Science.gov

Sample records for climate change plant

  1. Plant Pathogens as Indicators of Climate Change

    E-print Network

    Garrett, Karen A.

    Chapter 25 Plant Pathogens as Indicators of Climate Change K.A. Garrett, M. Nita, E.D. De Wolf, L. Gomez and A.H. Sparks Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506 1. Introduction 2. Climatic Variables and Plant Disease 3. Evidence that Simulated Climate Change Affects Plant

  2. Climate Change Effects on Plant Disease: Genomes

    E-print Network

    Garrett, Karen A.

    Climate Change Effects on Plant Disease: Genomes to Ecosystems K. A. Garrett, S. P. Dendy, E. E in the effects of climate change on plant disease contin- ues to be limited, but some striking progress has been of the magnitude of climate change effects. Ecosystem ecologists are now addressing the role of plant disease

  3. Book Review: Plant Growth and Climate Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technical book "Plant Growth and climate Change" (2006. James I.L. Morison and M.D. Morecroft, Eds. Blackwell Publishing. 213 pp.) was reviewed for the scientific readership of the peer-reviewed journal HortScience. The text is well organized into nine independently-authored chapters each of whi...

  4. Urban Plantings: 'Living Laboratories' for Climate Change Response.

    PubMed

    Farrell, Claire; Szota, Christopher; Arndt, Stefan K

    2015-10-01

    Urban plantings are not only valuable resources for understanding 'urban plant physiology' but are 'living laboratories' for understanding plant response to climate change. Therefore, we encourage researchers who currently work in natural ecosystems to consider how urban plantings could enhance their research into plant physiological responses to a changing climate. PMID:26440428

  5. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  6. Climate change reduces nectar secretion in two common Mediterranean plants.

    PubMed

    Takkis, Krista; Tscheulin, Thomas; Tsalkatis, Panagiotis; Petanidou, Theodora

    2015-01-01

    Global warming can lead to considerable impacts on natural plant communities, potentially inducing changes in plant physiology and the quantity and quality of floral rewards, especially nectar. Changes in nectar production can in turn strongly affect plant-pollinator interaction networks-pollinators may potentially benefit under moderate warming conditions, but suffer as resources reduce in availability as elevated temperatures become more extreme. Here, we studied the effect of elevated temperatures on nectar secretion of two Mediterranean Lamiaceae species-Ballota acetabulosa and Teucrium divaricatum. We measured nectar production (viz. volume per flower, sugar concentration per flower and sugar content per flower and per plant), number of open and empty flowers per plant, as well as biomass per flower under a range of temperatures selected ad hoc in a fully controlled climate chamber and under natural conditions outdoors. The average temperature in the climate chamber was increased every 3 days in 3 °C increments from 17.5 to 38.5 °C. Both study species showed a unimodal response of nectar production (volume per flower, sugar content per flower and per plant) to temperature. Optimal temperature for sugar content per flower was 25-26 °C for B. acetabulosa and 29-33 °C for T. divaricatum. According to our results, moderate climate warming predicted for the next few decades could benefit nectar secretion in T. divaricatum as long as the plants are not water stressed, but have a moderate negative effect on B. acetabulosa. Nevertheless, strong warming as predicted by climate change models for the end of the 21st century is expected to reduce nectar secretion in both species and can thus significantly reduce available resources for both wild bees and honeybees in Mediterranean systems. PMID:26374517

  7. Climate change reduces nectar secretion in two common Mediterranean plants

    PubMed Central

    Takkis, Krista; Tscheulin, Thomas; Tsalkatis, Panagiotis; Petanidou, Theodora

    2015-01-01

    Global warming can lead to considerable impacts on natural plant communities, potentially inducing changes in plant physiology and the quantity and quality of floral rewards, especially nectar. Changes in nectar production can in turn strongly affect plant–pollinator interaction networks—pollinators may potentially benefit under moderate warming conditions, but suffer as resources reduce in availability as elevated temperatures become more extreme. Here, we studied the effect of elevated temperatures on nectar secretion of two Mediterranean Lamiaceae species—Ballota acetabulosa and Teucrium divaricatum. We measured nectar production (viz. volume per flower, sugar concentration per flower and sugar content per flower and per plant), number of open and empty flowers per plant, as well as biomass per flower under a range of temperatures selected ad hoc in a fully controlled climate chamber and under natural conditions outdoors. The average temperature in the climate chamber was increased every 3 days in 3 °C increments from 17.5 to 38.5 °C. Both study species showed a unimodal response of nectar production (volume per flower, sugar content per flower and per plant) to temperature. Optimal temperature for sugar content per flower was 25–26 °C for B. acetabulosa and 29–33 °C for T. divaricatum. According to our results, moderate climate warming predicted for the next few decades could benefit nectar secretion in T. divaricatum as long as the plants are not water stressed, but have a moderate negative effect on B. acetabulosa. Nevertheless, strong warming as predicted by climate change models for the end of the 21st century is expected to reduce nectar secretion in both species and can thus significantly reduce available resources for both wild bees and honeybees in Mediterranean systems. PMID:26374517

  8. Climate Change and Plant Diseases: Forests, Crops, and Food Katherine Siegel '13 and Priyan Wickremesinghe `13

    E-print Network

    Smith, Kate

    the one presented here include The Science of Climate Change, An Overview of Climate Change and Human to the proper functioning of ecosystems, which in turn support human health and well-being. Climate change can not yet have a complete understanding of the effects of climate change on plant health, recent work

  9. Research Facility Climate change and environmental stresses placed by humans on plants,

    E-print Network

    Lennard, William N.

    Research Facility Climate change and environmental stresses placed by humans on plants, animals: Biomes, Earth Science, Imaging, Insects, Microbiology, Plants and Algae, Plant Productivity and Transgenic Plants · Will lead to significant contributions in the areas of sustainable agriculture

  10. Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant

    PubMed Central

    Alexander, Jake M.

    2013-01-01

    A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species. PMID:23902908

  11. Soil ecosystem functioning under climate change: plant species and community effects

    SciTech Connect

    Kardol, Paul; Cregger, Melissa; Campany, Courtney E; Classen, Aimee T

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.

  12. Project BudBurst: People, Plants, and Climate Change

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Ward, D.; Havens, K.; Gardiner, L. S.; Alaback, P.

    2010-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project BudBurst and will report on the results of the 2009 field campaign and discuss plans to expand Project BudBurst in 2010 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst co managed by the National Ecological Observatory Network and the Chicago botanic Garden. Financial support has been received from the National Science Foundation, UCLA Center for Embedded network Sensors U.S. Bureau of Land Management, U.S. Geological Survey , National Geographic Education Foundation, U.S. Fish and Wildlife Foundation, and NASA.

  13. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; Ault, T. R.; Bolmgren, K.; Mazer, S. J.; McCabe, G. J.; McGill, B. J.; Parmesan, C.; Salamin, N.; Schwartz, M. D.; Cleland, E. E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  14. Rising CO2, Climate Change, and Public Health: Exploring the Links to Plant Biology

    PubMed Central

    Ziska, Lewis H.; Epstein, Paul R.; Schlesinger, William H.

    2009-01-01

    Background Although the issue of anthropogenic climate forcing and public health is widely recognized, one fundamental aspect has remained underappreciated: the impact of climatic change on plant biology and the well-being of human systems. Objectives We aimed to critically evaluate the extant and probable links between plant function and human health, drawing on the pertinent literature. Discussion Here we provide a number of critical examples that range over various health concerns related to plant biology and climate change, including aerobiology, contact dermatitis, pharmacology, toxicology, and pesticide use. Conclusions There are a number of clear links among climate change, plant biology, and public health that remain underappreciated by both plant scientists and health care providers. We demonstrate the importance of such links in our understanding of climate change impacts and provide a list of key questions that will help to integrate plant biology into the current paradigm regarding climate change and human health. PMID:19270781

  15. Climate Change

    MedlinePLUS

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  16. Shifting Global Invasive Potential of European Plants with Climate Change

    E-print Network

    Peterson, A. Townsend; Stewart, Aimee M.; Mohamed, Kamal I.; Araú jo, Miguel B.

    2008-06-18

    Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities...

  17. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    PubMed

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance. PMID:26236843

  18. Rising CO2, climate change, and public health: Exploring the links to plant biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the issue of anthropogenic climate forcing and public health is widely recognized, one fundamental aspect has remained underappreciated; the impact of climatic change on plant biology and the well-being of human systems. To critically evaluate the extant and probable links between plant fun...

  19. Climate Change and Extreme Weather Impacts on Salt Marsh Plants

    EPA Science Inventory

    Regional assessments of climate change impacts on New England demonstrate a clear rise in rainfall over the past century. The number of extreme precipitation events (i.e., two or more inches of rain falling during a 48-hour period) has also increased over the past few decades. ...

  20. Climate change implications for plant genetic resource conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The continued increase in crop productivity has been made possible by numerous advances in agricultural technologies that harness the potential of traits in diverse germplasm. One issue that has garnered much attention in recent times is climate change. Although there are some positive predicted co...

  1. Where does the carbon go?–Plant carbon allocation under climate change

    DOE PAGESBeta

    Sevanto, Sanna; Dickman, L. Turin

    2015-06-01

    The ability of terrestrial vegetation to both take up and release carbon and water makes understanding climate change effects on plant function critical. These effects could alter the impacts and feedbacks of vegetation on climate and either slow down or accelerate climatic warming (Bonan 2008). In conclusion, studies on plant responses to increased atmospheric CO2 concentration and elevated temperatures have become abundant in the last 20 years (for reviews, see Way and Oren 2010, Franks et al. 2013).

  2. Where does the carbon go?–Plant carbon allocation under climate change

    SciTech Connect

    Sevanto, Sanna; Dickman, L. Turin

    2015-06-01

    The ability of terrestrial vegetation to both take up and release carbon and water makes understanding climate change effects on plant function critical. These effects could alter the impacts and feedbacks of vegetation on climate and either slow down or accelerate climatic warming (Bonan 2008). In conclusion, studies on plant responses to increased atmospheric CO2 concentration and elevated temperatures have become abundant in the last 20 years (for reviews, see Way and Oren 2010, Franks et al. 2013).

  3. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae)

    E-print Network

    Sanders, Nathan J.

    Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia present a first assessment of the potential impact of climate change on a global biodiversity hotspot of biodiversity by modifying the geographic distributions of species. Forecasts based on bioclimatic envelop

  4. Plant nutrients do not covary with soil nutrients under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Luo, Wentao; Elser, James J.; Lü, Xiao-Tao; Wang, Zhengwen; Bai, Edith; Yan, Caifeng; Wang, Chao; Li, Mai-He; Zimmermann, Niklaus E.; Han, Xingguo; Xu, Zhuwen; Li, Hui; Wu, Yunna; Jiang, Yong

    2015-08-01

    Nitrogen (N) and phosphorus (P) play vital roles in plant growth and development. Yet how climate regimes and soil fertility influence plant N and P stoichiometry is not well understood, especially in the belowground plant parts. Here we investigated plant aboveground and belowground N and P concentrations ([N] and [P]) and their stoichiometry in three dominant genera along a 2200 km long climatic gradient in northern China. Results showed that temperature explained more variation of [N] and [P] in C4 plants, whereas precipitation exerted a stronger influence on [N] and [P] in C3 plants. Both plant aboveground and belowground [N] and [P] increased with decreasing precipitation, and increasing temperatures yet were negatively correlated with soil [N] and [P]. Plant N:P ratios were unrelated with all climate and soil variables. Plant aboveground and belowground [N] followed an allometric scaling relationship, but the allocation of [P] was isometric. These results imply that internal processes stabilize plant N:P ratios and hence tissue N:P ratios may not be an effective parameter for predicting plant nutrient limitation. Our results also imply that past positive relationships between plant and nutrient stocks may be challenged under changing climatic conditions. While any modeling would need to be able to replicate currently observed relationships, it is conceivable that some relationships, such as those between temperature or rainfall and carbon:nutrient ratios, should be different under changing climatic conditions.

  5. Evolutionary and plastic responses to climate change in terrestrial plant populations

    PubMed Central

    Franks, Steven J; Weber, Jennifer J; Aitken, Sally N

    2014-01-01

    As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species’ life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change. PMID:24454552

  6. Holocene Substrate Influences on Plant and Fire Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Briles, C.; Whitlock, C. L.

    2011-12-01

    The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil fertility.

  7. Modeling the response of plants and ecosystems to elevated CO sub 2 and climate change

    SciTech Connect

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth's surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society's ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  8. Modeling the response of plants and ecosystems to elevated CO{sub 2} and climate change

    SciTech Connect

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth`s surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society`s ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  9. Facilitation among plants in alpine environments in the face of climate change

    PubMed Central

    Anthelme, Fabien; Cavieres, Lohengrin A.; Dangles, Olivier

    2014-01-01

    While there is a large consensus that plant–plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation–climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant–plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change. PMID:25161660

  10. Climate Change Disproportionately Increases Herbivore over Plant or Parasitoid Biomass

    PubMed Central

    de Sassi, Claudio; Tylianakis, Jason M.

    2012-01-01

    All living organisms are linked through trophic relationships with resources and consumers, the balance of which determines overall ecosystem stability and functioning. Ecological research has identified a multitude of mechanisms that contribute to this balance, but ecologists are now challenged with predicting responses to global environmental changes. Despite a wealth of studies highlighting likely outcomes for specific mechanisms and subsets of a system (e.g., plants, plant-herbivore or predator-prey interactions), studies comparing overall effects of changes at multiple trophic levels are rare. We used a combination of experiments in a grassland system to test how biomass at the plant, herbivore and natural enemy (parasitoid) levels responds to the interactive effects of two key global change drivers: warming and nitrogen deposition. We found that higher temperatures and elevated nitrogen generated a multitrophic community that was increasingly dominated by herbivores. Moreover, we found synergistic effects of the drivers on biomass, which differed across trophic levels. Both absolute and relative biomass of herbivores increased disproportionately to that of plants and, in particular, parasitoids, which did not show any significant response to the treatments. Reduced parasitism rates mirrored the profound biomass changes in the system. These findings carry important implications for the response of biota to environmental changes; reduced top-down regulation is likely to coincide with an increase in herbivory, which in turn is likely to cascade to other fundamental ecosystem processes. Our findings also provide multitrophic data to support the general concern of increasing herbivore pest outbreaks in a warmer world. PMID:22815763

  11. Climate change hampers endangered species through intensified moisture-related plant stresses (Invited)

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R.; Witte, J.; van Bodegom, P.; Dam, J. V.; Aerts, R.

    2010-12-01

    With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to capture climate change effects. We demonstrate that increased rainfall variability in interaction with predicted changes in temperature and CO2, affects soil moisture conditions and plant oxygen and water demands such, that both oxygen stress and water stress will intensify due to climate change. Moreover, these stresses will increasingly coincide, causing variable stress conditions. These variable stress conditions were found to decrease future habitat suitability, especially for plant species that are presently endangered. The future existence of such species is thus at risk by climate change, which has direct implications for policies to maintain endangered species, as applied by international nature management organisations (e.g. IUCN). Our integrated mechanistic analysis of two stresses combined, which has never been done so far, reveals large impacts of climate change on species extinctions and thereby on biodiversity.

  12. From Spring to Fall: Life Cycle Responses of Plant Species and Communities to Climate Change

    NASA Astrophysics Data System (ADS)

    Steltzer, H.; Chong, G.; Weintraub, M. N.

    2013-12-01

    The shifting life cycles of plants in response to environmental changes are well-documented. However, our understanding of the reasons for the shifts remains insufficient for prediction. Complex data sets that include season-long responses of plant species and communities to climate, including extreme climate years and experimental manipulations, are needed to address the gaps in our understanding. Using near-surface sensing technologies and observations of individual species' and plant community responses, we identified season-long shifts of plant life cycles to observed and experimental climate variation. Changes to plant life cycles often included shifts in the timing of spring and fall events for individual species and plant communities, leading to a longer growing season. Community patterns were more predictable than species' responses, although non-native species' responses led to less predictable community patterns. Seasonal patterns of snow cover and water availability influenced the effect of temperature on species' and community life cycles. Multi-factor climate change experiments and data during extreme climate years are essential to determine thresholds by which snow cover and soil water content influence species and community responses to climate warming.

  13. Insect herbivory, plant defense, and early Cenozoic climate change

    PubMed Central

    Wilf, Peter; Labandeira, Conrad C.; Johnson, Kirk R.; Coley, Phyllis D.; Cutter, Asher D.

    2001-01-01

    Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased. PMID:11353840

  14. FORECASTING REGIONAL TO GLOBAL PLANT MIGRATION IN RESPONSE TO CLIMATE CHANGE

    EPA Science Inventory

    The rate of future climate change is likely to exceed the migration rates of most plant species. The replacement of dominant species by locally rare species may require decades, and extinctions may occur when plant species cannot migrate fast enough to escape the consequences of...

  15. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.

    PubMed

    Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë

    2015-01-01

    The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. PMID:24957384

  16. Plant phenology, resource seasonality and climate change in a Brazilian cerrado savanna

    NASA Astrophysics Data System (ADS)

    Gutierrez de Camargo, Maria Gabriela; de Camargo Guaraldo, André; Reys, Paula; Patrícia Cerdeira Morellato, Leonor

    2010-05-01

    Plant phenology, the study of recurring events and its relationship to climate, contributes with key information for the understanding of forest dynamics and plant resource availability to the fauna. Plant reproduction and growth are affected by proximate factors such as precipitation, temperature and photoperiod, ecological factors such as plant-animal interaction, for instance pollination and seed dispersal, and by phylogeny. Therefore, phenological changes may have enormous consequences for both, plants and animals depending upon the periodical availability of plant resources. The Brazilian tropical savannas, the cerrado, is a highly diverse vegetation with around 70% of the woody flora relaying on animal vectors for pollination and seed dispersal. We consider the cerrado savanna a good model to investigate shifts on tropical phenology and climate change. This vegetation presents a very seasonal phenology shaped by the climate characterized by the alternation of a hot, wet season and a dry, cooler one. The onset of leafing, flowering and fruiting is defined by the duration and intensity of the dry season, and changes on precipitation patterns and dryness may likely affect the plant species reproductive pattern as well as the resource availability to the fauna. In that context, we are carrying out a long-term project to investigate the phenology of growth and reproduction of a cerrado savanna woody community in Southeastern Brazil. Our aim is to understand the cerrado savanna long-term phenological patterns, its relationship to local climate, and whether phenological shifts over time may occur due to variations on climate. We are collecting data on crop size, species abundance and fruit consumption by birds to understand the fruit-frugivore network. Additionally, analyses are underway to explore the relationship among fruit season, fruit production, color and nutritional contents, and the activity of frugivores. Our final goal is to verify at which extension climate change may induce shifts on plant community phenology, affecting the availability of resource, plant-frugivore interactions and the mutualism network.

  17. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability

    PubMed Central

    Mora, Camilo; Caldwell, Iain R.; Caldwell, Jamie M.; Fisher, Micah R.; Genco, Brandon M.; Running, Steven W.

    2015-01-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under “business as usual” (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world’s terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world’s population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people. PMID:26061091

  18. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

    PubMed

    Mora, Camilo; Caldwell, Iain R; Caldwell, Jamie M; Fisher, Micah R; Genco, Brandon M; Running, Steven W

    2015-06-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people. PMID:26061091

  19. A tool to assess potential for alien plant establishment and expansion under climate change.

    PubMed

    Roger, Erin; Duursma, Daisy Englert; Downey, Paul O; Gallagher, Rachael V; Hughes, Lesley; Steel, Jackie; Johnson, Stephen B; Leishman, Michelle R

    2015-08-15

    Predicting the influence of climate change on the potential distribution of naturalised alien plant species is an important and challenging task. While prioritisation of management actions for alien plants under current climatic conditions has been widely adopted, very few systems explicitly incorporate the potential of future changes in climate conditions to influence the distribution of alien plant species. Here, we develop an Australia-wide screening tool to assess the potential of naturalised alien plants to establish and spread under both current and future climatic conditions. The screening tool developed uses five spatially explicit criteria to establish the likelihood of alien plant population establishment and expansion under baseline climate conditions and future climates for the decades 2035 and 2065. Alien plants are then given a threat rating according to current and future threat to enable natural resource managers to focus on those species that pose the largest potential threat now and in the future. To demonstrate the screening tool, we present results for a representative sample of approximately 10% (n = 292) of Australia's known, naturalised alien plant species. Overall, most alien plant species showed decreases in area of habitat suitability under future conditions compared to current conditions and therefore the threat rating of most alien plant species declined between current and future conditions. Use of the screening tool is intended to assist natural resource managers in assessing the threat of alien plant establishment and spread under current and future conditions and thus prioritise detailed weed risk assessments for those species that pose the greatest threat. The screening tool is associated with a searchable database for all 292 alien plant species across a range of spatial scales, available through an interactive web-based portal at http://weedfutures.net/. PMID:26063516

  20. IMPACT OF CLIMATE CHANGE ON PLANT BIOLOGY AND CONSEQUENCES FOR PUBLIC HEALTH.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a consequence of climate change and rising carbon dioxide levels, a number of aspects of weed biology are likely to be affected. These changes not only impact food security, but may include probable links to public health. Some examples of such direct links between CO2/temperature, plant biolog...

  1. Plant response to climate change varies with topography, interactions with neighbors, and ecotype.

    PubMed

    Liancourt, Pierre; Spence, Laura A; Song, Daniel S; Lkhagva, Ariuntsetseg; Sharkhuu, Anarmaa; Boldgiv, Bazartseren; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B

    2013-02-01

    Predicting the future of any given species represents an unprecedented challenge in light of the many environmental and biological factors that affect organismal performance and that also interact with drivers of global change. In a three-year experiment set in the Mongolian steppe, we examined the response of the common grass Festuca lenensis to manipulated temperature and water while controlling for topographic variation, plant-plant interactions, and ecotypic differentiation. Plant survival and growth responses to a warmer, drier climate varied within the landscape. Response to simulated increased precipitation occurred only in the absence of neighbors, demonstrating that plant-plant interactions can supersede the effects of climate change. F. lenensis also showed evidence of local adaptation in populations that were only 300 m apart. Individuals from the steep and dry upper slope showed a higher stress/drought tolerance, whereas those from the more productive lower slope showed a higher biomass production and a greater ability to cope with competition. Moreover, the response of this species to increased precipitation was ecotype specific, with water addition benefiting only the least stress-tolerant ecotype from the lower slope origin. This multifaceted approach illustrates the importance of placing climate change experiments within a realistic ecological and evolutionary framework. Existing sources of variation impacting plant performance may buffer or obscure climate change effects. PMID:23691663

  2. Climate Change Action Pack Climate & Habitats

    E-print Network

    Gunawardena, Arunika

    Climate Change Action Pack Climate & Habitats B A C K G R O U DN C H E C K ! Habitat, Food, Water the potential to affect plants,animals and humans around the globe. #12;Climate Change Action Pack 158 Habitat out in shapes of hills, waves, leaves, and berries. #12;Climate Change Action Pack 159 PROCEDURE

  3. Elevation gradient of successful plant traits for colonizing alpine summits under climate change

    NASA Astrophysics Data System (ADS)

    Matteodo, Magalì; Wipf, Sonja; Stöckli, Veronika; Rixen, Christian; Vittoz, Pascal

    2013-06-01

    Upward migration of plant species due to climate change has become evident in several European mountain ranges. It is still, however, unclear whether certain plant traits increase the probability that a species will colonize mountain summits or vanish, and whether these traits differ with elevation. Here, we used data from a repeat survey of the occurrence of plant species on 120 summits, ranging from 2449 to 3418 m asl, in south-eastern Switzerland to identify plant traits that increase the probability of colonization or extinction in the 20th century. Species numbers increased across all plant traits considered. With some traits, however, numbers increased proportionally more. The most successful colonizers seemed to prefer warmer temperatures and well-developed soils. They produced achene fruits and/or seeds with pappus appendages. Conversely, cushion plants and species with capsule fruits were less efficient as colonizers. Observed changes in traits along the elevation gradient mainly corresponded to the natural distribution of traits. Extinctions did not seem to be clearly related to any trait. Our study showed that plant traits varied along both temporal and elevational gradients. While seeds with pappus seemed to be advantageous for colonization, most of the trait changes also mirrored previous gradients of traits along elevation and hence illustrated the general upward migration of plant species. An understanding of the trait characteristics of colonizing species is crucial for predicting future changes in mountain vegetation under climate change.

  4. Changing Climates 

    E-print Network

    Wythe, Kathy

    2008-01-01

    ://www.met.tamu.edu/climatechange.php. Katharine Hayhoe, associate professor of geosciences at Texas Tech University, uses global and regional climate model simulations to determine what climate change means to the places where we live. As a current con- tributor to and expert reviewer...

  5. Forecasting spatial plant dynamics under future climate change in a semiarid savanna ecosystem with complex topography

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Fatichi, S.; Istanbulluoglu, E.; Vivoni, E. R.

    2011-12-01

    The space and time dynamics of savanna ecosystems in semiarid regions is tightly related to fluctuations and changes in the climate, and the competition strategies of individual plants for resources. In most parts of the southwest U.S., various General Circulation Models (GCMs) predict general warming trends with reduced annual precipitation amounts, and increased frequency of extreme droughts and wet periods in the 21st century. Despite the potential risks posed by climate change on vegetation patterns and hydrology, our ability to predict such changes at the catchment and regional scales is limited. In this study, we used a recently developed spatially explicit Cellular Automata Tree-Grass-Shrub Simulator (CATGraSS) to investigate the impacts of climate change on plant dynamics in a semiarid catchment (>3km2) located in the Sevilleta National Wildlife Refuge (SNWR) in central New Mexico, USA. In the catchment north-facing slopes are characterized by a juniper-grass savanna, and south-facing slopes by creosote bush and grass species. Initialized by LIDAR-derived tree locations and simulated grass and shrub patterns obtained from model calibration, CATGraSS is forced by a weather generator, AWE-GEN, used to downscale an ensemble of eight different GCM outputs at the study basin, producing multiple stochastic realizations of a transient climate scenario for the next hundred years. The ensemble simulations are used to examine the uncertainty in vegetation response and develop probabilistic plant distribution maps in relation to landscape morphology. This study highlights the importance of understanding local scale plant-to-plant interactions and the role of climate variability in determining climate change impacts on vegetation dynamics at varying spatial scales.

  6. Epidemiology / pidmiologie Climate change and plant diseases in Ontario

    E-print Network

    Boland, Greg J.

    in Ontario will significantly affect the occurrence of plant diseases in agriculture and forestry will also be affected. In agriculture, plant breeding programs are expected to adapt many crops to increased duration of growing seasons and, concurrently, to develop drought and stress tolerance

  7. Climate change, plant traits, and invasion in natural and agricultural ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species and climate change, each of which is likely to influence agricultural productivity and biological diversity, are also likely to interact. This chapter explores characteristics of both invasive plants and invaded ecosystems to search for generalizations that may allow us to predict w...

  8. From the Cover: Rapid shifts in plant distribution with recent climate change

    E-print Network

    Kelly, A. E.; Goulden, M. L.

    2008-01-01

    28) greenhouse gas-forced global climate change. Our resultsconstraint, and that global climate change may already bechanges in climate are projected to cause changes in vege- tation distribution (3). The global

  9. Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?

    PubMed Central

    Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver

    2013-01-01

    Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290

  10. Comment on "Changes in climatic water balance drive downhill shifts in plant species' optimum elevations"

    USGS Publications Warehouse

    Stephenson, Nathan L.; Das, Adrian J.

    2011-01-01

    Crimmins et al. (Reports, 21 January 2011, p. 324) attributed an apparent downward elevational shift of California plant species to a precipitation-induced decline in climatic water deficit. We show that the authors miscalculated deficit, that the apparent decline in species' elevations is likely a consequence of geographic biases, and that unlike temperature changes, precipitation changes should not be expected to cause coordinated directional shifts in species' elevations.

  11. Forecasting climate change impacts to plant community composition in the Sonoran Desert region

    USGS Publications Warehouse

    Munson, Seth M.; Webb, Robert H.; Belnap, Jayne; Hubbard, J. Andrew; Swann, Don E.; Rutman, Sue

    2012-01-01

    Hotter and drier conditions projected for the southwestern United States can have a large impact on the abundance and composition of long-lived desert plant species. We used long-term vegetation monitoring results from 39 large plots across four protected sites in the Sonoran Desert region to determine how plant species have responded to past climate variability. This cross-site analysis identified the plant species and functional types susceptible to climate change, the magnitude of their responses, and potential climate thresholds. In the relatively mesic mesquite savanna communities, perennial grasses declined with a decrease in annual precipitation, cacti increased, and there was a reversal of the Prosopis velutina expansion experienced in the 20th century in response to increasing mean annual temperature (MAT). In the more xeric Arizona Upland communities, the dominant leguminous tree, Cercidium microphyllum, declined on hillslopes, and the shrub Fouquieria splendens decreased, especially on south- and west-facing slopes in response to increasing MAT. In the most xeric shrublands, the codominant species Larrea tridentata and its hemiparasite Krameria grayi decreased with a decrease in cool season precipitation and increased aridity, respectively. This regional-scale assessment of plant species response to recent climate variability is critical for forecasting future shifts in plant community composition, structure, and productivity.

  12. Effects of Climate Change on Plant Population Growth Rate and Community Composition Change

    PubMed Central

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots—Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)—that are located in tropical and subtropical regions. We proposed a relatively more concise index, Sln?, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change. PMID:26039073

  13. Providing more informative projections of climate change impact on plant distribution in a mountain environment

    NASA Astrophysics Data System (ADS)

    Randin, C.; Engler, R.; Pearman, P.; Vittoz, P.; Guisan, A.

    2007-12-01

    Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species. In this study, we developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, we assessed the effect of scale on predictor variables and geographic projections of SDM. We also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, we used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century. Overall, we showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe B1 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface. Results of monitoring of past vegetation changes suggested that plant species can react quickly to the warmer conditions as far as competition is low However, in subalpine grasslands, competition of already present species is probably important and limit establishment of newly arrived species. Results from future simulations also showed that heavy extinctions of alpine plants may start already in 2040, but the latest in 2080. Our study also highlighted the importance of fine scale and regional assessments of climate change impact on mountain vegetation, using more direct predictor variables. Indeed, predictions at the continental scale may fail to predict local refugees or local extinctions, as well as loss of connectivity between local populations. On the other hand, migrations of low-elevation species to higher altitude may be difficult to predict at the local scale.

  14. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  15. A demographic approach to study effects of climate change in desert plants

    PubMed Central

    Salguero-Gómez, Roberto; Siewert, Wolfgang; Casper, Brenda B.; Tielbörger, Katja

    2012-01-01

    Desert species respond strongly to infrequent, intense pulses of precipitation. Consequently, indigenous flora has developed a rich repertoire of life-history strategies to deal with fluctuations in resource availability. Examinations of how future climate change will affect the biota often forecast negative impacts, but these—usually correlative—approaches overlook precipitation variation because they are based on averages. Here, we provide an overview of how variable precipitation affects perennial and annual desert plants, and then implement an innovative, mechanistic approach to examine the effects of precipitation on populations of two desert plant species. This approach couples robust climatic projections, including variable precipitation, with stochastic, stage-structured models constructed from long-term demographic datasets of the short-lived Cryptantha flava in the Colorado Plateau Desert (USA) and the annual Carrichtera annua in the Negev Desert (Israel). Our results highlight these populations' potential to buffer future stochastic precipitation. Population growth rates in both species increased under future conditions: wetter, longer growing seasons for Cryptantha and drier years for Carrichtera. We determined that such changes are primarily due to survival and size changes for Cryptantha and the role of seed bank for Carrichtera. Our work suggests that desert plants, and thus the resources they provide, might be more resilient to climate change than previously thought. PMID:23045708

  16. Overwintering of herbaceous plants in a changing climate. Still more questions than answers.

    PubMed

    Rapacz, Marcin; Ergon, Ashild; Höglind, Mats; Jørgensen, Marit; Jurczyk, Barbara; Ostrem, Liv; Rognli, Odd Arne; Tronsmo, Anne Marte

    2014-08-01

    The increase in surface temperature of the Earth indicates a lower risk of exposure for temperate grassland and crop to extremely low temperatures. However, the risk of low winter survival rate, especially in higher latitudes may not be smaller, due to complex interactions among different environmental factors. For example, the frequency, degree and length of extreme winter warming events, leading to snowmelt during winter increased, affecting the risks of anoxia, ice encasement and freezing of plants not covered with snow. Future climate projections suggest that cold acclimation will occur later in autumn, under shorter photoperiod and lower light intensity, which may affect the energy partitioning between the elongation growth, accumulation of organic reserves and cold acclimation. Rising CO2 levels may also disturb the cold acclimation process. Predicting problems with winter pathogens is also very complex, because climate change may greatly influence the pathogen population and because the plant resistance to these pathogens is increased by cold acclimation. All these factors, often with contradictory effects on winter survival, make plant overwintering viability under future climates an open question. Close cooperation between climatologists, ecologists, plant physiologists, geneticists and plant breeders is strongly required to predict and prevent possible problems. PMID:25017157

  17. CLIMATE RISK AND CLIMATE CHANGE

    E-print Network

    Smerdon, Jason E.

    CLIMATE RISK AND CLIMATE CHANGE Scenarios of what the climate will be like 50 to 100 years from now associated with climate change demand these efforts continue. However, the long time horizons have led many decision makers to regard climate change as a problem of the distant future. But is it? I n many regions

  18. Multiple phenological responses to climate change among 42 plant species in Xi'an, China.

    PubMed

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2013-09-01

    Phenological data of 42 woody plants in a temperate deciduous forest from the Chinese Phenological Observation Network (CPON) and the corresponding meteorological data from 1963 to 2011 in Xi'an, Shaanxi Province, China were collected and analyzed. The first leaf date (FLD), leaf coloring date (LCD) and first flower date (FFD) are revealed as strong biological signals of climatic change. The FLD, LCD and FFD of most species are sensitive to average temperature during a certain period before phenophase onset. Regional precipitation also has a significant impact on phenophases of about half of the species investigated. Affected by climate change, the FLD and FFD of these species have advanced by 5.54 days and 10.20 days on average during 2003-2011 compared with the period 1963-1996, respectively. Meanwhile, the LCD has delayed by 10.59 days, and growing season length has extended 16.13 days. Diverse responses of phenology commonly exist among different species and functional groups during the study period. Especially for FFD, the deviations between the above two periods ranged from -20.68 to -2.79 days; biotic pollination species showed a significantly greater advance than abiotic pollination species. These results were conducive to the understanding of possible changes in both the structure of plant communities and interspecific relationships in the context of climate change. PMID:23114575

  19. Multiple phenological responses to climate change among 42 plant species in Xi'an, China

    NASA Astrophysics Data System (ADS)

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2013-09-01

    Phenological data of 42 woody plants in a temperate deciduous forest from the Chinese Phenological Observation Network (CPON) and the corresponding meteorological data from 1963 to 2011 in Xi'an, Shaanxi Province, China were collected and analyzed. The first leaf date (FLD), leaf coloring date (LCD) and first flower date (FFD) are revealed as strong biological signals of climatic change. The FLD, LCD and FFD of most species are sensitive to average temperature during a certain period before phenophase onset. Regional precipitation also has a significant impact on phenophases of about half of the species investigated. Affected by climate change, the FLD and FFD of these species have advanced by 5.54 days and 10.20 days on average during 2003-2011 compared with the period 1963-1996, respectively. Meanwhile, the LCD has delayed by 10.59 days, and growing season length has extended 16.13 days. Diverse responses of phenology commonly exist among different species and functional groups during the study period. Especially for FFD, the deviations between the above two periods ranged from -20.68 to -2.79 days; biotic pollination species showed a significantly greater advance than abiotic pollination species. These results were conducive to the understanding of possible changes in both the structure of plant communities and interspecific relationships in the context of climate change.

  20. Climate change alters leaf anatomy, but has no effects on volatile emissions from Arctic plants.

    PubMed

    Schollert, Michelle; Kivimäenpää, Minna; Valolahti, Hanna M; Rinnan, Riikka

    2015-10-01

    Biogenic volatile organic compound (BVOC) emissions are expected to change substantially because of the rapid advancement of climate change in the Arctic. BVOC emission changes can feed back both positively and negatively on climate warming. We investigated the effects of elevated temperature and shading on BVOC emissions from arctic plant species Empetrum hermaphroditum, Cassiope tetragona, Betula nana and Salix arctica. Measurements were performed in situ in long-term field experiments in subarctic and high Arctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. In order to assess whether the treatments had resulted in anatomical adaptations, we additionally examined leaf anatomy using light microscopy and scanning electron microscopy. Against expectations based on the known temperature and light-dependency of BVOC emissions, the emissions were barely affected by the treatments. In contrast, leaf anatomy of the studied plants was significantly altered in response to the treatments, and these responses appear to differ from species found at lower latitudes. We suggest that leaf anatomical acclimation may partially explain the lacking treatment effects on BVOC emissions at plant shoot-level. However, more studies are needed to unravel why BVOC emission responses in arctic plants differ from temperate species. PMID:25737381

  1. Global trade will accelerate plant invasions in emerging economies under climate change.

    PubMed

    Seebens, Hanno; Essl, Franz; Dawson, Wayne; Fuentes, Nicol; Moser, Dietmar; Pergl, Jan; Pyšek, Petr; van Kleunen, Mark; Weber, Ewald; Winter, Marten; Blasius, Bernd

    2015-11-01

    Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60-year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes, and hot spots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the 'imperialist dogma,' stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socioeconomic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub)tropical regions, yet not by enough to cancel out the trade-related increase. PMID:26152518

  2. Plant Functional Variability in Response to Late-Quaternary Climate Change Recorded in Ancient Packrat Middens

    NASA Astrophysics Data System (ADS)

    Holmgren, C. A.; Potts, D. L.

    2006-12-01

    Responses of plant functional traits to environmental variability are of enduring interest because they constrain organism performance and ecosystem function. However, most inferences regarding plant functional trait response to climatic variability have been limited to the modern period. To better understand plant functional response to long-term climate variability and how adjustments in leaf morphology may contribute to patterns of species establishment, persistence, or extirpation, we measured specific leaf area (SLA) from macrofossils preserved in ancient packrat middens collected along the Arizona/New Mexico border, USA. Our record spanned more than 32,000 years and included six woodland and Chihuahuan Desert species: Berberis cf. haematocarpa, Juniperus cf. coahuilensis, Juniperus osteosperma, Larrea tridentata, Prosopis glandulosa and Parthenium incanum. We predicted that regional climatic warming and drying since the late Pleistocene would result in intraspecific decreases in SLA. As predicted, SLA was positively correlated with midden age for three of the six species (L. tridentata, J. osteosperma, B. cf. haematocarpa). SLA was also negatively correlated with December (L. tridentata, J. cf. coahuilensis) or June (B. cf. haematocarpa, J. osteosperma) insolation. A unique record of vegetation community dynamics, plant macrofossils preserved in packrat middens also represent a rich and largely untapped source of information on long-term trends in species functional response to environmental change.

  3. Incorporating long-term climate change in performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect

    Swift, P.N.; Baker, B.L.; Economy, K.; Garner, J.W.; Helton, J.C.; Rudeen, D.K.

    1994-03-01

    The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing had values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.

  4. A Model of Water Resources & Thermoelectric Plant Productivity Considering Changing Climates & Environmental Policy

    NASA Astrophysics Data System (ADS)

    Miara, A.; Vorosmarty, C. J.; Stewart, R. J.; Wollheim, W. M.; Rosenzweig, B.

    2012-12-01

    In the Northeast US, approximately 80% of the available capacity of thermoelectric plants is dependent on the constant availability of water for cooling. Cooling is a necessary process whereby the waste thermal load of a power plant is released and the working fluid (typically steam) condensed to allow the continuation of the thermodynamic cycle and the extraction of electrical power through the action of turbines. Power plants rely on a minimum flow at a certain temperature, determined by the individual plant engineering design, to be sufficiently low for their cooling. Any change in quantity or temperature of water could reduce thermal efficiencies. As a result of the cooling process, power plants emit thermal pollution into receiving waters, which is harmful to freshwater aquatic ecosystems including its resident life forms and their biodiversity. The Clean Water Act of 1972 (CWA) was established to limit thermal pollution, particularly when rivers reach high temperatures. When river temperatures approach the threshold limit, the power plants that use freshwater for cooling are forced to reduce their thermal load and thus their output to comply with the regulations. Here we describe a model that quantifies, in a regional context, thermal pollution and estimates efficiency losses as a result of fluctuating river temperatures and flow. It does this using available data, standard engineering equations describing the heat cycle of power plants and their water use, and assumptions about the operations of the plant. In this presentation, we demonstrate the model by analyzing contrasting climates with and without the CWA, focusing on the productivity of 366 thermoelectric plants that rely on water for cooling in the Northeast between the years 2000-2010. When the CWA was imposed on all simulated power plants, the model shows that during the average winter and summer, 94% and 71% of required generation was met from the power plants, respectively. This suggests that if all power plants were to comply with the CWA and if temperatures do increase in the future as is expected under greenhouse warming, electric power generation in the Northeast may become limited, particularly in the summer. To avoid a potential energy gap, back-up generators and other electric infrastructure, such as hydropower, may have to come online in order to meet the total electric demand. Furthermore, it is clear that the methodology and steps taken in the model are required to more accurately understand, estimate and evaluate the relationship between energy production, environmental and energy policy and biodiversity under forecasted and historic climate conditions. Our ongoing work uses this model to explore various future scenarios of policy, climate and natural resource management in the Northeastern US for the period 2010-2100.

  5. Impacts of climate change drivers on C4 grassland productivity: Scaling driver effects through the plant community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change drivers affect the plant community productivity via three pathways: 1) direct effects of drivers on plants, 2) the response of species abundances to drivers (community response), and 3) the feedback effect of community change on productivity (community effect). The contribution of e...

  6. Response of plants and ecosystems to CO{sub 2} and climate change. Final technical report

    SciTech Connect

    Reynolds, J.F.

    1993-12-31

    In recognition of the important role of vegetation in the bio-geosphere carbon cycle, the Carbon Dioxide Research Program of the US Department of Energy established the research program: Direct Effects of increasing Carbon Dioxide on Vegetation. The ultimate goal is to develop a general ecosystem model to investigate, via hypothesis testing, the potential responses of different terrestrial ecosystems to changes in the global environment over the next century. The approach involves the parallel development of models at several hierarchical levels, from the leaf to the ecosystem. At the plant level, mechanism and the direct effects of CO{sub 2} in the development of a general plant growth model, GEPSI - GEneral Plant SImulator has been stressed. At the ecosystem level, we have stressed the translation Of CO{sub 2} effects and other aspects of climate change throughout the ecosystem, including feedbacks and constraints to system response, in the development of a mechanistic, general ecosystem model SERECO - Simulation of Ecosystem Response to Elevated CO{sub 2} and Climate Change has been stressed.

  7. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits.

    PubMed

    Moor, Helen; Hylander, Kristoffer; Norberg, Jon

    2015-01-01

    Wetlands provide multiple ecosystem services, the sustainable use of which requires knowledge of the underlying ecological mechanisms. Functional traits, particularly the community-weighted mean trait (CWMT), provide a strong link between species communities and ecosystem functioning. We here combine species distribution modeling and plant functional traits to estimate the direction of change of ecosystem processes under climate change. We model changes in CWMT values for traits relevant to three key services, focusing on the regional species pool in the Norrström area (central Sweden) and three main wetland types. Our method predicts proportional shifts toward faster growing, more productive and taller species, which tend to increase CWMT values of specific leaf area and canopy height, whereas changes in root depth vary. The predicted changes in CWMT values suggest a potential increase in flood attenuation services, a potential increase in short (but not long)-term nutrient retention, and ambiguous outcomes for carbon sequestration. PMID:25576286

  8. The impacts of climate change on the winter hardiness zones of woody plants in Europe

    NASA Astrophysics Data System (ADS)

    Gloning, Philipp; Estrella, Nicole; Menzel, Annette

    2013-08-01

    In this study, we investigated how global climate change will affect winter minimum temperatures and if, as a consequence, potential species ranges will expand or contract. Thus, Heinze and Schreiber's 1984 winter hardiness zones (WHZ) for woody plants in Europe, which are based on mean annual minimum temperatures, were updated and analyzed for recent and future changes using the ENSEMBLES data set E-OBS for recent climate and CLM-model data based on two emission scenarios (A1B and B1) for future simulated climate. For the different data sets, maps of the WHZ were created and compared. This allowed the assessment of projected changes in the development of the WHZ until the end of the twenty-first century. Our results suggested that, depending on the emission scenario used, the main shifts in the WHZ will occur for zones 8 and 9 (increase), located in Mediterranean regions, and for zone 5 (decrease), a boreal zone. Moreover, up to 85 % of the area analyzed will experience a warmer winter climate during the twenty-first century, and some areas will experience increases in two WHZ, equal to an increase of 5.6-11 °C in the mean annual minimum temperature. The probabilities of absolute minimum winter temperatures for four 30-year time periods from 1971 to 2100 were calculated in order to reveal changes associated with a general increase in temperature as well as shifts in the distribution itself. It was predicted that colder temperatures than indicated by the WHZ will occur less frequently in the future, but, depending on the region, reoccur every 5-50 years. These findings are discussed in the context of woody plant species assigned to each of the WHZ by Roloff and Bärtels (1996), with respect to a possible expansion of their range limits and the altered risk of recurring cold spells.

  9. Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    PubMed Central

    Lemoine, Nathan P.

    2015-01-01

    Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration. PMID:25705876

  10. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    PubMed

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration. PMID:25705876

  11. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia.

    PubMed

    Berner, Logan T; Beck, Pieter S A; Bunn, Andrew G; Goetz, Scott J

    2013-11-01

    Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth-climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km(2) ) in northeastern Siberia using satellite-derived normalized difference vegetation indices (NDVI), tree ring-width measurements, and climate data. Mean summer temperatures (Ts ) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P < 0.05) with Ts across 56% of the watershed (r = 0.52 ± 0.09, mean ± SD), principally in cold areas, and with CMIgy across 9% of the watershed (r = 0.45 ± 0.06), largely in warm areas. Larch ring-width measurements from nine sites revealed that year-to-year (i.e., high-frequency) variation in growth positively correlated (P < 0.05) with June temperature (r = 0.40) and prior summer CMI (r = 0.40) from 1938 to 2007. An unexplained multi-decadal (i.e., low-frequency) decline in annual basal area increment (BAI) occurred following the mid-20th century, but over the NDVI record there was no trend in mean BAI (P > 0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982-2007). Both satellite and tree-ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations. PMID:23813896

  12. Dramatic response to climate change in the Southwest: Robert Whittaker's 1963 Arizona Mountain plant transect revisited

    PubMed Central

    Brusca, Richard C; Wiens, John F; Meyer, Wallace M; Eble, Jeff; Franklin, Kim; Overpeck, Jonathan T; Moore, Wendy

    2013-01-01

    Models analyzing how Southwestern plant communities will respond to climate change predict that increases in temperature will lead to upward elevational shifts of montane species. We tested this hypothesis by reexamining Robert Whittaker's 1963 plant transect in the Santa Catalina Mountains of southern Arizona, finding that this process is already well underway. Our survey, five decades after Whittaker's, reveals large changes in the elevational ranges of common montane plants, while mean annual rainfall has decreased over the past 20 years, and mean annual temperatures increased 0.25°C/decade from 1949 to 2011 in the Tucson Basin. Although elevational changes in species are individualistic, significant overall upward movement of the lower elevation boundaries, and elevational range contractions, have occurred. This is the first documentation of significant upward shifts of lower elevation range boundaries in Southwestern montane plant species over decadal time, confirming that previous hypotheses are correct in their prediction that mountain communities in the Southwest will be strongly impacted by warming, and that the Southwest is already experiencing a rapid vegetation change. PMID:24223270

  13. The effects of climate change on the phenology of selected Estonian plant, bird and fish populations

    NASA Astrophysics Data System (ADS)

    Ahas, Rein; Aasa, Anto

    2006-09-01

    This paper summarises the trends of 943 phenological time-series of plants, fishes and birds gathered from 1948 to 1999 in Estonia. More than 80% of the studied phenological phases have advanced during springtime, whereas changes are smaller during summer and autumn. Significant values of plant and bird phases have advanced 5 20 days, and fish phases have advanced 10 30 days in the spring period. Estonia’s average air temperature has become significantly warmer in spring, while at the same time a slight decrease in air temperature has been detected in autumn. The growing season has become significantly longer in the maritime climate area of Western Estonia. The investigated phenological and climate trends are related primarily to changes in the North Atlantic Oscillation Index (NAOI) during the winter months. Although the impact of the winter NAOI on the phases decreases towards summer, the trends of the investigated phases remain high. The trends of phenophases at the end of spring and the beginning of summer may be caused by the temperature inertia of the changing winter, changes in the radiation balance or the direct consequences of human impacts such as land use, heat islands or air pollution.

  14. Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot

    PubMed Central

    Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241

  15. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    PubMed

    Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241

  16. Teaching change to local youth: Plant phenology, climate change and citizen science at Hakalau Forest National Wildlife Refuge

    NASA Astrophysics Data System (ADS)

    Litton, C. M.; Laursen, S. C.; Phifer, C.; Giardina, C. P.

    2012-12-01

    Plant phenology is a powerful indicator of how climate change affects native ecosystems, and also provides an experiential outdoor learning opportunity for promoting youth conservation education and awareness. We developed a youth conservation education curriculum, including both classroom and field components, for local middle and high school students from Hawaii. The curriculum is focused on linking plant phenology and climate change, with emphasis on ecologically and culturally important native trees and birds at Hakalau Forest National Wildlife Refuge (NWR), on the Island of Hawaii. In this curriculum, students: (i) visit Hakalau Forest NWR to learn about the ecology of native ecosystems, including natural disturbance regimes and the general concept of change in forest ecosystems; (ii) learn about human-induced climate change and its potential impact on native species; and (iii) collect plant phenology measurements and publish these data on the USA National Phenology Network website. This youth conservation education curriculum represents a close collaboration between Hakalau Forest NWR; the Friends of Hakalau Forest NWR; the College of Tropical Agriculture and Human Resources at the University of Hawaii at Manoa; the USDA Forest Service; and Imi Pono no Ka Aina, an environmental education and outreach program for the Three Mountain Alliance Watershed Partnership. In the Winter and Spring of 2011-2012, we developed classroom and field portions of the curriculum. In the Spring and Summer of 2012, we recruited four groups of participants, with a total of ~40 students, who visited the refuge to participate in the curriculum. Preliminary phenology observations based upon ~4 months of measurements show low to medium levels of flowering, fruiting and leaf flush. However, the real science value of this program will come over years to decades of accumulated student activity. From this, we anticipate the emergence of a unique tropical montane forest dataset on plant phenology for Hakalau Forest NWR. This work would not otherwise exist in Hawaii as we are the first and only site in Hawaii participating in the USA National Phenology Network. In turn, the education and outreach value of this program is immediate, as participating students are exposed to: (i) native ecosystems that they would never otherwise have the opportunity to visit; (ii) the concept of plant phenology and its utility for monitoring native ecosystems; and (iii) the concept of change, including anthropogenic climate change. The curriculum we have developed in Hawaii can be easily replicated elsewhere by: (i) selecting local species with high cultural and ecological value; (ii) devising phenology collection methods tailored to these local species, and student backgrounds and educational levels; and (iii) building sustainable partnerships between community conservation groups and government agencies.

  17. Modeling climate change impacts on maize growth with the focus on plant internal water transport

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Biernath, Christian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2015-04-01

    Based on climate change experiments in chambers and on field measurements, the scientific community expects regional and global changes of crop biomass production and yields. In central Europe one major aspect of climate change is the shift of precipitation towards winter months and the increase of extreme events, e.g. heat stress and heavy precipitation, during the main growing season in summer. To understand water uptake, water use, and transpiration rates by plants numerous crop models were developed. We tested the ability of two existing canopy models (CERES-Maize and SPASS) embedded in the model environment Expert-N5.0 to simulate the water balance, water use efficiency and crop growth. Additionally, sap flow was measured using heat-ratio measurement devices at the stem base of individual plants. The models were tested against data on soil water contents, as well as on evaporation and transpiration rates of Maize plants, which were grown on lysimeters at Helmholtz Zentrum München and in the field at the research station Scheyern, Germany, in summer 2013 and 2014. We present the simulation results and discuss observed shortcomings of the models. CERES-Maize and SPASS could simulate the measured dynamics of xylem sap flow. However, these models oversimplify plant water transport, and thus, cannot explain the underlying mechanisms. Therefore, to overcome these shortcomings, we additionally propose a new model, which is based on two coupled 1-D Richards equations, describing explicitly the plant and soil water transport. This model, which has previously successfully been applied to simulate water flux of 94 individual beech trees of an old-grown forest, will lead to a more mechanistic representation of the soil-plant-water-flow-continuum. This xylem water flux model was now implemented into the crop model SPASS and adjusted to simulate water flux of single maize plants. The modified version is presented and explained. Basic model input requirements are the plant above- and below-ground architectures. Shoot architectures were derived from terrestrial laser scanning. Root architectures of Maize plants were generated using a simple L-system. Preliminary results will be presented together with simulation results by CERES-Maize and SPASS.

  18. Making better maize plants for sustainable grain production in a changing climate

    PubMed Central

    Gong, Fangping; Wu, Xiaolin; Zhang, Huiyong; Chen, Yanhui; Wang, Wei

    2015-01-01

    Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques. PMID:26500671

  19. Making better maize plants for sustainable grain production in a changing climate.

    PubMed

    Gong, Fangping; Wu, Xiaolin; Zhang, Huiyong; Chen, Yanhui; Wang, Wei

    2015-01-01

    Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques. PMID:26500671

  20. Detecting climate-change responses of plants and soil organic matter using isotopomers

    NASA Astrophysics Data System (ADS)

    Schleucher, Jürgen; Ehlers, Ina; Segura, Javier; Haei, Mahsa; Augusti, Angela; Köhler, Iris; Zuidema, Pieter; Nilsson, Mats; Öquist, Mats

    2015-04-01

    Responses of vegetation and soils to environmental changes will strongly influence future climate, and responses on century time scales are most important for feedbacks on the carbon cycle, climate models, prediction of crop productivity, and for adaptation to climate change. That plants respond to increasing CO2 on century time scales has been proven by changes in stomatal index, but very little is known beyond this. In soil, the complexity of soil organic matter (SOM) has hampered a sufficient understanding of the temperature sensitivity of SOM turnover. Here we present new stable isotope methodology that allows detecting shifts in metabolism on long time scales, and elucidating SOM turnover on the molecular level. Compound-specific isotope analysis measures isotope ratios of defined metabolites, but as average of the entire molecule. Here we demonstrate how much more detailed information can be obtained from analyses of intramolecular distributions of stable isotopes, so-called isotopomer abundances. As key tool, we use nuclear magnetic resonance (NMR) spectroscopy, which allows detecting isotope abundance with intramolecular resolution and without risk for isotope fractionation during analysis. Enzyme isotope fractionations create non-random isotopomer patterns in biochemical metabolites. At natural isotope abundance, these patterns continuously store metabolic information. We present a strategy how these patterns can be used as to extract signals on plant physiology, climate variables, and their interactions. Applied in retrospective analyses to herbarium samples and tree-ring series, we detect century-time-scale metabolic changes in response to increasing atmospheric CO2, with no evidence for acclimatory reactions by the plants. In trees, the increase in photosynthesis expected from increasing CO2 ("CO2 fertilization) was diminished by increasing temperatures, which resolves the discrepancy between expected increases in photosynthesis and commonly observed lack of biomass increases. Isotopomer patterns are a rich source of metabolic information, which can be retrieved from archives of plant material covering centuries and millennia, the time scales relevant for climate change. Boreal soils contain a huge carbon pool that may be particularly vulnerable to climate change. Biological activity persists in soils under frozen conditions, but it is largely unknown what controls it, and whether it differs from unfrozen conditions. In an incubation experiment, we traced the metabolism of 13C-labeled cellulose by soil microorganisms. NMR analysis revealed that the 13C label was converted both to respired CO2 and to phospholipid fatty acids, indicating that the polymeric substrate cellulose entered both catabolic and anabolic pathways. Both applications demonstrate a fundamental advantage of isotopomer analysis, namely that their abundances directly reflect biochemical processes. This allows obtaining metabolic information on millennial time scales, thus bridging between plant-physiology and paleo sciences. It may also be key to characterizing SOM with sufficient resolution to understand current biogeochemical fluxes involving SOM and to identify molecular components and organisms that are key for SOM turnover.

  1. Specialization in Plant-Hummingbird Networks Is Associated with Species Richness, Contemporary Precipitation and Quaternary Climate-Change Velocity

    PubMed Central

    Dalsgaard, Bo; Magård, Else; Fjeldså, Jon; Martín González, Ana M.; Rahbek, Carsten; Olesen, Jens M.; Ollerton, Jeff; Alarcón, Ruben; Cardoso Araujo, Andrea; Cotton, Peter A.; Lara, Carlos; Machado, Caio Graco; Sazima, Ivan; Sazima, Marlies; Timmermann, Allan; Watts, Stella; Sandel, Brody; Sutherland, William J.; Svenning, Jens-Christian

    2011-01-01

    Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20–22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization - contemporary climate, Quaternary climate-change velocity, and species richness - had superior explanatory power, together explaining 53–64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks. PMID:21998716

  2. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem

    SciTech Connect

    Kardol, Paul; Campany, Courtney E; Souza, Lara; Norby, Richard J; Weltzin, Jake; Classen, Aimee T

    2010-01-01

    Atmospheric and climatic change can alter plant biomass production and plant community composition. However, we know little about how climate change-induced alterations in biomass production affect plant community composition. To better understand how climate change will alter both individual plant species and community biomass we manipulated atmospheric [CO2], air temperature and precipitation in a constructed old-field ecosystem. Specifically, we compared the responses of dominant and subdominant species to our treatments, and explored how changes in plant dominance patterns alter community evenness over two years. Our study resulted in four major findings: 1) All treatments, elevated [CO2], warming and increased precipitation, increased plant biomass and the effects were additive rather than interactive, 2) Plant species differed in their response to the treatments, resulting in shifts in the proportional biomass of individual species, which altered the plant community composition; however, the plant community response was largely driven by the responses of the dominant species, 3) Precipitation explained most of the variation in plant community composition among treatments, and 4) Changes in precipitation caused a shift in the dominant species proportional biomass that resulted in higher community evenness in the dry relative to wet treatments. Interestingly, compositional and evenness responses of the subdominant community to the treatments did not always follow the responses of the whole plant community. Our data suggest that changes in plant dominance patterns and community evenness are an important part of community responses to climate change, and generally, that compositional shifts can have important consequences for the functioning of terrestrial ecosystems.

  3. Phosphorus Concentrations in Above Ground Plant Biomass under Changing Climate Conditions

    NASA Astrophysics Data System (ADS)

    Selvin, C.; Paytan, A.; Roberts, K.

    2013-12-01

    The Jasper Ridge Global Change Experiment explores the effects of climate change on annual grasslands with different combinations of elevated or ambient levels of carbon dioxide, heat, precipitation, and nitrate deposition. The nested split-plot design allows for analysis of each variable, combinations of variables, and secondary effects. In this study, plant nutrient levels in homogenized above ground biomass are analyzed to assess the utility of this parameter as a tool to describe the response of an ecosystem to environmental changes. Total phosphorus concentrations showed considerable variability within treatment (n=8) and therefore no significant differences between treatments (n=16) is found. Carbon and nitrogen concentrations in bulk above ground biomass are being analyzed to determine nitrogen and carbon ratios and further elucidate the environmental response of phosphorus levels in plants to the modified parameters. P concentrations and elemental ratios will also be related to other parameters such as soil humidity, microbial biomass, enzyme activity, and plant diversity to determine the parameters influencing P content in the biomass.

  4. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services

    PubMed Central

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-01-01

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers’ adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs. PMID:25225382

  5. EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND

    SciTech Connect

    Chen, K.

    2011-10-24

    The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

  6. "Managing Department Climate Change"

    E-print Network

    Sheridan, Jennifer

    "Managing Department Climate Change" #12;Presenters · Ronda Callister Professor, Department Department Climate? · Assesment is essential for determining strategies for initiating change · In a research climate · Each panelist will describe an intervention designed to improve department climate ­ Ronda

  7. CLIMATE VARIABILITY AND CLIMATE CHANGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change and climate variability has received considerable attention from the scientific community in recent decades and has led to a better understanding of various climate phenomena and driving mechanisms. This increased understanding of climate has prompted engineers and policy makers to as...

  8. What plant hydraulics can tell us about responses to climate-change droughts.

    PubMed

    Sperry, John S; Love, David M

    2015-07-01

    Climate change exposes vegetation to unusual drought, causing declines in productivity and increased mortality. Drought responses are hard to anticipate because canopy transpiration and diffusive conductance (G) respond to drying soil and vapor pressure deficit (D) in complex ways. A growing database of hydraulic traits, combined with a parsimonious theory of tree water transport and its regulation, may improve predictions of at-risk vegetation. The theory uses the physics of flow through soil and xylem to quantify how canopy water supply declines with drought and ceases by hydraulic failure. This transpiration 'supply function' is used to predict a water 'loss function' by assuming that stomatal regulation exploits transport capacity while avoiding failure. Supply-loss theory incorporates root distribution, hydraulic redistribution, cavitation vulnerability, and cavitation reversal. The theory efficiently defines stomatal responses to D, drying soil, and hydraulic vulnerability. Driving the theory with climate predicts drought-induced loss of plant hydraulic conductance (k), canopy G, carbon assimilation, and productivity. Data lead to the 'chronic stress hypothesis' wherein > 60% loss of k increases mortality by multiple mechanisms. Supply-loss theory predicts the climatic conditions that push vegetation over this risk threshold. The theory's simplicity and predictive power encourage testing and application in large-scale modeling. PMID:25773898

  9. Late Ordovician land plant spore 13C fractionation records atmospheric CO2 and climate change

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Nelson, D. M.; Pearson, A.; Wellman, C.

    2008-12-01

    Molecular systematics and spore wall ultrastructure studies indicate that late Ordovician diad and triad fossil spores were likely produced by plants most closely related to liverworts. Here, we report the first ?13C estimates of Ordovician fossil land plant spores, which were obtained using a spooling wire micro-combustion device interfaced with an isotope-ratio mass spectrometer (Sessions et al., 2005, Analytical Chemistry, 77, 6519). The spores all originate from Saudi Arabia on the west of Gondwana and date to before (Cardadoc, ca. 460 Ma), during (443Ma) and after (Llandovery, ca. 440Ma) the Hirnantian glaciation. We use these numbers along with marine carbonate ?13C records to estimate atmospheric CO2 by implementing a theoretical model that captures the strong CO2-dependency of 13C fractionation in non-vascular land plants (Fletcher et al., 2008, Nature Geoscience, 1, 43). Although provisional at this stage, reconstructed CO2 changes are consistent with the Kump et al. (2008) (Paleo. Paleo. Paleo. 152, 173) 'weathering hypothesis' whereby pre-Hirnantian cooling is caused by relatively low CO2 (ca. 700ppm) related to enhanced weathering of young basaltic rocks during the early phase of the Taconic uplift, with background values subsequently rising to around double this value by the earliest Silurian. Further analyses will better constrain atmospheric CO2 change during the late Ordovician climatic perturbation and address controversial hypotheses concerning the causes and timing of the Earth system transition into an icehouse state.

  10. Impacts of sea level rise and climate change on coastal plant species in the central California coast

    PubMed Central

    Chang, Michelle Y.; Fulda, Matthew T.; Berlin, Jonathan A.; Freed, Rachel E.; Soo-Hoo, Melissa M.; Revell, Dave L.; Ikegami, Makihiko; Flint, Lorraine E.; Flint, Alan L.; Kendall, Bruce E.

    2015-01-01

    Local increases in sea level caused by global climate change pose a significant threat to the persistence of many coastal plant species through exacerbating inundation, flooding, and erosion. In addition to sea level rise (SLR), climate changes in the form of air temperature and precipitation regimes will also alter habitats of coastal plant species. Although numerous studies have analyzed the effect of climate change on future habitats through species distribution models (SDMs), none have incorporated the threat of exposure to SLR. We developed a model that quantified the effect of both SLR and climate change on habitat for 88 rare coastal plant species in San Luis Obispo, Santa Barbara, and Ventura Counties, California, USA (an area of 23,948 km2). Our SLR model projects that by the year 2100, 60 of the 88 species will be threatened by SLR. We found that the probability of being threatened by SLR strongly correlates with a species’ area, elevation, and distance from the coast, and that 10 species could lose their entire current habitat in the study region. We modeled the habitat suitability of these 10 species under future climate using a species distribution model (SDM). Our SDM projects that 4 of the 10 species will lose all suitable current habitats in the region as a result of climate change. While SLR accounts for up to 9.2 km2 loss in habitat, climate change accounts for habitat suitability changes ranging from a loss of 1,439 km2 for one species to a gain of 9,795 km2 for another species. For three species, SLR is projected to reduce future suitable area by as much as 28% of total area. This suggests that while SLR poses a higher risk, climate changes in precipitation and air temperature represents a lesser known but potentially larger risk and a small cumulative effect from both. PMID:26020011

  11. Land-use and climate change effects on population size and extinction risk of Andean plants

    E-print Network

    Silman, Miles R.

    biodiversity. In order to better understand how climate change may impact the Andean biodiversity hotspot, we biodiversity hotspots (Myers et al., 2000). The ability of species to persist in the face of climate change., 2006). The eastern slope of the Andes harbors Earth's high- est biodiversity and is also one

  12. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    PubMed

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced frosts with climate change may provide more suitable habitats and enable the spread of these species. PMID:24446429

  13. Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community.

    PubMed

    CaraDonna, Paul J; Inouye, David W

    2015-02-01

    Phylogenetic relationships may underlie species-specific phenological sensitivities to abiotic variation and may help to predict these responses to climate change. Although shared evolutionary history may mediate both phenology and phenological sensitivity to abiotic variation, few studies have explicitly investigated whether this is the case. We explore phylogenetic signal in flowering phenology and in phenological sensitivity to temperature and snowmelt using a 39-year record of flowering from the Colorado Rocky Mountains, USA that includes dates of first, peak, and last flowering, and flowering duration for 60 plant species in a subalpine plant community. Consistent with other studies, we found evidence in support of phylogenetic signal in first flowering date. However, the strength and significance of that signal were inconsistent across other measures of flowering in this plant community: peak flowering date exhibited the strongest phylogenetic signal, followed by first flowering date; last flowering date and duration of flowering exhibited patterns indistinguishable from random trait evolution. In contrast to first and peak flowering date, phenological sensitivities of all flowering measures to temperature and snowmelt did not exhibit a phylogenetic signal. These findings show that within ecological communities, phylogenetic signal in phenology does not necessarily imply phylogenetic signal in phenological sensitivities to abiotic variation. PMID:26240857

  14. Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change.

    PubMed

    Gehring, Catherine; Flores-Rentería, Dulce; Sthultz, Christopher M; Leonard, Tierra M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G

    2014-03-01

    Although the importance of plant-associated microbes is increasingly recognized, little is known about the biotic and abiotic factors that determine the composition of that microbiome. We examined the influence of plant genetic variation, and two stressors, one biotic and one abiotic, on the ectomycorrhizal (EM) fungal community of a dominant tree species, Pinus edulis. During three periods across 16 years that varied in drought severity, we sampled the EM fungal communities of a wild stand of P. edulis in which genetically based resistance and susceptibility to insect herbivory was linked with drought tolerance and the abundance of competing shrubs. We found that the EM fungal communities of insect-susceptible trees remained relatively constant as climate dried, while those of insect-resistant trees shifted significantly, providing evidence of a genotype by environment interaction. Shrub removal altered the EM fungal communities of insect-resistant trees, but not insect-susceptible trees, also a genotype by environment interaction. The change in the EM fungal community of insect-resistant trees following shrub removal was associated with greater shoot growth, evidence of competitive release. However, shrub removal had a 7-fold greater positive effect on the shoot growth of insect-susceptible trees than insect-resistant trees when shrub density was taken into account. Insect-susceptible trees had higher growth than insect-resistant trees, consistent with the hypothesis that the EM fungi associated with susceptible trees were superior mutualists. These complex, genetic-based interactions among species (tree-shrub-herbivore-fungus) argue that the ultimate impacts of climate change are both ecological and evolutionary. PMID:24118611

  15. Diverging Plant and Ecosystem Strategies in Response to Climate Change in the High Arctic

    NASA Astrophysics Data System (ADS)

    Maseyk, K. S.; Welker, J. M.; Czimczik, C. I.; Lupascu, M.; Lett, C.; Seibt, U. H.

    2014-12-01

    Increasing summer precipitation means Arctic growing seasons are becoming wetter as well as warmer, but the effect of these coupled changes on tundra ecosystem functioning remains largely unknown. We have determined how warmer and wetter summers affect coupled carbon-water cycling in a High Arctic polar semi-desert ecosystem in NW Greenland. Measurements of ecosystem CO2 and water fluxes throughout the growing season and leaf ecophysiological traits (gas exchange, morphology, leaf chemistry) were made at a long-term climate change experiment. After 9 years of exposure to warmer (+ 4°C) and / or wetter (+ 50% precipitation) treatments, we found diverging plant strategies between the responses to warming with or without an increase in summer precipitation. Warming alone resulted in an increase in leaf nitrogen, mesophyll conductance and leaf-mass per area and higher rates of leaf-level photosynthesis, but with warming and wetting combined leaf traits remain largely unchanged. However, total leaf area increased with warming plus wetting but was unchanged with warming alone. The combined effect of these leaf trait and canopy adjustments is a decrease in ecosystem water-use efficiency (the ratio of net productivity to evapotranspiration) with warming only, but a substantial increase with combined warming and wetting. We conclude that increasing summer precipitation will alter tundra ecohydrological responses to warming; that leaf-level changes in ecophysiological traits have an upward cascading consequence for ecosystem and land surface-climate interactions; and the current relative resistance of High Arctic ecosystems to warming may mask biochemical and carbon cycling changes already underway.

  16. Experimental Investigation of climate change effects on plant available water on rocky desert slopes

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Hikel, H.; Schwanghart, W.; Yair, Aaron

    2010-05-01

    Deserts and semi-deserts cover more than one-third of the global land surface, affecting about 49 million km2 with aridity. In many arid regions, slopes are characterized by sparse and patchy soil and vegetation cover, forming so called 'fertility islands'. The mosaic of soil and vegetation is dynamically interdependent, controlled by adaption of the ecosystem to limited and spatially as well as temporarily variable precipitation. Commonly, the role of the pattern of rocks and soil is considered to act as a natural water harvesting system. In an ideal system, the rocky area supplying water matches the soil's infiltration capacity for the given rainfall magnitude. This approach limits the assessment of plant water supply to the amount and intensity of rainfall events, i.e. the supply of water. In reality, the demand of water by the plants also requires consideration. Therefore, the volume of soil storing water is equally important to the ration of soil to rock. Soil volume determines the absolute amount of water stored in the soil and is thus indicative of the time period during which plants do not experience drought related stress between rainfall events. With climate change likely affecting the temporal pattern of rainfall events, a detailed understanding of soil-water interaction, including the storage capacity of patchy soils on rocky slopes, is required. The aim of the study is to examine the relationship between climate change and plant available water on patchy soils in the Negev desert. Thirteen micro-catchments near Sede Boqer were examined. For each micro-catchment, soil volume and distribution was estimated by laser scanning before and after soil excavation. Porosity was estimated by weighing the excavated soil. Before excavation, sprinkling experiments were conducted. Rainfall of 18mm/h was applied to an area of 1m2 each. The experiments lasted 25 to 40 minutes, until equilibrium runoff rates were achieved. Based on these data, rainfall required for soil saturation and soil water storage was calculated. The results of the sprinkling indicate that the minimum rainfall amount to saturate a median soil patch with water is only 2.5 mm. Such low rainfall event magnitudes have a high frequency in the Negev, indicating that the soil storage space is filled frequently. Consequently, the storage capacity of the soil is of great relevance for plant water supply during periods without rain. Rainfall records for the period of 1976-2008 show a significant variability of the average duration of periods without rainfall during the wet winter season. Depending on the size of a soil patch, serious drought stress can develop, indicating that only an understanding of soil and rainfall interaction enables a full understanding of the impacts of climate change on hillslope ecohydrology. The study also illustrates how rainfall simulation experiments and the analysis of meteorological records can be combined as a tool for the assessment of environmental change.

  17. CLIMATE CHANGE WHAT IS CLIMATE CHANGE?

    E-print Network

    Walter, Frederick M.

    .) INDUSTRIAL WATER POLLUTION IN RICH NATIONS Year Millions of Tons of Pollution Released 1950 1.36 1960 2 of climate change from burning fossil fuels #12;CAUSES OF CLIMATE CHANGE ¡ The biggest climate polluter of Pollution Released #12;CARBON DIOXIDE EMISSIONS Year Millions of Tons of CO2 1950 4.25 1960 5.68 1970 8

  18. White pine and climate change

    SciTech Connect

    Jacobson, G.L. Jr.; Dieffenbacher-Krall, A.

    1995-07-01

    In the past changing climates have lead to numerous continent-scale reorganizations of biotal. During the Quaternary Period climate has oscillated regularly between glacial and interglacial conditions, causing the ranges of many species to ship hundreds and even thousands of kilometers. On short time scales, clime changes that are less dramatic have influenced the regional distibution and abundance of plant taxa. This paper focus on post glacial changes in the distribution and abundance of white pine during the past 12,000 years in eastern North America; responses of white pine to past climate change, and implications for future responses of northeastern forests to climate change.

  19. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia, in response to climate change and grazing pressure

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.; Frost, G. V.; Forbes, B. C.

    2011-10-01

    Understanding the responses of the arctic tundra biome to a changing climate requires knowledge of the complex interactions among the climate, soils and biological system. This study investigates the individual and interaction effects of climate change and reindeer grazing across a variety of climate zones and soil texture types on tundra vegetation community dynamics using an arctic vegetation model that incorporates the reindeer diet, where grazing is a function of both foliar nitrogen concentration and reindeer forage preference. We found that grazing is important, in addition to the latitudinal climate gradient, in controlling tundra plant community composition, explaining about 13% of the total variance in model simulations for all arctic tundra subzones. The decrease in biomass of lichen, deciduous shrub and graminoid plant functional types caused by grazing is potentially dampened by climate warming. Moss biomass had a nonlinear response to increased grazing intensity, and such responses were stronger when warming was present. Our results suggest that evergreen shrubs may benefit from increased grazing intensity due to their low palatability, yet a growth rate sensitivity analysis suggests that changes in nutrient uptake rates may result in different shrub responses to grazing pressure. Heavy grazing caused plant communities to shift from shrub tundra toward moss, graminoid-dominated tundra in subzones C and D when evergreen shrub growth rates were decreased in the model. The response of moss, lichen and forbs to warming varied across the different subzones. Initial vegetation responses to climate change during transient warming are different from the long term equilibrium responses due to shifts in the controlling mechanisms (nutrient limitation versus competition) within tundra plant communities.

  20. Sea Level Rise and Climate Change Effects on Marsh Plants Spartina Alterniflora and Typha Angustifolia Using Mesocosms

    EPA Science Inventory

    A four month experiment using greenhouse mesocosms was conducted to analyze the effect of sea level rise and climate change on salt marsh plants Spartina alterniflora (cordgrass) and Typha angustifolia (narrow-leaved cattail). Our goal was to examine the effects of three differen...

  1. Tidal wetland plant and algal assemblages in Oregon: spatial patterns of composition and vulnerability to climate change

    EPA Science Inventory

    Tidal wetlands support important ecosystem functions along the coast of the Pacific Northwest such as primary production and nutrient transformation. Sea-level rise (SLR) and elevated salinity due to climate change may affect the abundance, distribution, and diversity of plants a...

  2. Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects...

  3. Climate Change Schools Project...

    ERIC Educational Resources Information Center

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  4. Water erosion on areas planted to potato in Tucumán by climate change.

    NASA Astrophysics Data System (ADS)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Lucena, Valeria; Guyot, Elia

    Climate changes, monitored by experts from all over the world, have been a matter of con-sciousness raising about the impacts global warming will have on all areas of interest on the planet. The foreseeable direct impacts expected from this evidence are clear: fewer water reserves for agricultural, industrial and urban use; acceleration of desertification processess; destruction of freshwater ecosystems; ecosystem modification due to a drop in rainfall and an increase in temperature to the north of the XI. Region; disappearance of large areas of snow and ice; severe erosion of unprotected basins; reduced water availability for plants in non irrigated land, due to an increase in rain fall intensity. Climate changes demand from the Argentine society a much greater effort than it has been made up to now to mitigate the impacts on our territory and its inhabitants. Potato crop is of a great economic importance in the agricultural GDP of the province of Tucumán (4th place), the geographic location of its production area a is a fragile agro-ecosystem and for this reason the management of water erosion problems is essential. Therefore the aim of this work is to improve potatoe crop irrigation management through information from satellites combined with farm practice. The digital terrain model was obtained from ASTER images. Irrigation practices were followed by an irrigation management software (FAO) and satellite image processing (ENVI). Preliminary results of this experience enabled, through a multi temporal study, the observation of the evolution of crops and irriga-tion practices rescheduling for next season reducing detected water erosion and economically optimizing productivity.

  5. Outchasing climate change

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  6. Smithsonian climate change exhibits

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2006-05-01

    Two new museum exhibits, ``Arctic: A Friend Acting Strangely'' and ``Atmosphere: Change is in the Air'' opened 15 April at the Smithsonian Institution's National Museum of Natural History in Washington, D.C., in partnership with the U.S. National Oceanic and Atmospheric Administration, NASA, and the U.S. National Science Foundation. In ``Arctic: A Friend Acting Strangely,'' anecdotes from indigenous polar people reveal how climate changes have affected life within the last 50 years. For example, as permafrost melts and sea ice shrinks, plant distributions and animal migration patterns are changing, severely affecting culture.

  7. Use of an automated digital images system for detecting plant status changes in response to climate change manipulations

    NASA Astrophysics Data System (ADS)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo

    2014-05-01

    The importance of phenological research for understanding the consequences of global environmental change on vegetation is highlighted in the most recent IPCC reports. Collecting time series of phenological events appears to be of crucial importance to better understand how vegetation systems respond to climatic regime fluctuations, and, consequently, to develop effective management and adaptation strategies. However, traditional monitoring of phenology is labor intensive and costly and affected to a certain degree of subjective inaccuracy. Other methods used to quantify the seasonal patterns of vegetation development are based on satellite remote sensing (land surface phenology) but they operate at coarse spatial and temporal resolution. To overcome the issues of these methodologies different approaches for vegetation monitoring based on "near-surface" remote sensing have been proposed in recent researches. In particular, the use of digital cameras has become more common for phenological monitoring. Digital images provide spectral information in the red, green, and blue (RGB) wavelengths. Inflection points in seasonal variations of intensities of each color channel can be used to identify phenological events. Canopy green-up phenology can be quantified from the greenness indices. Species-specific dates of leaf emergence can be estimated by RGB image analyses. In this research, an Automated Phenological Observation System (APOS), based on digital image sensors, was used for monitoring the phenological behavior of shrubland species in a Mediterranean site. The system was developed under the INCREASE (an Integrated Network on Climate Change Research) EU-funded research infrastructure project, which is based upon large scale field experiments with non-intrusive climatic manipulations. Monitoring of phenological behavior was conducted continuously since October 2012. The system was set to acquire one panorama per day at noon which included three experimental plots for climate manipulations: control (no manipulation), warming (overnight cover), and drought (interception of the periodic precipitation) treatments (36 shots x panorama (3 rows x 12 columns) with a degree of overlapping equal to 30%). On each panorama, ROIs (Regions of Interest) focusing major species of the shrubland ecosystem were identified. Then, image analysis was performed to obtain information on vegetation status (i.e. color signals and phenology). The color channel information (digital numbers; DNs) were extracted from the RAW file. The overall brightness (i.e., total RGB DN, green excess index) was also calculated. Finally, the RGB value was correlated with the pattern of phenological development. Preliminary results of this study show that the use of digital images are well-suited to identify phenological pattern of the Mediterranean species. Results of digital images analysis can be a valuable support for ecologists, environmental scientists, and land managers providing information useful to interpret phenological responses of plants to climate change, to validate satellite-based phenology data, and to provide input to adaption strategies plans to climate change.

  8. The long-term effects of planting and harvesting on secondary forest dynamics under climate change in northeastern China.

    PubMed

    Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J; Yu, Lizhong

    2016-01-01

    Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change. PMID:26725308

  9. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    USGS Publications Warehouse

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  10. On the role of plant volatiles in anthropogenic global climate change

    NASA Astrophysics Data System (ADS)

    Unger, Nadine

    2014-12-01

    Biogenic volatile organic compound (BVOC) emissions from terrestrial ecosystems undergo rapid oxidation in the atmosphere that affects multiple warming and cooling climate pollutants. Since the preindustrial, BVOC-chemistry-climate interactions have been strongly influenced by anthropogenic changes in land cover, pollution emissions, and the physical climate state. Here, an Earth system model is applied to quantify the effects of BVOC emissions on the global radiation balance in the 1850s and 2000s including changes to tropospheric ozone, methane, and direct aerosol-radiation interactions. The net chemical forcing of global climate due to all known anthropogenic influences on BVOC emissions is -0.17 Wm-2 (cooling) that offsets the +0.10 Wm-2 (warming) due to anthropogenic VOC emissions from fossil fuel use and industry for this time period. BVOC emissions need to be included in assessments of anthropogenic radiative forcing.

  11. Quantifying the importance of plant functional diversity for ecosystem functioning and resilience under scenarios of climate change (Invited)

    NASA Astrophysics Data System (ADS)

    Pavlick, R.; Drewry, D.; Kleidon, A.

    2013-12-01

    Dynamic Global Vegetation Models (DGVMs) typically employ only a small set of Plant Functional Types (PFTs) to represent the vast diversity of observed vegetation forms and functioning. There is growing evidence, however, that this abstraction may not adequately represent the observed variation in plant functional traits, which is thought to play an important role for many ecosystem functions and for ecosystem resilience to environmental change. The geographic distribution of PFTs in these models is also often based on empirical relationships between present-day climate and vegetation patterns. Projections of future climate change, however, point toward the possibility of novel regional climates, which could lead to no-analog vegetation compositions incompatible with the PFT paradigm. Here, we present results from the Jena Diversity-DGVM (JeDi-DGVM), a novel traits-based vegetation model, which simulates a large number of hypothetical plant growth strategies constrained by functional tradeoffs, thereby allowing for a more flexible temporal and spatial representation of the terrestrial biosphere. We run two sets of model experiments forced with the latest bias-corrected climate change scenarios from several different global climate models. In the first set, we simulate a diverse biosphere using a large number of plant growth strategies, allowing the modelled ecosystems to adapt through emergent changes in ecosystem composition. We then aggregate the surviving growth strategies from the first set of diverse simulations to a small number of biome-averaged growth strategies, recreating something akin to PFTs. We use this smaller set of PFT-like growth strategies to represent a sparse or low-diversity biosphere in the second set of model experiments. We quantify the importance of functional diversity by comparing key metrics of ecosystem functioning across the two sets of simulations. The results reveal the implications of using the common PFT vegetation modelling paradigm versus a more diverse approach and may help to quantify the value of biodiversity conservation efforts.

  12. The role of coastal plant communities for climate change mitigation and adaptation

    NASA Astrophysics Data System (ADS)

    Duarte, Carlos M.; Losada, Iñigo J.; Hendriks, Iris E.; Mazarrasa, Inés; Marbà, Núria

    2013-11-01

    Marine vegetated habitats (seagrasses, salt-marshes, macroalgae and mangroves) occupy 0.2% of the ocean surface, but contribute 50% of carbon burial in marine sediments. Their canopies dissipate wave energy and high burial rates raise the seafloor, buffering the impacts of rising sea level and wave action that are associated with climate change. The loss of a third of the global cover of these ecosystems involves a loss of CO2 sinks and the emission of 1 Pg CO2 annually. The conservation, restoration and use of vegetated coastal habitats in eco-engineering solutions for coastal protection provide a promising strategy, delivering significant capacity for climate change mitigation and adaption.

  13. Influence of atmospheric and climatic change on plant-pathogen interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric change studies conducted in Free Air Concentration Enrichment (FACE) systems and open topped chambers have increased our understanding of how factors, such as rising CO2 and O3 levels, impact the development of plant disease epidemics. Using these systems, plant scientists have been able...

  14. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  15. Forest Research: Climate Change

    E-print Network

    Forest Research: Climate Change projects Forest Research is part of the Forestry Commission of climate change-related research is wide-ranging, covering impact assessment and monitoring, adaptation around a quarter of its research budget with Forest Research on climate change and related programmes

  16. Developing robust crop plants for sustaining growth and yield under adverse climatic changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production and quality are expected to suffer from adverse changes in climatic conditions, including global warming, and this will affect worldwide human and animal food security. Global warming has been shown to negatively impact crop yield and therefore will affect sustainability of a...

  17. Potential climate change impacts on tidal wetland plant and algal assemblages in the Pacific Northwest

    EPA Science Inventory

    Tidal wetlands along the coast of the Pacific Northwest provide wildlife habitat and support important ecosystem functions such as primary productivity. The future structure and function of these ecosystems may be altered by sea-level rise (SLR) or other climate change effects. W...

  18. Projected impacts of climate change on regional capacities for global plant

    E-print Network

    Kreft, Holger

    turnover and thereby be a threat to native floras. Keywords: biodiversity patterns; global warming; water of global biodiversity. To date, the direction and magnitude of net changes in the global distribution-energy dynamics; water-energy-richness hypothesis 1. INTRODUCTION Global climate has been warming by approximately

  19. Plant defenses and climate change: doom or destiny for the lodgepole pine?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lodgepole pine is a species of great importance to the forestry industry of British Columbia. However, recent climate-change associated outbreaks of insect pests (i.e. the mountain pine beetle) and diseases (Dothistroma needle blight) have limited productivity of stands throughout its northern range...

  20. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns.

    PubMed

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Fosaa, Anna Maria; Gould, William A; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Jónsdóttir, Ingibjörg I; Jorgenson, Janet C; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Rixen, Christian; Tweedie, Craig E; Walker, Marilyn D; Walker, Marilyn

    2015-01-13

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming. PMID:25548195

  1. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    PubMed Central

    Elmendorf, Sarah C.; Henry, Gregory H. R.; Hollister, Robert D.; Fosaa, Anna Maria; Gould, William A.; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S.; Jorgenson, Janet C.; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H.; Oberbauer, Steven F.; Rixen, Christian; Tweedie, Craig E.; Walker, Marilyn D.

    2015-01-01

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming. PMID:25548195

  2. A landscape-based assessment of climate change vulnerability for all native Hawaiian plants

    USGS Publications Warehouse

    Fortini, Lucas; Price, Jonathan; Jacobi, James; Vorsino, Adam; Burgett, Jeff; Brinck, Kevin W.; Amidon, Fred; Miller, Steve; `Ohukani`ohi`a Gon, Sam, III; Koob, Gregory; Paxton, Eben

    2013-01-01

    In Hawai?i and elsewhere, research efforts have focused on two main approaches to determine the potential impacts of climate change on individual species: estimating species vulnerabilities and projecting responses of species to expected changes. We integrated these approaches by defining vulnerability as the inability of species to exhibit any of the responses necessary for persistence under climate change (i.e., tolerate projected changes, endure in microrefugia, or migrate to new climate-compatible areas, but excluding evolutionary adaptation). To operationalize this response-based definition of species vulnerability within a landscape-based analysis, we used current and future climate envelopes for each species to define zones across the landscape: the toleration zone; the microrefugia zone; and the migration zone. Using these response zones we calculated a diverse set of factors related to habitat area, quality, and distribution for each species, including the amount of habitat protection and fragmentation and areas projected to be lost to sea-level rise. We then calculated the probabilities of each species exhibiting these responses using a Bayesian network model and determined the overall climate change vulnerability of each species by using a vulnerability index. As a first iteration of a response-based species vulnerability assessment (VA), our landscape-based analysis effectively integrates species-distribution models into a Bayesian network-based VA that can be updated with improved models and data for more refined analyses in the future. Our results show that the species most vulnerable to climate change also tend to be species of conservation concern due to non-climatic threats (e.g., competition and predation from invasive species, land-use change). Also, many of Hawai?i’s taxa that are most vulnerable to climate change share characteristics with species that in the past were found to be at risk of extinction due to non-climatic threats (e.g., archipelago endemism, single-island endemism). Of particular concern are the numerous species that have no compatible-climate areas remaining by the year 2100. Species primarily associated with dry forests have higher vulnerability scores than species from any other habitat type. When examined at taxonomic levels above species, low vulnerabilities are concentrated in families and genera of generalists (e.g., ferns or sedges) and typically associated with mid-elevation wet habitats. Our results replicate findings from other regions that link higher species vulnerability with decreasing range size. This species VA is possibly the largest in scope ever conducted in the United States with over 1000 species considered, 319 of which are listed as endangered or threatened under the U.S. Endangered Species Act, filling a critical knowledge gap for resource managers in the region. The information in this assessment can help prioritize species for special conservation actions, guide the management of conservation areas, inform the selection of research and monitoring priorities, and support adaptive management planning and implementation.

  3. programs in climate change

    E-print Network

    shows the 1990's average. The white areas show the average ice cover- age for 2010­2019 (top) and 2040 history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change

  4. Our changing climate

    SciTech Connect

    Kandel, R.

    1990-01-01

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything.

  5. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    NASA Astrophysics Data System (ADS)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we question the sustainability of such forests under projected climate change conditions, but also discuss potential mitigation and adaptation options. Important comment: The topic of this abstract is subject to a press embargo, because it is in review at a Nature Journal

  6. Effects of plant species, organic matter quality, and microbial activity on peatland ecosystem function and resiliance to climate change

    NASA Astrophysics Data System (ADS)

    Chimner, R.; Pypker, T.; Turetsky, M. M.; Hribljan, J.; Waddington, M.

    2008-12-01

    Uncertainties in peatland responses to climate change are due to our poor understanding of interactions between soil climate, plant community structure, organic matter quality, and microbial activity that operate on timeframes ranging from seconds to decades or longer. These uncertainties restrict our understanding of C cycling in peatlands under current and future climate regimes, and inhibit our ability to accurately predict and manage future C cycling patterns and magnitudes in peat accumulating systems. Therefore, our research addresses several fundamental questions regarding the interactive effects of warming and water manipulations on peatland carbon cycling and how they are modified by peat chemistry and vegetation changes. We are monitoring seven sites in Seney National Wildlife Refuge (SNWR), in the Upper Peninsula of Michigan, that represent a gradient of long-term water manipulations (~50 years of drainage), plus another peatland where we are conducting a short-term warming experiment to quantify how short-term warming influence peatland ecosystems, and if different types of experimental warming (warming lamps vs. open top chambers) produce different results. In SNWR we have installed two eddy flux towers, a series of micromet stations, collected soil for peat quality analysis, collected chamber based ecosystem carbon fluxes (GEP, ER and NEE) every 2 weeks, and are monitoring plant production, decomposition, water table levels, soil temperatures and climate data. We also established 18 plots at our other site and divided them into 3 treatments comprised of heating lamps, open top chambers, and control plots. Initial results indicate that carbon fluxes are influenced by temperature and hydrologic conditions. Increased temperatures generally increased GEP, ER and had mixed effects on NEE. Lowered water levels tended to increased GEP, ER and lowered NEE. There were also synergistic effects of temperature, water levels, plant community changes and peat quality on carbon cycling.

  7. Changing feedbacks in the climate-biosphere system

    E-print Network

    Chapin, F Stuart; Randerson, James T; McGuire, A David; Foley, Jonathan A; Field, Christopher B

    2008-01-01

    to mitigate climate change Institute of Arctic Biology,Integrated regional changes in Arctic climate feedbacks:Arctic – latitude changes in plant functional types is uncertain, they presumably in response to climate

  8. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  9. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula

    PubMed Central

    Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P.; Hopkinson, Charles S.; Lee, Joon Ho

    2015-01-01

    Climate change has caused shifts in species’ ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine ecosystems in the Korean Peninsula. PMID:26262755

  10. ETHICAL DILEMMAS IN CLIMATE CHANGE

    E-print Network

    Chauve, Cedric

    ETHICAL DILEMMAS IN CLIMATE CHANGE RECOMMENDATIONS FOR CANADIAN CLIMATE POLICY Roundtable Dialogue AND SELECTED THE FOLLOWING CLIMATE CHANGE POLICY AREAS FOR DETAILED DISCUSSION. PARTICIPANTS THEN WORKED Dilemmas in Climate Change roundtable dialogue, convened by Simon Fraser University's Centre for Dialogue

  11. Climate Change, Nuclear Power and Nuclear

    E-print Network

    Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP plays a large role in replacing coal red plants. al hydro electricity options penetrate in the climate way across scenarios, showing a slight severe climate targets. In Industry, the climate target has

  12. Our Changing Climate

    ERIC Educational Resources Information Center

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  13. Physiological responses of herbaceous plants to climate change: a century long assessment based on the stable isotope analysis of herbaria specimens

    NASA Astrophysics Data System (ADS)

    Moreno-Gutierrez, Cristina; Siegwolf, Rolf; Kahmen, Ansgar

    2015-04-01

    It is important to understand plant physiological responses to climate change, as these responses could influence global carbon and water cycles and could ultimately drive changes in plant communities' distribution and biodiversity. Some studies have already related drifts in species' distribution to climate change and manipulative experiments found short-term plant physiological responses to variations in climate. However, plant physiological responses may be species specific and their magnitude was found to decrease with time in these experimental studies. This indicates possible long-term processes of acclimation and adaptation in plants and urges the need to assess the long-term responses of plants to climate change. The isotopic analysis of archived plant material offers the exceptional opportunity to reconstruct the physiological activity of plants over long time periods. The carbon isotopic composition of plants is a good proxy of leaf-level intrinsic water use efficiency and leaf oxygen isotopic composition can provide a time-integrated indication of leaf stomatal conductance during the growing season. Previous studies analysing the physiological activity of plants over long time periods have largely focused on the stable isotope analyses of tree ring chronosequences. Trees represent, however, less than 2% of plant species found in Switzerland. The stable isotope analysis of herbarium samples offers the opportunity to reconstruct the physiological processes of a large range of different plant species from different environments. The objective of this study is to assess the long-term physiological responses of herbaceous plant species from diverse environments and functional groups to changes in climate occurred during the past centuries in Switzerland. In order to do so, leaf herbarium samples from a large number of herbaceous plants species are analysed for their stable oxygen and carbon isotope ratios. Samples are collected from the unique herbaria hold at the University of Basel which cover 600'000 specimens collected mostly in Switzerland since the 18th century for a wide range of species and environments in Switzerland.

  14. Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests.

    PubMed

    Moore, John R; Watt, Michael S

    2015-08-01

    Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances. PMID:25703827

  15. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.

    PubMed

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of "precipitation of the warmest quarter" and "annual mean temperature" were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China. PMID:25365425

  16. Predicting the Impacts of Climate Change on the Potential Distribution of Major Native Non-Food Bioenergy Plants in China

    PubMed Central

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of “precipitation of the warmest quarter” and “annual mean temperature” were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China. PMID:25365425

  17. Climate change and mitigation.

    PubMed

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session "Climate Change and Mitigation" the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth's climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth's climate. PMID:20873680

  18. Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both tertiary and quaternary diversification.

    PubMed Central

    Pennington, R Toby; Lavin, Matt; Prado, Darién E; Pendry, Colin A; Pell, Susan K; Butterworth, Charles A

    2004-01-01

    Historical climate changes have had a major effect on the distribution and evolution of plant species in the neotropics. What is more controversial is whether relatively recent Pleistocene climatic changes have driven speciation, or whether neotropical species diversity is more ancient. This question is addressed using evolutionary rate analysis of sequence data of nuclear ribosomal internal transcribed spacers in diverse taxa occupying neotropical seasonally dry forests, including Ruprechtia (Polygonaceae), robinioid legumes (Fabaceae), Chaetocalyx and Nissolia (Fabaceae), and Loxopterygium (Anacardiaceae). Species diversifications in these taxa occurred both during and before the Pleistocene in Central America, but were primarily pre-Pleistocene in South America. This indicates plausibility both for models that predict tropical species diversity to be recent and that invoke a role for Pleistocene climatic change, and those that consider it ancient and implicate geological factors such as the Andean orogeny and the closure of the Panama Isthmus. Cladistic vicariance analysis was attempted to identify common factors underlying evolution in these groups. In spite of the similar Mid-Miocene to Pliocene ages of the study taxa, and their high degree of endemism in the different fragments of South American dry forests, the analysis yielded equivocal, non-robust patterns of area relationships. PMID:15212100

  19. Climate change 2007 - mitigation of climate change

    SciTech Connect

    Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L.

    2007-07-01

    This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry, agriculture, forestry and waste management. It links sustainable development policies with climate change practices. This volume will again be the standard reference for all those concerned with climate change. Contents: Foreword; Preface; Summary for policymakers; Technical Summary; 1. Introduction; 2. Framing issues; 3. Issues related to mitigation in the long term context; 4. Energy supply; 5. Transport and its infrastructure; 6. Residential and commercial buildings; 7. Industry; 8. Agriculture; 9. Forestry; 10. Waste management; 11. Mitigation from a cross sectoral perspective; 12. Sustainable development and mitigation; 13. Policies, instruments and co-operative agreements. 300 figs., 50 tabs., 3 annexes.

  20. [Homeostatic responses of plants to modern climate change: spatial and phenological aspects].

    PubMed

    Minin, A A; Voskova, A V

    2014-01-01

    A series of dates of unfolding of the first leaves and duration of the season of vegetation in the silver birch (Betulapendula Roth. (B. verrucosa Ehrh.)), as well as the duration of flowering of the bird cherry (Padus avium), mountain ash (Sórbus aucupária), and small-leaved lime (Tilia cordata Mill.) for the period 1970-2010 in the central part of European Russia were studied in order to assess the trends. Differences in phenological responses to homogeneous climate changes in the trees of the same species from the northern and southern parts of the range were revealed. If spring events occur 3-7 days earlier in the northern part, no such effect is observed in the south. This fact can be interpreted as a manifestation of the different mechanisms of homeostasis in different populations determined by their biological characteristics (in particular, by the need to pass successfully the periods of organic rest and vegetation). PMID:25720275

  1. Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants

    USGS Publications Warehouse

    Perry, Laura G.; Shafroth, Patrick B.; Blumenthal, Dana M.; Morgan, Jack A.; LeCain, Daniel R.

    2013-01-01

    In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects by improving plant water-use efficiency. We examined the effects of CO2 and water availability on seedlings of two native (Populus deltoids spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. Low water availability reduced seedling biomass by 70–97%, and hindered the native species more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (?13Cleaf), but did not increase biomass more in drier treatments than wetter treatments. The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species.

  2. Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants

    USGS Publications Warehouse

    Perry, Laura G.; Shafroth, Patrick B.; Blumenthal, Dana M.; Morgan, Jack A.; LeCain, Daniel R.

    2013-01-01

    * In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects by improving plant water-use efficiency. * We examined the effects of CO2 and water availability on seedlings of two native (Populus deltoides spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. * Low water availability reduced seedling biomass by 70–97%, and hindered the native species more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (?13Cleaf), but did not increase biomass more in drier treatments than wetter treatments. * The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species.

  3. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants

    PubMed Central

    Reusch, Thorsten B H

    2014-01-01

    I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe–host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches. PMID:24454551

  4. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants.

    PubMed

    Reusch, Thorsten B H

    2014-01-01

    I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe-host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches. PMID:24454551

  5. Climate change and plant community composition in national parks of the southwestern US: forecasting regional, long-term effects to meet management needs

    USGS Publications Warehouse

    Munson, Seth M.; Belnap, Jayne; Webb, Robert H.; Hubbard, J. Andrew; Reiser, M. Hildegard; Gallo, Kirsten

    2014-01-01

    The National Park Service (NPS) faces tremendous management challenges in the future as climates alter the abundance and distribution of plant species. These challenges will be especially daunting in the southwestern U.S., where large increases in aridity are forecasted. The expected reduction in water availability will negatively affect plant growth and may result in shifts of plant community composition. Synthesis of climate and plant vital sign data from National Park Service Inventory and Monitoring (I&M) networks is essential to provide park managers with important insights into contemporary climate responses and a sound basis to forecast likely future changes at species, community, and ecosystem scales. We describe a collaboration between the U.S. Geological Survey (USGS) and NPS in which we have conducted regional cross-site assessments across the Sonoran and Chihuahuan Deserts to understand plant species responses to past climate and forecast future plant community composition. We also determined whether a widely-implemented vegetation monitoring protocol in these deserts is suitable to track long-term vegetation changes caused by climate and other factors. Our results from these analyses are intended to help natural resource managers identify and prepare for changes in plant cover and community composition and evaluate the efficacy of current monitoring programs.

  6. Modeling the response of plants and ecosystems to CO{sub 2} and climate change. Final technical report, September 1, 1992--August 31, 1996

    SciTech Connect

    Reynolds, J.F.

    1998-04-10

    Objectives can be divided into those for plant modeling and those for ecosystem modeling and experimental work in support of both. The author worked in a variety of ecosystem types, including pine, arctic, desert, and grasslands. Plant modeling objectives are: (1) to construct generic models of leaf, canopy, and whole-plant response to elevated CO{sub 2} and climate change; (2) to validate predictions of whole-plant response against various field studies of elevated CO{sub 2} and climate change; (3) to use these models to test specific hypotheses and to make predictions about primary, secondary and tertiary effects of elevated CO{sub 2} and climate change on individual plants for conditions and time frames beyond those used to calibrate the model; and (4) to provide information to higher-level models, such as community models and ecosystem models. Ecosystem level modeling objectives are: (1) to incorporate models of plant responses to elevated CO{sub 2} into a generic ecosystem model in order to predict the direct and indirect effects of elevated CO{sub 2} and climate change on ecosystems; (2) to validate model predictions of total system-level response (including decomposition) against various ecosystem field studies of elevated CO{sub 2} and climate change; (3) to use the ecosystem model to test specific hypotheses and to make predictions about primary, secondary and tertiary effects of elevated CO{sub 2} and climate change on ecosystems for conditions and time frames beyond those used to calibrate the model; and (4) to use the ecosystem model to study effects of change in CO{sub 2} and climate at regional and global scales. Occasionally the author conducted some experimental work that was deemed important to the development of the models. This work was mainly physiological work that could be performed in the Duke University Phytotron, using existing facilities.

  7. Cuba confronts climate change.

    PubMed

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions. PMID:26027581

  8. Northern Hemisphere Plant Disjunctions: A Window on Tertiary Land Bridges and Climate Change?

    PubMed Central

    IAN MILNE, RICHARD

    2006-01-01

    • Aims This botanical briefing examines how molecular systematics has contributed to progress in understanding the history of Tertiary relict genera, i.e. those that that now occur disjunctly in parts of Eurasia and N America, and how progress in understanding Southern Hemisphere biogeography paradoxically makes unravelling Northern Hemisphere biogeography more complex. • Scope Tertiary relict floras comprise genera of warm wet climates that were once circumboreal in distribution but are now confined to E Asia, south-eastern and western N America, and SW Eurasia. The intercontinental disjunctions among these genera have long been believed to result from land connections between Eurasia and N America, across Beringia and the N Atlantic. This view is reassessed in the light of new evidence for long dispersal of propagules across oceans being responsible for many plant disjunctions involving southern continents. The impact of molecular dating, which has been very different in Southern and Northern Hemisphere biogeography, is discussed. • Conclusions For N America–Eurasia disjunctions involving Tertiary relict floras, land connections remain the more likely cause of disjunctions but data from fossils or infraspecific variation will be required to exclude long-dispersal explanations for disjunctions in any individual genus. Molecular dating of divergence between disjunctly distributed Tertiary relict floras can tell us which palaeoclimatic or palaeogeographic events impacted on them, and how, but only if migration over land and vicariance can be proved and molecular dating is sufficiently accurate. PMID:16845136

  9. What Is Climate Change?

    ERIC Educational Resources Information Center

    Beswick, Adele

    2007-01-01

    Weather consists of those meteorological events, such as rain, wind and sunshine, which can change day-by-day or even hour-by-hour. Climate is the average of all these events, taken over a period of time. The climate varies over different parts of the world. Climate is usually defined as the average of the weather over a 30-year period. It is when…

  10. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many dermatoses. PMID:23407083

  11. Creationism & Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  12. Climate change: Flawed science, or

    E-print Network

    innovation Dilemma... Vicious Circle #12;1. Climate Change - Weather vs. climate - The greenhouse effect controversy #12;Hockey stick controversy explained #12;Natural climate change 1. Earth's orbit 2. Solar climate change #12;CO2 emissions and the Suess-effect fingerprint #12;Big changes ahead! #12;Climate

  13. Climate Change Made Simple

    ERIC Educational Resources Information Center

    Shallcross, Dudley E.; Harrison, Tim G.

    2007-01-01

    The newly revised specifications for GCSE science involve greater consideration of climate change. This topic appears in either the chemistry or biology section, depending on the examination board, and is a good example of "How Science Works." It is therefore timely that students are given an opportunity to conduct some simple climate modelling.…

  14. Climate Change: An Activity.

    ERIC Educational Resources Information Center

    Lewis, Garry

    1995-01-01

    Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

  15. Understanding climate change

    SciTech Connect

    Berger, A.; Dickinson, R.E.; Kidson, J.W.

    1989-01-01

    Topics covered in this book are: include volcanism; biogeochemistry; land hydrology; modeling climate; past and present; cryosphere; paleoclimates; land-surface processes; tropical oceans and the global atmosphere; clouds and atmospheric radiation; aeronomy and planetary atmospheres; and modeling future climate changes. The papers presented include uptake by the Atlantic Ocean of excess atmospheric carbon dioxide and radiocarbon.

  16. Global Climatic Change.

    ERIC Educational Resources Information Center

    Houghton, Richard A.; Woodwell, George M.

    1989-01-01

    Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

  17. Climate Change and Health

    MedlinePLUS

    ... is projected to widen significantly the area of China where the snail-borne disease schistosomiasis occurs 3 . ... Impact of Climate Change on Schistosomiasis Transmission in China. Am J Trop Med Hyg. 2008;78(2): ...

  18. Global climate change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases.

  19. Climate change vulnerability

    E-print Network

    Hilderbrand, Robert H.

    Climate change vulnerability assessment of the Verde Island Passage, Philippines #12;ii Vulnerability Assessment of the Verde Island Passage, Philippines. Technical report. Conservation International information on the Verde Island Passage Vulnerability Assessment Project, contact: Emily Pidgeon, PhD Director

  20. Dynamics of desert-shrub populations in regulating soil transport based on plant-size scaling relevant to climate-change timescales

    NASA Astrophysics Data System (ADS)

    Fathel, S. L.; Furbish, D. J.; Worman, S. L.

    2012-12-01

    The pervasive presence of vegetation undoubtedly interacts with land surface evolution. Yet complex plant community dynamics make it difficult to predict changes in the surface of the Earth over extended timescales, such as those related to climate change. As global climate change suggests alterations in climate throughout the world, it becomes necessary to accurately quantify the relationship between the land surface and plant communities and also to predict possible plant community fluctuations in a changing climate. Allometric scaling in vascular plants provides a clear method to define relationships between structural and functional variables in plants [Enquist et al., 2000]. Scaling relationships hold over 12 orders of magnitude in vascular plants and provide a solid foundation for use in dynamic, biologically-informed, land surface evolution modelling. Past studies have shown that rainsplash processes create mounds, or sediment 'capacitors', beneath desert shrubs which can affect the sediment flux on hillslopes. We have expanded this research to model the effect of desert shrub communities on hillslope evolution over climate-change timescales. We collected individual and community level data on two dominant shrub species, Rabbitbrush (Chrysothamnus nauseosus) and Broom snakeweed (Gutierrezia sarothrae) in central New Mexico. We found that both shrub species followed the theoretical scaling relationships: rcan ? r2/3 and h ? r2/3, where rcan is the plant canopy radius, h is plant height, and r is base stem radius [West et al., 2008]. Our confidence in this relationship provides us with the basis to extrapolate the total biomass of these shrub communities to apply to our model of coupled plant behavior and soil transport in order to quantitatively define transport rates in an increasingly arid environment.

  1. Rapid climate change

    SciTech Connect

    Morantine, M.C.

    1995-12-31

    Interactions between insolation changes due to orbital parameter variations, carbon dioxide concentration variations, the rate of deep water formation in the North Atlantic and the evolution of the northern hemisphere ice sheets during the most recent glacial cycle will be investigated. In order to investigate this period, a climate model is being developed to evaluate the physical mechanisms thought to be most significant during this period. The description of the model sub-components will be presented. The more one knows about the interactions between the sub-components of the climate system during periods of documented rapid climate change, the better equipped one will be to make rational decisions on issues related to impacts on the environment. This will be an effort to gauge the feedback processes thought to be instrumental in rapid climate shifts documented in the past, and their potential to influence the current climate. 53 refs.

  2. Global climatic change

    SciTech Connect

    Houghton, R.A.; Woodwell, G.M.

    1989-04-01

    This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

  3. Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; Hagemann, S.; Herold, M.; Kirches, G.; Lamarche, C.; Lederer, D.; Ottlé, C.; Peters, M.; Peylin, P.

    2015-07-01

    Global land cover is a key variable in the earth system with feedbacks on climate, biodiversity and natural resources. However, global land cover data sets presently fall short of user needs in providing detailed spatial and thematic information that is consistently mapped over time and easily transferable to the requirements of earth system models. In 2009, the European Space Agency launched the Climate Change Initiative (CCI), with land cover (LC_CCI) as 1 of 13 essential climate variables targeted for research development. The LC_CCI was implemented in three phases: first responding to a survey of user needs; developing a global, moderate-resolution land cover data set for three time periods, or epochs (2000, 2005, and 2010); and the last phase resulting in a user tool for converting land cover to plant functional type equivalents. Here we present the results of the LC_CCI project with a focus on the mapping approach used to convert the United Nations Land Cover Classification System to plant functional types (PFTs). The translation was performed as part of consultative process among map producers and users, and resulted in an open-source conversion tool. A comparison with existing PFT maps used by three earth system modeling teams shows significant differences between the LC_CCI PFT data set and those currently used in earth system models with likely consequences for modeling terrestrial biogeochemistry and land-atmosphere interactions. The main difference between the new LC_CCI product and PFT data sets used currently by three different dynamic global vegetation modeling teams is a reduction in high-latitude grassland cover, a reduction in tropical tree cover and an expansion in temperate forest cover in Europe. The LC_CCI tool is flexible for users to modify land cover to PFT conversions and will evolve as phase 2 of the European Space Agency CCI program continues.

  4. Observed climate change hotspots

    NASA Astrophysics Data System (ADS)

    Turco, M.; Palazzi, E.; Hardenberg, J.; Provenzale, A.

    2015-05-01

    We quantify climate change hotspots from observations, taking into account the differences in precipitation and temperature statistics (mean, variability, and extremes) between 1981-2010 and 1951-1980. Areas in the Amazon, the Sahel, tropical West Africa, Indonesia, and central eastern Asia emerge as primary observed hotspots. The main contributing factors are the global increase in mean temperatures, the intensification of extreme hot-season occurrence in low-latitude regions and the decrease of precipitation over central Africa. Temperature and precipitation variability have been substantially stable over the past decades, with only a few areas showing significant changes against the background climate variability. The regions identified from the observations are remarkably similar to those defined from projections of global climate models under a "business-as-usual" scenario, indicating that climate change hotspots are robust and persistent over time. These results provide a useful background to develop global policy decisions on adaptation and mitigation priorities over near-time horizons.

  5. Impact of global climate change on ecosystem-level interactions among sympatric plants from all three photosynthetic pathways. Terminal report

    SciTech Connect

    Nobel, P.S.

    1997-12-17

    The proposed research will determine biochemical and physiological responses to variations in environmental factors for plants of all three photosynthetic pathways under competitive situations in the field. These responses will be used to predict the effects of global climatic change on an ecosystem in the northwestern Sonoran Desert where the C{sub 3} subshrub Encelia farinosa, the C{sub 4} bunchgrass Hilaria rigida, and the CAM succulent Agave deserti are co-dominants. These perennials are relatively short with overlapping shallow roots facilitating the experimental measurements as well as leading to competition for soil water. Net CO{sub 2} uptake over 24-h periods measured in the laboratory will be analyzed using an environmental productivity index (EPI) that can incorporate simultaneous effects of soil water, air temperature, and light. Based on EPI, net CO{sub 2} uptake and hence plant productivity will be predicted for the three species in the field under various treatments. Activity of the two CO{sub 2} fixation enzymes, Rubisco and PEPCase, will be determined for these various environmental conditions; also, partitioning of carbon to various organs will be measured based on {sup 14}CO{sub 2} labeling and dry weight analysis. Thus, enzymatic and partitioning controls on competition among sympatric model plants representing all three photosynthetic pathways will be investigated.

  6. Current Climate Variability & Change

    NASA Astrophysics Data System (ADS)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and climate change. The next section guides students through the exploration of temporal changes in global temperature from the surface to the lower stratosphere. Students discover that there has been global warming over the past several decades, and the subsequent section allows them to consider solar radiation and greenhouse gases as possible causes of this warming. Students then zoom in on different latitudinal zones to examine changes in temperature for each zone and hypothesize about why one zone may have warmed more than others. The final section, prior to the answering of the essential questions, is an examination of the following effects of the current change in temperatures: loss of sea ice; rise of sea level; loss of permafrost loss; and moistening of the atmosphere. The lab addresses 14 climate-literacy concepts and all seven climate-literacy principles through data and images that are mainly NASA products. It focuses on the satellite era of climate data; therefore, 1979 is the typical starting year for most datasets used by students. Additionally, all time-series analysis end with the latest year with full-year data availability; thus, the climate variability and trends truly are 'current.'

  7. In the Right Place at the Right Time: Habitat Representation in Protected Areas of South American Nothofagus-Dominated Plants after a Dispersal Constrained Climate Change Scenario

    PubMed Central

    Alarcón, Diego; Cavieres, Lohengrin A.

    2015-01-01

    In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions. PMID:25786226

  8. In the right place at the right time: habitat representation in protected areas of South American Nothofagus-dominated plants after a dispersal constrained climate change scenario.

    PubMed

    Alarcón, Diego; Cavieres, Lohengrin A

    2015-01-01

    In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions. PMID:25786226

  9. Avoiding dangerous climate change

    SciTech Connect

    Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic; Tom Wigley; Gary Yohe

    2006-02-15

    In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41 papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.

  10. Impacts of climate change on growth period and planting boundaries of winter wheat in China under RCP4.5 scenario

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Jia, S. F.; Lv, A. F.; Yang, K. J.; Svensson, J.; Gao, Y. C.

    2015-10-01

    This paper advances understanding of the impacts of climate change on crops in China by moving from ex-post analysis to forecasting, and by demonstrating how the effects of climate change will affect the growth period and the planting boundaries of winter wheat. Using a multiple regression model based on agricultural meteorological observations and the IPCC AR5 GCMs simulations, we find that the sowing date of winter wheat in the base period, 2040s and 2070s, shows a gradually delayed trend from north to south and the growth period of winter wheat in China will be shortened under climate change. The simulation results also show that (i) the north planting boundaries of winter wheat in China will likely move northward and expand westward in the future, while the south planting boundary will rise and spread in south Hainan and Taiwan; and (ii) the Xinjiang Uygur Autonomous Region and the Inner Mongolia Autonomous Region will have the largest increases in planting areas in 2040s and 2070s. Our simulation implies that Xinjiang and Inner Mongolia are more sensitive to climate change than other regions in China and priority should be given to design adaptation strategies for winter wheat planting for these provinces.

  11. Debating Climate Change

    SciTech Connect

    Malone, Elizabeth L.

    2009-11-01

    Debating Climate Change explores, both theoretically and empirically, how people argue about climate change and link to each other through various elements in their arguments. As science is a central issue in the debate, the arguments of scientists and the interpretations and responses of non-scientists are important aspects of the analysis. The book first assesses current thinking about the climate change debate and current participants in the debates surrounding the issue, as well as a brief history of various groups’ involvements. Chapters 2 and 3 distill and organize various ways of framing the climate change issue. Beginning in Chapter 4, a modified classical analysis of the elements carried in an argument is used to identify areas and degrees of disagreement and agreement. One hundred documents, drawn from a wide spectrum of sources, map the topic and debate space of the climate change issue. Five elements of each argument are distilled: the authority of the writer, the evidence presented, the formulation of the argument, the worldview presented, and the actions proposed. Then a social network analysis identifies elements of the arguments that point to potential agreements. Finally, the book suggests mechanisms by which participants in the debate can build more general agreements on elements of existing agreement.

  12. Terrestrial Water Relations & Climate ChangeTerrestrial Water Relations & Climate Change Jeffrey M Warren, Ph.D.

    E-print Network

    Gray, Matthew

    species interactions #12;6 Terrestrial Water Relations & Climate Change Soil ­ Root Terrestrial Water Physiology #12;8 Impacts of Climate Change on SPA Atmosphere Plant CO2 Temperature Precipitation Soil1 Terrestrial Water Relations & Climate ChangeTerrestrial Water Relations & Climate Change Jeffrey

  13. Climate-change scenarios

    USGS Publications Warehouse

    Wagner, F.H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.

    2003-01-01

    In 1991, the United States Congress passed the Global Change Research Act directing the Executive Branch of government to assess the potential effects of predicted climate change and variability on the nation. This congressional action followed formation of the Intergovernmental Panel on Climate Change (IPCC) in 1988 by the United Nations Environmental Program and World Meteorological Organization. Some 2,000 scientists from more than 150 nations contribute to the efforts of the IPCC. Under coordination of the U.S. Global Change Research Program, the congressionally ordered national assessment has divided the country into 19 regions and five socio-economic sectors that cut across the regions: agriculture, coastal and marine systems, forests, human health, and water. Potential climate-change effects are being assessed in each region and sector, and those efforts collectively make up the national assessment. This document reports the assessment of potential climate-change effects on the Rocky Mountain/Great Basin (RMGB) region which encompasses parts of nine western states. The assessment began February 16-18, 1998 with a workshop in Salt Lake City co-convened by Frederic H. Wagner of Utah State University and Jill Baron of the U.S. Geological Survey Biological Resources Division (BRD). Invitations were sent to some 300 scientists and stakeholders representing 18 socio-economic sectors in nine statesa?|

  14. Status of Climate Change 

    E-print Network

    North, G.

    2013-01-01

    stream_source_info ESL-KT-13-12-56.pdf.txt stream_content_type text/plain stream_size 3413 Content-Encoding UTF-8 stream_name ESL-KT-13-12-56.pdf.txt Content-Type text/plain; charset=UTF-8 Status of Climate Change 2013... CaTee Conference San Antonio 2013 ESL-KT-13-12-56 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Menu for Today • IPCC 2013: Assessment Report #5 • Facts about Climate Change • Who will Win, Who will Lose...

  15. Understanding and Attributing Climate Change

    E-print Network

    9 Understanding and Attributing Climate Change Coordinating Lead Authors: Gabriele C. Hegerl (USA. Nicholls, J.E. Penner and P.A. Stott, 2007: Under- standing and Attributing Climate Change. In: Climate of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M

  16. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  17. Climate change and amphibians

    USGS Publications Warehouse

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  18. Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area

    PubMed Central

    Boulangeat, Isabelle; Georges, Damien; Dentant, Cédric; Bonet, Richard; Van Es, Jérémie; Abdulhak, Sylvain; Zimmermann, Niklaus E.; Thuiller, Wilfried

    2014-01-01

    Vegetation is a key driver of ecosystem functioning (e.g. productivity and stability) and of the maintenance of biodiversity (e.g. creating habitats for other species groups). While vegetation sensitivity to climate change has been widely investgated, its spatio-temporally response to the dual efects of land management and climate change has been ignored at landscape scale. Here we use a dynamic vegetation model called FATE-HD, which describes the dominant vegetation dynamics and associated functional diversity, in order to anticipate vegetation response to climate and land-use changes in both short and long-term perspectives. Using three contrasted management scenarios for the Ecrins National Park (French Alps) developed in collaboration with the park managers, and one regional climate change scenario, we tracked the dynamics of vegetation structure (forest expansion) and functional diversity over 100 years of climate change and a further 400 additional years of stabilization. As expected, we observed a slow upward shift in forest cover distribution, which appears to be severely impacted by pasture management (i.e. maintenance or abandonment). The tme lag before observing changes in vegetation cover was the result of demographic and seed dispersal processes. However, plant diversity response to environmental changes was rapid. Afer land abandonment, local diversity increased and spatial turnover was reduced, whereas local diversity decreased following land use intensification. Interestingly, in the long term, as both climate and management scenarios interacted, the regional diversity declined. Our innovative spatio-temporally explicit framework demonstrates that the vegetation may have contrasting responses to changes in the short and the long term. Moreover, climate and land-abandonment interact extensively leading to a decrease in both regional diversity and turnover in the long term. Based on our simulations we therefore suggest a continuing moderate intensity pasturing to maintain high levels of plant diversity in this system. PMID:25722538

  19. Climate Change: A Controlled Experiment

    SciTech Connect

    Wullschleger, Stan D; Strahl, Maya

    2010-01-01

    Researchers are altering temperature, carbon dioxide and precipitation levels across plots of forests, grasses and crops to see how plant life responds. Warmer temperatures and higher CO{sub 2} concentrations generally result in more leaf growth or crop yield, but these factors can also raise insect infestation and weaken plants ability to ward off pests and disease. Future field experiments that can manipulate all three conditions at once will lead to better models of how long-term climate changes will affect ecosystems worldwide.

  20. Climate variability and vulnerability to climate change: a review.

    PubMed

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-11-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  1. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  2. Impacts of meteorology-driven seed dispersal on plant migration : implications for future vegetation structure under changing climates

    E-print Network

    Lee, Eunjee

    2011-01-01

    As the impacts among land cover change, future climates and ecosystems are expected to be substantial (e.g., Feddema et al., 2005), there are growing needs for improving the capability of simulating the dynamics of vegetation ...

  3. Climate change threatens European conservation areas.

    PubMed

    Araújo, Miguel B; Alagador, Diogo; Cabeza, Mar; Nogués-Bravo, David; Thuiller, Wilfried

    2011-05-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58?±?2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63?±?2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P?climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk. PMID:21447141

  4. Emissions versus climate change

    EPA Science Inventory

    Climate change is likely to offset some of the improvements in air quality expected from reductions in pollutant emissions. A comprehensive analysis of future air quality over North America suggests that, on balance, the air will still be cleaner in coming decades.

  5. CLIMATE CHANGE & THE GREENHOUSE

    E-print Network

    Tobar, Michael

    . Demonstrating the greenhouse effect This experiment demonstrates that an atmosphere high in carbon dioxideCLIMATE CHANGE & THE GREENHOUSE EFFECT #12;This development of these materials was supported under ------------------------------------------------------------------------------------------------------------- What is the greenhouse effect? 11 Links to Australian curriculum 12 Teacher notes 13 Student answers 16

  6. CLIMATE CHANGE AND BIODIVERSITY

    E-print Network

    CLIMATE CHANGE AND BIODIVERSITY THE CONTRIBUTION OF THE NATIONAL MUSEUM OF NATURAL HISTORY #12;At a time when the planet seems to be going through the sixth great extinction crisis of biodiversity, has for years developed expertise on biodiversity which gives it a special place in the study

  7. CONSIDERATIONS FOR CLIMATE CHANGE

    E-print Network

    Neff, Jason

    was provided by the National Integrated Drought Information System, Western Water Assessment, the Renewable Advocates Chapter 10: Gretchen Fitzgerald, M.S., Forester, San Juan National Forest Chapter 11: Eric GordonCONSIDERATIONS FOR CLIMATE CHANGE AND VARIABILITY ADAPTATION ON THE NAVAJO NATION March 2014 Julie

  8. Confronting Climate Change

    ERIC Educational Resources Information Center

    Roach, Ronald

    2009-01-01

    The Joint Center for Political and Economic Studies, an African-American think tank based in Washington, D.C., convenes a commission to focus on the disparate impact of climate change on minority communities and help involve historically Black institutions in clean energy projects. Launched formally in July 2008, the Commission to Engage…

  9. Learning Progressions & Climate Change

    ERIC Educational Resources Information Center

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  10. Environmental Sustainability & Climate Change

    E-print Network

    Boynton, Walter R.

    reduction & carbon· Integrate GHG emission reduction & carbon footprint strategies into Strategic Plan s p Policies Climate Change Smart Growth Bay Restoration #12;Policies Facilitate the effective· Coordination activities #12;Practices: System-widey · USM Strategic Plan ­ Greenhouse gas emissions/carbon

  11. Climate Change? When? Where?

    ERIC Educational Resources Information Center

    Boon, Helen

    2009-01-01

    Regional Australian students were surveyed to explore their understanding and knowledge of the greenhouse effect, ozone depletion and climate change. Results were compared with a parallel study undertaken in 1991 in a regional UK city. The comparison was conducted to investigate whether more awareness and understanding of these issues is…

  12. Climate Change and Water Use Partitioning by Different Plant Functional Groups in a Grassland on the Tibetan Plateau

    PubMed Central

    Hu, Jia; Hopping, Kelly A.; Bump, Joseph K.; Kang, Sichang; Klein, Julia A.

    2013-01-01

    The Tibetan Plateau (TP) is predicted to experience increases in air temperature, increases in snowfall, and decreases in monsoon rains; however, there is currently a paucity of data that examine the ecological responses to such climate changes. In this study, we examined the effects of increased air temperature and snowfall on: 1) water use partitioning by different plant functional groups, and 2) ecosystem CO2 fluxes throughout the growing season. At the individual plant scale, we used stable hydrogen isotopes (?D) to partition water use between shallow- and deep-rooted species. Prior to the arrival of summer precipitation (typically mid-July), snowmelt was the main water source in the soils. During this time, shallow and deep-rooted species partitioned water use by accessing water from shallow and deep soils, respectively. However, once the monsoon rains arrived, all plants used rainwater from the upper soils as the main water source. Snow addition did not result in increased snowmelt use throughout the growing season; instead, snowmelt water was pushed down into deeper soils when the rains arrived. At the larger plot scale, CO2 flux measurements demonstrated that rain was the main driver for net ecosystem productivity (NEP). NEP rates were low during June and July and reached a maximum during the monsoon season in August. Warming decreased NEP through a reduction in gross primary productivity (GPP), and snow additions did not mitigate the negative effects of warming by increasing NEP or GPP. Both the isotope and CO2 flux results suggest that rain drives productivity in the Nam Tso region on the TP. This also suggests that the effects of warming-induced drought on the TP may not be mitigated by increased snowfall. Further decreases in summer monsoon rains may affect ecosystem productivity, with large implications for livestock-based livelihoods. PMID:24069425

  13. Simulating plant water availability in dry lands under climate change: A generic model of two soil layers

    NASA Astrophysics Data System (ADS)

    Tietjen, Britta; Zehe, Erwin; Jeltsch, Florian

    2009-01-01

    Dry lands are exposed to a highly variable environment and face a high risk of degradation. The effects of climate change are likely to increase this risk; thus a profound knowledge of the system dynamics is crucial for evaluating management options. This applies particularly for the interactions between water and vegetation, which exhibit strong feedbacks. To evaluate these feedbacks and the effects of climate change on soil moisture dynamics, we developed a generic, process-based, spatially explicit soil moisture model of two soil layers, which can be coupled with vegetation models. A time scale relevant for ecological processes can be simulated without difficulty, and the model avoids complex parameterization with data that are unavailable for most regions of the world. We applied the model to four sites in Israel along a precipitation and soil type gradient and assessed the effects of climate change by comparing possible climatic changes with present climate conditions. The results show that in addition to temperature, the total amount of precipitation and its intra-annual variability are an important driver of soil moisture patterns. This indicates that particularly with regard to climate change, the approach of many ecological models that simulate water dynamics on an annual base is far too simple to make reliable predictions. Thus, the introduced model can serve as a valuable tool to improve present ecological models of dry lands because of its focus on the applicability and transferability.

  14. Development of Flexi-Burn™ CFB Power Plant to Meet the Challenge of Climate Change

    NASA Astrophysics Data System (ADS)

    Hackt, Horst; Fant, Zhen; Seltzert, Andrew; Hotta, Arto; Erikssoni, Timo; Sippu, Ossi

    Carbon-dioxide capture and storage (CCS) offers the potential for major reductions in carbon- dioxide emissions of fossil fuel-based power generation in the fairly short term, and oxyfuel combustion is one of the identified CCS technology options. Foster Wheeler (FW) is working on reduction of carbon-dioxide with its integrated Flexi-Burn™ CFB technology. The proven high efficiency circulating fluidized-bed (CFB) technology, when coupled with air separation units and carbon purification units, offers a solution for carbon dioxide reduction both in re-powering and in greenfield power plants. CFB technology has the advantages over pulverized coal technology of a more uniform furnace heat flux, increased fuel flexibility and offers the opportunity to further reduce carbon dioxide emissions by co-firing coal with bio-fuels. Development and design of an integrated Flexi-Bum™ CFB steam generator and balance of plant system was conducted for both air mode and oxyfuel mode. Through proper configuration and design, the same steam generator can be switched from air mode to oxyfuel mode without the need for unit shutdown for modifications. The Flexi-Burn™ CFB system incorporates features to maximize plant efficiency and power output when operating in the oxy-firing mode through firing more fuel in the same boiler.

  15. Hantaviruses and climate change.

    PubMed

    Klempa, B

    2009-06-01

    Most hantaviruses are rodent-borne emerging viruses. They cause two significant human diseases, haemorrhagic fever with renal syndrome in Asia and Europe, and hantavirus cardiopulmonary syndrome in the Americas. Very recently, several novel hantaviruses with unknown pathogenic potential have been identified in Africa and in a variety of insectivores (shrews and a mole). Because there is very limited information available on the possible impact of climate change on all of these highly dangerous pathogens, it is timely to review this aspect of their epidemiology. It can reasonably be concluded that climate change should influence hantaviruses through impacts on the hantavirus reservoir host populations. We can anticipate changes in the size and frequency of hantavirus outbreaks, the spectrum of hantavirus species and geographical distribution (mediated by changes in population densities), and species composition and geographical distribution of their reservoir hosts. The early effects of global warming have already been observed in different geographical areas of Europe. Elevated average temperatures in West-Central Europe have been associated with more frequent Puumala hantavirus outbreaks, through high seed production (mast year) and high bank vole densities. On the other hand, warm winters in Scandinavia have led to a decline in vole populations as a result of the missing protective snow cover. Additional effects can be caused by increased intensity and frequency of extreme climatic events, or by changes in human behaviour leading to higher risk of human virus exposure. Regardless of the extent of climate change, it is difficult to predict the impact on hantavirus survival, emergence and epidemiology. Nevertheless, hantaviruses will undoubtedly remain a significant public health threat for several decades to come. PMID:19604276

  16. Climate change and disaster management.

    PubMed

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. PMID:16512862

  17. Fire management, managed relocation, and land conservation options for long-lived obligate seeding plants under global changes in climate, urbanization, and fire regime.

    PubMed

    Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M

    2014-08-01

    Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. PMID:24606578

  18. Perception of climate change.

    PubMed

    Hansen, James; Sato, Makiko; Ruedy, Reto

    2012-09-11

    "Climate dice," describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 y, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3?) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change. PMID:22869707

  19. Effects of Winter Climate Change on Plant and Soil Ecology of Cryoturbated Non-Sorted Circles Tundra

    NASA Astrophysics Data System (ADS)

    Monteux, S.; Krab, E. J.; Rönnefarth, J.; Becher, M.; Blume-Werry, G.; Kreyling, J.; Keuper, F.; Klaminder, J.; Kobayashi, M.; Lundin, E. J.; Milbau, A.; Teuber, L. M.; Weedon, J.; Dorrepaal, E.

    2014-12-01

    Cryoturbation is the movement of soil particles through repeated freeze-thaw events, resulting in the burial of large amounts of soil organic carbon (SOC). Non-sorted circles are a common type of cryoturbated ground in arctic and alpine areas underlain by permafrost. They appear as sparsely vegetated areas surrounded by denser tundra vegetation. Climate change in arctic environments will likely increase winter precipitation in large parts of the Arctic in Europe, Asia and America, resulting in deeper snow cover. Snow is a good thermal insulator and modifications in freezing intensity and freeze-thaw cycles are therefore likely, which could affect the burial of organic matter. Moreover, vegetation, soil fauna and soil microbial communities, which are important drivers of SOC dynamics, may be impacted directly by the altered winter conditions and indirectly by reduced cryoturbation. We aimed to investigate this, and therefore subjected non-sorted circles in North-Swedish subarctic alpine tundra to two years of increased thermal insulation in winter and spring, using snow fences or fibre cloth (Figure 1). Both snow fences and fibre cloth manipulations increased surface soil temperatures, especially daily minimum temperatures, and strongly reduced freeze-thaw frequency. We compared the impacts of these manipulations on plant performance, soil chemistry, soil fauna and soil microbial communities between the centre of the circles and the dense tundra heath just outside. Directly after snowmelt, the extra winter insulation decreased plant leaf damage, both in the centre and in adjacent tundra, but responses differed between species. We will further present the responses of plant phenology and growth, soil pH and dissolved organic carbon content, soil fauna activity, Collembola community composition and body size distribution, as well as fungal and bacterial diversity profiles and functional groups abundance. We expect that winter warming due to increased snow cover and its effects on cryoturbation will stimulate the biotic components of non-sorted circles, but may change the interactions between organisms at different trophic levels of this ecosystem. The resulting new balance between increased productivity and decomposer activity might have large implications for this important carbon pool.

  20. Climate change and child health.

    PubMed

    Seal, Arnab; Vasudevan, Chakrapani

    2011-12-01

    Postindustrial human activity has contributed to rising atmospheric levels of greenhouse gases causing global warming and climate change. The adverse effects of climate change affect children disproportionately, especially in the developing world. Urgent action is necessary to mitigate the causes and adapt to the negative effects of climate change. Paediatricians have an important role in managing the effects of climate change on children and promoting sustainable development. PMID:21335625

  1. A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe.

    PubMed

    Storkey, Jonathan; Stratonovitch, Pierre; Chapman, Daniel S; Vidotto, Francesco; Semenov, Mikhail A

    2014-01-01

    Ambrosia artemisiifolia is an invasive weed in Europe with highly allergenic pollen. Populations are currently well established and cause significant health problems in the French Rhône valley, Austria, Hungary and Croatia but transient or casual introduced populations are also found in more Northern and Eastern European countries. A process-based model of weed growth, competition and population dynamics was used to predict the future potential for range expansion of A.artemisiifolia under climate change scenarios. The model predicted a northward shift in the available climatic niche for populations to establish and persist, creating a risk of increased health problems in countries including the UK and Denmark. This was accompanied by an increase in relative pollen production at the northern edge of its range. The southern European limit for A.artemisiifolia was not expected to change; populations continued to be limited by drought stress in Spain and Southern Italy. The process-based approach to modelling the impact of climate change on plant populations has the advantage over correlative species distribution models of being able to capture interactions of climate, land use and plant competition at the local scale. However, for this potential to be fully realised, additional empirical data are required on competitive dynamics of A.artemisiifolia in different crops and ruderal plant communities and its capacity to adapt to local conditions. PMID:24533071

  2. Climate Change and National Security

    E-print Network

    Alyson, Fleming; Summer, Kelly; Summer, Martin; Lauren, Franck; Jonathan, Mark

    2015-01-01

    Climate Change, 2007 • Snow, Water, Ice and Permafrost in the Arctic (Arctic will mean for the Navy, how international cooperation can help prepare developing nations to cope with climate change,Climate Change Roadmap, 2010 http://www.navy.mil/navydata/documents/CCR.pdf • U.S. Navy Arctic

  3. Climate Change and National Security

    E-print Network

    Alyson, Fleming; Summer, Kelly; Summer, Martin; Lauren, Franck; Jonathan, Mark

    2015-01-01

    Climate Change, 2007 • Snow, Water, Ice and Permafrost in the Arctic (Climate Change Roadmap, 2010 http://www.navy.mil/navydata/documents/CCR.pdf • U.S. Navy ArcticArctic will mean for the Navy, how international cooperation can help prepare developing nations to cope with climate change,

  4. SOCIAL INSTITUTIONS AND CLIMATE CHANGE

    E-print Network

    Bateman, Ian J.

    SOCIAL INSTITUTIONS AND CLIMATE CHANGE: APPLYING CULTURAL THEORY TO PRACTICE by Andrew Jordan and Tim O'Riordan CSERGE Working Paper GEC 97- 15 #12;SOCIAL INSTITUTIONS AND CLIMATE CHANGE: APPLYING it to adapt. Institutions help to define climate change both as a problem and a context, through

  5. Sea change under climate change: case studies in rare plant conservation from the dynamic San Francisco Estuary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present case studies supporting management of two rare plant species in tidal wetlands of the San Francisco Estuary. For an annual hemiparasite, we used demographic analyses to identify factors to enhance population establishment, survivorship and fitness, and to compare reintroduced with natura...

  6. Engineering plants to reflect light: strategies for engineering water-efficient plants to adapt to a changing climate.

    PubMed

    Zamft, Bradley M; Conrado, Robert J

    2015-09-01

    Population growth and globally increasing standards of living have put a significant strain on the energy-food-water nexus. Limited water availability particularly affects agriculture, as it accounts for over 70% of global freshwater withdrawals (Aquastat). This study outlines the fundamental nature of plant water consumption and suggests a >50% reduction in renewable freshwater demand is possible by engineering more reflective crops. Furthermore, the decreased radiative forcing resulting from the greater reflectivity of crops would be equivalent to removing 10-50 ppm CO2 from the atmosphere. Recent advances in engineering optical devices and a greater understanding of the mechanisms of biological reflectance suggest such a strategy may now be viable. Here we outline the challenges involved in such an effort and suggest three potential approaches that could enable its implementation. While the local benefits may be straightforward, determining the global externalities will require careful modelling efforts and gradually scaled field trials. PMID:25923193

  7. Designing Global Climate Change

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  8. Understanding recent climate change.

    PubMed

    Serreze, Mark C

    2010-02-01

    The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 degrees C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most. PMID:20121837

  9. Climatic change on Mars.

    PubMed

    Sagan, C; Toon, O B; Gierasch, P J

    1973-09-14

    The equatorial sinuous channels on Mars detected by Mariner 9 point to a past epoch of higher pressures and abundant liquid water. Advective instability of the martian atmosphere permits two stable climates-one close to present conditions, the other at a pressure of the order of 1 bar depending on the quantity of buried volatiles. Variations in the obliquity of Mars, the luminosity of the sun, and the albedo of the polar caps each appear capable of driving the instability between a current ice age and more clement conditions. Obliquity driving alone implies that epochs of much higher and of much lower pressure must have characterized martian history. Climatic change on Mars may have important meteorological, geological, and biological implications. PMID:17731265

  10. Agriculture and climate change

    SciTech Connect

    Abelson, P.H.

    1992-07-03

    How will increases in levels of CO{sub 2} and changes in temperature affect food production A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO{sub 2} but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO{sub 2} from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO{sub 2} by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops.

  11. Terrestrial ecosystems and climatic change

    SciTech Connect

    Emanuel, W.R. ); Schimel, D.S. . Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  12. Population and climate change.

    PubMed

    Cohen, Joel E

    2010-06-01

    To review, the four broad dimensions of any complex human problem, including climate change, are the human population, economics, culture, and environment. These dimensions interact with one another in all directions and on many time-scales. From 2010 to 2050, the human population is likely to grow bigger, more slowly, older, and more urban. It is projected that by 2050 more than 2.6 billion people (almost 94% of global urban growth) will be added to the urban population in today's developing countries. That works out to 1.26 million additional urban people in today's developing countries every week from 2010 to 2050. Humans alter the climate by emitting greenhouse gases, by altering planetary albedo, and by altering atmospheric components. Between 1900 and 2000, humans' emissions of carbon into the atmosphere increased fifteenfold, while the numbers of people increased less than fourfold. Population growth alone, with constant rates of emissions per person, could not account for the increase in the carbon emissions to the atmosphere. The world economy grew sixteenfold in the twentieth century, accompanied by enormous increases in the burning of gas, oil, and coal. In the last quarter of the twentieth century, population grew much faster in developing countries than in high-income countries, and, compared with population growth, the growth of carbon emissions to the atmosphere was even faster in developing countries than in high-income countries. The ratio of emissions-to-population growth rates was 2.8 in developing countries compared with 1.6 in high-income countries. Emissions of CO2 and other greenhouse gases are influenced by the sizes and density of settlements, the sizes of households, and the ages of householders. Between 2010 and 2050, these demographic factors are anticipated to change substantially. Therefore demography will play a substantial role in the dynamics of climate changes. Climate changes affect many aspects of the living environment, including human settlements, food production, and diseases. These changes will affect poor people more severely than rich, and poor nations more severely than rich. Yet not enough is known to predict quantitatively many details that will matter enormously to future people and other species. Three kinds of responses are related to demographic issues that affect climate changes: universal secondary education, voluntary contraception and maternal health services, and smarter urban design and construction. These responses may prevent, reduce, or ameliorate the impacts of climate changes. They are as relevant to rich countries as to poor, though in ways that are as different as are rich countries and poor. They are desirable in their own right because they improve the lives of the people they affect directly; and they are desirable for their beneficial effects on the larger society and globe. They are effective responses to the twin challenges of reducing poverty and reducing greenhouse gas emissions. PMID:21553595

  13. Wednesday, October 26, 2011 12:20 pm Room 160, Plant Biotech Building What is happening? Global Climate Changes

    E-print Network

    Gray, Matthew

    gases ­ Trap heat in the atmosphere cause global warming IPCC 4th Assessment Report:Climate Change is it important to study CO2 ? ­ Atmospheric CO2 level 393.18 (Apr.2011) 50% more by 2050 (IPCC, 2007) · Comes. ­ Longterm, opentop chamber experiment. History of FACE project · H. Z. Enoch talked about the need

  14. Teaching Climate Change Through Music

    NASA Astrophysics Data System (ADS)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  15. Climate Change: Precipitation and Plant Nutrition Interactions on Potato (Solanum tuberosum L.) Yield in North-Eastern Hungary

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    It is widely well known that annual temperatures over Europe warm at a rate of between 0.1 0C decade-1 and 0.4 0C decade-1. And most of Europe gets wetter in the winter season between +1% and +4% decade-1. In summer there is a strong gradient of change between northern Europe (wetting of up to +2% decade-1) and southern Europe (drying of up to 5% decade-1). The droughts and the floods were experienced at Hungary in the early eighties as well as today. So among the natural catastrophes, drought and flooding caused by over-abundant rainfall cause the greatest problems in field potato production. The crop is demanding indicator plant of climate factors (temperature, rainfall) and soil nitrogen, phosphorus, potassium and magnesium status. This publication gives the results achieved in the period from 1962 to 2001 of a long term small- plot fertilization experiment set up on acidic sandy brown forest soil at Nyírlugos in the Nyírség region in North-Eastern Hungary. Characteristics of the experiment soil were a pH (KCl) 4.5, humus 0.5%, CEC 5-10 mgeq 100g-1 in the ploughed layer. The topsoil was poor in all four macronutrient N, P, K and Mg. The mineral fertilization experiment involved 2 (genotypes: Gülbaba and Aranyalma) x 2 (ploughed depths: 20 and 40 cm) x 16 (fertilizations: N, P, K, Mg) = 64 treatments in 8 replications, giving a total of 512 plots. The gross and net plot sizes were 10x5=50 m2 and 35.5 m2. The experimental designe was split-split-plot. The N levels were 0, 50, 100, 150 kg ha-1 year-1 and the P, K, Mg levels were 48, 150, 30 kg ha-1 year-1 P2O5, K2O, MgO in the form of 25% calcium ammonium nitrate, 18% superphosphate, 40% potassium chloride, and powdered technological magnesium sulphate. The forecrop every second year was rye. The groundwater level was at a depth of 2-3 m. From the 64 treatments, eight replications, altogether 512- experimental plots with 7 treatments and their 16 combinations are summarised of experiment period from 1962 to 1979. The main conclusions were as follows: 1. The experiment years (1962-1963, 1964-1965, 1966-1967, 1968-1969, 1970-1971, 1972-1973, 1974-1975, 1976-1977, 1978-1979) were characterised by frequent extremes of climate. Seven years had an average rainfall, one year had an over rainfall and one year had a very dry by Hungarian traditional and RISSAC-HAS (Márton 2001b) new potato ecological standards. 2. The unfavorable effects of climate anomalies (drought, over-abundance of water in the topsoil) on the yield formation, yield quantity of potato depended decisively on the time of year when they were experienced and the period for which they lasted. 3. Precipitation deficiency (droughts) in the winter could not be counterbalanced by average rainfall during the vegetation period, and its effect on the yield was similar to that of summer drought. 4. Yield was influenced by rainfall to a greater extent than by 0-150 kg ha-1 nitrogen and NP, NK, NPK, NPKMg combinations. 5. Drought and over rainfall negative effects were decreased by increasing N- doses and its combinations of potassium, phosphorous and magnesium from 13 to 32%. 6. It was found the polynomial correlation between rainfall and yield could be observed in the case of N: Y'=380.18-2.95x+0.0056x2, n=72, R2=0.95, NP: Y'=387.19-3.04x+0.0059x2, n=72, R2=0.96, NK: Y'=381.65-2.95x+0.0056x2, n=72, R2=0.95, NPK: Y'=390.87-3.07x+0.0060x2, n=72, R2=0.96 and NPKMg: Y'=390.45-3.06x+0.0059x2, n=72, R2=0.96 nutrition systems. The optimum yields ranges between 17-20 t ha-1 at 280-330 mm of rainfall. Key words: climate change, rainfall, potato, N, NP, NK, NPK, NPKMg, yield Introduction: Climate change was recognized as a serious environmental issue. The build up of greenhouse gases in the atmosphere and the inertia in trends in emissions means that we can expect significant changes for at least the next few decades and probably for the future time. Annual temperatures over Europe warm at a rate of between 0.1 0C decade-1 and 0.4 0C decade-1. And most of Europe gets wetter in the winter season between +1% and +4% decade-1. In

  16. Historic and Projected Climate Change

    E-print Network

    that the earth's climate is changing (Bates et al., 2008, Clark et al., 2009, and Lawler et al., 2009Historic and Projected Climate Change F A C T S H E E T This evidence strongly indicates records show that earth's climate patterns have undergone rapid shifts from one stable state to another

  17. Climate Change Worksheet Energy Budget

    E-print Network

    Allan, Richard P.

    Climate Change Worksheet Energy Budget For any balanced budget, what comes in must equal what goes and down. Some is lost to space, and some stays in the Earth's climate system. The efficiency at which climate change. [Figure from IPCC 2013]. Figure 3. Shortwave radiation (from the Sun) and longwave

  18. Climate Change: Prospects for Nature

    SciTech Connect

    Thomas Lovejoy

    2008-03-12

    Thomas Lovejoy, President of The H. John Heinz III Center for Science, Economics and the Environment, explores the impact of climate change on the natural world. He also discusses the implications of climate change for climate policy and natural resource management.

  19. Climate Variability and Change

    USGS Publications Warehouse

    U.S. Geological Survey

    2007-01-01

    In 2007, the U.S. Geological Survey (USGS) developed a science strategy outlining the major natural science issues facing the Nation in the next decade. The science strategy consists of six science directions of critical importance, focusing on areas where natural science can make a substantial contribution to the well-being of the Nation and the world. This fact sheet focuses on climate variability and change and how USGS research can strengthen the Nation with information needed to meet the challenges of the 21st century.

  20. Ruminants, climate change and climate policy

    NASA Astrophysics Data System (ADS)

    Ripple, William J.; Smith, Pete; Haberl, Helmut; Montzka, Stephen A.; McAlpine, Clive; Boucher, Douglas H.

    2014-01-01

    Greenhouse gas emissions from ruminant meat production are significant. Reductions in global ruminant numbers could make a substantial contribution to climate change mitigation goals and yield important social and environmental co-benefits.

  1. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  2. Climate change: Cropping system changes and adaptations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  3. Communicating Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Mann, M. E.

    2009-12-01

    I will discuss the various challenges scientists must confront in efforts to communicate the science and implications of climate change to the public. Among these challenges is the stiff headwind we must fight of a concerted disinformation effort designed to confuse the public about the nature of our scientific understanding of the problem and the reality of the underlying societal threat. We also must fight the legacy of the public’s perception of the scientist. That is to say, we must strive to communicate in plainspoken language that neither insults the intelligence of our audience, nor hopelessly loses them in jargon and science-speak. And through all of this, we must maintain our composure and good humor even in the face of what we might consider the vilest of tactics by our opposition. When it comes to how best to get our message out to the broader public, I don’t pretend to have all of the answers. But I will share some insights and anecdotes that I have accumulated over the course of my own efforts to inform the public about the reality of climate change and the potential threat that it represents.

  4. Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps

    PubMed Central

    Thuiller, Wilfried; Guéguen, Maya; Georges, Damien; Bonet, Richard; Chalmandrier, Loïc; Garraud, Luc; Renaud, Julien; Roquet, Cristina; Van Es, Jérémie; Zimmermann, Niklaus E.; Lavergne, Sébastien

    2014-01-01

    Climate and land cover changes are important drivers of the plant species distributions and diversity patterns in mountainous regions. Although the need for a multifaceted view of diversity based on taxonomic, functional and phylogenetic dimensions is now commonly recognized, there are no complete risk assessments concerning their expected changes. In this paper, we used a range of species distribution models in an ensemble-forecasting framework together with regional climate and land cover projections by 2080 to analyze the potential threat for more than 2,500 plant species at high resolution (2.5 km × 2.5 km) in the French Alps. We also decomposed taxonomic, functional and phylogenetic diversity facets into ? and ? components and analyzed their expected changes by 2080. Overall, plant species threats from climate and land cover changes in the French Alps were expected to vary depending on the species’ preferred altitudinal vegetation zone, rarity, and conservation status. Indeed, rare species and species of conservation concern were the ones projected to experience less severe change, and also the ones being the most efficiently preserved by the current network of protected areas. Conversely, the three facets of plant diversity were also projected to experience drastic spatial re-shuffling by 2080. In general, the mean ?-diversity of the three facets was projected to increase to the detriment of regional ?-diversity, although the latter was projected to remain high at the montane-alpine transition zones. Our results show that, due to a high-altitude distribution, the current protection network is efficient for rare species, and species predicted to migrate upward. Although our modeling framework may not capture all possible mechanisms of species range shifts, our work illustrates that a comprehensive risk assessment on an entire floristic region combined with functional and phylogenetic information can help delimitate future scenarios of biodiversity and better design its protection. PMID:25722539

  5. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  6. Climate and Climate Change COURSE: .............................................................................. EAS B8800

    E-print Network

    Wolberg, George

    Climate and Climate Change COURSE) Description: An introductory survey to the field of Climate Science, with special attention given with a focus on energy transport. Finally, we tackle natural and anthropogenic climate change. This course

  7. Climate change & street trees project

    E-print Network

    Climate change & street trees project Social Research Report The social and cultural values Group as part of the Climate change and street trees project, funded by the Forestry Commission with changing socio-economics and/or demographics, but little evidence exists relating

  8. Cinematic climate change, a promising perspective on climate change communication.

    PubMed

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. PMID:24916195

  9. Groundwater under climate change

    NASA Astrophysics Data System (ADS)

    Moeck, C.; Schirmer, M.; Hunkeler, D.; Project Of National Research Programme "Sustainable Water Management" (Nrp 61)

    2010-12-01

    Climate change has a large impact on different environmental issues, such as groundwater availability. In Switzerland, springs provide nearly 40 % of the drinking water and are, in many regions, the main water supply. Dry periods show how vulnerable some of these systems are. The response of springs to drought, however, is complex and not readily predictable. While some show a decrease of discharge and low water table values, others do not react, or only slightly, to such extreme weather conditions. The aim of this study is to understand the behavior of springs and to estimate their vulnerability under different climate scenarios. Two different field sites are presented. The first site is located at Wohlenschwil in a relatively flat moraine landscape (400 m a.s.L.) overlying a porous aquifer. Because of the water abstraction scheme, no spring discharge can be observed but the dynamic of this system is typical of spring behavior. The second site is located in the Upper Emme valley, a hilly region where groundwater flows mostly in fractured Molasse before discharging through springs at an altitude of 860 m a.s.L. Tracer tests and isotopes measurements, as well as geophysical and hydraulic methods to quantify recharge processes and estimate buffer capacity of the systems during dry phases, are applied for unsaturated and saturated zones. All field results are used to build up a fully coupled numerical model (HydroGeoSphere), which gives results about the dynamic of the system with given climate scenarios. Preliminary results from tracer tests and numerical modeling show that, only with an integral approach that includes both the saturated and unsaturated zones, a global assessment of transit times and of the buffer capacity is possible. Furthermore, numerical modeling based partly on soil water measurements and a structure analysis of the “Wohlenschwil” catchment shows that recharge processes are only controlled by precipitation and that inflow from borders are of minor role. The dynamic of this area is strongly dependent on the local climate. The next step will be a more detailed investigation of the soil to obtain a better understanding of direct recharge and flow processes in the unsaturated zone. Therefore soil moisture measurements at different location in the catchment will be carried out

  10. Scaling Climate Change Communication for Behavior Change

    NASA Astrophysics Data System (ADS)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  11. Preparing for climate change.

    PubMed

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and chlorofluorocarbons (CFCs) have been released in great quantities through their use in aerosol sprays, refrigerator fluids, and insulating foams. We can get rid of CFCs and curb the pollutants generating ozone, but it will be difficult to put the brake on either methane or nitrous oxide. And the reduction in carbon dioxide emissions will demand major changes in energy policy as well as action to slow deforestation. It appears that we are already committed to rising temperatures and sea levels. The question is by how much, in which areas? A number of things can be done to prepare for these changes: Governments must recognize that there is a problem; Better models must be worked out, especially to define where the greatest impacts from climate change and sea level rise will hit; Reference scenarios must be developed to see what the impacts are likely to be in ecological, agricultural, social and economic terms; Every country should develop "avoidance strategies" to minimize risk (for example, by not building on land likely to be flooded); We must cut down on the amount of greenhouse gases released into the atmosphere from human activities, by eliminating CFCs and adopting energy conservation programs and other measures to minimize CO2 release; Global agreements to protect the atmosphere are needed. PMID:12285901

  12. Expert credibility in climate change

    PubMed Central

    Anderegg, William R. L.; Prall, James W.; Harold, Jacob; Schneider, Stephen H.

    2010-01-01

    Although preliminary estimates from published literature and expert surveys suggest striking agreement among climate scientists on the tenets of anthropogenic climate change (ACC), the American public expresses substantial doubt about both the anthropogenic cause and the level of scientific agreement underpinning ACC. A broad analysis of the climate scientist community itself, the distribution of credibility of dissenting researchers relative to agreeing researchers, and the level of agreement among top climate experts has not been conducted and would inform future ACC discussions. Here, we use an extensive dataset of 1,372 climate researchers and their publication and citation data to show that (i) 97–98% of the climate researchers most actively publishing in the field surveyed here support the tenets of ACC outlined by the Intergovernmental Panel on Climate Change, and (ii) the relative climate expertise and scientific prominence of the researchers unconvinced of ACC are substantially below that of the convinced researchers. PMID:20566872

  13. CLIMATE CHANGE IMPACTS ON SOIL EROSION IN MIDWEST UNITED STATES WITH CHANGES IN CROP MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigates potential erosion changes in the Midwestern United States under climate change, including the adaptation of farm management to climate change. Previous studies of erosion under climate change have not taken into account farmer choices of crop rotation or planting date, which ...

  14. Re-assessing the role of plant community change and climate in the PETM n-alkane record

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; Baczynski, A. A.; McInerney, F. A.; Chen, D.

    2012-12-01

    The terrestrial leaf wax n-alkane record of the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, shows large excursions in both carbon isotope (?13C) values and n-alkane average chain length (ACL). At the onset of the PETM, ACL values increase from ~28.5 to ~30.1 while the negative carbon isotope excursion (CIE) is 4-6‰ in magnitude and larger than ?13C records from other materials. It has been hypothesized previously that both the ACL excursion and the large magnitude of the CIE were caused by a concurrent turnover in the local flora from a mixed conifer/angiosperm community before the PETM to a different suite of angiosperm species during the PETM. Here, we present the results of a meta-analysis of data (>2000 data from 89 sources, both published and unpublished) on n-alkane amounts and chain length distributions in modern plants from around the world. We applied the data in two sets of comparisons: 1) within and among plant groups such as herbs and graminoids, and 2) between plants and climate, using reported collection locations for outdoor plants and climate values generated via GIS extraction of WorldClim modeled data. We show that angiosperms, as group, produce more n-alkanes than do gymnosperms by 1-2 orders of magnitude, and this means that the gymnosperm contribution to a mixed soil n-alkane pool would be negligible, even in an ecosystem where gymnosperms dominated (i.e. the pre/post-PETM ecosystems). The modern plant data also demonstrate that turnover of the plant community during the PETM, even among only the angiosperm species, is likely not the source of the observed ACL excursion. First, we constructed "representative" groups of PETM and pre/post-PETM communities using living relative species at the Chicago Botanic Garden and find no significant difference in chain length distributions between the two groups. Second and moreover, the modern plant data reveal that n-alkane chain length distributions are tremendously variable within large vascular plant groups--both functional groups such as woody plants or graminoids as well as phylogenetic groups at the family level or higher. This variability makes it difficult at best to use n-alkane chain lengths to distinguish one vascular group from another, as was previously suggested. Instead, our results suggest that chain length distributions and ACL are driven more by climate, especially temperature. Longer chain lengths, with their increased hydrophobicity, would likely experience favorable selection under warmer or drier conditions where leaf water loss is likely to be a greater stress. Thus, it may be that we can interpret the increase in ACL during the PETM as a direct response by the flora to increased temperature during the hyperthermal event, and n-alkane chain length distributions, properly constrained, may possibly serve as a qualitative paleotemperature proxy.

  15. The changing world of climate change: Oregon leads the states

    SciTech Connect

    Carver, P.H.; Sadler, S.; Kosloff, L.H.; Trexler, M.C.

    1997-05-01

    Following on the heels of recent national and international developments in climate change policy, Oregon`s {open_quote}best-of-batch{close_quote} proceeding has validated the use of CO{sub 2} offsets as a cost-effective means of advancing climate change mitigation goals. The proceeding was a first in several respects and represents a record commitment of funds to CO{sub 2} mitigation by a private entity. In December 1995, the Intergovernmental Panel on Climate Change (IPCC), issued its Second Assessment Report. The IPCC`s conclusion that {open_quotes}[t]he balance of evidence suggests a discernible human influence on global climate{close_quotes} fundamentally changed the tenor of the policy debate regarding potential threats associated with global climate change. At the Climate Change Convention`s Conference of the Parties (COP) in Geneva in July 1996, most countries, including the United States, advocated adopting the IPCC report as the basis for swift policy movement toward binding international emissions targets. The next COP, in December 1997, is scheduled to be the venue for the signing of a treaty protocol incorporating such targets. Binding targets would have major consequences for power plant operators in the US and around the world. Recent developments in the state of Oregon show the kinds of measures that may become commonplace at the state level in addressing climate change mitigation. First, Oregon recently completed the first administrative proceeding in the US aimed at offsetting the greenhouse gas emissions of a new power plant. Second, a legislatively mandated energy facility siting task force recently recommended that Oregon adopt a carbon dioxide (CO{sub 2}) standard for new power plant construction and drop use of the {open_quotes}need for power{close_quotes} standard. This article reviews these two policy milestones and their implications for climate change mitigation in the United States.

  16. Crop and pasture response to climate change.

    PubMed

    Tubiello, Francesco N; Soussana, Jean-François; Howden, S Mark

    2007-12-11

    We review recent research of importance to understanding crop and pasture plant species response to climate change. Topics include plant response to elevated CO(2) concentration, interactions with climate change variables and air pollutants, impacts of increased climate variability and frequency of extreme events, the role of weeds and pests, disease and animal health, issues in biodiversity, and vulnerability of soil carbon pools. We critically analyze the links between fundamental knowledge at the plant and plot level and the additional socio-economic variables that determine actual production and trade of food at regional to global scales. We conclude by making recommendations for current and future research needs, with a focus on continued and improved integration of experimental and modeling efforts. PMID:18077401

  17. Climate Change and National Security

    SciTech Connect

    Malone, Elizabeth L.

    2013-02-01

    Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communities – with resultant advantages and differences. Climate change research has proven useful to the national security community sponsors in several ways. It has opened security discussions to consider climate as well as political factors in studies of the future. It has encouraged factoring in the stresses placed on societies by climate changes (of any kind) to help assess the potential for state stability. And it has shown that, changes such as increased heat, more intense storms, longer periods without rain, and earlier spring onset call for building climate resilience as part of building stability. For the climate change research community, studies from a national security point of view have revealed research lacunae, for example, such as the lack of usable migration studies. This has also pushed the research community to consider second- and third-order impacts of climate change, such as migration and state stability, which broadens discussion of future impacts beyond temperature increases, severe storms, and sea level rise; and affirms the importance of governance in responding to these changes. The increasing emphasis in climate change science toward research in vulnerability, resilience, and adaptation also frames what the intelligence and defense communities need to know, including where there are dependencies and weaknesses that may allow climate change impacts to result in security threats and where social and economic interventions can prevent climate change impacts and other stressors from resulting in social and political instability or collapse.

  18. Climate change refugia as a tool for climate adaptation

    EPA Science Inventory

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  19. Climate change, conflict and health.

    PubMed

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    SummaryFuture climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. PMID:26432813

  20. Canadian vegetation response to climate and projected climatic change

    SciTech Connect

    Lenihan, J.M.

    1992-01-01

    The response of Canadian vegetation to climate and climatic change was modeled at three organizational levels of the vegetation mosaic. Snowpack, degree-days, minimum temperature, soil moisture deficit, and actual evapotranspiration are components of climate that physiologically constrain distribution of dominant plant life-forms and species. The rule-based Canadian Climate-Vegetation Model (CCVM) predicts the response of vegetation formations to climate. The CCVM simulation for current climatic conditions is more accurate and detailed than those of other equilibrium models. Ecological response surfaces predict the probability of dominance for eight boreal tree species in Canada with success. Variation in the probability of dominance is related to the species' individualistic response to climatic constraints within different airmass regions. A boreal forest-type classification shows a high degree of geographic correspondence with observed forest-types. Under two doubled-CO[sub 2] climatic scenarios, CCVM predicts a reduction in arctic tundra and subarctic woodland, a northward shift in the distribution of boreal evergreen forest, and an expansion of temperate forest, boreal summergreen woodland, and two prairie formations. The response surfaces predict significant changes in species dominance under both climatic scenarios. Species exhibit an individualistic responses to climatic change. Most of the boreal forest-types derived from future probabilities of dominance are analogous to extant forest-types, but fewer types are distinguished. Geographic correspondence in the simulated boreal forest regions under both the current and projected climates provides a link between the results of the two modelling approaches. Even with constraints, the realism of the vegetation scenarios in this study are arguably the most reliable and comprehensive predictions for Canada.

  1. Schneider lecture: From climate change impacts to climate change risks

    NASA Astrophysics Data System (ADS)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full range of interacting processes, both in the climate system and in human responses. But conceptualizing the challenge of climate change as a challenge in managing risks also opens a path to a wide range of options for solutions. Together, the agenda for research and the options for solutions build toward Steve's vision.

  2. Tropical Cyclones and Climate Change

    E-print Network

    Knutson, Thomas R.

    Whether the characteristics of tropical cyclones have changed or will change in a warming climate — and if so, how — has been the subject of considerable investigation, often with conflicting results. Large amplitude ...

  3. Generating Arguments about Climate Change

    ERIC Educational Resources Information Center

    Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

    2012-01-01

    This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

  4. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  5. Implications of abrupt climate change.

    PubMed Central

    Alley, Richard B.

    2004-01-01

    Records of past climates contained in ice cores, ocean sediments, and other archives show that large, abrupt, widespread climate changes have occurred repeatedly in the past. These changes were especially prominent during the cooling into and warming out of the last ice age, but persisted into the modern warm interval. Changes have especially affected water availability in warm regions and temperature in cold regions, but have affected almost all climatic variables across much or all of the Earth. Impacts of climate changes are smaller if the changes are slower or more-expected. The rapidity of abrupt climate changes, together with the difficulty of predicting such changes, means that impacts on the health of humans, economies and ecosystems will be larger if abrupt climate changes occur. Most projections of future climate include only gradual changes, whereas paleoclimatic data plus models indicate that abrupt changes remain possible; thus, policy is being made based on a view of the future that may be optimistic. PMID:17060975

  6. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  7. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  8. Climatic Variability Leads to Later Seasonal Flowering of Floridian Plants

    PubMed Central

    Von Holle, Betsy; Wei, Yun; Nickerson, David

    2010-01-01

    Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses. PMID:20657765

  9. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.

  10. Chapters 10 & 11 Climate Change and Global Climate Systems

    E-print Network

    Pan, Feifei

    Chapters 10 & 11 Climate Change and Global Climate Systems #12;© 2015 Pearson Education, Inc. Learning Objectives · Introduce climate change and describe scientific tools used to study paleoclimatology and future climate. · Define climate and climatology, and review the principal components of Earth's climate

  11. Climate change and marine vertebrates.

    PubMed

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. PMID:26564847

  12. Plant community responses to 5 years of simulated climate change in meadow and heath ecosystems at a subarctic-alpine site.

    PubMed

    Jägerbrand, Annika K; Alatalo, Juha M; Chrimes, Dillon; Molau, Ulf

    2009-09-01

    Climate change was simulated by increasing temperature and nutrient availability in an alpine landscape. We conducted a field experiment of BACI-design (before/after control/impact) running for five seasons in two alpine communities (heath and meadow) with the factors temperature (increase of ca. 1.5-3.0 degrees C) and nutrients (5 g N, 5 g P per m(2)) in a fully factorial design in northern Swedish Lapland. The response variables were abundances of plant species and functional types. Plant community responses to the experimental perturbations were investigated, and the responses of plant functional types were examined in comparison to responses at the species level. Nutrient addition, exclusively and in combination with enhanced temperature increase, exerted the most pronounced responses at the species-specific and community levels. The main responses to nutrient addition were increases in graminoids and forbs, whereas deciduous shrubs, evergreen shrubs, bryophytes, and lichens decreased. The two plant communities of heath or meadow showed different vegetation responses to the environmental treatments despite the fact that both communities were located on the same subarctic-alpine site. Furthermore, we showed that the abundance of forbs increased in response to the combined treatment of temperature and nutrient addition in the meadow plant community. Within a single-plant functional type, most species responded similarly to the enhanced treatments although there were exceptions, particularly in the moss and lichen functional types. Plant community structure showed BACI responses in that vegetation dominance relationships in the existing plant functional types changed to varying degrees in all plots, including control plots. Betula nana and lichens increased in the temperature-increased enhancements and in control plots in the heath plant community during the treatment period. The increases in control plots were probably a response to the observed warming during the treatment period in the region. PMID:19554352

  13. Blanket peat biome endangered by climate change

    NASA Astrophysics Data System (ADS)

    Gallego-Sala, Angela V.; Colin Prentice, I.

    2013-02-01

    Blanket bog is a highly distinctive biome restricted to disjunct hyperoceanic regions. It is characterized by a landscape covering of peat broken only by the steepest slopes. Plant and microbial life are adapted to anoxia, low pH and low nutrient availability. Plant productivity exceeds soil organic matter decomposition, so carbon is sequestered over time. Unique climatic requirements, including high year-round rainfall and low summer temperatures, make this biome amenable to bioclimatic modelling. However, projections of the fate of peatlands in general, and blanket bogs in particular, under climate change have been contradictory. Here we use a simple, well-founded global bioclimatic model, with climate-change projections from seven climate models, to indicate this biome's fate. We show marked shrinkage of its present bioclimatic space with only a few, restricted areas of persistence. Many blanket bog regions are thus at risk of progressive peat erosion and vegetation changes as a direct consequence of climate change. New areas suitable for blanket bog are also projected, but these are often disjunct from present areas and their location is inconsistently predicted by different climate models.

  14. CLIMATE CHANGE AND INTERNATIONAL PEACE AND SECURITY

    E-print Network

    CLIMATE CHANGE AND INTERNATIONAL PEACE AND SECURITY: Possible Roles for the U.N. Security Council in Addressing Climate Change By Dane Warren July 2015 #12;© 2015 Sabin Center for Climate Change Law, Columbia Law School The Sabin Center for Climate Change Law develops legal techniques to fight climate change

  15. CLIMATE CHANGE: Past, Present and Future: Introduction

    E-print Network

    Allan, Richard P.

    CLIMATE CHANGE: Past, Present and Future: Introduction Richard Allan, Department of Meteorology r.p.allan@reading.ac.uk #12;Text Books and References · Henson, B., Rough Guide to Climate Change http://www.amazon.co.uk/Climate-Change-Guides-Reference- Titles/dp/1858281059 · Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007, www

  16. Climate change: Challenges for future crop adjustments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change will affect all agricultural areas over the coming years; however, this effect will not be equally distributed spatially or temporally. Increasing temperatures of 2-3°C over the next 40 years will expose plants to higher temperatures throughout their life cycle and also increase the a...

  17. Atmospheric Science: Solving Challenges of Climate Change

    SciTech Connect

    Geffen, Charlette

    2015-08-05

    PNNL’s atmospheric science research provides data required to make decisions about challenges presented by climate change: Where to site power plants, how to manage water resources, how to prepare for severe weather events and more. Our expertise in fundamental observations and modeling is recognized among the national labs and the world.

  18. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. PMID:25385668

  19. Climate signals in Palaeozoic land plants

    PubMed Central

    Edwards, D.

    1998-01-01

    The Palaeozoic is regarded as a period in which it is difficult to recognize climate signals in land plants because they have few or no close extant relatives. In addition early, predominantly axial, representatives lack the features, e.g. leaf laminae, secondary growth, used later as qualitative and quantitive measures of past climates. Exceptions are stomata, and the preliminary results of a case study of a single taxon present throughout the Devonian, and analysis of stomatal complex anatomy attempt to disentangle evolutionary, taxonomic, habitat and atmospheric effects on stomatal frequencies. Ordovician-Silurian vegetation is represented mainly by spores whose widespread global distribution on palaeocontinental reconstructions with inferred climates suggest that the producers were independent of major climate variables, probably employing the physiology and behavioural strategies of extant bryophytes, further characterized by small size. Growth-ring studies, first possible on Mid-Devonian plants, have proved most informative in elucidating the climate at high palaeolatitudes in Late Permian Gondwana. Changes in the composition of Carboniferous-Permian low-latitude wetland vegetation are discussed in relation to tectonic activity and glaciation, with most confidence placed on the conclusion that major extinctions at the Westphalian-Stephanian boundary in Euramerica resulted from increased seasonality created by changes in circulation patterns at low latitudes imposed by the decrease of glaciations in most parts of Gondwana.

  20. Coherent changes in relative C4 plant productivity and climate during the late Quaternary in the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.; Tubbs, J.

    2008-01-01

    Evolution of the mixed and shortgrass prairie of the North American Great Plains is poorly understood because of limited proxies available for environmental interpretations. Buried soils in the Great Plains provide a solution to the problem because they are widespread both spatially and temporally with their organic reservoirs serving as a link to the plants than once grew on them. Through stable carbon isotopic analysis of soil organic carbon (??13C), the percent carbon from C4 plants (%C4) can be ascertained. Because C4 plants are primarily warm season grasses responding positively to summer temperature, their representation has the added advantage of serving as a climate indicator. To better understand grassland and climate dynamics in the Great Plains during the last 12 ka (ka=1000 radiocarbon years) we developed an isotopic standardization technique by: determining the difference in buried soil ??13C and modern soil ??13C expected for that latitude (????13C), and transferring the ????13C to ??%C4 (% C4) using mass balance calculations. Our analysis reveals two isotopic stages in the mixed and shortgrass prairie of the Great Plains based on trends in ??%C4. In response to orbital forcing mechanisms, ??%C4 was persistently below modern in the Great Plains between 12 and 6.7 ka (isotopic stage II) evidently because of the cooling effect of the Laurentide ice sheet and proglacial lakes in northern latitudes, and glacial meltwater pulses cooling the Gulf of Mexico and North Atlantic Ocean. The ??%C4 after 6.7 ka (isotopic stage I) increased to modern levels as conditioned by the outflow of warm, moist air from the Gulf of Mexico and dry incursions from the west that produced periodic drought. At the millennial-scale, time series analysis demonstrates that ??%C4 oscillated with 0.6 and 1.8 ka periodicities, possibly governed by variations in solar irradiance. Our buried soil isotopic record correlates well with other environmental proxy from the Great Plains and surrounding regions. ?? 2008 Elsevier Ltd.

  1. Climate Change and Disturbance Interactions

    NASA Astrophysics Data System (ADS)

    McKenzie, Don; Allen, Craig D.

    2007-05-01

    Workshop on Climate Change and Disturbance Interactions in Western North America, Tucson, Ariz., 12-15 February 2007 Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?

  2. BTO Research Report 414 Climate Change and

    E-print Network

    Pierce, Graham

    BTO Research Report 414 Climate Change and Migratory Species Authors Robert A. Robinson1 , Jennifer ..........................................................................................................38 1.2. Certainty in Climate Change Impacts ..........................................................................39 1.3. Biological Adaptation to Climate Change

  3. Oceans and Human Health (and climate change)

    E-print Network

    Zhou, Xianghong Jasmine

    Oceans and Human Health (and climate change) Tracy K. Collier Science Dimensions and Ocean Health in a Changing Climate, USC March 12, 2013 1 #12 use Climate change Closes the loop in understanding connections between ocean health and human health

  4. Climate change, wine, and conservation

    PubMed Central

    Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  5. Life on a Changing Edge: Arctic-Alpine Plants at the Edges of Permanent Snowfields that are Receding Due to Climate Change at Glacier National Park

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Martin, A. C.; Moritz, D. J.

    2013-12-01

    Glaciers and snowfields are intrinsic parts of many alpine landscapes but they are retreating rapidly at Glacier National Park in Montana, USA. Plants that inhabit the edges of glaciers and snowfields are vulnerable to habitat changes wrought by the recession of these frozen bodies. Snowfields provide plants with frost protection in the winter and water in the form of melting snow during the summer. However, changes in snowfield and glacial edges may leave plants exposed to frost in the winter and subjected to water stress in the summer, which would likely have an impact on important processes, including emergence from the soil, leaf expansion, root growth, flowering, seed germination, seedling establishment, photosynthesis, and transpiration. Because these processes influence the survival of plants, responses of snowfield plants to changing edges will likely result in changes in species abundance, distribution and diversity, which will in turn influence community composition. In summer 2012, we initiated a study of Glacier National Park's snowfield plants by establishing 2m2 plots at geospatially referenced 50m transects extending outwards from the toe and perpendicularly outward from the lateral edges of currently permanent snowfields at Siyeh Pass, Piegan Pass, and Preston Park, with an additional 100m transect extending from an impermanent snowfield to treeline at Mt. Clements near Logan Pass. We constructed species lists and determined percent cover for each species in each 2m2 plot, and used high resolution photographs of each plot as records and for fine scale determinations of species presence and location. In addition, we searched for rare arctic-alpine plants which, due to their rarity, may be especially vulnerable to changes in snowfields and glaciers. Two species of rare arctic-alpine plants, Tofieldia pusilla and Pinguicula vulgaris, were found near snowmelt-fed springs, rivulets, and tarns but were not found adjacent to the snowfields. Thus, they may rely indirectly on the snowfields for at least part of their water supply. The baseline study provides us with current knowledge of the snowfield plants. Ideally, the plots will be expanded on and monitored in the future to detect changes in the distribution, abundance, and diversity of these plants and their communities in the context of determining and explaining the influences on alpine plant ecology of the recession of permanent snowfields and glaciers.

  6. Climate Change: Implications for the PNW

    E-print Network

    Brown, Sally

    ;Projected Impacts of Climate Change Source: Stern Review #12;Global Climate Change ­ Questions Is climate#12;#12;Climate Change: Implications for the PNW Nick Bond University of Washington NOAA/PMEL #12 changing? What are greenhouse gases and do we understand their role in climate? What is the impact

  7. Impacts of Climate Change on Biofuels Production

    SciTech Connect

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  8. Ground water and climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  9. Climate change: Unattributed hurricane damage

    NASA Astrophysics Data System (ADS)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  10. Climatic change on Mars.

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Toon, O. B.; Gierasch, P. J.

    1973-01-01

    It is pointed out that Mars is the only known planet with a major atmospheric constituent condensable at typical surface temperatures. The temperatures range from 290 K at equatorial noon to a temperature at the cold pole of 145 K in polar winter. There may be three different periods of climatic variation on Mars. Aspects of reversible climatic instability might possibly explain the channels and other features suggestive of the extensive occurrence of liquid water on Mars. An aqueous epoch on Mars would have important biological and other geological implications. Putative Martian organisms which flourish in the aqueous epoch may now be in cryptobiotic repose.

  11. Shifting seasons, climate change and ecosystem consequences

    NASA Astrophysics Data System (ADS)

    Thackeray, Stephen; Henrys, Peter; Hemming, Deborah; Huntingford, Chris; Bell, James; Leech, David; Wanless, Sarah

    2014-05-01

    In recent decades, the seasonal timing of many biological events (e.g. flowering, breeding, migration) has shifted. These phenological changes are believed to be one of the most conspicuous biological indicators of climate change. Rates and directions of phenological change have differed markedly among species, potentially threatening the seasonal synchrony of key species interactions and ultimately ecosystem functioning. Differences in phenological change among-species at different trophic levels, and with respect to other broad species traits, are likely to be driven by variations in the climatic sensitivity of phenological events. However, as yet, inconsistencies in analytical methods have hampered broad-scale assessments of variation in climate sensitivity among taxonomic and functional groups of organisms. In this presentation, results will be presented from a current collaborative project (http://www.ceh.ac.uk/sci_programmes/shifting-seasons-uk.html) in which many UK long-term data sets are being integrated in order to assess relationships between temperature/precipitation, and the timing of seasonal events for a wide range of plants and animals. Our aim is to assess which organism groups (in which locations/habitats) are most sensitive to climate. Furthermore, the role of anthropogenic climate change as a driver of phenological change is being assessed.

  12. ``Climate Modelling & Global Change'' scientific report ``Climate Modelling & Global Change'' Team

    E-print Network

    ``Climate Modelling & Global Change'' scientific report ``Climate Modelling & Global Change'' Team : 1995/1996 Scientific Report February 1997 CERFACS ACTIVITY REPORT 1 #12; Contents 1 Climate Modelling) : : : : : : : : : : : : : : : : : 6 2.2 Anthropogenic climate change studies: scenario experiments (96) : : : : : : : : : 7 2

  13. Climate Change: The Sun's Role

    E-print Network

    Gerald E. Marsh

    2007-06-23

    The sun's role in the earth's recent warming remains controversial even though there is a good deal of evidence to support the thesis that solar variations are a very significant factor in driving climate change both currently and in the past. This precis lays out the background and data needed to understand the basic scientific argument behind the contention that variations in solar output have a significant impact on current changes in climate. It also offers a simple, phenomenological approach for estimating the actual-as opposed to model dependent-magnitude of the sun's influence on climate.

  14. Briefing and Discussion of Climate Change

    E-print Network

    Briefing and Discussion of Climate Change 7th Power Plan Appendix Council Meeting Vancouver Washington October 13, 2015 #12;Outline Key Findings Climate change data and analysis flowchart to offset climate change Summary of L/R balance changes 2 #12;Key Findings (Climate Change Impacts) 1. Load

  15. IN THIS ISSUE Regional Climate Change..............1

    E-print Network

    Hamann, Andreas

    IN THIS ISSUE · Regional Climate Change..............1 · From the Executive Director...........2 release of new climate change scenarios from the Canadian Regional Climate Model (CRCM) heralds of the fundamental questions remaining with respect to understanding climate change and even climate variability. And

  16. Climate change and preventive medicine.

    PubMed

    Faergeman, Ole

    2007-12-01

    Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery disease do not result from climate change, but they do share causes with climate change. Burning fossil fuels, for example, is the major source of greenhouse gases, but it also makes pervasive physical inactivity possible. Similarly, modern agriculture's enormous production of livestock contributes substantially to greenhouse gas emissions, and it is the source of many of our most energy-rich foods. Physicians and societies of medical professionals have a particular responsibility, therefore, to contribute to the public discourse about climate change and what to do about it. PMID:18043291

  17. Ocean Observations of Climate Change

    NASA Astrophysics Data System (ADS)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  18. 1DANGEROUS CLIMATE CHANGE IN BRAZIL Dangerous Climate

    E-print Network

    1DANGEROUS CLIMATE CHANGE IN BRAZIL Dangerous Climate A BrAzil-UK AnAlysis of ClimAte ChAnge And deforestAtion impACts in the AmAzon Change in Brazil #12;3DANGEROUS CLIMATE CHANGE IN BRAZIL April 2011 Pesquisas Espaciais (INPE), Brazil, and the Met Office Hadley Centre, UK Dangerous Climate A BrAzil-UK An

  19. Climate change impacts on forestry

    PubMed Central

    Kirilenko, Andrei P.; Sedjo, Roger A.

    2007-01-01

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO2 are likely to drive significant modifications in natural and modified forests. Our review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. We concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand. PMID:18077403

  20. Climate change impacts on forestry

    SciTech Connect

    Kirilenko, A.P.; Sedjo, R.A.

    2007-12-11

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO{sub 2} are likely to drive significant modifications in natural and modified forests. The authors' review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. They concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand.

  1. Climate change and food security

    PubMed Central

    Gregory, P.J; Ingram, J.S.I; Brklacich, M

    2005-01-01

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their vulnerability to climate change is not uniform. Improved systems of food production, food distribution and economic access may all contribute to food systems adapted to cope with climate change, but in adopting such changes it will be important to ensure that they contribute to sustainability. Agriculture is a major contributor of the greenhouse gases methane (CH4) and nitrous oxide (N2O), so that regionally derived policies promoting adapted food systems need to mitigate further climate change. PMID:16433099

  2. Sundangrass reproductive biomass responses under climate change scenarios in oak savannah and mesic prairie mesocosm communities

    EPA Science Inventory

    Potential climate change effects include shifts in the distribution of plant species and changes in reproductive output. We tested the hypothesis that environmental stressors such as elevated temperature and drought that are associated with climate change would increase the repr...

  3. CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents.

    PubMed

    Kerr, Jeremy T; Pindar, Alana; Galpern, Paul; Packer, Laurence; Potts, Simon G; Roberts, Stuart M; Rasmont, Pierre; Schweiger, Oliver; Colla, Sheila R; Richardson, Leif L; Wagner, David L; Gall, Lawrence F; Sikes, Derek S; Pantoja, Alberto

    2015-07-10

    For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change-related range shifts in bumblebee species across the full extents of their latitudinal and thermal limits and movements along elevation gradients. We found cross-continentally consistent trends in failures to track warming through time at species' northern range limits, range losses from southern range limits, and shifts to higher elevations among southern species. These effects are independent of changing land uses or pesticide applications and underscore the need to test for climate impacts at both leading and trailing latitudinal and thermal limits for species. PMID:26160945

  4. Phenology of species interactions in response to climate change: two case studies of plant-pollinator interactions using long-term data

    NASA Astrophysics Data System (ADS)

    McKinney, A. M.; Inouye, D. W.

    2012-12-01

    Climate change may alter the temporal overlap among interacting taxa with potential demographic consequences. Evidence of mistimed interactions in response to climate change, especially between plants and pollinators, is mixed, and few long-term datasets exist to test for changes in synchrony. Furthermore, advancements in flowering driven by climate change are especially pronounced at higher latitudes, so that migratory pollinators from lower latitudes may increasingly arrive at breeding grounds after the appearance of floral resources. We explored long-term shifts in phenological synchrony in two plant-pollinator systems:1) syrphid fly and flowering phenology in the Colorado Rocky Mountains, USA (1992-2011) and 2) hummingbird arrival relative to onset of early-season nectar resources in the Colorado Rocky Mountains (1975-2011) and the Santa Catalina Mountains, Arizona, USA (1984-2010). We investigated the abiotic cues associated with the phenology of the activity period of syrphid flies and their floral resources, including degree days above freezing, precipitation, and timing of snowmelt as potential explanatory variables. Timing of snowmelt was the best predictor of the onset of flowering and syrphid emergence. Snowmelt was also the best predictor of the end of flowering, while temperature and precipitation best predicted the end of the syrphid period. Both the onset and end of flowering advanced more rapidly than syrphids in response to earlier snowmelt. These different rates of phenological advancement resulted in increased temporal overlap between the flower and syrphid community in years of early snowmelt, because of longer flowering and fly activity periods during these years. If snowmelt continues to advance, temporal overlap between syrphids and their floral resources is therefore likely to increase. This case study shows that the phenology of interacting taxa may respond differently to climate cues, but that this does not necessarily lead to phenological mismatch. To explore the hypothesis that changes in phenological synchrony will occur at the northern edge of the breeding range of migratory pollinators, we compared dates of first arrival of Broad-tailed Hummingbirds (Selasphorus platycercus) to dates of flowering of plants they visit for nectar. Near the southern limit of the breeding range, neither hummingbird arrival nor first flowering dates have changed significantly over the past few decades. Near the northern limit of the breeding range, first and peak flowering of early-season food plants have shifted to earlier dates, resulting in a shorter interval between appearance of first hummingbirds and first flowers. If phenological shifts continue at current rates, hummingbirds will eventually arrive at northern breeding grounds after flowering begins, which could reduce their nesting success. This problem could be compounded by a mid-season drop in flower availability that is appearing as the growing season starts earlier. These results support the prediction that migratory species may experience the greatest phenological mismatches at the poleward limits of their migration. A novel hypothesis based on these results posits that the poleward limit for some species may contract toward lower latitudes under continued warming.

  5. Urban sites in climate change

    NASA Astrophysics Data System (ADS)

    Früh, B.; Kossmann, M.

    2010-09-01

    For the 21st century a significant rise of near surface air temperature is expected from IPCC global climate model simulations. The additional heat load associated with this warming will especially affect cities since it adds to the well-known urban heat island effect. With already more than half of the world's population living in cities and continuing urbanization highly expected, managing urban heat load will become even more important in future. To support urban planners in their effort to maintain or improve the quality of living in their city, detailed information on future urban climate on the residential scale is required. To pursue this question the 'Umweltamt der Stadt Frankfurt am Main' and the 'Deutscher Wetterdienst' (DWD, German Meteorological Service) built a cooperation. This contribution presents estimates of the impact of climate change on the heat load in Frankfurt am Main, Germany, using the urban scale climate model MUKLIMO3 and climate projections from different regional climate models for the region of Frankfurt. Ten different building structures were considered to realistically represent the spatial variability of the urban environment. The evaluation procedure combines the urban climate model simulations and the regional climate projections to calculate several heat load indices based on the exceedance of a temperature threshold. An evaluation of MUKLIMO3 results is carried out for the time period 1971 - 2000. The range of potential future heat load in Frankfurt is statistically analyzed using an ensemble of four different regional climate projections. Future work will examine the options of urban planning to mitigate the enhanced heat load expected from climate change.

  6. FY 2002 GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    PRA Goal 6: Reducing Global and Transboundary Environmental Risks

    Objective 6.2: Greenhouse Gas Emissions

    Sub-Objective 6.2.3: Global Climate Change Research

    Activity F55 - Assessing the Consequences of Global Change on Ecosystem Health

    NRMRL

    R...

  7. Invasive species and climate change

    USGS Publications Warehouse

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  8. Climate Change: Meeting the Challenge

    ERIC Educational Resources Information Center

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  9. Indigenous Health and Climate Change

    PubMed Central

    2012-01-01

    Indigenous populations have been identified as vulnerable to climate change. This framing, however, is detached from the diverse geographies of how people experience, understand, and respond to climate-related health outcomes, and overlooks nonclimatic determinants. I reviewed research on indigenous health and climate change to capture place-based dimensions of vulnerability and broader determining factors. Studies focused primarily on Australia and the Arctic, and indicated significant adaptive capacity, with active responses to climate-related health risks. However, nonclimatic stresses including poverty, land dispossession, globalization, and associated sociocultural transitions challenge this adaptability. Addressing geographic gaps in existing studies alongside greater focus on indigenous conceptualizations on and approaches to health, examination of global–local interactions shaping local vulnerability, enhanced surveillance, and an evaluation of policy support opportunities are key foci for future research. PMID:22594718

  10. Climatic change on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Sagan, C.; Gierasch, P. J.; Pollack, J. B.

    1975-01-01

    Work on climatic changes of Mars is reviewed and related to terrestrial problems. In particular the dust storms of Mars are discussed since these represent the only global climatic change which has been scientifically observed. The channels of Mars have provoked studies of climatic change and these are summarized together with polar laminae as a climatic change indicator.

  11. Prospective Climate Change Impact on Large Rivers

    E-print Network

    Julien, Pierre Y.

    1 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept. of Civil and Environ. Eng. Colorado State University Seoul, South Korea August 11, 2009 Climate Change and Large Rivers 1. Climatic changes have been on-going for some time; 2. Climate changes usually predict

  12. Greenhouse gas induced climate change.

    PubMed

    Hegerl, G C; Cubasch, U

    1996-06-01

    Simulations using global coupled climate models predict a climate change due to the increasing concentration of greenhouse gases and aerosols in the atmosphere. Both are associated with the burning of fossil fuels. There has been considerable debate if this postulated human influence is already evident. This paper gives an overview on some recent material on this question. One particular study using optimal fingerprints (Hegerl et al., 1996) is explained in more detail. In this study, an optimal fingerprint analysis is applied to temperature trend patterns over several decades. The results show the probability being less than 5% that the most recently observed 30 year trend is due to naturally occurring climate fluctuations. This result suggests that the present warming is caused by some external influence on climate, e.g. by the increasing concentrations of greenhouse gases and aerosols. More work is needed to address the uncertainties in the magnitude of naturally occurring climate fluctuations. Also, other external influences on climate need to be investigated to uniquely attribute the present climate change to the human influence. PMID:24234957

  13. Climatic variability, plant phenology, and northern ungulates

    SciTech Connect

    Post, E.; Stenseth, N.C.

    1999-06-01

    Models of climate change predict that global temperatures and precipitation will increase within the next century, with the most pronounced changes occurring in northern latitudes and during winter. A large-scale atmospheric phenomenon, the North Atlantic Oscillation (NAO), is a strong determinant of both interannual variation and decadal trends in temperatures and precipitation during winter in northern latitudes, and its recent persistence in one extreme phase may be a substantial component of increases in global temperatures. Hence, the authors investigated the influences of large-scale climatic variability on plant phenology and ungulate population ecology by incorporating the NAO in statistical analyses of previously published data on: (1) the timing of flowering by plants in Norway, and (2) phenotypic and demographic variation in populations of northern ungulates. The authors analyzed 137 time series on plant phenology for 13 species of plants in Norway spanning up to 50 yr and 39 time series on phenotypic and demographic traits of 7 species of northern ungulates from 16 populations in North America and northern Europe spanning up to 30 yr.

  14. Experimenting with Climate Change

    USGS Multimedia Gallery

    Hilda Smith, biological technician with Canyonlands Research Station, monitors changes in biological soil crusts in response to experimental increases in temperature and altered precipitation patterns....

  15. Double Exposure: Photographing Climate Change

    NASA Astrophysics Data System (ADS)

    Arnold, D. P.; Wake, C. P.; Romanow, G. B.

    2008-12-01

    Double Exposure, Photographing Climate Change, is a fine-art photography exhibition that examines climate change through the prism of melting glaciers. The photographs are twinned shots of glaciers, taken in the mid-20th century by world-renowned photographer Brad Washburn, and in the past two years by Boston journalist/photographer David Arnold. Arnold flew in Washburn's aerial "footprints", replicating stunning black and white photographs, and documenting one irreversible aspect of climate change. Double Exposure is art with a purpose. It is designed to educate, alarm and inspire its audiences. Its power lies in its beauty and the shocking changes it has captured through a camera lens. The interpretive text, guided by numerous experts in the fields of glaciology, global warming and geology, helps convey the message that climate change has already forced permanent changes on the face of our planet. The traveling exhibit premiered at Boston's Museum of Science in April and is now criss-crossing the nation. The exhibit covers changes in the 15 glaciers that have been photographed as well as related information about global warming's effect on the planet today.

  16. Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions.

    PubMed

    Vicente, J R; Fernandes, R F; Randin, C F; Broennimann, O; Gonçalves, J; Marcos, B; Pôças, I; Alves, P; Guisan, A; Honrado, J P

    2013-12-15

    Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application. PMID:24161807

  17. Appendix L: Climate Change and Power Planning

    E-print Network

    Page 1 Appendix L: Climate Change and Power Planning Power Committee Webinar June 3, 2009 June 3, 2009 2 Outline · Climate Change Data · Assessing impacts to the power system · Dealing with climate uncertainty #12;Page 2 June 3, 2009 3 Global Climate Models · Climate Impacts Group ­ University of Washington

  18. ``Climate Modelling & Global Change'' scientific report 1 ``Climate Modelling & Global Change'' Team

    E-print Network

    ``Climate Modelling & Global Change'' scientific report 1 ``Climate Modelling & Global Change of the tropical climate : : : : : : : : : : : : : : : : : : : : : 6 2.2 Short­term variability studies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2.3 Climate drift sensitivity studies

  19. Climate change and game theory.

    PubMed

    Wood, Peter John

    2011-02-01

    This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely. PMID:21332497

  20. Renewable Energy and Climate Change

    SciTech Connect

    Chum, H. L.

    2012-01-01

    The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as their integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.

  1. Changing the intellectual climate

    NASA Astrophysics Data System (ADS)

    Castree, Noel; Adams, William M.; Barry, John; Brockington, Daniel; Büscher, Bram; Corbera, Esteve; Demeritt, David; Duffy, Rosaleen; Felt, Ulrike; Neves, Katja; Newell, Peter; Pellizzoni, Luigi; Rigby, Kate; Robbins, Paul; Robin, Libby; Rose, Deborah Bird; Ross, Andrew; Schlosberg, David; Sörlin, Sverker; West, Paige; Whitehead, Mark; Wynne, Brian

    2014-09-01

    Calls for more broad-based, integrated, useful knowledge now abound in the world of global environmental change science. They evidence many scientists' desire to help humanity confront the momentous biophysical implications of its own actions. But they also reveal a limited conception of social science and virtually ignore the humanities. They thereby endorse a stunted conception of 'human dimensions' at a time when the challenges posed by global environmental change are increasing in magnitude, scale and scope. Here, we make the case for a richer conception predicated on broader intellectual engagement and identify some preconditions for its practical fulfilment. Interdisciplinary dialogue, we suggest, should engender plural representations of Earth's present and future that are reflective of divergent human values and aspirations. In turn, this might insure publics and decision-makers against overly narrow conceptions of what is possible and desirable as they consider the profound questions raised by global environmental change.

  2. Public Engagement on Climate Change

    NASA Astrophysics Data System (ADS)

    Curry, J.

    2011-12-01

    Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically literate public, many of whom have become increasingly skeptical of climate science the more they investigate the topic. Specific issues that this group has with climate science include concerns that science that cannot easily be separated from risk assessment and value judgments; concern that assessments (e.g. IPCC) have become a Maxwell's daemon for climate research; inadequate assessment of our ignorance of this complex scientific issue; elite scientists and scientific institutions losing credibility with the public; political exploitation of the public's lack of understanding; and concerns about the lack of public accountability of climate science and climate models that are being used as the basis for far reaching decisions and policies. Individuals in this group have the technical ability to understand and examine climate science arguments and are not prepared to cede judgment on this issue to the designated and self-proclaimed experts. This talk will describe my experiences in engaging with this group and what has been learned, both by myself and by participants in the discussion at Climate Etc.

  3. CURRICULUM VITAE Climate Change Research Section (CCR)

    E-print Network

    Hu, Aixue

    CURRICULUM VITAE Aixue Hu Climate Change Research Section (CCR) Climate and Global Dynamics of Meteorology, Beijing, China Ph.D dissertation Changes in the Arctic and their impact on the oceanic Meridional.M. Washington, A. Dai: Changes in Thermohaline Circu- lation in Furture Climate, J. Climate, to be submitted

  4. The origin of climate changes.

    PubMed

    Delecluse, P

    2008-08-01

    Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present climate situation. The observations show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. Numerical modelling combined with statistical analysis has shown that this warming trend is very likely the signature of increasing emissions of greenhouse gases linked with human activities. Given the continuing social and economic development around the world, the IPCC emission scenarios forecast an increasing greenhouse effect, at least until 2050 according to the most optimistic models. The model ensemble predicts a rising temperature that will reach dangerous levels for the biosphere and ecosystems within this century. Hydrological systems and the potential significant impacts of these systems on the environment are also discussed. Facing this challenging future, societies must take measures to reduce emissions and work on adapting to an inexorably changing environment. Present knowledge is sufficientto start taking action, but a stronger foundation is needed to ensure that pertinent long-term choices are made that will meet the demands of an interactive and rapidly evolving world. PMID:18819661

  5. Mars Recent Climate Change Workshop

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can mobilize and redistribute volatile reservoirs both on and below the surface. And for Mars, these variations are large. In the past 20 My, for example, the obliquity is believed to have varied from a low of 15° to a high of 45° with a regular oscillation time scale of ~10^5 years. These variations are typically less than two degrees on the Earth. Mars, therefore, offers a natural laboratory for the study of orbitally induced climate change on a terrestrial planet. Finally, general circulation models (GCMs) for Mars have reached a level of sophistication that justifies their application to the study of spin axis/orbitally forced climate change. With recent advances in computer technology the models can run at reasonable spatial resolution for many Mars years with physics packages that include cloud microphysics, radiative transfer in scattering/absorbing atmospheres, surface heat budgets, boundary layer schemes, and a host of other processes. To be sure, the models will undergo continual improvement, but with carefully designed experiments they can now provide insights into mechanisms of climate change in the recent past. Thus, the geologic record is better preserved, the forcing function is large, and GCMs have become useful tools. While research efforts in each of these areas have progressed considerably over the past several decades, they have proceeded mostly on independent paths occasionally leading to conflicting ideas. To remedy this situation and accelerate progress in the area, the NASA/Ames Research Center's Mars General Circulation Modeling Group hosted a 3-day workshop on May 15-17, 2012 that brought together the geological and atmospheric science communities to collectively discuss the evidence for recent climate change on Mars, the nature of the change required, and how that change could be brought about. Over 50 researchers, students, and post-docs from the US, Canada, Europe, and Japan attended the meeting. The program and abstracts from the workshop are presented in this NASA/CP and are available to the public at http://spa

  6. 76 FR 30193 - National Fish, Wildlife, and Plants Climate Adaptation Strategy; Notice of Intent: Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Fish and Wildlife Service National Fish, Wildlife, and Plants Climate Adaptation Strategy; Notice of... National Fish, Wildlife, and Plants Climate Adaptation Strategy (Strategy). The Strategy will provide a... impacts of climate change on fish, wildlife, plants, habitats, and our natural resource heritage. It...

  7. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  8. Solar Changes and Climate Changes. (Invited)

    NASA Astrophysics Data System (ADS)

    Feynman, J.

    2009-12-01

    During the early decades of the Space Age there was general agreement in the scientific community on two facts: (1) sunspot cycles continued without interruption; (2) decadal timescale variations in the solar output has no effect on Earth’s climate. Then in 1976 Jack Eddy published a paper called ‘The Maunder Minimum” in Science magazine arguing that neither of these two established facts was true. He reviewed the observations from the 17th century that show the Sun did not appear to cycle for several decades and he related that to the cold winters in Northern Europe at that time. The paper has caused three decades of hot discussions. When Jack Eddy died on June 10th of this year the arguments were sill going on, and there were no sunspots that day. The Sun was in the longest and deepest solar minimum since 1900. In this talk I will describe the changes in the solar output that have taken place over the last few decades and put them in their historical context. I will also review recent work on the influence of decadal and century scale solar variations on the Earth’s climate. It is clear that this long, deep “solar minimum” is an opportunity to make fundamental progress on our understanding of the solar dynamo and to separate climate change due to the Sun from anthropogenic climate change.

  9. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  10. The Atlantic Climate Change Program

    SciTech Connect

    Molinari, R.L. ); Battisti, D. ); Bryan, K. ); Walsh, J. )

    1994-07-01

    The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and progress in four ACCP elements are described. Advances include (1) descriptions of decadal and longer-term variability in the coupled ocean-atmosphere-ice system of the North Atlantic; (2) development of tools needed to perform long-term model runs of coupled simulations of North Atlantic air-sea interaction; (3) definition of mean and time-dependent characteristics of the thermohaline circulation; and (4) development of monitoring strategies for various elements of the thermohaline circulation. 20 refs., 4 figs., 1 tab.

  11. Implications of climate change for crop production in Japan

    SciTech Connect

    Seino, Hiroshi

    1995-12-31

    This study uses climate change scenarios derived from three global climate models (GCMs) to assess the possible impacts of climate change on rice (Oryza sativa L. japonica), maize (Zea mays L.), and wheat (Triticum spp.) production in Japan. Crop models were used to simulate the possible changes in crop yields under different climate change scenarios. Increased temperatures resulted in decreases in simulated crop yield in many regions under the present management systems. While the direct beneficial effects of CO{sub 2} may compensate for the yield decreases in central and northern Japan, the effects did not compensate for the larger yield decreases in southwestern japan, especially in Kyushu. Early planting and irrigation are possible adaptation strategies of the management systems to climate change. In most cases, simulated yields increased under climate change conditions if an earlier planting date was adopted; however, in Kyushu because of high temperature stress, an earlier planting did not improve simulated yields, and the introduction of new cultivars better adapted to the climate change conditions would be required. In Hokkaido, the major upland production area of Japan, climate change increased simulated crop yields under some conditions, depending on the scenario precipitation and irrigation systems.

  12. Climatic Change and Human Evolution.

    ERIC Educational Resources Information Center

    Garratt, John R.

    1995-01-01

    Traces the history of the Earth over four billion years, and shows how climate has had an important role to play in the evolution of humans. Posits that the world's rapidly growing human population and its increasing use of energy is the cause of present-day changes in the concentrations of greenhouse gases in the atmosphere. (Author/JRH)

  13. Conservation practices for climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change presents a major challenge to sustainable land management (USDA NRCS 2010). Several reports have reported that over the last few decades rainfall intensities have also increased in many parts of the world, including in the United States. Without good productive soils and the ecosyste...

  14. Climate change primer for respirologists.

    PubMed

    Takaro, Tim K; Henderson, Sarah B

    2015-01-01

    Climate change is already affecting the cardiorespiratory health of populations around the world, and these impacts are expected to increase. The present overview serves as a primer for respirologists who are concerned about how these profound environmental changes may affect their patients. The authors consider recent peer-reviewed literature with a focus on climate interactions with air pollution. They do not discuss in detail cardiorespiratory health effects for which the potential link to climate change is poorly understood. For example, pneumonia and influenza, which affect >500 million people per year, are not addressed, although clear seasonal variation suggests climate-related effects. Additionally, large global health impacts in low-resource countries, including migration precipitated by environmental change, are omitted. The major cardiorespiratory health impacts addressed are due to heat, air pollution and wildfires, shifts in allergens and infectious diseases along with respiratory impacts from flooding. Personal and societal choices about carbon use and fossil energy infrastructure should be informed by their impacts on health, and respirologists can play an important role in this discussion. PMID:25664458

  15. Climate change - creating watershed resilience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is likely to intensify the circulation of water, which will shift spatial and temporal availability of snowmelt and runoff. In addition, drought and floods are likely to be more frequent, severe and widespread. Higher air temperatures will lead to higher ocean temperatures, elevating ...

  16. Climate Change: Evidence and Causes

    ERIC Educational Resources Information Center

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  17. CLIMATE CHANGE AND N DEPOSITION

    EPA Science Inventory

    This project investigates the potential influence of climate change on wet deposition of reduced nitrogen across the U.S. The concentration of ammonium-nitrogen in precipitation is known to increase with temperature, owing to temperature dependent ammonia source strengths (natur...

  18. A Lesson on Climate Change.

    ERIC Educational Resources Information Center

    Lewis, Jim

    This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…

  19. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  20. Incorporating climate change projections into riparian restoration planning and design

    USGS Publications Warehouse

    Perry, Laura G.; Lindsay V. Reynolds; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  1. 60 FR 22078 - Reports; Availability, etc.: Climate Change; Second Assessment by Climate Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1995-05-04

    ...FOUNDATION Reports; Availability, etc.: Climate Change; Second Assessment by Climate Change Intergovernmental Panel AGENCY: National...Group I of the Intergovernmental Panel on Climate Change (IPCC) has prepared a draft Second...

  2. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  3. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  4. Overlooked Issues in theOverlooked Issues in the Climate Change DebateClimate Change Debate

    E-print Network

    the evolution of the earth's atmospheric temperature since 1979. We understand climate change and can introduceOverlooked Issues in theOverlooked Issues in the Climate Change DebateClimate Change Debate, 2004 #12;Policy Statement on Climate Variability and ChangePolicy Statement on Climate Variability

  5. Climate Change, Soils, and Human Health

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical need. There is also a great need for a better understanding of how soil organisms will respond to climate change because those organisms are incredibly important in a number of soil processes, including the carbon and nitrogen cycles. All of these questions are important in trying to understand human health impacts. More information on climate change, soils, and human health issues can be found in Brevik (2012). References Brevik, E.C. 2012. Climate change, soils, and human health. In: E.C. Brevik and L. Burgess (Eds). Soils and human health. CRC Press, Boca Raton, FL. in press. IPCC. 2007. Summary for policymakers. pp. 1-18. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

  6. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    NASA Astrophysics Data System (ADS)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be combined in various ways to comprise focused, lively, accurate primers to what we all need to know about climate change. With college classrooms as our intended venue, we are looking at such topics as why the weather in your backyard tells you nothing about global climate change-but a good deal about climate; how tiny molecules warm the planet; how snowpack, drought, bark beetles, fire suppression, and wildfire interact as stress complexes; why (and where) women, children, and the poor are especially vulnerable to harm from climate change; what international policy negotiators argue about; what poets and artists can contribute to understanding and solving the climate problem; and why ecologists are worried about changes in the seasonal timing of natural events. We will describe what we have done and how we did it; offer a few tips to others who might wish to do something similar; and introduce our website.

  7. Coal in a changing climate

    SciTech Connect

    Lashof, D.A.; Delano, D.; Devine, J.

    2007-02-15

    The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

  8. Honey Bees, Satellites and Climate Change

    NASA Astrophysics Data System (ADS)

    Esaias, W.

    2008-05-01

    Life isn't what it used to be for honey bees in Maryland. The latest changes in their world are discussed by NASA scientist Wayne Esaias, a biological oceanographer with NASA Goddard Space Flight Center. At Goddard, Esaias has examined the role of marine productivity in the global carbon cycle using visible satellite sensors. In his personal life, Esaias is a beekeeper. Lately, he has begun melding his interest in bees with his professional expertise in global climate change. Esaias has observed that the period when nectar is available in central Maryland has shifted by one month due to local climate change. He is interested in bringing the power of global satellite observations and models to bear on the important but difficult question of how climate change will impact bees and pollination. Pollination is a complex, ephemeral interaction of animals and plants with ramifications throughout terrestrial ecosystems well beyond the individual species directly involved. Pollinators have been shown to be in decline in many regions, and the nature and degree of further impacts on this key interaction due to climate change are very much open questions. Honey bee colonies are used to quantify the time of occurrence of the major interaction by monitoring their weight change. During the peak period, changes of 5-15 kg/day per colony represent an integrated response covering thousands of hectares. Volunteer observations provide a robust metric for looking at spatial and inter-annual variations due to short term climate events, complementing plant phenology networks and satellite-derived vegetation phenology data. In central Maryland, the nectar flows are advancing by about -0.6 d/y, based on a 15 yr time series and a small regional study. This is comparable to the regional advancement in the spring green-up observed with MODIS and AVHRR. The ability to link satellite vegetation phenology to honey bee forage using hive weight changes provides a basis for applying satellite-derived plant phenology and land cover data to improve estimates of the northern limits of Africanized Honey Bee invasion in North America.

  9. Asia's changing role in global climate change.

    PubMed

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested. PMID:18991898

  10. The role of solar absorption in climate and climate change

    E-print Network

    1 The role of solar absorption in climate and climate change William Collins UC Berkeley Research Boulder, Colorado, USA #12;2 Prior Research on Absorption and Climate Field Experiments: · Central · Climate with enhanced cloud absorption Synthesis of models and aerosol observations: · Development

  11. A common-sense climate index: Is climate changing noticeably?

    PubMed Central

    Hansen, James; Sato, Makiko; Glascoe, Jay; Ruedy, Reto

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than “business-as-usual” scenarios. PMID:9539699

  12. A common-sense climate index: is climate changing noticeably?

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Sato, M.; Glascoe, J.; Ruedy, R.

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.

  13. Global Climate Change and Agriculture

    SciTech Connect

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 °C by the end of the 21st century.

  14. Observations: Oceanic Climate Change and Sea Level

    E-print Network

    Talley, Lynne D.

    5 Observations: Oceanic Climate Change and Sea Level Coordinating Lead Authors: Nathaniel L: Observations: Oceanic Climate Change and Sea Level. In: Climate Change 2007: The Physical Science Basis Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds

  15. Challenges and Possibilities in Climate Change Education

    ERIC Educational Resources Information Center

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  16. Coal-Fired Power Plants, Greenhouse Gases, and State Statutory Substantial Endangerment Provisions: Climate Change Comes to Kansas

    E-print Network

    Glicksman, Robert L.

    2008-04-01

    economy standards on motor vehicles by states such as California. But the states have also targeted stationary sources of greenhouse gases. In particular, they have sought to minimize carbon dioxide emissions from coal-fired power plants. States have used...

  17. Historical Overview of Climate Change Science

    E-print Network

    Box, Jason E.

    ............................................... 103 1.4.1 The Earth's Greenhouse Effect............................ 103 1.4.2 Past Climate1 Historical Overview of Climate Change Science Coordinating Lead Authors: Hervé Le Treut (France. Mauritzen, A. Mokssit, T. Peterson and M. Prather, 2007: Historical Overview of Climate Change. In: Climate

  18. Convergence of terrestrial plant production across global climate gradients.

    PubMed

    Michaletz, Sean T; Cheng, Dongliang; Kerkhoff, Andrew J; Enquist, Brian J

    2014-08-01

    Variation in terrestrial net primary production (NPP) with climate is thought to originate from a direct influence of temperature and precipitation on plant metabolism. However, variation in NPP may also result from an indirect influence of climate by means of plant age, stand biomass, growing season length and local adaptation. To identify the relative importance of direct and indirect climate effects, we extend metabolic scaling theory to link hypothesized climate influences with NPP, and assess hypothesized relationships using a global compilation of ecosystem woody plant biomass and production data. Notably, age and biomass explained most of the variation in production whereas temperature and precipitation explained almost none, suggesting that climate indirectly (not directly) influences production. Furthermore, our theory shows that variation in NPP is characterized by a common scaling relationship, suggesting that global change models can incorporate the mechanisms governing this relationship to improve predictions of future ecosystem function. PMID:25043056

  19. Surface Ozone and Climate Change

    NASA Astrophysics Data System (ADS)

    Gonzales, K.; Barnes, E. A.

    2013-12-01

    Surface ozone pollution will continue to be a concern in the coming decades as the effects of climate change couple with changing emissions to influence air quality. We analyze modeled surface ozone's seasonal cycle variability, long-term variability, and its correlation to atmospheric circulation using output from the GFDL coupled chemistry climate model (CM3) from CMIP5. We analyze the relationship between the jet stream and both ozone variability and mean ozone over the North Pacific. We also determine if ozone's seasonal cycle will shift in the future on a worldwide scale. We focus on surface ozone and 500mb zonal winds in order to analyze the large-scale circulation effects from 2006 to 2100. CMIP5 contains varying representative concentration pathways (RCPs), and we use three-member RCPs 4.5 and 4.5*, which are identical save the fact that 4.5* have fixed amounts of aerosols and ozone precursors at 2005 levels. The use of both 4.5 and 4.5* allows us to see effects due to changing emissions of ozone precursors such as NOx and which are due to climate change. Jet speed is found to correlate well with the maximum amount of decadal mean ozone in both 4.5 and 4.5* in the Pacific region. In addition, ozone's seasonal cycle across the globe peaks earlier in the year due to climate change alone, while decreasing emissions of ozone precursors is found to alter the amplitude of the cycle over industrial continental areas, causing the day of maximum ozone to occur months earlier long-term. The seasonal cycle change in 4.5* appears to be connected to the jet stream over the Pacific.

  20. Precipitation extremes under climate change

    E-print Network

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  1. Phenological changes reflect climate change in Wisconsin

    PubMed Central

    Bradley, Nina L.; Leopold, A. Carl; Ross, John; Huffaker, Wellington

    1999-01-01

    A phenological study of springtime events was made over a 61-year period at one site in southern Wisconsin. The records over this long period show that several phenological events have been increasing in earliness; we discuss evidence indicating that these changes reflect climate change. The mean of regressions for the 55 phenophases studied was ?0.12 day per year, an overall increase in phenological earliness at this site during the period. Some phenophases have not increased in earliness, as would be expected for phenophases that are regulated by photoperiod or by a physiological signal other than local temperature. PMID:10449757

  2. Phenological changes reflect climate change in Wisconsin.

    PubMed

    Bradley, N L; Leopold, A C; Ross, J; Huffaker, W

    1999-08-17

    A phenological study of springtime events was made over a 61-year period at one site in southern Wisconsin. The records over this long period show that several phenological events have been increasing in earliness; we discuss evidence indicating that these changes reflect climate change. The mean of regressions for the 55 phenophases studied was -0.12 day per year, an overall increase in phenological earliness at this site during the period. Some phenophases have not increased in earliness, as would be expected for phenophases that are regulated by photoperiod or by a physiological signal other than local temperature. PMID:10449757

  3. Engaging the Public in Climate Change Research

    NASA Astrophysics Data System (ADS)

    Meymaris, K. K.; Henderson, S.; Alaback, P.; Havens, K.; Schwarz Ballard, J.

    2009-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, currently finishing its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. In anticipation of the 2010 campaign, Project BudBurst has developed and released innovative and exciting projects with a special focus in the field of phenology and climate change. The collaborations between Project BudBurst and other organizations are producing unique campaigns for engaging the public in environmental research. The special project foci include on-the-spot and in-the-field data reporting via mobile phones, an emphasis on urban tree phenology data, as well as monitoring of native gardens across the US National Wildlife Refuge System. This presentation will provide an overview of Project Budburst and the new special projects, and share results from 2007-2009. Project BudBurst is managed by the University Corporation for Atmospheric Research, the Chicago Botanic Garden, and the University of Montana.

  4. Severe thunderstorms and climate change

    NASA Astrophysics Data System (ADS)

    Brooks, H. E.

    2013-04-01

    As the planet warms, it is important to consider possible impacts of climate change on severe thunderstorms and tornadoes. To further that discussion, the current distribution of severe thunderstorms as a function of large-scale environmental conditions is presented. Severe thunderstorms are much more likely to form in environments with large values of convective available potential energy (CAPE) and deep-tropospheric wind shear. Tornadoes and large hail are preferred in high-shear environments and non-tornadic wind events in low shear. Further, the intensity of tornadoes and hail, given that they occur, tends to be almost entirely a function of the shear and only weakly depends on the thermodynamics. Climate model simulations suggest that CAPE will increase in the future and the wind shear will decrease. Detailed analysis has suggested that the CAPE change will lead to more frequent environments favorable for severe thunderstorms, but the strong dependence on shear for tornadoes, particularly the strongest ones, and hail means that the interpretation of how individual hazards will change is open to question. The recent development of techniques to use higher-resolution models to estimate the occurrence of storms of various kinds is discussed. Given the large interannual variability in environments and occurrence of events, caution is urged in interpreting the observational record as evidence of climate change.

  5. Climate Change and Civil Violence

    NASA Astrophysics Data System (ADS)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore provides an opportunity for targeted proactive measures to mitigate certain classes of future civil violence events.

  6. Climate change policies and international trade

    SciTech Connect

    Brack, D.

    1998-07-01

    Brack examines the implications of climate change policy measures for international trade: energy efficiency standards for traded goods; carbon/energy taxes, including international taxation of bunker fuels; and the potential use of trade measures in the climate change protocol.

  7. GLOBAL CLIMATE CHANGE: POLICY IMPLICATIONS FOR FISHERIES

    EPA Science Inventory

    Several government agencies are evaluating policy options for addressing global climate change. hese include planning for anticipated effects and developing mitigation options where feasible if climate does change as predicted. or fisheries resources, policy questions address eff...

  8. The Educational Challenges of Climate Change.

    ERIC Educational Resources Information Center

    McClaren, Milton; Hammond, William

    2000-01-01

    Explains five concepts that are vital for the design or implementation of programs on global climate change. Discusses different approaches for how global climate change should be taught. (Contains 20 references.) (YDS)

  9. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  10. Pediatricians' Group Urges Action on Climate Change

    MedlinePLUS

    ... fullstory_155358.html Pediatricians' Group Urges Action on Climate Change Natural disasters, diseases and excess heat threaten children's ... other threats to children will increase because of climate change, a leading group of U.S. pediatricians warns. Doctors ...

  11. Essays on climate change, energy, and independence 

    E-print Network

    Comerford, David

    2013-11-27

    This thesis contains three separate papers. A balance of questions: what can we ask of climate change economics? is a critical analysis of the economics of climate change literature. It concludes that much more research ...

  12. RISKS, OPPORTUNITIES, AND ADAPTATION TO CLIMATE CHANGE

    EPA Science Inventory

    Adaptation is an important approach for protecting human health, ecosystems, and economic systems from the risks posed by climate variability and change, and to exploit beneficial opportunities provided by a changing climate. This paper presents nine fundamental principles that ...

  13. Road Infrastructure and Climate Change in Vietnam

    E-print Network

    Chinowsky, Paul

    Climate change is a potential threat to Vietnam’s development as current and future infrastructure will be vulnerable to climate change impacts. This paper focuses on the physical asset of road infrastructure in Vietnam ...

  14. Climate change and Arctic parasites.

    PubMed

    Dobson, Andy; Molnár, Péter K; Kutz, Susan

    2015-05-01

    Climate is changing rapidly in the Arctic. This has important implications for parasites of Arctic ungulates, and hence for the welfare of Arctic peoples who depend on caribou, reindeer, and muskoxen for food, income, and a focus for cultural activities. In this Opinion article we briefly review recent work on the development of predictive models for the impacts of climate change on helminth parasites and other pathogens of Arctic wildlife, in the hope that such models may eventually allow proactive mitigation and conservation strategies. We describe models that have been developed using the metabolic theory of ecology. The main strength of these models is that they can be easily parameterized using basic information about the physical size of the parasite. Initial results suggest they provide important new insights that are likely to generalize to a range of host-parasite systems. PMID:25900882

  15. Climate Change and Climate Variability in the Latin American Region

    NASA Astrophysics Data System (ADS)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    Over the past three decades LA was subjected to several climate-related impacts due to increased El Niño occurrences. Two extremely intense episodes of El Niño and other increased climate extremes happened during this period contributing greatly to augment the vulnerability of human systems to natural disasters. In addition to weather and climate, the main drivers of the increased vulnerability are demographic pressure, unregulated urban growth, poverty and rural migration, low investment in infrastructure and services, and problems in inter-sector coordination. As well, increases in temperature and increases/decreases in precipitation observed during the last part of 20th century have yet led to intensification of glaciers melting, increases in floods/droughts and forest fires frequency, increases in morbidity and mortality, increases in plant diseases incidence; lost of biodiversity, reduction in dairy cattle production, and problems with hydropower generation, highly affecting LA human system. For the end of the 21st century, the projected mean warming for LA ranges from 1 to 7.5ºC and the frequency of weather and climate extremes could increase. Additionally, deforestation is projected to continue leading to a reduction of 25 percent in Amazonia forest in 2020 and 40 percent in 2050. Soybeans planted area in South America could increase by 55 percent by 2020 enhancing aridity/desertification in many of the already water- stressed regions. By 2050 LA population is likely to be 50 percent larger than in 2000, and migration from the country sides to the cities will continue. In the near future, these predicted changes are very likely to severely affect a number of ecosystems and sectors distribution; b) Disappearing most tropical glaciers; c) Reducing water availability and hydropower generation; d) Increasing desertification and aridity; e) Severely affecting people, resources and economic activities in coastal areas; f) Increasing crop's pests and diseases; and g) Changing some human diseases distribution and provoking the emergence of new ones. The impact of climate change in Latin America's productive sectors is estimated to be of a 1.3 percent reduction of the region's GDP for a change of 2ºC in global temperature (without consider non market sectors and extremes events). Moreover, if the LA countries continue to follow the business as usual scenario, the wealth of natural resources that have supported economic and socio-cultural development in the region will be further degraded, reducing the regional potential for growth. Urgent measures must be taken to help bring environmental and social considerations from the margins to the decision-making and development strategies. This presentation is part of the revision done for the Latin American (LA) chapter under the IPCC WGII Fourth Assessment Report.

  16. How Does The Climate Change?

    NASA Astrophysics Data System (ADS)

    Jones, R. N.

    2011-12-01

    In 1997, maximum temperature in SE Australia shifted up by 0.8°C at pH0<0.01. Rainfall decreased by 13% in 1997-2010 compared to 1900-1996. Statistically significant shifts also occur in impact indicators: baumé levels in winegrapes shift >21 days earlier from 1998, streamflow records decrease by 30-70% from 1997 and annual mean forest fire danger index increased by 38% from 1997. Despite catastrophic fires killing 178 people in early 2009, the public remains unaware of this large change in their exposure. When regional temperature was separated into internally and externally forced components, the latter component was found to warm in two steps, in 1968-73 and 1997. These dates coincide with shifts in zonal mean temperature (24-44S; Figure 1). Climate model output shows similar step and trend behavior. Tests run on zonal, hemispheric and global mean temperature observations found shifts in all regions. 1997 marks a shift in global temperature of 0.3°C at pH0<0.01. Similar shifts occur in long-term tide gauge records around the globe (e.g., Figure 2) and in ocean heat content. The prevailing paradigm for how climate variables change is signal-noise construct combining a smooth signal with variations caused by internal climate variability. There seems to be no sound theoretical basis for this assumption. On the contrary, complex system behavior would suggest non-linear responses to externally forced change, especially at the regional scale. Some of our most basic assumptions about how climate changes may need to be re-examined.

  17. Past and Current Climate Change

    NASA Astrophysics Data System (ADS)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  18. NASA Nice Climate Change Education

    NASA Astrophysics Data System (ADS)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate change education can be beneficial to future learners and general public. The main scope is to increase the amount of STEM knowledge throughout the nations scientific literacy as we are using the platform of climate change. Federal entities which may include but not limited to National Security Agency and the Department of Homeland Security and Management will serve as resources partners for this common goal of having a more knowledgeable technological savvy and scientific literate society. The presentation will show that incorporating these best practices into elementary and early childhood education undergraduate programs will assist with increasing a enhance scientific literate society. As a measurable outcome have a positive impact on instructional effectiveness of future teachers. Their successfully preparing students in meeting the standards of the Common Core Initiative will attempt to measure across the curriculum uniformly.

  19. FIRE AND CLIMATE CHANGE IN CALIFORNIA

    E-print Network

    Moritz, Max A.

    FIRE AND CLIMATE CHANGE IN CALIFORNIA Changes in the Distribution and Frequency of Fire in Climates of the Future and Recent Past (1911­2099) A White Paper from the California Energy Commission's California Climate Change Center JULY 2012 CEC5002012026 Prepared for: California Energy Commission

  20. Million Species EXTINCTION RISK FROM CLIMATE CHANGE

    E-print Network

    Poff, N. LeRoy

    Saving Million Species EXTINCTION RISK FROM CLIMATE CHANGE Edited by Lee Hannah ISLANDPRESS-in-Publication Data Saving a million species : extinction risk from climate change / edited by LeeHannah. p. cm. ISBN-10: 1-59726-570-5 (paper) 1. Climatic changes. 2. Global warming. 3. Extinction (Biology

  1. An alliance for action on climate change.

    PubMed

    Rafferty, Anne Marie; Stott, Robin; Watts, Nick

    2015-11-25

    In 1988 the United Nations formed the Intergovernmental Panel on Climate Change, charged with documenting the impacts of climate change and formulating realistic strategies for action. Its first report led to the UN Framework Convention on Climate Change (UNFCCC) in 1992. PMID:26602654

  2. Inducing Salient Information Structures from Climate Change

    E-print Network

    Bradstock, Burton

    Inducing Salient Information Structures from Climate Change Texts Andrew Salway Uni Research the human side of climate change, e.g.: what views do different actors express? what voices are heard-textual phenomena, e.g.: Assume that the linguistic forms "climate change" , "global warming" and "greenhouse gas

  3. Research Note Impacts of climate change on

    E-print Network

    Research Note Impacts of climate change on forestry in Scotland ­ a synopsis of spatial modelling research Duncan Ray January 2008 Climate change is now one of the greatest global challenges, and research by climate change. This Research Note provides an initial synopsis of the likely impacts, with preliminary

  4. Outreach and Adaptive Strategies for Climate Change

    E-print Network

    Outreach and Adaptive Strategies for Climate Change: The Role of NOAA Sea Grant Extension years and generations about how to adapt to a changing climate. Effective preparation for possible effects of climate change includes engagement of resource managers, planners, public works officials

  5. Climate Change Ignorance: An Unacceptable Legacy

    ERIC Educational Resources Information Center

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  6. Climate Change Education for Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  7. Science Teachers' Perspectives about Climate Change

    ERIC Educational Resources Information Center

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change

  8. ASSESSING VULNERABILITY TO CLIMATE CHANGE AND

    E-print Network

    Bateman, Ian J.

    ASSESSING VULNERABILITY TO CLIMATE CHANGE AND FACILITATING ADAPTATION by P. Mick Kelly and W. Neil Adger CSERGE Working Paper GEC 99-07 #12;ASSESSING VULNERABILITY TO CLIMATE CHANGE AND FACILITATING-economic and Physical Approaches to Vulnerability to Climate Change in Vietnam'(Award No. L320253240) is gratefully

  9. APPROACHES TO VULNERABILITY TO CLIMATE CHANGE

    E-print Network

    Bateman, Ian J.

    APPROACHES TO VULNERABILITY TO CLIMATE CHANGE by W. Neil Adger CSERGE Working Paper GEC 96-05 #12;APPROACHES TO VULNERABILITY TO CLIMATE CHANGE by W. Neil Adger Centre for Social and Economic Research and Physical Approaches to Vulnerability to Climate Change in Vietnam' is also gratefully acknowledged. ISSN

  10. Climate change and beyond: models and uncertainty

    E-print Network

    Wirosoetisno, Djoko

    , the Earth's temperature will rise by 0.6F within the next 30 years. Yet those who think climate change just1 / 29 Climate change and beyond: models and uncertainty Michael Goldstein Dept. Mathematical makes it harder for them to sink.] " The weight of evidence makes it clear that climate change is a real

  11. USACE JUNE 2014 Climate Change Adaptation Plan

    E-print Network

    US Army Corps of Engineers

    USACE JUNE 2014 Climate Change Adaptation Plan #12;2 INTRODUCTIONEXECUTIVE SUMMARY This USACE Adaptation Plan describes activities underway to evaluate the most significant climate change related risks in supporting mainstreaming climate change adaptation has focused on clarifying our adaptation mission and goals

  12. CLIMATE CHANGE AND MANAGED ECOSYSTEMS: BOOK REVIEW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In July, 2004, an important international climate change conference convened in Edmonton, Canada, “The Science of Changing Climates – Impacts on Agriculture, Forestry and Wetlands”. Leading experts in climate change, mostly from the natural and agricultural sciences, exchanged the latest findings o...

  13. Ocean Climate Change: Comparison of Acoustic

    E-print Network

    Frandsen, Jannette B.

    Ocean Climate Change: Comparison of Acoustic Tomography, Satellite Altimetry, and Modeling The ATOC to thermal expansion. Interpreting climate change signals from fluctuations in sea level is therefore in the advective heat flux. Changes in oceanic heat storage are a major expected element of future climate shifts

  14. Psychological research and global climate change

    NASA Astrophysics Data System (ADS)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  15. Insuring climate change? Science, fear, and value in reinsurance markets

    E-print Network

    Johnson, Leigh Taylor

    2011-01-01

    between hurricanes and anthropogenic climate change was farhurricane risk estimates in response to anthropogenic climate change.hurricane science community about the extent to which anthropogenic climate change

  16. Global Environmental Change 9 (1999) S21}S30 Climate change impacts on ecosystems and the terrestrial carbon sink

    E-print Network

    White, Andrew

    1999-01-01

    Global Environmental Change 9 (1999) S21}S30 Climate change impacts on ecosystems and competition between eight generalized plant types in response to climate. Global vegetation carbon 1100 PgC decreased by about 8%. By the 2080s, climate change caused a partial loss of Amazonian

  17. Climate Extremes, Uncertainty and Impacts Climate Change Challenge: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change

    E-print Network

    Climate Extremes, Uncertainty and Impacts Climate Change Challenge: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, AR4) has resulted in a wider acceptance of global climate change, hurricanes and tropical storms) or extreme stresses (e.g., tropical climate in temperate regions or shifting

  18. FAU CLIMATE CHANGE INITIATIVE PRIORITY THEME: RESEARCH, ENGINEERING, AND ADAPTATION TO A CHANGING CLIMATE

    E-print Network

    Fernandez, Eduardo

    FAU CLIMATE CHANGE INITIATIVE PRIORITY THEME: RESEARCH, ENGINEERING, AND ADAPTATION TO A CHANGING CLIMATE "I am persuaded that global climate change is one of the most important issues that we will face climate change, is the most important threat to fisheries worldwide" U.S. National Oceanographic

  19. A climate change index: Where climate change may be most prominent in the 21st century

    E-print Network

    Fischlin, Andreas

    A climate change index: Where climate change may be most prominent in the 21st century Miche`le B; accepted 30 November 2006; published 10 January 2007. [1] A Climate Change Index (CCI) is developed to a single index that is a measure for the strength of future climate change relative to today's natural

  20. Climate Change Laws of the World Project Columbia Center for Climate Change Law

    E-print Network

    Smerdon, Jason E.

    Climate Change Laws of the World Project Columbia Center for Climate Change Law Monica Molina, Columbia College '14 Supervisor Meredith Wilensky, J.D. Introduction The Climate Change Laws of the World Project is an ongoing effort at the Center for Climate Change Law (CCCL) to aggregate existing domestic

  1. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  2. The science of climate change.

    SciTech Connect

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  3. Community-level phenological response to climate change.

    PubMed

    Ovaskainen, Otso; Skorokhodova, Svetlana; Yakovleva, Marina; Sukhov, Alexander; Kutenkov, Anatoliy; Kutenkova, Nadezhda; Shcherbakov, Anatoliy; Meyke, Evegeniy; Delgado, Maria del Mar

    2013-08-13

    Climate change may disrupt interspecies phenological synchrony, with adverse consequences to ecosystem functioning. We present here a 40-y-long time series on 10,425 dates that were systematically collected in a single Russian locality for 97 plant, 78 bird, 10 herptile, 19 insect, and 9 fungal phenological events, as well as for 77 climatic events related to temperature, precipitation, snow, ice, and frost. We show that species are shifting their phenologies at dissimilar rates, partly because they respond to different climatic factors, which in turn are shifting at dissimilar rates. Plants have advanced their spring phenology even faster than average temperature has increased, whereas migratory birds have shown more divergent responses and shifted, on average, less than plants. Phenological events of birds and insects were mainly triggered by climate cues (variation in temperature and snow and ice cover) occurring over the course of short periods, whereas many plants, herptiles, and fungi were affected by long-term climatic averages. Year-to-year variation in plants, herptiles, and insects showed a high degree of synchrony, whereas the phenological timing of fungi did not correlate with any other taxonomic group. In many cases, species that are synchronous in their year-to-year dynamics have also shifted in congruence, suggesting that climate change may have disrupted phenological synchrony less than has been previously assumed. Our results illustrate how a multidimensional change in the physical environment has translated into a community-level change in phenology. PMID:23901098

  4. Stratospheric Changes and Climate Coordinating Lead Authors

    E-print Network

    Son, Seok-Woo

    ......................................................................................................14 4.3 SIMuLATIONS OF STRATOSPHERIC CLIMATE CHANGE.........................................................................16 4.3.1 Simulation of Stratospheric Temperature Trends from Chemistry-Climate Models and Climate....................................................................................................................16 4.3.2 Simulation of Brewer-Dobson Circulation Trends in Chemistry-Climate Models

  5. OUR CHANGING CLIMATE Research that matters

    E-print Network

    Hodges, Kevin

    OUR CHANGING CLIMATE Research that matters #12;2 | CLIMATE THE UNIVERSITY OF READING'S WALKER INSTITUTE Helping to increase the impact of climate system research The University is committed Institute for Climate System Research was established to draw together the University's unique breadth

  6. Climate Variability and Climate Change: The New Climate Dice 10 November 2011

    E-print Network

    Hansen, James E.

    1 Climate Variability and Climate Change: The New Climate Dice 10 November 2011 J. Hansen, M. Sato, R. Ruedy Abstract. The "climate dice" describing the chance of an unusually warm or cool season, coincident with increased global warming. The most dramatic and important change of the climate dice

  7. Abrupt tropical climate change: past and present.

    PubMed

    Thompson, Lonnie G; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith

    2006-07-11

    Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged delta(18)O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth's climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, approximately 5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world's most populous regions. PMID:16815970

  8. Abrupt tropical climate change: Past and present

    PubMed Central

    Thompson, Lonnie G.; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith

    2006-01-01

    Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged ?18O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth’s climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, ?5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world’s most populous regions. PMID:16815970

  9. Physiological ecology meets climate change.

    PubMed

    Bozinovic, Francisco; Pörtner, Hans-Otto

    2015-03-01

    In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms. PMID:25798220

  10. Physiological ecology meets climate change

    PubMed Central

    Bozinovic, Francisco; Pörtner, Hans-Otto

    2015-01-01

    In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms. PMID:25798220

  11. The impact of Pleistocene climate change on an ancient arctic–alpine plant: multiple lineages of disparate history in Oxyria digyna

    PubMed Central

    Allen, Geraldine A; Marr, Kendrick L; McCormick, Laurie J; Hebda, Richard J

    2012-01-01

    The ranges of arctic–alpine species have shifted extensively with Pleistocene climate changes and glaciations. Using sequence data from the trnH-psbA and trnT-trnL chloroplast DNA spacer regions, we investigated the phylogeography of the widespread, ancient (>3 million years) arctic–alpine plant Oxyria digyna (Polygonaceae). We identified 45 haplotypes and six highly divergent major lineages; estimated ages of these lineages (time to most recent common ancestor, TMRCA) ranged from ?0.5 to 2.5 million years. One lineage is widespread in the arctic, a second is restricted to the southern Rocky Mountains of the western United States, and a third was found only in the Himalayan and Altai regions of Asia. Three other lineages are widespread in western North America, where they overlap extensively. The high genetic diversity and the presence of divergent major cpDNA lineages within Oxyria digyna reflect its age and suggest that it was widespread during much of its history. The distributions of individual lineages indicate repeated spread of Oxyria digyna through North America over multiple glacial cycles. During the Last Glacial Maximum it persisted in multiple refugia in western North America, including Beringia, south of the continental ice, and within the northern limits of the Cordilleran ice sheet. Our data contribute to a growing body of evidence that arctic–alpine species have migrated from different source regions over multiple glacial cycles and that cryptic refugia contributed to persistence through the Last Glacial Maximum. PMID:22822441

  12. Novel competitors shape species' responses to climate change.

    PubMed

    Alexander, Jake M; Diez, Jeffrey M; Levine, Jonathan M

    2015-09-24

    Understanding how species respond to climate change is critical for forecasting the future dynamics and distribution of pests, diseases and biological diversity. Although ecologists have long acknowledged species' direct physiological and demographic responses to climate, more recent work suggests that these direct responses can be overwhelmed by indirect effects mediated via other interacting community members. Theory suggests that some of the most dramatic impacts of community change will probably arise through the assembly of novel species combinations after asynchronous migrations with climate. Empirical tests of this prediction are rare, as existing work focuses on the effects of changing interactions between competitors that co-occur today. To explore how species' responses to climate warming depend on how their competitors migrate to track climate, we transplanted alpine plant species and intact plant communities along a climate gradient in the Swiss Alps. Here we show that when alpine plants were transplanted to warmer climates to simulate a migration failure, their performance was strongly reduced by novel competitors that could migrate upwards from lower elevation; these effects generally exceeded the impact of warming on competition with current competitors. In contrast, when we grew the focal plants under their current climate to simulate climate tracking, a shift in the competitive environment to novel high-elevation competitors had little to no effect. This asymmetry in the importance of changing competitor identity at the leading versus trailing range edges is best explained by the degree of functional similarity between current and novel competitors. We conclude that accounting for novel competitive interactions may be essential to predict species' responses to climate change accurately. PMID:26374998

  13. Using Satellites to Understand Climate and Climate Change

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric

    2007-01-01

    This viewgraph presentation reviews the measurement of climate with the use of satellites. The basic greenhouse effect, Ice-albedo feedback, climate models and observations, aerosol-cloud interactions, and the Antarctic are discussed, along with the human effect on climate change.

  14. Climate Change: Believing and Seeing Implies Adapting

    PubMed Central

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ±0.01) to 0.81 (SD ±0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ±0.008) to 0.91 (SD ±0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered. PMID:23185568

  15. Climate change - Agricultural land use - Food security

    NASA Astrophysics Data System (ADS)

    Nagy, János; Széles, Adrienn

    2015-04-01

    In Hungary, plougland decreased to 52% of its area by the time of political restructuring (1989) in comparison with the 1950s. Forested areas increased significantly (18%) and lands withdrawn from agricultural production doubled (11%). For today, these proportions further changed. Ploughlands reduced to 46% and forested areas further increased (21%) in 2013. The most significat changes were observed in the proportion of lands withdrawn from agricultural production which increased to 21%. Temperature in Hungary increased by 1°C during the last century and predictions show a further 2.6 °C increase by 2050. The yearly amount of precipitation significantly decreased from 640 mm to 560 mm with a more uneven temporal distribution. The following aspects can be considered in the correlation between climate change and agriculture: a) impact of agriculture on climate, b) future impact of climate change on agriculture and food supply, c) impact of climate change on food security. The reason for the significant change of climate is the accumulation of greenhouse gases (GHG) which results from anthropological activities. Between 2008 and 2012, Hungary had to reduce its GHG emission by 6% compared to the base period between 1985-1987. At the end of 2011, Hungarian GHG emission was 43.1% lower than that of the base period. The total gross emission was 66.2 million CO2 equivalent, while the net emission which also includes land use, land use change and forestry was 62.8 million tons. The emission of agriculture was 8.8 million tons (OMSZ, 2013). The greatest opportunity to reduce agricultural GHG emission is dinitrogen oxides which can be significantly mitigated by the smaller extent and more efficient use of nitrogen-based fertilisers (precision farming) and by using biomanures produced from utilised waste materials. Plant and animal species which better adapt to extreme weather circumstances should be bred and maintained, thereby making an investment in food security. Climate change contributes to the proliferation of the pests of agricultural produces, the spreading of diseases and the development of new pathogens, while it could also increase the food risk caused by bacterial infection during the food chain phase between the producer and the consumer. Climate change has an impact on the world's food prices, especially that of cereals. The food production of the world needs to be doubled in order to cover the need of the population by 2050, especially if it rises above nine billion. As a result of the increase of population, there is an increased demand for agricultural products and it also necessitates the more efficient use of agricultural lands. As a consequence of increasing food prices, there is a risk of increased starvation and food consumption may decrease (especially in developing countries), while the health care inequality is expected to grow. Food security is one of the most important elements of adapting to global climate change. For this reason, it is extremely important to breed new biological resources, as well as to introduce production systems which facilitate the adaptation to changed circumstances.

  16. Shrinking body size as an ecological response to climate change

    NASA Astrophysics Data System (ADS)

    Sheridan, Jennifer A.; Bickford, David

    2011-11-01

    Determining how climate change will affect global ecology and ecosystem services is one of the next important frontiers in environmental science. Many species already exhibit smaller sizes as a result of climate change and many others are likely to shrink in response to continued climate change, following fundamental ecological and metabolic rules. This could negatively impact both crop plants and protein sources such as fish that are important for human nutrition. Furthermore, heterogeneity in response is likely to upset ecosystem balances. We discuss future research directions to better understand the trend and help ameliorate the trophic cascades and loss of biodiversity that will probably result from continued decreases in organism size.

  17. Health Effects of Climate Change (Environmental Health Student Portal)

    MedlinePLUS

    Home Climate Change Health Effects Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution Particulate ... Mercury Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse ...

  18. Perceptions of Climate Change 27 March 2011

    E-print Network

    Hansen, James E.

    that the perceptive person would notice that climate was changing by the early 21st century. I used colored dice of greenhouse gases used in climate model simulations. The real world (red curve) has closely followed scenarioPerceptions of Climate Change 27 March 2011 This past winter, for the second year in a row, seemed

  19. CLIMATE CHANGE AND INFECTIOUS DISEASES IN WILDLIFE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large and growing body of scientific evidence indicates the Earth’s climate is changing, and the recent International Panel on Climate Change (IPCC) declared that “warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean tempera...

  20. Australian Government Department ofClimate Change

    E-print Network

    Hansen, James E.

    Australian Government Department ofClimate Change C08/7649 Mr James Hansen Columbia University 4405 act to urgently address climate change and its impacts. The Australian Government considers climate of carbon capture and storage, I will focus herein on actions being taken by the AustrrtliAn Government

  1. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) HOMEPAGE

    EPA Science Inventory

    The IPCC is divided into three Working Groups. Working Group I assesses the scientific aspects of the climate system and climate change. Working Group II assesses the vulnerability to climate change of, and the negative and positive impacts for, ecological systems, socio-economic...

  2. Contributions of Psychology to Limiting Climate Change

    ERIC Educational Resources Information Center

    Stern, Paul C.

    2011-01-01

    Psychology can make a significant contribution to limiting the magnitude of climate change by improving understanding of human behaviors that drive climate change and human reactions to climate-related technologies and policies, and by turning that understanding into effective interventions. This article develops a framework for psychological…

  3. ECOLOGICAL CONSEQUENCES OF RECENT CLIMATE CHANGE

    EPA Science Inventory

    Global climate change is frequently considered a major conservation threat. The Earth's climate has already warmed by 0.5 degrees C over the past century, and recent studies show that it is possible to detect the effects of a changing climate on ecological systems.

  4. Impacts of Climate Change on Ecosystem Services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This techn...

  5. Climate change projections and stratospheretroposphere interaction

    E-print Network

    Wirosoetisno, Djoko

    Climate change projections and stratosphere­troposphere interaction Article Accepted Version Scaife, M. P., Gettelman, A., Hardiman, S. C., Michou, M., Rozanov, E. and Shepherd, T. G. (2012) Climate change projections and stratosphere­troposphere interaction. Climate Dynamics, 38 (9-10). pp. 2089

  6. Breeding crops for improved mineral nutrition under climate change conditions.

    PubMed

    Pilbeam, David J

    2015-06-01

    Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given. PMID:25614661

  7. Climate Change and Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

    1999-01-01

    The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

  8. Comparative phylogeography of two related plant species with overlapping ranges in Europe, and the potential effects of climate change on their intraspecific genetic diversity

    PubMed Central

    2011-01-01

    Background The aim of the present study was to use a combined phylogeographic and species distribution modelling approach to compare the glacial histories of two plant species with overlapping distributions, Orthilia secunda (one-sided wintergreen) and Monotropa hypopitys (yellow bird's nest). Phylogeographic analysis was carried out to determine the distribution of genetic variation across the range of each species and to test whether both correspond to the "classic" model of high diversity in the south, with decreasing diversity at higher latitudes, or whether the cold-adapted O. secunda might retain more genetic variation in northern populations. In addition, projected species distributions based on a future climate scenario were modelled to assess how changes in the species ranges might impact on total intraspecific diversity in both cases. Results Palaeodistribution modelling and phylogeographic analysis using multiple genetic markers (chloroplast trnS-trnG region, nuclear ITS and microsatellites for O. secunda; chloroplast rps2, nuclear ITS and microsatellites for M. hypopitys) indicated that both species persisted throughout the Last Glacial Maximum in southern refugia. For both species, the majority of the genetic diversity was concentrated in these southerly populations, whereas those in recolonized areas generally exhibited lower levels of diversity, particularly in M. hypopitys. Species distribution modelling based on projected future climate indicated substantial changes in the ranges of both species, with a loss of southern and central populations, and a potential northward expansion for the temperate M. hypopitys. Conclusions Both Orthilia secunda and Monotropa hypopitys appear to have persisted through the LGM in Europe in southern refugia. The boreal O. secunda, however, has retained a larger proportion of its genetic diversity in more northerly populations outside these refugial areas than the temperate M. hypopitys. Given that future species distribution modelling suggests northern range shifts and loss of suitable habitat in the southern parts of the species' current distributions, extinction of genetically diverse rear edge populations could have a significant effect in the rangewide intraspecific diversity of both species, but particularly in M. hypopitys. PMID:21272309

  9. RMES-520: Climate Change: Science, Technology and Sustainable Development RMES-520: Climate Change: Science, Technology and

    E-print Network

    Farrell, Anthony P.

    RMES-520: Climate Change: Science, Technology and Sustainable Development 1 RMES-520: Climate://blogs.ubc.ca/rmes520 Course Description: Over the past few decades, climate change has emerged as one of the most greenhouse gas emissions may be difficult to achieve. Adapting to climate change will require long

  10. STERN REVIEW: The Economics of Climate Change 1 Climate Change our approach

    E-print Network

    of increases in greenhouse gases caused by human activities. Most climate models show that a doubling of pre an international perspective. Climate change is global in its causes and consequences, and the response requiresSTERN REVIEW: The Economics of Climate Change 1 Part I Climate Change ­ our approach Part I

  11. PERSPECTIVE Phenology, ontogeny and the effects of climate change on the timing of species interactions

    E-print Network

    Ishida, Yuko

    Climate change, competition, development, global warming, match-mismatch, mistiming, mutualism, phenology-ephemeral plants relative to their pollinating bees, resulting in dramatically decreased seed production of bee

  12. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being anticipated and prepared for may reverse and, second, the probability of such a scenario occurring remains fundamentally unknown. The implications of both problems for climate policy and for decision making have not been researched. It is premature to argue therefore that abrupt climate change - in the sense referred to here - imposes unacceptable costs on society or the world economy, represents a catastrophic impact of climate change or constitutes a dangerous change in climate that should be avoided at all reasonable cost. We conclude by examining the implications of this contention for future research and policy formation. PMID:14558906

  13. The Velocity of Climate Change: Chris Field

    E-print Network

    Subramanian, Venkat

    of climate · Albedo: fraction of sunlight reflected ­ Grassland: ~20% ­ Deciduous forest: ~ 15% ­ Conifer forest: ~ 10% ­ Snow: ~90% Jackson et al. Env. Res. Let. 2008 #12;Early human climate changes? Doughty et

  14. Responding to the Consequences of Climate Change

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  15. The climate change consensus extends beyond climate scientists

    NASA Astrophysics Data System (ADS)

    Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.

    2015-09-01

    The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.

  16. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory data analysis the approaches on climate time series, trend analysis and extreme events analysis are explained. Tools to describe relations within the data sets and significance tests further corroborate this. Within the weekly exercises that have to be prepared at home, the students work with self-selected climate data sets and apply the learned methods. The presentation and discussion of intermediate results by the students is as much part of the exercises as the illustration of possible methodological procedures by the teacher using exemplary data sets. The total time expenditure of the course is 270 hours with 90 attendance hours. The remainder consists of individual studies, e.g., preparation of discussions and presentations, statistical data analysis, and scientific writing. Different forms of examination are applied including written or oral examination, scientific report, presentation and portfolio work.

  17. [Climate change and Kyoto protocol].

    PubMed

    Ergasti, G; Pippia, V; Murzilli, G; De Luca D'Alessandro, E

    2009-01-01

    Due to industrial revolution and the heavy use of fossil fuels, the concentration of greenhouse gases in the atmosphere has increased dramatically during the last hundred years, and this has lead to an increase in mean global temperature. The environmental consequences of this are: the melting of the ice caps, an increase in mean sea-levels, catastrophic events such as floodings, hurricanes and earthquakes, changes to the animal and vegetable kingdoms, a growth in vectors and bacteria in water thus increasing the risk of infectious diseases and damage to agriculture. The toxic effects of the pollution on human health are both acute and chronic. The Kyoto Protocol is an important step in the campaign against climatic changes but it is not sufficient. A possible solution might be for the States which produce the most of pollution to adopt a better political stance for the environment and to use renewable resources for the production of energy. PMID:19798904

  18. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    ERIC Educational Resources Information Center

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  19. How Does Drought Change With Climate Change

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.

    2014-12-01

    Large disparities among published studies have led to considerable confusion over the question of how drought is changing and how it is expected to change with global warming. As a result the IPCC AR5 assessment has watered down statements, and failed to carry out an adequate assessment of the sources of the discrepancies. Quite aside from the different definitions of drought related to meteorological (absence of precipitation), hydrological (lack of water in lakes and rivers), and agricultural (lack of soil moisture) drought, there are many indices that measure drought. Good homogeneous datasets are essential to assess changes over time, but are often not available. Simpler indices may miss effects of certain physical processes, such as evapotranspiration (ET). The Palmer Drought Severity Index (PDSI) has been much maligned but has considerable merit because it can accommodate different ET formulations (e.g., Thornthwaite vs Penman-Monteith), it can be self calibrating to accommodate different regions, and it carries out a crude moisture balance. This is in contrast to simpler indices, such as the Standardized Precipitation Index, which provides only a measure of moisture supply, or the Standardized Precipitation Evapotranspiration Index, which also includes potential (but not actual) ET. The largest source of drought variations is ENSO: during La Niña more rain falls on land while during El Niño most precipitation is over the Pacific Ocean, exposing more land to drought conditions. It is essential to account for interannual and inter-decadal variability in assessing changes in drought with climate change. Yet drought is one time on land when effects accumulate, with huge consequences for wild fire risk. It is important to ask the right questions in dealing with drought.

  20. Educating Local Audiences about Climate Change

    NASA Astrophysics Data System (ADS)

    Cullen, H. M.; Satterfield, D.; Allen, M. R.

    2014-12-01

    This talk will focus on best practices for educating local audiences about climate science and the importance of providing the larger climate context during extreme weather events, when audiences are particularly interested in the climate connection. In their role as Station Scientists, local television meteorologists serve an important function in educating viewers about climate change and its' associated impacts. Through its' Climate Matters program, Climate Central works to support local television meteorologists in their outreach efforts. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 150 weathercasters from across the country. Climate Matters delivers information on climate at the regional and local level, providing ready-to-use, broadcast quality graphics and analyses that put climate change into a local context.

  1. Statistical principles for climate change studies

    SciTech Connect

    Levine, R.A.; Berliner, L.M.

    1999-02-01

    Predictions of climate change due to human-induced increases in greenhouse gas and aerosol concentrations have been an ongoing arena for debate and discussion. A major difficulty in early detection of changes resulting from anthropogenic forcing of the climate system is that the natural climate variability overwhelms the climate change signal in observed data. Statistical principles underlying fingerprint methods for detecting a climate change signal above natural climate variations and attributing the potential signal to specific anthropogenic forcings are discussed. The climate change problem is introduced through an exposition of statistical issues in modeling the climate signal and natural climate variability. The fingerprint approach is shown to be analogous to optimal hypothesis testing procedures from the classical statistics literature. The statistical formulation of the fingerprint scheme suggests new insights into the implementation of the techniques for climate change studies. In particular, the statistical testing ideas are exploited to introduce alternative procedures within the fingerprint model for attribution of climate change and to shed light on practical issues in applying the fingerprint detection strategies.

  2. Global Climate Change and Children's Health.

    PubMed

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. PMID:26504134

  3. Global climate change and international security

    SciTech Connect

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  4. Climate change: impacts and adaptation in England's woodlands

    E-print Network

    Climate change: impacts and adaptation in England's woodlands The changing climate presents more suitable ­ including some from other continents and current climates more similar to those associated with climate change, and the likely impact on trees, silviculture and forest operations

  5. Agriculture, Climate Change and Climate Change Mitigation Bruce A. McCarl

    E-print Network

    McCarl, Bruce A.

    Change Happen Let's Avoid Climate Change Mitigation Effects Presented at Texas Recycling and Sustainability Summit San Antonio, Sept 29, 2004 #12;Climate Change has in part a human cause Source http Pacific +26 +47 #12;Climate Change Effects In Texas Regions Gainers East Texas Central Blacklands Rolling

  6. Climate Change and Agriculture: Effects and Adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This document is a synthesis of science literature on the effects of climate change on agriculture and issues associated with agricultural adaptation to climate change. Information is presented on how long-term changes in air temperatures, precipitation, and atmospheric levels of carbon dioxide wi...

  7. Climate Change and the Nuclear Wedge Climate change frames the issue

    E-print Network

    Climate Change and the Nuclear Wedge Climate change frames the issue Scales of problem: Energy;Marty Hoffert, NYU Framing the Issue Carbon Climate impact Time scale to act is short ~50 years ~ 1 government can put climate costs on the utilities' balance sheets Energy Information Agency - http

  8. Covering Climate Change in Wikipedia

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

    2010-12-01

    The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

  9. The plant-soil interface: understanding dynamic interactions in the context of environmental change

    E-print Network

    The plant-soil interface: understanding dynamic interactions in the context of environmental change Department of Soil, Water, and Climate, University of Minnesota, 6 Medical Department, Brookhaven National and mitigate the negative impacts of climate change. #12;

  10. Climate change: the public health response.

    PubMed

    Frumkin, Howard; Hess, Jeremy; Luber, George; Malilay, Josephine; McGeehin, Michael

    2008-03-01

    There is scientific consensus that the global climate is changing, with rising surface temperatures, melting ice and snow, rising sea levels, and increasing climate variability. These changes are expected to have substantial impacts on human health. There are known, effective public health responses for many of these impacts, but the scope, timeline, and complexity of climate change are unprecedented. We propose a public health approach to climate change, based on the essential public health services, that extends to both clinical and population health services and emphasizes the coordination of government agencies (federal, state, and local), academia, the private sector, and nongovernmental organizations. PMID:18235058

  11. Aging, Climate Change, and Legacy Thinking

    PubMed Central

    Fried, Linda; Moody, Rick

    2012-01-01

    Climate change is a complex, long-term public health challenge. Older people are especially susceptible to certain climate change impacts, such as heat waves. We suggest that older people may be a resource for addressing climate change because of their concern for legacy—for leaving behind values, attitudes, and an intact world to their children and grandchildren. We review the theoretical basis for “legacy thinking” among older people. We offer suggestions for research on this phenomenon, and for action to strengthen the sense of legacy. At a time when older populations are growing, understanding and promoting legacy thinking may offer an important strategy for addressing climate change. PMID:22698047

  12. Climate Change: The Public Health Response

    PubMed Central

    Frumkin, Howard; Hess, Jeremy; Luber, George; Malilay, Josephine; McGeehin, Michael

    2008-01-01

    There is scientific consensus that the global climate is changing, with rising surface temperatures, melting ice and snow, rising sea levels, and increasing climate variability. These changes are expected to have substantial impacts on human health. There are known, effective public health responses for many of these impacts, but the scope, timeline, and complexity of climate change are unprecedented. We propose a public health approach to climate change, based on the essential public health services, that extends to both clinical and population health services and emphasizes the coordination of government agencies (federal, state, and local), academia, the private sector, and nongovernmental organizations. PMID:18235058

  13. The psychological distance of climate change.

    PubMed

    Spence, Alexa; Poortinga, Wouter; Pidgeon, Nick

    2012-06-01

    Avoiding dangerous climate change is one of the most urgent social risk issues we face today and understanding related public perceptions is critical to engaging the public with the major societal transformations required to combat climate change. Analyses of public perceptions have indicated that climate change is perceived as distant on a number of different dimensions. However, to date there has been no in-depth exploration of the psychological distance of climate change. This study uses a nationally representative British sample in order to systematically explore and characterize each of the four theorized dimensions of psychological distance--temporal, social, and geographical distance, and uncertainty--in relation to climate change. We examine how each of these different aspects of psychological distance relate to each other as well as to concerns about climate change and sustainable behavior intentions. Results indicate that climate change is both psychologically distant and proximal in relation to different dimensions. Lower psychological distance was generally associated with higher levels of concern, although perceived impacts on developing countries, as an indicator of social distance, was also significantly related to preparedness to act on climate change. Our findings clearly point to the utility of risk communication techniques designed to reduce psychological distance. However, highlighting the potentially very serious distant impacts of climate change may also be useful in promoting sustainable behavior, even among those already concerned. PMID:21992607

  14. Incorporating Student Activities into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about atmospheric circulation with applications of the Lorenz model, explored the land-sea breeze problem with the Dynamics and Thermodynamics Circulation Model (DTDM), and developed simple radiative transfer models. Class projects explored the effects of varying the content of CO2 and CH4 in the atmosphere, as well as the properties of paleoclimates in atmospheric simulations using EdGCM. Initial assessment of student knowledge, attitudes, and behaviors associated with these activities, particularly about climate change, was measured. Pre- and post-course surveys provided student perspectives about the courses and their learning about remote sensing and climate change concepts. Student performance on the tutorials and course projects evaluated students' ability to learn and apply their knowledge about climate change and skills with remote sensing to assigned problems or proposed projects of their choice. Survey and performance data illustrated that the exercises were successful in meeting their intended learning objectives as well as opportunities for further refinement and expansion.

  15. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora.

    PubMed

    Qiu, Ying-Xiong; Fu, Cheng-Xing; Comes, Hans Peter

    2011-04-01

    The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences of the main phylogeographic findings in light of palaeo-environmental evidence, emphasize notable gaps in our knowledge, and outline future research prospects for disentangling the evolution and biogeographic history of the region's extremely diverse temperate flora. PMID:21292014

  16. Nordic exchange of students and climate change.

    NASA Astrophysics Data System (ADS)

    Thomsson, A.

    2012-04-01

    Since the end of 2010 and until the summer of 2011 two upper secondary schools in Höyanger, Norway and Ronneby, Sweden had the possibility to take part in a project called Nordplus junior. The main aims of the program are: • To promote Nordic languages and culture and mutual Nordic-Baltic linguistic and cultural understanding. • To contribute to the development of quality and innovation in the educational systems for life-long learning in the participating countries by means of educational cooperation, development projects, exchanges and networking. • To support, develop, draw benefit from and spread innovative products and processes in education through systematic exchange of experiences and best practice. • To strengthen and develop Nordic educational cooperation and contribute to the establishment of a Nordic-Baltic educational area. The students did research on climate change and the impact on local and regional areas. Many questions had to be answered, giving an explanation to what happens if the climate changes. Questions related to Höyanger, Norway What happens to life in Norwegian fiords? Which attitudes do youngsters and adults have about climate change and what actions do they take? What does a rise in sea level mean for Höyanger? How are different tourist attractions affected in western Norway? Questions related to Ronneby, Sweden How is the regional fauna and flora affected? What will happen to agriculture and forestry? What do adults and youngsters know about consequences of a possible climate change? What happens to the people of Ronneby if the sea level rises? Are there any positive outcomes if the climate changes? Conclusions In Norwegian fiords there could be benefits because fish are growing faster in the winter because of an increased temperature. At the same time there could be an imbalance in the ecosystem because of a change in the living ranges of different species. Most of the young boys and girls in Höyanger, Norway were consistent with their attitudes towards the environment. In the survey of adults (Höyanger) women between 50-60 years old were the ones that were friendliest towards the environment. The students of Sweden (Ronneby) believe both young Norwegian and Swedish people are well educated in climate changes issues. A rise in the sea level will have serious impact on both Ronneby and Höyanger. In Höyanger people could lose their jobs and landslides could take place. In Ronneby, ground water could be polluted by salt and sewage water. In Ronneby parks would be flooded and restrictions on building new houses below 2.2 meters above sea level would be enforced. In Bergen, Norway, the Hanseatic buildings will be flooded, there will be huge economic problems, new roads have to be built etc. The regional flora and fauna in Sweden will move northwards and new species will enter from Central Europe. The vegetation season will be longer and the crops will benefit from a higher carbon dioxide concentration. The plants could be exposed to parasites. The students of Ronneby also see possibilities due to climate change. There might be more tourists as the temperature increases. It could mean faster development for renewable energy sources. It could be possible to grow exotic fruits and vegetables in Ronneby if the temperature increases. Written by Mr. Anders Thomsson, teacher of Geography and Biology.

  17. Climate Change in Google Earth

    NASA Astrophysics Data System (ADS)

    Swick, R.; Ballagh, L. M.

    2007-12-01

    As a visualization tool for Earth Sciences data and imagery one big advantage of virtual globes is they give the user a tremendous amount of control over how the imagery is viewed. Features like zoom, orientation and tilt provide a great deal of flexibility for looking at the imagery in different ways. For the National Snow and Ice Data Center's entry into the Google Earth outreach gallery we chose data that would benefit from capabilities Google Earth provides. We looked for imagery that showed visually dramatic evidence of climate change. Included in the kmz are repeat photographs of glaciers in Alaska taken several decades apart, an animation of the last 29 years of the Arctic sea ice minimum, and an animation of the 2002 break-up of the Larsen B ice shelf in Antarctica.

  18. Chemistry implications of climate change

    SciTech Connect

    Atherton, C.S.

    1997-05-01

    Since preindustrial times, the concentrations of a number of key greenhouse gases such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and the nitric oxides (N{sub 2}O) have increased. Additionally, the concentrations of anthropogenic aerosols have also increased during the same time period. Increasing concentrations of greenhouse gases are expected to increase temperature, while the aerosols tend to have a net cooling effect. Taking both of these effects into account, the current best scientific estimate is that the global average surface temperature is expected to increase by 2{degrees}C between the years 1990 to 2100. A climate change if this magnitude will both directly and indirectly impact atmospheric chemistry. For example, many important tropospheric reactions have a temperature dependence (either Arrhenius or otherwise). Thus, if temperature increase, reaction rates will also increase.

  19. The effect of subambient to elevated atmospheric CO2 concentration on vascular function in Helianthus annuus: Implications for plant response to climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant gas-exchange is regulated by stomata, which co-ordinate leaf-level water loss with xylem transport. Stomatal opening responds to internal levels of CO2 in the leaf but changing CO2 can also lead to changes in stomatal density that influence transpiration. Given that stomatal conductance increa...

  20. Climate change: The IPCC scientific assessment

    SciTech Connect

    Houghton, J.T.; Jenkins, G.J.; Ephraums, J.J.

    1990-01-01

    Book review of the intergovernmental panel on climate change report on global warming and the greenhouse effect. Covers the scientific basis for knowledge of the future climate. Presents chemistry of greenhouse gases and mathematical modelling of the climate system. The book is primarily for government policy makers.

  1. Fostering Hope in Climate Change Educators

    ERIC Educational Resources Information Center

    Swim, Janet K.; Fraser, John

    2013-01-01

    Climate Change is a complex set of issues with large social and ecological risks. Addressing it requires an attentive and climate literate population capable of making informed decisions. Informal science educators are well-positioned to teach climate science and motivate engagement, but many have resisted the topic because of self-doubt about…

  2. Climate Change and Coastal Eutrophication

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2014-12-01

    The world's climate has changed and human activities will continue to contribute to the acceleration of greenhouse gases and temperature rise. The major drivers of these changes are increased temperature, altered hydrological cycles and shifts in wind patterns that might alter coastal currents. Increasing temperatures alone have the potential to strengthen pycnoclines in estuarine and coastal waters, but lower surface salinity (e.g., from increased freshwater runoff) would be more of a factor in stratifying the water column. The combination of increased nutrient loads (from human activities) and increased freshwater discharge (from GCC) will aggravate the already high loads of nutrients from the Mississippi River to the northern Gulf of Mexico, strengthen stratification (all other factors remaining the same), and worsen the hypoxia situation. Reduced precipitation, on the other hand, would lower the amount of nutrients and water reaching the coastal zone and, perhaps, lead to oligotrophication and reduced fisheries productivity, or perhaps alleviate hypoxia. The increase or decrease in flow (whichever occurs), flux of nutrients and water temperature are likely to have important, but as yet not clearly identifiable, influences on hypoxia. In anticipation of the negative effects of global change, nutrient loadings to coastal waters need to be reduced now, so that further water quality degradation is prevented.

  3. Reflection of climatic changes in Altai phenology

    NASA Astrophysics Data System (ADS)

    Malygina, Natalia; Barlyaeva, Tatiana; Blyakharchuk, Tatiana; Mitrofanova, Elena; Lovtskaya, Olga; Nenasheva, Galina; Otgonbayar, Demberel; Papina, Tatiana; Ryabchinskaya, Natalia; Sokolov, Andrey

    2014-05-01

    The last decades of the past century showed noticeable climate changes in many parts of the Earth (IPCC, 2007). Numerous models suggest that the climate changes will continue, showing a variable intensity especially in mountain regions. Altai Mountains, located at the boundary of taiga, desert, and semiarid regions of Central Asia, are exposed to intensive climatic and environmental changes. Analysis of changes in phenological parameters is the simplest process for track changes in the ecology of species in response to climate change. We present climatic characteristic and statistical analysis changes of thermal and precipitation regimes in Altai Mountains (Russian and Mongolian Altai), and the response of phenological parameters to these changes. The close correlation between temperature series of the Russian and northern part of Mongolian Altai is determined. At the same time, a correlation between precipitation data is observed only for the cold (November - March) seasons. It was found that the rate of temperature increase for the period under consideration (1940-2012) ranged from 0.15 to 0.55 ° C/10 years, and the most significant increase was registered during the cold seasons. An increase of annual means of precipitation is in the range from 2.32 to 6.37 mm / 10 years. The maximal increase (29 mm / 10 years) was observed in the data from the Kara-Tyureck station, whose location is the highest one of the considered stations (2600 m). During the maximal warming (1980-1999), a 2-4.5 times increase of annual average temperature was observed as compared to the period of 1940 - 1979. The amount of precipitation is increased for Ust'-Koksa (5 times) and Ulgiy (2 times) stations, but it is 3 times lower for Kosh-Agach and Kara-Tyureck stations. The results of the correlation analysis of temperature and precipitation data for the analyzed Russian and Mongolian Altai stations were confirmed and detailed by the wavelet and wavelet coherence / phase analysis. The temperature series variations obtained with the wavelet analysis correspond to the periods of North Atlantic Oscillation and solar activity variation, and precipitation are in good agreement with changes in Pacific Decadal Oscillation. The analyzed climatic change influenced on the beginning of pollination of different plant species in Altai region. If average (for 27 years) of the beginning of pollination of Artemisia gmelinii (a typical representative of Central Asian steppe vegetation) was counted at 24 of August, a mass pollination of this species was at 5th of September. So deviation reached 14 days. Under condition of more cool summer the pollination in most cases (80 %) started later. Additionally we counted average temperature of beginning of pollination of this species which was + 21.5 C0, and sums of action temperatures (+5 C0) = 1675, (+10 C0) = 1491.

  4. What can present climate models tell us about climate change?

    NASA Astrophysics Data System (ADS)

    Benestad, R. E.

    2003-04-01

    Climate models are evaluated in terms of their ability to describe the past climatic changes. Past climatic trends are inferred from fitting a truncated Taylor series to the observational record and an ensemble of downscaled results from climate models. Analytical expressions are derived for the warming rates associated with long-term temperature trends using simple calculus. Different trend models are compared, and a third-order polynomial gives the best description of the past winter warming over southwestern Scandinavia. The coefficients from the regression analysis are used in an objective comparison of the past climatic evolution in the models and the observations. Comparisons between the temperature trends from observations and the output from an ensemble of various climate models suggest that single climate model scenarios do not provide a reliable description of the climatic evolution. Ensembles of state-of-the-art climate models, on the other hand, capture the main features of the past climatic evolution. However, there have been an interval with pronounced local winter warming over Scandinavia in the past which is not reproduced by the majority of climate models. It is difficult to say whether this accelerated warming event was part of natural decadal variations or induced by external factors. The climate models may not yet able to predict similar local episodes for the future if they are related to events unaccounted for, such as solar activity or volcanism.

  5. Global Distributions of Vulnerability to Climate Change

    SciTech Connect

    Yohe, Gary; Malone, Elizabeth L.; Brenkert, Antoinette L.; Schlesinger, Michael; Meij, Henk; Xiaoshi, Xing

    2006-12-01

    Signatories of the United Nations Framework Convention on Climate Change (UNFCCC) have committed themselves to addressing the “specific needs and special circumstances of developing country parties, especially those that are particularly vulnerable to the adverse effects of climate change”.1 The Intergovernmental Panel on Climate Change (IPCC) has since concluded with high confidence that “developing countries will be more vulnerable to climate change than developed countries”.2 In their most recent report, however, the IPCC notes that “current knowledge of adaptation and adaptive capacity is insufficient for reliable prediction of adaptations” 3 because “the capacity to adapt varies considerably among regions, countries and socioeconomic groups and will vary over time”.4 Here, we respond to the apparent contradiction in these two statements by exploring how variation in adaptive capacity and climate impacts combine to influence the global distribution of vulnerability. We find that all countries will be vulnerable to climate change, even if their adaptive capacities are enhanced. Developing nations are most vulnerable to modest climate change. Reducing greenhouse-gas emissions would diminish their vulnerabilities significantly. Developed countries would benefit most from mitigation for moderate climate change. Extreme climate change overwhelms the abilities of all countries to adapt. These findings should inform both ongoing negotiations for the next commitment period of the Kyoto Protocol and emerging plans for implementing UNFCCC-sponsored adaptation funds.

  6. Climate variability and climate change vulnerability and adaptation. Workshop summary

    SciTech Connect

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  7. Applied Climate-Change Analysis: The Climate Wizard Tool

    PubMed Central

    Girvetz, Evan H.; Zganjar, Chris; Raber, George T.; Maurer, Edwin P.; Kareiva, Peter; Lawler, Joshua J.

    2009-01-01

    Background Although the message of “global climate change” is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org) that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. Methodology/Principal Findings To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies) in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951–2002 occurred in northern hemisphere countries (especially during January–April), but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50°N during February-March to 10°N during August-September. Precipitation decreases occurred most commonly in countries between 0–20°N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs) for 2070–2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. Conclusions/Significance The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally-specific analyses of climate change. Moreover, Climate Wizard is not a static product, but rather a data analysis framework designed to be used for climate change impact and adaption planning, which can be expanded to include other information, such as downscaled future projections of hydrology, soil moisture, wildfire, vegetation, marine conditions, disease, and agricultural productivity. PMID:20016827

  8. Using Web GIS "Climate" for Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation. Passing this course raises awareness of the general public, as well as prepares the user for subsequent registration in the system and work with its tools in conducting independent research. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants 13-05-12034 and 14-05-00502.

  9. Climate change and wildlife health: direct and indirect effects

    USGS Publications Warehouse

    Hofmeister, Erik; Rogall, Gail Moede; eWsenberg, Kathy; Abbott, Rachel; Work, Thierry; Schuler, Krysten; Sleeman, Jonathan; Winton, James

    2010-01-01

    Climate change will have significant effects on the health of wildlife, domestic animals, and humans, according to scientists. The Intergovernmental Panel on Climate Change projects that unprecedented rates of climate change will result in increasing average global temperatures; rising sea levels; changing global precipitation patterns, including increasing amounts and variability; and increasing midcontinental summer drought (Intergovernmental Panel on Climate Change, 2007). Increasing temperatures, combined with changes in rainfall and humidity, may have significant impacts on wildlife, domestic animal, and human health and diseases. When combined with expanding human populations, these changes could increase demand on limited water resources, lead to more habitat destruction, and provide yet more opportunities for infectious diseases to cross from one species to another. Awareness has been growing in recent years about zoonotic diseases— that is, diseases that are transmissible between animals and humans, such as Lyme disease and West Nile virus. The rise of such diseases results from closer relationships among wildlife, domestic animals, and people, allowing more contact with diseased animals, organisms that carry and transmit a disease from one animal to another (vectors), and people. Disease vectors include insects, such as mosquitoes, and arachnids, such as ticks. Thus, it is impossible to separate the effects of global warming on wildlife from its effects on the health of domestic animals or people. Climate change, habitat destruction and urbanization, the introduction of exotic and invasive species, and pollution—all affect ecosystem and human health. Climate change can also be viewed within the context of other physical and climate cycles, such as the El Niño Southern Oscillation (El Niño), the North Atlantic Oscillation, and cycles in solar radiation that have profound effects on the Earth’s climate. The effects of climate change on wildlife disease are summarized in several areas of scientific study discussed briefly below: geographic range and distribution of wildlife diseases, plant and animal phenology (Walther and others, 2002), and patterns of wildlife disease, community and ecosystem composition, and habitat degradation.

  10. Impacts of climate change on avian populations.

    PubMed

    Jenouvrier, Stephanie

    2013-07-01

    This review focuses on the impacts of climate change on population dynamics. I introduce the MUP (Measuring, Understanding, and Predicting) approach, which provides a general framework where an enhanced understanding of climate-population processes, along with improved long-term data, are merged into coherent projections of future population responses to climate change. This approach can be applied to any species, but this review illustrates its benefit using birds as examples. Birds are one of the best-studied groups and a large number of studies have detected climate impacts on vital rates (i.e., life history traits, such as survival, maturation, or breeding, affecting changes in population size and composition) and population abundance. These studies reveal multifaceted effects of climate with direct, indirect, time-lagged, and nonlinear effects. However, few studies integrate these effects into a climate-dependent population model to understand the respective role of climate variables and their components (mean state, variability, extreme) on population dynamics. To quantify how populations cope with climate change impacts, I introduce a new universal variable: the 'population robustness to climate change.' The comparison of such robustness, along with prospective and retrospective analysis may help to identify the major climate threats and characteristics of threatened avian species. Finally, studies projecting avian population responses to future climate change predicted by IPCC-class climate models are rare. Population projections hinge on selecting a multiclimate model ensemble at the appropriate temporal and spatial scales and integrating both radiative forcing and internal variability in climate with fully specified uncertainties in both demographic and climate processes. PMID:23505016

  11. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to...

  12. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to...

  13. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to...

  14. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to...

  15. 10 CFR 76.68 - Plant changes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Plant changes. 76.68 Section 76.68 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Certification § 76.68 Plant changes. (a) The Corporation may make changes to the plant or to...

  16. Hybrid zones: windows on climate change.

    PubMed

    Taylor, Scott A; Larson, Erica L; Harrison, Richard G

    2015-07-01

    Defining the impacts of anthropogenic climate change on biodiversity and species distributions is currently a high priority. Niche models focus primarily on predicted changes in abiotic factors; however, species interactions and adaptive evolution will impact the ability of species to persist in the face of changing climate. Our review focuses on the use of hybrid zones to monitor responses of species to contemporary climate change. Monitoring hybrid zones provides insight into how range boundaries shift in response to climate change by illuminating the combined effects of species interactions and physiological sensitivity. At the same time, the semipermeable nature of species boundaries allows us to document adaptive introgression of alleles associated with response to climate change. PMID:25982153

  17. Emperor penguins and climate change.

    PubMed

    Barbraud, C; Weimerskirch, H

    2001-05-10

    Variations in ocean-atmosphere coupling over time in the Southern Ocean have dominant effects on sea-ice extent and ecosystem structure, but the ultimate consequences of such environmental changes for large marine predators cannot be accurately predicted because of the absence of long-term data series on key demographic parameters. Here, we use the longest time series available on demographic parameters of an Antarctic large predator breeding on fast ice and relying on food resources from the Southern Ocean. We show that over the past 50 years, the population of emperor penguins (Aptenodytes forsteri) in Terre Adélie has declined by 50% because of a decrease in adult survival during the late 1970s. At this time there was a prolonged abnormally warm period with reduced sea-ice extent. Mortality rates increased when warm sea-surface temperatures occurred in the foraging area and when annual sea-ice extent was reduced, and were higher for males than for females. In contrast with survival, emperor penguins hatched fewer eggs when winter sea-ice was extended. These results indicate strong and contrasting effects of large-scale oceanographic processes and sea-ice extent on the demography of emperor penguins, and their potential high susceptibility to climate change. PMID:11346792

  18. Effects of Climate Change on Allergens Eunice Lee '14 and Justin Dittmeier `13

    E-print Network

    Smith, Kate

    the occurrence and abundance of plant, mold and indoor allergens in the environment that cause allergies in large63 Effects of Climate Change on Allergens Eunice Lee '14 and Justin Dittmeier `13 Other modules in the Climate Change and Health unit that best complement the one presented here include The Science of Climate

  19. The Status of Mars Climate Change Modeling

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    1997-01-01

    Researchers have reviewed the evidence that the climate of Mars has changed throughout its history. In this paper, the discussion focuses on where we stand in terms of modeling these climate changes. For convenience, three distinct types of climate regimes are considered: very early in the planet's history (more than 3.5 Ga), when warm wet conditions are thought to have prevailed; the bulk of the planet's history (3.5-1 Ga), during which episodic ocean formation has been suggested; and relatively recently in the planet's history (less than 1 Ga), when orbitally induced climate change is thought to have occurred.

  20. Climate change and the permafrost carbon feedback.

    PubMed

    Schuur, E A G; McGuire, A D; Schädel, C; Grosse, G; Harden, J W; Hayes, D J; Hugelius, G; Koven, C D; Kuhry, P; Lawrence, D M; Natali, S M; Olefeldt, D; Romanovsky, V E; Schaefer, K; Turetsky, M R; Treat, C C; Vonk, J E

    2015-04-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics. PMID:25855454

  1. EMS adaptation for climate change

    NASA Astrophysics Data System (ADS)

    Pan, C.; Chang, Y.; Wen, J.; Tsai, M.

    2010-12-01

    The purpose of this study was to find an appropriate scenario of pre-hospital transportation of an emergency medical service (EMS) system for burdensome casualties resulting from extreme climate events. A case of natural catastrophic events in Taiwan, 88 wind-caused disasters, was reviewed and analyzed. A sequential-conveyance method was designed to shorten the casualty transportation time and to promote the efficiency of ambulance services. A proposed mobile emergency medical center was first constructed in a safe area, but nearby the disaster area. The Center consists of professional medical personnel who process the triage of incoming patients and take care of casualties with minor injuries. Ambulances in the Center were ready to sequentially convey the casualties with severer conditions to an assigned hospital that is distant from the disaster area for further treatment. The study suggests that if we could construct a spacious and well-equipped mobile emergency medical center, only a small portion of casualties would need to be transferred to distant hospitals. This would reduce the over-crowding problem in hospital ERs. First-line ambulances only reciprocated between the mobile emergency medical center and the disaster area, saving time and shortening the working distances. Second-line ambulances were highly regulated between the mobile emergency medical center and requested hospitals. The ambulance service of the sequential-conveyance method was found to be more efficient than the conventional method and was concluded to be more profitable and reasonable on paper in adapting to climate change. Therefore, additional practical work should be launched to collect more precise quantitative data.

  2. Simulating rice response to climate change

    SciTech Connect

    Singh, U.; Padilla, J.L.

    1995-12-31

    The response of rice (Oryza sativa L.) to elevated CO{sub 2} concentration and temperature increase was simulated using the CERES-rice model. CERES-rice belongs to the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) family of crop and nutrient dynamics models. Long-term historical data from the International Rice Research Institute (IRRI) wetland site was used to quantify the climatic change effects. The model simulated such beneficial effects of CO{sub 2} enrichment as increased grain yields, reduced transpiration, increased water use efficiency, improved use of intercepted radiation, reduced N losses, and higher N use efficiency. The trends were reversed for all of the above parameters with increase in temperature. CERES-rice simulated these negative trends in low input rice production as well. Based on the model`s prediction, some of the negative effects of temperature increase in warmer regions of the world could be offset by use of rice varieties that are tolerant to high temperature-induced spikelet sterility, and planting varieties with longer growth duration, particularly, longer grain filling duration. With improved varieties and good management future impact of climate change could be capitalized to have positive effects on rice production. Although the model has been extensively tested, it is critical to validate it with field data from extreme temperature and CO{sub 2} level studies. 33 refs., 13 figs., 3 tabs.

  3. Extreme climatic events and their evolution under changing climatic conditions

    E-print Network

    that, with the exception of earthquakes, climate-related hazards take the heaviest toll on human life 11. E-mail address: Martin.Beniston@unifr.ch (M. Beniston). Global and Planetary Change 44 (2004) 1Q resulting from earthquakes, but more than 170 events related to climatic extremes, in particular windstorms

  4. Water Vapor Feedbacks to Climate Change

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?

  5. Plants in a cold climate.

    PubMed Central

    Smallwood, Maggie; Bowles, Dianna J

    2002-01-01

    Plants are able to survive prolonged exposure to sub-zero temperatures; this ability is enhanced by pre-exposure to low, but above-zero temperatures. This process, known as cold acclimation, is briefly reviewed from the perception of cold, through transduction of the low-temperature signal to functional analysis of cold-induced gene products. The stresses that freezing of apoplastic water imposes on plant cells is considered and what is understood about the mechanisms that plants use to combat those stresses discussed, with particular emphasis on the role of the extracellular matrix. PMID:12171647

  6. Uncertain Outcomes and Climate Change Policy

    E-print Network

    Pindyck, Robert S.

    Focusing on tail effects, I incorporate distributions for temperature change and its economic impact in an analysis of climate change policy. I estimate the fraction of consumption w_(_ ) that society would be willing to ...

  7. Uncertain outcomes and climate change policy

    E-print Network

    Pindyck, Robert S.

    I incorporate distributions for temperature change and its economic impact in an analysis of climate change policy. As a measure of willingness to pay (WTP), I estimate the fraction of consumption w[superscript ?](?) that ...

  8. Uncertain Outcomes and Climate Change Policy

    E-print Network

    Pindyck, Robert S.

    Focusing on tail effects, I incorporate distributions for temperature change and its economic impact in an analysis of climate change policy. I estimate the fraction of consumption w*(?) that society would be willing to ...

  9. *Reprinted from Climate change policy in Brazil

    E-print Network

    *Reprinted from Climate change policy in Brazil and Mexico: Results from the MIT EPPA model: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Climate change policy in Brazil and Mexico School of Economics, Fundacao Getulio Vargas, Sao Paulo, Brazil a b s t r a c ta r t i c l e i n f o

  10. SPATIAL CLIMATE CHANGE VULNERABILITY ASSESSMENTS: A REVIEW

    E-print Network

    Columbia University

    for International Earth Science Information Network (CIESIN), Earth Institute at Columbia University, throughSPATIAL CLIMATE CHANGE VULNERABILITY ASSESSMENTS: A REVIEW OF DATA, METHODS, AND ISSUES AUGUST 2014: A Review of Data, Methods, and Issues i SPATIAL CLIMATE CHANGE VULNERABILITY ASSESSMENTS: A REVIEW OF DATA

  11. Climate Change Indicators for the United States

    EPA Science Inventory

    EPA’s publishes the Climate Change Indicators for the United States report to communicate information about the science and impacts of climate change, track trends in environmental quality, and inform de¬cision-making. This report presents a set of key indicators to help readers ...

  12. Singapore Students' Misconceptions of Climate Change

    ERIC Educational Resources Information Center

    Chang, Chew-Hung; Pascua, Liberty

    2016-01-01

    Climate change is an important theme in the investigation of human-environment interactions in geographic education. This study explored the nature of students' understanding of concepts and processes related to climate change. Through semi-structured interviews, data was collected from 27 Secondary 3 (Grade 9) students from Singapore. The data…

  13. Harnessing Homophily to Improve Climate Change Education

    ERIC Educational Resources Information Center

    Monroe, Martha C.; Plate, Richard R.; Adams, Damian C.; Wojcik, Deborah J.

    2015-01-01

    The Cooperative Extension Service (Extension) in the United States is well positioned to educate the public, particularly farmers and foresters, about climate change and to encourage responsible adoption of adaptation and mitigation strategies. However, the climate change attitudes and perceptions of Extension professionals have limited…

  14. 10 Facts on Climate Change and Health

    MedlinePLUS

    10 facts on climate change and health Next UNEP/Still Pictures Previous 1 2 3 4 5 6 7 8 9 10 Next Over ... more heat in the lower atmosphere. The resulting changes in the global climate bring a range of risks to health, from ...

  15. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  16. Impacts of Climate Change on Ecosystem Services

    E-print Network

    of human impact on our planet has been increasing decade after decade. The worldImpacts of Climate Change on Ecosystem Services June 23, 2015 Venue://www.eventi.polimi.it/#climate_change Humanity is called to cope with unprecedented challenges. The scale

  17. Chloe Adelmann Climate Change VS. Smog

    E-print Network

    Toohey, Darin W.

    Chloe Adelmann ATOC 3500 3/13/11 Climate Change VS. Smog The Story California Dairy Farmer, John to generate the electricity contributes to smog. The Federal air quality regulations in California over their limits, making the cut back of smog more important than reduction of climate change. NOx is associated

  18. The physical science behind climate change

    SciTech Connect

    Collins, William; Collins, William; Colman, Robert; Haywood, James; Manning, Martin R.; Mote, Philip

    2007-07-01

    For a scientist studying climate change, 'eureka' moments are unusually rare. Instead progress is generally made by a painstaking piecing together of evidence from every new temperature measurement, satellite sounding or climate-model experiment. Data get checked and rechecked, ideas tested over and over again. Do the observations fit the predicted changes? Could there be some alternative explanation? Good climate scientists, like all good scientists, want to ensure that the highest standards of proof apply to everything they discover. And the evidence of change has mounted as climate records have grown longer, as our understanding of the climate system has improved and as climate models have become ever more reliable. Over the past 20 years, evidence that humans are affecting the climate has accumulated inexorably, and with it has come ever greater certainty across the scientific community in the reality of recent climate change and the potential for much greater change in the future. This increased certainty is starkly reflected in the latest report of the Intergovernmental Panel on Climate Change (IPCC), the fourth in a series of assessments of the state of knowledge on the topic, written and reviewed by hundreds of scientists worldwide. The panel released a condensed version of the first part of the report, on the physical science basis of climate change, in February. Called the 'Summary for Policymakers,' it delivered to policymakers and ordinary people alike an unambiguous message: scientists are more confident than ever that humans have interfered with the climate and that further human-induced climate change is on the way. Although the report finds that some of these further changes are now inevitable, its analysis also confirms that the future, particularly in the longer term, remains largely in our hands--the magnitude of expected change depends on what humans choose to do about greenhouse gas emissions. The physical science assessment focuses on four topics: drivers of climate change, changes observed in the climate system, understanding cause-and-effect relationships, and projection of future changes. Important advances in research into all these areas have occurred since the IPCC assessment in 2001. In the pages that follow, we lay out the key findings that document the extent of change and that point to the unavoidable conclusion that human activity is driving it.

  19. Prehistoric Packrats Piled Up Clues to Climate Change

    USGS Publications Warehouse

    Cole, Kenneth L.

    2008-01-01

    Scientists from the U.S. Geological Survey and Northern Arizona University studying climate change in the Southwestern United States are getting a helping hand?or would that be paw??from prehistoric packrats. By hoarding parts of animals and plants, including seeds and leaves, in garbage piles or ?middens,? these bushy-tailed rodents preserved crucial ecological and environmental information about the past. From these middens, scientists are able to reconstruct plant communities and natural systems from as long ago as 50,000 years. The contents of middens allow scientists to understand how ecosystems responded to rapid, large-scale climate changes of the past. The insights gained from midden research could offer clues to future changes driven by rapid climate shifts.

  20. Late Holocene plant and climate evolution at Lake Yoa, northern Chad: pollen data and climate simulations

    NASA Astrophysics Data System (ADS)

    Lézine, A.-M.; Zheng, W.; Braconnot, P.; Krinner, G.

    2011-12-01

    The discovery of groundwater-fed Lake Yoa (19.03° N, 20.31° E) in the hyperarid desert of northern Chad by the German research team ACACIA headed by S. Kröpelin provides a unique, continuous sedimentary sequence of late Holocene age available in the entire Saharan desert. Here we present pollen data and climate simulations using the LMDZ atmospheric model with a module representing the climatologically-relevant thermal and hydrological processes occurring above and beneath inland water surfaces to document past environmental and climate changes during the last 6000 cal yr BP. Special attention is paid to wind strength and direction, length and amplitude of the rainy season, and dry spell occurrence, all of which are of primary importance for plant distribution and pollen transport. In addition to climate changes and their impact on the natural environment, anthropogenic changes are also discussed. Two main features can be highlighted: (1) the shift from an earlier predominantly monsoonal climate regime to one dominated by northern Mediterranean fluxes that occurred after 4000 cal yr BP. The direct consequence of this was the establishment of the modern desert environment at Yoa at 2700 cal yr BP. (2) Changes in climate parameters (simulated rainfall amount and dry spell length) between 6 and 4000 cal yr BP were comparatively minor. However, changes in the seasonal distribution of precipitation during this time interval dramatically affected the vegetation composition and were at the origin of the retreat of tropical plant communities from Lake Yoa.

  1. Constraining uncertainties in climate models using climate change detection techniques

    E-print Network

    Forest, Chris Eliot.; Allen, Myles R.; Stone, Peter H.; Sokolov, Andrei P.

    Different atmosphere-ocean general circulation models produce significantly different projections of climate change in response to increases in greenhouse gases and aerosol concentrations in the atmosphere. The main reasons ...

  2. Frontiers in climate change-disease research

    PubMed Central

    Rohr, Jason R.; Dobson, Andrew P.; Johnson, Pieter T.J.; Kilpatrick, A. Marm; Paull, Sara H.; Raffel, Thomas R.; Ruiz-Moreno, Diego; Thomas, Matthew B.

    2012-01-01

    The notion that climate change will generally increase human and wildlife diseases has garnered considerable public attention, but remains controversial and seems inconsistent with the expectation that climate change will also cause parasite extinctions. In this review, we highlight the frontiers in climate change–infectious disease research by reviewing knowledge gaps that make this controversy difficult to resolve. We suggest that forecasts of climate-change impacts on disease can be improved by more interdisciplinary collaborations, better linking of data and models, addressing confounding variables and context dependencies, and applying metabolic theory to host–parasite systems with consideration of community-level interactions and functional traits. Finally, although we emphasize host–parasite interactions, we also highlight the applicability of these points to climate-change effects on species interactions in general. PMID:21481487

  3. Mesocosms Reveal Ecological Surprises from Climate Change

    PubMed Central

    Fordham, Damien A.

    2015-01-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species’ extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change. PMID:26680131

  4. Mesocosms Reveal Ecological Surprises from Climate Change.

    PubMed

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change. PMID:26680131

  5. Human Perceptions of Climate Change Varun Dutt and Cleotilde Gonzalez*

    E-print Network

    Spirtes, Peter

    Integrated Climate Economy model (DICE)-1992. The interactive tool allows participants to make decisions1 Human Perceptions of Climate Change Varun Dutt and Cleotilde Gonzalez* Dynamic Decision Making. Keywords: Dynamic decision making, climate change, stocks and flows INTRODUCTION Earth's climate

  6. Upper Carboniferous reef mounds and climate change

    SciTech Connect

    West, R.R.; Archer, A.W. )

    1992-01-01

    Tetractinomorph demosponges (chaetetids) are a minor component of extant tropical reefs, but they were the major framebuilder of reef mounds during the Westphalian (Carboniferous). These chaetetids were confined to tropical latitudes during the Carboniferous, reached an abundance peak in the Westphalian, and then declined suddenly until the Upper Triassic. After their decline, red and green algae became the dominant reef builders of the Stephanian. The marked decline of chaetetids corresponds with the disappearance, and/or decline of other marine benthic invertebrates, as well as some terrestrial plants and is the basis for the biostratigraphic boundary between the Westphalian and Stephanian (Desmoinesian and Missourian). This biostratigraphic boundary coincides with a minor extinction event and a major'' climatic change. The Westphalian climate was wetter than that of the Stephanian, and in the midcontinent this change is recorded by a gradual decline in coals and siliciclastic lithologies and a corresponding increase in carbonate lithologies. A rise in water temperature might be expected in a drier tropical climate, and if extant chaetetids are any clue, elevated water temperature may have been detrimental. Extant chaetetids are associated with tropical coral reefs that are confined to a narrow temperature range. It is not unreasonable to suggest that elevated seawater temperatures were responsible, in part, for the disappearance of chaetetid reef mounds. Red and green algae, presumably more tolerate of higher water temperatures, became the major framebuilders of reef mounds in the Stephanian. Thus, the demise of chaetetid reef mounds, and other organisms at the end of the Westphalian, may be the result of global warming.

  7. Climate Change: Negotiated Transactions forClimate Change: Negotiated Transactions for WaterWater--Energy ResilienceEnergy Resilience

    E-print Network

    Keller, Arturo A.

    Climate Change: Negotiated Transactions forClimate Change: Negotiated Transactions for WaterWater · Predictable access and costs for water & power #12;Climate ChangeClimate Change · Increased temp. ­ effects of climate on water transactionEffect of climate on water transaction prices in western U.S.prices in western

  8. Connectivity planning to address climate change.

    PubMed

    Nuñez, Tristan A; Lawler, Joshua J; McRae, Brad H; Pierce, D John; Krosby, Meade B; Kavanagh, Darren M; Singleton, Peter H; Tewksbury, Joshua J

    2013-04-01

    As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost-distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land-use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático. PMID:23410037

  9. Integrating Climate Change into Great Lakes Protection

    NASA Astrophysics Data System (ADS)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency Agreements. EPA has provided GLRI funding for a diverse suite of climate change-related projects including Great Lakes climate change research and modeling; adaptation plan development and implementation; ecosystem vulnerability assessments; outreach and education programs; habitat restoration and protection projects that will increase ecosystem resilience; and other projects that address climate change impacts. This presentation will discuss how the GLRI is helping to improve the climate change science needed to support the Action Plan. It will further describe how the GLRI is helping coordinate climate change efforts among Great Lakes states, tribes, Federal agencies, and other stakeholders. Finally, it will discuss how the GLRI is facilitating adaptation planning by our Great Lakes partners. The draft Lake Superior Ecosystem Climate Change Adaptation Plan serves as a case study for an integrated, collaborative, and coordinated climate change effort.

  10. Disentangling root responses to climate change in a semiarid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Future ecosystem properties of grasslands will be driven largely by belowground plant biomass responses to climate change, whose understanding has been limited by experimental and technical constraints. We use a multi-faceted approach and a factorial field experiment to explore impacts of elevated C...

  11. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to this change. PMID:17967923

  12. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  13. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    NASA Astrophysics Data System (ADS)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    Biodiversity has been described as the diversity of life on earth within species, between species and in ecosystems. Biodiversity contributes to regulating ecosystem services like climate, flood, disease, and water quality regulation. Biodiversity also supports and sustains ecosystem services that provide material goods like food, fiber, fuel, timber and water, and to non-material benefits like educational, recreational, spiritual, and aesthetic ecosystem services. The Millennium Ecosystem Assessment estimated that the rate of biodiversity loss due to human activity in the last 50 years has been more rapid than at any other time in human history, and that many of the drivers of biodiversity loss are increasing. The strongest drivers of biodiversity loss include habitat loss, overexploitation, invasive species, climate change, and pollution, including pollution from reactive nitrogen. Of these stressors, climate change and reactive nitrogen from anthropogenic activities are causing some of the most rapid changes. Climate change is causing warming trends that result in consistent patterns of poleward and elevational range shifts of flora and fauna, causing changes in biodiversity. Warming has also resulted in changes in phenology, particularly the earlier onset of spring events, migration, and lengthening of the growing season, disrupting predator-prey and plant-pollinator interactions. In addition to warming, elevated carbon dioxide by itself can affect biodiversity by influencing plant growth, soil water, tissue stoichiometry, and trophic interactions. Nitrogen enrichment also impacts ecosystems and biodiversity in a variety of ways. Nitrogen enhances plant growth, but has been shown to favor invasive, fast-growing species over native species adapted to low nitrogen conditions. Although there have been a limited number of empirical studies on climate change and nitrogen interactions, inferences can be drawn from observed responses to each stressor by itself. For example, in certain arid ecosystems of southern California, elevated nitrogen has promoted invasions of annual non-native grasses. At the same time, a period of above-normal precipitation years has exacerbated the grass invasions. Increased grass cover has altered the hydrologic cycle of these areas and increased fire risk, ultimately leading to conversion of the ecosystem from diverse shrublands to less diverse grasslands. In addition to empirical studies, modeling can be used to simulate climate change and nitrogen interactions. The ForSAFE-VEG model, for example, has been used to examine climate change and nitrogen interactions in Rocky Mountain alpine vegetation communities. Results from both empirical studies and modeling indicate that nitrogen and climate change interact to drive losses in biodiversity greater than those caused by either stressor alone. Reducing inputs of anthropogenic reactive nitrogen may be an effective mitigation strategy for protecting biodiversity in the face of climate change.

  14. Man-Made Climatic Changes

    ERIC Educational Resources Information Center

    Landsberg, Helmut E.

    1970-01-01

    Reviews environmental studies which show that national climatic fluctuations vary over a wide range. Solar radiation, earth temperatures, precipitation, atmospheric gases and suspended particulates are discussed in relation to urban and extraurban effects. Local weather modifications and attempts at climate control by man seem to have substantial…

  15. Natural and anthropogenic climate change

    SciTech Connect

    Portman, D.A.; Gutowski, W.J. Jr.; Wang, W.C.; Iacono, M.J.; Yang, S.

    1992-08-31

    This final report provides a broad overview of program accomplishments. Brief descriptions are provided for accomplishments with respect to intercomparisions and improvements in general circulation models, analysis of climatic data and climate model statistics, and accomplishments in the China Meteorology coordination.

  16. Abrupt Climate Change Studies! Introduction

    E-print Network

    Biasutti, Michela

    temperature over most of the Arctic! · Reduced sea ice cover! · Warming of permafrost! · Melting of Greenland with the global climate system! Land ice cover during the Holocene! Reconstructing late Holocene climate or precipitation) that takes place over a few decades or less, persists for at least a few decades, and causes

  17. Changes in Fire Regime Catalyze Ecological Responses to Climate Change in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Johnstone, J. F.; Chapin, F.; Hollingsworth, T.; Rupp, S.

    2009-05-01

    The boreal forests of western North America are experiencing rapid directional changes in climate that are predicted to continue into the next century. The responses of boreal forest plant communities to climate change may be constrained over the short term by factors that create resistance to change, such as slow population turnover rates and strong plant-environment interactions. In this situation, disturbance may act as a key catalyst for ecosystem change. However, important disturbance agents such as fire are also sensitive to climate, and climate-induced changes in disturbance regime are likely to have direct effects on ecological communities. Our research focuses on how changes in different components of the fire disturbance regime, such as fire frequency and severity, may drive forest ecosystem responses to climate change. This research focuses on spruce-dominated boreal forests of Alaska and Yukon, and their potential to shift to deciduous-dominated forests. A combination of experimental, observational, and modeling approaches provide information on how interactions between reproductive traits and disturbance characteristics influence the long-term resilience of boreal systems. Recent research in the widespread 2004 burns in Alaska aims to understand the combinations of abiotic conditions and fire effects that shape forest resilience across heterogeneous landscapes. Our data suggest that shifts to increasing severity or frequency of fire in northern boreal forests will stimulate an increase in deciduous landscape cover, and that these changes in forest cover may feedback to mediate climate effects on fire regime.

  18. Climate Change Education as an Integral Part of the United Nations Framework Convention on Climate Change

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2012

    2012-01-01

    The United Nations Framework Convention on Climate Change (UNFCCC), through its Article 6, and the Convention's Kyoto Protocol, through its Article 10 (e), call on governments to develop and implement educational programmes on climate change and its effects. In particular, Article 6 of the Convention, which addresses the issue of climate

  19. Climate impacts on bird and plant communities from altered animal-plant interactions

    NASA Astrophysics Data System (ADS)

    Martin, Thomas E.; Maron, John L.

    2012-03-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant-animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.

  20. Climate impacts on bird and plant communities from altered animal-plant interactions

    USGS Publications Warehouse

    Martin, Thomas E.; Maron, John L.

    2012-01-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant–animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.