsible for the altered phenotype.

  9. Fibroblast Activation Protein Cleaves and Inactivates Fibroblast Growth Factor 21*

    PubMed Central

    Dunshee, Diana Ronai; Bainbridge, Travis W.; Kljavin, Noelyn M.; Zavala-Solorio, Jose; Schroeder, Amy C.; Chan, Ruby; Corpuz, Racquel; Wong, Manda; Zhou, Wei; Deshmukh, Gauri; Ly, Justin; Sutherlin, Daniel P.; Ernst, James A.; Sonoda, Junichiro

    2016-01-01

    FGF21 is a stress-induced hormone with potent anti-obesity, insulin-sensitizing, and hepatoprotective properties. Although proteolytic cleavage of recombinant human FGF21 in preclinical species has been observed previously, the regulation of endogenously produced FGF21 is not well understood. Here we identify fibroblast activation protein (FAP) as the enzyme that cleaves and inactivates human FGF21. A selective chemical inhibitor, immunodepletion, or genetic deletion of Fap stabilized recombinant human FGF21 in serum. In addition, administration of a selective FAP inhibitor acutely increased circulating intact FGF21 levels in cynomolgus monkeys. On the basis of our findings, we propose selective FAP inhibition as a potential therapeutic approach to increase endogenous FGF21 activity for the treatment of obesity, type 2 diabetes, non-alcoholic steatohepatitis, and related metabolic disorders. PMID:26797127

  10. Synthesis, structural characterization and DNA interaction of zinc complex from 2,6-diacetylpyridine dihydrazone and {4-[(2E)-2-(hydroxyimino)acetyl]phenoxy} acetic acid.

    PubMed

    Gup, Ramazan; Gökçe, Cansu; Dilek, Nefise

    2015-03-01

    A new water soluble zinc complex has been prepared and structurally characterized. The Zn(II) complex was synthesized by the reaction of 2,6-diacetylpyridine dihydrazone (dph) with {4-[(2E)-2-(hydroxyimino)acetyl]phenoxy} acetic acid (H₂L) in the presence of zinc(II) acetate. Single crystal X-ray diffraction study revealed that the zinc ion is situated in distorted trigonal-bipyramidal environment where the equatorial position is occupied by the nitrogen atom of pyridine ring and the oxygen atoms of acetate groups of two oxime ligands (H₂L) whereas the axial positions of the zinc complex are occupied by the imine nitrogen atoms of dph ligand. Characterization of the complex with FTIR, (1)H and (13)C NMR, UV-vis and elemental analysis also confirmed the proposed structure. Interaction of the Zn(II) complex with calf-thymus DNA (CT-DNA) was investigated through UV-vis spectroscopy and viscosity measurements. The results suggest that the complex preferably bind to DNA through the groove binding mode. The zinc complex cleaves plasmid pBR 322 DNA in the presence and absence of an oxidative agent (H₂O₂), possibly through a hydrolytic pathway which is also supported by DNA cleave experiments in the presence of different radical scavengers. The nuclease activity of the zinc complex significantly depends on concentration of the complex and incubation time both in the presence and absence of H₂O₂. DNA cleave activity is inhibited in the presence of methyl green indicating that the zinc complex seems to bind the major groove of DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. HIGH-RESOLUTION STUDY OF THE CLUSTER COMPLEXES IN A LENSED SPIRAL AT REDSHIFT 1.5: CONSTRAINTS ON THE BULGE FORMATION AND DISK EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamo, Angela; Oestlin, G.; Zackrisson, E.

    2013-04-01

    We analyze the clump population of the spiral galaxy Sp 1149 at redshift 1.5. Located behind the galaxy cluster MACS J1149.5+2223, Sp 1149 has been significantly magnified allowing us to study the galaxy on physical scales down to {approx}100 pc. The galaxy cluster frame is among the targets of the Cluster Lensing And Supernova survey with Hubble (CLASH), an ongoing Hubble Space Telescope (HST) Multi-Cycle Treasury program. We have used the publicly available multi-band imaging data set to reconstruct the spectral energy distributions of the clumps in Sp 1149, and derive, by means of stellar evolutionary models, their physical properties.more » We found that 40% of the clumps observed in Sp 1149 are older than 30 Myr and can be as old as 300 Myr. These are also the more massive (luminous) clumps in the galaxy. Among the complexes in the local reference sample, the star-forming knots in luminous blue compact galaxies could be considered progenitor analogs of these long-lived clumps. The remaining 60% of clumps have colors comparable to local cluster complexes, suggesting a similar young age. We observe that the Sp 1149 clumps follow the M{proportional_to}R {sup 2} relation similar to local cluster complexes, suggesting similar formation mechanisms although they may have different initial conditions (e.g., higher gas surface densities). We suggest that the galaxy is experiencing a slow decline in star formation rate and a likely transitional phase toward a more quiescent star formation mode. The older clumps have survived between 6 and 20 dynamical times and are all located at projected distances smaller than 4 kpc from the center. Their current location suggests migration toward the center and the possibility of being the building blocks of the bulge. On the other hand, the dynamical timescale of the younger clumps is significantly shorter, meaning that they are quite close to their birthplace. We show that the clumps of Sp 1149 may account for the expected metal

  12. Complexes of DNA bases and Watson-Crick base pairs interaction with neutral silver Agn (n = 8, 10, 12) clusters: a DFT and TDDFT study.

    PubMed

    Srivastava, Ruby

    2018-03-01

    We study the binding of the neutral Ag n (n = 8, 10, 12) to the DNA base-adenine (A), guanine (G) and Watson-Crick -adenine-thymine, guanine-cytosine pairs. Geometries of complexes were optimized at the DFT level using the hybrid B3LYP functional. LANL2DZ effective core potential was used for silver and 6-31 + G ** was used for all other atoms. NBO charges were analyzed using the Natural population analysis. The absorption properties of Ag n -A,G/WC complexes were also studied using time-dependent density functional theory. The absorption spectra for these complexes show wavelength in the visible region. It was revealed that silver clusters interact more strongly with WC pairs than with isolated DNA complexes. Furthermore, it was found that the electronic charge transferred from silver to isolated DNA clusters are less than the electronic charge transferred from silver to the Ag n -WC complexes. The vertical ionization potential, vertical electron affinity, hardness, and electrophilicity index of Ag n -DNA/WC complexes have also been discussed.

  13. Anti-apoptotic Role of Caspase-cleaved GAB1 Adaptor Protein in Hepatocyte Growth Factor/Scatter Factor-MET Receptor Protein Signaling*

    PubMed Central

    Le Goff, Arnaud; Ji, Zongling; Leclercq, Bérénice; Bourette, Roland P.; Mougel, Alexandra; Guerardel, Cateline; de Launoit, Yvan; Vicogne, Jérôme; Goormachtigh, Gautier; Fafeur, Véronique

    2012-01-01

    The GRB2-associated binder 1 (GAB1) docking/scaffold protein is a key mediator of the MET-tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). Activated MET promotes recruitment and tyrosine phosphorylation of GAB1, which in turn recruits multiple proteins and mediates MET signaling leading to cell survival, motility, and morphogenesis. We previously reported that, without its ligand, MET is a functional caspase target during apoptosis, allowing the generation of a p40-MET fragment that amplifies apoptosis. In this study we established that GAB1 is also a functional caspase target by evidencing a caspase-cleaved p35-GAB1 fragment that contains the MET binding domain. GAB1 is cleaved by caspases before MET, and the resulting p35-GAB1 fragment is phosphorylated by MET upon HGF/SF binding and can interact with a subset of GAB1 partners, PI3K, and GRB2 but not with SHP2. This p35-GAB1 fragment favors cell survival by maintaining HGF/SF-induced MET activation of AKT and by hindering p40-MET pro-apoptotic function. These data demonstrate an anti-apoptotic role of caspase-cleaved GAB1 in HGF/SF-MET signaling. PMID:22915589

  14. A p21-ZEB1 Complex Inhibits Epithelial-Mesenchymal Transition through the MicroRNA 183-96-182 Cluster

    PubMed Central

    Li, Xiao Ling; Hara, Toshifumi; Choi, Youngeun; Subramanian, Murugan; Francis, Princy; Bilke, Sven; Walker, Robert L.; Pineda, Marbin; Zhu, Yuelin; Yang, Yuan; Luo, Ji; Wakefield, Lalage M.; Brabletz, Thomas; Park, Ben Ho; Sharma, Sudha; Chowdhury, Dipanjan; Meltzer, Paul S.

    2014-01-01

    The tumor suppressor p21 acts as a cell cycle inhibitor and has also been shown to regulate gene expression by functioning as a transcription corepressor. Here, we identified p21-regulated microRNAs (miRNAs) by sequencing small RNAs from isogenic p21+/+ and p21−/− cells. Three abundant miRNA clusters, miR-200b-200a-429, miR-200c-141, and miR-183-96-182, were downregulated in p21-deficient cells. Consistent with the known function of the miR-200 family and p21 in inhibition of the epithelial-mesenchymal transition (EMT), we observed EMT upon loss of p21 in multiple model systems. To explore a role of the miR-183-96-182 cluster in EMT, we identified its genome-wide targets and found that miR-183 and miR-96 repressed common targets, including SLUG, ZEB1, ITGB1, and KLF4. Reintroduction of miR-200, miR-183, or miR-96 in p21−/− cells inhibited EMT, cell migration, and invasion. Conversely, antagonizing miR-200 and miR-183-96-182 cluster miRNAs in p21+/+ cells increased invasion and elevated the levels of VIM, ZEB1, and SLUG mRNAs. Furthermore, we found that p21 forms a complex with ZEB1 at the miR-183-96-182 cluster promoter to inhibit transcriptional repression of this cluster by ZEB1, suggesting a reciprocal feedback loop. PMID:24277930

  15. Application of clustering methods: Regularized Markov clustering (R-MCL) for analyzing dengue virus similarity

    NASA Astrophysics Data System (ADS)

    Lestari, D.; Raharjo, D.; Bustamam, A.; Abdillah, B.; Widhianto, W.

    2017-07-01

    Dengue virus consists of 10 different constituent proteins and are classified into 4 major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering against 30 protein sequences of dengue virus taken from Virus Pathogen Database and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL) algorithm and then we analyze the result. By using Python program 3.4, R-MCL algorithm produces 8 clusters with more than one centroid in several clusters. The number of centroid shows the density level of interaction. Protein interactions that are connected in a tissue, form a complex protein that serves as a specific biological process unit. The analysis of result shows the R-MCL clustering produces clusters of dengue virus family based on the similarity role of their constituent protein, regardless of serotypes.

  16. Conversion events in gene clusters

    PubMed Central

    2011-01-01

    Background Gene clusters containing multiple similar genomic regions in close proximity are of great interest for biomedical studies because of their associations with inherited diseases. However, such regions are difficult to analyze due to their structural complexity and their complicated evolutionary histories, reflecting a variety of large-scale mutational events. In particular, conversion events can mislead inferences about the relationships among these regions, as traced by traditional methods such as construction of phylogenetic trees or multi-species alignments. Results To correct the distorted information generated by such methods, we have developed an automated pipeline called CHAP (Cluster History Analysis Package) for detecting conversion events. We used this pipeline to analyze the conversion events that affected two well-studied gene clusters (α-globin and β-globin) and three gene clusters for which comparative sequence data were generated from seven primate species: CCL (chemokine ligand), IFN (interferon), and CYP2abf (part of cytochrome P450 family 2). CHAP is freely available at http://www.bx.psu.edu/miller_lab. Conclusions These studies reveal the value of characterizing conversion events in the context of studying gene clusters in complex genomes. PMID:21798034

  17. [Progress of genome engineering technology via clustered regularly interspaced short palindromic repeats--a review].

    PubMed

    Li, Hao; Qiu, Shaofu; Song, Hongbin

    2013-10-04

    In survival competition with phage, bacteria and archaea gradually evolved the acquired immune system--Clustered regularly interspaced short palindromic repeats (CRISPR), presenting the trait of transcribing the crRNA and the CRISPR-associated protein (Cas) to silence or cleaving the foreign double-stranded DNA specifically. In recent years, strong interest arises in prokaryotes primitive immune system and many in-depth researches are going on. Recently, researchers successfully repurposed CRISPR as an RNA-guided platform for sequence-specific gene expression, which provides a simple approach for selectively perturbing gene expression on a genome-wide scale. It will undoubtedly bring genome engineering into a more convenient and accurate new era.

  18. The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruiying; Zheng, Han; Preamplume, Gan

    The repeat-associated mysterious proteins (RAMPs) comprise the most abundant family of proteins involved in prokaryotic immunity against invading genetic elements conferred by the clustered regularly interspaced short palindromic repeat (CRISPR) system. Cas6 is one of the first characterized RAMP proteins and is a key enzyme required for CRISPR RNA maturation. Despite a strong structural homology with other RAMP proteins that bind hairpin RNA, Cas6 distinctly recognizes single-stranded RNA. Previous structural and biochemical studies show that Cas6 captures the 5' end while cleaving the 3' end of the CRISPR RNA. Here, we describe three structures and complementary biochemical analysis of amore » noncatalytic Cas6 homolog from Pyrococcus horikoshii bound to CRISPR repeat RNA of different sequences. Our study confirms the specificity of the Cas6 protein for single-stranded RNA and further reveals the importance of the bases at Positions 5-7 in Cas6-RNA interactions. Substitutions of these bases result in structural changes in the protein-RNA complex including its oligomerization state.« less

  19. Nucleophilic ring opening of bridging thietane ligands in trirhenium carbonyl cluster complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, R.D.; Cortopassi, J.E.; Falloon, S.B.

    1992-11-01

    The reactions of 3,3-dimethylthietane, SCH{sub 2}CMe{sub 2}CH{sub 2} (3,3-DMT), and thietane, SCH{sub 2}CH{sub 2}CH{sub 2}, with Re{sub 3}(CO){sub 10}[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}]({mu}-H){sub 3}, 2b. Compound 2a was characterized crystallographically and was found to consist of a trirhenium cluster with three bridging hydride ligands and a bridging thietane ligand coordinated through its sulfur atom. 2a and 2b react with halide ions by ring-opening additions to the 3,3-DMT ligand to yield the complex anions [Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}x)({mu}-h){sub 3}]{sup -} 3A-6A, X = F (71%), Cl(71%), Br(84%), I(87%) and [Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CH{sub 2}CH{sub 2}Cl)({mu}-H){sub 3}]{sup -}, 4b (67%). Similarly,more » addition of NMe{sub 3} to 2a and 2b yielded the ring-opened zwitterions Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}NMe{sub 3})({mu}-H){sub 3}, 7 a crystographically. They are zwitterions positively charged at the nitrogen atoms and negatively charged on the trirhenium clusters. Complex 7b was also obtained in a 48% yield from the reaction of Re{sub 3}(C){sub 12}({mu}-H){sub 3} with Me{sub 3}NO in the presence of thietane, but the corresponding reaction using 3,3-DMT yielded only 2a and Re{sub 3}(CO){sub 11}(SCH{sub 2}CMe{sub 2}CH{sub 2})({mu}-H){sub 3}, 8. Attempts to obtain a ring-opening addition to 2a by reaction with PMe{sub 2}Ph yielded only Re{sub 3}(CO){sub 10}(PMe{sub 2}PH){sub 2}({mu}-H){sub 3} by ligand substitution. Attempts to obtain ring opening addition to 8 by reaction with I{sup -} yielded only [Re{sub 3}(CO){sub 11}I({mu}-H){sub 3}]{sup -} by ligand substitution. 20 refs., 3 figs., 10 tabs.« less

  20. Atomic scale simulations of vapor cooled carbon clusters

    NASA Astrophysics Data System (ADS)

    Bogana, M. P.; Colombo, L.

    2007-03-01

    By means of atomistic simulations we observed the formation of many topologically non-equivalent carbon clusters formed by the condensation of liquid droplets, including: (i) standard fullerenes and onion-like structures, (ii) clusters showing extremely complex surfaces with both positive and negative curvatures and (iii) complex endohedral structures. In this work we offer a thorough structural characterization of the above systems, as well as an attempt to correlate the resulting structure to the actual protocol of growth. The IR and Raman responses of some exotic linear carbon structures have been further investigated, finding good agreement with experimental evidence of carbinoid structures in cluster-assembled films. Towards the aim of fully understanding the process of cluster-to-cluster coalescence dynamics, we further simulated an aerosol of amorphous carbon clusters at controlled temperatures. Various annealing temperatures and times have been observed, identifying different pathways for cluster ripening, ranging from simple coalescence to extensive reconstruction.

  1. Spatiotemporal Clustering of Mycobacterium tuberculosis Complex Genotypes in Florida: Genetic Diversity Segregated by Country of Birth

    PubMed Central

    Séraphin, Marie Nancy; Lauzardo, Michael; Morris, J. Glenn; Blackburn, Jason K.

    2016-01-01

    Background Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts. Methods We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped using spoligotyping and 24-locus MIRU-VNTR. We mapped the genetic diversity to the centroid of patient residential zip codes using a geographic information system (GIS). We assessed transmission dynamics and the influence of immigration on genotype clustering using space-time permutation models adjusted for foreign-born population density and county-level HIV risk and multinomial models stratified by country of birth and timing of immigration in SaTScan. Principal Findings Among the 2,510 strains, 1,245 were reported among foreign-born persons; including 408 recent immigrants (<5 years). Strain allelic diversity (h) ranged from low to medium in most locations and was most diverse in urban centers where foreign-born population density was also high. Overall, 21.5% of cases among U.S.-born persons and 4.6% among foreign-born persons clustered genotypically and spatiotemporally and involved strains of the Haarlem family. One Haarlem space-time cluster identified in the mostly rural northern region of Florida included US/Canada-born individuals incarcerated at the time of diagnosis; two clusters in the mostly urban southern region of Florida were composed predominantly of foreign-born persons. Both groups had HIV prevalence above twenty percent. Conclusions/Significance Almost five percent of TB cases reported in Florida during 2009–2013 were potentially due to recent transmission. Improvements to TB screening practices among the prison population and recent immigrants are

  2. Interaction between Nbp35 and Cfd1 Proteins of Cytosolic Fe-S Cluster Assembly Reveals a Stable Complex Formation in Entamoeba histolytica

    PubMed Central

    Anwar, Shadab; Dikhit, Manas Ranjan; Singh, Krishn Pratap; Kar, Rajiv Kumar; Zaidi, Amir; Sahoo, Ganesh Chandra; Roy, Awadh Kishore; Nozaki, Tomoyoshi; Das, Pradeep; Ali, Vahab

    2014-01-01

    Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any

  3. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function.

    PubMed

    Goad, David M; Zhu, Chuanmei; Kellogg, Elizabeth A

    2017-10-01

    CLV3/ESR (CLE) proteins are important signaling peptides in plants. The short CLE peptide (12-13 amino acids) is cleaved from a larger pre-propeptide and functions as an extracellular ligand. The CLE family is large and has resisted attempts at classification because the CLE domain is too short for reliable phylogenetic analysis and the pre-propeptide is too variable. We used a model-based search for CLE domains from 57 plant genomes and used the entire pre-propeptide for comprehensive clustering analysis. In total, 1628 CLE genes were identified in land plants, with none recognizable from green algae. These CLEs form 12 groups within which CLE domains are largely conserved and pre-propeptides can be aligned. Most clusters contain sequences from monocots, eudicots and Amborella trichopoda, with sequences from Picea abies, Selaginella moellendorffii and Physcomitrella patens scattered in some clusters. We easily identified previously known clusters involved in vascular differentiation and nodulation. In addition, we found a number of discrete groups whose function remains poorly characterized. Available data indicate that CLE proteins within a cluster are likely to share function, whereas those from different clusters play at least partially different roles. Our analysis provides a foundation for future evolutionary and functional studies. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery: THE SUB-COMPLEX FORMED BY THE IRON DONOR, Yfh1 PROTEIN, AND THE SCAFFOLD, Isu1 PROTEIN.

    PubMed

    Ranatunga, Wasantha; Gakh, Oleksandr; Galeano, Belinda K; Smith, Douglas Y; Söderberg, Christopher A G; Al-Karadaghi, Salam; Thompson, James R; Isaya, Grazia

    2016-05-06

    The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24 Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. STS-30 MS Cleave uses camcorder to record FEA-2 crystal growth

    NASA Image and Video Library

    1989-05-08

    STS030-10-002 (8 May 1989) --- STS-30 Mission Specialist Mary L. Cleave operates 8mm video camcorder at Fluids Experiment Apparatus 2 (FEA-2) (SK73-000102) unit located in aft middeck locker onboard Atlantis, Orbiter Vehicle (OV) 103. Two 8mm video camcorders are positioned above FEA-2 unit to record experiment titled "Floating Zone Crystal Growth and Purification". Rockwell International (RI) through its Space Transportation Systems Division, Downey, California, is engaged in a joint endeavor agreement (JEA) with NASA's Office of Commercial Programs in the field for floating zone crystal growth research. Utah State University Aggies decal appears on aft bulkhead above FEA-2 unit.

  6. STAR FORMATION ACROSS THE W3 COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts amore » large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.« less

  7. cis-2,2'-Bipyrimidine-bridged polynuclear complex: a stairway-like mixed-valent {Fe(4)} cluster.

    PubMed

    Alborés, Pablo; Rentschler, Eva

    2010-10-04

    We report the first example of a polynuclear discrete coordination compound exhibiting only bpym bridges and containing a first-row d transition metal. A smooth self-assembly one-pot synthetic route, starting from simply FeCl(2) and FeCl(3) hydrates, allowed us to prepare a tetranuclear Fe(4) cluster with a stairway-like structure and the formula cis-{[(H(2)O)Cl(3)Fe(III)-μ(bpym)Fe(II)Cl(2)]}(2)-μ(bpym) (1) . All spectroscopic data suggest that complex 1 is a valence-localized mixed-valent Fe(II)-Fe(III) cluster with typical Mössbauer lines for both sites, which do not change with temperature. Reflectance spectroscopy did not allow one to distinguish an intervalence charge-transfer band. However, time-dependent density functional theory (DFT) calculations predict a weak high-energy Fe(II) → Fe(III) transition. Regarding the magnetic properties, the high-spin Fe(II) and Fe(III) ions interact in a weakly antiferromagnetic way with isotropic J constants of only a few wavenumbers as derived from direct-current susceptibility and magnetization data. Broken-symmetry DFT calculations support these observations.

  8. INTER- AND INTRA-CLUSTER AGE GRADIENTS IN MASSIVE STAR FORMING REGIONS AND INDIVIDUAL NEARBY STELLAR CLUSTERS REVEALED BY MYStIX

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon

    2014-08-01

    The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  9. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats.

    PubMed

    Beloglazova, Natalia; Brown, Greg; Zimmerman, Matthew D; Proudfoot, Michael; Makarova, Kira S; Kudritska, Marina; Kochinyan, Samvel; Wang, Shuren; Chruszcz, Maksymilian; Minor, Wladek; Koonin, Eugene V; Edwards, Aled M; Savchenko, Alexei; Yakunin, Alexander F

    2008-07-18

    Clustered regularly interspaced short palindromic repeats (CRISPRs) together with the associated CAS proteins protect microbial cells from invasion by foreign genetic elements using presently unknown molecular mechanisms. All CRISPR systems contain proteins of the CAS2 family, suggesting that these uncharacterized proteins play a central role in this process. Here we show that the CAS2 proteins represent a novel family of endoribonucleases. Six purified CAS2 proteins from diverse organisms cleaved single-stranded RNAs preferentially within U-rich regions. A representative CAS2 enzyme, SSO1404 from Sulfolobus solfataricus, cleaved the phosphodiester linkage on the 3'-side and generated 5'-phosphate- and 3'-hydroxyl-terminated oligonucleotides. The crystal structure of SSO1404 was solved at 1.6A resolution revealing the first ribonuclease with a ferredoxin-like fold. Mutagenesis of SSO1404 identified six residues (Tyr-9, Asp-10, Arg-17, Arg-19, Arg-31, and Phe-37) that are important for enzymatic activity and suggested that Asp-10 might be the principal catalytic residue. Thus, CAS2 proteins are sequence-specific endoribonucleases, and we propose that their role in the CRISPR-mediated anti-phage defense might involve degradation of phage or cellular mRNAs.

  10. Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.

    PubMed

    Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian

    2016-08-22

    Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Linked supramolecular building blocks for enhanced cluster formation

    DOE PAGES

    McLellan, Ross; Palacios, Maria A.; Beavers, Christine M.; ...

    2015-01-09

    Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis-calix[4]arenes and transition metal ions or 3d-4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures.

  12. Kinematics and dynamics of the MKW/AWM poor clusters

    NASA Technical Reports Server (NTRS)

    Beers, Timothy C.; Kriessler, Jeffrey R.; Bird, Christina M.; Huchra, John P.

    1995-01-01

    We report 472 new redshifts for 416 galaxies in the regions of the 23 poor clusters of galaxies originally identified by Morgan, Kayser, and White (MKW), and Albert, White, and Morgan (AWM). Eighteen of the poor clusters now have 10 or more available redshifts within 1.5/h Mpc of the central galaxy; 11 clusters have at least 20 available redshifts. Based on the 21 clusters for which we have sufficient velocity information, the median velocity scale is 336 km/s, a factor of 2 smaller than found for rich clusters. Several of the poor clusters exhibit complex velocity distributions due to the presence of nearby clumps of galaxies. We check on the velocity of the dominant galaxy in each poor cluster relative to the remaining cluster members. Significantly high relative velocities of the dominant galaxy are found in only 4 of 21 poor clusters, 3 of which we suspect are due to contamination of the parent velocity distribution. Several statistical tests indicate that the D/cD galaxies are at the kinematic centers of the parent poor cluster velocity distributions. Mass-to-light ratios for 13 of the 15 poor clusters for which we have the required data are in the range 50 less than or = M/L(sub B(0)) less than or = 200 solar mass/solar luminosity. The complex nature of the regions surrounding many of the poor clusters suggests that these groupings may represent an early epoch of cluster formation. For example, the poor clusters MKW7 and MKWS are shown to be gravitationally bound and likely to merge to form a richer cluster within the next several Gyrs. Eight of the nine other poor clusters for which simple two-body dynamical models can be carried out are consistent with being bound to other clumps in their vicinity. Additional complex systems with more than two gravitationally bound clumps are observed among the poor clusters.

  13. Star Clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Gallagher, J. S., III

    2014-09-01

    The Magellanic Clouds (MC) are prime locations for studies of star clusters covering a full range in age and mass. This contribution briefly reviews selected properties of Magellanic star clusters, by focusing first on young systems that show evidence for hierarchical star formation. The structures and chemical abundance patterns of older intermediate age star clusters in the Small Magellanic Cloud (SMC) are a second topic. These suggest a complex history has affected the chemical enrichment in the SMC and that low tidal stresses in the SMC foster star cluster survival.

  14. Structure and gene cluster of the O-antigen of Escherichia coli O54.

    PubMed

    Naumenko, Olesya I; Guo, Xi; Senchenkova, Sof'ya N; Geng, Peng; Perepelov, Andrei V; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-06-15

    Mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O54 afforded an O-polysaccharide, which was studied by sugar analysis, solvolysis with anhydrous trifluoroacetic acid, and 1 H and 13 C NMR spectroscopy. Solvolysis cleaved predominantly the linkage of β-d-Ribf and, to a lesser extent, that of β-d-GlcpNAc, whereas the other linkages, including the linkage of α-l-Rhap, were stable under selected conditions (40 °C, 5 h). The following structure of the O-polysaccharide was established: →4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1 → 2)-β-d-Ribf-(1 → 4)-β-d-Galp-(1 → 3)-β-d-GlcpNAc-(1→ The O-antigen gene cluster of E. coli O54 was analyzed and found to be consistent in general with the O-polysaccharide structure established but there were two exceptions: i) in the cluster, there were genes for phosphoserine phosphatase and serine transferase, which have no apparent role in the O-polysaccharide synthesis, and ii) no ribofuranosyltransferase gene was present in the cluster. Both uncommon features are shared by some other enteric bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1

    PubMed Central

    Pimentel, Belén; Madine, Mark A; de la Cueva-Méndez, Guillermo

    2005-01-01

    Stability and copy number of extra-chromosomal elements are tightly regulated in prokaryotes and eukaryotes. Toxin Kid and antitoxin Kis are the components of the parD stability system of prokaryotic plasmid R1 and they can also function in eukaryotes. In bacteria, Kid was thought to become active only in cells that lose plasmid R1 and to cleave exclusively host mRNAs at UA(A/C/U) trinucleotide sites to eliminate plasmid-free cells. Instead, we demonstrate here that Kid becomes active in plasmid-containing cells when plasmid copy number decreases, cleaving not only host- but also a specific plasmid-encoded mRNA at the longer and more specific target sequence UUACU. This specific cleavage by Kid inhibits bacterial growth and, at the same time, helps to restore the plasmid copy number. Kid targets a plasmid RNA that encodes a repressor of the synthesis of an R1 replication protein, resulting in increased plasmid DNA replication. This mechanism resembles that employed by some human herpesviruses to regulate viral amplification during infection. PMID:16163387

  16. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis.

    PubMed

    Atkinson, Colin; Martineau, Philip M; Khan, Rizwan U A; Field, John E; Fisher, David; Davies, Nick M; Samartseva, Julia V; Putterman, Seth J; Hird, Jonathan R

    2015-03-28

    The degree of surface roughness and clarity with which a surface in a brittle material can be formed via fracture is known to be related to the speed of the propagating crack. Cracks traversing a brittle material at low speed produce very smooth surfaces, while those propagating faster create less reflective and rough surfaces (Buehler MJ, Gao H. 2006 Nature 439, 307-310 (doi:10.1038/nature04408)). The elastic wave speeds (c(l)≈18 000 m s(-1), c(s)≈11 750 m s(-1)) in diamond are fast (Willmott GR, Field JE. 2006 Phil. Mag. 86, 4305-4318 (doi:10.1080/14786430500482336)) and present a particular problem in creating smooth surfaces during the cleaving of diamond-a routine operation in the fashioning of diamonds for gemstone purposes--as the waves are reflected from the boundaries of the material and can add a tensile component to the propagating crack tip causing the well-known cleavage steps observed on diamond surfaces (Field JE. 1971 Contemp. Phys. 12, 1-31 (doi:10.1080/00107517108205103); Field JE. 1979 Properties of diamond, 1st edn, Academic Press; Wilks EM. 1958 Phil. Mag. 3, 1074-1080 (doi:10.1080/14786435808237036)). Here we report an analysis of two diamonds, having large dimensions and high aspect ratio, which from a gemological analysis are shown to have been cleaved from the same 200 carat specimen. A methodology for their manufacture is calculated by an analysis of a model problem. This takes into account the effect of multiple reflections from the sample boundaries. It is suggested that the lapidary had an intuitive guide to how to apply the cleavage force in order to control the crack speed. In particular, it is shown that it is likely that this technique caused the fracture to propagate at a lower speed. The sacrifice of a large diamond with the intention of creating thin plates, rather than a faceted gemstone, demonstrates how symbolism and beliefs associated with gemstones have changed over the centuries (Harlow GE. 1998 The nature

  17. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis

    PubMed Central

    Atkinson, Colin; Martineau, Philip M.; Khan, Rizwan U. A.; Field, John E.; Fisher, David; Davies, Nick M.; Samartseva, Julia V.; Putterman, Seth J.; Hird, Jonathan R.

    2015-01-01

    The degree of surface roughness and clarity with which a surface in a brittle material can be formed via fracture is known to be related to the speed of the propagating crack. Cracks traversing a brittle material at low speed produce very smooth surfaces, while those propagating faster create less reflective and rough surfaces (Buehler MJ, Gao H. 2006 Nature 439, 307–310 (doi:10.1038/nature04408)). The elastic wave speeds (cl≈18 000 m s−1, cs≈11 750 m s−1) in diamond are fast (Willmott GR, Field JE. 2006 Phil. Mag. 86, 4305–4318 (doi:10.1080/14786430500482336)) and present a particular problem in creating smooth surfaces during the cleaving of diamond—a routine operation in the fashioning of diamonds for gemstone purposes—as the waves are reflected from the boundaries of the material and can add a tensile component to the propagating crack tip causing the well-known cleavage steps observed on diamond surfaces (Field JE. 1971 Contemp. Phys. 12, 1–31 (doi:10.1080/00107517108205103); Field JE. 1979 Properties of diamond, 1st edn, Academic Press; Wilks EM. 1958 Phil. Mag. 3, 1074–1080 (doi:10.1080/14786435808237036)). Here we report an analysis of two diamonds, having large dimensions and high aspect ratio, which from a gemological analysis are shown to have been cleaved from the same 200 carat specimen. A methodology for their manufacture is calculated by an analysis of a model problem. This takes into account the effect of multiple reflections from the sample boundaries. It is suggested that the lapidary had an intuitive guide to how to apply the cleavage force in order to control the crack speed. In particular, it is shown that it is likely that this technique caused the fracture to propagate at a lower speed. The sacrifice of a large diamond with the intention of creating thin plates, rather than a faceted gemstone, demonstrates how symbolism and beliefs associated with gemstones have changed over the centuries (Harlow GE. 1998 The

  18. NMR analysis of cleaved Escherichia coli thioredoxin (1-73/74-108) and its P76A variant: cis/trans peptide isomerization.

    PubMed Central

    Yu, W. F.; Tung, C. S.; Wang, H.; Tasayco, M. L.

    2000-01-01

    Inspection of high resolution three-dimensional (3D) structures from the protein database reveals an increasing number of cis-Xaa-Pro and cis-Xaa-Yaa peptide bonds. However, we are still far from being able to predict whether these bonds will remain cis upon single-site substitution of Pro or Yaa and/or cleavage of a peptide bond close to it in the sequence. We have chosen oxidized Escherichia coli thioredoxin (Trx), a member of the Trx superfamily with a single alpha/beta domain and cis P76 to determine the effect of single-site substitution and/or cleavage on this isomer. Standard two-dimensional (2D) NMR analysis were performed on cleaved Trx (1-73/74-108) and its P76A variant. Analysis of the NOE connectivities indicates remarkable similarity between the secondary and supersecondary structure of the noncovalent complexes and Trx. Analysis of the 2D version of the HCCH-TOCSY and HMQC-NOESY-HMQC and 13C-filtered HMQC-NOESY spectra of cleaved Trx with uniformly 13C-labeled 175 and P76 shows surprising conservation of both cis P76 and packing of 175 against W31. A similar NMR analysis of its P76A variant provides no evidence for cis A76 and shows only subtle local changes in both the packing of 175 and the interstrand connectivities between its most protected hydrophobic strands (beta2 and beta4). Indeed, a molecular simulation model for the trans P76A variant of Trx shows only subtle local changes around the substitution site. In conclusion, cleavage of R73 is insufficient to provoke cis/trans isomerization of P76, but cleavage and single-site substitution (P76A) favors the trans isomer. PMID:10739243

  19. Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery

    PubMed Central

    Maio, Nunziata; Rouault, Tracey. A.

    2014-01-01

    Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i. e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein- protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. PMID:25245479

  20. Formation of Very Young Massive Clusters and Implications for Globular Clusters

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    How Very Young Massive star Clusters (VYMCs; also known as "starburst" clusters), which typically are of ≳ 104 M ⊙ and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and computational studies provide clues about their formation scenarios and the underlying physical processes involved. This chapter is focused on reviewing the decade-long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modelling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by addressing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date literature, in an integrated fashion, several new insights and discussions are provided.

  1. Scientific Cluster Deployment and Recovery - Using puppet to simplify cluster management

    NASA Astrophysics Data System (ADS)

    Hendrix, Val; Benjamin, Doug; Yao, Yushu

    2012-12-01

    Deployment, maintenance and recovery of a scientific cluster, which has complex, specialized services, can be a time consuming task requiring the assistance of Linux system administrators, network engineers as well as domain experts. Universities and small institutions that have a part-time FTE with limited time for and knowledge of the administration of such clusters can be strained by such maintenance tasks. This current work is the result of an effort to maintain a data analysis cluster (DAC) with minimal effort by a local system administrator. The realized benefit is the scientist, who is the local system administrator, is able to focus on the data analysis instead of the intricacies of managing a cluster. Our work provides a cluster deployment and recovery process (CDRP) based on the puppet configuration engine allowing a part-time FTE to easily deploy and recover entire clusters with minimal effort. Puppet is a configuration management system (CMS) used widely in computing centers for the automatic management of resources. Domain experts use Puppet's declarative language to define reusable modules for service configuration and deployment. Our CDRP has three actors: domain experts, a cluster designer and a cluster manager. The domain experts first write the puppet modules for the cluster services. A cluster designer would then define a cluster. This includes the creation of cluster roles, mapping the services to those roles and determining the relationships between the services. Finally, a cluster manager would acquire the resources (machines, networking), enter the cluster input parameters (hostnames, IP addresses) and automatically generate deployment scripts used by puppet to configure it to act as a designated role. In the event of a machine failure, the originally generated deployment scripts along with puppet can be used to easily reconfigure a new machine. The cluster definition produced in our CDRP is an integral part of automating cluster deployment

  2. The contribution of cluster and discriminant analysis to the classification of complex aquifer systems.

    PubMed

    Panagopoulos, G P; Angelopoulou, D; Tzirtzilakis, E E; Giannoulopoulos, P

    2016-10-01

    This paper presents an innovated method for the discrimination of groundwater samples in common groups representing the hydrogeological units from where they have been pumped. This method proved very efficient even in areas with complex hydrogeological regimes. The proposed method requires chemical analyses of water samples only for major ions, meaning that it is applicable to most of cases worldwide. Another benefit of the method is that it gives a further insight of the aquifer hydrogeochemistry as it provides the ions that are responsible for the discrimination of the group. The procedure begins with cluster analysis of the dataset in order to classify the samples in the corresponding hydrogeological unit. The feasibility of the method is proven from the fact that the samples of volcanic origin were separated into two different clusters, namely the lava units and the pyroclastic-ignimbritic aquifer. The second step is the discriminant analysis of the data which provides the functions that distinguish the groups from each other and the most significant variables that define the hydrochemical composition of the aquifer. The whole procedure was highly successful as the 94.7 % of the samples were classified to the correct aquifer system. Finally, the resulted functions can be safely used to categorize samples of either unknown or doubtful origin improving thus the quality and the size of existing hydrochemical databases.

  3. Hydrogen bonding in water clusters and their ionized counterparts.

    PubMed

    Neela, Y Indra; Mahadevi, A Subha; Sastry, G Narahari

    2010-12-30

    Ab initio and DFT computations were carried out on four distinct hydrogen-bonded arrangements of water clusters (H(2)O)(n), n = 2-20, represented as W1D, W2D, W2DH, and W3D. The variation in the strength of hydrogen bond as a function of the chain length is studied. In all the four cases, there is a substantial cooperative interaction, albeit in different degrees. The effect of basis set superposition error (BSSE) on the complexation energy of water clusters has been analyzed. Atoms in molecules (AIM) analysis performed to evaluate the nature of the hydrogen bonding shows a high correlation between hydrogen bond strength and the trends in complexation energy. Solvated water clusters exhibit lower complexation energies compared to corresponding gas-phase geometries on PCM (polarized continuum model) optimization. The feasibility of stripping an electron or addition of an electron increases dramatically as the cluster size increases. Although W3D caged structures are stable for neutral clusters, the helical W2DH arrangement appeared to be an optimal choice for its ionized counterparts.

  4. Streptococcus pyogenes Infection and the Human Proteome with a Special Focus on the Immunoglobulin G-cleaving Enzyme IdeS.

    PubMed

    Karlsson, Christofer A Q; Järnum, Sofia; Winstedt, Lena; Kjellman, Christian; Björck, Lars; Linder, Adam; Malmström, Johan A

    2018-06-01

    Infectious diseases are characterized by a complex interplay between host and pathogen, but how these interactions impact the host proteome is unclear. Here we applied a combined mass spectrometry-based proteomics strategy to investigate how the human proteome is transiently modified by the pathogen Streptococcus pyogenes , with a particular focus on bacterial cleavage of IgG in vivo In invasive diseases, S. pyogenes evokes a massive host response in blood, whereas superficial diseases are characterized by a local leakage of several blood plasma proteins at the site of infection including IgG. S. pyogenes produces IdeS, a protease cleaving IgG in the lower hinge region and we find highly effective IdeS-cleavage of IgG in samples from local IgG poor microenvironments. The results show that IdeS contributes to the adaptation of S. pyogenes to its normal ecological niches. Additionally, the work identifies novel clinical opportunities for in vivo pathogen detection. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.

    PubMed

    Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa

    2017-09-25

    Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.

  6. MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering

    PubMed Central

    Kim, Eun-Youn; Kim, Seon-Young; Ashlock, Daniel; Nam, Dougu

    2009-01-01

    Background Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focus on clusters with compact shapes and do not reflect the geometric complexity of the high dimensional microarray clusters, which limits their performance. Results We present a cluster-number-based ensemble clustering algorithm, called MULTI-K, for microarray sample classification, which demonstrates remarkable accuracy. The method amalgamates multiple k-means runs by varying the number of clusters and identifies clusters that manifest the most robust co-memberships of elements. In addition to the original algorithm, we newly devised the entropy-plot to control the separation of singletons or small clusters. MULTI-K, unlike the simple k-means or other widely used methods, was able to capture clusters with complex and high-dimensional structures accurately. MULTI-K outperformed other methods including a recently developed ensemble clustering algorithm in tests with five simulated and eight real gene-expression data sets. Conclusion The geometric complexity of clusters should be taken into account for accurate classification of microarray data, and ensemble clustering applied to the number of clusters tackles the problem very well. The C++ code and the data sets tested are available from the authors. PMID:19698124

  7. Small-volume potentiometric titrations: EPR investigations of Fe-S cluster N2 in mitochondrial complex I.

    PubMed

    Wright, John J; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2016-09-01

    EPR-based potentiometric titrations are a well-established method for determining the reduction potentials of cofactors in large and complex proteins with at least one EPR-active state. However, such titrations require large amounts of protein. Here, we report a new method that requires an order of magnitude less protein than previously described methods, and that provides EPR samples suitable for measurements at both X- and Q-band microwave frequencies. We demonstrate our method by determining the reduction potential of the terminal [4Fe-4S] cluster (N2) in the intramolecular electron-transfer relay in mammalian respiratory complex I. The value determined by our method, E m7 =-158mV, is precise, reproducible, and consistent with previously reported values. Our small-volume potentiometric titration method will facilitate detailed investigations of EPR-active centres in non-abundant and refractory proteins that can only be prepared in small quantities. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A perfect starburst cluster made in one go: The NGC 3603 young cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Sambaran; Kroupa, Pavel

    2014-06-01

    Understanding how distinct, near-spherical gas-free clusters of very young, massive stars shape out of vast, complex clouds of molecular hydrogen is one of the biggest challenges in astrophysics. A popular thought dictates that a single gas cloud fragments into many newborn stars which, in turn, energize and rapidly expel the residual gas to form a gas-free cluster. This study demonstrates that the above classical paradigm remarkably reproduces the well-observed central, young cluster (HD 97950) of the Galactic NGC 3603 star-forming region, in particular, its shape, internal motion, and mass distribution of stars naturally and consistently follow from a single modelmore » calculation. Remarkably, the same parameters (star formation efficiency, gas expulsion timescale, and delay) reproduce HD 97950, as were found to reproduce the Orion Nebula Cluster, Pleiades, and R136. The present results therefore provide intriguing evidence of formation of star clusters through single-starburst events followed by significant residual gas expulsion.« less

  9. 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori

    PubMed Central

    Wang, Yuancheng; Wang, Feng; Wang, Riyuan; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Fundamental and applied studies of silkworms have entered the functional genomics era. Here, we report a multi-gene expression system (MGES) based on 2A self-cleaving peptide (2A), which regulates the simultaneous expression and cleavage of multiple gene targets in the silk gland of transgenic silkworms. First, a glycine-serine-glycine spacer (GSG) was found to significantly improve the cleavage efficiency of 2A. Then, the cleavage efficiency of six types of 2As with GSG was analyzed. The shortest porcine teschovirus-1 2A (P2A-GSG) exhibited the highest cleavage efficiency in all insect cell lines that we tested. Next, P2A-GSG successfully cleaved the artificial human serum albumin (66 kDa) linked with human acidic fibroblast growth factor (20.2 kDa) fusion genes and vitellogenin receptor fragment (196 kD) of silkworm linked with EGFP fusion genes, importantly, vitellogenin receptor protein was secreted to the outside of cells. Furthermore, P2A-GSG successfully mediated the simultaneous expression and cleavage of a DsRed and EGFP fusion gene in silk glands and caused secretion into the cocoon of transgenic silkworms using our sericin1 expression system. We predicted that the MGES would be an efficient tool for gene function research and innovative research on various functional silk materials in medicine, cosmetics, and other biomedical areas. PMID:26537835

  10. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    PubMed

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  11. An Efficient Lanthanide-Dependent DNAzyme Cleaving 2'-5'-Linked RNA.

    PubMed

    Zhou, Wenhu; Ding, Jinsong; Liu, Juewen

    2016-05-17

    RNA can form two types of linkage. In addition to the predominant 3'-5' linkage, 2'-5'-linked RNA is also important in biology, medicine, and prebiotic studies. Here, in vitro selection was used to isolate a DNAzyme that specifically cleaves 2'-5' RNA by using Ce(3+) as the metal cofactor, but leaves the 3'-5' counterpart intact. This Ce5 DNAzyme requires trivalent light lanthanide ions and shows a rate of 0.16 min(-1) in the presence of 10 μm Ce(3+) ; the activity decreases with heavier lanthanide ions. This is the fastest DNAzyme reported for this reaction, and it might enable applications in chemical biology. As a proof-of-concept, using this DNAzyme, the reactions between phosphorothioate-modified RNA and strongly thiophilic metals (Hg(2+) and Tl(3+) ) were studied as a function of pH. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.

    PubMed

    Kayagaki, Nobuhiko; Stowe, Irma B; Lee, Bettina L; O'Rourke, Karen; Anderson, Keith; Warming, Søren; Cuellar, Trinna; Haley, Benjamin; Roose-Girma, Merone; Phung, Qui T; Liu, Peter S; Lill, Jennie R; Li, Hong; Wu, Jiansheng; Kummerfeld, Sarah; Zhang, Juan; Lee, Wyne P; Snipas, Scott J; Salvesen, Guy S; Morris, Lucy X; Fitzgerald, Linda; Zhang, Yafei; Bertram, Edward M; Goodnow, Christopher C; Dixit, Vishva M

    2015-10-29

    Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.

  13. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  14. Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster.

    PubMed

    Ruprecht, Jonathan; Iwata, So; Rothery, Richard A; Weiner, Joel H; Maklashina, Elena; Cecchini, Gary

    2011-04-08

    Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.

  15. Identifying and ranking influential spreaders in complex networks by combining a local-degree sum and the clustering coefficient

    NASA Astrophysics Data System (ADS)

    Li, Mengtian; Zhang, Ruisheng; Hu, Rongjing; Yang, Fan; Yao, Yabing; Yuan, Yongna

    2018-03-01

    Identifying influential spreaders is a crucial problem that can help authorities to control the spreading process in complex networks. Based on the classical degree centrality (DC), several improved measures have been presented. However, these measures cannot rank spreaders accurately. In this paper, we first calculate the sum of the degrees of the nearest neighbors of a given node, and based on the calculated sum, a novel centrality named clustered local-degree (CLD) is proposed, which combines the sum and the clustering coefficients of nodes to rank spreaders. By assuming that the spreading process in networks follows the susceptible-infectious-recovered (SIR) model, we perform extensive simulations on a series of real networks to compare the performances between the CLD centrality and other six measures. The results show that the CLD centrality has a competitive performance in distinguishing the spreading ability of nodes, and exposes the best performance to identify influential spreaders accurately.

  16. Arenavirus Stable Signal Peptide Is the Keystone Subunit for Glycoprotein Complex Organization

    PubMed Central

    Bederka, Lydia H.; Bonhomme, Cyrille J.; Ling, Emily L.

    2014-01-01

    ABSTRACT The rodent arenavirus glycoprotein complex encodes a stable signal peptide (SSP) that is an essential structural component of mature virions. The SSP, GP1, and GP2 subunits of the trimeric glycoprotein complex noncovalently interact to stud the surface of virions and initiate arenavirus infectivity. Nascent glycoprotein production undergoes two proteolytic cleavage events: first within the endoplasmic reticulum (ER) to cleave SSP from the remaining precursor GP1/2 (glycoprotein complex [GPC]) glycoprotein and second within the Golgi stacks by the cellular SKI-1/S1P for GP1/2 processing to yield GP1 and GP2 subunits. Cleaved SSP is not degraded but retained as an essential glycoprotein subunit. Here, we defined functions of the 58-amino-acid lymphocytic choriomeningitis virus (LCMV) SSP in regard to glycoprotein complex processing and maturation. Using molecular biology techniques, confocal microscopy, and flow cytometry, we detected SSP at the plasma membrane of transfected cells. Further, we identified a sorting signal (FLLL) near the carboxyl terminus of SSP that is required for glycoprotein maturation and trafficking. In the absence of SSP, the glycoprotein accumulated within the ER and was unable to undergo processing by SKI-1/S1P. Mutation of this highly conserved FLLL motif showed impaired glycoprotein processing and secretory pathway trafficking, as well as defective surface expression and pH-dependent membrane fusion. Immunoprecipitation of SSP confirmed an interaction between the signal peptide and the GP2 subunit; however, mutations within this FLLL motif disrupted the association of the GP1 subunit with the remaining glycoprotein complex. PMID:25352624

  17. Clustering of low-valence particles: structure and kinetics.

    PubMed

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  18. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan Balasubramanian

    2009-07-18

    RECP methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au{sub 3} was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH{sub 2} could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH{sub 2} back to Au and H{sub 2}. We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf{sub 3}, Nb{sub 2}{sup +} etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes

  19. Cluster-cluster clustering

    NASA Technical Reports Server (NTRS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.

  20. RRW: repeated random walks on genome-scale protein networks for local cluster discovery

    PubMed Central

    Macropol, Kathy; Can, Tolga; Singh, Ambuj K

    2009-01-01

    Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW) for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL), and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters. PMID:19740439

  1. Machine-learned cluster identification in high-dimensional data.

    PubMed

    Ultsch, Alfred; Lötsch, Jörn

    2017-02-01

    High-dimensional biomedical data are frequently clustered to identify subgroup structures pointing at distinct disease subtypes. It is crucial that the used cluster algorithm works correctly. However, by imposing a predefined shape on the clusters, classical algorithms occasionally suggest a cluster structure in homogenously distributed data or assign data points to incorrect clusters. We analyzed whether this can be avoided by using emergent self-organizing feature maps (ESOM). Data sets with different degrees of complexity were submitted to ESOM analysis with large numbers of neurons, using an interactive R-based bioinformatics tool. On top of the trained ESOM the distance structure in the high dimensional feature space was visualized in the form of a so-called U-matrix. Clustering results were compared with those provided by classical common cluster algorithms including single linkage, Ward and k-means. Ward clustering imposed cluster structures on cluster-less "golf ball", "cuboid" and "S-shaped" data sets that contained no structure at all (random data). Ward clustering also imposed structures on permuted real world data sets. By contrast, the ESOM/U-matrix approach correctly found that these data contain no cluster structure. However, ESOM/U-matrix was correct in identifying clusters in biomedical data truly containing subgroups. It was always correct in cluster structure identification in further canonical artificial data. Using intentionally simple data sets, it is shown that popular clustering algorithms typically used for biomedical data sets may fail to cluster data correctly, suggesting that they are also likely to perform erroneously on high dimensional biomedical data. The present analyses emphasized that generally established classical hierarchical clustering algorithms carry a considerable tendency to produce erroneous results. By contrast, unsupervised machine-learned analysis of cluster structures, applied using the ESOM/U-matrix method, is a

  2. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Wenchuan

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S 2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S 2 state with the g~4 electron paramagnetic resonance (EPR) signal (S 2-g4 state) was compared with that in the S 2 state with multiline signal (S 2-MLS state) and the S 1 state. The S 2-g4 statemore » has a higher XAS inflection point energy than that of the S 1 state, indicating the oxidation of Mn in the advance from the S 1 to the S 2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S 2-g4 state is different from that in the S 2-MLS or the S 1 state. In the S 2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S 1 or S 2-MLS states. The third shell of the S 2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S 2-MLS or the S 1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S 1 → S 2 transition.« less

  3. Cluster-modified function projective synchronisation of complex networks with asymmetric coupling

    NASA Astrophysics Data System (ADS)

    Wang, Shuguo

    2018-02-01

    This paper investigates the cluster-modified function projective synchronisation (CMFPS) of a generalised linearly coupled network with asymmetric coupling and nonidentical dynamical nodes. A novel synchronisation scheme is proposed to achieve CMFPS in community networks. We use adaptive control method to derive CMFPS criteria based on Lyapunov stability theory. Each cluster of networks is synchronised with target system by state transformation with scaling function matrix. Numerical simulation results are presented finally to illustrate the effectiveness of this method.

  4. Packing of Russian doll clusters to form a nanometer-scale CsCl-type compound in a Cr–Zn–Sn complex metallic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiwei; Cava, Robert J.; Miller, Gordon J.

    A new cubic complex metallic alloy phase, Cr 22Zn 72Sn 24, with a lattice parameter near 2.5 nm was discovered in crystals grown using a Zn/Sn flux. The structure consists of Russian doll clusters or a 3-d network of Cr-centered icosahedra (shown) with bcc-metal fragments in void spaces.

  5. Packing of Russian doll clusters to form a nanometer-scale CsCl-type compound in a Cr–Zn–Sn complex metallic alloy

    DOE PAGES

    Xie, Weiwei; Cava, Robert J.; Miller, Gordon J.

    2017-07-03

    A new cubic complex metallic alloy phase, Cr 22Zn 72Sn 24, with a lattice parameter near 2.5 nm was discovered in crystals grown using a Zn/Sn flux. The structure consists of Russian doll clusters or a 3-d network of Cr-centered icosahedra (shown) with bcc-metal fragments in void spaces.

  6. A Novel Family of Sequence-specific Endoribonucleases Associated with the Clustered Regularly Interspaced Short Palindromic Repeats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beloglazova, Natalia; Brown, Greg; Zimmerman, Matthew D.

    Clustered regularly interspaced short palindromic repeats (CRISPRs) together with the associated CAS proteins protect microbial cells from invasion by foreign genetic elements using presently unknown molecular mechanisms. All CRISPR systems contain proteins of the CAS2 family, suggesting that these uncharacterized proteins play a central role in this process. Here we show that the CAS2 proteins represent a novel family of endoribonucleases. Six purified CAS2 proteins from diverse organisms cleaved single-stranded RNAs preferentially within U-rich regions. A representative CAS2 enzyme, SSO1404 from Sulfolobus solfataricus, cleaved the phosphodiester linkage on the 3'-side and generated 5'-phosphate- and 3'-hydroxyl-terminated oligonucleotides. The crystal structure ofmore » SSO1404 was solved at 1.6{angstrom} resolution revealing the first ribonuclease with a ferredoxin-like fold. Mutagenesis of SSO1404 identified six residues (Tyr-9, Asp-10, Arg-17, Arg-19, Arg-31, and Phe-37) that are important for enzymatic activity and suggested that Asp-10 might be the principal catalytic residue. Thus, CAS2 proteins are sequence-specific endoribonucleases, and we propose that their role in the CRISPR-mediated anti-phage defense might involve degradation of phage or cellular mRNAs.« less

  7. Improving local clustering based top-L link prediction methods via asymmetric link clustering information

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan

    2018-02-01

    Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.

  8. Clustering Millions of Faces by Identity.

    PubMed

    Otto, Charles; Wang, Dayong; Jain, Anil K

    2018-02-01

    Given a large collection of unlabeled face images, we address the problem of clustering faces into an unknown number of identities. This problem is of interest in social media, law enforcement, and other applications, where the number of faces can be of the order of hundreds of million, while the number of identities (clusters) can range from a few thousand to millions. To address the challenges of run-time complexity and cluster quality, we present an approximate Rank-Order clustering algorithm that performs better than popular clustering algorithms (k-Means and Spectral). Our experiments include clustering up to 123 million face images into over 10 million clusters. Clustering results are analyzed in terms of external (known face labels) and internal (unknown face labels) quality measures, and run-time. Our algorithm achieves an F-measure of 0.87 on the LFW benchmark (13 K faces of 5,749 individuals), which drops to 0.27 on the largest dataset considered (13 K faces in LFW + 123M distractor images). Additionally, we show that frames in the YouTube benchmark can be clustered with an F-measure of 0.71. An internal per-cluster quality measure is developed to rank individual clusters for manual exploration of high quality clusters that are compact and isolated.

  9. Experiments in clustered neuronal networks: A paradigm for complex modular dynamics

    NASA Astrophysics Data System (ADS)

    Teller, Sara; Soriano, Jordi

    2016-06-01

    Uncovering the interplay activity-connectivity is one of the major challenges in neuroscience. To deepen in the understanding of how a neuronal circuit shapes network dynamics, neuronal cultures have emerged as remarkable systems given their accessibility and easy manipulation. An attractive configuration of these in vitro systems consists in an ensemble of interconnected clusters of neurons. Using calcium fluorescence imaging to monitor spontaneous activity in these clustered neuronal networks, we were able to draw functional maps and reveal their topological features. We also observed that these networks exhibit a hierarchical modular dynamics, in which clusters fire in small groups that shape characteristic communities in the network. The structure and stability of these communities is sensitive to chemical or physical action, and therefore their analysis may serve as a proxy for network health. Indeed, the combination of all these approaches is helping to develop models to quantify damage upon network degradation, with promising applications for the study of neurological disorders in vitro.

  10. Clustering by reordering of similarity and Laplacian matrices: Application to galaxy clusters

    NASA Astrophysics Data System (ADS)

    Mahmoud, E.; Shoukry, A.; Takey, A.

    2018-04-01

    Similarity metrics, kernels and similarity-based algorithms have gained much attention due to their increasing applications in information retrieval, data mining, pattern recognition and machine learning. Similarity Graphs are often adopted as the underlying representation of similarity matrices and are at the origin of known clustering algorithms such as spectral clustering. Similarity matrices offer the advantage of working in object-object (two-dimensional) space where visualization of clusters similarities is available instead of object-features (multi-dimensional) space. In this paper, sparse ɛ-similarity graphs are constructed and decomposed into strong components using appropriate methods such as Dulmage-Mendelsohn permutation (DMperm) and/or Reverse Cuthill-McKee (RCM) algorithms. The obtained strong components correspond to groups (clusters) in the input (feature) space. Parameter ɛi is estimated locally, at each data point i from a corresponding narrow range of the number of nearest neighbors. Although more advanced clustering techniques are available, our method has the advantages of simplicity, better complexity and direct visualization of the clusters similarities in a two-dimensional space. Also, no prior information about the number of clusters is needed. We conducted our experiments on two and three dimensional, low and high-sized synthetic datasets as well as on an astronomical real-dataset. The results are verified graphically and analyzed using gap statistics over a range of neighbors to verify the robustness of the algorithm and the stability of the results. Combining the proposed algorithm with gap statistics provides a promising tool for solving clustering problems. An astronomical application is conducted for confirming the existence of 45 galaxy clusters around the X-ray positions of galaxy clusters in the redshift range [0.1..0.8]. We re-estimate the photometric redshifts of the identified galaxy clusters and obtain acceptable values

  11. Diary Data Subjected to Cluster Analysis of Intake/Output/Void Habits with Resulting Clusters Compared by Continence Status, Age, Race

    PubMed Central

    Miller, Janis M; Guo, Ying; Rodseth, Sarah Becker

    2011-01-01

    Background Data that incorporate the full complexity of healthy beverage intake and voiding frequency do not exist; therefore, clinicians reviewing bladder habits or voiding diaries for continence care must rely on expert opinion recommendations. Objective To use data-driven cluster analyses to reduce complex voiding diary variables into discrete patterns or data cluster profiles, descriptively name the clusters, and perform validity testing. Method Participants were 352 community women who filled out a 3-day voiding diary. Six variables (void frequency during daytime hours, void frequency during nighttime hours, modal output, total output, total intake, and body mass index) were entered into cluster analyses. The clusters were analyzed for differences by continence status, age, race (Black women, n = 196 White women, n = 156), and for those who were incontinent, by leakage episode severity. Results Three clusters emerged, labeled descriptively as Conventional, Benchmark, and Superplus. The Conventional cluster (68% of the sample) demonstrated mean daily intake of 45 ±13 ounces; mean daily output of 37 ± 15 ounces, mean daily voids 5 ± 2 times, mean modal daytime output 10±0.5 ounces, and mean nighttime voids 1±1 times. The Superplus cluster (7% of the sample) showed double or triple these values across the 5 variables, and the Benchmark cluster (25%) showed values consistent with current popular recommendations on intake and output (e.g., meeting or exceeding the 8 × 8 fluid intake rule of thumb). The clusters differed significantly (p < .05) by age, race, amount of irritating beverages consumed, and incontinence status. Discussion Identification of three discrete clusters provides for a potential parsimonious but data-driven means of classifying individuals for additional epidemiological or clinical study. The clinical utility rests with potential for intervening to move an individual from a high risk to low risk cluster with regards to incontinence. PMID

  12. Time-resolved explosion of intense-laser-heated clusters.

    PubMed

    Kim, K Y; Alexeev, I; Parra, E; Milchberg, H M

    2003-01-17

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  13. Copper speciation in sulfidic solutions at low sulfur activity: Further evidence for cluster complexes?

    NASA Astrophysics Data System (ADS)

    Thompson, Richard A.; Helz, George R.

    1994-07-01

    The solubility of two as0-buffering assemblages in the Cu-S system have been studied: chalcocite-djurleite (Cc-Dj) and anilite-covellite (An-Cv). Ion activity products, [Cu +]HS -] 1/2[H +] - 1/2 (25°C, I = 0) at equilibrium, derived from solubility measurements in penicillamine solutions, are 10 -17.01 ± 0.05 (Cc-Dj) and 10 -17.14 ± 0.10 (An-Cv), from which ΔG° f = -82.11 kJ/mol for Cc and -74.77 kJ/mol for An. In the An-Cv assemblage, aCu2S = 0.55 (2 σ = 0.2) vs. 1.00 in the Cc-containing assemblage. The difference in aCu2S between the two assemblages is used in a novel way to estimate stoichiometry of Cu-HS complexes. The solubility of both assemblages (0.7-0.01 M NaHS, pH 7-12.5, 25°C) can be fit with a model incorporating the same two chemical species, one containing an odd number of Cu atoms (Cu(HS) 2-3, CU 3S 4H 2-3, or a higher multimer) and the other containing an even number of Cu atoms (Cu 2S(HS) 22-, Cu 4S 4H 22-, etc.). The trimer-tetramer model fits the combined data for the two assemblages distinctly better than the monomer-dimer model, but this result is very sensitive to uncertainty in aCu2S. Along with EXAFS results, the weight of the evidence favors small cluster complexes (2-5 Cu atoms), but is inconclusive at the present level of resolution. Multimers can be rationalized because condensation of metal-centered monomers to clusters provides a means for soft acid/base elements to maintain favored coordination geometries at low ligand to metal ratios. Based on the fitting methods developed here, previous covellite solubility data from this laboratory are reinterpreted in terms of Cu 2S 2(HS) 33-, Cu 2S 3)(S 4) 2-, and Cu(S 9)S 10) 3-; the last of these could also be represented by the trimer, Cu 3(S 7) 33-, which is homologous with a known complex. With the measured equilibrium constants, the speciation of Cu in the sulfidic zone of the Black Sea is calculated. Covellite is the stable Cu-S mineral, but the sulfidic water column is vastly

  14. Viral genome packaging terminase cleaves DNA using the canonical RuvC-like two-metal catalysis mechanism

    PubMed Central

    Xu, Rui-Gang; Jenkins, Huw T.; Chechik, Maria; Blagova, Elena V.; Lopatina, Anna; Klimuk, Evgeny; Minakhin, Leonid; Severinov, Konstantin

    2017-01-01

    Abstract Bacteriophages and large dsDNA viruses encode sophisticated machinery to translocate their DNA into a preformed empty capsid. An essential part of this machine, the large terminase protein, processes viral DNA into constituent units utilizing its nuclease activity. Crystal structures of the large terminase nuclease from the thermophilic bacteriophage G20c show that it is most similar to the RuvC family of the RNase H-like endonucleases. Like RuvC proteins, the nuclease requires either Mn2+, Mg2+ or Co2+ ions for activity, but is inactive with Zn2+ and Ca2+. High resolution crystal structures of complexes with different metals reveal that in the absence of DNA, only one catalytic metal ion is accommodated in the active site. Binding of the second metal ion may be facilitated by conformational variability, which enables the two catalytic aspartic acids to be brought closer to each other. Structural comparison indicates that in common with the RuvC family, the location of the two catalytic metals differs from other members of the RNase H family. In contrast to a recently proposed mechanism, the available data do not support binding of the two metals at an ultra-short interatomic distance. Thus we postulate that viral terminases cleave DNA by the canonical RuvC-like mechanism. PMID:28100693

  15. Styrene Polymerization under Ambient Conditions by using a Transient 1,3,2-Diazaphospholane-2-oxyl Complex.

    PubMed

    Heurich, Tobias; Qu, Zheng-Wang; Kunzmann, Robert; Schnakenburg, Gregor; Engeser, Marianne; Nožinović, Senada; Streubel, Rainer

    2018-04-25

    A combined theoretical and experimental study on the formation and reactivity of a P-OTEMP (P-bound TEMPO (TEMPO=2,2,6,6-tetramethyl-piperidin-1-oxyl)) substituted 1,3,2-diazaphospholane W(CO) 5 complex is presented, including DFT-based mechanistic details. The complex possesses a thermally labile O-N bond that cleaves homolytically yielding the transient 1,3,2-diazaphospholane-2-oxyl complex [(CO) 5 W(R 2 PO . )], which acts as a radical initiator for styrene polymerization under ambient conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Efficient clustering aggregation based on data fragments.

    PubMed

    Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing

    2012-06-01

    Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.

  17. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    PubMed

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  18. Cross-entropy clustering framework for catchment classification

    NASA Astrophysics Data System (ADS)

    Tongal, Hakan; Sivakumar, Bellie

    2017-09-01

    There is an increasing interest in catchment classification and regionalization in hydrology, as they are useful for identification of appropriate model complexity and transfer of information from gauged catchments to ungauged ones, among others. This study introduces a nonlinear cross-entropy clustering (CEC) method for classification of catchments. The method specifically considers embedding dimension (m), sample entropy (SampEn), and coefficient of variation (CV) to represent dimensionality, complexity, and variability of the time series, respectively. The method is applied to daily streamflow time series from 217 gauging stations across Australia. The results suggest that a combination of linear and nonlinear parameters (i.e. m, SampEn, and CV), representing different aspects of the underlying dynamics of streamflows, could be useful for determining distinct patterns of flow generation mechanisms within a nonlinear clustering framework. For the 217 streamflow time series, nine hydrologically homogeneous clusters that have distinct patterns of flow regime characteristics and specific dominant hydrological attributes with different climatic features are obtained. Comparison of the results with those obtained using the widely employed k-means clustering method (which results in five clusters, with the loss of some information about the features of the clusters) suggests the superiority of the cross-entropy clustering method. The outcomes from this study provide a useful guideline for employing the nonlinear dynamic approaches based on hydrologic signatures and for gaining an improved understanding of streamflow variability at a large scale.

  19. Robustness and structure of complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  20. Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering.

    PubMed

    Xia, Yong; Han, Junze; Wang, Kuanquan

    2015-01-01

    Based on the idea of telemedicine, 24-hour uninterrupted monitoring on electrocardiograms (ECG) has started to be implemented. To create an intelligent ECG monitoring system, an efficient and quick detection algorithm for the characteristic waveforms is needed. This paper aims to give a quick and effective method for detecting QRS-complexes and R-waves in ECGs. The real ECG signal from the MIT-BIH Arrhythmia Database is used for the performance evaluation. The method proposed combined a wavelet transform and the K-means clustering algorithm. A wavelet transform is adopted in the data analysis and preprocessing. Then, based on the slope information of the filtered data, a segmented K-means clustering method is adopted to detect the QRS region. Detection of the R-peak is based on comparing the local amplitudes in each QRS region, which is different from other approaches, and the time cost of R-wave detection is reduced. Of the tested 8 records (total 18201 beats) from the MIT-BIH Arrhythmia Database, an average R-peak detection sensitivity of 99.72 and a positive predictive value of 99.80% are gained; the average time consumed detecting a 30-min original signal is 5.78s, which is competitive with other methods.

  1. Simultaneous interaction with base and phosphate moieties modulates the phosphodiester cleavage of dinucleoside 3',5'-monophosphates by dinuclear Zn2+ complexes of di(azacrown) ligands.

    PubMed

    Wang, Qi; Lönnberg, Harri

    2006-08-23

    Five dinucleating ligands (1-5) and one trinucleating ligand (6) incorporating 1,5,9-triazacyclododecan-3-yloxy groups attached to an aromatic scaffold have been synthesized. The ability of the Zn(2+) complexes of these ligands to promote the transesterification of dinucleoside 3',5'-monophosphates to a 2',3'-cyclic phosphate derived from the 3'-linked nucleoside by release of the 5'-linked nucleoside has been studied over a narrow pH range, from pH 5.8 to 7.2, at 90 degrees C. The dinuclear complexes show marked base moiety selectivity. Among the four dinucleotide 3',5'-phosphates studied, viz. adenylyl-3',5'-adenosine (ApA), adenylyl-3',5'-uridine (ApU), uridylyl-3',5'-adenosine (UpA), and uridylyl-3',5'-uridine (UpU), the dimers containing one uracil base (ApU and UpA) are cleaved up to 2 orders of magnitude more readily than those containing either two uracil bases (UpU) or two adenine bases (ApA). The trinuclear complex (6), however, cleaves UpU as readily as ApU and UpA, while the cleavage of ApA remains slow. UV spectrophotometric and (1)H NMR spectroscopic studies with one of the dinucleating ligands (3) verify binding to the bases of UpU and ApU at less than millimolar concentrations, while no interaction with the base moieties of ApA is observed. With ApU and UpA, one of the Zn(2+)-azacrown moieties in all likelihood anchors the cleaving agent to the uracil base of the substrate, while the other azacrown moiety serves as a catalyst for the phosphodiester transesterification. With UpU, two azacrown moieties are engaged in the base moiety binding. The catalytic activity is, hence, lost, but it can be restored by addition of a third azacrown group on the cleaving agent.

  2. Structural variation from heterometallic cluster-based 1D chain to heterometallic tetranuclear cluster: Syntheses, structures and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shu-Hua, E-mail: zsh720108@163.com; Zhao, Ru-Xia; Li, He-Ping

    Using the solvothermal method, we present the comparative preparation of ([Co{sub 3}Na(dmaep){sub 3}(ehbd)(N{sub 3}){sub 3}]·DMF){sub n} (1) and [Co{sub 2}Na{sub 2}(hmbd){sub 4}(N{sub 3}){sub 2}(DMF){sub 2}] (2), where Hehbd is 3-ethoxy-2-hydroxy-benzaldehyde, Hhmbd is 3-methoxy-2-hydroxy-benzaldehyde, and Hdmaep is 2-dimethylaminomethyl-6-ethoxy-phenol, which was synthesized by an in-situ reaction. Complexes 1 and 2 were characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. Complex 1 is a novel heterometallic cluster-based 1-D chain and 2 is a heterometallic tetranuclear cluster. The (Co{sub 3}{sup II}Na) and (Co{sub 2}{sup II}Na{sub 2}) cores display dominant ferromagnetic interaction from the nature of the binding modes through μ{sub 1,1,1}-N{sub 3}{supmore » –} (end-on, EO). - Graphical abstract: Two novel cobalt complexes have been prepared. Compound 1 consists of tetranuclear (Co{sub 3}{sup II}Na) units, which further formed a 1-D chain. Compound 2 is heterometallic tetranuclear cluster. Two complexes display dominant ferromagnetic interaction. - Highlights: • Two new heterometallic complexes have been synthesized by solvothermal method. • The stereospecific blockade of the ligands in the synthesis system seems to be the most important synthetic parameter. • The magnetism studies show that 1 and 2 exhibit ferromagnetic interactions. • Complex 1 shows slowing down of magnetization and not blocking of magnetization.« less

  3. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling

    PubMed Central

    Klein, Theo; Fung, Shan-Yu; Renner, Florian; Blank, Michael A.; Dufour, Antoine; Kang, Sohyeong; Bolger-Munro, Madison; Scurll, Joshua M.; Priatel, John J.; Schweigler, Patrick; Melkko, Samu; Gold, Michael R.; Viner, Rosa I.; Régnier, Catherine H.; Turvey, Stuart E.; Overall, Christopher M.

    2015-01-01

    Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1mut/mut patient with healthy MALT1+/mut family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway—first promoting activation via the CBM—then triggering HOIL1-dependent negative-feedback termination, preventing reactivation. PMID:26525107

  4. A complex structure in the mRNA of Tf1 is recognized and cleaved to generate the primer of reverse transcription.

    PubMed

    Lin, J H; Levin, H L

    1997-01-15

    All retroviruses and LTR-containing retrotransposons are thought to require specific tRNA molecules to serve as primers of reverse transcription. An exception is the LTR-containing retrotransposon Tf1, isolated from Schizosaccharomyces pombe. Instead of requiring a tRNA, the reverse transcriptase of Tf1 uses the first 11 bases of the Tf1 transcript as the primer for reverse transcription. The primer is generated by a cleavage that occurs between bases 11 and 12 of the Tf1 mRNA. Sequence analysis of the 5' untranslated region of the Tf1 mRNA resulted in the identification of a region with the potential to form an RNA structure of 89 bases that included the primer binding site and the first 11 bases of the Tf1 mRNA. Systematic mutagenesis of this region revealed 34 single-point mutants in the structure that resulted in reduced transposition activity. The defects in transposition correlated with reduced level of Tf1 reverse transcripts as determined by DNA blot analysis. Evidence that the RNA structure did form in vivo included the result that strains with second site mutations that restored complementarity resulted in increased levels of reverse transcripts and Tf1 transposition. The majority of the mutants defective for reverse transcription were unable to cleave the Tf1 mRNA between bases 11 and 12. These data indicate that formation of an extensive RNA structure was required for the cleavage reaction that generated the primer for Tf1 reverse transcription.

  5. A proximity-based graph clustering method for the identification and application of transcription factor clusters.

    PubMed

    Spadafore, Maxwell; Najarian, Kayvan; Boyle, Alan P

    2017-11-29

    Transcription factors (TFs) form a complex regulatory network within the cell that is crucial to cell functioning and human health. While methods to establish where a TF binds to DNA are well established, these methods provide no information describing how TFs interact with one another when they do bind. TFs tend to bind the genome in clusters, and current methods to identify these clusters are either limited in scope, unable to detect relationships beyond motif similarity, or not applied to TF-TF interactions. Here, we present a proximity-based graph clustering approach to identify TF clusters using either ChIP-seq or motif search data. We use TF co-occurrence to construct a filtered, normalized adjacency matrix and use the Markov Clustering Algorithm to partition the graph while maintaining TF-cluster and cluster-cluster interactions. We then apply our graph structure beyond clustering, using it to increase the accuracy of motif-based TFBS searching for an example TF. We show that our method produces small, manageable clusters that encapsulate many known, experimentally validated transcription factor interactions and that our method is capable of capturing interactions that motif similarity methods might miss. Our graph structure is able to significantly increase the accuracy of motif TFBS searching, demonstrating that the TF-TF connections within the graph correlate with biological TF-TF interactions. The interactions identified by our method correspond to biological reality and allow for fast exploration of TF clustering and regulatory dynamics.

  6. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. colimore » α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.« less

  7. Electrical characteristics of n-GaN Schottky contacts on cleaved surfaces of free-standing substrates: Metal work function dependence of Schottky barrier height

    NASA Astrophysics Data System (ADS)

    Imadate, Hiroyoshi; Mishima, Tomoyoshi; Shiojima, Kenji

    2018-04-01

    We report the electrical characteristics of Schottky contacts with nine different metals (Ag, Ti, Cr, W, Mo, Au, Pd, Ni, and Pt) formed on clean m-plane surfaces by cleaving freestanding GaN substrates, compared with these of contacts on Ga-polar c-plane n-GaN surfaces grown on GaN substrates. The n-values from the forward current–voltage (I–V) characteristics are as good as 1.02–1.18 and 1.02–1.09 for the m- and c-plane samples, respectively. We found that the reverse I–V curves of both samples can be explained by the thermionic field emission theory, and that the Schottky barrier height of the cleaved m-plane contacts shows a metal work function dependence.

  8. Spontaneous brightening of dark excitons in GaAs/AlGaAs quantum dots near a cleaved facet

    NASA Astrophysics Data System (ADS)

    Huo, Y. H.; Křápek, V.; Schmidt, O. G.; Rastelli, A.

    2017-04-01

    Dark excitons (DEs) confined in epitaxial quantum dots (QDs) are interesting because of their long lifetime compared to bright excitons (BEs). For the same reason they are usually difficult to access in optical experiments. Here we report on the observation of vertically polarized light emission from DEs confined in high-quality epitaxial GaAs/AlGaAs QDs located in proximity of a cleaved facet of the QD specimen. Calculations based on the eight-band k.p method and configuration interaction allow us to attribute the brightening of the DE to the anisotropic strain present at the sample edge, which breaks the symmetry of the system and enhances valence-band mixing. The mechanism of DE brightening is discussed in detail by inspecting both the Bloch and envelope wave functions of the involved hole states. In addition, by investigating experimentally and theoretically QDs with different sizes, we find that the energy separation between DE and BEs tends to decrease with increasing QD height. Finally, the presence of a cleaved facet is found also to enhance the BE fine structure splitting. This work provides a simple method to optically probe dark excitonic states in QDs and shows that the properties of QDs can be significantly affected by the presence of nearby edges.

  9. Computer simulations of dendrimer-polyelectrolyte complexes.

    PubMed

    Pandav, Gunja; Ganesan, Venkat

    2014-08-28

    We carry out a systematic analysis of static properties of the clusters formed by complexation between charged dendrimers and linear polyelectrolyte (LPE) chains in a dilute solution under good solvent conditions. We use single chain in mean-field simulations and analyze the structure of the clusters through radial distribution functions of the dendrimer, cluster size, and charge distributions. The effects of LPE length, charge ratio between LPE and dendrimer, the influence of salt concentration, and the dendrimer generation number are examined. Systems with short LPEs showed a reduced propensity for aggregation with dendrimers, leading to formation of smaller clusters. In contrast, larger dendrimers and longer LPEs lead to larger clusters with significant bridging. Increasing salt concentration was seen to reduce aggregation between dendrimers as a result of screening of electrostatic interactions. Generally, maximum complexation was observed in systems with an equal amount of net dendrimer and LPE charges, whereas either excess LPE or dendrimer concentrations resulted in reduced clustering between dendrimers.

  10. Clustering approaches to feature change detection

    NASA Astrophysics Data System (ADS)

    G-Michael, Tesfaye; Gunzburger, Max; Peterson, Janet

    2018-05-01

    The automated detection of changes occurring between multi-temporal images is of significant importance in a wide range of medical, environmental, safety, as well as many other settings. The usage of k-means clustering is explored as a means for detecting objects added to a scene. The silhouette score for the clustering is used to define the optimal number of clusters that should be used. For simple images having a limited number of colors, new objects can be detected by examining the change between the optimal number of clusters for the original and modified images. For more complex images, new objects may need to be identified by examining the relative areas covered by corresponding clusters in the original and modified images. Which method is preferable depends on the composition and range of colors present in the images. In addition to describing the clustering and change detection methodology of our proposed approach, we provide some simple illustrations of its application.

  11. Statistical Issues in Galaxy Cluster Cosmology

    NASA Technical Reports Server (NTRS)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  12. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex.

    PubMed

    Guan, Shou P; Lam, Alan T L; Newman, Jennifer P; Chua, Kevin L M; Kok, Catherine Y L; Chong, Siao T; Chua, Melvin L K; Lam, Paula Y P

    2018-01-01

    The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)-1. Furthermore, highly tumor-tropic MSCs expressed higher levels of MMP-1 and insulin-like growth factor (IGF)-2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF-2 and MMP-1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF-2 or MMP-1 could stimulate MSC migration. The correlation between IGF-2, MMP-1 expression, and MSC migration suggests that MMP-1 may play a role in regulating MSC migration via the IGF-2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF-stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP-1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF-2/IGFBP2 complex and extracellular release of free IGF-2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP-1, cleaved the IGF-2/IGFBP2 complex. Taken together, these results showed that the MMP-1 secreted by highly tumor-tropic MSCs cleaved IGF-2/IGFBP2 complex. Free IGF-2 released from the complex may facilitate MSC migration toward tumor.

  13. Architecture of Eph receptor clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himanen, Juha P.; Yermekbayeva, Laila; Janes, Peter W.

    2010-10-04

    Eph receptor tyrosine kinases and their ephrin ligands regulate cell navigation during normal and oncogenic development. Signaling of Ephs is initiated in a multistep process leading to the assembly of higher-order signaling clusters that set off bidirectional signaling in interacting cells. However, the structural and mechanistic details of this assembly remained undefined. Here we present high-resolution structures of the complete EphA2 ectodomain and complexes with ephrin-A1 and A5 as the base unit of an Eph cluster. The structures reveal an elongated architecture with novel Eph/Eph interactions, both within and outside of the Eph ligand-binding domain, that suggest the molecular mechanismmore » underlying Eph/ephrin clustering. Structure-function analysis, by using site-directed mutagenesis and cell-based signaling assays, confirms the importance of the identified oligomerization interfaces for Eph clustering.« less

  14. Structural and Functional Analyses of the Proteins Involved in the Iron-Sulfur Cluster Biosynthesis

    NASA Astrophysics Data System (ADS)

    Wada, Kei

    The iron-sulfur (Fe-S) clusters are ubiquitous prosthetic groups that are required to maintain such fundamental life processes as respiratory chain, photosynthesis and the regulation of gene expression. Assembly of intracellular Fe-S cluster requires the sophisticated biosynthetic systems called ISC and SUF machineries. To shed light on the molecular mechanism of Fe-S cluster assembly mediated by SUF machinery, several structures of the SUF components and their sub-complex were determined. The structural findings together with biochemical characterization of the core-complex (SufB-SufC-SufD complex) have led me to propose a working model for the cluster biosynthesis in the SUF machinery.

  15. Properties of Prussian blue materials manifested in molecular complexes: observation of cyanide linkage isomerism and spin-crossover behavior in pentanuclear cyanide clusters.

    PubMed

    Shatruk, Mikhail; Dragulescu-Andrasi, Alina; Chambers, Kristen E; Stoian, Sebastian A; Bominaar, Emile L; Achim, Catalina; Dunbar, Kim R

    2007-05-16

    Pentanuclear, cyanide-bridged clusters [M(tmphen)2]3[M'(CN)6]2 (M/M' = Zn/Cr (1), Zn/Fe (2), Fe/Fe (3), Fe/Co (4), and Fe/Cr (5); tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) were prepared by combining [M'III(CN)6]3- anions with mononuclear complexes of MII ions with two capping tmphen ligands. The clusters consist of a trigonal bipyramidal (TBP) core with three MII ions in the equatorial positions and two M'III ions in the axial positions. Compounds 1-4 are isostructural and crystallize in the monoclinic space group P21/c. Complex 5 crystallizes in the enantiomorphic space group P3221. The magnetic properties of compounds 1 and 2 reflect the contributions of the individual [CrIII(CN)6]3- and [FeIII(CN)6]3- ions. The FeII ions in compounds 3 and 4 exhibit a gradual, temperature-induced spin transition between high spin (HS) and low spin (LS), as determined by the combination of Mössbauer spectroscopy, magnetic measurements, and single-crystal X-ray studies. The investigation of compound 5 by these methods and by IR spectroscopy indicates that cyanide linkage isomerism occurs during cluster formation. The magnetic behavior of 5 is determined by weak ferromagnetic coupling between the axial CrIII centers mediated by the equatorial diamagnetic FeII ions. Mössbauer spectra collected in the presence of a high applied field have allowed, for the first time, the direct experimental observation of uncompensated spin density at diamagnetic metal ions that bridge paramagnetic metal ions.

  16. An Undergraduate Investigation into the 10-23 DNA Enzyme that Cleaves RNA: DNA Can Cut It in the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Flynn-Charlebois, Amber; Burns, Jamie; Chapelliquen, Stephanie; Sanmartino, Holly

    2011-01-01

    A low-cost biochemistry experiment is described that demonstrates current techniques in the use of catalytic DNA molecules and introduces a nonradioactive, nonfluorescent, inexpensive, fast, and safe method for monitoring these nucleic acid reactions. The laboratory involves the exploration of the 10-23 DNA enzyme as it cleaves a specific RNA…

  17. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.

    PubMed

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-09-25

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  18. Featured Image: New Detail in the Toothbrush Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-01-01

    This spectacular composite (click here for the full image) reveals the galaxy cluster 1RXS J0603.3+4214, known as the Toothbrush cluster due to the shape of its most prominent radio relic. Featured in a recent publication led by Kamlesh Rajpurohit (Thuringian State Observatory, Germany), this image contains new Very Large Array (VLA) 1.5-GHz observations (red) showing the radio emission within the cluster. This is composited with a Chandra view of the X-ray emitting gas of the cluster (blue) and an optical image of the background from Subaru data. The new deep VLA data totaling 26 hours of observations provides a detailed look at the complex structure within the Toothbrush relic, revealing enigmatic filaments and twists (see below). This new data will help us to explore the possible merger history of this cluster, which is theorized to have caused the unusual shapes we see today. For more information, check out the original article linked below.High resolution VLA 12 GHz image of the Toothbrush showing the complex, often filamentary structures. [Rajpurohit et al. 2018]CitationK. Rajpurohit et al 2018 ApJ 852 65. doi:10.3847/1538-4357/aa9f13

  19. Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.

    PubMed

    Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E

    2014-05-01

    Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.

  20. Peeking Network States with Clustered Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Sim, Alex

    2015-10-20

    Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learningmore » tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate “similarity” of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.« less

  1. Dynamic multifactor clustering of financial networks

    NASA Astrophysics Data System (ADS)

    Ross, Gordon J.

    2014-02-01

    We investigate the tendency for financial instruments to form clusters when there are multiple factors influencing the correlation structure. Specifically, we consider a stock portfolio which contains companies from different industrial sectors, located in several different countries. Both sector membership and geography combine to create a complex clustering structure where companies seem to first be divided based on sector, with geographical subclusters emerging within each industrial sector. We argue that standard techniques for detecting overlapping clusters and communities are not able to capture this type of structure and show how robust regression techniques can instead be used to remove the influence of both sector and geography from the correlation matrix separately. Our analysis reveals that prior to the 2008 financial crisis, companies did not tend to form clusters based on geography. This changed immediately following the crisis, with geography becoming a more important determinant of clustering structure.

  2. Characterization of a monoclonal antibody against P57, the C3/C3b-cleaving proteinase expressed in human erythrocyte membranes.

    PubMed

    Fiandino-Tirel, A; Barel, M; Lyamani, F; Gauffre, A; Hermann, J; Frade, R

    1991-08-01

    A monoclonal antibody was raised against p57, a serine proteinase, characterized by an apparent molecular weight of 57 kDa, and purified from human erythrocyte membranes. P57 proteinase cleaves the human third component of complement, C3. The antibody selected, MP1, of IgG2a isotype, precipitated specifically the p57 antigen which carried the C3/C3b-cleaving activity present in membrane crude extract of human erythrocytes. P57 proteinase eluted from MP1-sepharose was inhibited by 5 x 10(-4) M PMSF, enhanced by 0.5% SDS and generated C3 fragments identical to those generated by membrane crude extract of human erythrocytes. All these properties were identical to those of the p57 previously purified by biochemical procedures. In addition, 5000 binding sites were detected on cell surface. This MP1 monoclonal antibody will be helpful to analyse the role of p57 in human erythrocytes.

  3. State estimation and prediction using clustered particle filters.

    PubMed

    Lee, Yoonsang; Majda, Andrew J

    2016-12-20

    Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors.

  4. State estimation and prediction using clustered particle filters

    PubMed Central

    Lee, Yoonsang; Majda, Andrew J.

    2016-01-01

    Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors. PMID:27930332

  5. Complex Formed between Intramembrane Metalloprotease SpoIVFB and Its Substrate, Pro-σK*

    PubMed Central

    Zhang, Yang; Halder, Sabyasachi; Kerr, Richard A.; Parrell, Daniel; Ruotolo, Brandon; Kroos, Lee

    2016-01-01

    Intramembrane metalloproteases (IMMPs) are conserved from bacteria to humans and control many important signaling pathways, but little is known about how IMMPs interact with their substrates. SpoIVFB is an IMMP that cleaves Pro-σK during Bacillus subtilis endospore formation. When catalytically inactive SpoIVFB was coexpressed with C-terminally truncated Pro-σK(1–126) (which can be cleaved by active SpoIVFB) in Escherichia coli, the substrate dramatically improved solubilization of the enzyme from membranes with mild detergents. Both the Pro(1–20) and σK(21–126) parts contributed to improving SpoIVFB solubilization from membranes, but only the σK part was needed to form a stable complex with SpoIVFB in a pulldown assay. The last 10 residues of SpoIVFB were required for improved solubilization from membranes by Pro-σK(1–126) and for normal interaction with the substrate. The inactive SpoIVFB·Pro-σK(1–126)-His6 complex was stable during affinity purification and gel filtration chromatography. Disulfide cross-linking of the purified complex indicated that it resembled the complex formed in vivo. Ion mobility-mass spectrometry analysis resulted in an observed mass consistent with a 4:2 SpoIVFB·Pro-σK(1–126)-His6 complex. Stepwise photobleaching of SpoIVFB fused to a fluorescent protein supported the notion that the enzyme is tetrameric during B. subtilis sporulation. The results provide the first evidence that an IMMP acts as a tetramer, give new insights into how SpoIVFB interacts with its substrate, and lay the foundation for further biochemical analysis of the enzyme·substrate complex and future structural studies. PMID:26953342

  6. Ultra-small rhenium clusters supported on graphene.

    PubMed

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J; Mariscal, Marcelo M; Yacaman, Miguel José

    2015-03-28

    The adsorption of very small rhenium clusters (2-13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional theory calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones.

  7. Ultra-small rhenium clusters supported on graphene

    PubMed Central

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José

    2015-01-01

    The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176

  8. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, R. Morris; Chambers, Geoffrey M.

    2017-07-24

    This Perspective examines the field of Frustrated Lewis Pairs (FLPs) in the context of transition metal mediated heterolytic cleavage of H2, with a particular emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with group compounds, yet many transition metal reactions support a broader classification of FLPs to include certain types of transition metal complexes with reactivity resembling main group based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Particular attention is focused on complexes bearing a pendant aminemore » function as the base. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.« less

  9. Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2014-01-01

    Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877

  10. Spanish Dyslexic Spelling Abilities: The Case of Consonant Clusters

    ERIC Educational Resources Information Center

    Serrano, Francisca; Defior, Sylvia

    2012-01-01

    This paper investigates Spanish dyslexic spelling abilities: specifically, the influence of syllabic linguistic structure (simple vs consonant cluster) on children's spelling performance. Consonant clusters are phonologically complex structures, so it was anticipated that there would be lower spelling performance for these syllabic structures than…

  11. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes.

    PubMed

    Bullock, R Morris; Chambers, Geoffrey M

    2017-08-28

    This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).

  12. Probing C-O bond activation on gas-phase transition metal clusters: Infrared multiple photon dissociation spectroscopy of Fe, Ru, Re, and W cluster CO complexes

    NASA Astrophysics Data System (ADS)

    Lyon, Jonathan T.; Gruene, Philipp; Fielicke, André; Meijer, Gerard; Rayner, David M.

    2009-11-01

    The binding of carbon monoxide to iron, ruthenium, rhenium, and tungsten clusters is studied by means of infrared multiple photon dissociation spectroscopy. The CO stretching mode is used to probe the interaction of the CO molecule with the metal clusters and thereby the activation of the C-O bond. CO is found to adsorb molecularly to atop positions on iron clusters. On ruthenium and rhenium clusters it also binds molecularly. In the case of ruthenium, binding is predominantly to atop sites, however higher coordinated CO binding is also observed for both metals and becomes prevalent for rhenium clusters containing more than nine atoms. Tungsten clusters exhibit a clear size dependence for molecular versus dissociative CO binding. This behavior denotes the crossover to the purely dissociative CO binding on the earlier transition metals such as tantalum.

  13. Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery.

    PubMed

    Gakh, Oleksandr; Ranatunga, Wasantha; Smith, Douglas Y; Ahlgren, Eva-Christina; Al-Karadaghi, Salam; Thompson, James R; Isaya, Grazia

    2016-09-30

    Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria. As the architecture of the human machinery remains undefined, we co-expressed in Escherichia coli the following four proteins involved in the initial step of Fe-S cluster synthesis: FXN 42-210 (iron donor); [NFS1]·[ISD11] (sulfur donor); and ISCU (scaffold upon which new clusters are assembled). We purified a stable, active complex consisting of all four proteins with 1:1:1:1 stoichiometry. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional model of the complex with ∼14 Å resolution. Molecular dynamics flexible fitting of protein structures docked into the EM map of the model revealed a [FXN 42-210 ] 24 ·[NFS1] 24 ·[ISD11] 24 ·[ISCU] 24 complex, consistent with the measured 1:1:1:1 stoichiometry of its four components. The complex structure fulfills distance constraints obtained from chemical cross-linking of the complex at multiple recurring interfaces, involving hydrogen bonds, salt bridges, or hydrophobic interactions between conserved residues. The complex consists of a central roughly cubic [FXN 42-210 ] 24 ·[ISCU] 24 sub-complex with one symmetric ISCU trimer bound on top of one symmetric FXN 42-210 trimer at each of its eight vertices. Binding of 12 [NFS1] 2 ·[ISD11] 2 sub-complexes to the surface results in a globular macromolecule with a diameter of ∼15 nm and creates 24 Fe-S cluster assembly centers. The organization of each center recapitulates a previously proposed conserved mechanism for sulfur donation from NFS1 to ISCU and reveals, for the first time, a path for iron donation from FXN 42-210 to ISCU. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery*

    PubMed Central

    Gakh, Oleksandr; Ranatunga, Wasantha; Smith, Douglas Y.; Ahlgren, Eva-Christina; Al-Karadaghi, Salam; Thompson, James R.; Isaya, Grazia

    2016-01-01

    Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria. As the architecture of the human machinery remains undefined, we co-expressed in Escherichia coli the following four proteins involved in the initial step of Fe-S cluster synthesis: FXN42–210 (iron donor); [NFS1]·[ISD11] (sulfur donor); and ISCU (scaffold upon which new clusters are assembled). We purified a stable, active complex consisting of all four proteins with 1:1:1:1 stoichiometry. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional model of the complex with ∼14 Å resolution. Molecular dynamics flexible fitting of protein structures docked into the EM map of the model revealed a [FXN42–210]24·[NFS1]24·[ISD11]24·[ISCU]24 complex, consistent with the measured 1:1:1:1 stoichiometry of its four components. The complex structure fulfills distance constraints obtained from chemical cross-linking of the complex at multiple recurring interfaces, involving hydrogen bonds, salt bridges, or hydrophobic interactions between conserved residues. The complex consists of a central roughly cubic [FXN42–210]24·[ISCU]24 sub-complex with one symmetric ISCU trimer bound on top of one symmetric FXN42–210 trimer at each of its eight vertices. Binding of 12 [NFS1]2·[ISD11]2 sub-complexes to the surface results in a globular macromolecule with a diameter of ∼15 nm and creates 24 Fe-S cluster assembly centers. The organization of each center recapitulates a previously proposed conserved mechanism for sulfur donation from NFS1 to ISCU and reveals, for the first time, a path for iron donation from FXN42–210 to ISCU. PMID:27519411

  15. Ring opening and carbonylation of 3,3-dimethylthietane ligands in ruthenium carbonyl cluster complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, R.D.; Belinski, J.A.; Yamamoto, J.H.

    1992-10-01

    When heated to 97{degrees}C, the complex Ru{sub 4}(CO){sub 12}[{mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}]2 (1) was transformed into two new hexaruthenium cluster complexes, Ru{sub 6}(CO){sub 13}({mu}{sub 3}-SCH{sub 2}CMe{sub 2}CH{sub 2}){sub 4} (2) and Ru{sub 6}(CO){sub 12}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2})({mu}{sub 3}-SCH{sub 2}CMe{sub 2}CH{sub 2}){sub 3}[{mu}{sub 3}-SCH{sub 2}C(Me)(CH{sub 2})CH{sub 2}] ({mu}-H) (3), that contain four and five ring-opened 3,3-dimethylthietane (3,3-DMT) ligands, respectively. In compound 3 one of the ring-opened DMT ligands has also undergone a CH activation on one of the methyl groups. Compound 2 reacts with additional 3,3-DMT at 97{degrees}C to form 3 in 18% yield. When treated with CO at 95{degrees}C (500more » psi), compound 2 yielded 4,4-dimethylthiobutyrolactone and Ru{sub 3}(CO){sub 12}. It was also found that the complex Os{sub 3}(CO){sub 11-}(SCH{sub 2}CMe{sub 2}CH{sub 2}C{double_bond}O) (4) yields 4,4-dimethylthiobutyrolactone when treated with CO at 120{degrees}C (1200 psi). Crystal data for 2: space group P2{sub 1}/n, {alpha} = 22.652 (7) A, {beta} = 11.712 (2) A, c = 19.965 (6) A, {Beta} = 115.75 (2){degrees} Z = 4, 3665 reflections, R = 0.021. Crystal data for 3: space group P2{sub 1}/c, {alpha} = 17.332 (8) A, {Beta} = 14.668 (9) A, c = 19.823 (9) A, {Beta} = 91.27 (4){degrees}, Z = 4, 1875 reflections, R = 0.050. 13 refs., 2 figs., 13 refs.« less

  16. Implementing a complex intervention to support personal recovery: a qualitative study nested within a cluster randomised controlled trial.

    PubMed

    Leamy, Mary; Clarke, Eleanor; Le Boutillier, Clair; Bird, Victoria; Janosik, Monika; Sabas, Kai; Riley, Genevieve; Williams, Julie; Slade, Mike

    2014-01-01

    To investigate staff and trainer perspectives on the barriers and facilitators to implementing a complex intervention to help staff support the recovery of service users with a primary diagnosis of psychosis in community mental health teams. Process evaluation nested within a cluster randomised controlled trial (RCT). 28 interviews with mental health care staff, 3 interviews with trainers, 4 focus groups with intervention teams and 28 written trainer reports. 14 community-based mental health teams in two UK sites (one urban, one semi-rural) who received the intervention. The factors influencing the implementation of the intervention can be organised under two over-arching themes: Organisational readiness for change and Training effectiveness. Organisational readiness for change comprised three sub-themes: NHS Trust readiness; Team readiness; and Practitioner readiness. Training effectiveness comprised three sub-themes: Engagement strategies; Delivery style and Modelling recovery principles. Three findings can inform future implementation and evaluation of complex interventions. First, the underlying intervention model predicted that three areas would be important for changing practice: staff skill development; intention to implement; and actual implementation behaviour. This study highlighted the importance of targeting the transition from practitioners' intent to implement to actual implementation behaviour, using experiential learning and target setting. Second, practitioners make inferences about organisational commitment by observing the allocation of resources, Knowledge Performance Indicators and service evaluation outcome measures. These need to be aligned with recovery values, principles and practice. Finally, we recommend the use of organisational readiness tools as an inclusion criteria for selecting both organisations and teams in cluster RCTs. We believe this would maximise the likelihood of adequate implementation and hence reduce waste in research

  17. Structure of fluorescent metal clusters on a DNA template.

    NASA Astrophysics Data System (ADS)

    Vdovichev, A. A.; Sych, T. S.; Reveguk, Z. V.; Smirnova, A. A.; Maksimov, D. A.; Ramazanov, R. R.; Kononov, A. I.

    2016-08-01

    Luminescent metal clusters are a subject of growing interest in recent years due to their bright emission from visible to near infrared range. Detailed structure of the fluorescent complexes of Ag and other metal clusters with ligands still remains a challenging task. In this joint experimental and theoretical study we synthesized Ag-DNA complexes on a DNA oligonucleotide emitting in violet- green spectral range. The structure of DNA template was determined by means of various spectral measurements (CD, MS, XPS). Comparison of the experimental fluorescent excitation spectra and calculated absorption spectra for different QM/MM optimized structures allowed us to determine the detailed structure of the green cluster containing three silver atoms in the stem of the DNA hairpin structure stabilized by cytosine-Ag+-cytosine bonds.

  18. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    PubMed Central

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-01-01

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731

  19. Intra-cluster Globular Clusters in a Simulated Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Ramos-Almendares, Felipe; Abadi, Mario; Muriel, Hernán; Coenda, Valeria

    2018-01-01

    Using a cosmological dark matter simulation of a galaxy-cluster halo, we follow the temporal evolution of its globular cluster population. To mimic the red and blue globular cluster populations, we select at high redshift (z∼ 1) two sets of particles from individual galactic halos constrained by the fact that, at redshift z = 0, they have density profiles similar to observed ones. At redshift z = 0, approximately 60% of our selected globular clusters were removed from their original halos building up the intra-cluster globular cluster population, while the remaining 40% are still gravitationally bound to their original galactic halos. As the blue population is more extended than the red one, the intra-cluster globular cluster population is dominated by blue globular clusters, with a relative fraction that grows from 60% at redshift z = 0 up to 83% for redshift z∼ 2. In agreement with observational results for the Virgo galaxy cluster, the blue intra-cluster globular cluster population is more spatially extended than the red one, pointing to a tidally disrupted origin.

  20. The thermodynamic effects of ligand structure on the molecular recognition of mononuclear ruthenium polypyridyl complexes with B-DNA

    USDA-ARS?s Scientific Manuscript database

    The ruthenium(II) polypyridyl complexes (RPCs), [(phen)2Ru(tatpp)]Cl2 (3Cl2) and [(phen)2Ru (tatpp)Ru(phen)2]Cl4 (4Cl4), containing the large planar and redox-active tetraazatetrapyrido- pentacene (tatpp) ligand, cleave DNA in the presence of reducing agents in cell-free assays and show significant...

  1. Swarm Intelligence in Text Document Clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Potok, Thomas E

    2008-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior. The research field that attempts to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies is called Swarm Intelligence. Compared to the traditional algorithms, the swarm algorithms are usually flexible, robust, decentralized and self-organized. These characters make the swarm algorithms suitable for solving complex problems, such as document collection clustering. The major challenge of today's information society is being overwhelmed with information on any topic they are searching for. Fast and high-quality document clustering algorithms play an important role inmore » helping users to effectively navigate, summarize, and organize the overwhelmed information. In this chapter, we introduce three nature inspired swarm intelligence clustering approaches for document clustering analysis. These clustering algorithms use stochastic and heuristic principles discovered from observing bird flocks, fish schools and ant food forage.« less

  2. Interacting star clusters in the Large Magellanic Cloud. Overmerging problem solved by cluster group formation

    NASA Astrophysics Data System (ADS)

    Leon, Stéphane; Bergond, Gilles; Vallenari, Antonella

    1999-04-01

    We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from 1.8x 10(3) to 3x 10(4) \\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as r(-gamma ) , with gamma = 2.27 and gamma =3.44, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few 10(6) years to 10(8) years). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai \\cite{fujimoto97}). We refer to this as the ``overmerging'' problem. A different scenario is proposed: the formation proceeds in large molecular complexes giving birth to groups of clusters over a few 10(7) years. In these groups the expected cluster encounter rate is larger, and tidal capture has higher probability. Cluster pairs are not born together through the splitting of the parent cloud, but formed later by tidal capture. For 3 pairs, we tentatively identify the star cluster group (SCG) memberships. The SCG formation, through the recent cluster starburst triggered by the LMC-SMC encounter, in contrast with the quiescent open cluster formation in the Milky Way can be an explanation to the paucity of binary clusters observed in our Galaxy. Based on observations collected at the European Southern Observatory, La Silla, Chile}

  3. Improved Ant Colony Clustering Algorithm and Its Performance Study

    PubMed Central

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533

  4. Second order Møller-Plesset and coupled cluster singles and doubles methods with complex basis functions for resonances in electron-molecule scattering

    DOE PAGES

    White, Alec F.; Epifanovsky, Evgeny; McCurdy, C. William; ...

    2017-06-21

    The method of complex basis functions is applied to molecular resonances at correlated levels of theory. Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference are used to compute accurate Siegert energies for shape resonances in small molecules including N 2 - , CO - , CO 2 - , and CH 2 O - . Analytic continuation of complex θ-trajectories is used to compute Siegert energies, and the θ-trajectories of energy differences are found to yield more consistent results than those of total energies.more » Furthermore, the ability of such methods to accurately compute complex potential energy surfaces is investigated, and the possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.« less

  5. Second order Møller-Plesset and coupled cluster singles and doubles methods with complex basis functions for resonances in electron-molecule scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alec F.; Epifanovsky, Evgeny; McCurdy, C. William

    The method of complex basis functions is applied to molecular resonances at correlated levels of theory. Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference are used to compute accurate Siegert energies for shape resonances in small molecules including N 2 - , CO - , CO 2 - , and CH 2 O - . Analytic continuation of complex θ-trajectories is used to compute Siegert energies, and the θ-trajectories of energy differences are found to yield more consistent results than those of total energies.more » Furthermore, the ability of such methods to accurately compute complex potential energy surfaces is investigated, and the possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.« less

  6. A highly efficient nano-cluster artificial peroxidase and its direct electrochemistry on a nano complex modified glassy carbon electrode.

    PubMed

    Hong, Jun; Wang, Wei; Huang, Kun; Yang, Wei-Yun; Zhao, Ying-Xue; Xiao, Bao-Lin; Gao, Yun-Fei; Moosavi-Movahedi, Zainab; Ghourchian, Hedayatollah; Moosavi-Movahedi, Ali Akbar

    2012-01-01

    A nano-cluster with highly efficient peroxide activity was constructed based on nafion (NF) and cytochrome c (Cyt c). UV-Vis spectrometry and transmission electron microscopy (TEM) methods were utilized for characterization of the nano-structured enzyme or artificial peroxidase (AP). The nano-cluster was composed of a Chain-Ball structure, with an average ball size of about 40 nm. The Michaelis-Menten (K(m)) and catalytic rate (k(cat)) constants of the AP were determined to be 2.5 ± 0.4 µM and 0.069 ± 0.001 s(-1), respectively, in 50 mM PBS at pH 7.0. The catalytic efficiency of the AP was evaluated to be 0.028 ± 0.005 µM(-1) s(-1), which was 39 ± 5% as efficient as the native horseradish peroxidase (HRP). The AP was also immobilized on a functional multi-wall carbon nanotube (MWNCTs)-gold colloid nanoparticles (AuNPs) nano-complex modified glassy carbon (GC) electrode. The cyclic voltammetry of AP on the nano complex modified GC electrode showed a pair of well-defined redox peaks with a formal potential (E°') of -45 ± 2 mV (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer rate constant (k(s)) was evaluated to be 0.65 s(-1). The surface concentration of electroactive AP on GC electrode (Γ) was 7 × 10(-10) mol cm(-2). The apparent Michaelis-Menten constant (K(m)(app)) was 0.23 nM.

  7. Levels of control exerted by the Isc iron-sulfur cluster system on biosynthesis of the formate hydrogenlyase complex.

    PubMed

    Pinske, Constanze; Jaroschinsky, Monique; Sawers, R Gary

    2013-06-01

    The membrane-associated formate hydrogenlyase (FHL) complex of bacteria like Escherichia coli is responsible for the disproportionation of formic acid into the gaseous products carbon dioxide and dihydrogen. It comprises minimally seven proteins including FdhF and HycE, the catalytic subunits of formate dehydrogenase H and hydrogenase 3, respectively. Four proteins of the FHL complex have iron-sulphur cluster ([Fe-S]) cofactors. Biosynthesis of [Fe-S] is principally catalysed by the Isc or Suf systems and each comprises proteins for assembly and for delivery of [Fe-S]. This study demonstrates that the Isc system is essential for biosynthesis of an active FHL complex. In the absence of the IscU assembly protein no hydrogen production or activity of FHL subcomponents was detected. A deletion of the iscU gene also resulted in reduced intracellular formate levels partially due to impaired synthesis of pyruvate formate-lyase, which is dependent on the [Fe-S]-containing regulator FNR. This caused reduced expression of the formate-inducible fdhF gene. The A-type carrier (ATC) proteins IscA and ErpA probably deliver [Fe-S] to specific apoprotein components of the FHL complex because mutants lacking either protein exhibited strongly reduced hydrogen production. Neither ATC protein could compensate for the lack of the other, suggesting that they had independent roles in [Fe-S] delivery to complex components. Together, the data indicate that the Isc system modulates FHL complex biosynthesis directly by provision of [Fe-S] as well as indirectly by influencing gene expression through the delivery of [Fe-S] to key regulators and enzymes that ultimately control the generation and oxidation of formate.

  8. Entropy-based consensus clustering for patient stratification.

    PubMed

    Liu, Hongfu; Zhao, Rui; Fang, Hongsheng; Cheng, Feixiong; Fu, Yun; Liu, Yang-Yu

    2017-09-01

    Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of high-throughput molecular data provides a great opportunity for patient stratification. Many clustering methods have been employed to tackle this problem in a purely data-driven manner. Yet, existing methods leveraging high-throughput molecular data often suffers from various limitations, e.g. noise, data heterogeneity, high dimensionality or poor interpretability. Here we introduced an Entropy-based Consensus Clustering (ECC) method that overcomes those limitations all together. Our ECC method employs an entropy-based utility function to fuse many basic partitions to a consensus one that agrees with the basic ones as much as possible. Maximizing the utility function in ECC has a much more meaningful interpretation than any other consensus clustering methods. Moreover, we exactly map the complex utility maximization problem to the classic K -means clustering problem, which can then be efficiently solved with linear time and space complexity. Our ECC method can also naturally integrate multiple molecular data types measured from the same set of subjects, and easily handle missing values without any imputation. We applied ECC to 110 synthetic and 48 real datasets, including 35 cancer gene expression benchmark datasets and 13 cancer types with four molecular data types from The Cancer Genome Atlas. We found that ECC shows superior performance against existing clustering methods. Our results clearly demonstrate the power of ECC in clinically relevant patient stratification. The Matlab package is available at http://scholar.harvard.edu/yyl/ecc . yunfu@ece.neu.edu or yyl@channing.harvard.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Optical signatures of molecular particles via mass-selected cluster spectroscopy

    NASA Technical Reports Server (NTRS)

    Duncan, Michael A.

    1990-01-01

    A new molecular beam apparatus was developed to study optical absorption in cold (less than 100 K) atomic clusters and complexes produced by their condensation with simple molecular gases. In this instrument, ionized clusters produced in a laser vaporization nozzle source are mass selected and studied with photodissociation spectroscopy at visible and ultraviolet wavelengths. This new approach can be applied to synthesize and characterize numerous particulates and weakly bound complexes expected in planetary atmospheres and in comets.

  10. Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy.

    PubMed

    Albetel, Angela-Nadia; Outten, Caryn E

    2018-01-01

    Monothiol glutaredoxins (Grxs) with a conserved Cys-Gly-Phe-Ser (CGFS) active site are iron-sulfur (Fe-S) cluster-binding proteins that interact with a variety of partner proteins and perform crucial roles in iron metabolism including Fe-S cluster transfer, Fe-S cluster repair, and iron signaling. Various analytical and spectroscopic methods are currently being used to monitor and characterize glutaredoxin Fe-S cluster-dependent interactions at the molecular level. The electronic, magnetic, and vibrational properties of the protein-bound Fe-S cluster provide a convenient handle to probe the structure, function, and coordination chemistry of Grx complexes. However, some limitations arise from sample preparation requirements, complexity of individual techniques, or the necessity for combining multiple methods in order to achieve a complete investigation. In this chapter, we focus on the use of UV-visible circular dichroism spectroscopy as a fast and simple initial approach for investigating glutaredoxin Fe-S cluster-dependent interactions. © 2018 Elsevier Inc. All rights reserved.

  11. Heteronuclear Metal Cluster Compounds Synthesis and Reactivity

    DTIC Science & Technology

    1990-08-10

    important role in the formation of complexes with heteronuclear metal - metal bonds. Since this is our Final Report recent results are reported and...DTe FL’ Copy AFOSR-86-0125 Lfl X’ HETERONUCLEAR METAL CLUSTER COMPOUNDS00 SYNTHESIS AND REACTIVITY F. Gordon A. Stone, IDepartment of Inorganic...Security Classification) HETERONUCLEAR METAL CLUSTER COMPOUNDS: SYNTHESIS AND REACTIVITY 12. PERSONAL AUTHOR(S) F. GORDON A. STONE 13a. TYPE OF REPORT

  12. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters.

    PubMed

    Ward, T B; Miliordos, E; Carnegie, P D; Xantheas, S S; Duncan, M A

    2017-06-14

    Vanadium and niobium cation-water complexes, V + (H 2 O) and Nb + (H 2 O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C 2v symmetry with a significant probability off the C 2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 10 6 s -1 ).

  13. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters

    NASA Astrophysics Data System (ADS)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.; Xantheas, S. S.; Duncan, M. A.

    2017-06-01

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C2v symmetry with a significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 s-1).

  14. Ortho-para interconversion in cation-water complexes: The case of V + (H 2 O) and Nb + (H 2 O) clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O–H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 1:3 intensity ratios for K = even:odd levels for independent ortho:para nuclearmore » spin states are missing for some complexes. We relied on highly correlated internally contracted Multi-Reference Configuration Interaction (icMRCI) and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to quasi-C2v symmetry with significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and iobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 sec-1).« less

  15. A Chemical Composition Survey of the Iron-complex Globular Cluster NGC 6273 (M19)

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Mateo, Mario; Bailey, John I., III; Clarkson, William I.; Olszewski, Edward W.; Walker, Matthew G.

    2017-02-01

    Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this “iron-complex” cluster class, and we provide here a chemical and kinematic analysis of >300 red giant branch and asymptotic giant branch member stars using high-resolution spectra obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H] = -2 to -1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg-Al anti-correlation may only be present in stars with [Fe/H] ≳ -1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [α/Fe] is identified and may have been accreted from a former surrounding field star population. The cluster’s large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to ω Cen and M54. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14197. This paper includes data gathered with the 6.5 m Magellan Telescopes located as Las Campanas Observatory, Chile.

  16. Generalized Self-Organizing Maps for Automatic Determination of the Number of Clusters and Their Multiprototypes in Cluster Analysis.

    PubMed

    Gorzalczany, Marian B; Rudzinski, Filip

    2017-06-07

    This paper presents a generalization of self-organizing maps with 1-D neighborhoods (neuron chains) that can be effectively applied to complex cluster analysis problems. The essence of the generalization consists in introducing mechanisms that allow the neuron chain--during learning--to disconnect into subchains, to reconnect some of the subchains again, and to dynamically regulate the overall number of neurons in the system. These features enable the network--working in a fully unsupervised way (i.e., using unlabeled data without a predefined number of clusters)--to automatically generate collections of multiprototypes that are able to represent a broad range of clusters in data sets. First, the operation of the proposed approach is illustrated on some synthetic data sets. Then, this technique is tested using several real-life, complex, and multidimensional benchmark data sets available from the University of California at Irvine (UCI) Machine Learning repository and the Knowledge Extraction based on Evolutionary Learning data set repository. A sensitivity analysis of our approach to changes in control parameters and a comparative analysis with an alternative approach are also performed.

  17. A Novel Cryptic Binding Motif, LRSKSRSFQVSDEQY, in the C-Terminal Fragment of MMP-3/7-Cleaved Osteopontin as a Novel Ligand for α9β1 Integrin Is Involved in the Anti-Type II Collagen Antibody-Induced Arthritis

    PubMed Central

    Kon, Shigeyuki; Nakayama, Yosuke; Matsumoto, Naoki; Ito, Koyu; Kanayama, Masashi; Kimura, Chiemi; Kouro, Hitomi; Ashitomi, Dai; Matsuda, Tadashi; Uede, Toshimitsu

    2014-01-01

    Osteopontin (OPN) is a multifunctional protein that has been linked to various intractable inflammatory diseases. One way by which OPN induces inflammation is the production of various functional fragments by enzyme cleavage. It has been well appreciated that OPN is cleaved by thrombin, and/or matrix metalloproteinase-3 and -7 (MMP-3/7). Although the function of thrombin-cleaved OPN is well characterized, little is known about the function of MMP-3/7-cleaved OPN. In this study, we found a novel motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved mouse OPN binds to α9β1 integrin. Importantly, this novel motif is involved in the development of anti-type II collagen antibody-induced arthritis (CAIA). This study provides the first in vitro and in vivo evidence that OPN cleavage by MMP-3/7 is an important regulatory mechanism for CAIA. PMID:25545242

  18. A new trinuclear complex of platinum and iron efficiently promotes cleavage of plasmid DNA.

    PubMed Central

    Lempers, E L; Bashkin, J S; Kostić, N M

    1993-01-01

    The compound [[Pt(trpy)]2Arg-EDTA]+ is synthesized in five steps, purified, and characterized by 1H, 13C, and 195Pt NMR spectroscopy, mass spectrometry, UV-vis spectrophotometry, and elemental analysis. The binuclear [[(Pt(trpy)]2Arg]3+ moiety binds to double-stranded DNA, and the chelating EDTA moiety holds metal cations. In the presence of ferrous ions and the reductant dithiothreitol, the new compound cleaves DNA. It cleaves a single strand in the pBR322 plasmid nearly as efficiently as methidiumrpropyl-EDTA (MPE), and it cleaves a restriction fragment of the XP10 plasmid nonselectively and more efficiently than [Fe(EDTA)]2-. The mechanism of cleavage was studied in control experiments involving different transition-metal ions, superoxide dismutase, catalase, glucose oxidase with glucose, metal-sequestering agents, and deaeration. These experiments indicate that adventitious iron and copper ions, superoxide anion, and hydrogen peroxide are not involved and that dioxygen is required. The cleavage apparently is done by hydroxyl radicals generated in the vicinity of the DNA molecule. The reagent [[Pt(trypy)]2Arg-EDTA]+ differs from methidiumpropyl-EDTA in not containing an intercalator. This difference in binding modes between the binuclear platinum(II) complex and the planar heterocycle may cause useful differences between the two reagents in cleavage of nucleic acids. Images PMID:8493109

  19. Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense

    PubMed Central

    Price, Aryn A.; Grakoui, Arash; Weiss, David S.

    2016-01-01

    Clustered, regularly interspaced, short palindromic repeats - CRISPR associated (CRISPR-Cas) systems are sequence specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense. PMID:26852268

  20. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    PubMed

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    complexity can be realized by small amounts of Li replacing Zn atoms in the parent binary compounds CaZn 2 , CaZn 3 , and CaZn 5 ; their phase formation and bonding schemes can be rationalized by Fermi surface-Brillouin zone interactions between nearly free-electron states. "Cation-rich", electron-poor polar intermetallics have emerged using rare earth metals as the electropositive ("cationic") component together metal/metalloid clusters that mimic the backbones of aromatic hydrocarbon molecules, which give evidence of extensive electronic delocalization and multicenter bonding. Thus, we can identify three distinct, valence electron-poor, polar intermetallic systems that have yielded unprecedented phases adopting novel structures containing complex clusters and intriguing bonding characteristics. In this Account, we summarize our recent specific progress in the developments of novel Au-rich BaAl 4 -type related structures, shown in the "gold-rich grid", lithiation-modulated Ca-Li-Zn phases stabilized by different bonding characteristics, and rare earth-rich polar intermetallics containing unprecedented hydrocarbon-like planar Co-Ge metal clusters and pronounced delocalized multicenter bonding. We will focus mainly on novel structural motifs, bonding analyses, and the role of valence electrons for phase stability.

  1. Implementing a Complex Intervention to Support Personal Recovery: A Qualitative Study Nested within a Cluster Randomised Controlled Trial

    PubMed Central

    Leamy, Mary; Clarke, Eleanor; Le Boutillier, Clair; Bird, Victoria; Janosik, Monika; Sabas, Kai; Riley, Genevieve; Williams, Julie; Slade, Mike

    2014-01-01

    Objective To investigate staff and trainer perspectives on the barriers and facilitators to implementing a complex intervention to help staff support the recovery of service users with a primary diagnosis of psychosis in community mental health teams. Design Process evaluation nested within a cluster randomised controlled trial (RCT). Participants 28 interviews with mental health care staff, 3 interviews with trainers, 4 focus groups with intervention teams and 28 written trainer reports. Setting 14 community-based mental health teams in two UK sites (one urban, one semi-rural) who received the intervention. Results The factors influencing the implementation of the intervention can be organised under two over-arching themes: Organisational readiness for change and Training effectiveness. Organisational readiness for change comprised three sub-themes: NHS Trust readiness; Team readiness; and Practitioner readiness. Training effectiveness comprised three sub-themes: Engagement strategies; Delivery style and Modelling recovery principles. Conclusions Three findings can inform future implementation and evaluation of complex interventions. First, the underlying intervention model predicted that three areas would be important for changing practice: staff skill development; intention to implement; and actual implementation behaviour. This study highlighted the importance of targeting the transition from practitioners' intent to implement to actual implementation behaviour, using experiential learning and target setting. Second, practitioners make inferences about organisational commitment by observing the allocation of resources, Knowledge Performance Indicators and service evaluation outcome measures. These need to be aligned with recovery values, principles and practice. Finally, we recommend the use of organisational readiness tools as an inclusion criteria for selecting both organisations and teams in cluster RCTs. We believe this would maximise the likelihood of

  2. Neurons in cat V1 show significant clustering by degree of tuning

    PubMed Central

    Ziskind, Avi J.; Emondi, Al A.; Kurgansky, Andrei V.; Rebrik, Sergei P.

    2015-01-01

    Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies, and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width, and direction selectivity index (DSI) all showed significant clustering: pairs of neurons recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percent decrease in the median difference between pairs from the same site, relative to pairs from different sites, was as follows: for different measures of orientation tuning width, 29–35% (drifting gratings) or 15–25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease) but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple-complex or complex-complex cell pairs. PMID:25652921

  3. Complex pectin metabolism by gut bacteria reveals novel catalytic functions

    PubMed Central

    Baslé, Arnaud; Gray, Joseph; Venditto, Immacolata; Briggs, Jonathon; Zhang, Xiaoyang; Labourel, Aurore; Terrapon, Nicolas; Buffetto, Fanny; Nepogodiev, Sergey; Xiao, Yao; Field, Robert A.; Zhu, Yanping; O’Neil, Malcolm A.; Urbanowicz, Breeana R.; York, William S.; Davies, Gideon J.; Abbott, D. Wade; Ralet, Marie-Christine; Martens, Eric C.; Henrissat, Bernard; Gilbert, Harry J.

    2017-01-01

    Carbohydrate polymers drive microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron utilizes the most structurally complex glycan known; the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but one of its 21 distinct glycosidic linkages. We show that rhamnogalacturonan-II side-chain and backbone deconstruction are coordinated, to overcome steric constraints, and that degradation reveals previously undiscovered enzyme families and novel catalytic activities. The degradome informs revision of the current structural model of RG-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycans in the human diet. PMID:28329766

  4. INTERRUPTED STELLAR ENCOUNTERS IN STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Leigh, Nathan W. C., E-mail: a-geller@northwestern.edu, E-mail: nleigh@amnh.org

    Strong encounters between single stars and binaries play a pivotal role in the evolution of star clusters. Such encounters can also dramatically modify the orbital parameters of binaries, exchange partners in and out of binaries, and are a primary contributor to the rate of physical stellar collisions in star clusters. Often, these encounters are studied under the approximation that they happen quickly enough and within a small enough volume to be considered isolated from the rest of the cluster. In this paper, we study the validity of this assumption through the analysis of a large grid of single–binary and binary–binarymore » scattering experiments. For each encounter we evaluate the encounter duration, and compare this with the expected time until another single or binary star will join the encounter. We find that for lower-mass clusters, similar to typical open clusters in our Galaxy, the percent of encounters that will be “interrupted” by an interloping star or binary may be 20%–40% (or higher) in the core, though for typical globular clusters we expect ≲1% of encounters to be interrupted. Thus, the assumption that strong encounters occur in relative isolation breaks down for certain clusters. Instead, many strong encounters develop into more complex “mini-clusters,” which must be accounted for in studying, for example, the internal dynamics of star clusters, and the physical stellar collision rate.« less

  5. Genomic analyses of bacterial porin-cytochrome gene clusters

    DOE PAGES

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteriamore » from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.« less

  6. Label-Free Biosensor Using a Silver Specific RNA-Cleaving DNAzyme Functionalized Single-Walled Carbon Nanotube for Silver Ion Determination

    PubMed Central

    Liu, Yang; Liu, Gang

    2018-01-01

    Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 106 pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results. PMID:29677143

  7. Label-Free Biosensor Using a Silver Specific RNA-Cleaving DNAzyme Functionalized Single-Walled Carbon Nanotube for Silver Ion Determination.

    PubMed

    Wang, Hui; Liu, Yang; Liu, Gang

    2018-04-20

    Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 10⁶ pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results.

  8. Real-Time Kinetic Probes Support Monothiol Glutaredoxins As Intermediate Carriers in Fe-S Cluster Biosynthetic Pathways.

    PubMed

    Vranish, James N; Das, Deepika; Barondeau, David P

    2016-11-18

    Iron-sulfur (Fe-S) clusters are protein cofactors that are required for many essential cellular functions. Fe-S clusters are synthesized and inserted into target proteins by an elaborate biosynthetic process. The insensitivity of most Fe-S assembly and transfer assays requires high concentrations for components and places major limits on reaction complexity. Recently, fluorophore labels were shown to be effective at reporting cluster content for Fe-S proteins. Here, the incorporation of this labeling approach allowed the design and interrogation of complex Fe-S cluster biosynthetic reactions that mimic in vivo conditions. A bacterial Fe-S assembly complex, composed of the cysteine desulfurase IscS and scaffold protein IscU, was used to generate [2Fe-2S] clusters for transfer to mixtures of putative intermediate carrier and acceptor proteins. The focus of this study was to test whether the monothiol glutaredoxin, Grx4, functions as an obligate [2Fe-2S] carrier protein in the Fe-S cluster distribution network. Interestingly, [2Fe-2S] clusters generated by the IscS-IscU complex transferred to Grx4 at rates comparable to previous assays using uncomplexed IscU as a cluster source in chaperone-assisted transfer reactions. Further, we provide evidence that [2Fe-2S]-Grx4 delivers clusters to multiple classes of Fe-S targets via direct ligand exchange in a process that is both dynamic and reversible. Global fits of cluster transfer kinetics support a model in which Grx4 outcompetes terminal target proteins for IscU-bound [2Fe-2S] clusters and functions as an intermediate cluster carrier. Overall, these studies demonstrate the power of chemically conjugated fluorophore reporters for unraveling mechanistic details of biological metal cofactor assembly and distribution networks.

  9. Online clustering algorithms for radar emitter classification.

    PubMed

    Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max

    2005-08-01

    Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.

  10. Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing.

    PubMed

    Liu, Chao; Abu-Jamous, Basel; Brattico, Elvira; Nandi, Asoke K

    2017-03-01

    In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging (fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm that aims at overcoming the clustering methods selection problem as well as reliability issues in neuroimaging by means of first applying several analysis methods (three in this study) on multiple datasets and then integrating the clustering results. To validate the method, we applied it to a complex fMRI experiment involving affective processing of hundreds of music clips. We found that brain structures related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroactivity during affective processing. The comparisons between the results obtained from our method and those from each individual clustering algorithm demonstrate that our paradigm has notable advantages over traditional single clustering algorithms in being able to evidence robust connectivity patterns even with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The consensus clustering method is implemented in the R package "UNCLES" available on http://cran.r-project.org/web/packages/UNCLES/index.html .

  11. Biscarbene palladium(II) complexes. reactivity of saturated versus unsaturated N-heterocyclic carbenes.

    PubMed

    Fu, Ching-Feng; Lee, Chun-Chin; Liu, Yi-Hung; Peng, Shie-Ming; Warsink, Stefan; Elsevier, Cornelis J; Chen, Jwu-Ting; Liu, Shiuh-Tzung

    2010-03-15

    A series of designed palladium biscarbene complexes including saturated and unsaturated N-heterocyclic carbene (NHC) moieties have been prepared by the carbene transfer methods. All of these complexes have been characterized by (1)H and (13)C NMR spectroscopy as well as X-ray diffraction analysis. The reactivity of Pd-C((saturated NHC)) is distinct from that of Pd-C((unsaturated NHC)). The Pd-C((saturated NHC)) bonds are fairly stable toward reagents such as CF(3)COOH, AgBF(4) and I(2), whereas Pd-C((unsaturated NHC)) bonds are readily cleaved under the similar conditions. Notably, the catalytically activity of these palladium complexes on Suzuki-Miyaura coupling follows the order: (sat-NHC)(2)PdCl(2) > (sat-NHC)(unsat-NHC)PdCl(2 )> (unsat-NHC)(2)PdCl(2).

  12. UV-light-driven prebiotic synthesis of iron-sulfur clusters

    NASA Astrophysics Data System (ADS)

    Bonfio, Claudia; Valer, Luca; Scintilla, Simone; Shah, Sachin; Evans, David J.; Jin, Lin; Szostak, Jack W.; Sasselov, Dimitar D.; Sutherland, John D.; Mansy, Sheref S.

    2017-12-01

    Iron-sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron-sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron-sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe-2S] and [4Fe-4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron-sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron-sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron-sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron-sulfur-cluster-dependent metabolism.

  13. Towards a PTAS for the generalized TSP in grid clusters

    NASA Astrophysics Data System (ADS)

    Khachay, Michael; Neznakhina, Katherine

    2016-10-01

    The Generalized Traveling Salesman Problem (GTSP) is a combinatorial optimization problem, which is to find a minimum cost cycle visiting one point (city) from each cluster exactly. We consider a geometric case of this problem, where n nodes are given inside the integer grid (in the Euclidean plane), each grid cell is a unit square. Clusters are induced by cells `populated' by nodes of the given instance. Even in this special setting, the GTSP remains intractable enclosing the classic Euclidean TSP on the plane. Recently, it was shown that the problem has (1.5+8√2+ɛ)-approximation algorithm with complexity bound depending on n and k polynomially, where k is the number of clusters. In this paper, we propose two approximation algorithms for the Euclidean GTSP on grid clusters. For any fixed k, both algorithms are PTAS. Time complexity of the first one remains polynomial for k = O(log n) while the second one is a PTAS, when k = n - O(log n).

  14. A Novel Algorithm for Detecting Protein Complexes with the Breadth First Search

    PubMed Central

    Tang, Xiwei; Wang, Jianxin; Li, Min; He, Yiming; Pan, Yi

    2014-01-01

    Most biological processes are carried out by protein complexes. A substantial number of false positives of the protein-protein interaction (PPI) data can compromise the utility of the datasets for complexes reconstruction. In order to reduce the impact of such discrepancies, a number of data integration and affinity scoring schemes have been devised. The methods encode the reliabilities (confidence) of physical interactions between pairs of proteins. The challenge now is to identify novel and meaningful protein complexes from the weighted PPI network. To address this problem, a novel protein complex mining algorithm ClusterBFS (Cluster with Breadth-First Search) is proposed. Based on the weighted density, ClusterBFS detects protein complexes of the weighted network by the breadth first search algorithm, which originates from a given seed protein used as starting-point. The experimental results show that ClusterBFS performs significantly better than the other computational approaches in terms of the identification of protein complexes. PMID:24818139

  15. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef

    2017-03-01

    Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge ( m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.

  16. Reconstructing galaxy histories from globular clusters.

    PubMed

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  17. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  18. Abnormal assembly of annulate lamellae and nuclear pore complexes coincides with fertilization arrest at the pronuclear stage of human zygotic development.

    PubMed

    Rawe, V Y; Olmedo, S Brugo; Nodar, F N; Ponzio, R; Sutovsky, P

    2003-03-01

    The assembly of nuclear pore complexes (NPC) and their cytoplasmic stacks, annulate lamellae (AL), promote normal nucleocytoplasmic trafficking and accompany pronuclear development within the mammalian zygote. Previous studies showed that a percentage of human oocytes fertilized in vitro failed to develop normal pronuclei and cleave within 40-48 h post insemination. We hypothesized that an aberrant recruitment of NPC proteins, nucleoporins and/or NPC preassembled into AL, might accompany human fertilization arrest. We explored NPC and AL assembly in unfertilized human oocytes, and fertilized and arrested zygotes by immunofluorescence with an NPC- and AL-specific antibody, mAb 414, and by transmission electron microscopy. Major NPC or AL assembly was not observed in the unfertilized human oocytes. Once fertilization took place, the formation of AL was observed throughout the cytoplasm and near the developing pronuclei with NPC. On the contrary, NPC assembly was disrupted in the arrested zygotes, whereas AL were clustered into large sheaths. This was accompanied by the lack of NPC incorporation into the nuclear envelopes. We conclude that the aberrant assembly of NPC and AL coincides with early developmental failure in humans.

  19. Cluster formation in laser-induced ablation and evaporation of solids observed by laser ionization time-of-flight mass spectrometry and scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tench, R. J.; Balooch, M.; Bernardez, L.; Allen, Mike J.; Siekhaus, W. J.; Olander, D. R.; Wang, W.

    1990-04-01

    Laser ionization time-of-flight mass analysis (LIMA) used pulses (5ns) of a frequency-quadrupled Nd-YAG laser (266 nm) focused onto spots of 4 to 100 microns diameter to ablate material, and a reflectron time of flight tube to mass-analyze the plume. The observed mass spectra for Si, Pt, SiC, and UO 2 varied in the distribution of ablation products among atoms, molecules and clusters, depending on laser power density and target material. Cleaved surfaces of highly oriented pyrolytic graphite (HOPG) positioned at room temperature either 10 cm away from materials ablated at 10(exp -5) Torr by 1 to 3 excimer laser (308 nm) pulses of 20 ns duration or 1 m away from materials vaporized at 10(exp -8) Torr by 10 Nd-Glass laser pulses of 1 ms duration were analyzed by Scanning Tunneling Microscopy (STM) in air with angstrom resolution. Clusters up to 30 A in diameter were observed.

  20. Cellular internalization and morphological analysis after intravenous injection of a highly hydrophilic octahedral rhenium cluster complex - a new promising X-ray contrast agent.

    PubMed

    Krasilnikova, Anna A; Solovieva, Anastasiya O; Trifonova, Kristina E; Brylev, Konstantin A; Ivanov, Anton A; Kim, Sung-Jin; Shestopalov, Michael A; Fufaeva, Maria S; Shestopalov, Alexander M; Mironov, Yuri V; Poveshchenko, Alexander F; Shestopalova, Lidia V

    2016-11-01

    The octahedral cluster compound Na 2 H 8 [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] has been shown to be highly radio dense, thus becoming a promising X-ray contrast agent. It was also shown that this compound had low cytotoxic effect in vitro, low acute toxicity in vivo and was eliminated rapidly from the body through the urinary tract. The present contribution describes a more detailed cellular internalization assay and morphological analysis after intravenous injection of this hexarhenium cluster compound at different doses. The median lethal dose (LD 50 ) of intravenously administrated compound was calculated (4.67 ± 0.69 g/kg). Results of the study clearly indicated that the cluster complex H n [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] n-10 was not internalized into cells in vitro and induced only moderate morphological alterations of kidneys at high doses without any changes in morphology of liver, spleen, duodenum, or heart of mice. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity.

    PubMed

    Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B

    2018-01-01

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes

  2. Model-based clustering for RNA-seq data.

    PubMed

    Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P

    2014-01-15

    RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org

  3. Cold fronts and shocks formed by gas streams in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.

    2018-05-01

    Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.

  4. Plasmaspheric Plumes Observed by the CLUSTER and IMAGE Spacecraft

    NASA Technical Reports Server (NTRS)

    Fung, S. F.; Benson, R. F.; Garcia, L. N.; Adrian, M. L.; Sandel, B.; Goldstein, M. L.

    2008-01-01

    Global IMAGE/EUV observations have revealed complex changes in plasmaspheric structures as the plasmasphere responds to geomagnetic activity while remaining under varying degrees of influence by co-rotation, depending on the radial distance. The complex plasmaspheric dynamics, with different scales of variability, is clearly far from being well understood. There is now renewed interest in the plasmasphere due to its apparent connections with the development of the ring current and radiation belt, and loss of ionospheric plasmas. Early in the mission, the Cluster spacecraft only crossed the plasmapause (L - 4) occasionally and made measurements of the outer plasmasphere and plasmaspheric drainage plumes. The study by Darrouzet et al. [2006] provided detailed analyses of in situ Cluster observations and IMAGE EUV observations of three plasmaspheric plumes detected in April-June, 2002. Within the next couple of years, Cluster orbit will change, causing perigee to migrate to lower altitudes, and thus providing excellent opportunities to obtain more detailed measurements of the plasmasphere. In this paper, we report our analyses of the earlier Cluster-IMAGE events by incorporating the different perspectives provided by the IMAGE Radio Plasma Imager (RPI) observations. We will discuss our new understanding of the structure and dynamics of the Cluster-IMAGE events.

  5. A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks

    PubMed Central

    Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip

    2013-01-01

    Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855

  6. Coevolutionary dynamics with clustering behaviors on cyclic competition

    NASA Astrophysics Data System (ADS)

    Dong, Linrong; Yang, Guangcan

    2012-05-01

    We propose a dynamic model for describing clustering behaviors on a cyclic game, in which the same species form a cluster to compete. The rates of consuming the prey depend not only on the individual competing ability v, but also on the two interacting cluster’s sizes. The fragmentation and coagulation rates of the clusters are related to the cohesive strength among the individuals. A new parameter u is introduced to indicate the uniting degree. We find that the probability distribution of the clustering sizes is almost a power law in a large regime specified by the two parameters, which reflects the scale-free behavior in complex systems. In addition, the exponential magnitudes are mostly in the range of real social systems. Our simulation shows that clustering promotes biodiversity. At steady state, the amounts about the three species evolve tempestuously with asymmetric period; the aggregations about big size’s clusters to compete are obvious and on-off intermittence.

  7. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry.

    PubMed

    Bridwell-Rabb, Jennifer; Fox, Nicholas G; Tsai, Chi-Lin; Winn, Andrew M; Barondeau, David P

    2014-08-05

    Iron-sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe-S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe-S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe-S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich's ataxia. Previous in vitro results revealed a role for human FXN in activating the cysteine desulfurase and Fe-S cluster biosynthesis activities of the Fe-S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe-S clusters. Additional mutagenesis, enzyme kinetic, UV-visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe-S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe-S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe-S cluster biosynthesis.

  8. Human Frataxin Activates Fe–S Cluster Biosynthesis by Facilitating Sulfur Transfer Chemistry

    PubMed Central

    2015-01-01

    Iron–sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe–S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe–S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe–S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich’s ataxia. Previous in vitro results revealed a role for human FXN in activating the cysteine desulfurase and Fe–S cluster biosynthesis activities of the Fe–S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe–S clusters. Additional mutagenesis, enzyme kinetic, UV–visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe–S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe–S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe–S cluster biosynthesis. PMID:24971490

  9. Dynamically allocated virtual clustering management system

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin; Cannata, Jess

    2013-05-01

    The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.

  10. Aryl-1H-imidazole[4,5f][1,10]phenanthroline Cu(II) complexes: Electrochemical and DNA interaction studies.

    PubMed

    Rajebhosale, Bharati S; Dongre, Shivali N; Deshpande, Sameer S; Kate, Anup N; Kumbhar, Anupa A

    2017-10-01

    The reaction of aryl imidazo[4,5f] [1,10]phenanthrolines with Cu(NO 3 ) 2 lead to the formation of Cu(II) complexes of the type [Cu(L)(NO 3 ) 2 ] where L=PIP, 2-(phenyl) [4,5f] imidazo phenanthroline; HPIP=2-(2-hydroxyphenyl)imidazo [4,5f] phenanthroline and NIP=2-(naphthyl) [4,5f] imidazo phenanthroline. The interaction of these complexes with calf thymus DNA has been studied using viscosity measurements, UV-visible and fluorescence spectroscopy. Chemical nuclease activity of these complexes has also been investigated. All complexes cleave DNA via oxidative pathway involving singlet oxygen. Molecular docking studies revealed that these complexes bind to DNA through minor groove. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Purification, crystallization and X-ray diffraction analysis of a novel ring-cleaving enzyme (BoxC{sub C}) from Burkholderia xenovorans LB400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bains, Jasleen; Boulanger, Martin J., E-mail: mboulang@uvic.ca

    2008-05-01

    Preliminary X-ray diffraction studies of a novel ring-cleaving enzyme from B. xenovorans LB400 encoded by the benzoate-oxidation (box) pathway. The assimilation of aromatic compounds by microbial species requires specialized enzymes to cleave the thermodynamically stable ring. In the recently discovered benzoate-oxidation (box) pathway in Burkholderia xenovorans LB400, this is accomplished by a novel dihydrodiol lyase (BoxC{sub C}). Sequence analysis suggests that BoxC{sub C} is part of the crotonase superfamily but includes an additional uncharacterized region of approximately 115 residues that is predicted to mediate ring cleavage. Processing of X-ray diffraction data to 1.5 Å resolution revealed that BoxC{sub C} crystallizedmore » with two molecules in the asymmetric unit of the P2{sub 1}2{sub 1}2{sub 1} space group, with a solvent content of 47% and a Matthews coefficient of 2.32 Å{sup 3} Da{sup −1}. Selenomethionine BoxC{sub C} has been purified and crystals are currently being refined for anomalous dispersion studies.« less

  12. Fibers in the NGC 1333 proto-cluster

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Tafalla, M.; Alves, J.

    2017-10-01

    Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC 1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the position-position-velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC 1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments. Based on observations carried out under project number 169-11 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.Molecular line observations (spectral cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A123

  13. Quantum mechanical design and structures of hexanuclear sandwich complex and its multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 1-3).

    PubMed

    Wang, Shu-Jian; Li, Ying; Wu, Di; Wang, Yin-Feng; Li, Zhi-Ru

    2012-09-13

    By means of density functional theory, a hexanuclear sandwich complex [18]annulene-Li6-[18]annulene which consists of a central Li6 hexagon ring and large face-capping ligands, [18]annulene, is designed and investigated. The large interaction energy and HOMO-LUMO gap suggest that this novel charge-separated complex is highly stable and may be experimentally synthesized. In addition, the stability found in the [18]annulene-Li6-[18]annulene complex extends to multidecker sandwich clusters (Li6)n([18]annulene)n+1 (n = 2-3). The energy gain upon addition of a [18]annulene-Li6 unit to (Li6)n-1([18]annulene)n is pretty large (96.97-98.22 kcal/mol), indicating that even larger multideckers will also be very stable. Similar to ferrocene, such a hexanuclear sandwich complex could be considered as a versatile building block to find potential applications in different areas of chemistry, such as nanoscience and material science.

  14. Assembly and Transfer of Iron–Sulfur Clusters in the Plastid

    PubMed Central

    Lu, Yan

    2018-01-01

    Iron-Sulfur (Fe-S) clusters and proteins are essential to many growth and developmental processes. In plants, they exist in the plastids, mitochondria, cytosol, and nucleus. Six types of Fe-S clusters are found in the plastid: classic 2Fe-2S, NEET-type 2Fe-2S, Rieske-type 2Fe-2S, 3Fe-4S, 4Fe-4S, and siroheme 4Fe-4S. Classic, NEET-type, and Rieske-type 2Fe-2S clusters have the same 2Fe-2S core; similarly, common and siroheme 4Fe-4S clusters have the same 4Fe-4S core. Plastidial Fe-S clusters are assembled by the sulfur mobilization (SUF) pathway, which contains cysteine desulfurase (EC 2.8.1.7), sulfur transferase (EC 2.8.1.3), Fe-S scaffold complex, and Fe-S carrier proteins. The plastidial cysteine desulfurase-sulfur transferase-Fe-S-scaffold complex system is responsible for de novo assembly of all plastidial Fe-S clusters. However, different types of Fe-S clusters are transferred to recipient proteins via respective Fe-S carrier proteins. This review focuses on recent discoveries on the molecular functions of different assembly and transfer factors involved in the plastidial SUF pathway. It also discusses potential points for regulation of the SUF pathway, relationships among the plastidial, mitochondrial, and cytosolic Fe-S assembly and transfer pathways, as well as several open questions about the carrier proteins for Rieske-type 2Fe-2S, NEET-type 2Fe-2S, and 3F-4S clusters. PMID:29662496

  15. Progeny Clustering: A Method to Identify Biological Phenotypes

    PubMed Central

    Hu, Chenyue W.; Kornblau, Steven M.; Slater, John H.; Qutub, Amina A.

    2015-01-01

    Estimating the optimal number of clusters is a major challenge in applying cluster analysis to any type of dataset, especially to biomedical datasets, which are high-dimensional and complex. Here, we introduce an improved method, Progeny Clustering, which is stability-based and exceptionally efficient in computing, to find the ideal number of clusters. The algorithm employs a novel Progeny Sampling method to reconstruct cluster identity, a co-occurrence probability matrix to assess the clustering stability, and a set of reference datasets to overcome inherent biases in the algorithm and data space. Our method was shown successful and robust when applied to two synthetic datasets (datasets of two-dimensions and ten-dimensions containing eight dimensions of pure noise), two standard biological datasets (the Iris dataset and Rat CNS dataset) and two biological datasets (a cell phenotype dataset and an acute myeloid leukemia (AML) reverse phase protein array (RPPA) dataset). Progeny Clustering outperformed some popular clustering evaluation methods in the ten-dimensional synthetic dataset as well as in the cell phenotype dataset, and it was the only method that successfully discovered clinically meaningful patient groupings in the AML RPPA dataset. PMID:26267476

  16. Abelian non-global logarithms from soft gluon clustering

    NASA Astrophysics Data System (ADS)

    Kelley, Randall; Walsh, Jonathan R.; Zuberi, Saba

    2012-09-01

    Most recombination-style jet algorithms cluster soft gluons in a complex way. This leads to previously identified correlations in the soft gluon phase space and introduces logarithmic corrections to jet cross sections, which are known as clustering logarithms. The leading Abelian clustering logarithms occur at least at next-to leading logarithm (NLL) in the exponent of the distribution. Using the framework of Soft Collinear Effective Theory (SCET), we show that new clustering effects contributing at NLL arise at each order. While numerical resummation of clustering logs is possible, it is unlikely that they can be analytically resummed to NLL. Clustering logarithms make the anti-kT algorithm theoretically preferred, for which they are power suppressed. They can arise in Abelian and non-Abelian terms, and we calculate the Abelian clustering logarithms at O ( {α_s^2} ) for the jet mass distribution using the Cambridge/Aachen and kT algorithms, including jet radius dependence, which extends previous results. We find that clustering logarithms can be naturally thought of as a class of non-global logarithms, which have traditionally been tied to non-Abelian correlations in soft gluon emission.

  17. Monothiol glutaredoxins and A-type proteins: partners in Fe-S cluster trafficking.

    PubMed

    Mapolelo, Daphne T; Zhang, Bo; Randeniya, Sajini; Albetel, Angela-Nadia; Li, Haoran; Couturier, Jérémy; Outten, Caryn E; Rouhier, Nicolas; Johnson, Michael K

    2013-03-07

    Monothiol glutaredoxins (Grxs) are proposed to function in Fe-S cluster storage and delivery, based on their ability to exist as apo monomeric forms and dimeric forms containing a subunit-bridging [Fe(2)S(2)](2+) cluster, and to accept [Fe(2)S(2)](2+) clusters from primary scaffold proteins. In addition yeast cytosolic monothiol Grxs interact with Fra2 (Fe repressor of activation-2), to form a heterodimeric complex with a bound [Fe(2)S(2)](2+) cluster that plays a key role in iron sensing and regulation of iron homeostasis. In this work, we report on in vitro UV-visible CD studies of cluster transfer between homodimeric monothiol Grxs and members of the ubiquitous A-type class of Fe-S cluster carrier proteins ((Nif)IscA and SufA). The results reveal rapid, unidirectional, intact and quantitative cluster transfer from the [Fe(2)S(2)](2+) cluster-bound forms of A. thaliana GrxS14, S. cerevisiae Grx3, and A. vinelandii Grx-nif homodimers to A. vinelandii(Nif)IscA and from A. thaliana GrxS14 to A. thaliana SufA1. Coupled with in vivo evidence for interaction between monothiol Grxs and A-type Fe-S cluster carrier proteins, the results indicate that these two classes of proteins work together in cellular Fe-S cluster trafficking. However, cluster transfer is reversed in the presence of Fra2, since the [Fe(2)S(2)](2+) cluster-bound heterodimeric Grx3-Fra2 complex can be formed by intact [Fe(2)S(2)](2+) cluster transfer from (Nif)IscA. The significance of these results for Fe-S cluster biogenesis or repair and the cellular regulation of the Fe-S cluster status are discussed.

  18. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity

    DOE PAGES

    Semin, B. K.; Davletshina, L. N.; Seibert, M.; ...

    2017-11-11

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less

  19. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semin, B. K.; Davletshina, L. N.; Seibert, M.

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less

  20. Copper chalcogenide clusters stabilized with ferrocene-based diphosphine ligands.

    PubMed

    Khadka, Chhatra B; Najafabadi, Bahareh Khalili; Hesari, Mahdi; Workentin, Mark S; Corrigan, John F

    2013-06-17

    The redox-active diphosphine ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf) has been used to stabilize the copper(I) chalcogenide clusters [Cu12(μ4-S)6(μ-dppf)4] (1), [Cu8(μ4-Se)4(μ-dppf)3] (2), [Cu4(μ4-Te)(μ4-η(2)-Te2)(μ-dppf)2] (3), and [Cu12(μ5-Te)4(μ8-η(2)-Te2)2(μ-dppf)4] (4), prepared by the reaction of the copper(I) acetate coordination complex (dppf)CuOAc (5) with 0.5 equiv of E(SiMe3)2 (E = S, Se, Te). Single-crystal X-ray analyses of complexes 1-4 confirm the presence of {Cu(2x)E(x)} cores stabilized by dppf ligands on their surfaces, where the bidentate ligands adopt bridging coordination modes. The redox chemistry of cluster 1 was examined using cyclic voltammetry and compared to the electrochemistry of the free ligand dppf and the corresponding copper(I) acetate coordination complex 5. Cluster 1 shows the expected consecutive oxidations of the ferrocene moieties, Cu(I) centers, and phosphine of the dppf ligand.

  1. Globular cluster chemistry in fast-rotating dwarf stars belonging to intermediate-age open clusters

    NASA Astrophysics Data System (ADS)

    Pancino, Elena

    2018-06-01

    The peculiar chemistry observed in multiple populations of Galactic globular clusters is not generally found in other systems such as dwarf galaxies and open clusters, and no model can currently fully explain it. Exploring the boundaries of the multiple-population phenomenon and the variation of its extent in the space of cluster mass, age, metallicity, and compactness has proven to be a fruitful line of investigation. In the framework of a larger project to search for multiple populations in open clusters that is based on literature and survey data, I found peculiar chemical abundance patterns in a sample of intermediate-age open clusters with publicly available data. More specifically, fast-rotating dwarf stars (v sin i ≥ 50 km s-1) that belong to four clusters (Pleiades, Ursa Major, Come Berenices, and Hyades) display a bimodality in either [Na/Fe] or [O/Fe], or both, with the low-Na and high-O peak more populated than the high-Na and low-O peak. Additionally, two clusters show a Na-O anti-correlation in the fast-rotating stars, and one cluster shows a large [Mg/Fe] variation in stars with high [Na/Fe], reaching the extreme Mg depletion observed in NGC 2808. Even considering that the sample sizes are small, these patterns call for attention in the light of a possible connection with the multiple population phenomenon of globular clusters. The specific chemistry observed in these fast-rotating dwarf stars is thought to be produced by a complex interplay of different diffusion and mixing mechanisms, such as rotational mixing and mass loss, which in turn are influenced by metallicity, binarity, mass, age, variability, and so on. However, with the sample in hand, it was not possible to identify which stellar parameters cause the observed Na and O bimodality and Na-O anti-correlation. This suggests that other stellar properties might be important in addition to stellar rotation. Stellar binarity might influence the rotational properties and enhance rotational

  2. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons.

    PubMed

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2018-05-01

    This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the

  3. The first octahedral cluster complexes with terminal formate ligands: synthesis, structure, and properties of K4[Re6S8(HCOO)6] and Cs4[Re6S8(HCOO)6].

    PubMed

    Brylev, Konstantin A; Mironov, Yuri V; Kozlova, Svetlana G; Fedorov, Vladimir E; Kim, Sung-Jin; Pietzsch, Hans-Jürgen; Stephan, Holger; Ito, Akitaka; Ishizaka, Shoji; Kitamura, Noboru

    2009-03-02

    The hexarhenium anionic cluster complex with terminal formate ligands [Re6S8(HCOO)6]4- was obtained by the room-temperature reaction between [Re6S8(OH)6]4- and formic acid in an aqueous solution. The cluster was crystallized as a potassium or cesium salt and characterized by X-ray single-crystal diffraction and elemental analyses, IR, 1H NMR, UV/vis, and luminescence spectroscopies. In particular, the emission quantum yield of the potassium salt of the Re6 cluster anion in the solid phase was determined for the first time. The electronic structures of [Re6S8(HCOO)6]4- and [Re6S8(OH)6]4- were also elucidated by DFT calculations.

  4. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery

    PubMed Central

    Ranatunga, Wasantha; Gakh, Oleksandr; Galeano, Belinda K.; Smith, Douglas Y.; Söderberg, Christopher A. G.; Al-Karadaghi, Salam; Thompson, James R.; Isaya, Grazia

    2016-01-01

    The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly. PMID:26941001

  5. Structural and Functional Characterization of an Archaeal Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Complex for Antiviral Defense (CASCADE)*

    PubMed Central

    Lintner, Nathanael G.; Kerou, Melina; Brumfield, Susan K.; Graham, Shirley; Liu, Huanting; Naismith, James H.; Sdano, Matthew; Peng, Nan; She, Qunxin; Copié, Valérie; Young, Mark J.; White, Malcolm F.; Lawrence, C. Martin

    2011-01-01

    In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The Escherichia coli “CRISPR-associated complex for antiviral defense” (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2-Cas5a complex is sufficient to bind crRNA and complementary ssDNA. The structure of Csa2 reveals a crescent-shaped structure unexpectedly composed of a modified RNA-recognition motif and two additional domains present as insertions in the RNA-recognition motif. Conserved residues indicate potential crRNA- and target DNA-binding sites, and the H160A variant shows significantly reduced affinity for crRNA. We propose a general subunit architecture for CASCADE in other bacteria and Archaea. PMID:21507944

  6. Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE).

    PubMed

    Lintner, Nathanael G; Kerou, Melina; Brumfield, Susan K; Graham, Shirley; Liu, Huanting; Naismith, James H; Sdano, Matthew; Peng, Nan; She, Qunxin; Copié, Valérie; Young, Mark J; White, Malcolm F; Lawrence, C Martin

    2011-06-17

    In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The Escherichia coli "CRISPR-associated complex for antiviral defense" (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2-Cas5a complex is sufficient to bind crRNA and complementary ssDNA. The structure of Csa2 reveals a crescent-shaped structure unexpectedly composed of a modified RNA-recognition motif and two additional domains present as insertions in the RNA-recognition motif. Conserved residues indicate potential crRNA- and target DNA-binding sites, and the H160A variant shows significantly reduced affinity for crRNA. We propose a general subunit architecture for CASCADE in other bacteria and Archaea.

  7. Grid Computing Environment using a Beowulf Cluster

    NASA Astrophysics Data System (ADS)

    Alanis, Fransisco; Mahmood, Akhtar

    2003-10-01

    Custom-made Beowulf clusters using PCs are currently replacing expensive supercomputers to carry out complex scientific computations. At the University of Texas - Pan American, we built a 8 Gflops Beowulf Cluster for doing HEP research using RedHat Linux 7.3 and the LAM-MPI middleware. We will describe how we built and configured our Cluster, which we have named the Sphinx Beowulf Cluster. We will describe the results of our cluster benchmark studies and the run-time plots of several parallel application codes that were compiled in C on the cluster using the LAM-XMPI graphics user environment. We will demonstrate a "simple" prototype grid environment, where we will submit and run parallel jobs remotely across multiple cluster nodes over the internet from the presentation room at Texas Tech. University. The Sphinx Beowulf Cluster will be used for monte-carlo grid test-bed studies for the LHC-ATLAS high energy physics experiment. Grid is a new IT concept for the next generation of the "Super Internet" for high-performance computing. The Grid will allow scientist worldwide to view and analyze huge amounts of data flowing from the large-scale experiments in High Energy Physics. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, and data sources.

  8. Robust root clustering for linear uncertain systems using generalized Lyapunov theory

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1993-01-01

    Consideration is given to the problem of matrix root clustering in subregions of a complex plane for linear state space models with real parameter uncertainty. The nominal matrix root clustering theory of Gutman & Jury (1981) using the generalized Liapunov equation is extended to the perturbed matrix case, and bounds are derived on the perturbation to maintain root clustering inside a given region. The theory makes it possible to obtain an explicit relationship between the parameters of the root clustering region and the uncertainty range of the parameter space.

  9. Determining the size dependence of structural properties of clusters

    NASA Astrophysics Data System (ADS)

    Dong, Yi; Springborg, Michael

    2012-12-01

    Problems related to the determination of the structure of the global total-energy minimum for clusters are discussed through three examples. For isolated gold clusters it is shown that low-symmetry structures result due to covalent bonding. Subsequently, SiNGeN and (HAlO)N clusters are treated for which the occurrence of so called homotops leads to additional computational complexity. For the former it is found that the structures are not directly related to those of the pure monatomic clusters, and for the latter the results are shown to be in agreement with available experimental information on nanostructured HAlO. In order to illustrate and analyze the results, various descriptors are introduced and applied.

  10. Word-initial rhotic clusters in typically developing children: European Portuguese.

    PubMed

    Ramalho, Ana Margarida; Freitas, M João

    2018-01-01

    Rhotic clusters are complex structures segmentally and prosodically and are frequently one of the last structures acquired by Portuguese-speaking children. This paper describes cross-sectional data for word-initial (WI) rhotic tap clusters in typically developing 3-4- and 5-year-olds in Portugal. Additional information is provided on WI /l/ as a singleton and in clusters. A native speaker audio-recorded and transcribed single words in a story-telling task. Results for WI rhotic clusters show an age effect consistent with previous research on European Portuguese. Singleton /l/ was in advance of /l/-clusters as expected, but the tap clusters were in advance of the /l/-clusters, possibly reflecting the velarized characteristics of the lateral. The prosodic variables word stress and word length were relevant for the WI rhotic clusters: shorter words and stressed syllables showed higher accuracy. Finally, mismatches ('errors') mainly reflected negative structural constraints (deletion of C2 and epenthesis) rather than segmental constraints (substitutions).

  11. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Data Analysis and Visualization; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii)more » evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.« less

  12. A phosphorescent silver(I)-gold (I) cluster complex that specifically lights up the nucleolus of living cells with FLIM imaging.

    PubMed

    Chen, Min; Lei, Zhen; Feng, Wei; Li, Chunyan; Wang, Quan-Ming; Li, Fuyou

    2013-06-01

    The phosphorescent silver(I)-gold(I) cluster complex [CAu6Ag2(dppy)6](BF4)4 (N1) selectively stains the nucleolus, with a much lower uptake in the nucleus and cytoplasm, and exhibits excellent photostability. This Ag-Au cluster, which has a photoluminescent lifetime of microseconds, is particularly attractive as a probe in applications of time-gated microscopy. Investigation of the pathway of cellular entry indicated that N1 permeates the outer membrane and nuclear membrane of living cells through an energy-dependent and non-endocytic route within 10 min. High concentrations of N1 in the nucleolus have been quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy coupled with an energy dispersive X-ray analysis (TEM-EDXA), which also helped to elucidate the mechanism of the specific staining. Intracellular selective staining may be correlated with the microenvironment of the nucleolus, which is consistent with experiments conducted at different phases of the cell cycle. These results prove that N1 is a very attractive phosphorescent staining reagent for visualizing the nucleolus of living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Lifetime of Major Histocompatibility Complex Class-I Membrane Clusters Is Controlled by the Actin Cytoskeleton

    PubMed Central

    Lavi, Yael; Gov, Nir; Edidin, Michael; Gheber, Levi A.

    2012-01-01

    Lateral heterogeneity of cell membranes has been demonstrated in numerous studies showing anomalous diffusion of membrane proteins; it has been explained by models and experiments suggesting dynamic barriers to free diffusion, that temporarily confine membrane proteins into microscopic patches. This picture, however, comes short of explaining a steady-state patchy distribution of proteins, in face of the transient opening of the barriers. In our previous work we directly imaged persistent clusters of MHC-I, a type I transmembrane protein, and proposed a model of a dynamic equilibrium between proteins newly delivered to the cell surface by vesicle traffic, temporary confinement by dynamic barriers to lateral diffusion, and dispersion of the clusters by diffusion over the dynamic barriers. Our model predicted that the clusters are dynamic, appearing when an exocytic vesicle fuses with the plasma membrane and dispersing with a typical lifetime that depends on lateral diffusion and the dynamics of barriers. In a subsequent work, we showed this to be the case. Here we test another prediction of the model, and show that changing the stability of actin barriers to lateral diffusion changes cluster lifetimes. We also develop a model for the distribution of cluster lifetimes, consistent with the function of barriers to lateral diffusion in maintaining MHC-I clusters. PMID:22500754

  14. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    NASA Astrophysics Data System (ADS)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  15. The methodology of multi-viewpoint clustering analysis

    NASA Technical Reports Server (NTRS)

    Mehrotra, Mala; Wild, Chris

    1993-01-01

    One of the greatest challenges facing the software engineering community is the ability to produce large and complex computer systems, such as ground support systems for unmanned scientific missions, that are reliable and cost effective. In order to build and maintain these systems, it is important that the knowledge in the system be suitably abstracted, structured, and otherwise clustered in a manner which facilitates its understanding, manipulation, testing, and utilization. Development of complex mission-critical systems will require the ability to abstract overall concepts in the system at various levels of detail and to consider the system from different points of view. Multi-ViewPoint - Clustering Analysis MVP-CA methodology has been developed to provide multiple views of large, complicated systems. MVP-CA provides an ability to discover significant structures by providing an automated mechanism to structure both hierarchically (from detail to abstract) and orthogonally (from different perspectives). We propose to integrate MVP/CA into an overall software engineering life cycle to support the development and evolution of complex mission critical systems.

  16. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    NASA Astrophysics Data System (ADS)

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  17. Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking.

    PubMed

    Makeneni, Spandana; Thieker, David F; Woods, Robert J

    2018-03-26

    In this work, we developed a computational protocol that employs multiple molecular docking experiments, followed by pose clustering, molecular dynamic simulations (10 ns), and energy rescoring to produce reliable 3D models of antibody-carbohydrate complexes. The protocol was applied to 10 antibody-carbohydrate co-complexes and three unliganded (apo) antibodies. Pose clustering significantly reduced the number of potential poses. For each system, 15 or fewer clusters out of 100 initial poses were generated and chosen for further analysis. Molecular dynamics (MD) simulations allowed the docked poses to either converge or disperse, and rescoring increased the likelihood that the best-ranked pose was an acceptable pose. This approach is amenable to automation and can be a valuable aid in determining the structure of antibody-carbohydrate complexes provided there is no major side chain rearrangement or backbone conformational change in the H3 loop of the CDR regions. Further, the basic protocol of docking a small ligand to a known binding site, clustering the results, and performing MD with a suitable force field is applicable to any protein ligand system.

  18. Lexical frequency and voice assimilation in complex words in Dutch

    NASA Astrophysics Data System (ADS)

    Ernestus, Mirjam; Lahey, Mybeth; Verhees, Femke; Baayen, Harald

    2004-05-01

    Words with higher token frequencies tend to have more reduced acoustic realizations than lower frequency words (e.g., Hay, 2000; Bybee, 2001; Jurafsky et al., 2001). This study documents frequency effects for regressive voice assimilation (obstruents are voiced before voiced plosives) in Dutch morphologically complex words in the subcorpus of read-aloud novels in the corpus of spoken Dutch (Oostdijk et al., 2002). As expected, the initial obstruent of the cluster tends to be absent more often as lexical frequency increases. More importantly, as frequency increases, the duration of vocal-fold vibration in the cluster decreases, and the duration of the bursts in the cluster increases, after partialing out cluster duration. This suggests that there is less voicing for higher-frequency words. In fact, phonetic transcriptions show regressive voice assimilation for only half of the words and progressive voice assimilation for one third. Interestingly, the progressive voice assimilation observed for higher-frequency complex words renders these complex words more similar to monomorphemic words: Dutch monomorphemic words typically contain voiceless obstruent clusters (Zonneveld, 1983). Such high-frequency complex words may therefore be less easily parsed into their constituent morphemes (cf. Hay, 2000), favoring whole word lexical access (Bertram et al., 2000).

  19. Interaction of hydrogen with palladium clusters deposited on graphene

    NASA Astrophysics Data System (ADS)

    Alonso, Julio A.; Granja, Alejandra; Cabria, Iván; López, María J.

    2015-12-01

    Hydrogen adsorption on nanoporous carbon materials is a promising technology for hydrogen storage. However, pure carbon materials do not meet the technological requirements due to the week binding of hydrogen to the pore walls. Experimental work has shown that doping with Pd atoms and clusters enhances the storage capacity of porous carbons. Therefore, we have investigated the role played by the Pd dopant on the enhancement mechanisms. By performing density functional calculations, we have found that hydrogen adsorbs on Pd clusters deposited on graphene following two channels, molecular adsorption and dissociative chemisorption. However, desorption of Pd-H complexes competes with desorption of hydrogen, and consequently desorption of Pd-H complexes would spoil the beneficial effect of the dopant. As a way to overcome this difficulty, Pd atoms and clusters can be anchored to defects of the graphene layer, like graphene vacancies. The competition between molecular adsorption and dissociative chemisorption of H2 on Pd6 anchored on a graphene vacancy has been studied in detail.

  20. Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.

    PubMed

    Gomez, Mauricio; Pérez-Gallardo, Rocío V; Sánchez, Luis A; Díaz-Pérez, Alma L; Cortés-Rojo, Christian; Meza Carmen, Victor; Saavedra-Molina, Alfredo; Lara-Romero, Javier; Jiménez-Sandoval, Sergio; Rodríguez, Francisco; Rodríguez-Zavala, José S; Campos-García, Jesús

    2014-01-01

    Biogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe-S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe-S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe-S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.

  1. Effects of additional data on Bayesian clustering.

    PubMed

    Yamazaki, Keisuke

    2017-10-01

    Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Formation of Clustered DNA Damage after High-LET Irradiation: A Review

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Georgakilas, Alexandros G.

    2008-01-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.

  3. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly

    PubMed Central

    Cook, Jeremy D.; Kondapalli, Kalyan C.; Rawat, Swati; Childs, William C.; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L.

    2010-01-01

    Frataxin, a conserved nuclear encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich’s ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two: Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone n the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to better understand the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry (ITC). Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into a Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly. PMID:20815377

  4. Molecular Details of the Yeast Frataxin-Isu1 Interaction during Mitochondrial Fe-S Cluster Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.; Kondapalli, K; Rawat, S

    2010-01-01

    Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural modulemore » to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.« less

  5. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly.

    PubMed

    Cook, Jeremy D; Kondapalli, Kalyan C; Rawat, Swati; Childs, William C; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L

    2010-10-12

    Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.

  6. Facile Syntheses of Monodisperse Ultra-Small Au Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertino, Massimo F.; Sun, Zhong-Ming; Zhang, Rui

    2006-11-02

    During our effort to synthesize the tetrahedral Au20 cluster, we found a facile synthetic route to prepare monodisperse suspensions of ultra-small Au clusters AuN (N<12) using diphosphine ligands. In our monophasic and single-pot synthesis, a Au precursor ClAu(I)PPh3 and a bidentate phosphine ligand P(Ph)2(CH2)MP(Ph)2 (Ph = phenyl) are dissolved in an organic solvent. Au(I) is reduced slowly by a borane-tert-butylamine complex to form Au clusters coordinated by the diphosphine ligand. The Au clusters are characterized by both high resolution mass spectrometry and UV-Vis absorption spectroscopy. We found that the mean cluster size obtained depends on the chain length M ofmore » the ligand. In particular, a single monodispersed Au11 cluster is obtained with the P(Ph)2(CH2)3P(Ph)2 ligand, whereas P(Ph)2(CH2)MP(Ph)2 ligands with M = 5 and 6 yield Au10 and Au8 clusters. The simplicity of our synthetic method makes it suitable for large-scale production of nearly monodisperse ultrasmall Au clusters. It is suggested that diphosphines provide a set of flexible ligands to allow size-controlled synthesis of Au nanoparticles.« less

  7. Nickel(II) and cobalt(II) complexes of lidocaine: Synthesis, structure and comparative in vitro evaluations of biological perspectives.

    PubMed

    Tabrizi, Leila; McArdle, Patrick; Erxleben, Andrea; Chiniforoshan, Hossein

    2015-10-20

    Metal complexes of the type [Ni(LC)2(X)2], 1 and 2, [Co(LC)2(X)2], 3 and 4 (LC: lidocaine, X = dca (dicyanamide), 1 and 3, X = NCS(-), 2 and 4) have been synthesized and characterized. The geometries of 1-4 were confirmed by single crystal X-ray crystallography. The complexes are water soluble and stable in aqueous solution. The interaction of 1-4 with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated using UV-visible and fluorescence spectrophotometric methods. A gel electrophoresis assay demonstrated that the complexes cleave pUC19 plasmid DNA. The in vitro free radical scavenging, antimicrobial activity and cytotoxic potential of all the complexes were examined. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. The Stormy Life of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Rudnick, Lawrence

    2018-01-01

    Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.

  9. Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds

    NASA Astrophysics Data System (ADS)

    Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.

    In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.

  10. Identifying protein complexes based on brainstorming strategy.

    PubMed

    Shen, Xianjun; Zhou, Jin; Yi, Li; Hu, Xiaohua; He, Tingting; Yang, Jincai

    2016-11-01

    Protein complexes comprising of interacting proteins in protein-protein interaction network (PPI network) play a central role in driving biological processes within cells. Recently, more and more swarm intelligence based algorithms to detect protein complexes have been emerging, which have become the research hotspot in proteomics field. In this paper, we propose a novel algorithm for identifying protein complexes based on brainstorming strategy (IPC-BSS), which is integrated into the main idea of swarm intelligence optimization and the improved K-means algorithm. Distance between the nodes in PPI network is defined by combining the network topology and gene ontology (GO) information. Inspired by human brainstorming process, IPC-BSS algorithm firstly selects the clustering center nodes, and then they are separately consolidated with the other nodes with short distance to form initial clusters. Finally, we put forward two ways of updating the initial clusters to search optimal results. Experimental results show that our IPC-BSS algorithm outperforms the other classic algorithms on yeast and human PPI networks, and it obtains many predicted protein complexes with biological significance. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. T7 RNA Polymerase Functions In Vitro without Clustering

    PubMed Central

    Finan, Kieran; Torella, Joseph P.; Kapanidis, Achillefs N.; Cook, Peter R.

    2012-01-01

    Many nucleic acid polymerases function in clusters known as factories. We investigate whether the RNA polymerase (RNAP) of phage T7 also clusters when active. Using ‘pulldowns’ and fluorescence correlation spectroscopy we find that elongation complexes do not interact in vitro with a Kd<1 µM. Chromosome conformation capture also reveals that genes located 100 kb apart on the E. coli chromosome do not associate more frequently when transcribed by T7 RNAP. We conclude that if clustering does occur in vivo, it must be driven by weak interactions, or mediated by a phage-encoded protein. PMID:22768341

  12. Hairpin-shaped tetranuclear palladium(II) complex: synthesis, crystal structure, DNA binding and cytotoxicity activity studies.

    PubMed

    Gao, En-Jun; Wang, Ke-Hua; Zhu, Ming-Chang; Liu, Lei

    2010-07-01

    A novel tetranuclear palladium(II) complex [Pd(4)(phen)(4) (micro-pydc)(4)].10H(2)O (phen = 1,10-phenanthroline, pydc = pyridine-3,4-dicarboxylate) has been synthesized and characterized. In the tetranuclear complex, two pairs of dipalladated [Pd(phen)] moieties are bridged together by four pydc, presenting a hairpin molecular shape. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by UV spectrum and fluorescence spectrum. All the results indicate that the complex bind to DNA in an intercalative mode and considerating the molecular shape and size, the dipalladated phenanthroline moieties bisintercalate to the base pairs of DNA. Agarose gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR322 plasmid DNA. Cytotoxic activity studies show the complex exhibited good cytotoxic activity against four different cancer cell lines. Crown Copyright (c) 2010. Published by Elsevier Masson SAS. All rights reserved.

  13. The structural and electronic properties of cleaved silicon (111) surfaces following adsorption of silver

    NASA Astrophysics Data System (ADS)

    Le Lay, G.; Chauvet, A.; Manneville, M.; Kern, R.

    Silver overlayers for coverages ranging from zero to several monolayers are evaporated on vacuum-cleaved (111) silicon surfaces and carefully examined using low-energy electron diffraction (diffraction patterns and I(v) curves), and Auger electron spectroscopy (condensation/desorption curves), with the aim of establishing a closer correlation between the adsorption process, the different superlattices observed (i.e. 7 × 7-R(±19°1), 3 × 3-R(30° ), 3 × 1 and 6 × 1), the growth mechanism of the deposit on the one hand and the electronic properties of the system recently probed using photoemission yield spectroscopy on the other hand. These new results basically confirm the direct relations we had previously shown between the growth mode as monitored with electron diffraction LEED, RHEED, TED and Auger spectroscopy, and the electronic structures as investigated by low energy electron spectroscopy, but permit a deeper insight into the adsorption process at low coverage. At room temperature on the 2 × 1 cleavage structure where the silver-silicon interaction is weak, the adsorbed phase is completed at about 6/7 of a monolayer (θ ≃ 6/7) and a local arrangement of vacancies in the adlayer yields the 7 superstructure, while little effect on the silicon dangling bonds is noticed, but when silver two-dimensional islands (θ > 6/7) growing in a quasi layer fashion have covered the substrate surface. At higher temperatures three-dimensional growth of crystallites occurs after completion of the 3 phase whose saturation coverage increases with condensation temperatures, maxima ranging from θ ˜ 0.7 to θ ˜ 1.0 ( T ˜ 500°C) for different cleaves. This Si(111) 3-Ag surface exhibits again the same dangling bond peak as a clean 2 × 1 Si surface, despite the fact that the interaction between Ag and Si is now rather strong, as is confirmed by desorption experiments ( T ˜ 600°C). We thus critically discuss the geometrical models of this 3 phase previously devised and

  14. Multi scales based sparse matrix spectral clustering image segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  15. ADAM13 Induces Cranial Neural Crest by Cleaving Class B Ephrins and Regulating Wnt Signaling

    PubMed Central

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; White, Judith M.; DeSimone, Douglas W.

    2010-01-01

    SUMMARY The cranial neural crest (CNC) are multipotent embryonic cells that contribute to craniofacial structures and other cells and tissues of the vertebrate head. During embryogenesis, CNC is induced at the neural plate boundary through the interplay of several major signaling pathways. Here we report that the metalloproteinase activity of ADAM13 is required for early induction of CNC in Xenopus. In both cultured cells and X. tropicalis embryos, membrane-bound Ephrins (Efns) B1 and B2 were identified as substrates for ADAM13. ADAM13 upregulates canonical Wnt signaling and early expression of the transcription factor snail2, whereas EfnB1 inhibits the canonical Wnt pathway and snail2 expression. We propose that by cleaving class B Efns, ADAM13 promotes canonical Wnt signaling and early CNC induction. PMID:20708595

  16. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  17. Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena.

    PubMed

    De Domenico, Manlio

    2017-04-21

    Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.

  18. Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio

    2017-04-01

    Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.

  19. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study

    NASA Astrophysics Data System (ADS)

    Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam

    2018-03-01

    In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.

  20. The ErpA/NfuA complex builds an oxidation-resistant Fe-S cluster delivery pathway.

    PubMed

    Py, Béatrice; Gerez, Catherine; Huguenot, Allison; Vidaud, Claude; Fontecave, Marc; Ollagnier de Choudens, Sandrine; Barras, Frédéric

    2018-05-18

    Fe-S cluster-containing proteins occur in most organisms, wherein they assist in myriad processes from metabolism to DNA repair via gene expression and bioenergetic processes. Here, we used both in vitro and in vivo methods to investigate the capacity of the four Fe-S carriers, NfuA, SufA, ErpA, and IscA, to fulfill their targeting role under oxidative stress. Likewise, Fe-S clusters exhibited varying half-lives, depending on the carriers they were bound to; an NfuA-bound Fe-S cluster was more stable ( t ½ = 100 min) than those bound to SufA ( t ½ = 55 min), ErpA ( t ½ = 54 min), or IscA ( t ½ = 45 min). Surprisingly, the presence of NfuA further enhanced stability of the ErpA-bound cluster to t ½ = 90 min. Using genetic and plasmon surface resonance analyses, we showed that NfuA and ErpA interacted directly with client proteins, whereas IscA or SufA did not. Moreover, NfuA and ErpA interacted with one another. Given all of these observations, we propose an architecture of the Fe-S delivery network in which ErpA is the last factor that delivers cluster directly to most if not all client proteins. NfuA is proposed to assist ErpA under severely unfavorable conditions. A comparison with the strategy employed in yeast and eukaryotes is discussed. © 2018 Py et al.

  1. RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation.

    PubMed

    Gill, Tina; Cai, Ti; Aulds, Jason; Wierzbicki, Sara; Schmitt, Mark E

    2004-02-01

    RNase mitochondrial RNA processing (RNase MRP) mutants have been shown to have an exit-from-mitosis defect that is caused by an increase in CLB2 mRNA levels, leading to increased Clb2p (B-cyclin) levels and a resulting late anaphase delay. Here we describe the molecular defect behind this delay. CLB2 mRNA normally disappears rapidly as cells complete mitosis, but the level remains high in RNase MRP mutants. This is in direct contrast to other exit-from-mitosis mutants and is the result of an increase in CLB2 mRNA stability. We found that highly purified RNase MRP cleaved the 5' untranslated region (UTR) of the CLB2 mRNA in several places in an in vitro assay. In vivo, we identified RNase MRP-dependent cleavage products on the CLB2 mRNA that closely matched in vitro products. Disposal of these products was dependent on the 5'-->3' exoribonuclease Xrn1 and not the exosome. Our results demonstrate that the endoribonuclease RNase MRP specifically cleaves the CLB2 mRNA in its 5'-UTR to allow rapid 5' to 3' degradation by the Xrn1 nuclease. Degradation of the CLB2 mRNA by the RNase MRP endonuclease provides a novel way to regulate the cell cycle that complements the protein degradation machinery. In addition, these results denote a new mechanism of mRNA degradation not seen before in the yeast Saccharomyces cerevisiae.

  2. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  3. Whole-Genome Sequencing of Recent Listeria monocytogenes Isolates from Germany Reveals Population Structure and Disease Clusters.

    PubMed

    Halbedel, Sven; Prager, Rita; Fuchs, Stephan; Trost, Eva; Werner, Guido; Flieger, Antje

    2018-06-01

    Listeria monocytogenes causes foodborne outbreaks with high mortality. For improvement of outbreak cluster detection, the German consiliary laboratory for listeriosis implemented whole-genome sequencing (WGS) in 2015. A total of 424 human L. monocytogenes isolates collected in 2007 to 2017 were subjected to WGS and core-genome multilocus sequence typing (cgMLST). cgMLST grouped the isolates into 38 complexes, reflecting 4 known and 34 unknown disease clusters. Most of these complexes were confirmed by single nucleotide polymorphism (SNP) calling, but some were further differentiated. Interestingly, several cgMLST cluster types were further subtyped by pulsed-field gel electrophoresis, partly due to phage insertions in the accessory genome. Our results highlight the usefulness of cgMLST for routine cluster detection but also show that cgMLST complexes require validation by methods providing higher typing resolution. Twelve cgMLST clusters included recent cases, suggesting activity of the source. Therefore, the cgMLST nomenclature data presented here may support future public health actions. Copyright © 2018 American Society for Microbiology.

  4. Hebbian self-organizing integrate-and-fire networks for data clustering.

    PubMed

    Landis, Florian; Ott, Thomas; Stoop, Ruedi

    2010-01-01

    We propose a Hebbian learning-based data clustering algorithm using spiking neurons. The algorithm is capable of distinguishing between clusters and noisy background data and finds an arbitrary number of clusters of arbitrary shape. These properties render the approach particularly useful for visual scene segmentation into arbitrarily shaped homogeneous regions. We present several application examples, and in order to highlight the advantages and the weaknesses of our method, we systematically compare the results with those from standard methods such as the k-means and Ward's linkage clustering. The analysis demonstrates that not only the clustering ability of the proposed algorithm is more powerful than those of the two concurrent methods, the time complexity of the method is also more modest than that of its generally used strongest competitor.

  5. An ensemble framework for clustering protein-protein interaction networks.

    PubMed

    Asur, Sitaram; Ucar, Duygu; Parthasarathy, Srinivasan

    2007-07-01

    Protein-Protein Interaction (PPI) networks are believed to be important sources of information related to biological processes and complex metabolic functions of the cell. The presence of biologically relevant functional modules in these networks has been theorized by many researchers. However, the application of traditional clustering algorithms for extracting these modules has not been successful, largely due to the presence of noisy false positive interactions as well as specific topological challenges in the network. In this article, we propose an ensemble clustering framework to address this problem. For base clustering, we introduce two topology-based distance metrics to counteract the effects of noise. We develop a PCA-based consensus clustering technique, designed to reduce the dimensionality of the consensus problem and yield informative clusters. We also develop a soft consensus clustering variant to assign multifaceted proteins to multiple functional groups. We conduct an empirical evaluation of different consensus techniques using topology-based, information theoretic and domain-specific validation metrics and show that our approaches can provide significant benefits over other state-of-the-art approaches. Our analysis of the consensus clusters obtained demonstrates that ensemble clustering can (a) produce improved biologically significant functional groupings; and (b) facilitate soft clustering by discovering multiple functional associations for proteins. Supplementary data are available at Bioinformatics online.

  6. Electron attachment to molecules in a cluster environment: suppression and enhancement effects

    NASA Astrophysics Data System (ADS)

    Fabrikant, Ilya I.

    2018-05-01

    Cluster environments can strongly influence dissociative electron attachment (DEA) processes. These effects are important in many applications, particularly for surface chemistry, radiation damage, and atmospheric physics. We review several mechanisms for DEA suppression and enhancement due to cluster environments, particularly due to microhydration. Long-range electron-molecule and electron-cluster interactions play often a significant role in these effects and can be analysed by using theoretical models. Nevertheless many observations remain unexplained due to complexity of the physics and chemistry of interaction of DEA fragments with the cluster environment.

  7. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    DOE PAGES

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; ...

    2017-01-27

    Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H 95E XXH 99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cellmore » rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Furthermore, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.« less

  8. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans.

    PubMed

    Manhart, Carol M; Ni, Xiaodan; White, Martin A; Ortega, Joaquin; Surtees, Jennifer A; Alani, Eric

    2017-04-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA.

  9. Megadalton Complexes in the Chloroplast Stroma of Arabidopsis thaliana Characterized by Size Exclusion Chromatography, Mass Spectrometry, and Hierarchical Clustering*

    PubMed Central

    Olinares, Paul Dominic B.; Ponnala, Lalit; van Wijk, Klaas J.

    2010-01-01

    To characterize MDa-sized macromolecular chloroplast stroma protein assemblies and to extend coverage of the chloroplast stroma proteome, we fractionated soluble chloroplast stroma in the non-denatured state by size exclusion chromatography with a size separation range up to ∼5 MDa. To maximize protein complex stability and resolution of megadalton complexes, ionic strength and composition were optimized. Subsequent high accuracy tandem mass spectrometry analysis (LTQ-Orbitrap) identified 1081 proteins across the complete native mass range. Protein complexes and assembly states above 0.8 MDa were resolved using hierarchical clustering, and protein heat maps were generated from normalized protein spectral counts for each of the size exclusion chromatography fractions; this complemented previous analysis of stromal complexes up to 0.8 MDa (Peltier, J. B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A. J., Rutschow, H., and van Wijk, K. J. (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell. Proteomics 5, 114–133). This combined experimental and bioinformatics analyses resolved chloroplast ribosomes in different assembly and functional states (e.g. 30, 50, and 70 S), which enabled the identification of plastid homologues of prokaryotic ribosome assembly factors as well as proteins involved in co-translational modifications, targeting, and folding. The roles of these ribosome-associating proteins will be discussed. Known RNA splice factors (e.g. CAF1/WTF1/RNC1) as well as uncharacterized proteins with RNA-binding domains (pentatricopeptide repeat, RNA recognition motif, and chloroplast ribosome maturation), RNases, and DEAD box helicases were found in various sized complexes. Chloroplast DNA (>3 MDa) was found in association with the complete heteromeric plastid-encoded DNA polymerase complex, and a dozen other DNA-binding proteins, e.g. DNA gyrase, topoisomerase, and various DNA repair enzymes. The

  10. Characterization of a Cadmium-Binding Complex of Cabbage Leaves 1

    PubMed Central

    Wagner, George J.

    1984-01-01

    The chemical nature of a principal, inducible cadmium-binding complex which accumulates in cabbage leaves (Wagner and Trotter 1982 Plant Physiol 69: 804-809) was studied and compared with that of animal metallothionein and copper-binding proteins isolated from various organisms. The apparent molecular weight of native cabbage complex and carboxymethylated ligand of the complex under native conditions as determined by gel filtration was about 10,000 daltons. Under denaturing conditions their apparent molecular weights were about 2000 daltons. Ligand of native complex contained 37, 28, and 9 residue per cent of glutamic acid-glutamine, cysteine, and glycine, respectively, and low aromatic residue, serine and lysine content. The high acidic and low hydrophobic residue content explain the behavior of complex on electrophoresis in the presence and absence of sodium dodecyl sulfate. Its isoelectric point was below 4.0 and it bound 4 to 6 moles cadmium per mole ligand in what appear to be cadmium-mercaptide chromophores. The complex was found to be heat stable, relatively protease insensitive, and lacking in disulfide bonds. Attempts to determine the primary sequence of reduced native complex and carboxymethylated, cleaved ligand using the Edman degradation procedure were unsuccessful. An electrophoretic procedure is described for preparative isolation of purified complex and a method is described for monitoring ligand of complex as its fluorescent dibromobimane adduct. Images Fig. 1 Fig. 3 PMID:16663927

  11. Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease.

    PubMed

    Nakae, Setsu; Hijikata, Atsushi; Tsuji, Toshiyuki; Yonezawa, Kouki; Kouyama, Ken-Ichi; Mayanagi, Kouta; Ishino, Sonoko; Ishino, Yoshizumi; Shirai, Tsuyoshi

    2016-11-01

    Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Keeping the ball rolling: fullerene-like molecular clusters.

    PubMed

    Kong, Xiang-Jian; Long, La-Sheng; Zheng, Zhiping; Huang, Rong-Bin; Zheng, Lan-Sun

    2010-02-16

    The discovery of fullerenes in 1985 opened a new chapter in the chemistry of highly symmetric molecules. Fullerene-like metal clusters, characterized by (multi)shell-like structures, are one rapidly developing class of molecules that share this shape. In addition to creating aesthetically pleasing molecular structures, the ordered arrangement of metal atoms within such frameworks provides the opportunity to develop materials with properties not readily achieved in corresponding mononuclear or lower-nuclearity complexes. In this Account, we survey the great variety of fullerene-like metal-containing clusters with an emphasis on their synthetic and structural chemistry, a first step in the discussion of this fascinating field of cluster chemistry. We group the compounds of interest into three categories based on the atomic composition of the cluster core: those with formal metal-metal bonding, those characterized by ligand participation, and those supported by polyoxometalate building blocks. The number of clusters in the first group, containing metal-metal bonds, is relatively small. However, because of the unique and complex bonding scenarios observed for some of these species, these metalloid clusters present a number of research questions with significant ramifications. Because these cores contain molecular clusters of precious metals at the nanoscale, they offer an opportunity to study chemical properties at size ranges from the molecular to nanoscale and to gain insights into the electronic structures and properties of nanomaterials of similar chemical compositions. Clusters of the second type, whose core structures are facilitated by ligand participation, could aid in the development of functional materials. Of particular interest are the magnetic clusters containing both transition and lanthanide elements. A series of such heterometallic clusters that we prepared demonstrates diverse magnetic properties including antiferromagnetism, ferrimagnetism, and

  13. Cluster Headache: Epidemiology, Pathophysiology, Clinical Features, and Diagnosis

    PubMed Central

    Wei, Diana Yi-Ting; Yuan Ong, Jonathan Jia; Goadsby, Peter James

    2018-01-01

    Cluster headache is a primary headache disorder affecting up to 0.1% of the population. Patients suffer from cluster headache attacks lasting from 15 to 180 min up to 8 times a day. The attacks are characterized by the severe unilateral pain mainly in the first division of the trigeminal nerve, with associated prominent unilateral cranial autonomic symptoms and a sense of agitation and restlessness during the attacks. The male-to-female ratio is approximately 2.5:1. Experimental, clinical, and neuroimaging studies have advanced our understanding of the pathogenesis of cluster headache. The pathophysiology involves activation of the trigeminovascular complex and the trigeminal-autonomic reflex and accounts for the unilateral severe headache, the prominent ipsilateral cranial autonomic symptoms. In addition, the circadian and circannual rhythmicity unique to this condition is postulated to involve the hypothalamus and suprachiasmatic nucleus. Although the clinical features are distinct, it may be misdiagnosed, with patients often presenting to the otolaryngologist or dentist with symptoms. The prognosis of cluster headache remains difficult to predict. Patients with episodic cluster headache can shift to chronic cluster headache and vice versa. Longitudinally, cluster headache tends to remit with age with less frequent bouts and more prolonged periods of remission in between bouts. PMID:29720812

  14. Cluster Headache: Epidemiology, Pathophysiology, Clinical Features, and Diagnosis.

    PubMed

    Wei, Diana Yi-Ting; Yuan Ong, Jonathan Jia; Goadsby, Peter James

    2018-04-01

    Cluster headache is a primary headache disorder affecting up to 0.1% of the population. Patients suffer from cluster headache attacks lasting from 15 to 180 min up to 8 times a day. The attacks are characterized by the severe unilateral pain mainly in the first division of the trigeminal nerve, with associated prominent unilateral cranial autonomic symptoms and a sense of agitation and restlessness during the attacks. The male-to-female ratio is approximately 2.5:1. Experimental, clinical, and neuroimaging studies have advanced our understanding of the pathogenesis of cluster headache. The pathophysiology involves activation of the trigeminovascular complex and the trigeminal-autonomic reflex and accounts for the unilateral severe headache, the prominent ipsilateral cranial autonomic symptoms. In addition, the circadian and circannual rhythmicity unique to this condition is postulated to involve the hypothalamus and suprachiasmatic nucleus. Although the clinical features are distinct, it may be misdiagnosed, with patients often presenting to the otolaryngologist or dentist with symptoms. The prognosis of cluster headache remains difficult to predict. Patients with episodic cluster headache can shift to chronic cluster headache and vice versa. Longitudinally, cluster headache tends to remit with age with less frequent bouts and more prolonged periods of remission in between bouts.

  15. Hierarchical and Complex System Entropy Clustering Analysis Based Validation for Traditional Chinese Medicine Syndrome Patterns of Chronic Atrophic Gastritis.

    PubMed

    Zhang, Yin; Liu, Yue; Li, Yannan; Zhao, Xia; Zhuo, Lin; Zhou, Ajian; Zhang, Li; Su, Zeqi; Chen, Cen; Du, Shiyu; Liu, Daming; Ding, Xia

    2018-03-22

    Chronic atrophic gastritis (CAG) is the precancerous stage of gastric carcinoma. Traditional Chinese Medicine (TCM) has been widely used in treating CAG. This study aimed to reveal core pathogenesis of CAG by validating the TCM syndrome patterns and provide evidence for optimization of treatment strategies. This is a cross-sectional study conducted in 4 hospitals in China. Hierarchical clustering analysis (HCA) and complex system entropy clustering analysis (CSECA) were performed, respectively, to achieve syndrome pattern validation. Based on HCA, 15 common factors were assigned to 6 syndrome patterns: liver depression and spleen deficiency and blood stasis in the stomach collateral, internal harassment of phlegm-heat and blood stasis in the stomach collateral, phlegm-turbidity internal obstruction, spleen yang deficiency, internal harassment of phlegm-heat and spleen deficiency, and spleen qi deficiency. By CSECA, 22 common factors were assigned to 7 syndrome patterns: qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency. Combination of qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency may play a crucial role in CAG pathogenesis. In accord with this, treatment strategies by TCM herbal prescriptions should be targeted to regulating qi, activating blood, resolving turbidity, clearing heat, removing toxin, nourishing yin, and warming yang. Further explorations are needed to verify and expand the current conclusions.

  16. Merging K-means with hierarchical clustering for identifying general-shaped groups.

    PubMed

    Peterson, Anna D; Ghosh, Arka P; Maitra, Ranjan

    2018-01-01

    Clustering partitions a dataset such that observations placed together in a group are similar but different from those in other groups. Hierarchical and K -means clustering are two approaches but have different strengths and weaknesses. For instance, hierarchical clustering identifies groups in a tree-like structure but suffers from computational complexity in large datasets while K -means clustering is efficient but designed to identify homogeneous spherically-shaped clusters. We present a hybrid non-parametric clustering approach that amalgamates the two methods to identify general-shaped clusters and that can be applied to larger datasets. Specifically, we first partition the dataset into spherical groups using K -means. We next merge these groups using hierarchical methods with a data-driven distance measure as a stopping criterion. Our proposal has the potential to reveal groups with general shapes and structure in a dataset. We demonstrate good performance on several simulated and real datasets.

  17. Hidden electronic rule in the “cluster-plus-glue-atom” model

    PubMed Central

    Du, Jinglian; Dong, Chuang; Melnik, Roderick; Kawazoe, Yoshiyuki; Wen, Bin

    2016-01-01

    Electrons and their interactions are intrinsic factors to affect the structure and properties of materials. Based on the “cluster-cluster-plus-glue-atom” model, an electron counting rule for complex metallic alloys (CMAs) has been revealed in this work (i. e. the CPGAMEC rule). Our results on the cluster structure and electron concentration of CMAs with apparent cluster features, indicate that the valence electrons’ number per unit cluster formula for these CMAs are specific constants of eight-multiples and twelve-multiples. It is thus termed as specific electrons cluster formula. This CPGAMEC rule has been demonstrated as a useful guidance to direct the design of CMAs with desired properties, while its practical applications and underlying mechanism have been illustrated on the basis of CMAs’ cluster structural features. Our investigation provides an aggregate picture with intriguing electronic rule and atomic structural features of CMAs. PMID:27642002

  18. Role of Anions Associated with the Formation and Properties of Silver Clusters.

    PubMed

    Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan

    2015-06-16

    Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties

  19. PREFACE: Nuclear Cluster Conference; Cluster'07

    NASA Astrophysics Data System (ADS)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  20. Intracluster age gradients in numerous young stellar clusters

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  1. Autonomic Cluster Management System (ACMS): A Demonstration of Autonomic Principles at Work

    NASA Technical Reports Server (NTRS)

    Baldassari, James D.; Kopec, Christopher L.; Leshay, Eric S.; Truszkowski, Walt; Finkel, David

    2005-01-01

    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of achieving significant computational capabilities for high-performance computing applications, while simultaneously affording the ability to. increase that capability simply by adding more (inexpensive) processors. However, the task of manually managing and con.guring a cluster quickly becomes impossible as the cluster grows in size. Autonomic computing is a relatively new approach to managing complex systems that can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Automatic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management.

  2. Inhomogeneity of epidemic spreading with entropy-based infected clusters.

    PubMed

    Wen-Jie, Zhou; Xing-Yuan, Wang

    2013-12-01

    Considering the difference in the sizes of the infected clusters in the dynamic complex networks, the normalized entropy based on infected clusters (δ*) is proposed to characterize the inhomogeneity of epidemic spreading. δ* gives information on the variability of the infected clusters in the system. We investigate the variation in the inhomogeneity of the distribution of the epidemic with the absolute velocity v of moving agent, the infection density ρ, and the interaction radius r. By comparing δ* in the dynamic networks with δH* in homogeneous mode, the simulation experiments show that the inhomogeneity of epidemic spreading becomes smaller with the increase of v, ρ, r.

  3. Star Formation in Nearby Clusters (SFiNCs)

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin

    Most stars form in clusters that rapidly disperse, yet we have a poor understanding of the processes of cluster formation and early evolution. Do clusters form `top-down', rapidly in a dense molecular cloud core? Or, since clouds are turbulent, do clusters form `bottomup' by merging subclusters produced in small kinematically-distinct molecular structures? Do clusters principally form in elongated molecular structures such as Infrared Dark Clouds and Herschel filaments? One of the central reasons for slow progress in resolving these questions is the lack of homogeneous and reliable census of stellar members (both disk-bearing and disk-free) for a wide range of star forming environments. To address these issues we are now completing our major effort, called MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray). It combines the Chandra archive with UKIRT+2MASS near-infrared and Spitzer mid-infrared surveys to identify young stellar objects in a wide range of evolutionary stages, from protostars to disk-free pre-main sequence stars, in 20 star forming regions at distances from 0.4 to 3.6 kpc. Each MYStIX region was chosen to have a rich OB-dominated cluster. Started in 2009 with NASA/ADAP and NSF funding, MYStIX has emerged with 8 technical/catalog and the first 4 of a series of science papers (http://astro.psu.edu/mystix). Early MYStIX results include: demonstration of diverse morphologies of young clusters from simple ellipsoids to elongated, clumpy substructures; demonstration of spatio-age gradients across star formation regions; the discovery of core-halo age gradients within two rich nearby MYStIX clusters; and the discovery of important astrophysically empirical correlations among different subcluster properties such as age, absorption, core radius, central stellar density, and total intrinsic population. The early MYStIX result provide new observational evidence for subcluster merging and cluster expansion following gas dissipation. We

  4. Young star clusters in nearby molecular clouds

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  5. Generalized effective-mass theory of subsurface scanning tunneling microscopy: Application to cleaved quantum dots

    NASA Astrophysics Data System (ADS)

    Roy, M.; Maksym, P. A.; Bruls, D.; Offermans, P.; Koenraad, P. M.

    2010-11-01

    An effective-mass theory of subsurface scanning tunneling microscopy (STM) is developed. Subsurface structures such as quantum dots embedded into a semiconductor slab are considered. States localized around subsurface structures match on to a tail that decays into the vacuum above the surface. It is shown that the lateral variation in this tail may be found from a surface envelope function provided that the effects of the slab surfaces and the subsurface structure decouple approximately. The surface envelope function is given by a weighted integral of a bulk envelope function that satisfies boundary conditions appropriate to the slab. The weight function decays into the slab inversely with distance and this slow decay explains the subsurface sensitivity of STM. These results enable STM images to be computed simply and economically from the bulk envelope function. The method is used to compute wave-function images of cleaved quantum dots and the computed images agree very well with experiment.

  6. Mutiple Stellar Populations in Blanco DECam Bulge Survey Globular Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Doryan; Pilachowski, C. A.; Johnson, C. I.; Rich, R. Michael; Clarkson, William I.; Young, M.; Michael, S.

    2018-01-01

    Preliminary SDSS ugrizY photometric observations of globular cluster stars included in the Blanco DECam Bulge Survey (BDBS) were examined to determine the suitability of these data to characterize stellar populations within clusters. The BDBS fields include around two dozen globular clusters, including the iron-complex cluster M22 and the pulsar-rich cluster Terzan 5. Many globular clusters show evidence for multiple stellar populations as a spread in the u-g color of stars in a given phase of stellar evolution, and in some clusters, the populations have different radial distributions. BDBS clusters with low and/or non-variable reddening and long dynamical mixing time scales were selected for study, and photometry for RGB and main sequence stars within two half-light radii from the center of each cluster was extracted from the BDBS preliminary catalog. Field contamination was reduced in each candidate cluster by removing all stars more than a tenth of a magnitude from the best-fit fiducial curves following the g-r vs r color-magnitude diagram. The remaining stars were split into separate populations based on u-g color, and effective cumulative distribution functions vs. half-light radius were compared to identify differences in the populations’ radial distributions.

  7. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    DOEpatents

    Sanfilippo, Antonio [Richland, WA; Calapristi, Augustin J [West Richland, WA; Crow, Vernon L [Richland, WA; Hetzler, Elizabeth G [Kennewick, WA; Turner, Alan E [Kennewick, WA

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  8. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Adamo, A.

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. Themore » strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.« less

  9. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    PubMed

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  10. Fault Network Reconstruction using Agglomerative Clustering: Applications to South Californian Seismicity

    NASA Astrophysics Data System (ADS)

    Kamer, Yavor; Ouillon, Guy; Sornette, Didier; Wössner, Jochen

    2014-05-01

    We present applications of a new clustering method for fault network reconstruction based on the spatial distribution of seismicity. Unlike common approaches that start from the simplest large scale and gradually increase the complexity trying to explain the small scales, our method uses a bottom-up approach, by an initial sampling of the small scales and then reducing the complexity. The new approach also exploits the location uncertainty associated with each event in order to obtain a more accurate representation of the spatial probability distribution of the seismicity. For a given dataset, we first construct an agglomerative hierarchical cluster (AHC) tree based on Ward's minimum variance linkage. Such a tree starts out with one cluster and progressively branches out into an increasing number of clusters. To atomize the structure into its constitutive protoclusters, we initialize a Gaussian Mixture Modeling (GMM) at a given level of the hierarchical clustering tree. We then let the GMM converge using an Expectation Maximization (EM) algorithm. The kernels that become ill defined (less than 4 points) at the end of the EM are discarded. By incrementing the number of initialization clusters (by atomizing at increasingly populated levels of the AHC tree) and repeating the procedure above, we are able to determine the maximum number of Gaussian kernels the structure can hold. The kernels in this configuration constitute our protoclusters. In this setting, merging of any pair will lessen the likelihood (calculated over the pdf of the kernels) but in turn will reduce the model's complexity. The information loss/gain of any possible merging can thus be quantified based on the Minimum Description Length (MDL) principle. Similar to an inter-distance matrix, where the matrix element di,j gives the distance between points i and j, we can construct a MDL gain/loss matrix where mi,j gives the information gain/loss resulting from the merging of kernels i and j. Based on this

  11. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLamore » cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins, such

  12. Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming

    Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases andmore » bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.« less

  13. Melting and Freezing of Metal Clusters

    NASA Astrophysics Data System (ADS)

    Aguado, Andrés; Jarrold, Martin F.

    2011-05-01

    Recent developments allow heat capacities to be measured for size-selected clusters isolated in the gas phase. For clusters with tens to hundreds of atoms, the heat capacities determined as a function of temperature usually have a single peak attributed to a melting transition. The melting temperatures and latent heats show large size-dependent fluctuations. In some cases, the melting temperatures change by hundreds of degrees with the addition of a single atom. Theory has played a critical role in understanding the origin of the size-dependent fluctuations, and in understanding the properties of the liquid-like and solid-like states. In some cases, the heat capacities have extra features (an additional peak or a dip) that reveal a more complex behavior than simple melting. In this article we provide a description of the methods used to measure the heat capacities and provide an overview of the experimental and theoretical results obtained for sodium and aluminum clusters.

  14. Understanding the role of dynamics in the iron sulfur cluster molecular machine.

    PubMed

    di Maio, Danilo; Chandramouli, Balasubramanian; Yan, Robert; Brancato, Giuseppe; Pastore, Annalisa

    2017-01-01

    The bacterial proteins IscS, IscU and CyaY, the bacterial orthologue of frataxin, play an essential role in the biological machine that assembles the prosthetic FeS cluster groups on proteins. They form functionally binary and ternary complexes both in vivo and in vitro. Yet, the mechanism by which they work remains unclear. We carried out extensive molecular dynamics simulations to understand the nature of their interactions and the role of dynamics starting from the crystal structure of a IscS-IscU complex and the experimentally-based model of a ternary IscS-IscU-CyaY complex and used nuclear magnetic resonance to experimentally test the interface. We show that, while being firmly anchored to IscS, IscU has a pivotal motion around the interface. Our results also describe how the catalytic loop of IscS can flip conformation to allow FeS cluster assembly. This motion is hampered in the ternary complex explaining its inhibitory properties in cluster formation. We conclude that the observed 'fluid' IscS-IscU interface provides the binary complex with a functional adaptability exploited in partner recognition and unravels the molecular determinants of the reported inhibitory action of CyaY in the IscS-IscU-CyaY complex explained in terms of the hampering effect on specific IscU-IscS movements. Our study provides the first mechanistic basis to explain how the IscS-IscU complex selects its binding partners and supports the inhibitory role of CyaY in the ternary complex. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The threshold bootstrap clustering: a new approach to find families or transmission clusters within molecular quasispecies.

    PubMed

    Prosperi, Mattia C F; De Luca, Andrea; Di Giambenedetto, Simona; Bracciale, Laura; Fabbiani, Massimiliano; Cauda, Roberto; Salemi, Marco

    2010-10-25

    Phylogenetic methods produce hierarchies of molecular species, inferring knowledge about taxonomy and evolution. However, there is not yet a consensus methodology that provides a crisp partition of taxa, desirable when considering the problem of intra/inter-patient quasispecies classification or infection transmission event identification. We introduce the threshold bootstrap clustering (TBC), a new methodology for partitioning molecular sequences, that does not require a phylogenetic tree estimation. The TBC is an incremental partition algorithm, inspired by the stochastic Chinese restaurant process, and takes advantage of resampling techniques and models of sequence evolution. TBC uses as input a multiple alignment of molecular sequences and its output is a crisp partition of the taxa into an automatically determined number of clusters. By varying initial conditions, the algorithm can produce different partitions. We describe a procedure that selects a prime partition among a set of candidate ones and calculates a measure of cluster reliability. TBC was successfully tested for the identification of type-1 human immunodeficiency and hepatitis C virus subtypes, and compared with previously established methodologies. It was also evaluated in the problem of HIV-1 intra-patient quasispecies clustering, and for transmission cluster identification, using a set of sequences from patients with known transmission event histories. TBC has been shown to be effective for the subtyping of HIV and HCV, and for identifying intra-patient quasispecies. To some extent, the algorithm was able also to infer clusters corresponding to events of infection transmission. The computational complexity of TBC is quadratic in the number of taxa, lower than other established methods; in addition, TBC has been enhanced with a measure of cluster reliability. The TBC can be useful to characterise molecular quasipecies in a broad context.

  16. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nsp4 Cleaves VISA to Impair Antiviral Responses Mediated by RIG-I-like Receptors.

    PubMed

    Huang, Chen; Du, Yinping; Yu, Zhibin; Zhang, Qiong; Liu, Yihao; Tang, Jun; Shi, Jishu; Feng, Wen-Hai

    2016-06-22

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant etiological agents in the swine industry worldwide. It has been reported that PRRSV infection can modulate host immune responses, and innate immune evasion is thought to play a vital role in PRRSV pathogenesis. In this study, we demonstrated that highly pathogenic PRRSV (HP-PRRSV) infection specifically down-regulated virus-induced signaling adaptor (VISA), a unique adaptor molecule that is essential for retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) signal transduction. Moreover, we verified that nsp4 inhibited IRF3 activation induced by signaling molecules, including RIG-I, MDA5, VISA, and TBK1, but not IRF3. Subsequently, we demonstrated that HP-PRRSV nsp4 down-regulated VISA and suppressed type I IFN induction. Importantly, VISA was cleaved by nsp4 and released from mitochondrial membrane, which interrupted the downstream signaling of VISA. However, catalytically inactive mutant of nsp4 abolished its ability to cleave VISA. Interestingly, nsp4 of typical PRRSV strain CH-1a had no effect on VISA. Taken together, these findings reveal a strategy evolved by HP-PRRSV to counteract anti-viral innate immune signaling, which complements the known PRRSV-mediated immune-evasion mechanisms.

  17. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nsp4 Cleaves VISA to Impair Antiviral Responses Mediated by RIG-I-like Receptors

    PubMed Central

    Huang, Chen; Du, Yinping; Yu, Zhibin; Zhang, Qiong; Liu, Yihao; Tang, Jun; Shi, Jishu; Feng, Wen-hai

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant etiological agents in the swine industry worldwide. It has been reported that PRRSV infection can modulate host immune responses, and innate immune evasion is thought to play a vital role in PRRSV pathogenesis. In this study, we demonstrated that highly pathogenic PRRSV (HP-PRRSV) infection specifically down-regulated virus-induced signaling adaptor (VISA), a unique adaptor molecule that is essential for retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) signal transduction. Moreover, we verified that nsp4 inhibited IRF3 activation induced by signaling molecules, including RIG-I, MDA5, VISA, and TBK1, but not IRF3. Subsequently, we demonstrated that HP-PRRSV nsp4 down-regulated VISA and suppressed type I IFN induction. Importantly, VISA was cleaved by nsp4 and released from mitochondrial membrane, which interrupted the downstream signaling of VISA. However, catalytically inactive mutant of nsp4 abolished its ability to cleave VISA. Interestingly, nsp4 of typical PRRSV strain CH-1a had no effect on VISA. Taken together, these findings reveal a strategy evolved by HP-PRRSV to counteract anti-viral innate immune signaling, which complements the known PRRSV-mediated immune-evasion mechanisms. PMID:27329948

  18. From globally coupled maps to complex-systems biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  19. Towards semantically sensitive text clustering: a feature space modeling technology based on dimension extension.

    PubMed

    Liu, Yuanchao; Liu, Ming; Wang, Xin

    2015-01-01

    The objective of text clustering is to divide document collections into clusters based on the similarity between documents. In this paper, an extension-based feature modeling approach towards semantically sensitive text clustering is proposed along with the corresponding feature space construction and similarity computation method. By combining the similarity in traditional feature space and that in extension space, the adverse effects of the complexity and diversity of natural language can be addressed and clustering semantic sensitivity can be improved correspondingly. The generated clusters can be organized using different granularities. The experimental evaluations on well-known clustering algorithms and datasets have verified the effectiveness of our approach.

  20. Towards Semantically Sensitive Text Clustering: A Feature Space Modeling Technology Based on Dimension Extension

    PubMed Central

    Liu, Yuanchao; Liu, Ming; Wang, Xin

    2015-01-01

    The objective of text clustering is to divide document collections into clusters based on the similarity between documents. In this paper, an extension-based feature modeling approach towards semantically sensitive text clustering is proposed along with the corresponding feature space construction and similarity computation method. By combining the similarity in traditional feature space and that in extension space, the adverse effects of the complexity and diversity of natural language can be addressed and clustering semantic sensitivity can be improved correspondingly. The generated clusters can be organized using different granularities. The experimental evaluations on well-known clustering algorithms and datasets have verified the effectiveness of our approach. PMID:25794172

  1. Prognostic Value of Serum Caspase-Cleaved Cytokeratin-18 Levels before Liver Transplantation for One-Year Survival of Patients with Hepatocellular Carcinoma

    PubMed Central

    Lorente, Leonardo; Rodriguez, Sergio T.; Sanz, Pablo; Pérez-Cejas, Antonia; Padilla, Javier; Díaz, Dácil; González, Antonio; Martín, María M.; Jiménez, Alejandro; Barrera, Manuel A.

    2016-01-01

    Cytokeratin (CK)-18 is the major intermediate filament protein in the liver and during hepatocyte apoptosis is cleaved by the action of caspases; the resulting fragments are released into the blood as caspase-cleaved cytokeratin (CCCK)-18. Higher circulating levels of CCCK-18 have been found in patients with hepatocellular carcinoma (HCC) than in healthy controls and than in cirrhotic patients. However, it is unknown whether serum CCCK-18 levels before liver transplantation (LT) in patients with HCC could be used as a prognostic biomarker of one-year survival, and this was the objective of our study with 135 patients. At one year after LT, non-survivors showed higher serum CCCK-18 levels than survivors (p = 0.001). On binary logistic regression analysis, serum CCCK-18 levels >384 U/L were associated with death at one year (odds ratio = 19.801; 95% confidence interval = 5.301–73.972; p < 0.001) after controlling for deceased donor age. The area under the receiver operating characteristic (ROC) curve of serum CCCK-18 levels to predict death at one year was 77% (95% CI = 69%–84%; p < 0.001). The new finding of our study was that serum levels of CCCK-18 before LT in patients with HCC could be used as prognostic biomarker of survival. PMID:27618033

  2. HotRegion: a database of predicted hot spot clusters.

    PubMed

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  3. Gas expulsion in highly substructured embedded star clusters

    NASA Astrophysics Data System (ADS)

    Farias, J. P.; Fellhauer, M.; Smith, R.; Domínguez, R.; Dabringhausen, J.

    2018-06-01

    We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.

  4. Conformational Properties, Spectroscopy and Structure of ISATIN-(WATER)_{n=1-3} Clusters

    NASA Astrophysics Data System (ADS)

    Singh, Milind K.; Upadhya, D. M.; Singh, Vipin B.

    2009-06-01

    The structure, stability and vibrational characteristics of Isatin-(Water)_n clusters with n=1=3 have been investigated using second order Moller-Plesset (MP2) perturbation tehory and Density Functional Theory (with B3LYP) methods employing the basis set 6-31+G(d). The vertical excitation energies for these complexes have been also computed using the time-dependent density functional theory. The three stable conformational isomers, each for Isatin-(Water)_1 and Isatin-(Water)_2 clusters were obtained. It is shown that in the most stable isomer of Isatin-(Water)_1 cluster hydrogen bond between amide hydrogen and oxygen of water is found stronger as compared to the H-bond in Indole-(Water)_1 cluster. For a particular position of complexation of water, between the carbonyl oxygen's, results an unusual increase in the dipole moment due to an electronic charge displacement from the N atom to the C atom of the neighboring carbonyl bond. This causes a large separation between the effective charges forming the dipole. The complexes involving this position of water are expected to show a small charge transfer character. The experimentally observed electronic absorption peaks are reasonably reproduced by the TD-DFT calculations and it is found that the longest wavelength absorption peak of isatin at 406 nm is significantly red shifted after addition of a water molecule.

  5. An Improved Clustering Algorithm of Tunnel Monitoring Data for Cloud Computing

    PubMed Central

    Zhong, Luo; Tang, KunHao; Li, Lin; Yang, Guang; Ye, JingJing

    2014-01-01

    With the rapid development of urban construction, the number of urban tunnels is increasing and the data they produce become more and more complex. It results in the fact that the traditional clustering algorithm cannot handle the mass data of the tunnel. To solve this problem, an improved parallel clustering algorithm based on k-means has been proposed. It is a clustering algorithm using the MapReduce within cloud computing that deals with data. It not only has the advantage of being used to deal with mass data but also is more efficient. Moreover, it is able to compute the average dissimilarity degree of each cluster in order to clean the abnormal data. PMID:24982971

  6. A ferrocenecarboxylate-functionalized titanium-oxo-cluster: the ferrocene wheel as a sensitizer for photocurrent response.

    PubMed

    Fan, Yang; Cui, Ying; Zou, Guo-Dong; Duan, Rui-Huan; Zhang, Xu; Dong, Yu-Xiang; Lv, Hai-Ting; Cao, Jun-Tao; Jing, Qiang-Shan

    2017-06-27

    Sensitized titanium-oxo clusters (TOCs) have attracted growing interest. However, reports on TOCs incorporated with a metal complex as photosensitizers are still very rare. In the present work, the organometallic complex ferrocene was used as a sensitizer for a titanium-oxo cluster. A ferrocenecarboxylate-substituted titanium-oxo cluster [Ti 6 (μ 3 -O) 6 (OiPr) 6 (O 2 CFc) 6 ] (Fc = ferrocenyl) was synthesized and structurally characterized, in which the ferrocene wheel performs as a sensitizer for photocurrent response. For comparison, naphthalene-sensitized titanium-oxo clusters [Ti 6 (μ 3 -O) 6 (OiPr) 6 (NA) 6 ] (NA = 1-naphthoate) and [Ti 6 (μ 3 -O) 6 (OiPr) 6 (NAA) 6 ] (NAA = 1-naphthylacetate) with the same {Ti 6 } core structure were also synthesized. The structures, optical behaviors, electronic states and photoelectrochemical properties of these sensitized {Ti 6 } clusters were investigated. It is demonstrated that the introduction of ferrocene groups into the titanium-oxo cluster significantly reduces the band gap and enhances the photocurrent response in comparison with the naphthalene-sensitized clusters. The substantially reduced band gap of the ferrocene-sensitized cluster was attributed to the introduction of Fe(ii) d-d transitions and the possible contribution from the Fc → {Ti 6 } charge transfer. For the naphthalene-sensitized clusters, the better electronic coupling between the dye and the {Ti 6 } core in the 1-naphthoate (NA) substituted cluster results in higher photoelectrochemical activity.

  7. VizieR Online Data Catalog: RAVE open cluster pairs, groups and complexes (Conrad+, 2017)

    NASA Astrophysics Data System (ADS)

    Conrad, C.; Scholz, R.-D.; Kharchenko, N. V.; Piskunov, A. E.; Roeser, S.; Schilbach, E.; de Jong, R. S.; Schnurr, O.; Steinmetz, M.; Grebel, E. K.; Zwitter, T.; Bienayme, O.; Bland-Hawthorn, J.; Gibson, B. K.; Gilmore, G.; Kordopatis, G.; Kunder, A.; Navarro, J. F.; Parker, Q.; Reid, W.; Seabroke, G.; Siviero, A.; Watson, F.; Wyse, R.

    2017-01-01

    The presented tables summarize the parameters for the clusters and the mean values for the detected potential cluster groupings. The ages, distances and proper motions were taken from the Catalogue of Open Cluster Data (COCD; Kharchenko et al. 2005, Cat. J/A+A/438/1163, J/A+A/440/403), while additional radial velocities and metallicities were obtained from the Radial Velocity Experiment (RAVE; Kordopatis et al. 2013AJ....146..134K, Cat. III/272 ) and from the online compilation provided by Dias et al. (2002, See B/ocl). A description of the determination for the radial velocities and metallicities can be found in Conrad et al. 2014A&A...562A..54C. The potential groupings were identified using an adapted Friends-of-Friends algorithm with two sets of linking lengths, namely (100pc, 10km/s) and (100pc, 20km/s). The table clupar.dat (combining Tables A.1 and A.2 from the Appendix of our paper): Tables comprises the parameters collected for the final working sample of 432 clusters with available radial velocities, namely coordinates and proper motions in equatorial and galactic coordinates, distances, ages, metallicities, as well as Cartesian coordinates and velocities. The latter were computed through converting the spherical parameters to Cartesian space with the sun as point of origin. The tables grpar10.dat and grpar20.dat (listed as two parts in Table B.1 of the Appendix of our paper) contain the mean values for the identified potential open cluster groupings for two sets of linking lengths, 100pc and 10km/s (19 potential groupings) and 100pc and 20km/s (41 potential groupings), respectively. These were computed as simple mean, while the uncertainties were computed as simple rms. We list the counting number, the number of members, the COCD number and name for each member, The mean Cartesian coordinates and velocities, along with the uncertainties, the mean distances (with uncertainties), the mean logarithmic ages (with uncertainties) and the mean metallicities

  8. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    NASA Astrophysics Data System (ADS)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  9. Comprehensive cluster analysis with Transitivity Clustering.

    PubMed

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  10. The challenge of turbulent acceleration of relativistic particles in the intra-cluster medium

    NASA Astrophysics Data System (ADS)

    Brunetti, Gianfranco

    2016-01-01

    Acceleration of cosmic-ray electrons (CRe) in the intra-cluster medium (ICM) is probed by radio observations that detect diffuse, megaparsec-scale, synchrotron sources in a fraction of galaxy clusters. Giant radio halos are the most spectacular manifestations of non-thermal activity in the ICM and are currently explained assuming that turbulence, driven during massive cluster-cluster mergers, reaccelerates CRe at several giga-electron volts. This scenario implies a hierarchy of complex mechanisms in the ICM that drain energy from large scales into electromagnetic fluctuations in the plasma and collisionless mechanisms of particle acceleration at much smaller scales. In this paper we focus on the physics of acceleration by compressible turbulence. The spectrum and damping mechanisms of the electromagnetic fluctuations, and the mean free path (mfp) of CRe, are the most relevant ingredients that determine the efficiency of acceleration. These ingredients in the ICM are, however, poorly known, and we show that calculations of turbulent acceleration are also sensitive to these uncertainties. On the other hand this fact implies that the non-thermal properties of galaxy clusters probe the complex microphysics and the weakly collisional nature of the ICM.

  11. Cluster Physics with Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Molnar, Sandor

    Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard ΛCDM model, where the total density is dominated by the cosmological constant (Λ) and the matter density by cold dark matter (CDM), structure formation is hierarchical, and clusters grow mostly by merging. Mergers of two massive clusters are the most energetic events in the universe after the Big Bang, hence they provide a unique laboratory to study cluster physics. The two main mass components in clusters behave differently during collisions: the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulence are developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thus our review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clusters is to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses. New high spatial and spectral resolution ground and space based telescopes will come online in the near future. Motivated by these new opportunities, we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  12. Cluster-randomized Studies in Educational Research: Principles and Methodological Aspects

    PubMed Central

    Dreyhaupt, Jens; Mayer, Benjamin; Keis, Oliver; Öchsner, Wolfgang; Muche, Rainer

    2017-01-01

    An increasing number of studies are being performed in educational research to evaluate new teaching methods and approaches. These studies could be performed more efficiently and deliver more convincing results if they more strictly applied and complied with recognized standards of scientific studies. Such an approach could substantially increase the quality in particular of prospective, two-arm (intervention) studies that aim to compare two different teaching methods. A key standard in such studies is randomization, which can minimize systematic bias in study findings; such bias may result if the two study arms are not structurally equivalent. If possible, educational research studies should also achieve this standard, although this is not yet generally the case. Some difficulties and concerns exist, particularly regarding organizational and methodological aspects. An important point to consider in educational research studies is that usually individuals cannot be randomized, because of the teaching situation, and instead whole groups have to be randomized (so-called “cluster randomization”). Compared with studies with individual randomization, studies with cluster randomization normally require (significantly) larger sample sizes and more complex methods for calculating sample size. Furthermore, cluster-randomized studies require more complex methods for statistical analysis. The consequence of the above is that a competent expert with respective special knowledge needs to be involved in all phases of cluster-randomized studies. Studies to evaluate new teaching methods need to make greater use of randomization in order to achieve scientifically convincing results. Therefore, in this article we describe the general principles of cluster randomization and how to implement these principles, and we also outline practical aspects of using cluster randomization in prospective, two-arm comparative educational research studies. PMID:28584874

  13. Cluster-randomized Studies in Educational Research: Principles and Methodological Aspects.

    PubMed

    Dreyhaupt, Jens; Mayer, Benjamin; Keis, Oliver; Öchsner, Wolfgang; Muche, Rainer

    2017-01-01

    An increasing number of studies are being performed in educational research to evaluate new teaching methods and approaches. These studies could be performed more efficiently and deliver more convincing results if they more strictly applied and complied with recognized standards of scientific studies. Such an approach could substantially increase the quality in particular of prospective, two-arm (intervention) studies that aim to compare two different teaching methods. A key standard in such studies is randomization, which can minimize systematic bias in study findings; such bias may result if the two study arms are not structurally equivalent. If possible, educational research studies should also achieve this standard, although this is not yet generally the case. Some difficulties and concerns exist, particularly regarding organizational and methodological aspects. An important point to consider in educational research studies is that usually individuals cannot be randomized, because of the teaching situation, and instead whole groups have to be randomized (so-called "cluster randomization"). Compared with studies with individual randomization, studies with cluster randomization normally require (significantly) larger sample sizes and more complex methods for calculating sample size. Furthermore, cluster-randomized studies require more complex methods for statistical analysis. The consequence of the above is that a competent expert with respective special knowledge needs to be involved in all phases of cluster-randomized studies. Studies to evaluate new teaching methods need to make greater use of randomization in order to achieve scientifically convincing results. Therefore, in this article we describe the general principles of cluster randomization and how to implement these principles, and we also outline practical aspects of using cluster randomization in prospective, two-arm comparative educational research studies.

  14. The properties of small Ag clusters bound to DNA bases.

    PubMed

    Soto-Verdugo, Víctor; Metiu, Horia; Gwinn, Elisabeth

    2010-05-21

    We study the binding of neutral silver clusters, Ag(n) (n=1-6), to the DNA bases adenine (A), cytosine (C), guanine (G), and thymine (T) and the absorption spectra of the silver cluster-base complexes. Using density functional theory (DFT), we find that the clusters prefer to bind to the doubly bonded ring nitrogens and that binding to T is generally much weaker than to C, G, and A. Ag(3) and Ag(4) make the stronger bonds. Bader charge analysis indicates a mild electron transfer from the base to the clusters for all bases, except T. The donor bases (C, G, and A) bind to the sites on the cluster where the lowest unoccupied molecular orbital has a pronounced protrusion. The site where cluster binds to the base is controlled by the shape of the higher occupied states of the base. Time-dependent DFT calculations show that different base-cluster isomers may have very different absorption spectra. In particular, we find new excitations in base-cluster molecules, at energies well below those of the isolated components, and with strengths that depend strongly on the orientations of planar clusters with respect to the base planes. Our results suggest that geometric constraints on binding, imposed by designed DNA structures, may be a feasible route to engineering the selection of specific cluster-base assemblies.

  15. Autoscoring Essays Based on Complex Networks

    ERIC Educational Resources Information Center

    Ke, Xiaohua; Zeng, Yongqiang; Luo, Haijiao

    2016-01-01

    This article presents a novel method, the Complex Dynamics Essay Scorer (CDES), for automated essay scoring using complex network features. Texts produced by college students in China were represented as scale-free networks (e.g., a word adjacency model) from which typical network features, such as the in-/out-degrees, clustering coefficient (CC),…

  16. Preparation of Gelatin Layer Film with Gold Clusters in Using Photographic Film

    NASA Astrophysics Data System (ADS)

    Kuge, Ken'ichi; Arisawa, Michiko; Aoki, Naokazu; Hasegawa, Akira

    2000-12-01

    A gelatin layer film with gold clusters is produced by taking advantage of the photosensitivity of silver halide photography. Through exposure silver specks, which are called latent-image specks and are composed of several reduced silver atoms, are formed on the surface of silver halide grains in the photographic film. As the latent-image specks act as a catalyst for redox reaction, reduced gold atoms are deposited on the latent-image specks when the exposed film is immersed in a gold (I) thiocyanate complex solution for 5-20 days. Subsequently, when the silver halide grains are dissolved and removed, the gelatin layer film with gold clusters remains. The film produced by this method is purple and showed an absorption spectrum having a maximum of approximately 560 nm as a result of plasmon absorption. The clusters continued to grow with immersion time, and the growth rate increased as the concentration of the gold complex solution was increased. The cluster diameter changed from 20 nm to 100 nm. By this method, it is possible to produce a gelatin film of a large area with evenly dispersed gold clusters, and since it is produced only on the exposed area, pattern forming is also possible.

  17. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans

    PubMed Central

    Manhart, Carol M.; Ni, Xiaodan; White, Martin A.; Ortega, Joaquin; Surtees, Jennifer A.

    2017-01-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker’s yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA. PMID:28453523

  18. Cluster-cluster correlations and constraints on the correlation hierarchy

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Gott, J. R., III

    1988-01-01

    The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.

  19. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu; Hammond, Karl D.

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes ofmore » helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.« less

  20. Health-related fitness profiles in adolescents with complex congenital heart disease.

    PubMed

    Klausen, Susanne Hwiid; Wetterslev, Jørn; Søndergaard, Lars; Andersen, Lars L; Mikkelsen, Ulla Ramer; Dideriksen, Kasper; Zoffmann, Vibeke; Moons, Philip

    2015-04-01

    This study investigates whether subgroups of different health-related fitness (HrF) profiles exist among girls and boys with complex congenital heart disease (ConHD) and how these are associated with lifestyle behaviors. We measured the cardiorespiratory fitness, muscle strength, and body composition of 158 adolescents aged 13-16 years with previous surgery for a complex ConHD. Data on lifestyle behaviors were collected concomitantly between October 2010 and April 2013. A cluster analysis was conducted to identify profiles with similar HrF. For comparisons between clusters, multivariate analyses of covariance were used to test the differences in lifestyle behaviors. Three distinct profiles were formed: (1) Robust (43, 27%; 20 girls and 23 boys); (2) Moderately Robust (85, 54%; 37 girls and 48 boys); and (3) Less robust (30, 19%; 9 girls and 21 boys). The participants in the Robust clusters reported leading a physically active lifestyle and participants in the Less robust cluster reported leading a sedentary lifestyle. Diagnoses were evenly distributed between clusters. The cluster analysis attributed some of the variability in cardiorespiratory fitness among adolescents with complex ConHD to lifestyle behaviors and physical activity. Profiling of HrF offers a valuable new option in the management of person-centered health promotion. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  1. Clustered DNA damages induced by high and low LET radiation, including heavy ions

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)

    2001-01-01

    Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.

  2. Methodology and evaluation of intracranial pressure response in rats exposed to complex shock waves.

    PubMed

    Dal Cengio Leonardi, Alessandra; Keane, Nickolas J; Hay, Kathryn; Ryan, Anne G; Bir, Cynthia A; VandeVord, Pamela J

    2013-12-01

    Studies on blast neurotrauma have focused on investigating the effects of exposure to free-field blast representing the simplest form of blast threat scenario without considering any reflecting surfaces. However, in reality personnel are often located within enclosures or nearby reflecting walls causing a complex blast environment, that is, involving shock reflections and/or compound waves from different directions. The purpose of this study was to design a complex wave testing system and perform a preliminary investigation of the intracranial pressure (ICP) response of rats exposed to a complex blast wave environment (CBWE). The effects of head orientation in the same environment were also explored. Furthermore, since it is hypothesized that exposure to a CBWE would be more injurious as compared to a free-field blast wave environment (FFBWE), a histological comparison of hippocampal injury (cleaved caspase-3 and glial fibrillary acidic protein (GFAP)) was conducted in both environments. Results demonstrated that, regardless of orientation, peak ICP values were significantly elevated over the peak static air overpressure. Qualitative differences could be noticed compared to the ICP response in rats exposed to simulated FFBWE. In the CBWE scenario, after the initial loading the skull/brain system was not allowed to return to rest and was loaded again reaching high ICP values. Furthermore, results indicated consistent and distinct ICP-time profiles according to orientation, as well as distinctive values of impulse associated with each orientation. Histologically, cleaved caspase-3 positive cells were significantly increased in the CBWE as compared to the FFBWE. Overall, these findings suggest that the geometry of the skull and the way sutures are distributed in the rats are responsible for the difference in the stresses observed. Moreover, this increase stress contributes to correlation of increased injury in the CBWE.

  3. GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin A, localizes to the Golgi and is cleaved by furin.

    PubMed

    Tafesse, Fikadu G; Guimaraes, Carla P; Maruyama, Takeshi; Carette, Jan E; Lory, Stephen; Brummelkamp, Thijn R; Ploegh, Hidde L

    2014-08-29

    A number of toxins, including exotoxin A (PE) of Pseudomonas aeruginosa, kill cells by inhibiting protein synthesis. PE kills by ADP-ribosylation of the translation elongation factor 2, but many of the host factors required for entry, membrane translocation, and intracellular transport remain to be elucidated. A genome-wide genetic screen in human KBM7 cells was performed to uncover host factors used by PE, several of which were confirmed by CRISPR/Cas9-gene editing in a different cell type. Several proteins not previously implicated in the PE intoxication pathway were identified, including GPR107, an orphan G-protein-coupled receptor. GPR107 localizes to the trans-Golgi network and is essential for retrograde transport. It is cleaved by the endoprotease furin, and a disulfide bond connects the two cleaved fragments. Compromising this association affects the function of GPR107. The N-terminal region of GPR107 is critical for its biological function. GPR107 might be one of the long-sought receptors that associates with G-proteins to regulate intracellular vesicular transport. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Convex Clustering: An Attractive Alternative to Hierarchical Clustering

    PubMed Central

    Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth

    2015-01-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340

  5. Convex clustering: an attractive alternative to hierarchical clustering.

    PubMed

    Chen, Gary K; Chi, Eric C; Ranola, John Michael O; Lange, Kenneth

    2015-05-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/.

  6. Spatiotemporal multistage consensus clustering in molecular dynamics studies of large proteins.

    PubMed

    Kenn, Michael; Ribarics, Reiner; Ilieva, Nevena; Cibena, Michael; Karch, Rudolf; Schreiner, Wolfgang

    2016-04-26

    The aim of this work is to find semi-rigid domains within large proteins as reference structures for fitting molecular dynamics trajectories. We propose an algorithm, multistage consensus clustering, MCC, based on minimum variation of distances between pairs of Cα-atoms as target function. The whole dataset (trajectory) is split into sub-segments. For a given sub-segment, spatial clustering is repeatedly started from different random seeds, and we adopt the specific spatial clustering with minimum target function: the process described so far is stage 1 of MCC. Then, in stage 2, the results of spatial clustering are consolidated, to arrive at domains stable over the whole dataset. We found that MCC is robust regarding the choice of parameters and yields relevant information on functional domains of the major histocompatibility complex (MHC) studied in this paper: the α-helices and β-floor of the protein (MHC) proved to be most flexible and did not contribute to clusters of significant size. Three alleles of the MHC, each in complex with ABCD3 peptide and LC13 T-cell receptor (TCR), yielded different patterns of motion. Those alleles causing immunological allo-reactions showed distinct correlations of motion between parts of the peptide, the binding cleft and the complementary determining regions (CDR)-loops of the TCR. Multistage consensus clustering reflected functional differences between MHC alleles and yields a methodological basis to increase sensitivity of functional analyses of bio-molecules. Due to the generality of approach, MCC is prone to lend itself as a potent tool also for the analysis of other kinds of big data.

  7. Multi-mode clustering model for hierarchical wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hu, Xiangdong; Li, Yongfu; Xu, Huifen

    2017-03-01

    The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.

  8. LAR-RPTP Clustering Is Modulated by Competitive Binding between Synaptic Adhesion Partners and Heparan Sulfate

    PubMed Central

    Won, Seoung Youn; Kim, Cha Yeon; Kim, Doyoun; Ko, Jaewon; Um, Ji Won; Lee, Sung Bae; Buck, Matthias; Kim, Eunjoon; Heo, Won Do; Lee, Jie-Oh; Kim, Ho Min

    2017-01-01

    The leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that direct axonal growth and neuronal regeneration. LAR-RPTPs are also synaptic adhesion molecules that form trans-synaptic adhesion complexes by binding to various postsynaptic adhesion ligands, such as Slit- and Trk-like family of proteins (Slitrks), IL-1 receptor accessory protein-like 1 (IL1RAPL1), interleukin-1 receptor accessory protein (IL-1RAcP) and neurotrophin receptor tyrosine kinase C (TrkC), to regulate synaptogenesis. Here, we determined the crystal structure of the human LAR-RPTP/IL1RAPL1 complex and found that lateral interactions between neighboring LAR-RPTP/IL1RAPL1 complexes in crystal lattices are critical for the higher-order assembly and synaptogenic activity of these complexes. Moreover, we found that LAR-RPTP binding to the postsynaptic adhesion ligands, Slitrk3, IL1RAPL1 and IL-1RAcP, but not TrkC, induces reciprocal higher-order clustering of trans-synaptic adhesion complexes. Although LAR-RPTP clustering was induced by either HS or postsynaptic adhesion ligands, the dominant binding of HS to the LAR-RPTP was capable of dismantling pre-established LAR-RPTP-mediated trans-synaptic adhesion complexes. These findings collectively suggest that LAR-RPTP clustering for synaptogenesis is modulated by a complex synapse-organizing protein network. PMID:29081732

  9. Clustering of change patterns using Fourier coefficients.

    PubMed

    Kim, Jaehee; Kim, Haseong

    2008-01-15

    To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a time period because biologically related gene groups can share the same change patterns. Many clustering algorithms have been proposed to group observation data. However, because of the complexity of the underlying functions there have not been many studies on grouping data based on change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. The sample Fourier coefficients not only provide information about the underlying functions, but also reduce the dimension. In addition, as their limiting distribution is a multivariate normal, a model-based clustering method incorporating statistical properties would be appropriate. This work is aimed at discovering gene groups with similar change patterns that share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. The model-based method is advantageous over other methods in our proposed model because the sample Fourier coefficients asymptotically follow the multivariate normal distribution. Change patterns are automatically estimated with the Fourier representation in our model. Our model was tested in simulations and on real gene data sets. The simulation results showed that the model-based clustering method with the sample Fourier coefficients has a lower clustering error rate than K-means clustering. Even when the number of repeated time points was small, the same results were obtained. We also applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our

  10. Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex.

    PubMed

    Botelho, Ana; Canto, Ana; Leão, Célia; Cunha, Mónica V

    2015-01-01

    Typical CRISPR (clustered, regularly interspaced, short palindromic repeat) regions are constituted by short direct repeats (DRs), interspersed with similarly sized non-repetitive spacers, derived from transmissible genetic elements, acquired when the cell is challenged with foreign DNA. The analysis of the structure, in number and nature, of CRISPR spacers is a valuable tool for molecular typing since these loci are polymorphic among strains, originating characteristic signatures. The existence of CRISPR structures in the genome of the members of Mycobacterium tuberculosis complex (MTBC) enabled the development of a genotyping method, based on the analysis of the presence or absence of 43 oligonucleotide spacers separated by conserved DRs. This method, called spoligotyping, consists on PCR amplification of the DR chromosomal region and recognition after hybridization of the spacers that are present. The workflow beneath this methodology implies that the PCR products are brought onto a membrane containing synthetic oligonucleotides that have complementary sequences to the spacer sequences. Lack of hybridization of the PCR products to a specific oligonucleotide sequence indicates absence of the correspondent spacer sequence in the examined strain. Spoligotyping gained great notoriety as a robust identification and typing tool for members of MTBC, enabling multiple epidemiological studies on human and animal tuberculosis.

  11. The relative vertex clustering value - a new criterion for the fast discovery of functional modules in protein interaction networks

    PubMed Central

    2015-01-01

    Background Cellular processes are known to be modular and are realized by groups of proteins implicated in common biological functions. Such groups of proteins are called functional modules, and many community detection methods have been devised for their discovery from protein interaction networks (PINs) data. In current agglomerative clustering approaches, vertices with just a very few neighbors are often classified as separate clusters, which does not make sense biologically. Also, a major limitation of agglomerative techniques is that their computational efficiency do not scale well to large PINs. Finally, PIN data obtained from large scale experiments generally contain many false positives, and this makes it hard for agglomerative clustering methods to find the correct clusters, since they are known to be sensitive to noisy data. Results We propose a local similarity premetric, the relative vertex clustering value, as a new criterion allowing to decide when a node can be added to a given node's cluster and which addresses the above three issues. Based on this criterion, we introduce a novel and very fast agglomerative clustering technique, FAC-PIN, for discovering functional modules and protein complexes from a PIN data. Conclusions Our proposed FAC-PIN algorithm is applied to nine PIN data from eight different species including the yeast PIN, and the identified functional modules are validated using Gene Ontology (GO) annotations from DAVID Bioinformatics Resources. Identified protein complexes are also validated using experimentally verified complexes. Computational results show that FAC-PIN can discover functional modules or protein complexes from PINs more accurately and more efficiently than HC-PIN and CNM, the current state-of-the-art approaches for clustering PINs in an agglomerative manner. PMID:25734691

  12. Physical-depth architectural requirements for generating universal photonic cluster states

    NASA Astrophysics Data System (ADS)

    Morley-Short, Sam; Bartolucci, Sara; Gimeno-Segovia, Mercedes; Shadbolt, Pete; Cable, Hugo; Rudolph, Terry

    2018-01-01

    Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as a universal resource for measurement-based (one-way) quantum computation. In ballistic approaches to LOQC, cluster states are generated passively from small entangled resource states using so-called fusion operations. Results from percolation theory have previously been used to argue that universal cluster states can be generated in the ballistic approach using schemes which exceed the critical threshold for percolation, but these results consider cluster states with unbounded size. Here we consider how successful percolation can be maintained using a physical architecture with fixed physical depth, assuming that the cluster state is continuously generated and measured, and therefore that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be implemented using a constant-size device with modest physical depth, and that percolation can be exploited using simple pathfinding strategies without the need for high-complexity algorithms.

  13. Constraining the Mass of the Spectacular Pandora's Cluster, Abell 2744

    NASA Astrophysics Data System (ADS)

    Carrasco, Rodrigo; Frye, Brenda; Coe, Dan; Dupke, Renato; Merten, Julian; Sodre, Laerte; Massey, Richard; Braglia, Filberto; Cypriano, Eduardo; Zitrin, Adi; Krick, Jessica; Benitez, Narciso

    2011-08-01

    Violent cluster mergers provide a unique opportunity to study the interplay between dark matter (DM) and ICM and to set constraints on the nature of DM. In particular, cluster mergers near first core passage allow us to ``see'' DM by comparing the spatial distribution of the intra-cluster gas (baryonic) to that of DM. We have recently finished a lensing analysis of the particularly interesting merging system, A2744, the Pandora cluster. We found that it is the result of a spectacular merging event, significantly more complex than the "Bullet Cluster", that produced a wide variety of new phenomenologies, among them, a Bullet, a Dark sub-cluster (no gas), a Ghost sub-cluster (no DM), which can provide fundamental insights to the physics of the ICM, and begs further observations. Our analyses revealed 34 arcs produced by strong gravitational lensing, none of which had been published to date. Spectroscopic redshifts of these arcs are essential to determine precise masses of the main merging system providing crucial information for further numerical simulations and to set stronger constraints on the DM self-interaction cross-section. Therefore we are requesting 17.2 hours on Gemini+GMOS-S, primarily to obtain spectroscopic redshifts of multiply strongly lensed arcs produced by this impressive cluster.

  14. Formation of Compact Ellipticals in the merging star cluster scenario

    NASA Astrophysics Data System (ADS)

    Urrutia Zapata, Fernanda Cecilia; Theory and star formation group

    2018-01-01

    In the last years, extended old stellar clusters have been observed. They are like globular clusters (GCs) but with larger sizes(a limit of Re=10 pc is currently seen as reasonable). These extended objects (EOs) cover a huge range of mass. Objects at the low mass end with masses comparable to normal globular clusters are called extended clusters or faint fuzzies Larsen & Brodie (2000) and objects at the high-mass end are called ultra compact dwarf galaxies (UCDs). Ultra compact dwarf galaxies are compact object with luminositys above the brigtest known GCs. UCDs are more compact than typical dwarf galaxies but with comparable luminosities. Usually, a lower mass limit of 2 × 10^6 Solar masses is applied.Fellhauer & Kroupa (2002a,b) demostrated that object like ECs, FFs and UCDs can be the remnants of the merger of star clusters complexes, this scenario is called the Merging Star Cluster Scenario. Amore concise study was performed by Bruens et al. (2009, 2011).Our work tries to explain the formation of compact elliptical(cE). These objects are a comparatively rare class of spheroidal galaxies, possessing very small Re and high central surface brightnesses (Faber 1973). cEs have the same parameters as extended objects but they are slightly larger than 100 pc and the luminosities are in the range of -11 to -12 Mag.The standard formation sceanrio of these systems proposes a galaxy origin. CEs are the result of tidal stripping and truncation of nucleated larger systems. Or they could be a natural extension of the class of elliptical galaxies to lower luminosities and smaller sizes.We want to propose a completely new formation scenario for cEs. In our project we try to model cEs in a similar way that UCDs using the merging star cluster scenario extended to much higher masses and sizes. We think that in the early Universe we might have produced sufficiently strong star bursts to form cluster complexes which merge into cEs. So far it is observationally unknown if cEs are

  15. Cluster management.

    PubMed

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  16. Cleaved high-molecular-weight kininogen inhibits neointima formation following vascular injury.

    PubMed

    Daniel, Jan-Marcus; Reich, Fabian; Dutzmann, Jochen; Weisheit, Simona; Teske, Rebecca; Gündüz, Dursun; Bauersachs, Johann; Preissner, Klaus T; Sedding, Daniel G

    2015-08-31

    Cleaved high-molecular-weight kininogen (HKa) or its peptide domain 5 (D5) alone exert anti-adhesive properties in vitro related to impeding integrin-mediated cellular interactions. However, the anti-adhesive effects of HKa in vivo remain elusive. In this study, we investigated the effects of HKa on leukocyte recruitment and neointima formation following wire-induced injury of the femoral artery in C57BL/6 mice. Local application of HKa significantly reduced the accumulation of monocytes and also reduced neointimal lesion size 14 days after injury. Moreover, C57BL/6 mice transplanted with bone marrow from transgenic mice expressing enhanced green fluorescence protein (eGFP) showed a significantly reduced accumulation of eGFP+-cells at the arterial injury site and decreased neointimal lesion size after local application of HKa or the polypeptide D5 alone. A differentiation of accumulating eGFP+-cells into highly specific smooth muscle cells (SMC) was not detected in any group. In contrast, application of HKa significantly reduced the proliferation of locally derived neointimal cells. In vitro, HKa and D5 potently inhibited the adhesion of SMC to vitronectin, thus impairing their proliferation, migration, and survival rates. In conclusion, application of HKa or D5 decreases the inflammatory response to vascular injury and exerts direct effects on SMC by impeding the binding of integrins to extracellular matrix components. Therefore, HKa and D5 may hold promise as novel therapeutic substances to prevent neointima formation.

  17. A Starburst in the Core of a Galaxy Cluster: the Dwarf Irregular NGC 1427A in Fornax

    NASA Astrophysics Data System (ADS)

    Mora, Marcelo D.; Chanamé, Julio; Puzia, Thomas H.

    2015-09-01

    Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dwarf irregular galaxy NGC 1427A, presently infalling toward the core of the Fornax galaxy cluster for the first time, offers a unique opportunity to study those processes at a level of detail not possible to achieve for galaxies at higher redshifts, when galaxy-scale interactions were more common. Using the spatial resolution of the Hubble Space Telescope/Advanced Camera for Surveys and auxiliary Very Large Telescope/FORS1 ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ˜ 4× {10}6 years and stellar masses from a few 1000 up to ˜ 3× {10}4{M}⊙ , slightly dependent on the assumption of cluster metallicity and initial mass function. Their grouping is consistent with hierarchical and fractal star cluster formation. We use deep Hα imaging data to determine the current star formation rate in NGC 1427A and estimate the ratio, Γ, of star formation occurring in these star cluster complexes to that in the entire galaxy. We find Γ to be among the largest such values available in the literature, consistent with starburst galaxies. Thus a large fraction of the current star formation in NGC 1427A is occurring in star clusters, with the peculiar spatial arrangement of such complexes strongly hinting at the possibility that the starburst is being triggered by the passage of the galaxy through the cluster environment

  18. The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review.

    PubMed

    Leech, Rebecca M; McNaughton, Sarah A; Timperio, Anna

    2014-01-22

    Diet, physical activity (PA) and sedentary behavior are important, yet modifiable, determinants of obesity. Recent research into the clustering of these behaviors suggests that children and adolescents have multiple obesogenic risk factors. This paper reviews studies using empirical, data-driven methodologies, such as cluster analysis (CA) and latent class analysis (LCA), to identify clustering patterns of diet, PA and sedentary behavior among children or adolescents and their associations with socio-demographic indicators, and overweight and obesity. A literature search of electronic databases was undertaken to identify studies which have used data-driven methodologies to investigate the clustering of diet, PA and sedentary behavior among children and adolescents aged 5-18 years old. Eighteen studies (62% of potential studies) were identified that met the inclusion criteria, of which eight examined the clustering of PA and sedentary behavior and eight examined diet, PA and sedentary behavior. Studies were mostly cross-sectional and conducted in older children and adolescents (≥ 9 years). Findings from the review suggest that obesogenic cluster patterns are complex with a mixed PA/sedentary behavior cluster observed most frequently, but healthy and unhealthy patterning of all three behaviors was also reported. Cluster membership was found to differ according to age, gender and socio-economic status (SES). The tendency for older children/adolescents, particularly females, to comprise clusters defined by low PA was the most robust finding. Findings to support an association between obesogenic cluster patterns and overweight and obesity were inconclusive, with longitudinal research in this area limited. Diet, PA and sedentary behavior cluster together in complex ways that are not well understood. Further research, particularly in younger children, is needed to understand how cluster membership differs according to socio-demographic profile. Longitudinal research is

  19. Clustering cancer gene expression data by projective clustering ensemble

    PubMed Central

    Yu, Xianxue; Yu, Guoxian

    2017-01-01

    Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920

  20. Seizure clustering.

    PubMed

    Haut, Sheryl R

    2006-02-01

    Seizure clusters, also known as repetitive or serial seizures, occur commonly in epilepsy. Clustering implies that the occurrence of one seizure may influence the probability of a subsequent seizure; thus, the investigation of the clustering phenomenon yields insights into both specific mechanisms of seizure clustering and more general concepts of seizure occurrence. Seizure clustering has been defined clinically as a number of seizures per unit time and, statistically, as a deviation from a random distribution, or interseizure interval dependence. This review explores the pathophysiology, epidemiology, and clinical implications of clustering, as well as other periodic patterns of seizure occurrence. Risk factors for experiencing clusters and potential precipitants of clustering are also addressed.